SemaDeclCXX.cpp revision e4b92761b43ced611c417ae478568610f1ad7b1e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDecl();
424           Older; Older = Older->getPreviousDecl()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
663  if (MD && MD->isInstance()) {
664    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
665    //  In addition, either its function-body shall be = delete or = default or
666    //  it shall satisfy the following constraints:
667    //  - the class shall not have any virtual base classes;
668    //
669    // We apply this to constexpr member functions too: the class cannot be a
670    // literal type, so the members are not permitted to be constexpr.
671    const CXXRecordDecl *RD = MD->getParent();
672    if (RD->getNumVBases()) {
673      // Note, this is still illegal if the body is = default, since the
674      // implicit body does not satisfy the requirements of a constexpr
675      // constructor. We also reject cases where the body is = delete, as
676      // required by N3308.
677      if (CCK != CCK_Instantiation) {
678        Diag(NewFD->getLocation(),
679             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
680                                    : diag::note_constexpr_tmpl_virtual_base)
681          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
682          << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  }
691
692  if (!isa<CXXConstructorDecl>(NewFD)) {
693    // C++11 [dcl.constexpr]p3:
694    //  The definition of a constexpr function shall satisfy the following
695    //  constraints:
696    // - it shall not be virtual;
697    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
698    if (Method && Method->isVirtual()) {
699      if (CCK != CCK_Instantiation) {
700        Diag(NewFD->getLocation(),
701             CCK == CCK_Declaration ? diag::err_constexpr_virtual
702                                    : diag::note_constexpr_tmpl_virtual);
703
704        // If it's not obvious why this function is virtual, find an overridden
705        // function which uses the 'virtual' keyword.
706        const CXXMethodDecl *WrittenVirtual = Method;
707        while (!WrittenVirtual->isVirtualAsWritten())
708          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
709        if (WrittenVirtual != Method)
710          Diag(WrittenVirtual->getLocation(),
711               diag::note_overridden_virtual_function);
712      }
713      return false;
714    }
715
716    // - its return type shall be a literal type;
717    QualType RT = NewFD->getResultType();
718    if (!RT->isDependentType() &&
719        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
720                           PDiag(diag::err_constexpr_non_literal_return) :
721                           PDiag(),
722                           /*AllowIncompleteType*/ true)) {
723      if (CCK == CCK_NoteNonConstexprInstantiation)
724        Diag(NewFD->getLocation(),
725             diag::note_constexpr_tmpl_non_literal_return) << RT;
726      return false;
727    }
728  }
729
730  // - each of its parameter types shall be a literal type;
731  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
732    return false;
733
734  return true;
735}
736
737/// Check the given declaration statement is legal within a constexpr function
738/// body. C++0x [dcl.constexpr]p3,p4.
739///
740/// \return true if the body is OK, false if we have diagnosed a problem.
741static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
742                                   DeclStmt *DS) {
743  // C++0x [dcl.constexpr]p3 and p4:
744  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
745  //  contain only
746  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
747         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
748    switch ((*DclIt)->getKind()) {
749    case Decl::StaticAssert:
750    case Decl::Using:
751    case Decl::UsingShadow:
752    case Decl::UsingDirective:
753    case Decl::UnresolvedUsingTypename:
754      //   - static_assert-declarations
755      //   - using-declarations,
756      //   - using-directives,
757      continue;
758
759    case Decl::Typedef:
760    case Decl::TypeAlias: {
761      //   - typedef declarations and alias-declarations that do not define
762      //     classes or enumerations,
763      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
764      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
765        // Don't allow variably-modified types in constexpr functions.
766        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
767        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
768          << TL.getSourceRange() << TL.getType()
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773    }
774
775    case Decl::Enum:
776    case Decl::CXXRecord:
777      // As an extension, we allow the declaration (but not the definition) of
778      // classes and enumerations in all declarations, not just in typedef and
779      // alias declarations.
780      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
781        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
782          << isa<CXXConstructorDecl>(Dcl);
783        return false;
784      }
785      continue;
786
787    case Decl::Var:
788      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
789        << isa<CXXConstructorDecl>(Dcl);
790      return false;
791
792    default:
793      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
794        << isa<CXXConstructorDecl>(Dcl);
795      return false;
796    }
797  }
798
799  return true;
800}
801
802/// Check that the given field is initialized within a constexpr constructor.
803///
804/// \param Dcl The constexpr constructor being checked.
805/// \param Field The field being checked. This may be a member of an anonymous
806///        struct or union nested within the class being checked.
807/// \param Inits All declarations, including anonymous struct/union members and
808///        indirect members, for which any initialization was provided.
809/// \param Diagnosed Set to true if an error is produced.
810static void CheckConstexprCtorInitializer(Sema &SemaRef,
811                                          const FunctionDecl *Dcl,
812                                          FieldDecl *Field,
813                                          llvm::SmallSet<Decl*, 16> &Inits,
814                                          bool &Diagnosed) {
815  if (Field->isUnnamedBitfield())
816    return;
817
818  if (!Inits.count(Field)) {
819    if (!Diagnosed) {
820      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
821      Diagnosed = true;
822    }
823    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
824  } else if (Field->isAnonymousStructOrUnion()) {
825    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
826    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
827         I != E; ++I)
828      // If an anonymous union contains an anonymous struct of which any member
829      // is initialized, all members must be initialized.
830      if (!RD->isUnion() || Inits.count(*I))
831        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
832  }
833}
834
835/// Check the body for the given constexpr function declaration only contains
836/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
837///
838/// \return true if the body is OK, false if we have diagnosed a problem.
839bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
840  if (isa<CXXTryStmt>(Body)) {
841    // C++0x [dcl.constexpr]p3:
842    //  The definition of a constexpr function shall satisfy the following
843    //  constraints: [...]
844    // - its function-body shall be = delete, = default, or a
845    //   compound-statement
846    //
847    // C++0x [dcl.constexpr]p4:
848    //  In the definition of a constexpr constructor, [...]
849    // - its function-body shall not be a function-try-block;
850    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
851      << isa<CXXConstructorDecl>(Dcl);
852    return false;
853  }
854
855  // - its function-body shall be [...] a compound-statement that contains only
856  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
857
858  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
859  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
860         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
861    switch ((*BodyIt)->getStmtClass()) {
862    case Stmt::NullStmtClass:
863      //   - null statements,
864      continue;
865
866    case Stmt::DeclStmtClass:
867      //   - static_assert-declarations
868      //   - using-declarations,
869      //   - using-directives,
870      //   - typedef declarations and alias-declarations that do not define
871      //     classes or enumerations,
872      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
873        return false;
874      continue;
875
876    case Stmt::ReturnStmtClass:
877      //   - and exactly one return statement;
878      if (isa<CXXConstructorDecl>(Dcl))
879        break;
880
881      ReturnStmts.push_back((*BodyIt)->getLocStart());
882      // FIXME
883      // - every constructor call and implicit conversion used in initializing
884      //   the return value shall be one of those allowed in a constant
885      //   expression.
886      // Deal with this as part of a general check that the function can produce
887      // a constant expression (for [dcl.constexpr]p5).
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // - every non-static data member and base class sub-object shall be
903    //   initialized;
904    if (RD->isUnion()) {
905      // DR1359: Exactly one member of a union shall be initialized.
906      if (Constructor->getNumCtorInitializers() == 0) {
907        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
908        return false;
909      }
910    } else if (!Constructor->isDependentContext() &&
911               !Constructor->isDelegatingConstructor()) {
912      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
913
914      // Skip detailed checking if we have enough initializers, and we would
915      // allow at most one initializer per member.
916      bool AnyAnonStructUnionMembers = false;
917      unsigned Fields = 0;
918      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
919           E = RD->field_end(); I != E; ++I, ++Fields) {
920        if ((*I)->isAnonymousStructOrUnion()) {
921          AnyAnonStructUnionMembers = true;
922          break;
923        }
924      }
925      if (AnyAnonStructUnionMembers ||
926          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
927        // Check initialization of non-static data members. Base classes are
928        // always initialized so do not need to be checked. Dependent bases
929        // might not have initializers in the member initializer list.
930        llvm::SmallSet<Decl*, 16> Inits;
931        for (CXXConstructorDecl::init_const_iterator
932               I = Constructor->init_begin(), E = Constructor->init_end();
933             I != E; ++I) {
934          if (FieldDecl *FD = (*I)->getMember())
935            Inits.insert(FD);
936          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
937            Inits.insert(ID->chain_begin(), ID->chain_end());
938        }
939
940        bool Diagnosed = false;
941        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
942             E = RD->field_end(); I != E; ++I)
943          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
944        if (Diagnosed)
945          return false;
946      }
947    }
948
949    // FIXME
950    // - every constructor involved in initializing non-static data members
951    //   and base class sub-objects shall be a constexpr constructor;
952    // - every assignment-expression that is an initializer-clause appearing
953    //   directly or indirectly within a brace-or-equal-initializer for
954    //   a non-static data member that is not named by a mem-initializer-id
955    //   shall be a constant expression; and
956    // - every implicit conversion used in converting a constructor argument
957    //   to the corresponding parameter type and converting
958    //   a full-expression to the corresponding member type shall be one of
959    //   those allowed in a constant expression.
960    // Deal with these as part of a general check that the function can produce
961    // a constant expression (for [dcl.constexpr]p5).
962  } else {
963    if (ReturnStmts.empty()) {
964      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
965      return false;
966    }
967    if (ReturnStmts.size() > 1) {
968      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
969      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
970        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
971      return false;
972    }
973  }
974
975  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
976  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
977    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
978      << isa<CXXConstructorDecl>(Dcl);
979    for (size_t I = 0, N = Diags.size(); I != N; ++I)
980      Diag(Diags[I].first, Diags[I].second);
981    return false;
982  }
983
984  return true;
985}
986
987/// isCurrentClassName - Determine whether the identifier II is the
988/// name of the class type currently being defined. In the case of
989/// nested classes, this will only return true if II is the name of
990/// the innermost class.
991bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
992                              const CXXScopeSpec *SS) {
993  assert(getLangOptions().CPlusPlus && "No class names in C!");
994
995  CXXRecordDecl *CurDecl;
996  if (SS && SS->isSet() && !SS->isInvalid()) {
997    DeclContext *DC = computeDeclContext(*SS, true);
998    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
999  } else
1000    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1001
1002  if (CurDecl && CurDecl->getIdentifier())
1003    return &II == CurDecl->getIdentifier();
1004  else
1005    return false;
1006}
1007
1008/// \brief Check the validity of a C++ base class specifier.
1009///
1010/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1011/// and returns NULL otherwise.
1012CXXBaseSpecifier *
1013Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1014                         SourceRange SpecifierRange,
1015                         bool Virtual, AccessSpecifier Access,
1016                         TypeSourceInfo *TInfo,
1017                         SourceLocation EllipsisLoc) {
1018  QualType BaseType = TInfo->getType();
1019
1020  // C++ [class.union]p1:
1021  //   A union shall not have base classes.
1022  if (Class->isUnion()) {
1023    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1024      << SpecifierRange;
1025    return 0;
1026  }
1027
1028  if (EllipsisLoc.isValid() &&
1029      !TInfo->getType()->containsUnexpandedParameterPack()) {
1030    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1031      << TInfo->getTypeLoc().getSourceRange();
1032    EllipsisLoc = SourceLocation();
1033  }
1034
1035  if (BaseType->isDependentType())
1036    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1037                                          Class->getTagKind() == TTK_Class,
1038                                          Access, TInfo, EllipsisLoc);
1039
1040  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1041
1042  // Base specifiers must be record types.
1043  if (!BaseType->isRecordType()) {
1044    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1045    return 0;
1046  }
1047
1048  // C++ [class.union]p1:
1049  //   A union shall not be used as a base class.
1050  if (BaseType->isUnionType()) {
1051    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1052    return 0;
1053  }
1054
1055  // C++ [class.derived]p2:
1056  //   The class-name in a base-specifier shall not be an incompletely
1057  //   defined class.
1058  if (RequireCompleteType(BaseLoc, BaseType,
1059                          PDiag(diag::err_incomplete_base_class)
1060                            << SpecifierRange)) {
1061    Class->setInvalidDecl();
1062    return 0;
1063  }
1064
1065  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1066  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1067  assert(BaseDecl && "Record type has no declaration");
1068  BaseDecl = BaseDecl->getDefinition();
1069  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1070  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1071  assert(CXXBaseDecl && "Base type is not a C++ type");
1072
1073  // C++ [class]p3:
1074  //   If a class is marked final and it appears as a base-type-specifier in
1075  //   base-clause, the program is ill-formed.
1076  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1077    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1078      << CXXBaseDecl->getDeclName();
1079    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1080      << CXXBaseDecl->getDeclName();
1081    return 0;
1082  }
1083
1084  if (BaseDecl->isInvalidDecl())
1085    Class->setInvalidDecl();
1086
1087  // Create the base specifier.
1088  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1089                                        Class->getTagKind() == TTK_Class,
1090                                        Access, TInfo, EllipsisLoc);
1091}
1092
1093/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1094/// one entry in the base class list of a class specifier, for
1095/// example:
1096///    class foo : public bar, virtual private baz {
1097/// 'public bar' and 'virtual private baz' are each base-specifiers.
1098BaseResult
1099Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1100                         bool Virtual, AccessSpecifier Access,
1101                         ParsedType basetype, SourceLocation BaseLoc,
1102                         SourceLocation EllipsisLoc) {
1103  if (!classdecl)
1104    return true;
1105
1106  AdjustDeclIfTemplate(classdecl);
1107  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1108  if (!Class)
1109    return true;
1110
1111  TypeSourceInfo *TInfo = 0;
1112  GetTypeFromParser(basetype, &TInfo);
1113
1114  if (EllipsisLoc.isInvalid() &&
1115      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1116                                      UPPC_BaseType))
1117    return true;
1118
1119  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1120                                                      Virtual, Access, TInfo,
1121                                                      EllipsisLoc))
1122    return BaseSpec;
1123
1124  return true;
1125}
1126
1127/// \brief Performs the actual work of attaching the given base class
1128/// specifiers to a C++ class.
1129bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1130                                unsigned NumBases) {
1131 if (NumBases == 0)
1132    return false;
1133
1134  // Used to keep track of which base types we have already seen, so
1135  // that we can properly diagnose redundant direct base types. Note
1136  // that the key is always the unqualified canonical type of the base
1137  // class.
1138  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1139
1140  // Copy non-redundant base specifiers into permanent storage.
1141  unsigned NumGoodBases = 0;
1142  bool Invalid = false;
1143  for (unsigned idx = 0; idx < NumBases; ++idx) {
1144    QualType NewBaseType
1145      = Context.getCanonicalType(Bases[idx]->getType());
1146    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1147    if (KnownBaseTypes[NewBaseType]) {
1148      // C++ [class.mi]p3:
1149      //   A class shall not be specified as a direct base class of a
1150      //   derived class more than once.
1151      Diag(Bases[idx]->getSourceRange().getBegin(),
1152           diag::err_duplicate_base_class)
1153        << KnownBaseTypes[NewBaseType]->getType()
1154        << Bases[idx]->getSourceRange();
1155
1156      // Delete the duplicate base class specifier; we're going to
1157      // overwrite its pointer later.
1158      Context.Deallocate(Bases[idx]);
1159
1160      Invalid = true;
1161    } else {
1162      // Okay, add this new base class.
1163      KnownBaseTypes[NewBaseType] = Bases[idx];
1164      Bases[NumGoodBases++] = Bases[idx];
1165      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1166        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1167          if (RD->hasAttr<WeakAttr>())
1168            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1169    }
1170  }
1171
1172  // Attach the remaining base class specifiers to the derived class.
1173  Class->setBases(Bases, NumGoodBases);
1174
1175  // Delete the remaining (good) base class specifiers, since their
1176  // data has been copied into the CXXRecordDecl.
1177  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1178    Context.Deallocate(Bases[idx]);
1179
1180  return Invalid;
1181}
1182
1183/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1184/// class, after checking whether there are any duplicate base
1185/// classes.
1186void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1187                               unsigned NumBases) {
1188  if (!ClassDecl || !Bases || !NumBases)
1189    return;
1190
1191  AdjustDeclIfTemplate(ClassDecl);
1192  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1193                       (CXXBaseSpecifier**)(Bases), NumBases);
1194}
1195
1196static CXXRecordDecl *GetClassForType(QualType T) {
1197  if (const RecordType *RT = T->getAs<RecordType>())
1198    return cast<CXXRecordDecl>(RT->getDecl());
1199  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1200    return ICT->getDecl();
1201  else
1202    return 0;
1203}
1204
1205/// \brief Determine whether the type \p Derived is a C++ class that is
1206/// derived from the type \p Base.
1207bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1208  if (!getLangOptions().CPlusPlus)
1209    return false;
1210
1211  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1212  if (!DerivedRD)
1213    return false;
1214
1215  CXXRecordDecl *BaseRD = GetClassForType(Base);
1216  if (!BaseRD)
1217    return false;
1218
1219  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1220  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1221}
1222
1223/// \brief Determine whether the type \p Derived is a C++ class that is
1224/// derived from the type \p Base.
1225bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1226  if (!getLangOptions().CPlusPlus)
1227    return false;
1228
1229  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1230  if (!DerivedRD)
1231    return false;
1232
1233  CXXRecordDecl *BaseRD = GetClassForType(Base);
1234  if (!BaseRD)
1235    return false;
1236
1237  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1238}
1239
1240void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1241                              CXXCastPath &BasePathArray) {
1242  assert(BasePathArray.empty() && "Base path array must be empty!");
1243  assert(Paths.isRecordingPaths() && "Must record paths!");
1244
1245  const CXXBasePath &Path = Paths.front();
1246
1247  // We first go backward and check if we have a virtual base.
1248  // FIXME: It would be better if CXXBasePath had the base specifier for
1249  // the nearest virtual base.
1250  unsigned Start = 0;
1251  for (unsigned I = Path.size(); I != 0; --I) {
1252    if (Path[I - 1].Base->isVirtual()) {
1253      Start = I - 1;
1254      break;
1255    }
1256  }
1257
1258  // Now add all bases.
1259  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1260    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1261}
1262
1263/// \brief Determine whether the given base path includes a virtual
1264/// base class.
1265bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1266  for (CXXCastPath::const_iterator B = BasePath.begin(),
1267                                BEnd = BasePath.end();
1268       B != BEnd; ++B)
1269    if ((*B)->isVirtual())
1270      return true;
1271
1272  return false;
1273}
1274
1275/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1276/// conversion (where Derived and Base are class types) is
1277/// well-formed, meaning that the conversion is unambiguous (and
1278/// that all of the base classes are accessible). Returns true
1279/// and emits a diagnostic if the code is ill-formed, returns false
1280/// otherwise. Loc is the location where this routine should point to
1281/// if there is an error, and Range is the source range to highlight
1282/// if there is an error.
1283bool
1284Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1285                                   unsigned InaccessibleBaseID,
1286                                   unsigned AmbigiousBaseConvID,
1287                                   SourceLocation Loc, SourceRange Range,
1288                                   DeclarationName Name,
1289                                   CXXCastPath *BasePath) {
1290  // First, determine whether the path from Derived to Base is
1291  // ambiguous. This is slightly more expensive than checking whether
1292  // the Derived to Base conversion exists, because here we need to
1293  // explore multiple paths to determine if there is an ambiguity.
1294  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1295                     /*DetectVirtual=*/false);
1296  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1297  assert(DerivationOkay &&
1298         "Can only be used with a derived-to-base conversion");
1299  (void)DerivationOkay;
1300
1301  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1302    if (InaccessibleBaseID) {
1303      // Check that the base class can be accessed.
1304      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1305                                   InaccessibleBaseID)) {
1306        case AR_inaccessible:
1307          return true;
1308        case AR_accessible:
1309        case AR_dependent:
1310        case AR_delayed:
1311          break;
1312      }
1313    }
1314
1315    // Build a base path if necessary.
1316    if (BasePath)
1317      BuildBasePathArray(Paths, *BasePath);
1318    return false;
1319  }
1320
1321  // We know that the derived-to-base conversion is ambiguous, and
1322  // we're going to produce a diagnostic. Perform the derived-to-base
1323  // search just one more time to compute all of the possible paths so
1324  // that we can print them out. This is more expensive than any of
1325  // the previous derived-to-base checks we've done, but at this point
1326  // performance isn't as much of an issue.
1327  Paths.clear();
1328  Paths.setRecordingPaths(true);
1329  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1330  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1331  (void)StillOkay;
1332
1333  // Build up a textual representation of the ambiguous paths, e.g.,
1334  // D -> B -> A, that will be used to illustrate the ambiguous
1335  // conversions in the diagnostic. We only print one of the paths
1336  // to each base class subobject.
1337  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1338
1339  Diag(Loc, AmbigiousBaseConvID)
1340  << Derived << Base << PathDisplayStr << Range << Name;
1341  return true;
1342}
1343
1344bool
1345Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1346                                   SourceLocation Loc, SourceRange Range,
1347                                   CXXCastPath *BasePath,
1348                                   bool IgnoreAccess) {
1349  return CheckDerivedToBaseConversion(Derived, Base,
1350                                      IgnoreAccess ? 0
1351                                       : diag::err_upcast_to_inaccessible_base,
1352                                      diag::err_ambiguous_derived_to_base_conv,
1353                                      Loc, Range, DeclarationName(),
1354                                      BasePath);
1355}
1356
1357
1358/// @brief Builds a string representing ambiguous paths from a
1359/// specific derived class to different subobjects of the same base
1360/// class.
1361///
1362/// This function builds a string that can be used in error messages
1363/// to show the different paths that one can take through the
1364/// inheritance hierarchy to go from the derived class to different
1365/// subobjects of a base class. The result looks something like this:
1366/// @code
1367/// struct D -> struct B -> struct A
1368/// struct D -> struct C -> struct A
1369/// @endcode
1370std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1371  std::string PathDisplayStr;
1372  std::set<unsigned> DisplayedPaths;
1373  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1374       Path != Paths.end(); ++Path) {
1375    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1376      // We haven't displayed a path to this particular base
1377      // class subobject yet.
1378      PathDisplayStr += "\n    ";
1379      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1380      for (CXXBasePath::const_iterator Element = Path->begin();
1381           Element != Path->end(); ++Element)
1382        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1383    }
1384  }
1385
1386  return PathDisplayStr;
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// C++ class member Handling
1391//===----------------------------------------------------------------------===//
1392
1393/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1394bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1395                                SourceLocation ASLoc,
1396                                SourceLocation ColonLoc,
1397                                AttributeList *Attrs) {
1398  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1399  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1400                                                  ASLoc, ColonLoc);
1401  CurContext->addHiddenDecl(ASDecl);
1402  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1403}
1404
1405/// CheckOverrideControl - Check C++0x override control semantics.
1406void Sema::CheckOverrideControl(const Decl *D) {
1407  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1408  if (!MD || !MD->isVirtual())
1409    return;
1410
1411  if (MD->isDependentContext())
1412    return;
1413
1414  // C++0x [class.virtual]p3:
1415  //   If a virtual function is marked with the virt-specifier override and does
1416  //   not override a member function of a base class,
1417  //   the program is ill-formed.
1418  bool HasOverriddenMethods =
1419    MD->begin_overridden_methods() != MD->end_overridden_methods();
1420  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1421    Diag(MD->getLocation(),
1422                 diag::err_function_marked_override_not_overriding)
1423      << MD->getDeclName();
1424    return;
1425  }
1426}
1427
1428/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1429/// function overrides a virtual member function marked 'final', according to
1430/// C++0x [class.virtual]p3.
1431bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1432                                                  const CXXMethodDecl *Old) {
1433  if (!Old->hasAttr<FinalAttr>())
1434    return false;
1435
1436  Diag(New->getLocation(), diag::err_final_function_overridden)
1437    << New->getDeclName();
1438  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1439  return true;
1440}
1441
1442/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1443/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1444/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1445/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1446/// present but parsing it has been deferred.
1447Decl *
1448Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1449                               MultiTemplateParamsArg TemplateParameterLists,
1450                               Expr *BW, const VirtSpecifiers &VS,
1451                               bool HasDeferredInit) {
1452  const DeclSpec &DS = D.getDeclSpec();
1453  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1454  DeclarationName Name = NameInfo.getName();
1455  SourceLocation Loc = NameInfo.getLoc();
1456
1457  // For anonymous bitfields, the location should point to the type.
1458  if (Loc.isInvalid())
1459    Loc = D.getSourceRange().getBegin();
1460
1461  Expr *BitWidth = static_cast<Expr*>(BW);
1462
1463  assert(isa<CXXRecordDecl>(CurContext));
1464  assert(!DS.isFriendSpecified());
1465
1466  bool isFunc = D.isDeclarationOfFunction();
1467
1468  // C++ 9.2p6: A member shall not be declared to have automatic storage
1469  // duration (auto, register) or with the extern storage-class-specifier.
1470  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1471  // data members and cannot be applied to names declared const or static,
1472  // and cannot be applied to reference members.
1473  switch (DS.getStorageClassSpec()) {
1474    case DeclSpec::SCS_unspecified:
1475    case DeclSpec::SCS_typedef:
1476    case DeclSpec::SCS_static:
1477      // FALL THROUGH.
1478      break;
1479    case DeclSpec::SCS_mutable:
1480      if (isFunc) {
1481        if (DS.getStorageClassSpecLoc().isValid())
1482          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1483        else
1484          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1485
1486        // FIXME: It would be nicer if the keyword was ignored only for this
1487        // declarator. Otherwise we could get follow-up errors.
1488        D.getMutableDeclSpec().ClearStorageClassSpecs();
1489      }
1490      break;
1491    default:
1492      if (DS.getStorageClassSpecLoc().isValid())
1493        Diag(DS.getStorageClassSpecLoc(),
1494             diag::err_storageclass_invalid_for_member);
1495      else
1496        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1497      D.getMutableDeclSpec().ClearStorageClassSpecs();
1498  }
1499
1500  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1501                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1502                      !isFunc);
1503
1504  Decl *Member;
1505  if (isInstField) {
1506    CXXScopeSpec &SS = D.getCXXScopeSpec();
1507
1508    // Data members must have identifiers for names.
1509    if (Name.getNameKind() != DeclarationName::Identifier) {
1510      Diag(Loc, diag::err_bad_variable_name)
1511        << Name;
1512      return 0;
1513    }
1514
1515    IdentifierInfo *II = Name.getAsIdentifierInfo();
1516
1517    // Member field could not be with "template" keyword.
1518    // So TemplateParameterLists should be empty in this case.
1519    if (TemplateParameterLists.size()) {
1520      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1521      if (TemplateParams->size()) {
1522        // There is no such thing as a member field template.
1523        Diag(D.getIdentifierLoc(), diag::err_template_member)
1524            << II
1525            << SourceRange(TemplateParams->getTemplateLoc(),
1526                TemplateParams->getRAngleLoc());
1527      } else {
1528        // There is an extraneous 'template<>' for this member.
1529        Diag(TemplateParams->getTemplateLoc(),
1530            diag::err_template_member_noparams)
1531            << II
1532            << SourceRange(TemplateParams->getTemplateLoc(),
1533                TemplateParams->getRAngleLoc());
1534      }
1535      return 0;
1536    }
1537
1538    if (SS.isSet() && !SS.isInvalid()) {
1539      // The user provided a superfluous scope specifier inside a class
1540      // definition:
1541      //
1542      // class X {
1543      //   int X::member;
1544      // };
1545      DeclContext *DC = 0;
1546      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1547        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1548          << Name << FixItHint::CreateRemoval(SS.getRange());
1549      else
1550        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1551          << Name << SS.getRange();
1552
1553      SS.clear();
1554    }
1555
1556    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1557                         HasDeferredInit, AS);
1558    assert(Member && "HandleField never returns null");
1559  } else {
1560    assert(!HasDeferredInit);
1561
1562    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1563    if (!Member) {
1564      return 0;
1565    }
1566
1567    // Non-instance-fields can't have a bitfield.
1568    if (BitWidth) {
1569      if (Member->isInvalidDecl()) {
1570        // don't emit another diagnostic.
1571      } else if (isa<VarDecl>(Member)) {
1572        // C++ 9.6p3: A bit-field shall not be a static member.
1573        // "static member 'A' cannot be a bit-field"
1574        Diag(Loc, diag::err_static_not_bitfield)
1575          << Name << BitWidth->getSourceRange();
1576      } else if (isa<TypedefDecl>(Member)) {
1577        // "typedef member 'x' cannot be a bit-field"
1578        Diag(Loc, diag::err_typedef_not_bitfield)
1579          << Name << BitWidth->getSourceRange();
1580      } else {
1581        // A function typedef ("typedef int f(); f a;").
1582        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1583        Diag(Loc, diag::err_not_integral_type_bitfield)
1584          << Name << cast<ValueDecl>(Member)->getType()
1585          << BitWidth->getSourceRange();
1586      }
1587
1588      BitWidth = 0;
1589      Member->setInvalidDecl();
1590    }
1591
1592    Member->setAccess(AS);
1593
1594    // If we have declared a member function template, set the access of the
1595    // templated declaration as well.
1596    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1597      FunTmpl->getTemplatedDecl()->setAccess(AS);
1598  }
1599
1600  if (VS.isOverrideSpecified()) {
1601    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1602    if (!MD || !MD->isVirtual()) {
1603      Diag(Member->getLocStart(),
1604           diag::override_keyword_only_allowed_on_virtual_member_functions)
1605        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1606    } else
1607      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1608  }
1609  if (VS.isFinalSpecified()) {
1610    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1611    if (!MD || !MD->isVirtual()) {
1612      Diag(Member->getLocStart(),
1613           diag::override_keyword_only_allowed_on_virtual_member_functions)
1614      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1615    } else
1616      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1617  }
1618
1619  if (VS.getLastLocation().isValid()) {
1620    // Update the end location of a method that has a virt-specifiers.
1621    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1622      MD->setRangeEnd(VS.getLastLocation());
1623  }
1624
1625  CheckOverrideControl(Member);
1626
1627  assert((Name || isInstField) && "No identifier for non-field ?");
1628
1629  if (isInstField)
1630    FieldCollector->Add(cast<FieldDecl>(Member));
1631  return Member;
1632}
1633
1634/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1635/// in-class initializer for a non-static C++ class member, and after
1636/// instantiating an in-class initializer in a class template. Such actions
1637/// are deferred until the class is complete.
1638void
1639Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1640                                       Expr *InitExpr) {
1641  FieldDecl *FD = cast<FieldDecl>(D);
1642
1643  if (!InitExpr) {
1644    FD->setInvalidDecl();
1645    FD->removeInClassInitializer();
1646    return;
1647  }
1648
1649  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1650    FD->setInvalidDecl();
1651    FD->removeInClassInitializer();
1652    return;
1653  }
1654
1655  ExprResult Init = InitExpr;
1656  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1657    // FIXME: if there is no EqualLoc, this is list-initialization.
1658    Init = PerformCopyInitialization(
1659      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1660    if (Init.isInvalid()) {
1661      FD->setInvalidDecl();
1662      return;
1663    }
1664
1665    CheckImplicitConversions(Init.get(), EqualLoc);
1666  }
1667
1668  // C++0x [class.base.init]p7:
1669  //   The initialization of each base and member constitutes a
1670  //   full-expression.
1671  Init = MaybeCreateExprWithCleanups(Init);
1672  if (Init.isInvalid()) {
1673    FD->setInvalidDecl();
1674    return;
1675  }
1676
1677  InitExpr = Init.release();
1678
1679  FD->setInClassInitializer(InitExpr);
1680}
1681
1682/// \brief Find the direct and/or virtual base specifiers that
1683/// correspond to the given base type, for use in base initialization
1684/// within a constructor.
1685static bool FindBaseInitializer(Sema &SemaRef,
1686                                CXXRecordDecl *ClassDecl,
1687                                QualType BaseType,
1688                                const CXXBaseSpecifier *&DirectBaseSpec,
1689                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1690  // First, check for a direct base class.
1691  DirectBaseSpec = 0;
1692  for (CXXRecordDecl::base_class_const_iterator Base
1693         = ClassDecl->bases_begin();
1694       Base != ClassDecl->bases_end(); ++Base) {
1695    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1696      // We found a direct base of this type. That's what we're
1697      // initializing.
1698      DirectBaseSpec = &*Base;
1699      break;
1700    }
1701  }
1702
1703  // Check for a virtual base class.
1704  // FIXME: We might be able to short-circuit this if we know in advance that
1705  // there are no virtual bases.
1706  VirtualBaseSpec = 0;
1707  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1708    // We haven't found a base yet; search the class hierarchy for a
1709    // virtual base class.
1710    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1711                       /*DetectVirtual=*/false);
1712    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1713                              BaseType, Paths)) {
1714      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1715           Path != Paths.end(); ++Path) {
1716        if (Path->back().Base->isVirtual()) {
1717          VirtualBaseSpec = Path->back().Base;
1718          break;
1719        }
1720      }
1721    }
1722  }
1723
1724  return DirectBaseSpec || VirtualBaseSpec;
1725}
1726
1727/// \brief Handle a C++ member initializer using braced-init-list syntax.
1728MemInitResult
1729Sema::ActOnMemInitializer(Decl *ConstructorD,
1730                          Scope *S,
1731                          CXXScopeSpec &SS,
1732                          IdentifierInfo *MemberOrBase,
1733                          ParsedType TemplateTypeTy,
1734                          const DeclSpec &DS,
1735                          SourceLocation IdLoc,
1736                          Expr *InitList,
1737                          SourceLocation EllipsisLoc) {
1738  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1739                             DS, IdLoc, MultiInitializer(InitList),
1740                             EllipsisLoc);
1741}
1742
1743/// \brief Handle a C++ member initializer using parentheses syntax.
1744MemInitResult
1745Sema::ActOnMemInitializer(Decl *ConstructorD,
1746                          Scope *S,
1747                          CXXScopeSpec &SS,
1748                          IdentifierInfo *MemberOrBase,
1749                          ParsedType TemplateTypeTy,
1750                          const DeclSpec &DS,
1751                          SourceLocation IdLoc,
1752                          SourceLocation LParenLoc,
1753                          Expr **Args, unsigned NumArgs,
1754                          SourceLocation RParenLoc,
1755                          SourceLocation EllipsisLoc) {
1756  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1757                             DS, IdLoc, MultiInitializer(LParenLoc, Args,
1758                                                         NumArgs, RParenLoc),
1759                             EllipsisLoc);
1760}
1761
1762namespace {
1763
1764// Callback to only accept typo corrections that can be a valid C++ member
1765// intializer: either a non-static field member or a base class.
1766class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1767 public:
1768  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1769      : ClassDecl(ClassDecl) {}
1770
1771  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1772    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1773      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1774        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1775      else
1776        return isa<TypeDecl>(ND);
1777    }
1778    return false;
1779  }
1780
1781 private:
1782  CXXRecordDecl *ClassDecl;
1783};
1784
1785}
1786
1787/// \brief Handle a C++ member initializer.
1788MemInitResult
1789Sema::BuildMemInitializer(Decl *ConstructorD,
1790                          Scope *S,
1791                          CXXScopeSpec &SS,
1792                          IdentifierInfo *MemberOrBase,
1793                          ParsedType TemplateTypeTy,
1794                          const DeclSpec &DS,
1795                          SourceLocation IdLoc,
1796                          const MultiInitializer &Args,
1797                          SourceLocation EllipsisLoc) {
1798  if (!ConstructorD)
1799    return true;
1800
1801  AdjustDeclIfTemplate(ConstructorD);
1802
1803  CXXConstructorDecl *Constructor
1804    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1805  if (!Constructor) {
1806    // The user wrote a constructor initializer on a function that is
1807    // not a C++ constructor. Ignore the error for now, because we may
1808    // have more member initializers coming; we'll diagnose it just
1809    // once in ActOnMemInitializers.
1810    return true;
1811  }
1812
1813  CXXRecordDecl *ClassDecl = Constructor->getParent();
1814
1815  // C++ [class.base.init]p2:
1816  //   Names in a mem-initializer-id are looked up in the scope of the
1817  //   constructor's class and, if not found in that scope, are looked
1818  //   up in the scope containing the constructor's definition.
1819  //   [Note: if the constructor's class contains a member with the
1820  //   same name as a direct or virtual base class of the class, a
1821  //   mem-initializer-id naming the member or base class and composed
1822  //   of a single identifier refers to the class member. A
1823  //   mem-initializer-id for the hidden base class may be specified
1824  //   using a qualified name. ]
1825  if (!SS.getScopeRep() && !TemplateTypeTy) {
1826    // Look for a member, first.
1827    DeclContext::lookup_result Result
1828      = ClassDecl->lookup(MemberOrBase);
1829    if (Result.first != Result.second) {
1830      ValueDecl *Member;
1831      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1832          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1833        if (EllipsisLoc.isValid())
1834          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1835            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1836
1837        return BuildMemberInitializer(Member, Args, IdLoc);
1838      }
1839    }
1840  }
1841  // It didn't name a member, so see if it names a class.
1842  QualType BaseType;
1843  TypeSourceInfo *TInfo = 0;
1844
1845  if (TemplateTypeTy) {
1846    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1847  } else if (DS.getTypeSpecType() == TST_decltype) {
1848    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1849  } else {
1850    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1851    LookupParsedName(R, S, &SS);
1852
1853    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1854    if (!TyD) {
1855      if (R.isAmbiguous()) return true;
1856
1857      // We don't want access-control diagnostics here.
1858      R.suppressDiagnostics();
1859
1860      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1861        bool NotUnknownSpecialization = false;
1862        DeclContext *DC = computeDeclContext(SS, false);
1863        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1864          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1865
1866        if (!NotUnknownSpecialization) {
1867          // When the scope specifier can refer to a member of an unknown
1868          // specialization, we take it as a type name.
1869          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1870                                       SS.getWithLocInContext(Context),
1871                                       *MemberOrBase, IdLoc);
1872          if (BaseType.isNull())
1873            return true;
1874
1875          R.clear();
1876          R.setLookupName(MemberOrBase);
1877        }
1878      }
1879
1880      // If no results were found, try to correct typos.
1881      TypoCorrection Corr;
1882      MemInitializerValidatorCCC Validator(ClassDecl);
1883      if (R.empty() && BaseType.isNull() &&
1884          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1885                              &Validator, ClassDecl))) {
1886        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1887        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1888        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1889          // We have found a non-static data member with a similar
1890          // name to what was typed; complain and initialize that
1891          // member.
1892          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1893            << MemberOrBase << true << CorrectedQuotedStr
1894            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1895          Diag(Member->getLocation(), diag::note_previous_decl)
1896            << CorrectedQuotedStr;
1897
1898          return BuildMemberInitializer(Member, Args, IdLoc);
1899        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1900          const CXXBaseSpecifier *DirectBaseSpec;
1901          const CXXBaseSpecifier *VirtualBaseSpec;
1902          if (FindBaseInitializer(*this, ClassDecl,
1903                                  Context.getTypeDeclType(Type),
1904                                  DirectBaseSpec, VirtualBaseSpec)) {
1905            // We have found a direct or virtual base class with a
1906            // similar name to what was typed; complain and initialize
1907            // that base class.
1908            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1909              << MemberOrBase << false << CorrectedQuotedStr
1910              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1911
1912            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1913                                                             : VirtualBaseSpec;
1914            Diag(BaseSpec->getSourceRange().getBegin(),
1915                 diag::note_base_class_specified_here)
1916              << BaseSpec->getType()
1917              << BaseSpec->getSourceRange();
1918
1919            TyD = Type;
1920          }
1921        }
1922      }
1923
1924      if (!TyD && BaseType.isNull()) {
1925        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1926          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1927        return true;
1928      }
1929    }
1930
1931    if (BaseType.isNull()) {
1932      BaseType = Context.getTypeDeclType(TyD);
1933      if (SS.isSet()) {
1934        NestedNameSpecifier *Qualifier =
1935          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1936
1937        // FIXME: preserve source range information
1938        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1939      }
1940    }
1941  }
1942
1943  if (!TInfo)
1944    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1945
1946  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1947}
1948
1949/// Checks a member initializer expression for cases where reference (or
1950/// pointer) members are bound to by-value parameters (or their addresses).
1951static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1952                                               Expr *Init,
1953                                               SourceLocation IdLoc) {
1954  QualType MemberTy = Member->getType();
1955
1956  // We only handle pointers and references currently.
1957  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1958  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1959    return;
1960
1961  const bool IsPointer = MemberTy->isPointerType();
1962  if (IsPointer) {
1963    if (const UnaryOperator *Op
1964          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1965      // The only case we're worried about with pointers requires taking the
1966      // address.
1967      if (Op->getOpcode() != UO_AddrOf)
1968        return;
1969
1970      Init = Op->getSubExpr();
1971    } else {
1972      // We only handle address-of expression initializers for pointers.
1973      return;
1974    }
1975  }
1976
1977  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1978    // Taking the address of a temporary will be diagnosed as a hard error.
1979    if (IsPointer)
1980      return;
1981
1982    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1983      << Member << Init->getSourceRange();
1984  } else if (const DeclRefExpr *DRE
1985               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1986    // We only warn when referring to a non-reference parameter declaration.
1987    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1988    if (!Parameter || Parameter->getType()->isReferenceType())
1989      return;
1990
1991    S.Diag(Init->getExprLoc(),
1992           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1993                     : diag::warn_bind_ref_member_to_parameter)
1994      << Member << Parameter << Init->getSourceRange();
1995  } else {
1996    // Other initializers are fine.
1997    return;
1998  }
1999
2000  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2001    << (unsigned)IsPointer;
2002}
2003
2004/// Checks an initializer expression for use of uninitialized fields, such as
2005/// containing the field that is being initialized. Returns true if there is an
2006/// uninitialized field was used an updates the SourceLocation parameter; false
2007/// otherwise.
2008static bool InitExprContainsUninitializedFields(const Stmt *S,
2009                                                const ValueDecl *LhsField,
2010                                                SourceLocation *L) {
2011  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2012
2013  if (isa<CallExpr>(S)) {
2014    // Do not descend into function calls or constructors, as the use
2015    // of an uninitialized field may be valid. One would have to inspect
2016    // the contents of the function/ctor to determine if it is safe or not.
2017    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2018    // may be safe, depending on what the function/ctor does.
2019    return false;
2020  }
2021  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2022    const NamedDecl *RhsField = ME->getMemberDecl();
2023
2024    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2025      // The member expression points to a static data member.
2026      assert(VD->isStaticDataMember() &&
2027             "Member points to non-static data member!");
2028      (void)VD;
2029      return false;
2030    }
2031
2032    if (isa<EnumConstantDecl>(RhsField)) {
2033      // The member expression points to an enum.
2034      return false;
2035    }
2036
2037    if (RhsField == LhsField) {
2038      // Initializing a field with itself. Throw a warning.
2039      // But wait; there are exceptions!
2040      // Exception #1:  The field may not belong to this record.
2041      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2042      const Expr *base = ME->getBase();
2043      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2044        // Even though the field matches, it does not belong to this record.
2045        return false;
2046      }
2047      // None of the exceptions triggered; return true to indicate an
2048      // uninitialized field was used.
2049      *L = ME->getMemberLoc();
2050      return true;
2051    }
2052  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2053    // sizeof/alignof doesn't reference contents, do not warn.
2054    return false;
2055  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2056    // address-of doesn't reference contents (the pointer may be dereferenced
2057    // in the same expression but it would be rare; and weird).
2058    if (UOE->getOpcode() == UO_AddrOf)
2059      return false;
2060  }
2061  for (Stmt::const_child_range it = S->children(); it; ++it) {
2062    if (!*it) {
2063      // An expression such as 'member(arg ?: "")' may trigger this.
2064      continue;
2065    }
2066    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2067      return true;
2068  }
2069  return false;
2070}
2071
2072MemInitResult
2073Sema::BuildMemberInitializer(ValueDecl *Member,
2074                             const MultiInitializer &Args,
2075                             SourceLocation IdLoc) {
2076  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2077  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2078  assert((DirectMember || IndirectMember) &&
2079         "Member must be a FieldDecl or IndirectFieldDecl");
2080
2081  if (Args.DiagnoseUnexpandedParameterPack(*this))
2082    return true;
2083
2084  if (Member->isInvalidDecl())
2085    return true;
2086
2087  // Diagnose value-uses of fields to initialize themselves, e.g.
2088  //   foo(foo)
2089  // where foo is not also a parameter to the constructor.
2090  // TODO: implement -Wuninitialized and fold this into that framework.
2091  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2092       I != E; ++I) {
2093    SourceLocation L;
2094    Expr *Arg = *I;
2095    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2096      Arg = DIE->getInit();
2097    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2098      // FIXME: Return true in the case when other fields are used before being
2099      // uninitialized. For example, let this field be the i'th field. When
2100      // initializing the i'th field, throw a warning if any of the >= i'th
2101      // fields are used, as they are not yet initialized.
2102      // Right now we are only handling the case where the i'th field uses
2103      // itself in its initializer.
2104      Diag(L, diag::warn_field_is_uninit);
2105    }
2106  }
2107
2108  bool HasDependentArg = Args.isTypeDependent();
2109
2110  Expr *Init;
2111  if (Member->getType()->isDependentType() || HasDependentArg) {
2112    // Can't check initialization for a member of dependent type or when
2113    // any of the arguments are type-dependent expressions.
2114    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2115
2116    DiscardCleanupsInEvaluationContext();
2117  } else {
2118    // Initialize the member.
2119    InitializedEntity MemberEntity =
2120      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2121                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2122    InitializationKind Kind =
2123      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2124                                       Args.getEndLoc());
2125
2126    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2127    if (MemberInit.isInvalid())
2128      return true;
2129
2130    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2131
2132    // C++0x [class.base.init]p7:
2133    //   The initialization of each base and member constitutes a
2134    //   full-expression.
2135    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2136    if (MemberInit.isInvalid())
2137      return true;
2138
2139    // If we are in a dependent context, template instantiation will
2140    // perform this type-checking again. Just save the arguments that we
2141    // received in a ParenListExpr.
2142    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2143    // of the information that we have about the member
2144    // initializer. However, deconstructing the ASTs is a dicey process,
2145    // and this approach is far more likely to get the corner cases right.
2146    if (CurContext->isDependentContext()) {
2147      Init = Args.CreateInitExpr(Context,
2148                                 Member->getType().getNonReferenceType());
2149    } else {
2150      Init = MemberInit.get();
2151      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2152    }
2153  }
2154
2155  if (DirectMember) {
2156    return new (Context) CXXCtorInitializer(Context, DirectMember,
2157                                                    IdLoc, Args.getStartLoc(),
2158                                                    Init, Args.getEndLoc());
2159  } else {
2160    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2161                                                    IdLoc, Args.getStartLoc(),
2162                                                    Init, Args.getEndLoc());
2163  }
2164}
2165
2166MemInitResult
2167Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2168                                 const MultiInitializer &Args,
2169                                 CXXRecordDecl *ClassDecl) {
2170  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2171  if (!LangOpts.CPlusPlus0x)
2172    return Diag(NameLoc, diag::err_delegating_ctor)
2173      << TInfo->getTypeLoc().getLocalSourceRange();
2174  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2175
2176  // Initialize the object.
2177  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2178                                     QualType(ClassDecl->getTypeForDecl(), 0));
2179  InitializationKind Kind =
2180    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2181                                     Args.getEndLoc());
2182
2183  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2184  if (DelegationInit.isInvalid())
2185    return true;
2186
2187  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2188         "Delegating constructor with no target?");
2189
2190  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2191
2192  // C++0x [class.base.init]p7:
2193  //   The initialization of each base and member constitutes a
2194  //   full-expression.
2195  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2196  if (DelegationInit.isInvalid())
2197    return true;
2198
2199  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2200                                          DelegationInit.takeAs<Expr>(),
2201                                          Args.getEndLoc());
2202}
2203
2204MemInitResult
2205Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2206                           const MultiInitializer &Args,
2207                           CXXRecordDecl *ClassDecl,
2208                           SourceLocation EllipsisLoc) {
2209  bool HasDependentArg = Args.isTypeDependent();
2210
2211  SourceLocation BaseLoc
2212    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2213
2214  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2215    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2216             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2217
2218  // C++ [class.base.init]p2:
2219  //   [...] Unless the mem-initializer-id names a nonstatic data
2220  //   member of the constructor's class or a direct or virtual base
2221  //   of that class, the mem-initializer is ill-formed. A
2222  //   mem-initializer-list can initialize a base class using any
2223  //   name that denotes that base class type.
2224  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2225
2226  if (EllipsisLoc.isValid()) {
2227    // This is a pack expansion.
2228    if (!BaseType->containsUnexpandedParameterPack())  {
2229      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2230        << SourceRange(BaseLoc, Args.getEndLoc());
2231
2232      EllipsisLoc = SourceLocation();
2233    }
2234  } else {
2235    // Check for any unexpanded parameter packs.
2236    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2237      return true;
2238
2239    if (Args.DiagnoseUnexpandedParameterPack(*this))
2240      return true;
2241  }
2242
2243  // Check for direct and virtual base classes.
2244  const CXXBaseSpecifier *DirectBaseSpec = 0;
2245  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2246  if (!Dependent) {
2247    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2248                                       BaseType))
2249      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2250
2251    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2252                        VirtualBaseSpec);
2253
2254    // C++ [base.class.init]p2:
2255    // Unless the mem-initializer-id names a nonstatic data member of the
2256    // constructor's class or a direct or virtual base of that class, the
2257    // mem-initializer is ill-formed.
2258    if (!DirectBaseSpec && !VirtualBaseSpec) {
2259      // If the class has any dependent bases, then it's possible that
2260      // one of those types will resolve to the same type as
2261      // BaseType. Therefore, just treat this as a dependent base
2262      // class initialization.  FIXME: Should we try to check the
2263      // initialization anyway? It seems odd.
2264      if (ClassDecl->hasAnyDependentBases())
2265        Dependent = true;
2266      else
2267        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2268          << BaseType << Context.getTypeDeclType(ClassDecl)
2269          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2270    }
2271  }
2272
2273  if (Dependent) {
2274    // Can't check initialization for a base of dependent type or when
2275    // any of the arguments are type-dependent expressions.
2276    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2277
2278    DiscardCleanupsInEvaluationContext();
2279
2280    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2281                                            /*IsVirtual=*/false,
2282                                            Args.getStartLoc(), BaseInit,
2283                                            Args.getEndLoc(), EllipsisLoc);
2284  }
2285
2286  // C++ [base.class.init]p2:
2287  //   If a mem-initializer-id is ambiguous because it designates both
2288  //   a direct non-virtual base class and an inherited virtual base
2289  //   class, the mem-initializer is ill-formed.
2290  if (DirectBaseSpec && VirtualBaseSpec)
2291    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2292      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2293
2294  CXXBaseSpecifier *BaseSpec
2295    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2296  if (!BaseSpec)
2297    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2298
2299  // Initialize the base.
2300  InitializedEntity BaseEntity =
2301    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2302  InitializationKind Kind =
2303    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2304                                     Args.getEndLoc());
2305
2306  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2307  if (BaseInit.isInvalid())
2308    return true;
2309
2310  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2311
2312  // C++0x [class.base.init]p7:
2313  //   The initialization of each base and member constitutes a
2314  //   full-expression.
2315  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2316  if (BaseInit.isInvalid())
2317    return true;
2318
2319  // If we are in a dependent context, template instantiation will
2320  // perform this type-checking again. Just save the arguments that we
2321  // received in a ParenListExpr.
2322  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2323  // of the information that we have about the base
2324  // initializer. However, deconstructing the ASTs is a dicey process,
2325  // and this approach is far more likely to get the corner cases right.
2326  if (CurContext->isDependentContext())
2327    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2328
2329  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2330                                          BaseSpec->isVirtual(),
2331                                          Args.getStartLoc(),
2332                                          BaseInit.takeAs<Expr>(),
2333                                          Args.getEndLoc(), EllipsisLoc);
2334}
2335
2336// Create a static_cast\<T&&>(expr).
2337static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2338  QualType ExprType = E->getType();
2339  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2340  SourceLocation ExprLoc = E->getLocStart();
2341  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2342      TargetType, ExprLoc);
2343
2344  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2345                                   SourceRange(ExprLoc, ExprLoc),
2346                                   E->getSourceRange()).take();
2347}
2348
2349/// ImplicitInitializerKind - How an implicit base or member initializer should
2350/// initialize its base or member.
2351enum ImplicitInitializerKind {
2352  IIK_Default,
2353  IIK_Copy,
2354  IIK_Move
2355};
2356
2357static bool
2358BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2359                             ImplicitInitializerKind ImplicitInitKind,
2360                             CXXBaseSpecifier *BaseSpec,
2361                             bool IsInheritedVirtualBase,
2362                             CXXCtorInitializer *&CXXBaseInit) {
2363  InitializedEntity InitEntity
2364    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2365                                        IsInheritedVirtualBase);
2366
2367  ExprResult BaseInit;
2368
2369  switch (ImplicitInitKind) {
2370  case IIK_Default: {
2371    InitializationKind InitKind
2372      = InitializationKind::CreateDefault(Constructor->getLocation());
2373    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2374    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2375                               MultiExprArg(SemaRef, 0, 0));
2376    break;
2377  }
2378
2379  case IIK_Move:
2380  case IIK_Copy: {
2381    bool Moving = ImplicitInitKind == IIK_Move;
2382    ParmVarDecl *Param = Constructor->getParamDecl(0);
2383    QualType ParamType = Param->getType().getNonReferenceType();
2384
2385    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2386
2387    Expr *CopyCtorArg =
2388      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2389                          SourceLocation(), Param,
2390                          Constructor->getLocation(), ParamType,
2391                          VK_LValue, 0);
2392
2393    // Cast to the base class to avoid ambiguities.
2394    QualType ArgTy =
2395      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2396                                       ParamType.getQualifiers());
2397
2398    if (Moving) {
2399      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2400    }
2401
2402    CXXCastPath BasePath;
2403    BasePath.push_back(BaseSpec);
2404    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2405                                            CK_UncheckedDerivedToBase,
2406                                            Moving ? VK_XValue : VK_LValue,
2407                                            &BasePath).take();
2408
2409    InitializationKind InitKind
2410      = InitializationKind::CreateDirect(Constructor->getLocation(),
2411                                         SourceLocation(), SourceLocation());
2412    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2413                                   &CopyCtorArg, 1);
2414    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2415                               MultiExprArg(&CopyCtorArg, 1));
2416    break;
2417  }
2418  }
2419
2420  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2421  if (BaseInit.isInvalid())
2422    return true;
2423
2424  CXXBaseInit =
2425    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2426               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2427                                                        SourceLocation()),
2428                                             BaseSpec->isVirtual(),
2429                                             SourceLocation(),
2430                                             BaseInit.takeAs<Expr>(),
2431                                             SourceLocation(),
2432                                             SourceLocation());
2433
2434  return false;
2435}
2436
2437static bool RefersToRValueRef(Expr *MemRef) {
2438  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2439  return Referenced->getType()->isRValueReferenceType();
2440}
2441
2442static bool
2443BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2444                               ImplicitInitializerKind ImplicitInitKind,
2445                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2446                               CXXCtorInitializer *&CXXMemberInit) {
2447  if (Field->isInvalidDecl())
2448    return true;
2449
2450  SourceLocation Loc = Constructor->getLocation();
2451
2452  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2453    bool Moving = ImplicitInitKind == IIK_Move;
2454    ParmVarDecl *Param = Constructor->getParamDecl(0);
2455    QualType ParamType = Param->getType().getNonReferenceType();
2456
2457    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2458
2459    // Suppress copying zero-width bitfields.
2460    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2461      return false;
2462
2463    Expr *MemberExprBase =
2464      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2465                          SourceLocation(), Param,
2466                          Loc, ParamType, VK_LValue, 0);
2467
2468    if (Moving) {
2469      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2470    }
2471
2472    // Build a reference to this field within the parameter.
2473    CXXScopeSpec SS;
2474    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2475                              Sema::LookupMemberName);
2476    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2477                                  : cast<ValueDecl>(Field), AS_public);
2478    MemberLookup.resolveKind();
2479    ExprResult CtorArg
2480      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2481                                         ParamType, Loc,
2482                                         /*IsArrow=*/false,
2483                                         SS,
2484                                         /*TemplateKWLoc=*/SourceLocation(),
2485                                         /*FirstQualifierInScope=*/0,
2486                                         MemberLookup,
2487                                         /*TemplateArgs=*/0);
2488    if (CtorArg.isInvalid())
2489      return true;
2490
2491    // C++11 [class.copy]p15:
2492    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2493    //     with static_cast<T&&>(x.m);
2494    if (RefersToRValueRef(CtorArg.get())) {
2495      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2496    }
2497
2498    // When the field we are copying is an array, create index variables for
2499    // each dimension of the array. We use these index variables to subscript
2500    // the source array, and other clients (e.g., CodeGen) will perform the
2501    // necessary iteration with these index variables.
2502    SmallVector<VarDecl *, 4> IndexVariables;
2503    QualType BaseType = Field->getType();
2504    QualType SizeType = SemaRef.Context.getSizeType();
2505    bool InitializingArray = false;
2506    while (const ConstantArrayType *Array
2507                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2508      InitializingArray = true;
2509      // Create the iteration variable for this array index.
2510      IdentifierInfo *IterationVarName = 0;
2511      {
2512        llvm::SmallString<8> Str;
2513        llvm::raw_svector_ostream OS(Str);
2514        OS << "__i" << IndexVariables.size();
2515        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2516      }
2517      VarDecl *IterationVar
2518        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2519                          IterationVarName, SizeType,
2520                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2521                          SC_None, SC_None);
2522      IndexVariables.push_back(IterationVar);
2523
2524      // Create a reference to the iteration variable.
2525      ExprResult IterationVarRef
2526        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2527      assert(!IterationVarRef.isInvalid() &&
2528             "Reference to invented variable cannot fail!");
2529      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2530      assert(!IterationVarRef.isInvalid() &&
2531             "Conversion of invented variable cannot fail!");
2532
2533      // Subscript the array with this iteration variable.
2534      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2535                                                        IterationVarRef.take(),
2536                                                        Loc);
2537      if (CtorArg.isInvalid())
2538        return true;
2539
2540      BaseType = Array->getElementType();
2541    }
2542
2543    // The array subscript expression is an lvalue, which is wrong for moving.
2544    if (Moving && InitializingArray)
2545      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2546
2547    // Construct the entity that we will be initializing. For an array, this
2548    // will be first element in the array, which may require several levels
2549    // of array-subscript entities.
2550    SmallVector<InitializedEntity, 4> Entities;
2551    Entities.reserve(1 + IndexVariables.size());
2552    if (Indirect)
2553      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2554    else
2555      Entities.push_back(InitializedEntity::InitializeMember(Field));
2556    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2557      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2558                                                              0,
2559                                                              Entities.back()));
2560
2561    // Direct-initialize to use the copy constructor.
2562    InitializationKind InitKind =
2563      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2564
2565    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2566    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2567                                   &CtorArgE, 1);
2568
2569    ExprResult MemberInit
2570      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2571                        MultiExprArg(&CtorArgE, 1));
2572    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2573    if (MemberInit.isInvalid())
2574      return true;
2575
2576    if (Indirect) {
2577      assert(IndexVariables.size() == 0 &&
2578             "Indirect field improperly initialized");
2579      CXXMemberInit
2580        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2581                                                   Loc, Loc,
2582                                                   MemberInit.takeAs<Expr>(),
2583                                                   Loc);
2584    } else
2585      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2586                                                 Loc, MemberInit.takeAs<Expr>(),
2587                                                 Loc,
2588                                                 IndexVariables.data(),
2589                                                 IndexVariables.size());
2590    return false;
2591  }
2592
2593  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2594
2595  QualType FieldBaseElementType =
2596    SemaRef.Context.getBaseElementType(Field->getType());
2597
2598  if (FieldBaseElementType->isRecordType()) {
2599    InitializedEntity InitEntity
2600      = Indirect? InitializedEntity::InitializeMember(Indirect)
2601                : InitializedEntity::InitializeMember(Field);
2602    InitializationKind InitKind =
2603      InitializationKind::CreateDefault(Loc);
2604
2605    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2606    ExprResult MemberInit =
2607      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2608
2609    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2610    if (MemberInit.isInvalid())
2611      return true;
2612
2613    if (Indirect)
2614      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2615                                                               Indirect, Loc,
2616                                                               Loc,
2617                                                               MemberInit.get(),
2618                                                               Loc);
2619    else
2620      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2621                                                               Field, Loc, Loc,
2622                                                               MemberInit.get(),
2623                                                               Loc);
2624    return false;
2625  }
2626
2627  if (!Field->getParent()->isUnion()) {
2628    if (FieldBaseElementType->isReferenceType()) {
2629      SemaRef.Diag(Constructor->getLocation(),
2630                   diag::err_uninitialized_member_in_ctor)
2631      << (int)Constructor->isImplicit()
2632      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2633      << 0 << Field->getDeclName();
2634      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2635      return true;
2636    }
2637
2638    if (FieldBaseElementType.isConstQualified()) {
2639      SemaRef.Diag(Constructor->getLocation(),
2640                   diag::err_uninitialized_member_in_ctor)
2641      << (int)Constructor->isImplicit()
2642      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2643      << 1 << Field->getDeclName();
2644      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2645      return true;
2646    }
2647  }
2648
2649  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2650      FieldBaseElementType->isObjCRetainableType() &&
2651      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2652      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2653    // Instant objects:
2654    //   Default-initialize Objective-C pointers to NULL.
2655    CXXMemberInit
2656      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2657                                                 Loc, Loc,
2658                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2659                                                 Loc);
2660    return false;
2661  }
2662
2663  // Nothing to initialize.
2664  CXXMemberInit = 0;
2665  return false;
2666}
2667
2668namespace {
2669struct BaseAndFieldInfo {
2670  Sema &S;
2671  CXXConstructorDecl *Ctor;
2672  bool AnyErrorsInInits;
2673  ImplicitInitializerKind IIK;
2674  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2675  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2676
2677  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2678    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2679    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2680    if (Generated && Ctor->isCopyConstructor())
2681      IIK = IIK_Copy;
2682    else if (Generated && Ctor->isMoveConstructor())
2683      IIK = IIK_Move;
2684    else
2685      IIK = IIK_Default;
2686  }
2687
2688  bool isImplicitCopyOrMove() const {
2689    switch (IIK) {
2690    case IIK_Copy:
2691    case IIK_Move:
2692      return true;
2693
2694    case IIK_Default:
2695      return false;
2696    }
2697
2698    llvm_unreachable("Invalid ImplicitInitializerKind!");
2699  }
2700};
2701}
2702
2703/// \brief Determine whether the given indirect field declaration is somewhere
2704/// within an anonymous union.
2705static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2706  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2707                                      CEnd = F->chain_end();
2708       C != CEnd; ++C)
2709    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2710      if (Record->isUnion())
2711        return true;
2712
2713  return false;
2714}
2715
2716/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2717/// array type.
2718static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2719  if (T->isIncompleteArrayType())
2720    return true;
2721
2722  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2723    if (!ArrayT->getSize())
2724      return true;
2725
2726    T = ArrayT->getElementType();
2727  }
2728
2729  return false;
2730}
2731
2732static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2733                                    FieldDecl *Field,
2734                                    IndirectFieldDecl *Indirect = 0) {
2735
2736  // Overwhelmingly common case: we have a direct initializer for this field.
2737  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2738    Info.AllToInit.push_back(Init);
2739    return false;
2740  }
2741
2742  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2743  // has a brace-or-equal-initializer, the entity is initialized as specified
2744  // in [dcl.init].
2745  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2746    CXXCtorInitializer *Init;
2747    if (Indirect)
2748      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2749                                                      SourceLocation(),
2750                                                      SourceLocation(), 0,
2751                                                      SourceLocation());
2752    else
2753      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2754                                                      SourceLocation(),
2755                                                      SourceLocation(), 0,
2756                                                      SourceLocation());
2757    Info.AllToInit.push_back(Init);
2758    return false;
2759  }
2760
2761  // Don't build an implicit initializer for union members if none was
2762  // explicitly specified.
2763  if (Field->getParent()->isUnion() ||
2764      (Indirect && isWithinAnonymousUnion(Indirect)))
2765    return false;
2766
2767  // Don't initialize incomplete or zero-length arrays.
2768  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2769    return false;
2770
2771  // Don't try to build an implicit initializer if there were semantic
2772  // errors in any of the initializers (and therefore we might be
2773  // missing some that the user actually wrote).
2774  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2775    return false;
2776
2777  CXXCtorInitializer *Init = 0;
2778  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2779                                     Indirect, Init))
2780    return true;
2781
2782  if (Init)
2783    Info.AllToInit.push_back(Init);
2784
2785  return false;
2786}
2787
2788bool
2789Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2790                               CXXCtorInitializer *Initializer) {
2791  assert(Initializer->isDelegatingInitializer());
2792  Constructor->setNumCtorInitializers(1);
2793  CXXCtorInitializer **initializer =
2794    new (Context) CXXCtorInitializer*[1];
2795  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2796  Constructor->setCtorInitializers(initializer);
2797
2798  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2799    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2800    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2801  }
2802
2803  DelegatingCtorDecls.push_back(Constructor);
2804
2805  return false;
2806}
2807
2808bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2809                               CXXCtorInitializer **Initializers,
2810                               unsigned NumInitializers,
2811                               bool AnyErrors) {
2812  if (Constructor->isDependentContext()) {
2813    // Just store the initializers as written, they will be checked during
2814    // instantiation.
2815    if (NumInitializers > 0) {
2816      Constructor->setNumCtorInitializers(NumInitializers);
2817      CXXCtorInitializer **baseOrMemberInitializers =
2818        new (Context) CXXCtorInitializer*[NumInitializers];
2819      memcpy(baseOrMemberInitializers, Initializers,
2820             NumInitializers * sizeof(CXXCtorInitializer*));
2821      Constructor->setCtorInitializers(baseOrMemberInitializers);
2822    }
2823
2824    return false;
2825  }
2826
2827  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2828
2829  // We need to build the initializer AST according to order of construction
2830  // and not what user specified in the Initializers list.
2831  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2832  if (!ClassDecl)
2833    return true;
2834
2835  bool HadError = false;
2836
2837  for (unsigned i = 0; i < NumInitializers; i++) {
2838    CXXCtorInitializer *Member = Initializers[i];
2839
2840    if (Member->isBaseInitializer())
2841      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2842    else
2843      Info.AllBaseFields[Member->getAnyMember()] = Member;
2844  }
2845
2846  // Keep track of the direct virtual bases.
2847  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2848  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2849       E = ClassDecl->bases_end(); I != E; ++I) {
2850    if (I->isVirtual())
2851      DirectVBases.insert(I);
2852  }
2853
2854  // Push virtual bases before others.
2855  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2856       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2857
2858    if (CXXCtorInitializer *Value
2859        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2860      Info.AllToInit.push_back(Value);
2861    } else if (!AnyErrors) {
2862      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2863      CXXCtorInitializer *CXXBaseInit;
2864      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2865                                       VBase, IsInheritedVirtualBase,
2866                                       CXXBaseInit)) {
2867        HadError = true;
2868        continue;
2869      }
2870
2871      Info.AllToInit.push_back(CXXBaseInit);
2872    }
2873  }
2874
2875  // Non-virtual bases.
2876  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2877       E = ClassDecl->bases_end(); Base != E; ++Base) {
2878    // Virtuals are in the virtual base list and already constructed.
2879    if (Base->isVirtual())
2880      continue;
2881
2882    if (CXXCtorInitializer *Value
2883          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2884      Info.AllToInit.push_back(Value);
2885    } else if (!AnyErrors) {
2886      CXXCtorInitializer *CXXBaseInit;
2887      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2888                                       Base, /*IsInheritedVirtualBase=*/false,
2889                                       CXXBaseInit)) {
2890        HadError = true;
2891        continue;
2892      }
2893
2894      Info.AllToInit.push_back(CXXBaseInit);
2895    }
2896  }
2897
2898  // Fields.
2899  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2900                               MemEnd = ClassDecl->decls_end();
2901       Mem != MemEnd; ++Mem) {
2902    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2903      // C++ [class.bit]p2:
2904      //   A declaration for a bit-field that omits the identifier declares an
2905      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2906      //   initialized.
2907      if (F->isUnnamedBitfield())
2908        continue;
2909
2910      // If we're not generating the implicit copy/move constructor, then we'll
2911      // handle anonymous struct/union fields based on their individual
2912      // indirect fields.
2913      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2914        continue;
2915
2916      if (CollectFieldInitializer(*this, Info, F))
2917        HadError = true;
2918      continue;
2919    }
2920
2921    // Beyond this point, we only consider default initialization.
2922    if (Info.IIK != IIK_Default)
2923      continue;
2924
2925    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2926      if (F->getType()->isIncompleteArrayType()) {
2927        assert(ClassDecl->hasFlexibleArrayMember() &&
2928               "Incomplete array type is not valid");
2929        continue;
2930      }
2931
2932      // Initialize each field of an anonymous struct individually.
2933      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2934        HadError = true;
2935
2936      continue;
2937    }
2938  }
2939
2940  NumInitializers = Info.AllToInit.size();
2941  if (NumInitializers > 0) {
2942    Constructor->setNumCtorInitializers(NumInitializers);
2943    CXXCtorInitializer **baseOrMemberInitializers =
2944      new (Context) CXXCtorInitializer*[NumInitializers];
2945    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2946           NumInitializers * sizeof(CXXCtorInitializer*));
2947    Constructor->setCtorInitializers(baseOrMemberInitializers);
2948
2949    // Constructors implicitly reference the base and member
2950    // destructors.
2951    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2952                                           Constructor->getParent());
2953  }
2954
2955  return HadError;
2956}
2957
2958static void *GetKeyForTopLevelField(FieldDecl *Field) {
2959  // For anonymous unions, use the class declaration as the key.
2960  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2961    if (RT->getDecl()->isAnonymousStructOrUnion())
2962      return static_cast<void *>(RT->getDecl());
2963  }
2964  return static_cast<void *>(Field);
2965}
2966
2967static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2968  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2969}
2970
2971static void *GetKeyForMember(ASTContext &Context,
2972                             CXXCtorInitializer *Member) {
2973  if (!Member->isAnyMemberInitializer())
2974    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2975
2976  // For fields injected into the class via declaration of an anonymous union,
2977  // use its anonymous union class declaration as the unique key.
2978  FieldDecl *Field = Member->getAnyMember();
2979
2980  // If the field is a member of an anonymous struct or union, our key
2981  // is the anonymous record decl that's a direct child of the class.
2982  RecordDecl *RD = Field->getParent();
2983  if (RD->isAnonymousStructOrUnion()) {
2984    while (true) {
2985      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2986      if (Parent->isAnonymousStructOrUnion())
2987        RD = Parent;
2988      else
2989        break;
2990    }
2991
2992    return static_cast<void *>(RD);
2993  }
2994
2995  return static_cast<void *>(Field);
2996}
2997
2998static void
2999DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3000                                  const CXXConstructorDecl *Constructor,
3001                                  CXXCtorInitializer **Inits,
3002                                  unsigned NumInits) {
3003  if (Constructor->getDeclContext()->isDependentContext())
3004    return;
3005
3006  // Don't check initializers order unless the warning is enabled at the
3007  // location of at least one initializer.
3008  bool ShouldCheckOrder = false;
3009  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3010    CXXCtorInitializer *Init = Inits[InitIndex];
3011    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3012                                         Init->getSourceLocation())
3013          != DiagnosticsEngine::Ignored) {
3014      ShouldCheckOrder = true;
3015      break;
3016    }
3017  }
3018  if (!ShouldCheckOrder)
3019    return;
3020
3021  // Build the list of bases and members in the order that they'll
3022  // actually be initialized.  The explicit initializers should be in
3023  // this same order but may be missing things.
3024  SmallVector<const void*, 32> IdealInitKeys;
3025
3026  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3027
3028  // 1. Virtual bases.
3029  for (CXXRecordDecl::base_class_const_iterator VBase =
3030       ClassDecl->vbases_begin(),
3031       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3032    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3033
3034  // 2. Non-virtual bases.
3035  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3036       E = ClassDecl->bases_end(); Base != E; ++Base) {
3037    if (Base->isVirtual())
3038      continue;
3039    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3040  }
3041
3042  // 3. Direct fields.
3043  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3044       E = ClassDecl->field_end(); Field != E; ++Field) {
3045    if (Field->isUnnamedBitfield())
3046      continue;
3047
3048    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3049  }
3050
3051  unsigned NumIdealInits = IdealInitKeys.size();
3052  unsigned IdealIndex = 0;
3053
3054  CXXCtorInitializer *PrevInit = 0;
3055  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3056    CXXCtorInitializer *Init = Inits[InitIndex];
3057    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3058
3059    // Scan forward to try to find this initializer in the idealized
3060    // initializers list.
3061    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3062      if (InitKey == IdealInitKeys[IdealIndex])
3063        break;
3064
3065    // If we didn't find this initializer, it must be because we
3066    // scanned past it on a previous iteration.  That can only
3067    // happen if we're out of order;  emit a warning.
3068    if (IdealIndex == NumIdealInits && PrevInit) {
3069      Sema::SemaDiagnosticBuilder D =
3070        SemaRef.Diag(PrevInit->getSourceLocation(),
3071                     diag::warn_initializer_out_of_order);
3072
3073      if (PrevInit->isAnyMemberInitializer())
3074        D << 0 << PrevInit->getAnyMember()->getDeclName();
3075      else
3076        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3077
3078      if (Init->isAnyMemberInitializer())
3079        D << 0 << Init->getAnyMember()->getDeclName();
3080      else
3081        D << 1 << Init->getTypeSourceInfo()->getType();
3082
3083      // Move back to the initializer's location in the ideal list.
3084      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3085        if (InitKey == IdealInitKeys[IdealIndex])
3086          break;
3087
3088      assert(IdealIndex != NumIdealInits &&
3089             "initializer not found in initializer list");
3090    }
3091
3092    PrevInit = Init;
3093  }
3094}
3095
3096namespace {
3097bool CheckRedundantInit(Sema &S,
3098                        CXXCtorInitializer *Init,
3099                        CXXCtorInitializer *&PrevInit) {
3100  if (!PrevInit) {
3101    PrevInit = Init;
3102    return false;
3103  }
3104
3105  if (FieldDecl *Field = Init->getMember())
3106    S.Diag(Init->getSourceLocation(),
3107           diag::err_multiple_mem_initialization)
3108      << Field->getDeclName()
3109      << Init->getSourceRange();
3110  else {
3111    const Type *BaseClass = Init->getBaseClass();
3112    assert(BaseClass && "neither field nor base");
3113    S.Diag(Init->getSourceLocation(),
3114           diag::err_multiple_base_initialization)
3115      << QualType(BaseClass, 0)
3116      << Init->getSourceRange();
3117  }
3118  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3119    << 0 << PrevInit->getSourceRange();
3120
3121  return true;
3122}
3123
3124typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3125typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3126
3127bool CheckRedundantUnionInit(Sema &S,
3128                             CXXCtorInitializer *Init,
3129                             RedundantUnionMap &Unions) {
3130  FieldDecl *Field = Init->getAnyMember();
3131  RecordDecl *Parent = Field->getParent();
3132  NamedDecl *Child = Field;
3133
3134  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3135    if (Parent->isUnion()) {
3136      UnionEntry &En = Unions[Parent];
3137      if (En.first && En.first != Child) {
3138        S.Diag(Init->getSourceLocation(),
3139               diag::err_multiple_mem_union_initialization)
3140          << Field->getDeclName()
3141          << Init->getSourceRange();
3142        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3143          << 0 << En.second->getSourceRange();
3144        return true;
3145      }
3146      if (!En.first) {
3147        En.first = Child;
3148        En.second = Init;
3149      }
3150      if (!Parent->isAnonymousStructOrUnion())
3151        return false;
3152    }
3153
3154    Child = Parent;
3155    Parent = cast<RecordDecl>(Parent->getDeclContext());
3156  }
3157
3158  return false;
3159}
3160}
3161
3162/// ActOnMemInitializers - Handle the member initializers for a constructor.
3163void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3164                                SourceLocation ColonLoc,
3165                                CXXCtorInitializer **meminits,
3166                                unsigned NumMemInits,
3167                                bool AnyErrors) {
3168  if (!ConstructorDecl)
3169    return;
3170
3171  AdjustDeclIfTemplate(ConstructorDecl);
3172
3173  CXXConstructorDecl *Constructor
3174    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3175
3176  if (!Constructor) {
3177    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3178    return;
3179  }
3180
3181  CXXCtorInitializer **MemInits =
3182    reinterpret_cast<CXXCtorInitializer **>(meminits);
3183
3184  // Mapping for the duplicate initializers check.
3185  // For member initializers, this is keyed with a FieldDecl*.
3186  // For base initializers, this is keyed with a Type*.
3187  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3188
3189  // Mapping for the inconsistent anonymous-union initializers check.
3190  RedundantUnionMap MemberUnions;
3191
3192  bool HadError = false;
3193  for (unsigned i = 0; i < NumMemInits; i++) {
3194    CXXCtorInitializer *Init = MemInits[i];
3195
3196    // Set the source order index.
3197    Init->setSourceOrder(i);
3198
3199    if (Init->isAnyMemberInitializer()) {
3200      FieldDecl *Field = Init->getAnyMember();
3201      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3202          CheckRedundantUnionInit(*this, Init, MemberUnions))
3203        HadError = true;
3204    } else if (Init->isBaseInitializer()) {
3205      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3206      if (CheckRedundantInit(*this, Init, Members[Key]))
3207        HadError = true;
3208    } else {
3209      assert(Init->isDelegatingInitializer());
3210      // This must be the only initializer
3211      if (i != 0 || NumMemInits > 1) {
3212        Diag(MemInits[0]->getSourceLocation(),
3213             diag::err_delegating_initializer_alone)
3214          << MemInits[0]->getSourceRange();
3215        HadError = true;
3216        // We will treat this as being the only initializer.
3217      }
3218      SetDelegatingInitializer(Constructor, MemInits[i]);
3219      // Return immediately as the initializer is set.
3220      return;
3221    }
3222  }
3223
3224  if (HadError)
3225    return;
3226
3227  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3228
3229  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3230}
3231
3232void
3233Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3234                                             CXXRecordDecl *ClassDecl) {
3235  // Ignore dependent contexts. Also ignore unions, since their members never
3236  // have destructors implicitly called.
3237  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3238    return;
3239
3240  // FIXME: all the access-control diagnostics are positioned on the
3241  // field/base declaration.  That's probably good; that said, the
3242  // user might reasonably want to know why the destructor is being
3243  // emitted, and we currently don't say.
3244
3245  // Non-static data members.
3246  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3247       E = ClassDecl->field_end(); I != E; ++I) {
3248    FieldDecl *Field = *I;
3249    if (Field->isInvalidDecl())
3250      continue;
3251
3252    // Don't destroy incomplete or zero-length arrays.
3253    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3254      continue;
3255
3256    QualType FieldType = Context.getBaseElementType(Field->getType());
3257
3258    const RecordType* RT = FieldType->getAs<RecordType>();
3259    if (!RT)
3260      continue;
3261
3262    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3263    if (FieldClassDecl->isInvalidDecl())
3264      continue;
3265    if (FieldClassDecl->hasTrivialDestructor())
3266      continue;
3267
3268    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3269    assert(Dtor && "No dtor found for FieldClassDecl!");
3270    CheckDestructorAccess(Field->getLocation(), Dtor,
3271                          PDiag(diag::err_access_dtor_field)
3272                            << Field->getDeclName()
3273                            << FieldType);
3274
3275    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3276  }
3277
3278  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3279
3280  // Bases.
3281  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3282       E = ClassDecl->bases_end(); Base != E; ++Base) {
3283    // Bases are always records in a well-formed non-dependent class.
3284    const RecordType *RT = Base->getType()->getAs<RecordType>();
3285
3286    // Remember direct virtual bases.
3287    if (Base->isVirtual())
3288      DirectVirtualBases.insert(RT);
3289
3290    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3291    // If our base class is invalid, we probably can't get its dtor anyway.
3292    if (BaseClassDecl->isInvalidDecl())
3293      continue;
3294    // Ignore trivial destructors.
3295    if (BaseClassDecl->hasTrivialDestructor())
3296      continue;
3297
3298    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3299    assert(Dtor && "No dtor found for BaseClassDecl!");
3300
3301    // FIXME: caret should be on the start of the class name
3302    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3303                          PDiag(diag::err_access_dtor_base)
3304                            << Base->getType()
3305                            << Base->getSourceRange());
3306
3307    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3308  }
3309
3310  // Virtual bases.
3311  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3312       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3313
3314    // Bases are always records in a well-formed non-dependent class.
3315    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3316
3317    // Ignore direct virtual bases.
3318    if (DirectVirtualBases.count(RT))
3319      continue;
3320
3321    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3322    // If our base class is invalid, we probably can't get its dtor anyway.
3323    if (BaseClassDecl->isInvalidDecl())
3324      continue;
3325    // Ignore trivial destructors.
3326    if (BaseClassDecl->hasTrivialDestructor())
3327      continue;
3328
3329    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3330    assert(Dtor && "No dtor found for BaseClassDecl!");
3331    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3332                          PDiag(diag::err_access_dtor_vbase)
3333                            << VBase->getType());
3334
3335    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3336  }
3337}
3338
3339void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3340  if (!CDtorDecl)
3341    return;
3342
3343  if (CXXConstructorDecl *Constructor
3344      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3345    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3346}
3347
3348bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3349                                  unsigned DiagID, AbstractDiagSelID SelID) {
3350  if (SelID == -1)
3351    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3352  else
3353    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3354}
3355
3356bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3357                                  const PartialDiagnostic &PD) {
3358  if (!getLangOptions().CPlusPlus)
3359    return false;
3360
3361  if (const ArrayType *AT = Context.getAsArrayType(T))
3362    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3363
3364  if (const PointerType *PT = T->getAs<PointerType>()) {
3365    // Find the innermost pointer type.
3366    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3367      PT = T;
3368
3369    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3370      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3371  }
3372
3373  const RecordType *RT = T->getAs<RecordType>();
3374  if (!RT)
3375    return false;
3376
3377  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3378
3379  // We can't answer whether something is abstract until it has a
3380  // definition.  If it's currently being defined, we'll walk back
3381  // over all the declarations when we have a full definition.
3382  const CXXRecordDecl *Def = RD->getDefinition();
3383  if (!Def || Def->isBeingDefined())
3384    return false;
3385
3386  if (!RD->isAbstract())
3387    return false;
3388
3389  Diag(Loc, PD) << RD->getDeclName();
3390  DiagnoseAbstractType(RD);
3391
3392  return true;
3393}
3394
3395void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3396  // Check if we've already emitted the list of pure virtual functions
3397  // for this class.
3398  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3399    return;
3400
3401  CXXFinalOverriderMap FinalOverriders;
3402  RD->getFinalOverriders(FinalOverriders);
3403
3404  // Keep a set of seen pure methods so we won't diagnose the same method
3405  // more than once.
3406  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3407
3408  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3409                                   MEnd = FinalOverriders.end();
3410       M != MEnd;
3411       ++M) {
3412    for (OverridingMethods::iterator SO = M->second.begin(),
3413                                  SOEnd = M->second.end();
3414         SO != SOEnd; ++SO) {
3415      // C++ [class.abstract]p4:
3416      //   A class is abstract if it contains or inherits at least one
3417      //   pure virtual function for which the final overrider is pure
3418      //   virtual.
3419
3420      //
3421      if (SO->second.size() != 1)
3422        continue;
3423
3424      if (!SO->second.front().Method->isPure())
3425        continue;
3426
3427      if (!SeenPureMethods.insert(SO->second.front().Method))
3428        continue;
3429
3430      Diag(SO->second.front().Method->getLocation(),
3431           diag::note_pure_virtual_function)
3432        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3433    }
3434  }
3435
3436  if (!PureVirtualClassDiagSet)
3437    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3438  PureVirtualClassDiagSet->insert(RD);
3439}
3440
3441namespace {
3442struct AbstractUsageInfo {
3443  Sema &S;
3444  CXXRecordDecl *Record;
3445  CanQualType AbstractType;
3446  bool Invalid;
3447
3448  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3449    : S(S), Record(Record),
3450      AbstractType(S.Context.getCanonicalType(
3451                   S.Context.getTypeDeclType(Record))),
3452      Invalid(false) {}
3453
3454  void DiagnoseAbstractType() {
3455    if (Invalid) return;
3456    S.DiagnoseAbstractType(Record);
3457    Invalid = true;
3458  }
3459
3460  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3461};
3462
3463struct CheckAbstractUsage {
3464  AbstractUsageInfo &Info;
3465  const NamedDecl *Ctx;
3466
3467  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3468    : Info(Info), Ctx(Ctx) {}
3469
3470  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3471    switch (TL.getTypeLocClass()) {
3472#define ABSTRACT_TYPELOC(CLASS, PARENT)
3473#define TYPELOC(CLASS, PARENT) \
3474    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3475#include "clang/AST/TypeLocNodes.def"
3476    }
3477  }
3478
3479  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3480    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3481    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3482      if (!TL.getArg(I))
3483        continue;
3484
3485      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3486      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3487    }
3488  }
3489
3490  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3491    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3492  }
3493
3494  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3495    // Visit the type parameters from a permissive context.
3496    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3497      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3498      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3499        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3500          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3501      // TODO: other template argument types?
3502    }
3503  }
3504
3505  // Visit pointee types from a permissive context.
3506#define CheckPolymorphic(Type) \
3507  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3508    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3509  }
3510  CheckPolymorphic(PointerTypeLoc)
3511  CheckPolymorphic(ReferenceTypeLoc)
3512  CheckPolymorphic(MemberPointerTypeLoc)
3513  CheckPolymorphic(BlockPointerTypeLoc)
3514  CheckPolymorphic(AtomicTypeLoc)
3515
3516  /// Handle all the types we haven't given a more specific
3517  /// implementation for above.
3518  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3519    // Every other kind of type that we haven't called out already
3520    // that has an inner type is either (1) sugar or (2) contains that
3521    // inner type in some way as a subobject.
3522    if (TypeLoc Next = TL.getNextTypeLoc())
3523      return Visit(Next, Sel);
3524
3525    // If there's no inner type and we're in a permissive context,
3526    // don't diagnose.
3527    if (Sel == Sema::AbstractNone) return;
3528
3529    // Check whether the type matches the abstract type.
3530    QualType T = TL.getType();
3531    if (T->isArrayType()) {
3532      Sel = Sema::AbstractArrayType;
3533      T = Info.S.Context.getBaseElementType(T);
3534    }
3535    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3536    if (CT != Info.AbstractType) return;
3537
3538    // It matched; do some magic.
3539    if (Sel == Sema::AbstractArrayType) {
3540      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3541        << T << TL.getSourceRange();
3542    } else {
3543      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3544        << Sel << T << TL.getSourceRange();
3545    }
3546    Info.DiagnoseAbstractType();
3547  }
3548};
3549
3550void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3551                                  Sema::AbstractDiagSelID Sel) {
3552  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3553}
3554
3555}
3556
3557/// Check for invalid uses of an abstract type in a method declaration.
3558static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3559                                    CXXMethodDecl *MD) {
3560  // No need to do the check on definitions, which require that
3561  // the return/param types be complete.
3562  if (MD->doesThisDeclarationHaveABody())
3563    return;
3564
3565  // For safety's sake, just ignore it if we don't have type source
3566  // information.  This should never happen for non-implicit methods,
3567  // but...
3568  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3569    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3570}
3571
3572/// Check for invalid uses of an abstract type within a class definition.
3573static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3574                                    CXXRecordDecl *RD) {
3575  for (CXXRecordDecl::decl_iterator
3576         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3577    Decl *D = *I;
3578    if (D->isImplicit()) continue;
3579
3580    // Methods and method templates.
3581    if (isa<CXXMethodDecl>(D)) {
3582      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3583    } else if (isa<FunctionTemplateDecl>(D)) {
3584      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3585      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3586
3587    // Fields and static variables.
3588    } else if (isa<FieldDecl>(D)) {
3589      FieldDecl *FD = cast<FieldDecl>(D);
3590      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3591        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3592    } else if (isa<VarDecl>(D)) {
3593      VarDecl *VD = cast<VarDecl>(D);
3594      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3595        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3596
3597    // Nested classes and class templates.
3598    } else if (isa<CXXRecordDecl>(D)) {
3599      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3600    } else if (isa<ClassTemplateDecl>(D)) {
3601      CheckAbstractClassUsage(Info,
3602                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3603    }
3604  }
3605}
3606
3607/// \brief Perform semantic checks on a class definition that has been
3608/// completing, introducing implicitly-declared members, checking for
3609/// abstract types, etc.
3610void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3611  if (!Record)
3612    return;
3613
3614  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3615    AbstractUsageInfo Info(*this, Record);
3616    CheckAbstractClassUsage(Info, Record);
3617  }
3618
3619  // If this is not an aggregate type and has no user-declared constructor,
3620  // complain about any non-static data members of reference or const scalar
3621  // type, since they will never get initializers.
3622  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3623      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3624    bool Complained = false;
3625    for (RecordDecl::field_iterator F = Record->field_begin(),
3626                                 FEnd = Record->field_end();
3627         F != FEnd; ++F) {
3628      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3629        continue;
3630
3631      if (F->getType()->isReferenceType() ||
3632          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3633        if (!Complained) {
3634          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3635            << Record->getTagKind() << Record;
3636          Complained = true;
3637        }
3638
3639        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3640          << F->getType()->isReferenceType()
3641          << F->getDeclName();
3642      }
3643    }
3644  }
3645
3646  if (Record->isDynamicClass() && !Record->isDependentType())
3647    DynamicClasses.push_back(Record);
3648
3649  if (Record->getIdentifier()) {
3650    // C++ [class.mem]p13:
3651    //   If T is the name of a class, then each of the following shall have a
3652    //   name different from T:
3653    //     - every member of every anonymous union that is a member of class T.
3654    //
3655    // C++ [class.mem]p14:
3656    //   In addition, if class T has a user-declared constructor (12.1), every
3657    //   non-static data member of class T shall have a name different from T.
3658    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3659         R.first != R.second; ++R.first) {
3660      NamedDecl *D = *R.first;
3661      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3662          isa<IndirectFieldDecl>(D)) {
3663        Diag(D->getLocation(), diag::err_member_name_of_class)
3664          << D->getDeclName();
3665        break;
3666      }
3667    }
3668  }
3669
3670  // Warn if the class has virtual methods but non-virtual public destructor.
3671  if (Record->isPolymorphic() && !Record->isDependentType()) {
3672    CXXDestructorDecl *dtor = Record->getDestructor();
3673    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3674      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3675           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3676  }
3677
3678  // See if a method overloads virtual methods in a base
3679  /// class without overriding any.
3680  if (!Record->isDependentType()) {
3681    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3682                                     MEnd = Record->method_end();
3683         M != MEnd; ++M) {
3684      if (!(*M)->isStatic())
3685        DiagnoseHiddenVirtualMethods(Record, *M);
3686    }
3687  }
3688
3689  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3690  // function that is not a constructor declares that member function to be
3691  // const. [...] The class of which that function is a member shall be
3692  // a literal type.
3693  //
3694  // It's fine to diagnose constructors here too: such constructors cannot
3695  // produce a constant expression, so are ill-formed (no diagnostic required).
3696  //
3697  // If the class has virtual bases, any constexpr members will already have
3698  // been diagnosed by the checks performed on the member declaration, so
3699  // suppress this (less useful) diagnostic.
3700  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3701      !Record->isLiteral() && !Record->getNumVBases()) {
3702    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3703                                     MEnd = Record->method_end();
3704         M != MEnd; ++M) {
3705      if (M->isConstexpr() && M->isInstance()) {
3706        switch (Record->getTemplateSpecializationKind()) {
3707        case TSK_ImplicitInstantiation:
3708        case TSK_ExplicitInstantiationDeclaration:
3709        case TSK_ExplicitInstantiationDefinition:
3710          // If a template instantiates to a non-literal type, but its members
3711          // instantiate to constexpr functions, the template is technically
3712          // ill-formed, but we allow it for sanity. Such members are treated as
3713          // non-constexpr.
3714          (*M)->setConstexpr(false);
3715          continue;
3716
3717        case TSK_Undeclared:
3718        case TSK_ExplicitSpecialization:
3719          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3720                             PDiag(diag::err_constexpr_method_non_literal));
3721          break;
3722        }
3723
3724        // Only produce one error per class.
3725        break;
3726      }
3727    }
3728  }
3729
3730  // Declare inherited constructors. We do this eagerly here because:
3731  // - The standard requires an eager diagnostic for conflicting inherited
3732  //   constructors from different classes.
3733  // - The lazy declaration of the other implicit constructors is so as to not
3734  //   waste space and performance on classes that are not meant to be
3735  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3736  //   have inherited constructors.
3737  DeclareInheritedConstructors(Record);
3738
3739  if (!Record->isDependentType())
3740    CheckExplicitlyDefaultedMethods(Record);
3741}
3742
3743void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3744  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3745                                      ME = Record->method_end();
3746       MI != ME; ++MI) {
3747    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3748      switch (getSpecialMember(*MI)) {
3749      case CXXDefaultConstructor:
3750        CheckExplicitlyDefaultedDefaultConstructor(
3751                                                  cast<CXXConstructorDecl>(*MI));
3752        break;
3753
3754      case CXXDestructor:
3755        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3756        break;
3757
3758      case CXXCopyConstructor:
3759        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3760        break;
3761
3762      case CXXCopyAssignment:
3763        CheckExplicitlyDefaultedCopyAssignment(*MI);
3764        break;
3765
3766      case CXXMoveConstructor:
3767        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3768        break;
3769
3770      case CXXMoveAssignment:
3771        CheckExplicitlyDefaultedMoveAssignment(*MI);
3772        break;
3773
3774      case CXXInvalid:
3775        llvm_unreachable("non-special member explicitly defaulted!");
3776      }
3777    }
3778  }
3779
3780}
3781
3782void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3783  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3784
3785  // Whether this was the first-declared instance of the constructor.
3786  // This affects whether we implicitly add an exception spec (and, eventually,
3787  // constexpr). It is also ill-formed to explicitly default a constructor such
3788  // that it would be deleted. (C++0x [decl.fct.def.default])
3789  bool First = CD == CD->getCanonicalDecl();
3790
3791  bool HadError = false;
3792  if (CD->getNumParams() != 0) {
3793    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3794      << CD->getSourceRange();
3795    HadError = true;
3796  }
3797
3798  ImplicitExceptionSpecification Spec
3799    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3800  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3801  if (EPI.ExceptionSpecType == EST_Delayed) {
3802    // Exception specification depends on some deferred part of the class. We'll
3803    // try again when the class's definition has been fully processed.
3804    return;
3805  }
3806  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3807                          *ExceptionType = Context.getFunctionType(
3808                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3809
3810  // C++11 [dcl.fct.def.default]p2:
3811  //   An explicitly-defaulted function may be declared constexpr only if it
3812  //   would have been implicitly declared as constexpr,
3813  if (CD->isConstexpr()) {
3814    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3815      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3816        << CXXDefaultConstructor;
3817      HadError = true;
3818    }
3819  }
3820  //   and may have an explicit exception-specification only if it is compatible
3821  //   with the exception-specification on the implicit declaration.
3822  if (CtorType->hasExceptionSpec()) {
3823    if (CheckEquivalentExceptionSpec(
3824          PDiag(diag::err_incorrect_defaulted_exception_spec)
3825            << CXXDefaultConstructor,
3826          PDiag(),
3827          ExceptionType, SourceLocation(),
3828          CtorType, CD->getLocation())) {
3829      HadError = true;
3830    }
3831  }
3832
3833  //   If a function is explicitly defaulted on its first declaration,
3834  if (First) {
3835    //  -- it is implicitly considered to be constexpr if the implicit
3836    //     definition would be,
3837    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3838
3839    //  -- it is implicitly considered to have the same
3840    //     exception-specification as if it had been implicitly declared
3841    //
3842    // FIXME: a compatible, but different, explicit exception specification
3843    // will be silently overridden. We should issue a warning if this happens.
3844    EPI.ExtInfo = CtorType->getExtInfo();
3845  }
3846
3847  if (HadError) {
3848    CD->setInvalidDecl();
3849    return;
3850  }
3851
3852  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3853    if (First) {
3854      CD->setDeletedAsWritten();
3855    } else {
3856      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3857        << CXXDefaultConstructor;
3858      CD->setInvalidDecl();
3859    }
3860  }
3861}
3862
3863void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3864  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3865
3866  // Whether this was the first-declared instance of the constructor.
3867  bool First = CD == CD->getCanonicalDecl();
3868
3869  bool HadError = false;
3870  if (CD->getNumParams() != 1) {
3871    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3872      << CD->getSourceRange();
3873    HadError = true;
3874  }
3875
3876  ImplicitExceptionSpecification Spec(Context);
3877  bool Const;
3878  llvm::tie(Spec, Const) =
3879    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3880
3881  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3882  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3883                          *ExceptionType = Context.getFunctionType(
3884                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3885
3886  // Check for parameter type matching.
3887  // This is a copy ctor so we know it's a cv-qualified reference to T.
3888  QualType ArgType = CtorType->getArgType(0);
3889  if (ArgType->getPointeeType().isVolatileQualified()) {
3890    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3891    HadError = true;
3892  }
3893  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3894    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3895    HadError = true;
3896  }
3897
3898  // C++11 [dcl.fct.def.default]p2:
3899  //   An explicitly-defaulted function may be declared constexpr only if it
3900  //   would have been implicitly declared as constexpr,
3901  if (CD->isConstexpr()) {
3902    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3903      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3904        << CXXCopyConstructor;
3905      HadError = true;
3906    }
3907  }
3908  //   and may have an explicit exception-specification only if it is compatible
3909  //   with the exception-specification on the implicit declaration.
3910  if (CtorType->hasExceptionSpec()) {
3911    if (CheckEquivalentExceptionSpec(
3912          PDiag(diag::err_incorrect_defaulted_exception_spec)
3913            << CXXCopyConstructor,
3914          PDiag(),
3915          ExceptionType, SourceLocation(),
3916          CtorType, CD->getLocation())) {
3917      HadError = true;
3918    }
3919  }
3920
3921  //   If a function is explicitly defaulted on its first declaration,
3922  if (First) {
3923    //  -- it is implicitly considered to be constexpr if the implicit
3924    //     definition would be,
3925    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3926
3927    //  -- it is implicitly considered to have the same
3928    //     exception-specification as if it had been implicitly declared, and
3929    //
3930    // FIXME: a compatible, but different, explicit exception specification
3931    // will be silently overridden. We should issue a warning if this happens.
3932    EPI.ExtInfo = CtorType->getExtInfo();
3933
3934    //  -- [...] it shall have the same parameter type as if it had been
3935    //     implicitly declared.
3936    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3937  }
3938
3939  if (HadError) {
3940    CD->setInvalidDecl();
3941    return;
3942  }
3943
3944  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3945    if (First) {
3946      CD->setDeletedAsWritten();
3947    } else {
3948      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3949        << CXXCopyConstructor;
3950      CD->setInvalidDecl();
3951    }
3952  }
3953}
3954
3955void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3956  assert(MD->isExplicitlyDefaulted());
3957
3958  // Whether this was the first-declared instance of the operator
3959  bool First = MD == MD->getCanonicalDecl();
3960
3961  bool HadError = false;
3962  if (MD->getNumParams() != 1) {
3963    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3964      << MD->getSourceRange();
3965    HadError = true;
3966  }
3967
3968  QualType ReturnType =
3969    MD->getType()->getAs<FunctionType>()->getResultType();
3970  if (!ReturnType->isLValueReferenceType() ||
3971      !Context.hasSameType(
3972        Context.getCanonicalType(ReturnType->getPointeeType()),
3973        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3974    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3975    HadError = true;
3976  }
3977
3978  ImplicitExceptionSpecification Spec(Context);
3979  bool Const;
3980  llvm::tie(Spec, Const) =
3981    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3982
3983  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3984  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3985                          *ExceptionType = Context.getFunctionType(
3986                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3987
3988  QualType ArgType = OperType->getArgType(0);
3989  if (!ArgType->isLValueReferenceType()) {
3990    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3991    HadError = true;
3992  } else {
3993    if (ArgType->getPointeeType().isVolatileQualified()) {
3994      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3995      HadError = true;
3996    }
3997    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3998      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3999      HadError = true;
4000    }
4001  }
4002
4003  if (OperType->getTypeQuals()) {
4004    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4005    HadError = true;
4006  }
4007
4008  if (OperType->hasExceptionSpec()) {
4009    if (CheckEquivalentExceptionSpec(
4010          PDiag(diag::err_incorrect_defaulted_exception_spec)
4011            << CXXCopyAssignment,
4012          PDiag(),
4013          ExceptionType, SourceLocation(),
4014          OperType, MD->getLocation())) {
4015      HadError = true;
4016    }
4017  }
4018  if (First) {
4019    // We set the declaration to have the computed exception spec here.
4020    // We duplicate the one parameter type.
4021    EPI.RefQualifier = OperType->getRefQualifier();
4022    EPI.ExtInfo = OperType->getExtInfo();
4023    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4024  }
4025
4026  if (HadError) {
4027    MD->setInvalidDecl();
4028    return;
4029  }
4030
4031  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4032    if (First) {
4033      MD->setDeletedAsWritten();
4034    } else {
4035      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4036        << CXXCopyAssignment;
4037      MD->setInvalidDecl();
4038    }
4039  }
4040}
4041
4042void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4043  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4044
4045  // Whether this was the first-declared instance of the constructor.
4046  bool First = CD == CD->getCanonicalDecl();
4047
4048  bool HadError = false;
4049  if (CD->getNumParams() != 1) {
4050    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4051      << CD->getSourceRange();
4052    HadError = true;
4053  }
4054
4055  ImplicitExceptionSpecification Spec(
4056      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4057
4058  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4059  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4060                          *ExceptionType = Context.getFunctionType(
4061                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4062
4063  // Check for parameter type matching.
4064  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4065  QualType ArgType = CtorType->getArgType(0);
4066  if (ArgType->getPointeeType().isVolatileQualified()) {
4067    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4068    HadError = true;
4069  }
4070  if (ArgType->getPointeeType().isConstQualified()) {
4071    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4072    HadError = true;
4073  }
4074
4075  // C++11 [dcl.fct.def.default]p2:
4076  //   An explicitly-defaulted function may be declared constexpr only if it
4077  //   would have been implicitly declared as constexpr,
4078  if (CD->isConstexpr()) {
4079    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4080      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4081        << CXXMoveConstructor;
4082      HadError = true;
4083    }
4084  }
4085  //   and may have an explicit exception-specification only if it is compatible
4086  //   with the exception-specification on the implicit declaration.
4087  if (CtorType->hasExceptionSpec()) {
4088    if (CheckEquivalentExceptionSpec(
4089          PDiag(diag::err_incorrect_defaulted_exception_spec)
4090            << CXXMoveConstructor,
4091          PDiag(),
4092          ExceptionType, SourceLocation(),
4093          CtorType, CD->getLocation())) {
4094      HadError = true;
4095    }
4096  }
4097
4098  //   If a function is explicitly defaulted on its first declaration,
4099  if (First) {
4100    //  -- it is implicitly considered to be constexpr if the implicit
4101    //     definition would be,
4102    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4103
4104    //  -- it is implicitly considered to have the same
4105    //     exception-specification as if it had been implicitly declared, and
4106    //
4107    // FIXME: a compatible, but different, explicit exception specification
4108    // will be silently overridden. We should issue a warning if this happens.
4109    EPI.ExtInfo = CtorType->getExtInfo();
4110
4111    //  -- [...] it shall have the same parameter type as if it had been
4112    //     implicitly declared.
4113    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4114  }
4115
4116  if (HadError) {
4117    CD->setInvalidDecl();
4118    return;
4119  }
4120
4121  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4122    if (First) {
4123      CD->setDeletedAsWritten();
4124    } else {
4125      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4126        << CXXMoveConstructor;
4127      CD->setInvalidDecl();
4128    }
4129  }
4130}
4131
4132void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4133  assert(MD->isExplicitlyDefaulted());
4134
4135  // Whether this was the first-declared instance of the operator
4136  bool First = MD == MD->getCanonicalDecl();
4137
4138  bool HadError = false;
4139  if (MD->getNumParams() != 1) {
4140    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4141      << MD->getSourceRange();
4142    HadError = true;
4143  }
4144
4145  QualType ReturnType =
4146    MD->getType()->getAs<FunctionType>()->getResultType();
4147  if (!ReturnType->isLValueReferenceType() ||
4148      !Context.hasSameType(
4149        Context.getCanonicalType(ReturnType->getPointeeType()),
4150        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4151    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4152    HadError = true;
4153  }
4154
4155  ImplicitExceptionSpecification Spec(
4156      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4157
4158  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4159  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4160                          *ExceptionType = Context.getFunctionType(
4161                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4162
4163  QualType ArgType = OperType->getArgType(0);
4164  if (!ArgType->isRValueReferenceType()) {
4165    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4166    HadError = true;
4167  } else {
4168    if (ArgType->getPointeeType().isVolatileQualified()) {
4169      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4170      HadError = true;
4171    }
4172    if (ArgType->getPointeeType().isConstQualified()) {
4173      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4174      HadError = true;
4175    }
4176  }
4177
4178  if (OperType->getTypeQuals()) {
4179    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4180    HadError = true;
4181  }
4182
4183  if (OperType->hasExceptionSpec()) {
4184    if (CheckEquivalentExceptionSpec(
4185          PDiag(diag::err_incorrect_defaulted_exception_spec)
4186            << CXXMoveAssignment,
4187          PDiag(),
4188          ExceptionType, SourceLocation(),
4189          OperType, MD->getLocation())) {
4190      HadError = true;
4191    }
4192  }
4193  if (First) {
4194    // We set the declaration to have the computed exception spec here.
4195    // We duplicate the one parameter type.
4196    EPI.RefQualifier = OperType->getRefQualifier();
4197    EPI.ExtInfo = OperType->getExtInfo();
4198    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4199  }
4200
4201  if (HadError) {
4202    MD->setInvalidDecl();
4203    return;
4204  }
4205
4206  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4207    if (First) {
4208      MD->setDeletedAsWritten();
4209    } else {
4210      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4211        << CXXMoveAssignment;
4212      MD->setInvalidDecl();
4213    }
4214  }
4215}
4216
4217void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4218  assert(DD->isExplicitlyDefaulted());
4219
4220  // Whether this was the first-declared instance of the destructor.
4221  bool First = DD == DD->getCanonicalDecl();
4222
4223  ImplicitExceptionSpecification Spec
4224    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4225  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4226  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4227                          *ExceptionType = Context.getFunctionType(
4228                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4229
4230  if (DtorType->hasExceptionSpec()) {
4231    if (CheckEquivalentExceptionSpec(
4232          PDiag(diag::err_incorrect_defaulted_exception_spec)
4233            << CXXDestructor,
4234          PDiag(),
4235          ExceptionType, SourceLocation(),
4236          DtorType, DD->getLocation())) {
4237      DD->setInvalidDecl();
4238      return;
4239    }
4240  }
4241  if (First) {
4242    // We set the declaration to have the computed exception spec here.
4243    // There are no parameters.
4244    EPI.ExtInfo = DtorType->getExtInfo();
4245    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4246  }
4247
4248  if (ShouldDeleteDestructor(DD)) {
4249    if (First) {
4250      DD->setDeletedAsWritten();
4251    } else {
4252      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4253        << CXXDestructor;
4254      DD->setInvalidDecl();
4255    }
4256  }
4257}
4258
4259/// This function implements the following C++0x paragraphs:
4260///  - [class.ctor]/5
4261///  - [class.copy]/11
4262bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4263  assert(!MD->isInvalidDecl());
4264  CXXRecordDecl *RD = MD->getParent();
4265  assert(!RD->isDependentType() && "do deletion after instantiation");
4266  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4267    return false;
4268
4269  bool IsUnion = RD->isUnion();
4270  bool IsConstructor = false;
4271  bool IsAssignment = false;
4272  bool IsMove = false;
4273
4274  bool ConstArg = false;
4275
4276  switch (CSM) {
4277  case CXXDefaultConstructor:
4278    IsConstructor = true;
4279    break;
4280  case CXXCopyConstructor:
4281    IsConstructor = true;
4282    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4283    break;
4284  case CXXMoveConstructor:
4285    IsConstructor = true;
4286    IsMove = true;
4287    break;
4288  default:
4289    llvm_unreachable("function only currently implemented for default ctors");
4290  }
4291
4292  SourceLocation Loc = MD->getLocation();
4293
4294  // Do access control from the special member function
4295  ContextRAII MethodContext(*this, MD);
4296
4297  bool AllConst = true;
4298
4299  // We do this because we should never actually use an anonymous
4300  // union's constructor.
4301  if (IsUnion && RD->isAnonymousStructOrUnion())
4302    return false;
4303
4304  // FIXME: We should put some diagnostic logic right into this function.
4305
4306  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4307                                          BE = RD->bases_end();
4308       BI != BE; ++BI) {
4309    // We'll handle this one later
4310    if (BI->isVirtual())
4311      continue;
4312
4313    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4314    assert(BaseDecl && "base isn't a CXXRecordDecl");
4315
4316    // Unless we have an assignment operator, the base's destructor must
4317    // be accessible and not deleted.
4318    if (!IsAssignment) {
4319      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4320      if (BaseDtor->isDeleted())
4321        return true;
4322      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4323          AR_accessible)
4324        return true;
4325    }
4326
4327    // Finding the corresponding member in the base should lead to a
4328    // unique, accessible, non-deleted function. If we are doing
4329    // a destructor, we have already checked this case.
4330    if (CSM != CXXDestructor) {
4331      SpecialMemberOverloadResult *SMOR =
4332        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4333                            false);
4334      if (!SMOR->hasSuccess())
4335        return true;
4336      CXXMethodDecl *BaseMember = SMOR->getMethod();
4337      if (IsConstructor) {
4338        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4339        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4340                                   PDiag()) != AR_accessible)
4341          return true;
4342
4343        // For a move operation, the corresponding operation must actually
4344        // be a move operation (and not a copy selected by overload
4345        // resolution) unless we are working on a trivially copyable class.
4346        if (IsMove && !BaseCtor->isMoveConstructor() &&
4347            !BaseDecl->isTriviallyCopyable())
4348          return true;
4349      }
4350    }
4351  }
4352
4353  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4354                                          BE = RD->vbases_end();
4355       BI != BE; ++BI) {
4356    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4357    assert(BaseDecl && "base isn't a CXXRecordDecl");
4358
4359    // Unless we have an assignment operator, the base's destructor must
4360    // be accessible and not deleted.
4361    if (!IsAssignment) {
4362      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4363      if (BaseDtor->isDeleted())
4364        return true;
4365      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4366          AR_accessible)
4367        return true;
4368    }
4369
4370    // Finding the corresponding member in the base should lead to a
4371    // unique, accessible, non-deleted function.
4372    if (CSM != CXXDestructor) {
4373      SpecialMemberOverloadResult *SMOR =
4374        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4375                            false);
4376      if (!SMOR->hasSuccess())
4377        return true;
4378      CXXMethodDecl *BaseMember = SMOR->getMethod();
4379      if (IsConstructor) {
4380        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4381        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4382                                   PDiag()) != AR_accessible)
4383          return true;
4384
4385        // For a move operation, the corresponding operation must actually
4386        // be a move operation (and not a copy selected by overload
4387        // resolution) unless we are working on a trivially copyable class.
4388        if (IsMove && !BaseCtor->isMoveConstructor() &&
4389            !BaseDecl->isTriviallyCopyable())
4390          return true;
4391      }
4392    }
4393  }
4394
4395  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4396                                     FE = RD->field_end();
4397       FI != FE; ++FI) {
4398    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4399      continue;
4400
4401    QualType FieldType = Context.getBaseElementType(FI->getType());
4402    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4403
4404    // For a default constructor, all references must be initialized in-class
4405    // and, if a union, it must have a non-const member.
4406    if (CSM == CXXDefaultConstructor) {
4407      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4408        return true;
4409
4410      if (IsUnion && !FieldType.isConstQualified())
4411        AllConst = false;
4412    // For a copy constructor, data members must not be of rvalue reference
4413    // type.
4414    } else if (CSM == CXXCopyConstructor) {
4415      if (FieldType->isRValueReferenceType())
4416        return true;
4417    }
4418
4419    if (FieldRecord) {
4420      // For a default constructor, a const member must have a user-provided
4421      // default constructor or else be explicitly initialized.
4422      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4423          !FI->hasInClassInitializer() &&
4424          !FieldRecord->hasUserProvidedDefaultConstructor())
4425        return true;
4426
4427      // Some additional restrictions exist on the variant members.
4428      if (!IsUnion && FieldRecord->isUnion() &&
4429          FieldRecord->isAnonymousStructOrUnion()) {
4430        // We're okay to reuse AllConst here since we only care about the
4431        // value otherwise if we're in a union.
4432        AllConst = true;
4433
4434        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4435                                           UE = FieldRecord->field_end();
4436             UI != UE; ++UI) {
4437          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4438          CXXRecordDecl *UnionFieldRecord =
4439            UnionFieldType->getAsCXXRecordDecl();
4440
4441          if (!UnionFieldType.isConstQualified())
4442            AllConst = false;
4443
4444          if (UnionFieldRecord) {
4445            // FIXME: Checking for accessibility and validity of this
4446            //        destructor is technically going beyond the
4447            //        standard, but this is believed to be a defect.
4448            if (!IsAssignment) {
4449              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4450              if (FieldDtor->isDeleted())
4451                return true;
4452              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4453                  AR_accessible)
4454                return true;
4455              if (!FieldDtor->isTrivial())
4456                return true;
4457            }
4458
4459            if (CSM != CXXDestructor) {
4460              SpecialMemberOverloadResult *SMOR =
4461                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4462                                    false, false, false);
4463              // FIXME: Checking for accessibility and validity of this
4464              //        corresponding member is technically going beyond the
4465              //        standard, but this is believed to be a defect.
4466              if (!SMOR->hasSuccess())
4467                return true;
4468
4469              CXXMethodDecl *FieldMember = SMOR->getMethod();
4470              // A member of a union must have a trivial corresponding
4471              // constructor.
4472              if (!FieldMember->isTrivial())
4473                return true;
4474
4475              if (IsConstructor) {
4476                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4477                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4478                                           PDiag()) != AR_accessible)
4479                return true;
4480              }
4481            }
4482          }
4483        }
4484
4485        // At least one member in each anonymous union must be non-const
4486        if (CSM == CXXDefaultConstructor && AllConst)
4487          return true;
4488
4489        // Don't try to initialize the anonymous union
4490        // This is technically non-conformant, but sanity demands it.
4491        continue;
4492      }
4493
4494      // Unless we're doing assignment, the field's destructor must be
4495      // accessible and not deleted.
4496      if (!IsAssignment) {
4497        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4498        if (FieldDtor->isDeleted())
4499          return true;
4500        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4501            AR_accessible)
4502          return true;
4503      }
4504
4505      // Check that the corresponding member of the field is accessible,
4506      // unique, and non-deleted. We don't do this if it has an explicit
4507      // initialization when default-constructing.
4508      if (CSM != CXXDestructor &&
4509          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4510        SpecialMemberOverloadResult *SMOR =
4511          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4512                              false);
4513        if (!SMOR->hasSuccess())
4514          return true;
4515
4516        CXXMethodDecl *FieldMember = SMOR->getMethod();
4517        if (IsConstructor) {
4518          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4519          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4520                                     PDiag()) != AR_accessible)
4521          return true;
4522
4523          // For a move operation, the corresponding operation must actually
4524          // be a move operation (and not a copy selected by overload
4525          // resolution) unless we are working on a trivially copyable class.
4526          if (IsMove && !FieldCtor->isMoveConstructor() &&
4527              !FieldRecord->isTriviallyCopyable())
4528            return true;
4529        }
4530
4531        // We need the corresponding member of a union to be trivial so that
4532        // we can safely copy them all simultaneously.
4533        // FIXME: Note that performing the check here (where we rely on the lack
4534        // of an in-class initializer) is technically ill-formed. However, this
4535        // seems most obviously to be a bug in the standard.
4536        if (IsUnion && !FieldMember->isTrivial())
4537          return true;
4538      }
4539    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4540               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4541      // We can't initialize a const member of non-class type to any value.
4542      return true;
4543    }
4544  }
4545
4546  // We can't have all const members in a union when default-constructing,
4547  // or else they're all nonsensical garbage values that can't be changed.
4548  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4549    return true;
4550
4551  return false;
4552}
4553
4554bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4555  CXXRecordDecl *RD = MD->getParent();
4556  assert(!RD->isDependentType() && "do deletion after instantiation");
4557  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4558    return false;
4559
4560  SourceLocation Loc = MD->getLocation();
4561
4562  // Do access control from the constructor
4563  ContextRAII MethodContext(*this, MD);
4564
4565  bool Union = RD->isUnion();
4566
4567  unsigned ArgQuals =
4568    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4569      Qualifiers::Const : 0;
4570
4571  // We do this because we should never actually use an anonymous
4572  // union's constructor.
4573  if (Union && RD->isAnonymousStructOrUnion())
4574    return false;
4575
4576  // FIXME: We should put some diagnostic logic right into this function.
4577
4578  // C++0x [class.copy]/20
4579  //    A defaulted [copy] assignment operator for class X is defined as deleted
4580  //    if X has:
4581
4582  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4583                                          BE = RD->bases_end();
4584       BI != BE; ++BI) {
4585    // We'll handle this one later
4586    if (BI->isVirtual())
4587      continue;
4588
4589    QualType BaseType = BI->getType();
4590    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4591    assert(BaseDecl && "base isn't a CXXRecordDecl");
4592
4593    // -- a [direct base class] B that cannot be [copied] because overload
4594    //    resolution, as applied to B's [copy] assignment operator, results in
4595    //    an ambiguity or a function that is deleted or inaccessible from the
4596    //    assignment operator
4597    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4598                                                      0);
4599    if (!CopyOper || CopyOper->isDeleted())
4600      return true;
4601    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4602      return true;
4603  }
4604
4605  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4606                                          BE = RD->vbases_end();
4607       BI != BE; ++BI) {
4608    QualType BaseType = BI->getType();
4609    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4610    assert(BaseDecl && "base isn't a CXXRecordDecl");
4611
4612    // -- a [virtual base class] B that cannot be [copied] because overload
4613    //    resolution, as applied to B's [copy] assignment operator, results in
4614    //    an ambiguity or a function that is deleted or inaccessible from the
4615    //    assignment operator
4616    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4617                                                      0);
4618    if (!CopyOper || CopyOper->isDeleted())
4619      return true;
4620    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4621      return true;
4622  }
4623
4624  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4625                                     FE = RD->field_end();
4626       FI != FE; ++FI) {
4627    if (FI->isUnnamedBitfield())
4628      continue;
4629
4630    QualType FieldType = Context.getBaseElementType(FI->getType());
4631
4632    // -- a non-static data member of reference type
4633    if (FieldType->isReferenceType())
4634      return true;
4635
4636    // -- a non-static data member of const non-class type (or array thereof)
4637    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4638      return true;
4639
4640    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4641
4642    if (FieldRecord) {
4643      // This is an anonymous union
4644      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4645        // Anonymous unions inside unions do not variant members create
4646        if (!Union) {
4647          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4648                                             UE = FieldRecord->field_end();
4649               UI != UE; ++UI) {
4650            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4651            CXXRecordDecl *UnionFieldRecord =
4652              UnionFieldType->getAsCXXRecordDecl();
4653
4654            // -- a variant member with a non-trivial [copy] assignment operator
4655            //    and X is a union-like class
4656            if (UnionFieldRecord &&
4657                !UnionFieldRecord->hasTrivialCopyAssignment())
4658              return true;
4659          }
4660        }
4661
4662        // Don't try to initalize an anonymous union
4663        continue;
4664      // -- a variant member with a non-trivial [copy] assignment operator
4665      //    and X is a union-like class
4666      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4667          return true;
4668      }
4669
4670      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4671                                                        false, 0);
4672      if (!CopyOper || CopyOper->isDeleted())
4673        return true;
4674      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4675        return true;
4676    }
4677  }
4678
4679  return false;
4680}
4681
4682bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4683  CXXRecordDecl *RD = MD->getParent();
4684  assert(!RD->isDependentType() && "do deletion after instantiation");
4685  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4686    return false;
4687
4688  SourceLocation Loc = MD->getLocation();
4689
4690  // Do access control from the constructor
4691  ContextRAII MethodContext(*this, MD);
4692
4693  bool Union = RD->isUnion();
4694
4695  // We do this because we should never actually use an anonymous
4696  // union's constructor.
4697  if (Union && RD->isAnonymousStructOrUnion())
4698    return false;
4699
4700  // C++0x [class.copy]/20
4701  //    A defaulted [move] assignment operator for class X is defined as deleted
4702  //    if X has:
4703
4704  //    -- for the move constructor, [...] any direct or indirect virtual base
4705  //       class.
4706  if (RD->getNumVBases() != 0)
4707    return true;
4708
4709  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4710                                          BE = RD->bases_end();
4711       BI != BE; ++BI) {
4712
4713    QualType BaseType = BI->getType();
4714    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4715    assert(BaseDecl && "base isn't a CXXRecordDecl");
4716
4717    // -- a [direct base class] B that cannot be [moved] because overload
4718    //    resolution, as applied to B's [move] assignment operator, results in
4719    //    an ambiguity or a function that is deleted or inaccessible from the
4720    //    assignment operator
4721    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4722    if (!MoveOper || MoveOper->isDeleted())
4723      return true;
4724    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4725      return true;
4726
4727    // -- for the move assignment operator, a [direct base class] with a type
4728    //    that does not have a move assignment operator and is not trivially
4729    //    copyable.
4730    if (!MoveOper->isMoveAssignmentOperator() &&
4731        !BaseDecl->isTriviallyCopyable())
4732      return true;
4733  }
4734
4735  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4736                                     FE = RD->field_end();
4737       FI != FE; ++FI) {
4738    if (FI->isUnnamedBitfield())
4739      continue;
4740
4741    QualType FieldType = Context.getBaseElementType(FI->getType());
4742
4743    // -- a non-static data member of reference type
4744    if (FieldType->isReferenceType())
4745      return true;
4746
4747    // -- a non-static data member of const non-class type (or array thereof)
4748    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4749      return true;
4750
4751    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4752
4753    if (FieldRecord) {
4754      // This is an anonymous union
4755      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4756        // Anonymous unions inside unions do not variant members create
4757        if (!Union) {
4758          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4759                                             UE = FieldRecord->field_end();
4760               UI != UE; ++UI) {
4761            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4762            CXXRecordDecl *UnionFieldRecord =
4763              UnionFieldType->getAsCXXRecordDecl();
4764
4765            // -- a variant member with a non-trivial [move] assignment operator
4766            //    and X is a union-like class
4767            if (UnionFieldRecord &&
4768                !UnionFieldRecord->hasTrivialMoveAssignment())
4769              return true;
4770          }
4771        }
4772
4773        // Don't try to initalize an anonymous union
4774        continue;
4775      // -- a variant member with a non-trivial [move] assignment operator
4776      //    and X is a union-like class
4777      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4778          return true;
4779      }
4780
4781      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4782      if (!MoveOper || MoveOper->isDeleted())
4783        return true;
4784      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4785        return true;
4786
4787      // -- for the move assignment operator, a [non-static data member] with a
4788      //    type that does not have a move assignment operator and is not
4789      //    trivially copyable.
4790      if (!MoveOper->isMoveAssignmentOperator() &&
4791          !FieldRecord->isTriviallyCopyable())
4792        return true;
4793    }
4794  }
4795
4796  return false;
4797}
4798
4799bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4800  CXXRecordDecl *RD = DD->getParent();
4801  assert(!RD->isDependentType() && "do deletion after instantiation");
4802  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4803    return false;
4804
4805  SourceLocation Loc = DD->getLocation();
4806
4807  // Do access control from the destructor
4808  ContextRAII CtorContext(*this, DD);
4809
4810  bool Union = RD->isUnion();
4811
4812  // We do this because we should never actually use an anonymous
4813  // union's destructor.
4814  if (Union && RD->isAnonymousStructOrUnion())
4815    return false;
4816
4817  // C++0x [class.dtor]p5
4818  //    A defaulted destructor for a class X is defined as deleted if:
4819  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4820                                          BE = RD->bases_end();
4821       BI != BE; ++BI) {
4822    // We'll handle this one later
4823    if (BI->isVirtual())
4824      continue;
4825
4826    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4827    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4828    assert(BaseDtor && "base has no destructor");
4829
4830    // -- any direct or virtual base class has a deleted destructor or
4831    //    a destructor that is inaccessible from the defaulted destructor
4832    if (BaseDtor->isDeleted())
4833      return true;
4834    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4835        AR_accessible)
4836      return true;
4837  }
4838
4839  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4840                                          BE = RD->vbases_end();
4841       BI != BE; ++BI) {
4842    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4843    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4844    assert(BaseDtor && "base has no destructor");
4845
4846    // -- any direct or virtual base class has a deleted destructor or
4847    //    a destructor that is inaccessible from the defaulted destructor
4848    if (BaseDtor->isDeleted())
4849      return true;
4850    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4851        AR_accessible)
4852      return true;
4853  }
4854
4855  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4856                                     FE = RD->field_end();
4857       FI != FE; ++FI) {
4858    QualType FieldType = Context.getBaseElementType(FI->getType());
4859    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4860    if (FieldRecord) {
4861      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4862         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4863                                            UE = FieldRecord->field_end();
4864              UI != UE; ++UI) {
4865           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4866           CXXRecordDecl *UnionFieldRecord =
4867             UnionFieldType->getAsCXXRecordDecl();
4868
4869           // -- X is a union-like class that has a variant member with a non-
4870           //    trivial destructor.
4871           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4872             return true;
4873         }
4874      // Technically we are supposed to do this next check unconditionally.
4875      // But that makes absolutely no sense.
4876      } else {
4877        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4878
4879        // -- any of the non-static data members has class type M (or array
4880        //    thereof) and M has a deleted destructor or a destructor that is
4881        //    inaccessible from the defaulted destructor
4882        if (FieldDtor->isDeleted())
4883          return true;
4884        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4885          AR_accessible)
4886        return true;
4887
4888        // -- X is a union-like class that has a variant member with a non-
4889        //    trivial destructor.
4890        if (Union && !FieldDtor->isTrivial())
4891          return true;
4892      }
4893    }
4894  }
4895
4896  if (DD->isVirtual()) {
4897    FunctionDecl *OperatorDelete = 0;
4898    DeclarationName Name =
4899      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4900    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4901          false))
4902      return true;
4903  }
4904
4905
4906  return false;
4907}
4908
4909/// \brief Data used with FindHiddenVirtualMethod
4910namespace {
4911  struct FindHiddenVirtualMethodData {
4912    Sema *S;
4913    CXXMethodDecl *Method;
4914    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4915    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4916  };
4917}
4918
4919/// \brief Member lookup function that determines whether a given C++
4920/// method overloads virtual methods in a base class without overriding any,
4921/// to be used with CXXRecordDecl::lookupInBases().
4922static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4923                                    CXXBasePath &Path,
4924                                    void *UserData) {
4925  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4926
4927  FindHiddenVirtualMethodData &Data
4928    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4929
4930  DeclarationName Name = Data.Method->getDeclName();
4931  assert(Name.getNameKind() == DeclarationName::Identifier);
4932
4933  bool foundSameNameMethod = false;
4934  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4935  for (Path.Decls = BaseRecord->lookup(Name);
4936       Path.Decls.first != Path.Decls.second;
4937       ++Path.Decls.first) {
4938    NamedDecl *D = *Path.Decls.first;
4939    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4940      MD = MD->getCanonicalDecl();
4941      foundSameNameMethod = true;
4942      // Interested only in hidden virtual methods.
4943      if (!MD->isVirtual())
4944        continue;
4945      // If the method we are checking overrides a method from its base
4946      // don't warn about the other overloaded methods.
4947      if (!Data.S->IsOverload(Data.Method, MD, false))
4948        return true;
4949      // Collect the overload only if its hidden.
4950      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4951        overloadedMethods.push_back(MD);
4952    }
4953  }
4954
4955  if (foundSameNameMethod)
4956    Data.OverloadedMethods.append(overloadedMethods.begin(),
4957                                   overloadedMethods.end());
4958  return foundSameNameMethod;
4959}
4960
4961/// \brief See if a method overloads virtual methods in a base class without
4962/// overriding any.
4963void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4964  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4965                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4966    return;
4967  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4968    return;
4969
4970  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4971                     /*bool RecordPaths=*/false,
4972                     /*bool DetectVirtual=*/false);
4973  FindHiddenVirtualMethodData Data;
4974  Data.Method = MD;
4975  Data.S = this;
4976
4977  // Keep the base methods that were overriden or introduced in the subclass
4978  // by 'using' in a set. A base method not in this set is hidden.
4979  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4980       res.first != res.second; ++res.first) {
4981    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4982      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4983                                          E = MD->end_overridden_methods();
4984           I != E; ++I)
4985        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4986    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4987      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4988        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4989  }
4990
4991  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4992      !Data.OverloadedMethods.empty()) {
4993    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4994      << MD << (Data.OverloadedMethods.size() > 1);
4995
4996    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4997      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4998      Diag(overloadedMD->getLocation(),
4999           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5000    }
5001  }
5002}
5003
5004void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5005                                             Decl *TagDecl,
5006                                             SourceLocation LBrac,
5007                                             SourceLocation RBrac,
5008                                             AttributeList *AttrList) {
5009  if (!TagDecl)
5010    return;
5011
5012  AdjustDeclIfTemplate(TagDecl);
5013
5014  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5015              // strict aliasing violation!
5016              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5017              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5018
5019  CheckCompletedCXXClass(
5020                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5021}
5022
5023/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5024/// special functions, such as the default constructor, copy
5025/// constructor, or destructor, to the given C++ class (C++
5026/// [special]p1).  This routine can only be executed just before the
5027/// definition of the class is complete.
5028void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5029  if (!ClassDecl->hasUserDeclaredConstructor())
5030    ++ASTContext::NumImplicitDefaultConstructors;
5031
5032  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5033    ++ASTContext::NumImplicitCopyConstructors;
5034
5035  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5036    ++ASTContext::NumImplicitMoveConstructors;
5037
5038  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5039    ++ASTContext::NumImplicitCopyAssignmentOperators;
5040
5041    // If we have a dynamic class, then the copy assignment operator may be
5042    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5043    // it shows up in the right place in the vtable and that we diagnose
5044    // problems with the implicit exception specification.
5045    if (ClassDecl->isDynamicClass())
5046      DeclareImplicitCopyAssignment(ClassDecl);
5047  }
5048
5049  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5050    ++ASTContext::NumImplicitMoveAssignmentOperators;
5051
5052    // Likewise for the move assignment operator.
5053    if (ClassDecl->isDynamicClass())
5054      DeclareImplicitMoveAssignment(ClassDecl);
5055  }
5056
5057  if (!ClassDecl->hasUserDeclaredDestructor()) {
5058    ++ASTContext::NumImplicitDestructors;
5059
5060    // If we have a dynamic class, then the destructor may be virtual, so we
5061    // have to declare the destructor immediately. This ensures that, e.g., it
5062    // shows up in the right place in the vtable and that we diagnose problems
5063    // with the implicit exception specification.
5064    if (ClassDecl->isDynamicClass())
5065      DeclareImplicitDestructor(ClassDecl);
5066  }
5067}
5068
5069void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5070  if (!D)
5071    return;
5072
5073  int NumParamList = D->getNumTemplateParameterLists();
5074  for (int i = 0; i < NumParamList; i++) {
5075    TemplateParameterList* Params = D->getTemplateParameterList(i);
5076    for (TemplateParameterList::iterator Param = Params->begin(),
5077                                      ParamEnd = Params->end();
5078          Param != ParamEnd; ++Param) {
5079      NamedDecl *Named = cast<NamedDecl>(*Param);
5080      if (Named->getDeclName()) {
5081        S->AddDecl(Named);
5082        IdResolver.AddDecl(Named);
5083      }
5084    }
5085  }
5086}
5087
5088void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5089  if (!D)
5090    return;
5091
5092  TemplateParameterList *Params = 0;
5093  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5094    Params = Template->getTemplateParameters();
5095  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5096           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5097    Params = PartialSpec->getTemplateParameters();
5098  else
5099    return;
5100
5101  for (TemplateParameterList::iterator Param = Params->begin(),
5102                                    ParamEnd = Params->end();
5103       Param != ParamEnd; ++Param) {
5104    NamedDecl *Named = cast<NamedDecl>(*Param);
5105    if (Named->getDeclName()) {
5106      S->AddDecl(Named);
5107      IdResolver.AddDecl(Named);
5108    }
5109  }
5110}
5111
5112void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5113  if (!RecordD) return;
5114  AdjustDeclIfTemplate(RecordD);
5115  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5116  PushDeclContext(S, Record);
5117}
5118
5119void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5120  if (!RecordD) return;
5121  PopDeclContext();
5122}
5123
5124/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5125/// parsing a top-level (non-nested) C++ class, and we are now
5126/// parsing those parts of the given Method declaration that could
5127/// not be parsed earlier (C++ [class.mem]p2), such as default
5128/// arguments. This action should enter the scope of the given
5129/// Method declaration as if we had just parsed the qualified method
5130/// name. However, it should not bring the parameters into scope;
5131/// that will be performed by ActOnDelayedCXXMethodParameter.
5132void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5133}
5134
5135/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5136/// C++ method declaration. We're (re-)introducing the given
5137/// function parameter into scope for use in parsing later parts of
5138/// the method declaration. For example, we could see an
5139/// ActOnParamDefaultArgument event for this parameter.
5140void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5141  if (!ParamD)
5142    return;
5143
5144  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5145
5146  // If this parameter has an unparsed default argument, clear it out
5147  // to make way for the parsed default argument.
5148  if (Param->hasUnparsedDefaultArg())
5149    Param->setDefaultArg(0);
5150
5151  S->AddDecl(Param);
5152  if (Param->getDeclName())
5153    IdResolver.AddDecl(Param);
5154}
5155
5156/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5157/// processing the delayed method declaration for Method. The method
5158/// declaration is now considered finished. There may be a separate
5159/// ActOnStartOfFunctionDef action later (not necessarily
5160/// immediately!) for this method, if it was also defined inside the
5161/// class body.
5162void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5163  if (!MethodD)
5164    return;
5165
5166  AdjustDeclIfTemplate(MethodD);
5167
5168  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5169
5170  // Now that we have our default arguments, check the constructor
5171  // again. It could produce additional diagnostics or affect whether
5172  // the class has implicitly-declared destructors, among other
5173  // things.
5174  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5175    CheckConstructor(Constructor);
5176
5177  // Check the default arguments, which we may have added.
5178  if (!Method->isInvalidDecl())
5179    CheckCXXDefaultArguments(Method);
5180}
5181
5182/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5183/// the well-formedness of the constructor declarator @p D with type @p
5184/// R. If there are any errors in the declarator, this routine will
5185/// emit diagnostics and set the invalid bit to true.  In any case, the type
5186/// will be updated to reflect a well-formed type for the constructor and
5187/// returned.
5188QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5189                                          StorageClass &SC) {
5190  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5191
5192  // C++ [class.ctor]p3:
5193  //   A constructor shall not be virtual (10.3) or static (9.4). A
5194  //   constructor can be invoked for a const, volatile or const
5195  //   volatile object. A constructor shall not be declared const,
5196  //   volatile, or const volatile (9.3.2).
5197  if (isVirtual) {
5198    if (!D.isInvalidType())
5199      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5200        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5201        << SourceRange(D.getIdentifierLoc());
5202    D.setInvalidType();
5203  }
5204  if (SC == SC_Static) {
5205    if (!D.isInvalidType())
5206      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5207        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5208        << SourceRange(D.getIdentifierLoc());
5209    D.setInvalidType();
5210    SC = SC_None;
5211  }
5212
5213  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5214  if (FTI.TypeQuals != 0) {
5215    if (FTI.TypeQuals & Qualifiers::Const)
5216      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5217        << "const" << SourceRange(D.getIdentifierLoc());
5218    if (FTI.TypeQuals & Qualifiers::Volatile)
5219      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5220        << "volatile" << SourceRange(D.getIdentifierLoc());
5221    if (FTI.TypeQuals & Qualifiers::Restrict)
5222      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5223        << "restrict" << SourceRange(D.getIdentifierLoc());
5224    D.setInvalidType();
5225  }
5226
5227  // C++0x [class.ctor]p4:
5228  //   A constructor shall not be declared with a ref-qualifier.
5229  if (FTI.hasRefQualifier()) {
5230    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5231      << FTI.RefQualifierIsLValueRef
5232      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5233    D.setInvalidType();
5234  }
5235
5236  // Rebuild the function type "R" without any type qualifiers (in
5237  // case any of the errors above fired) and with "void" as the
5238  // return type, since constructors don't have return types.
5239  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5240  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5241    return R;
5242
5243  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5244  EPI.TypeQuals = 0;
5245  EPI.RefQualifier = RQ_None;
5246
5247  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5248                                 Proto->getNumArgs(), EPI);
5249}
5250
5251/// CheckConstructor - Checks a fully-formed constructor for
5252/// well-formedness, issuing any diagnostics required. Returns true if
5253/// the constructor declarator is invalid.
5254void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5255  CXXRecordDecl *ClassDecl
5256    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5257  if (!ClassDecl)
5258    return Constructor->setInvalidDecl();
5259
5260  // C++ [class.copy]p3:
5261  //   A declaration of a constructor for a class X is ill-formed if
5262  //   its first parameter is of type (optionally cv-qualified) X and
5263  //   either there are no other parameters or else all other
5264  //   parameters have default arguments.
5265  if (!Constructor->isInvalidDecl() &&
5266      ((Constructor->getNumParams() == 1) ||
5267       (Constructor->getNumParams() > 1 &&
5268        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5269      Constructor->getTemplateSpecializationKind()
5270                                              != TSK_ImplicitInstantiation) {
5271    QualType ParamType = Constructor->getParamDecl(0)->getType();
5272    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5273    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5274      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5275      const char *ConstRef
5276        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5277                                                        : " const &";
5278      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5279        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5280
5281      // FIXME: Rather that making the constructor invalid, we should endeavor
5282      // to fix the type.
5283      Constructor->setInvalidDecl();
5284    }
5285  }
5286}
5287
5288/// CheckDestructor - Checks a fully-formed destructor definition for
5289/// well-formedness, issuing any diagnostics required.  Returns true
5290/// on error.
5291bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5292  CXXRecordDecl *RD = Destructor->getParent();
5293
5294  if (Destructor->isVirtual()) {
5295    SourceLocation Loc;
5296
5297    if (!Destructor->isImplicit())
5298      Loc = Destructor->getLocation();
5299    else
5300      Loc = RD->getLocation();
5301
5302    // If we have a virtual destructor, look up the deallocation function
5303    FunctionDecl *OperatorDelete = 0;
5304    DeclarationName Name =
5305    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5306    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5307      return true;
5308
5309    MarkDeclarationReferenced(Loc, OperatorDelete);
5310
5311    Destructor->setOperatorDelete(OperatorDelete);
5312  }
5313
5314  return false;
5315}
5316
5317static inline bool
5318FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5319  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5320          FTI.ArgInfo[0].Param &&
5321          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5322}
5323
5324/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5325/// the well-formednes of the destructor declarator @p D with type @p
5326/// R. If there are any errors in the declarator, this routine will
5327/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5328/// will be updated to reflect a well-formed type for the destructor and
5329/// returned.
5330QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5331                                         StorageClass& SC) {
5332  // C++ [class.dtor]p1:
5333  //   [...] A typedef-name that names a class is a class-name
5334  //   (7.1.3); however, a typedef-name that names a class shall not
5335  //   be used as the identifier in the declarator for a destructor
5336  //   declaration.
5337  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5338  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5339    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5340      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5341  else if (const TemplateSpecializationType *TST =
5342             DeclaratorType->getAs<TemplateSpecializationType>())
5343    if (TST->isTypeAlias())
5344      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5345        << DeclaratorType << 1;
5346
5347  // C++ [class.dtor]p2:
5348  //   A destructor is used to destroy objects of its class type. A
5349  //   destructor takes no parameters, and no return type can be
5350  //   specified for it (not even void). The address of a destructor
5351  //   shall not be taken. A destructor shall not be static. A
5352  //   destructor can be invoked for a const, volatile or const
5353  //   volatile object. A destructor shall not be declared const,
5354  //   volatile or const volatile (9.3.2).
5355  if (SC == SC_Static) {
5356    if (!D.isInvalidType())
5357      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5358        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5359        << SourceRange(D.getIdentifierLoc())
5360        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5361
5362    SC = SC_None;
5363  }
5364  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5365    // Destructors don't have return types, but the parser will
5366    // happily parse something like:
5367    //
5368    //   class X {
5369    //     float ~X();
5370    //   };
5371    //
5372    // The return type will be eliminated later.
5373    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5374      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5375      << SourceRange(D.getIdentifierLoc());
5376  }
5377
5378  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5379  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5380    if (FTI.TypeQuals & Qualifiers::Const)
5381      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5382        << "const" << SourceRange(D.getIdentifierLoc());
5383    if (FTI.TypeQuals & Qualifiers::Volatile)
5384      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5385        << "volatile" << SourceRange(D.getIdentifierLoc());
5386    if (FTI.TypeQuals & Qualifiers::Restrict)
5387      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5388        << "restrict" << SourceRange(D.getIdentifierLoc());
5389    D.setInvalidType();
5390  }
5391
5392  // C++0x [class.dtor]p2:
5393  //   A destructor shall not be declared with a ref-qualifier.
5394  if (FTI.hasRefQualifier()) {
5395    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5396      << FTI.RefQualifierIsLValueRef
5397      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5398    D.setInvalidType();
5399  }
5400
5401  // Make sure we don't have any parameters.
5402  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5403    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5404
5405    // Delete the parameters.
5406    FTI.freeArgs();
5407    D.setInvalidType();
5408  }
5409
5410  // Make sure the destructor isn't variadic.
5411  if (FTI.isVariadic) {
5412    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5413    D.setInvalidType();
5414  }
5415
5416  // Rebuild the function type "R" without any type qualifiers or
5417  // parameters (in case any of the errors above fired) and with
5418  // "void" as the return type, since destructors don't have return
5419  // types.
5420  if (!D.isInvalidType())
5421    return R;
5422
5423  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5424  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5425  EPI.Variadic = false;
5426  EPI.TypeQuals = 0;
5427  EPI.RefQualifier = RQ_None;
5428  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5429}
5430
5431/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5432/// well-formednes of the conversion function declarator @p D with
5433/// type @p R. If there are any errors in the declarator, this routine
5434/// will emit diagnostics and return true. Otherwise, it will return
5435/// false. Either way, the type @p R will be updated to reflect a
5436/// well-formed type for the conversion operator.
5437void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5438                                     StorageClass& SC) {
5439  // C++ [class.conv.fct]p1:
5440  //   Neither parameter types nor return type can be specified. The
5441  //   type of a conversion function (8.3.5) is "function taking no
5442  //   parameter returning conversion-type-id."
5443  if (SC == SC_Static) {
5444    if (!D.isInvalidType())
5445      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5446        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5447        << SourceRange(D.getIdentifierLoc());
5448    D.setInvalidType();
5449    SC = SC_None;
5450  }
5451
5452  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5453
5454  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5455    // Conversion functions don't have return types, but the parser will
5456    // happily parse something like:
5457    //
5458    //   class X {
5459    //     float operator bool();
5460    //   };
5461    //
5462    // The return type will be changed later anyway.
5463    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5464      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5465      << SourceRange(D.getIdentifierLoc());
5466    D.setInvalidType();
5467  }
5468
5469  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5470
5471  // Make sure we don't have any parameters.
5472  if (Proto->getNumArgs() > 0) {
5473    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5474
5475    // Delete the parameters.
5476    D.getFunctionTypeInfo().freeArgs();
5477    D.setInvalidType();
5478  } else if (Proto->isVariadic()) {
5479    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5480    D.setInvalidType();
5481  }
5482
5483  // Diagnose "&operator bool()" and other such nonsense.  This
5484  // is actually a gcc extension which we don't support.
5485  if (Proto->getResultType() != ConvType) {
5486    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5487      << Proto->getResultType();
5488    D.setInvalidType();
5489    ConvType = Proto->getResultType();
5490  }
5491
5492  // C++ [class.conv.fct]p4:
5493  //   The conversion-type-id shall not represent a function type nor
5494  //   an array type.
5495  if (ConvType->isArrayType()) {
5496    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5497    ConvType = Context.getPointerType(ConvType);
5498    D.setInvalidType();
5499  } else if (ConvType->isFunctionType()) {
5500    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5501    ConvType = Context.getPointerType(ConvType);
5502    D.setInvalidType();
5503  }
5504
5505  // Rebuild the function type "R" without any parameters (in case any
5506  // of the errors above fired) and with the conversion type as the
5507  // return type.
5508  if (D.isInvalidType())
5509    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5510
5511  // C++0x explicit conversion operators.
5512  if (D.getDeclSpec().isExplicitSpecified())
5513    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5514         getLangOptions().CPlusPlus0x ?
5515           diag::warn_cxx98_compat_explicit_conversion_functions :
5516           diag::ext_explicit_conversion_functions)
5517      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5518}
5519
5520/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5521/// the declaration of the given C++ conversion function. This routine
5522/// is responsible for recording the conversion function in the C++
5523/// class, if possible.
5524Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5525  assert(Conversion && "Expected to receive a conversion function declaration");
5526
5527  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5528
5529  // Make sure we aren't redeclaring the conversion function.
5530  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5531
5532  // C++ [class.conv.fct]p1:
5533  //   [...] A conversion function is never used to convert a
5534  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5535  //   same object type (or a reference to it), to a (possibly
5536  //   cv-qualified) base class of that type (or a reference to it),
5537  //   or to (possibly cv-qualified) void.
5538  // FIXME: Suppress this warning if the conversion function ends up being a
5539  // virtual function that overrides a virtual function in a base class.
5540  QualType ClassType
5541    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5542  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5543    ConvType = ConvTypeRef->getPointeeType();
5544  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5545      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5546    /* Suppress diagnostics for instantiations. */;
5547  else if (ConvType->isRecordType()) {
5548    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5549    if (ConvType == ClassType)
5550      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5551        << ClassType;
5552    else if (IsDerivedFrom(ClassType, ConvType))
5553      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5554        <<  ClassType << ConvType;
5555  } else if (ConvType->isVoidType()) {
5556    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5557      << ClassType << ConvType;
5558  }
5559
5560  if (FunctionTemplateDecl *ConversionTemplate
5561                                = Conversion->getDescribedFunctionTemplate())
5562    return ConversionTemplate;
5563
5564  return Conversion;
5565}
5566
5567//===----------------------------------------------------------------------===//
5568// Namespace Handling
5569//===----------------------------------------------------------------------===//
5570
5571
5572
5573/// ActOnStartNamespaceDef - This is called at the start of a namespace
5574/// definition.
5575Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5576                                   SourceLocation InlineLoc,
5577                                   SourceLocation NamespaceLoc,
5578                                   SourceLocation IdentLoc,
5579                                   IdentifierInfo *II,
5580                                   SourceLocation LBrace,
5581                                   AttributeList *AttrList) {
5582  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5583  // For anonymous namespace, take the location of the left brace.
5584  SourceLocation Loc = II ? IdentLoc : LBrace;
5585  bool IsInline = InlineLoc.isValid();
5586  bool IsInvalid = false;
5587  bool IsStd = false;
5588  bool AddToKnown = false;
5589  Scope *DeclRegionScope = NamespcScope->getParent();
5590
5591  NamespaceDecl *PrevNS = 0;
5592  if (II) {
5593    // C++ [namespace.def]p2:
5594    //   The identifier in an original-namespace-definition shall not
5595    //   have been previously defined in the declarative region in
5596    //   which the original-namespace-definition appears. The
5597    //   identifier in an original-namespace-definition is the name of
5598    //   the namespace. Subsequently in that declarative region, it is
5599    //   treated as an original-namespace-name.
5600    //
5601    // Since namespace names are unique in their scope, and we don't
5602    // look through using directives, just look for any ordinary names.
5603
5604    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5605    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5606    Decl::IDNS_Namespace;
5607    NamedDecl *PrevDecl = 0;
5608    for (DeclContext::lookup_result R
5609         = CurContext->getRedeclContext()->lookup(II);
5610         R.first != R.second; ++R.first) {
5611      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5612        PrevDecl = *R.first;
5613        break;
5614      }
5615    }
5616
5617    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5618
5619    if (PrevNS) {
5620      // This is an extended namespace definition.
5621      if (IsInline != PrevNS->isInline()) {
5622        // inline-ness must match
5623        if (PrevNS->isInline()) {
5624          // The user probably just forgot the 'inline', so suggest that it
5625          // be added back.
5626          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5627            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5628        } else {
5629          Diag(Loc, diag::err_inline_namespace_mismatch)
5630            << IsInline;
5631        }
5632        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5633
5634        IsInline = PrevNS->isInline();
5635      }
5636    } else if (PrevDecl) {
5637      // This is an invalid name redefinition.
5638      Diag(Loc, diag::err_redefinition_different_kind)
5639        << II;
5640      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5641      IsInvalid = true;
5642      // Continue on to push Namespc as current DeclContext and return it.
5643    } else if (II->isStr("std") &&
5644               CurContext->getRedeclContext()->isTranslationUnit()) {
5645      // This is the first "real" definition of the namespace "std", so update
5646      // our cache of the "std" namespace to point at this definition.
5647      PrevNS = getStdNamespace();
5648      IsStd = true;
5649      AddToKnown = !IsInline;
5650    } else {
5651      // We've seen this namespace for the first time.
5652      AddToKnown = !IsInline;
5653    }
5654  } else {
5655    // Anonymous namespaces.
5656
5657    // Determine whether the parent already has an anonymous namespace.
5658    DeclContext *Parent = CurContext->getRedeclContext();
5659    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5660      PrevNS = TU->getAnonymousNamespace();
5661    } else {
5662      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5663      PrevNS = ND->getAnonymousNamespace();
5664    }
5665
5666    if (PrevNS && IsInline != PrevNS->isInline()) {
5667      // inline-ness must match
5668      Diag(Loc, diag::err_inline_namespace_mismatch)
5669        << IsInline;
5670      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5671
5672      // Recover by ignoring the new namespace's inline status.
5673      IsInline = PrevNS->isInline();
5674    }
5675  }
5676
5677  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5678                                                 StartLoc, Loc, II, PrevNS);
5679  if (IsInvalid)
5680    Namespc->setInvalidDecl();
5681
5682  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5683
5684  // FIXME: Should we be merging attributes?
5685  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5686    PushNamespaceVisibilityAttr(Attr);
5687
5688  if (IsStd)
5689    StdNamespace = Namespc;
5690  if (AddToKnown)
5691    KnownNamespaces[Namespc] = false;
5692
5693  if (II) {
5694    PushOnScopeChains(Namespc, DeclRegionScope);
5695  } else {
5696    // Link the anonymous namespace into its parent.
5697    DeclContext *Parent = CurContext->getRedeclContext();
5698    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5699      TU->setAnonymousNamespace(Namespc);
5700    } else {
5701      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5702    }
5703
5704    CurContext->addDecl(Namespc);
5705
5706    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5707    //   behaves as if it were replaced by
5708    //     namespace unique { /* empty body */ }
5709    //     using namespace unique;
5710    //     namespace unique { namespace-body }
5711    //   where all occurrences of 'unique' in a translation unit are
5712    //   replaced by the same identifier and this identifier differs
5713    //   from all other identifiers in the entire program.
5714
5715    // We just create the namespace with an empty name and then add an
5716    // implicit using declaration, just like the standard suggests.
5717    //
5718    // CodeGen enforces the "universally unique" aspect by giving all
5719    // declarations semantically contained within an anonymous
5720    // namespace internal linkage.
5721
5722    if (!PrevNS) {
5723      UsingDirectiveDecl* UD
5724        = UsingDirectiveDecl::Create(Context, CurContext,
5725                                     /* 'using' */ LBrace,
5726                                     /* 'namespace' */ SourceLocation(),
5727                                     /* qualifier */ NestedNameSpecifierLoc(),
5728                                     /* identifier */ SourceLocation(),
5729                                     Namespc,
5730                                     /* Ancestor */ CurContext);
5731      UD->setImplicit();
5732      CurContext->addDecl(UD);
5733    }
5734  }
5735
5736  // Although we could have an invalid decl (i.e. the namespace name is a
5737  // redefinition), push it as current DeclContext and try to continue parsing.
5738  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5739  // for the namespace has the declarations that showed up in that particular
5740  // namespace definition.
5741  PushDeclContext(NamespcScope, Namespc);
5742  return Namespc;
5743}
5744
5745/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5746/// is a namespace alias, returns the namespace it points to.
5747static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5748  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5749    return AD->getNamespace();
5750  return dyn_cast_or_null<NamespaceDecl>(D);
5751}
5752
5753/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5754/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5755void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5756  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5757  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5758  Namespc->setRBraceLoc(RBrace);
5759  PopDeclContext();
5760  if (Namespc->hasAttr<VisibilityAttr>())
5761    PopPragmaVisibility();
5762}
5763
5764CXXRecordDecl *Sema::getStdBadAlloc() const {
5765  return cast_or_null<CXXRecordDecl>(
5766                                  StdBadAlloc.get(Context.getExternalSource()));
5767}
5768
5769NamespaceDecl *Sema::getStdNamespace() const {
5770  return cast_or_null<NamespaceDecl>(
5771                                 StdNamespace.get(Context.getExternalSource()));
5772}
5773
5774/// \brief Retrieve the special "std" namespace, which may require us to
5775/// implicitly define the namespace.
5776NamespaceDecl *Sema::getOrCreateStdNamespace() {
5777  if (!StdNamespace) {
5778    // The "std" namespace has not yet been defined, so build one implicitly.
5779    StdNamespace = NamespaceDecl::Create(Context,
5780                                         Context.getTranslationUnitDecl(),
5781                                         /*Inline=*/false,
5782                                         SourceLocation(), SourceLocation(),
5783                                         &PP.getIdentifierTable().get("std"),
5784                                         /*PrevDecl=*/0);
5785    getStdNamespace()->setImplicit(true);
5786  }
5787
5788  return getStdNamespace();
5789}
5790
5791bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5792  assert(getLangOptions().CPlusPlus &&
5793         "Looking for std::initializer_list outside of C++.");
5794
5795  // We're looking for implicit instantiations of
5796  // template <typename E> class std::initializer_list.
5797
5798  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5799    return false;
5800
5801  ClassTemplateDecl *Template = 0;
5802  const TemplateArgument *Arguments = 0;
5803
5804  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5805
5806    ClassTemplateSpecializationDecl *Specialization =
5807        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5808    if (!Specialization)
5809      return false;
5810
5811    if (Specialization->getSpecializationKind() != TSK_ImplicitInstantiation)
5812      return false;
5813
5814    Template = Specialization->getSpecializedTemplate();
5815    Arguments = Specialization->getTemplateArgs().data();
5816  } else if (const TemplateSpecializationType *TST =
5817                 Ty->getAs<TemplateSpecializationType>()) {
5818    Template = dyn_cast_or_null<ClassTemplateDecl>(
5819        TST->getTemplateName().getAsTemplateDecl());
5820    Arguments = TST->getArgs();
5821  }
5822  if (!Template)
5823    return false;
5824
5825  if (!StdInitializerList) {
5826    // Haven't recognized std::initializer_list yet, maybe this is it.
5827    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5828    if (TemplateClass->getIdentifier() !=
5829            &PP.getIdentifierTable().get("initializer_list") ||
5830        !getStdNamespace()->InEnclosingNamespaceSetOf(
5831            TemplateClass->getDeclContext()))
5832      return false;
5833    // This is a template called std::initializer_list, but is it the right
5834    // template?
5835    TemplateParameterList *Params = Template->getTemplateParameters();
5836    if (Params->getMinRequiredArguments() != 1)
5837      return false;
5838    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5839      return false;
5840
5841    // It's the right template.
5842    StdInitializerList = Template;
5843  }
5844
5845  if (Template != StdInitializerList)
5846    return false;
5847
5848  // This is an instance of std::initializer_list. Find the argument type.
5849  if (Element)
5850    *Element = Arguments[0].getAsType();
5851  return true;
5852}
5853
5854static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5855  NamespaceDecl *Std = S.getStdNamespace();
5856  if (!Std) {
5857    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5858    return 0;
5859  }
5860
5861  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5862                      Loc, Sema::LookupOrdinaryName);
5863  if (!S.LookupQualifiedName(Result, Std)) {
5864    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5865    return 0;
5866  }
5867  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5868  if (!Template) {
5869    Result.suppressDiagnostics();
5870    // We found something weird. Complain about the first thing we found.
5871    NamedDecl *Found = *Result.begin();
5872    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5873    return 0;
5874  }
5875
5876  // We found some template called std::initializer_list. Now verify that it's
5877  // correct.
5878  TemplateParameterList *Params = Template->getTemplateParameters();
5879  if (Params->getMinRequiredArguments() != 1 ||
5880      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5881    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5882    return 0;
5883  }
5884
5885  return Template;
5886}
5887
5888QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5889  if (!StdInitializerList) {
5890    StdInitializerList = LookupStdInitializerList(*this, Loc);
5891    if (!StdInitializerList)
5892      return QualType();
5893  }
5894
5895  TemplateArgumentListInfo Args(Loc, Loc);
5896  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5897                                       Context.getTrivialTypeSourceInfo(Element,
5898                                                                        Loc)));
5899  return Context.getCanonicalType(
5900      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5901}
5902
5903bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5904  // C++ [dcl.init.list]p2:
5905  //   A constructor is an initializer-list constructor if its first parameter
5906  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5907  //   std::initializer_list<E> for some type E, and either there are no other
5908  //   parameters or else all other parameters have default arguments.
5909  if (Ctor->getNumParams() < 1 ||
5910      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5911    return false;
5912
5913  QualType ArgType = Ctor->getParamDecl(0)->getType();
5914  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5915    ArgType = RT->getPointeeType().getUnqualifiedType();
5916
5917  return isStdInitializerList(ArgType, 0);
5918}
5919
5920/// \brief Determine whether a using statement is in a context where it will be
5921/// apply in all contexts.
5922static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5923  switch (CurContext->getDeclKind()) {
5924    case Decl::TranslationUnit:
5925      return true;
5926    case Decl::LinkageSpec:
5927      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5928    default:
5929      return false;
5930  }
5931}
5932
5933namespace {
5934
5935// Callback to only accept typo corrections that are namespaces.
5936class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5937 public:
5938  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5939    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5940      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5941    }
5942    return false;
5943  }
5944};
5945
5946}
5947
5948static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5949                                       CXXScopeSpec &SS,
5950                                       SourceLocation IdentLoc,
5951                                       IdentifierInfo *Ident) {
5952  NamespaceValidatorCCC Validator;
5953  R.clear();
5954  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5955                                               R.getLookupKind(), Sc, &SS,
5956                                               &Validator)) {
5957    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5958    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5959    if (DeclContext *DC = S.computeDeclContext(SS, false))
5960      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5961        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5962        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5963    else
5964      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5965        << Ident << CorrectedQuotedStr
5966        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5967
5968    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5969         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5970
5971    Ident = Corrected.getCorrectionAsIdentifierInfo();
5972    R.addDecl(Corrected.getCorrectionDecl());
5973    return true;
5974  }
5975  return false;
5976}
5977
5978Decl *Sema::ActOnUsingDirective(Scope *S,
5979                                          SourceLocation UsingLoc,
5980                                          SourceLocation NamespcLoc,
5981                                          CXXScopeSpec &SS,
5982                                          SourceLocation IdentLoc,
5983                                          IdentifierInfo *NamespcName,
5984                                          AttributeList *AttrList) {
5985  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5986  assert(NamespcName && "Invalid NamespcName.");
5987  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5988
5989  // This can only happen along a recovery path.
5990  while (S->getFlags() & Scope::TemplateParamScope)
5991    S = S->getParent();
5992  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5993
5994  UsingDirectiveDecl *UDir = 0;
5995  NestedNameSpecifier *Qualifier = 0;
5996  if (SS.isSet())
5997    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5998
5999  // Lookup namespace name.
6000  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6001  LookupParsedName(R, S, &SS);
6002  if (R.isAmbiguous())
6003    return 0;
6004
6005  if (R.empty()) {
6006    R.clear();
6007    // Allow "using namespace std;" or "using namespace ::std;" even if
6008    // "std" hasn't been defined yet, for GCC compatibility.
6009    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6010        NamespcName->isStr("std")) {
6011      Diag(IdentLoc, diag::ext_using_undefined_std);
6012      R.addDecl(getOrCreateStdNamespace());
6013      R.resolveKind();
6014    }
6015    // Otherwise, attempt typo correction.
6016    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6017  }
6018
6019  if (!R.empty()) {
6020    NamedDecl *Named = R.getFoundDecl();
6021    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6022        && "expected namespace decl");
6023    // C++ [namespace.udir]p1:
6024    //   A using-directive specifies that the names in the nominated
6025    //   namespace can be used in the scope in which the
6026    //   using-directive appears after the using-directive. During
6027    //   unqualified name lookup (3.4.1), the names appear as if they
6028    //   were declared in the nearest enclosing namespace which
6029    //   contains both the using-directive and the nominated
6030    //   namespace. [Note: in this context, "contains" means "contains
6031    //   directly or indirectly". ]
6032
6033    // Find enclosing context containing both using-directive and
6034    // nominated namespace.
6035    NamespaceDecl *NS = getNamespaceDecl(Named);
6036    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6037    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6038      CommonAncestor = CommonAncestor->getParent();
6039
6040    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6041                                      SS.getWithLocInContext(Context),
6042                                      IdentLoc, Named, CommonAncestor);
6043
6044    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6045        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6046      Diag(IdentLoc, diag::warn_using_directive_in_header);
6047    }
6048
6049    PushUsingDirective(S, UDir);
6050  } else {
6051    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6052  }
6053
6054  // FIXME: We ignore attributes for now.
6055  return UDir;
6056}
6057
6058void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6059  // If scope has associated entity, then using directive is at namespace
6060  // or translation unit scope. We add UsingDirectiveDecls, into
6061  // it's lookup structure.
6062  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6063    Ctx->addDecl(UDir);
6064  else
6065    // Otherwise it is block-sope. using-directives will affect lookup
6066    // only to the end of scope.
6067    S->PushUsingDirective(UDir);
6068}
6069
6070
6071Decl *Sema::ActOnUsingDeclaration(Scope *S,
6072                                  AccessSpecifier AS,
6073                                  bool HasUsingKeyword,
6074                                  SourceLocation UsingLoc,
6075                                  CXXScopeSpec &SS,
6076                                  UnqualifiedId &Name,
6077                                  AttributeList *AttrList,
6078                                  bool IsTypeName,
6079                                  SourceLocation TypenameLoc) {
6080  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6081
6082  switch (Name.getKind()) {
6083  case UnqualifiedId::IK_ImplicitSelfParam:
6084  case UnqualifiedId::IK_Identifier:
6085  case UnqualifiedId::IK_OperatorFunctionId:
6086  case UnqualifiedId::IK_LiteralOperatorId:
6087  case UnqualifiedId::IK_ConversionFunctionId:
6088    break;
6089
6090  case UnqualifiedId::IK_ConstructorName:
6091  case UnqualifiedId::IK_ConstructorTemplateId:
6092    // C++0x inherited constructors.
6093    Diag(Name.getSourceRange().getBegin(),
6094         getLangOptions().CPlusPlus0x ?
6095           diag::warn_cxx98_compat_using_decl_constructor :
6096           diag::err_using_decl_constructor)
6097      << SS.getRange();
6098
6099    if (getLangOptions().CPlusPlus0x) break;
6100
6101    return 0;
6102
6103  case UnqualifiedId::IK_DestructorName:
6104    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6105      << SS.getRange();
6106    return 0;
6107
6108  case UnqualifiedId::IK_TemplateId:
6109    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6110      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6111    return 0;
6112  }
6113
6114  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6115  DeclarationName TargetName = TargetNameInfo.getName();
6116  if (!TargetName)
6117    return 0;
6118
6119  // Warn about using declarations.
6120  // TODO: store that the declaration was written without 'using' and
6121  // talk about access decls instead of using decls in the
6122  // diagnostics.
6123  if (!HasUsingKeyword) {
6124    UsingLoc = Name.getSourceRange().getBegin();
6125
6126    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6127      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6128  }
6129
6130  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6131      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6132    return 0;
6133
6134  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6135                                        TargetNameInfo, AttrList,
6136                                        /* IsInstantiation */ false,
6137                                        IsTypeName, TypenameLoc);
6138  if (UD)
6139    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6140
6141  return UD;
6142}
6143
6144/// \brief Determine whether a using declaration considers the given
6145/// declarations as "equivalent", e.g., if they are redeclarations of
6146/// the same entity or are both typedefs of the same type.
6147static bool
6148IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6149                         bool &SuppressRedeclaration) {
6150  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6151    SuppressRedeclaration = false;
6152    return true;
6153  }
6154
6155  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6156    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6157      SuppressRedeclaration = true;
6158      return Context.hasSameType(TD1->getUnderlyingType(),
6159                                 TD2->getUnderlyingType());
6160    }
6161
6162  return false;
6163}
6164
6165
6166/// Determines whether to create a using shadow decl for a particular
6167/// decl, given the set of decls existing prior to this using lookup.
6168bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6169                                const LookupResult &Previous) {
6170  // Diagnose finding a decl which is not from a base class of the
6171  // current class.  We do this now because there are cases where this
6172  // function will silently decide not to build a shadow decl, which
6173  // will pre-empt further diagnostics.
6174  //
6175  // We don't need to do this in C++0x because we do the check once on
6176  // the qualifier.
6177  //
6178  // FIXME: diagnose the following if we care enough:
6179  //   struct A { int foo; };
6180  //   struct B : A { using A::foo; };
6181  //   template <class T> struct C : A {};
6182  //   template <class T> struct D : C<T> { using B::foo; } // <---
6183  // This is invalid (during instantiation) in C++03 because B::foo
6184  // resolves to the using decl in B, which is not a base class of D<T>.
6185  // We can't diagnose it immediately because C<T> is an unknown
6186  // specialization.  The UsingShadowDecl in D<T> then points directly
6187  // to A::foo, which will look well-formed when we instantiate.
6188  // The right solution is to not collapse the shadow-decl chain.
6189  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6190    DeclContext *OrigDC = Orig->getDeclContext();
6191
6192    // Handle enums and anonymous structs.
6193    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6194    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6195    while (OrigRec->isAnonymousStructOrUnion())
6196      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6197
6198    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6199      if (OrigDC == CurContext) {
6200        Diag(Using->getLocation(),
6201             diag::err_using_decl_nested_name_specifier_is_current_class)
6202          << Using->getQualifierLoc().getSourceRange();
6203        Diag(Orig->getLocation(), diag::note_using_decl_target);
6204        return true;
6205      }
6206
6207      Diag(Using->getQualifierLoc().getBeginLoc(),
6208           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6209        << Using->getQualifier()
6210        << cast<CXXRecordDecl>(CurContext)
6211        << Using->getQualifierLoc().getSourceRange();
6212      Diag(Orig->getLocation(), diag::note_using_decl_target);
6213      return true;
6214    }
6215  }
6216
6217  if (Previous.empty()) return false;
6218
6219  NamedDecl *Target = Orig;
6220  if (isa<UsingShadowDecl>(Target))
6221    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6222
6223  // If the target happens to be one of the previous declarations, we
6224  // don't have a conflict.
6225  //
6226  // FIXME: but we might be increasing its access, in which case we
6227  // should redeclare it.
6228  NamedDecl *NonTag = 0, *Tag = 0;
6229  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6230         I != E; ++I) {
6231    NamedDecl *D = (*I)->getUnderlyingDecl();
6232    bool Result;
6233    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6234      return Result;
6235
6236    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6237  }
6238
6239  if (Target->isFunctionOrFunctionTemplate()) {
6240    FunctionDecl *FD;
6241    if (isa<FunctionTemplateDecl>(Target))
6242      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6243    else
6244      FD = cast<FunctionDecl>(Target);
6245
6246    NamedDecl *OldDecl = 0;
6247    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6248    case Ovl_Overload:
6249      return false;
6250
6251    case Ovl_NonFunction:
6252      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6253      break;
6254
6255    // We found a decl with the exact signature.
6256    case Ovl_Match:
6257      // If we're in a record, we want to hide the target, so we
6258      // return true (without a diagnostic) to tell the caller not to
6259      // build a shadow decl.
6260      if (CurContext->isRecord())
6261        return true;
6262
6263      // If we're not in a record, this is an error.
6264      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6265      break;
6266    }
6267
6268    Diag(Target->getLocation(), diag::note_using_decl_target);
6269    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6270    return true;
6271  }
6272
6273  // Target is not a function.
6274
6275  if (isa<TagDecl>(Target)) {
6276    // No conflict between a tag and a non-tag.
6277    if (!Tag) return false;
6278
6279    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6280    Diag(Target->getLocation(), diag::note_using_decl_target);
6281    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6282    return true;
6283  }
6284
6285  // No conflict between a tag and a non-tag.
6286  if (!NonTag) return false;
6287
6288  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6289  Diag(Target->getLocation(), diag::note_using_decl_target);
6290  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6291  return true;
6292}
6293
6294/// Builds a shadow declaration corresponding to a 'using' declaration.
6295UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6296                                            UsingDecl *UD,
6297                                            NamedDecl *Orig) {
6298
6299  // If we resolved to another shadow declaration, just coalesce them.
6300  NamedDecl *Target = Orig;
6301  if (isa<UsingShadowDecl>(Target)) {
6302    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6303    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6304  }
6305
6306  UsingShadowDecl *Shadow
6307    = UsingShadowDecl::Create(Context, CurContext,
6308                              UD->getLocation(), UD, Target);
6309  UD->addShadowDecl(Shadow);
6310
6311  Shadow->setAccess(UD->getAccess());
6312  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6313    Shadow->setInvalidDecl();
6314
6315  if (S)
6316    PushOnScopeChains(Shadow, S);
6317  else
6318    CurContext->addDecl(Shadow);
6319
6320
6321  return Shadow;
6322}
6323
6324/// Hides a using shadow declaration.  This is required by the current
6325/// using-decl implementation when a resolvable using declaration in a
6326/// class is followed by a declaration which would hide or override
6327/// one or more of the using decl's targets; for example:
6328///
6329///   struct Base { void foo(int); };
6330///   struct Derived : Base {
6331///     using Base::foo;
6332///     void foo(int);
6333///   };
6334///
6335/// The governing language is C++03 [namespace.udecl]p12:
6336///
6337///   When a using-declaration brings names from a base class into a
6338///   derived class scope, member functions in the derived class
6339///   override and/or hide member functions with the same name and
6340///   parameter types in a base class (rather than conflicting).
6341///
6342/// There are two ways to implement this:
6343///   (1) optimistically create shadow decls when they're not hidden
6344///       by existing declarations, or
6345///   (2) don't create any shadow decls (or at least don't make them
6346///       visible) until we've fully parsed/instantiated the class.
6347/// The problem with (1) is that we might have to retroactively remove
6348/// a shadow decl, which requires several O(n) operations because the
6349/// decl structures are (very reasonably) not designed for removal.
6350/// (2) avoids this but is very fiddly and phase-dependent.
6351void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6352  if (Shadow->getDeclName().getNameKind() ==
6353        DeclarationName::CXXConversionFunctionName)
6354    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6355
6356  // Remove it from the DeclContext...
6357  Shadow->getDeclContext()->removeDecl(Shadow);
6358
6359  // ...and the scope, if applicable...
6360  if (S) {
6361    S->RemoveDecl(Shadow);
6362    IdResolver.RemoveDecl(Shadow);
6363  }
6364
6365  // ...and the using decl.
6366  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6367
6368  // TODO: complain somehow if Shadow was used.  It shouldn't
6369  // be possible for this to happen, because...?
6370}
6371
6372/// Builds a using declaration.
6373///
6374/// \param IsInstantiation - Whether this call arises from an
6375///   instantiation of an unresolved using declaration.  We treat
6376///   the lookup differently for these declarations.
6377NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6378                                       SourceLocation UsingLoc,
6379                                       CXXScopeSpec &SS,
6380                                       const DeclarationNameInfo &NameInfo,
6381                                       AttributeList *AttrList,
6382                                       bool IsInstantiation,
6383                                       bool IsTypeName,
6384                                       SourceLocation TypenameLoc) {
6385  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6386  SourceLocation IdentLoc = NameInfo.getLoc();
6387  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6388
6389  // FIXME: We ignore attributes for now.
6390
6391  if (SS.isEmpty()) {
6392    Diag(IdentLoc, diag::err_using_requires_qualname);
6393    return 0;
6394  }
6395
6396  // Do the redeclaration lookup in the current scope.
6397  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6398                        ForRedeclaration);
6399  Previous.setHideTags(false);
6400  if (S) {
6401    LookupName(Previous, S);
6402
6403    // It is really dumb that we have to do this.
6404    LookupResult::Filter F = Previous.makeFilter();
6405    while (F.hasNext()) {
6406      NamedDecl *D = F.next();
6407      if (!isDeclInScope(D, CurContext, S))
6408        F.erase();
6409    }
6410    F.done();
6411  } else {
6412    assert(IsInstantiation && "no scope in non-instantiation");
6413    assert(CurContext->isRecord() && "scope not record in instantiation");
6414    LookupQualifiedName(Previous, CurContext);
6415  }
6416
6417  // Check for invalid redeclarations.
6418  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6419    return 0;
6420
6421  // Check for bad qualifiers.
6422  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6423    return 0;
6424
6425  DeclContext *LookupContext = computeDeclContext(SS);
6426  NamedDecl *D;
6427  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6428  if (!LookupContext) {
6429    if (IsTypeName) {
6430      // FIXME: not all declaration name kinds are legal here
6431      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6432                                              UsingLoc, TypenameLoc,
6433                                              QualifierLoc,
6434                                              IdentLoc, NameInfo.getName());
6435    } else {
6436      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6437                                           QualifierLoc, NameInfo);
6438    }
6439  } else {
6440    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6441                          NameInfo, IsTypeName);
6442  }
6443  D->setAccess(AS);
6444  CurContext->addDecl(D);
6445
6446  if (!LookupContext) return D;
6447  UsingDecl *UD = cast<UsingDecl>(D);
6448
6449  if (RequireCompleteDeclContext(SS, LookupContext)) {
6450    UD->setInvalidDecl();
6451    return UD;
6452  }
6453
6454  // Constructor inheriting using decls get special treatment.
6455  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6456    if (CheckInheritedConstructorUsingDecl(UD))
6457      UD->setInvalidDecl();
6458    return UD;
6459  }
6460
6461  // Otherwise, look up the target name.
6462
6463  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6464
6465  // Unlike most lookups, we don't always want to hide tag
6466  // declarations: tag names are visible through the using declaration
6467  // even if hidden by ordinary names, *except* in a dependent context
6468  // where it's important for the sanity of two-phase lookup.
6469  if (!IsInstantiation)
6470    R.setHideTags(false);
6471
6472  LookupQualifiedName(R, LookupContext);
6473
6474  if (R.empty()) {
6475    Diag(IdentLoc, diag::err_no_member)
6476      << NameInfo.getName() << LookupContext << SS.getRange();
6477    UD->setInvalidDecl();
6478    return UD;
6479  }
6480
6481  if (R.isAmbiguous()) {
6482    UD->setInvalidDecl();
6483    return UD;
6484  }
6485
6486  if (IsTypeName) {
6487    // If we asked for a typename and got a non-type decl, error out.
6488    if (!R.getAsSingle<TypeDecl>()) {
6489      Diag(IdentLoc, diag::err_using_typename_non_type);
6490      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6491        Diag((*I)->getUnderlyingDecl()->getLocation(),
6492             diag::note_using_decl_target);
6493      UD->setInvalidDecl();
6494      return UD;
6495    }
6496  } else {
6497    // If we asked for a non-typename and we got a type, error out,
6498    // but only if this is an instantiation of an unresolved using
6499    // decl.  Otherwise just silently find the type name.
6500    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6501      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6502      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6503      UD->setInvalidDecl();
6504      return UD;
6505    }
6506  }
6507
6508  // C++0x N2914 [namespace.udecl]p6:
6509  // A using-declaration shall not name a namespace.
6510  if (R.getAsSingle<NamespaceDecl>()) {
6511    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6512      << SS.getRange();
6513    UD->setInvalidDecl();
6514    return UD;
6515  }
6516
6517  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6518    if (!CheckUsingShadowDecl(UD, *I, Previous))
6519      BuildUsingShadowDecl(S, UD, *I);
6520  }
6521
6522  return UD;
6523}
6524
6525/// Additional checks for a using declaration referring to a constructor name.
6526bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6527  if (UD->isTypeName()) {
6528    // FIXME: Cannot specify typename when specifying constructor
6529    return true;
6530  }
6531
6532  const Type *SourceType = UD->getQualifier()->getAsType();
6533  assert(SourceType &&
6534         "Using decl naming constructor doesn't have type in scope spec.");
6535  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6536
6537  // Check whether the named type is a direct base class.
6538  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6539  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6540  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6541       BaseIt != BaseE; ++BaseIt) {
6542    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6543    if (CanonicalSourceType == BaseType)
6544      break;
6545  }
6546
6547  if (BaseIt == BaseE) {
6548    // Did not find SourceType in the bases.
6549    Diag(UD->getUsingLocation(),
6550         diag::err_using_decl_constructor_not_in_direct_base)
6551      << UD->getNameInfo().getSourceRange()
6552      << QualType(SourceType, 0) << TargetClass;
6553    return true;
6554  }
6555
6556  BaseIt->setInheritConstructors();
6557
6558  return false;
6559}
6560
6561/// Checks that the given using declaration is not an invalid
6562/// redeclaration.  Note that this is checking only for the using decl
6563/// itself, not for any ill-formedness among the UsingShadowDecls.
6564bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6565                                       bool isTypeName,
6566                                       const CXXScopeSpec &SS,
6567                                       SourceLocation NameLoc,
6568                                       const LookupResult &Prev) {
6569  // C++03 [namespace.udecl]p8:
6570  // C++0x [namespace.udecl]p10:
6571  //   A using-declaration is a declaration and can therefore be used
6572  //   repeatedly where (and only where) multiple declarations are
6573  //   allowed.
6574  //
6575  // That's in non-member contexts.
6576  if (!CurContext->getRedeclContext()->isRecord())
6577    return false;
6578
6579  NestedNameSpecifier *Qual
6580    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6581
6582  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6583    NamedDecl *D = *I;
6584
6585    bool DTypename;
6586    NestedNameSpecifier *DQual;
6587    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6588      DTypename = UD->isTypeName();
6589      DQual = UD->getQualifier();
6590    } else if (UnresolvedUsingValueDecl *UD
6591                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6592      DTypename = false;
6593      DQual = UD->getQualifier();
6594    } else if (UnresolvedUsingTypenameDecl *UD
6595                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6596      DTypename = true;
6597      DQual = UD->getQualifier();
6598    } else continue;
6599
6600    // using decls differ if one says 'typename' and the other doesn't.
6601    // FIXME: non-dependent using decls?
6602    if (isTypeName != DTypename) continue;
6603
6604    // using decls differ if they name different scopes (but note that
6605    // template instantiation can cause this check to trigger when it
6606    // didn't before instantiation).
6607    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6608        Context.getCanonicalNestedNameSpecifier(DQual))
6609      continue;
6610
6611    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6612    Diag(D->getLocation(), diag::note_using_decl) << 1;
6613    return true;
6614  }
6615
6616  return false;
6617}
6618
6619
6620/// Checks that the given nested-name qualifier used in a using decl
6621/// in the current context is appropriately related to the current
6622/// scope.  If an error is found, diagnoses it and returns true.
6623bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6624                                   const CXXScopeSpec &SS,
6625                                   SourceLocation NameLoc) {
6626  DeclContext *NamedContext = computeDeclContext(SS);
6627
6628  if (!CurContext->isRecord()) {
6629    // C++03 [namespace.udecl]p3:
6630    // C++0x [namespace.udecl]p8:
6631    //   A using-declaration for a class member shall be a member-declaration.
6632
6633    // If we weren't able to compute a valid scope, it must be a
6634    // dependent class scope.
6635    if (!NamedContext || NamedContext->isRecord()) {
6636      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6637        << SS.getRange();
6638      return true;
6639    }
6640
6641    // Otherwise, everything is known to be fine.
6642    return false;
6643  }
6644
6645  // The current scope is a record.
6646
6647  // If the named context is dependent, we can't decide much.
6648  if (!NamedContext) {
6649    // FIXME: in C++0x, we can diagnose if we can prove that the
6650    // nested-name-specifier does not refer to a base class, which is
6651    // still possible in some cases.
6652
6653    // Otherwise we have to conservatively report that things might be
6654    // okay.
6655    return false;
6656  }
6657
6658  if (!NamedContext->isRecord()) {
6659    // Ideally this would point at the last name in the specifier,
6660    // but we don't have that level of source info.
6661    Diag(SS.getRange().getBegin(),
6662         diag::err_using_decl_nested_name_specifier_is_not_class)
6663      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6664    return true;
6665  }
6666
6667  if (!NamedContext->isDependentContext() &&
6668      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6669    return true;
6670
6671  if (getLangOptions().CPlusPlus0x) {
6672    // C++0x [namespace.udecl]p3:
6673    //   In a using-declaration used as a member-declaration, the
6674    //   nested-name-specifier shall name a base class of the class
6675    //   being defined.
6676
6677    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6678                                 cast<CXXRecordDecl>(NamedContext))) {
6679      if (CurContext == NamedContext) {
6680        Diag(NameLoc,
6681             diag::err_using_decl_nested_name_specifier_is_current_class)
6682          << SS.getRange();
6683        return true;
6684      }
6685
6686      Diag(SS.getRange().getBegin(),
6687           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6688        << (NestedNameSpecifier*) SS.getScopeRep()
6689        << cast<CXXRecordDecl>(CurContext)
6690        << SS.getRange();
6691      return true;
6692    }
6693
6694    return false;
6695  }
6696
6697  // C++03 [namespace.udecl]p4:
6698  //   A using-declaration used as a member-declaration shall refer
6699  //   to a member of a base class of the class being defined [etc.].
6700
6701  // Salient point: SS doesn't have to name a base class as long as
6702  // lookup only finds members from base classes.  Therefore we can
6703  // diagnose here only if we can prove that that can't happen,
6704  // i.e. if the class hierarchies provably don't intersect.
6705
6706  // TODO: it would be nice if "definitely valid" results were cached
6707  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6708  // need to be repeated.
6709
6710  struct UserData {
6711    llvm::DenseSet<const CXXRecordDecl*> Bases;
6712
6713    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6714      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6715      Data->Bases.insert(Base);
6716      return true;
6717    }
6718
6719    bool hasDependentBases(const CXXRecordDecl *Class) {
6720      return !Class->forallBases(collect, this);
6721    }
6722
6723    /// Returns true if the base is dependent or is one of the
6724    /// accumulated base classes.
6725    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6726      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6727      return !Data->Bases.count(Base);
6728    }
6729
6730    bool mightShareBases(const CXXRecordDecl *Class) {
6731      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6732    }
6733  };
6734
6735  UserData Data;
6736
6737  // Returns false if we find a dependent base.
6738  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6739    return false;
6740
6741  // Returns false if the class has a dependent base or if it or one
6742  // of its bases is present in the base set of the current context.
6743  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6744    return false;
6745
6746  Diag(SS.getRange().getBegin(),
6747       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6748    << (NestedNameSpecifier*) SS.getScopeRep()
6749    << cast<CXXRecordDecl>(CurContext)
6750    << SS.getRange();
6751
6752  return true;
6753}
6754
6755Decl *Sema::ActOnAliasDeclaration(Scope *S,
6756                                  AccessSpecifier AS,
6757                                  MultiTemplateParamsArg TemplateParamLists,
6758                                  SourceLocation UsingLoc,
6759                                  UnqualifiedId &Name,
6760                                  TypeResult Type) {
6761  // Skip up to the relevant declaration scope.
6762  while (S->getFlags() & Scope::TemplateParamScope)
6763    S = S->getParent();
6764  assert((S->getFlags() & Scope::DeclScope) &&
6765         "got alias-declaration outside of declaration scope");
6766
6767  if (Type.isInvalid())
6768    return 0;
6769
6770  bool Invalid = false;
6771  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6772  TypeSourceInfo *TInfo = 0;
6773  GetTypeFromParser(Type.get(), &TInfo);
6774
6775  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6776    return 0;
6777
6778  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6779                                      UPPC_DeclarationType)) {
6780    Invalid = true;
6781    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6782                                             TInfo->getTypeLoc().getBeginLoc());
6783  }
6784
6785  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6786  LookupName(Previous, S);
6787
6788  // Warn about shadowing the name of a template parameter.
6789  if (Previous.isSingleResult() &&
6790      Previous.getFoundDecl()->isTemplateParameter()) {
6791    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6792    Previous.clear();
6793  }
6794
6795  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6796         "name in alias declaration must be an identifier");
6797  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6798                                               Name.StartLocation,
6799                                               Name.Identifier, TInfo);
6800
6801  NewTD->setAccess(AS);
6802
6803  if (Invalid)
6804    NewTD->setInvalidDecl();
6805
6806  CheckTypedefForVariablyModifiedType(S, NewTD);
6807  Invalid |= NewTD->isInvalidDecl();
6808
6809  bool Redeclaration = false;
6810
6811  NamedDecl *NewND;
6812  if (TemplateParamLists.size()) {
6813    TypeAliasTemplateDecl *OldDecl = 0;
6814    TemplateParameterList *OldTemplateParams = 0;
6815
6816    if (TemplateParamLists.size() != 1) {
6817      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6818        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6819         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6820    }
6821    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6822
6823    // Only consider previous declarations in the same scope.
6824    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6825                         /*ExplicitInstantiationOrSpecialization*/false);
6826    if (!Previous.empty()) {
6827      Redeclaration = true;
6828
6829      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6830      if (!OldDecl && !Invalid) {
6831        Diag(UsingLoc, diag::err_redefinition_different_kind)
6832          << Name.Identifier;
6833
6834        NamedDecl *OldD = Previous.getRepresentativeDecl();
6835        if (OldD->getLocation().isValid())
6836          Diag(OldD->getLocation(), diag::note_previous_definition);
6837
6838        Invalid = true;
6839      }
6840
6841      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6842        if (TemplateParameterListsAreEqual(TemplateParams,
6843                                           OldDecl->getTemplateParameters(),
6844                                           /*Complain=*/true,
6845                                           TPL_TemplateMatch))
6846          OldTemplateParams = OldDecl->getTemplateParameters();
6847        else
6848          Invalid = true;
6849
6850        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6851        if (!Invalid &&
6852            !Context.hasSameType(OldTD->getUnderlyingType(),
6853                                 NewTD->getUnderlyingType())) {
6854          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6855          // but we can't reasonably accept it.
6856          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6857            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6858          if (OldTD->getLocation().isValid())
6859            Diag(OldTD->getLocation(), diag::note_previous_definition);
6860          Invalid = true;
6861        }
6862      }
6863    }
6864
6865    // Merge any previous default template arguments into our parameters,
6866    // and check the parameter list.
6867    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6868                                   TPC_TypeAliasTemplate))
6869      return 0;
6870
6871    TypeAliasTemplateDecl *NewDecl =
6872      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6873                                    Name.Identifier, TemplateParams,
6874                                    NewTD);
6875
6876    NewDecl->setAccess(AS);
6877
6878    if (Invalid)
6879      NewDecl->setInvalidDecl();
6880    else if (OldDecl)
6881      NewDecl->setPreviousDeclaration(OldDecl);
6882
6883    NewND = NewDecl;
6884  } else {
6885    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6886    NewND = NewTD;
6887  }
6888
6889  if (!Redeclaration)
6890    PushOnScopeChains(NewND, S);
6891
6892  return NewND;
6893}
6894
6895Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6896                                             SourceLocation NamespaceLoc,
6897                                             SourceLocation AliasLoc,
6898                                             IdentifierInfo *Alias,
6899                                             CXXScopeSpec &SS,
6900                                             SourceLocation IdentLoc,
6901                                             IdentifierInfo *Ident) {
6902
6903  // Lookup the namespace name.
6904  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6905  LookupParsedName(R, S, &SS);
6906
6907  // Check if we have a previous declaration with the same name.
6908  NamedDecl *PrevDecl
6909    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6910                       ForRedeclaration);
6911  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6912    PrevDecl = 0;
6913
6914  if (PrevDecl) {
6915    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6916      // We already have an alias with the same name that points to the same
6917      // namespace, so don't create a new one.
6918      // FIXME: At some point, we'll want to create the (redundant)
6919      // declaration to maintain better source information.
6920      if (!R.isAmbiguous() && !R.empty() &&
6921          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6922        return 0;
6923    }
6924
6925    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6926      diag::err_redefinition_different_kind;
6927    Diag(AliasLoc, DiagID) << Alias;
6928    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6929    return 0;
6930  }
6931
6932  if (R.isAmbiguous())
6933    return 0;
6934
6935  if (R.empty()) {
6936    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6937      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6938      return 0;
6939    }
6940  }
6941
6942  NamespaceAliasDecl *AliasDecl =
6943    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6944                               Alias, SS.getWithLocInContext(Context),
6945                               IdentLoc, R.getFoundDecl());
6946
6947  PushOnScopeChains(AliasDecl, S);
6948  return AliasDecl;
6949}
6950
6951namespace {
6952  /// \brief Scoped object used to handle the state changes required in Sema
6953  /// to implicitly define the body of a C++ member function;
6954  class ImplicitlyDefinedFunctionScope {
6955    Sema &S;
6956    Sema::ContextRAII SavedContext;
6957
6958  public:
6959    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6960      : S(S), SavedContext(S, Method)
6961    {
6962      S.PushFunctionScope();
6963      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6964    }
6965
6966    ~ImplicitlyDefinedFunctionScope() {
6967      S.PopExpressionEvaluationContext();
6968      S.PopFunctionScopeInfo();
6969    }
6970  };
6971}
6972
6973Sema::ImplicitExceptionSpecification
6974Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6975  // C++ [except.spec]p14:
6976  //   An implicitly declared special member function (Clause 12) shall have an
6977  //   exception-specification. [...]
6978  ImplicitExceptionSpecification ExceptSpec(Context);
6979  if (ClassDecl->isInvalidDecl())
6980    return ExceptSpec;
6981
6982  // Direct base-class constructors.
6983  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6984                                       BEnd = ClassDecl->bases_end();
6985       B != BEnd; ++B) {
6986    if (B->isVirtual()) // Handled below.
6987      continue;
6988
6989    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6990      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6991      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6992      // If this is a deleted function, add it anyway. This might be conformant
6993      // with the standard. This might not. I'm not sure. It might not matter.
6994      if (Constructor)
6995        ExceptSpec.CalledDecl(Constructor);
6996    }
6997  }
6998
6999  // Virtual base-class constructors.
7000  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7001                                       BEnd = ClassDecl->vbases_end();
7002       B != BEnd; ++B) {
7003    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7004      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7005      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7006      // If this is a deleted function, add it anyway. This might be conformant
7007      // with the standard. This might not. I'm not sure. It might not matter.
7008      if (Constructor)
7009        ExceptSpec.CalledDecl(Constructor);
7010    }
7011  }
7012
7013  // Field constructors.
7014  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7015                               FEnd = ClassDecl->field_end();
7016       F != FEnd; ++F) {
7017    if (F->hasInClassInitializer()) {
7018      if (Expr *E = F->getInClassInitializer())
7019        ExceptSpec.CalledExpr(E);
7020      else if (!F->isInvalidDecl())
7021        ExceptSpec.SetDelayed();
7022    } else if (const RecordType *RecordTy
7023              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7024      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7025      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7026      // If this is a deleted function, add it anyway. This might be conformant
7027      // with the standard. This might not. I'm not sure. It might not matter.
7028      // In particular, the problem is that this function never gets called. It
7029      // might just be ill-formed because this function attempts to refer to
7030      // a deleted function here.
7031      if (Constructor)
7032        ExceptSpec.CalledDecl(Constructor);
7033    }
7034  }
7035
7036  return ExceptSpec;
7037}
7038
7039CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7040                                                     CXXRecordDecl *ClassDecl) {
7041  // C++ [class.ctor]p5:
7042  //   A default constructor for a class X is a constructor of class X
7043  //   that can be called without an argument. If there is no
7044  //   user-declared constructor for class X, a default constructor is
7045  //   implicitly declared. An implicitly-declared default constructor
7046  //   is an inline public member of its class.
7047  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7048         "Should not build implicit default constructor!");
7049
7050  ImplicitExceptionSpecification Spec =
7051    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7052  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7053
7054  // Create the actual constructor declaration.
7055  CanQualType ClassType
7056    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7057  SourceLocation ClassLoc = ClassDecl->getLocation();
7058  DeclarationName Name
7059    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7060  DeclarationNameInfo NameInfo(Name, ClassLoc);
7061  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7062      Context, ClassDecl, ClassLoc, NameInfo,
7063      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7064      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7065      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7066        getLangOptions().CPlusPlus0x);
7067  DefaultCon->setAccess(AS_public);
7068  DefaultCon->setDefaulted();
7069  DefaultCon->setImplicit();
7070  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7071
7072  // Note that we have declared this constructor.
7073  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7074
7075  if (Scope *S = getScopeForContext(ClassDecl))
7076    PushOnScopeChains(DefaultCon, S, false);
7077  ClassDecl->addDecl(DefaultCon);
7078
7079  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7080    DefaultCon->setDeletedAsWritten();
7081
7082  return DefaultCon;
7083}
7084
7085void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7086                                            CXXConstructorDecl *Constructor) {
7087  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7088          !Constructor->doesThisDeclarationHaveABody() &&
7089          !Constructor->isDeleted()) &&
7090    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7091
7092  CXXRecordDecl *ClassDecl = Constructor->getParent();
7093  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7094
7095  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7096  DiagnosticErrorTrap Trap(Diags);
7097  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7098      Trap.hasErrorOccurred()) {
7099    Diag(CurrentLocation, diag::note_member_synthesized_at)
7100      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7101    Constructor->setInvalidDecl();
7102    return;
7103  }
7104
7105  SourceLocation Loc = Constructor->getLocation();
7106  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7107
7108  Constructor->setUsed();
7109  MarkVTableUsed(CurrentLocation, ClassDecl);
7110
7111  if (ASTMutationListener *L = getASTMutationListener()) {
7112    L->CompletedImplicitDefinition(Constructor);
7113  }
7114}
7115
7116/// Get any existing defaulted default constructor for the given class. Do not
7117/// implicitly define one if it does not exist.
7118static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7119                                                             CXXRecordDecl *D) {
7120  ASTContext &Context = Self.Context;
7121  QualType ClassType = Context.getTypeDeclType(D);
7122  DeclarationName ConstructorName
7123    = Context.DeclarationNames.getCXXConstructorName(
7124                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7125
7126  DeclContext::lookup_const_iterator Con, ConEnd;
7127  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7128       Con != ConEnd; ++Con) {
7129    // A function template cannot be defaulted.
7130    if (isa<FunctionTemplateDecl>(*Con))
7131      continue;
7132
7133    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7134    if (Constructor->isDefaultConstructor())
7135      return Constructor->isDefaulted() ? Constructor : 0;
7136  }
7137  return 0;
7138}
7139
7140void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7141  if (!D) return;
7142  AdjustDeclIfTemplate(D);
7143
7144  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7145  CXXConstructorDecl *CtorDecl
7146    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7147
7148  if (!CtorDecl) return;
7149
7150  // Compute the exception specification for the default constructor.
7151  const FunctionProtoType *CtorTy =
7152    CtorDecl->getType()->castAs<FunctionProtoType>();
7153  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7154    ImplicitExceptionSpecification Spec =
7155      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7156    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7157    assert(EPI.ExceptionSpecType != EST_Delayed);
7158
7159    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7160  }
7161
7162  // If the default constructor is explicitly defaulted, checking the exception
7163  // specification is deferred until now.
7164  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7165      !ClassDecl->isDependentType())
7166    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7167}
7168
7169void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7170  // We start with an initial pass over the base classes to collect those that
7171  // inherit constructors from. If there are none, we can forgo all further
7172  // processing.
7173  typedef SmallVector<const RecordType *, 4> BasesVector;
7174  BasesVector BasesToInheritFrom;
7175  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7176                                          BaseE = ClassDecl->bases_end();
7177         BaseIt != BaseE; ++BaseIt) {
7178    if (BaseIt->getInheritConstructors()) {
7179      QualType Base = BaseIt->getType();
7180      if (Base->isDependentType()) {
7181        // If we inherit constructors from anything that is dependent, just
7182        // abort processing altogether. We'll get another chance for the
7183        // instantiations.
7184        return;
7185      }
7186      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7187    }
7188  }
7189  if (BasesToInheritFrom.empty())
7190    return;
7191
7192  // Now collect the constructors that we already have in the current class.
7193  // Those take precedence over inherited constructors.
7194  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7195  //   unless there is a user-declared constructor with the same signature in
7196  //   the class where the using-declaration appears.
7197  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7198  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7199                                    CtorE = ClassDecl->ctor_end();
7200       CtorIt != CtorE; ++CtorIt) {
7201    ExistingConstructors.insert(
7202        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7203  }
7204
7205  Scope *S = getScopeForContext(ClassDecl);
7206  DeclarationName CreatedCtorName =
7207      Context.DeclarationNames.getCXXConstructorName(
7208          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7209
7210  // Now comes the true work.
7211  // First, we keep a map from constructor types to the base that introduced
7212  // them. Needed for finding conflicting constructors. We also keep the
7213  // actually inserted declarations in there, for pretty diagnostics.
7214  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7215  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7216  ConstructorToSourceMap InheritedConstructors;
7217  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7218                             BaseE = BasesToInheritFrom.end();
7219       BaseIt != BaseE; ++BaseIt) {
7220    const RecordType *Base = *BaseIt;
7221    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7222    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7223    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7224                                      CtorE = BaseDecl->ctor_end();
7225         CtorIt != CtorE; ++CtorIt) {
7226      // Find the using declaration for inheriting this base's constructors.
7227      DeclarationName Name =
7228          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7229      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7230          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7231      SourceLocation UsingLoc = UD ? UD->getLocation() :
7232                                     ClassDecl->getLocation();
7233
7234      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7235      //   from the class X named in the using-declaration consists of actual
7236      //   constructors and notional constructors that result from the
7237      //   transformation of defaulted parameters as follows:
7238      //   - all non-template default constructors of X, and
7239      //   - for each non-template constructor of X that has at least one
7240      //     parameter with a default argument, the set of constructors that
7241      //     results from omitting any ellipsis parameter specification and
7242      //     successively omitting parameters with a default argument from the
7243      //     end of the parameter-type-list.
7244      CXXConstructorDecl *BaseCtor = *CtorIt;
7245      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7246      const FunctionProtoType *BaseCtorType =
7247          BaseCtor->getType()->getAs<FunctionProtoType>();
7248
7249      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7250                    maxParams = BaseCtor->getNumParams();
7251           params <= maxParams; ++params) {
7252        // Skip default constructors. They're never inherited.
7253        if (params == 0)
7254          continue;
7255        // Skip copy and move constructors for the same reason.
7256        if (CanBeCopyOrMove && params == 1)
7257          continue;
7258
7259        // Build up a function type for this particular constructor.
7260        // FIXME: The working paper does not consider that the exception spec
7261        // for the inheriting constructor might be larger than that of the
7262        // source. This code doesn't yet, either. When it does, this code will
7263        // need to be delayed until after exception specifications and in-class
7264        // member initializers are attached.
7265        const Type *NewCtorType;
7266        if (params == maxParams)
7267          NewCtorType = BaseCtorType;
7268        else {
7269          SmallVector<QualType, 16> Args;
7270          for (unsigned i = 0; i < params; ++i) {
7271            Args.push_back(BaseCtorType->getArgType(i));
7272          }
7273          FunctionProtoType::ExtProtoInfo ExtInfo =
7274              BaseCtorType->getExtProtoInfo();
7275          ExtInfo.Variadic = false;
7276          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7277                                                Args.data(), params, ExtInfo)
7278                       .getTypePtr();
7279        }
7280        const Type *CanonicalNewCtorType =
7281            Context.getCanonicalType(NewCtorType);
7282
7283        // Now that we have the type, first check if the class already has a
7284        // constructor with this signature.
7285        if (ExistingConstructors.count(CanonicalNewCtorType))
7286          continue;
7287
7288        // Then we check if we have already declared an inherited constructor
7289        // with this signature.
7290        std::pair<ConstructorToSourceMap::iterator, bool> result =
7291            InheritedConstructors.insert(std::make_pair(
7292                CanonicalNewCtorType,
7293                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7294        if (!result.second) {
7295          // Already in the map. If it came from a different class, that's an
7296          // error. Not if it's from the same.
7297          CanQualType PreviousBase = result.first->second.first;
7298          if (CanonicalBase != PreviousBase) {
7299            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7300            const CXXConstructorDecl *PrevBaseCtor =
7301                PrevCtor->getInheritedConstructor();
7302            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7303
7304            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7305            Diag(BaseCtor->getLocation(),
7306                 diag::note_using_decl_constructor_conflict_current_ctor);
7307            Diag(PrevBaseCtor->getLocation(),
7308                 diag::note_using_decl_constructor_conflict_previous_ctor);
7309            Diag(PrevCtor->getLocation(),
7310                 diag::note_using_decl_constructor_conflict_previous_using);
7311          }
7312          continue;
7313        }
7314
7315        // OK, we're there, now add the constructor.
7316        // C++0x [class.inhctor]p8: [...] that would be performed by a
7317        //   user-written inline constructor [...]
7318        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7319        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7320            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7321            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7322            /*ImplicitlyDeclared=*/true,
7323            // FIXME: Due to a defect in the standard, we treat inherited
7324            // constructors as constexpr even if that makes them ill-formed.
7325            /*Constexpr=*/BaseCtor->isConstexpr());
7326        NewCtor->setAccess(BaseCtor->getAccess());
7327
7328        // Build up the parameter decls and add them.
7329        SmallVector<ParmVarDecl *, 16> ParamDecls;
7330        for (unsigned i = 0; i < params; ++i) {
7331          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7332                                                   UsingLoc, UsingLoc,
7333                                                   /*IdentifierInfo=*/0,
7334                                                   BaseCtorType->getArgType(i),
7335                                                   /*TInfo=*/0, SC_None,
7336                                                   SC_None, /*DefaultArg=*/0));
7337        }
7338        NewCtor->setParams(ParamDecls);
7339        NewCtor->setInheritedConstructor(BaseCtor);
7340
7341        PushOnScopeChains(NewCtor, S, false);
7342        ClassDecl->addDecl(NewCtor);
7343        result.first->second.second = NewCtor;
7344      }
7345    }
7346  }
7347}
7348
7349Sema::ImplicitExceptionSpecification
7350Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7351  // C++ [except.spec]p14:
7352  //   An implicitly declared special member function (Clause 12) shall have
7353  //   an exception-specification.
7354  ImplicitExceptionSpecification ExceptSpec(Context);
7355  if (ClassDecl->isInvalidDecl())
7356    return ExceptSpec;
7357
7358  // Direct base-class destructors.
7359  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7360                                       BEnd = ClassDecl->bases_end();
7361       B != BEnd; ++B) {
7362    if (B->isVirtual()) // Handled below.
7363      continue;
7364
7365    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7366      ExceptSpec.CalledDecl(
7367                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7368  }
7369
7370  // Virtual base-class destructors.
7371  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7372                                       BEnd = ClassDecl->vbases_end();
7373       B != BEnd; ++B) {
7374    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7375      ExceptSpec.CalledDecl(
7376                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7377  }
7378
7379  // Field destructors.
7380  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7381                               FEnd = ClassDecl->field_end();
7382       F != FEnd; ++F) {
7383    if (const RecordType *RecordTy
7384        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7385      ExceptSpec.CalledDecl(
7386                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7387  }
7388
7389  return ExceptSpec;
7390}
7391
7392CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7393  // C++ [class.dtor]p2:
7394  //   If a class has no user-declared destructor, a destructor is
7395  //   declared implicitly. An implicitly-declared destructor is an
7396  //   inline public member of its class.
7397
7398  ImplicitExceptionSpecification Spec =
7399      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7400  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7401
7402  // Create the actual destructor declaration.
7403  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7404
7405  CanQualType ClassType
7406    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7407  SourceLocation ClassLoc = ClassDecl->getLocation();
7408  DeclarationName Name
7409    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7410  DeclarationNameInfo NameInfo(Name, ClassLoc);
7411  CXXDestructorDecl *Destructor
7412      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7413                                  /*isInline=*/true,
7414                                  /*isImplicitlyDeclared=*/true);
7415  Destructor->setAccess(AS_public);
7416  Destructor->setDefaulted();
7417  Destructor->setImplicit();
7418  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7419
7420  // Note that we have declared this destructor.
7421  ++ASTContext::NumImplicitDestructorsDeclared;
7422
7423  // Introduce this destructor into its scope.
7424  if (Scope *S = getScopeForContext(ClassDecl))
7425    PushOnScopeChains(Destructor, S, false);
7426  ClassDecl->addDecl(Destructor);
7427
7428  // This could be uniqued if it ever proves significant.
7429  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7430
7431  if (ShouldDeleteDestructor(Destructor))
7432    Destructor->setDeletedAsWritten();
7433
7434  AddOverriddenMethods(ClassDecl, Destructor);
7435
7436  return Destructor;
7437}
7438
7439void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7440                                    CXXDestructorDecl *Destructor) {
7441  assert((Destructor->isDefaulted() &&
7442          !Destructor->doesThisDeclarationHaveABody()) &&
7443         "DefineImplicitDestructor - call it for implicit default dtor");
7444  CXXRecordDecl *ClassDecl = Destructor->getParent();
7445  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7446
7447  if (Destructor->isInvalidDecl())
7448    return;
7449
7450  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7451
7452  DiagnosticErrorTrap Trap(Diags);
7453  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7454                                         Destructor->getParent());
7455
7456  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7457    Diag(CurrentLocation, diag::note_member_synthesized_at)
7458      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7459
7460    Destructor->setInvalidDecl();
7461    return;
7462  }
7463
7464  SourceLocation Loc = Destructor->getLocation();
7465  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7466  Destructor->setImplicitlyDefined(true);
7467  Destructor->setUsed();
7468  MarkVTableUsed(CurrentLocation, ClassDecl);
7469
7470  if (ASTMutationListener *L = getASTMutationListener()) {
7471    L->CompletedImplicitDefinition(Destructor);
7472  }
7473}
7474
7475void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7476                                         CXXDestructorDecl *destructor) {
7477  // C++11 [class.dtor]p3:
7478  //   A declaration of a destructor that does not have an exception-
7479  //   specification is implicitly considered to have the same exception-
7480  //   specification as an implicit declaration.
7481  const FunctionProtoType *dtorType = destructor->getType()->
7482                                        getAs<FunctionProtoType>();
7483  if (dtorType->hasExceptionSpec())
7484    return;
7485
7486  ImplicitExceptionSpecification exceptSpec =
7487      ComputeDefaultedDtorExceptionSpec(classDecl);
7488
7489  // Replace the destructor's type, building off the existing one. Fortunately,
7490  // the only thing of interest in the destructor type is its extended info.
7491  // The return and arguments are fixed.
7492  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7493  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7494  epi.NumExceptions = exceptSpec.size();
7495  epi.Exceptions = exceptSpec.data();
7496  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7497
7498  destructor->setType(ty);
7499
7500  // FIXME: If the destructor has a body that could throw, and the newly created
7501  // spec doesn't allow exceptions, we should emit a warning, because this
7502  // change in behavior can break conforming C++03 programs at runtime.
7503  // However, we don't have a body yet, so it needs to be done somewhere else.
7504}
7505
7506/// \brief Builds a statement that copies/moves the given entity from \p From to
7507/// \c To.
7508///
7509/// This routine is used to copy/move the members of a class with an
7510/// implicitly-declared copy/move assignment operator. When the entities being
7511/// copied are arrays, this routine builds for loops to copy them.
7512///
7513/// \param S The Sema object used for type-checking.
7514///
7515/// \param Loc The location where the implicit copy/move is being generated.
7516///
7517/// \param T The type of the expressions being copied/moved. Both expressions
7518/// must have this type.
7519///
7520/// \param To The expression we are copying/moving to.
7521///
7522/// \param From The expression we are copying/moving from.
7523///
7524/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7525/// Otherwise, it's a non-static member subobject.
7526///
7527/// \param Copying Whether we're copying or moving.
7528///
7529/// \param Depth Internal parameter recording the depth of the recursion.
7530///
7531/// \returns A statement or a loop that copies the expressions.
7532static StmtResult
7533BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7534                      Expr *To, Expr *From,
7535                      bool CopyingBaseSubobject, bool Copying,
7536                      unsigned Depth = 0) {
7537  // C++0x [class.copy]p28:
7538  //   Each subobject is assigned in the manner appropriate to its type:
7539  //
7540  //     - if the subobject is of class type, as if by a call to operator= with
7541  //       the subobject as the object expression and the corresponding
7542  //       subobject of x as a single function argument (as if by explicit
7543  //       qualification; that is, ignoring any possible virtual overriding
7544  //       functions in more derived classes);
7545  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7546    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7547
7548    // Look for operator=.
7549    DeclarationName Name
7550      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7551    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7552    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7553
7554    // Filter out any result that isn't a copy/move-assignment operator.
7555    LookupResult::Filter F = OpLookup.makeFilter();
7556    while (F.hasNext()) {
7557      NamedDecl *D = F.next();
7558      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7559        if (Copying ? Method->isCopyAssignmentOperator() :
7560                      Method->isMoveAssignmentOperator())
7561          continue;
7562
7563      F.erase();
7564    }
7565    F.done();
7566
7567    // Suppress the protected check (C++ [class.protected]) for each of the
7568    // assignment operators we found. This strange dance is required when
7569    // we're assigning via a base classes's copy-assignment operator. To
7570    // ensure that we're getting the right base class subobject (without
7571    // ambiguities), we need to cast "this" to that subobject type; to
7572    // ensure that we don't go through the virtual call mechanism, we need
7573    // to qualify the operator= name with the base class (see below). However,
7574    // this means that if the base class has a protected copy assignment
7575    // operator, the protected member access check will fail. So, we
7576    // rewrite "protected" access to "public" access in this case, since we
7577    // know by construction that we're calling from a derived class.
7578    if (CopyingBaseSubobject) {
7579      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7580           L != LEnd; ++L) {
7581        if (L.getAccess() == AS_protected)
7582          L.setAccess(AS_public);
7583      }
7584    }
7585
7586    // Create the nested-name-specifier that will be used to qualify the
7587    // reference to operator=; this is required to suppress the virtual
7588    // call mechanism.
7589    CXXScopeSpec SS;
7590    SS.MakeTrivial(S.Context,
7591                   NestedNameSpecifier::Create(S.Context, 0, false,
7592                                               T.getTypePtr()),
7593                   Loc);
7594
7595    // Create the reference to operator=.
7596    ExprResult OpEqualRef
7597      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7598                                   /*TemplateKWLoc=*/SourceLocation(),
7599                                   /*FirstQualifierInScope=*/0,
7600                                   OpLookup,
7601                                   /*TemplateArgs=*/0,
7602                                   /*SuppressQualifierCheck=*/true);
7603    if (OpEqualRef.isInvalid())
7604      return StmtError();
7605
7606    // Build the call to the assignment operator.
7607
7608    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7609                                                  OpEqualRef.takeAs<Expr>(),
7610                                                  Loc, &From, 1, Loc);
7611    if (Call.isInvalid())
7612      return StmtError();
7613
7614    return S.Owned(Call.takeAs<Stmt>());
7615  }
7616
7617  //     - if the subobject is of scalar type, the built-in assignment
7618  //       operator is used.
7619  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7620  if (!ArrayTy) {
7621    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7622    if (Assignment.isInvalid())
7623      return StmtError();
7624
7625    return S.Owned(Assignment.takeAs<Stmt>());
7626  }
7627
7628  //     - if the subobject is an array, each element is assigned, in the
7629  //       manner appropriate to the element type;
7630
7631  // Construct a loop over the array bounds, e.g.,
7632  //
7633  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7634  //
7635  // that will copy each of the array elements.
7636  QualType SizeType = S.Context.getSizeType();
7637
7638  // Create the iteration variable.
7639  IdentifierInfo *IterationVarName = 0;
7640  {
7641    llvm::SmallString<8> Str;
7642    llvm::raw_svector_ostream OS(Str);
7643    OS << "__i" << Depth;
7644    IterationVarName = &S.Context.Idents.get(OS.str());
7645  }
7646  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7647                                          IterationVarName, SizeType,
7648                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7649                                          SC_None, SC_None);
7650
7651  // Initialize the iteration variable to zero.
7652  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7653  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7654
7655  // Create a reference to the iteration variable; we'll use this several
7656  // times throughout.
7657  Expr *IterationVarRef
7658    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7659  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7660  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7661  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7662
7663  // Create the DeclStmt that holds the iteration variable.
7664  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7665
7666  // Create the comparison against the array bound.
7667  llvm::APInt Upper
7668    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7669  Expr *Comparison
7670    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7671                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7672                                     BO_NE, S.Context.BoolTy,
7673                                     VK_RValue, OK_Ordinary, Loc);
7674
7675  // Create the pre-increment of the iteration variable.
7676  Expr *Increment
7677    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7678                                    VK_LValue, OK_Ordinary, Loc);
7679
7680  // Subscript the "from" and "to" expressions with the iteration variable.
7681  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7682                                                         IterationVarRefRVal,
7683                                                         Loc));
7684  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7685                                                       IterationVarRefRVal,
7686                                                       Loc));
7687  if (!Copying) // Cast to rvalue
7688    From = CastForMoving(S, From);
7689
7690  // Build the copy/move for an individual element of the array.
7691  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7692                                          To, From, CopyingBaseSubobject,
7693                                          Copying, Depth + 1);
7694  if (Copy.isInvalid())
7695    return StmtError();
7696
7697  // Construct the loop that copies all elements of this array.
7698  return S.ActOnForStmt(Loc, Loc, InitStmt,
7699                        S.MakeFullExpr(Comparison),
7700                        0, S.MakeFullExpr(Increment),
7701                        Loc, Copy.take());
7702}
7703
7704std::pair<Sema::ImplicitExceptionSpecification, bool>
7705Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7706                                                   CXXRecordDecl *ClassDecl) {
7707  if (ClassDecl->isInvalidDecl())
7708    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7709
7710  // C++ [class.copy]p10:
7711  //   If the class definition does not explicitly declare a copy
7712  //   assignment operator, one is declared implicitly.
7713  //   The implicitly-defined copy assignment operator for a class X
7714  //   will have the form
7715  //
7716  //       X& X::operator=(const X&)
7717  //
7718  //   if
7719  bool HasConstCopyAssignment = true;
7720
7721  //       -- each direct base class B of X has a copy assignment operator
7722  //          whose parameter is of type const B&, const volatile B& or B,
7723  //          and
7724  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7725                                       BaseEnd = ClassDecl->bases_end();
7726       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7727    // We'll handle this below
7728    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7729      continue;
7730
7731    assert(!Base->getType()->isDependentType() &&
7732           "Cannot generate implicit members for class with dependent bases.");
7733    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7734    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7735                            &HasConstCopyAssignment);
7736  }
7737
7738  // In C++11, the above citation has "or virtual" added
7739  if (LangOpts.CPlusPlus0x) {
7740    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7741                                         BaseEnd = ClassDecl->vbases_end();
7742         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7743      assert(!Base->getType()->isDependentType() &&
7744             "Cannot generate implicit members for class with dependent bases.");
7745      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7746      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7747                              &HasConstCopyAssignment);
7748    }
7749  }
7750
7751  //       -- for all the nonstatic data members of X that are of a class
7752  //          type M (or array thereof), each such class type has a copy
7753  //          assignment operator whose parameter is of type const M&,
7754  //          const volatile M& or M.
7755  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7756                                  FieldEnd = ClassDecl->field_end();
7757       HasConstCopyAssignment && Field != FieldEnd;
7758       ++Field) {
7759    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7760    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7761      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7762                              &HasConstCopyAssignment);
7763    }
7764  }
7765
7766  //   Otherwise, the implicitly declared copy assignment operator will
7767  //   have the form
7768  //
7769  //       X& X::operator=(X&)
7770
7771  // C++ [except.spec]p14:
7772  //   An implicitly declared special member function (Clause 12) shall have an
7773  //   exception-specification. [...]
7774
7775  // It is unspecified whether or not an implicit copy assignment operator
7776  // attempts to deduplicate calls to assignment operators of virtual bases are
7777  // made. As such, this exception specification is effectively unspecified.
7778  // Based on a similar decision made for constness in C++0x, we're erring on
7779  // the side of assuming such calls to be made regardless of whether they
7780  // actually happen.
7781  ImplicitExceptionSpecification ExceptSpec(Context);
7782  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7783  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7784                                       BaseEnd = ClassDecl->bases_end();
7785       Base != BaseEnd; ++Base) {
7786    if (Base->isVirtual())
7787      continue;
7788
7789    CXXRecordDecl *BaseClassDecl
7790      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7791    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7792                                                            ArgQuals, false, 0))
7793      ExceptSpec.CalledDecl(CopyAssign);
7794  }
7795
7796  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7797                                       BaseEnd = ClassDecl->vbases_end();
7798       Base != BaseEnd; ++Base) {
7799    CXXRecordDecl *BaseClassDecl
7800      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7801    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7802                                                            ArgQuals, false, 0))
7803      ExceptSpec.CalledDecl(CopyAssign);
7804  }
7805
7806  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7807                                  FieldEnd = ClassDecl->field_end();
7808       Field != FieldEnd;
7809       ++Field) {
7810    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7811    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7812      if (CXXMethodDecl *CopyAssign =
7813          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7814        ExceptSpec.CalledDecl(CopyAssign);
7815    }
7816  }
7817
7818  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7819}
7820
7821CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7822  // Note: The following rules are largely analoguous to the copy
7823  // constructor rules. Note that virtual bases are not taken into account
7824  // for determining the argument type of the operator. Note also that
7825  // operators taking an object instead of a reference are allowed.
7826
7827  ImplicitExceptionSpecification Spec(Context);
7828  bool Const;
7829  llvm::tie(Spec, Const) =
7830    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7831
7832  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7833  QualType RetType = Context.getLValueReferenceType(ArgType);
7834  if (Const)
7835    ArgType = ArgType.withConst();
7836  ArgType = Context.getLValueReferenceType(ArgType);
7837
7838  //   An implicitly-declared copy assignment operator is an inline public
7839  //   member of its class.
7840  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7841  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7842  SourceLocation ClassLoc = ClassDecl->getLocation();
7843  DeclarationNameInfo NameInfo(Name, ClassLoc);
7844  CXXMethodDecl *CopyAssignment
7845    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7846                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7847                            /*TInfo=*/0, /*isStatic=*/false,
7848                            /*StorageClassAsWritten=*/SC_None,
7849                            /*isInline=*/true, /*isConstexpr=*/false,
7850                            SourceLocation());
7851  CopyAssignment->setAccess(AS_public);
7852  CopyAssignment->setDefaulted();
7853  CopyAssignment->setImplicit();
7854  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7855
7856  // Add the parameter to the operator.
7857  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7858                                               ClassLoc, ClassLoc, /*Id=*/0,
7859                                               ArgType, /*TInfo=*/0,
7860                                               SC_None,
7861                                               SC_None, 0);
7862  CopyAssignment->setParams(FromParam);
7863
7864  // Note that we have added this copy-assignment operator.
7865  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7866
7867  if (Scope *S = getScopeForContext(ClassDecl))
7868    PushOnScopeChains(CopyAssignment, S, false);
7869  ClassDecl->addDecl(CopyAssignment);
7870
7871  // C++0x [class.copy]p19:
7872  //   ....  If the class definition does not explicitly declare a copy
7873  //   assignment operator, there is no user-declared move constructor, and
7874  //   there is no user-declared move assignment operator, a copy assignment
7875  //   operator is implicitly declared as defaulted.
7876  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7877          !getLangOptions().MicrosoftMode) ||
7878      ClassDecl->hasUserDeclaredMoveAssignment() ||
7879      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7880    CopyAssignment->setDeletedAsWritten();
7881
7882  AddOverriddenMethods(ClassDecl, CopyAssignment);
7883  return CopyAssignment;
7884}
7885
7886void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7887                                        CXXMethodDecl *CopyAssignOperator) {
7888  assert((CopyAssignOperator->isDefaulted() &&
7889          CopyAssignOperator->isOverloadedOperator() &&
7890          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7891          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7892         "DefineImplicitCopyAssignment called for wrong function");
7893
7894  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7895
7896  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7897    CopyAssignOperator->setInvalidDecl();
7898    return;
7899  }
7900
7901  CopyAssignOperator->setUsed();
7902
7903  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7904  DiagnosticErrorTrap Trap(Diags);
7905
7906  // C++0x [class.copy]p30:
7907  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7908  //   for a non-union class X performs memberwise copy assignment of its
7909  //   subobjects. The direct base classes of X are assigned first, in the
7910  //   order of their declaration in the base-specifier-list, and then the
7911  //   immediate non-static data members of X are assigned, in the order in
7912  //   which they were declared in the class definition.
7913
7914  // The statements that form the synthesized function body.
7915  ASTOwningVector<Stmt*> Statements(*this);
7916
7917  // The parameter for the "other" object, which we are copying from.
7918  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7919  Qualifiers OtherQuals = Other->getType().getQualifiers();
7920  QualType OtherRefType = Other->getType();
7921  if (const LValueReferenceType *OtherRef
7922                                = OtherRefType->getAs<LValueReferenceType>()) {
7923    OtherRefType = OtherRef->getPointeeType();
7924    OtherQuals = OtherRefType.getQualifiers();
7925  }
7926
7927  // Our location for everything implicitly-generated.
7928  SourceLocation Loc = CopyAssignOperator->getLocation();
7929
7930  // Construct a reference to the "other" object. We'll be using this
7931  // throughout the generated ASTs.
7932  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7933  assert(OtherRef && "Reference to parameter cannot fail!");
7934
7935  // Construct the "this" pointer. We'll be using this throughout the generated
7936  // ASTs.
7937  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7938  assert(This && "Reference to this cannot fail!");
7939
7940  // Assign base classes.
7941  bool Invalid = false;
7942  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7943       E = ClassDecl->bases_end(); Base != E; ++Base) {
7944    // Form the assignment:
7945    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7946    QualType BaseType = Base->getType().getUnqualifiedType();
7947    if (!BaseType->isRecordType()) {
7948      Invalid = true;
7949      continue;
7950    }
7951
7952    CXXCastPath BasePath;
7953    BasePath.push_back(Base);
7954
7955    // Construct the "from" expression, which is an implicit cast to the
7956    // appropriately-qualified base type.
7957    Expr *From = OtherRef;
7958    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7959                             CK_UncheckedDerivedToBase,
7960                             VK_LValue, &BasePath).take();
7961
7962    // Dereference "this".
7963    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7964
7965    // Implicitly cast "this" to the appropriately-qualified base type.
7966    To = ImpCastExprToType(To.take(),
7967                           Context.getCVRQualifiedType(BaseType,
7968                                     CopyAssignOperator->getTypeQualifiers()),
7969                           CK_UncheckedDerivedToBase,
7970                           VK_LValue, &BasePath);
7971
7972    // Build the copy.
7973    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7974                                            To.get(), From,
7975                                            /*CopyingBaseSubobject=*/true,
7976                                            /*Copying=*/true);
7977    if (Copy.isInvalid()) {
7978      Diag(CurrentLocation, diag::note_member_synthesized_at)
7979        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7980      CopyAssignOperator->setInvalidDecl();
7981      return;
7982    }
7983
7984    // Success! Record the copy.
7985    Statements.push_back(Copy.takeAs<Expr>());
7986  }
7987
7988  // \brief Reference to the __builtin_memcpy function.
7989  Expr *BuiltinMemCpyRef = 0;
7990  // \brief Reference to the __builtin_objc_memmove_collectable function.
7991  Expr *CollectableMemCpyRef = 0;
7992
7993  // Assign non-static members.
7994  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7995                                  FieldEnd = ClassDecl->field_end();
7996       Field != FieldEnd; ++Field) {
7997    if (Field->isUnnamedBitfield())
7998      continue;
7999
8000    // Check for members of reference type; we can't copy those.
8001    if (Field->getType()->isReferenceType()) {
8002      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8003        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8004      Diag(Field->getLocation(), diag::note_declared_at);
8005      Diag(CurrentLocation, diag::note_member_synthesized_at)
8006        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8007      Invalid = true;
8008      continue;
8009    }
8010
8011    // Check for members of const-qualified, non-class type.
8012    QualType BaseType = Context.getBaseElementType(Field->getType());
8013    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8014      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8015        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8016      Diag(Field->getLocation(), diag::note_declared_at);
8017      Diag(CurrentLocation, diag::note_member_synthesized_at)
8018        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8019      Invalid = true;
8020      continue;
8021    }
8022
8023    // Suppress assigning zero-width bitfields.
8024    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8025      continue;
8026
8027    QualType FieldType = Field->getType().getNonReferenceType();
8028    if (FieldType->isIncompleteArrayType()) {
8029      assert(ClassDecl->hasFlexibleArrayMember() &&
8030             "Incomplete array type is not valid");
8031      continue;
8032    }
8033
8034    // Build references to the field in the object we're copying from and to.
8035    CXXScopeSpec SS; // Intentionally empty
8036    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8037                              LookupMemberName);
8038    MemberLookup.addDecl(*Field);
8039    MemberLookup.resolveKind();
8040    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8041                                               Loc, /*IsArrow=*/false,
8042                                               SS, SourceLocation(), 0,
8043                                               MemberLookup, 0);
8044    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8045                                             Loc, /*IsArrow=*/true,
8046                                             SS, SourceLocation(), 0,
8047                                             MemberLookup, 0);
8048    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8049    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8050
8051    // If the field should be copied with __builtin_memcpy rather than via
8052    // explicit assignments, do so. This optimization only applies for arrays
8053    // of scalars and arrays of class type with trivial copy-assignment
8054    // operators.
8055    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8056        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8057      // Compute the size of the memory buffer to be copied.
8058      QualType SizeType = Context.getSizeType();
8059      llvm::APInt Size(Context.getTypeSize(SizeType),
8060                       Context.getTypeSizeInChars(BaseType).getQuantity());
8061      for (const ConstantArrayType *Array
8062              = Context.getAsConstantArrayType(FieldType);
8063           Array;
8064           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8065        llvm::APInt ArraySize
8066          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8067        Size *= ArraySize;
8068      }
8069
8070      // Take the address of the field references for "from" and "to".
8071      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8072      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8073
8074      bool NeedsCollectableMemCpy =
8075          (BaseType->isRecordType() &&
8076           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8077
8078      if (NeedsCollectableMemCpy) {
8079        if (!CollectableMemCpyRef) {
8080          // Create a reference to the __builtin_objc_memmove_collectable function.
8081          LookupResult R(*this,
8082                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8083                         Loc, LookupOrdinaryName);
8084          LookupName(R, TUScope, true);
8085
8086          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8087          if (!CollectableMemCpy) {
8088            // Something went horribly wrong earlier, and we will have
8089            // complained about it.
8090            Invalid = true;
8091            continue;
8092          }
8093
8094          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8095                                                  CollectableMemCpy->getType(),
8096                                                  VK_LValue, Loc, 0).take();
8097          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8098        }
8099      }
8100      // Create a reference to the __builtin_memcpy builtin function.
8101      else if (!BuiltinMemCpyRef) {
8102        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8103                       LookupOrdinaryName);
8104        LookupName(R, TUScope, true);
8105
8106        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8107        if (!BuiltinMemCpy) {
8108          // Something went horribly wrong earlier, and we will have complained
8109          // about it.
8110          Invalid = true;
8111          continue;
8112        }
8113
8114        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8115                                            BuiltinMemCpy->getType(),
8116                                            VK_LValue, Loc, 0).take();
8117        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8118      }
8119
8120      ASTOwningVector<Expr*> CallArgs(*this);
8121      CallArgs.push_back(To.takeAs<Expr>());
8122      CallArgs.push_back(From.takeAs<Expr>());
8123      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8124      ExprResult Call = ExprError();
8125      if (NeedsCollectableMemCpy)
8126        Call = ActOnCallExpr(/*Scope=*/0,
8127                             CollectableMemCpyRef,
8128                             Loc, move_arg(CallArgs),
8129                             Loc);
8130      else
8131        Call = ActOnCallExpr(/*Scope=*/0,
8132                             BuiltinMemCpyRef,
8133                             Loc, move_arg(CallArgs),
8134                             Loc);
8135
8136      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8137      Statements.push_back(Call.takeAs<Expr>());
8138      continue;
8139    }
8140
8141    // Build the copy of this field.
8142    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8143                                            To.get(), From.get(),
8144                                            /*CopyingBaseSubobject=*/false,
8145                                            /*Copying=*/true);
8146    if (Copy.isInvalid()) {
8147      Diag(CurrentLocation, diag::note_member_synthesized_at)
8148        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8149      CopyAssignOperator->setInvalidDecl();
8150      return;
8151    }
8152
8153    // Success! Record the copy.
8154    Statements.push_back(Copy.takeAs<Stmt>());
8155  }
8156
8157  if (!Invalid) {
8158    // Add a "return *this;"
8159    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8160
8161    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8162    if (Return.isInvalid())
8163      Invalid = true;
8164    else {
8165      Statements.push_back(Return.takeAs<Stmt>());
8166
8167      if (Trap.hasErrorOccurred()) {
8168        Diag(CurrentLocation, diag::note_member_synthesized_at)
8169          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8170        Invalid = true;
8171      }
8172    }
8173  }
8174
8175  if (Invalid) {
8176    CopyAssignOperator->setInvalidDecl();
8177    return;
8178  }
8179
8180  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8181                                            /*isStmtExpr=*/false);
8182  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8183  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8184
8185  if (ASTMutationListener *L = getASTMutationListener()) {
8186    L->CompletedImplicitDefinition(CopyAssignOperator);
8187  }
8188}
8189
8190Sema::ImplicitExceptionSpecification
8191Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8192  ImplicitExceptionSpecification ExceptSpec(Context);
8193
8194  if (ClassDecl->isInvalidDecl())
8195    return ExceptSpec;
8196
8197  // C++0x [except.spec]p14:
8198  //   An implicitly declared special member function (Clause 12) shall have an
8199  //   exception-specification. [...]
8200
8201  // It is unspecified whether or not an implicit move assignment operator
8202  // attempts to deduplicate calls to assignment operators of virtual bases are
8203  // made. As such, this exception specification is effectively unspecified.
8204  // Based on a similar decision made for constness in C++0x, we're erring on
8205  // the side of assuming such calls to be made regardless of whether they
8206  // actually happen.
8207  // Note that a move constructor is not implicitly declared when there are
8208  // virtual bases, but it can still be user-declared and explicitly defaulted.
8209  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8210                                       BaseEnd = ClassDecl->bases_end();
8211       Base != BaseEnd; ++Base) {
8212    if (Base->isVirtual())
8213      continue;
8214
8215    CXXRecordDecl *BaseClassDecl
8216      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8217    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8218                                                           false, 0))
8219      ExceptSpec.CalledDecl(MoveAssign);
8220  }
8221
8222  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8223                                       BaseEnd = ClassDecl->vbases_end();
8224       Base != BaseEnd; ++Base) {
8225    CXXRecordDecl *BaseClassDecl
8226      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8227    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8228                                                           false, 0))
8229      ExceptSpec.CalledDecl(MoveAssign);
8230  }
8231
8232  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8233                                  FieldEnd = ClassDecl->field_end();
8234       Field != FieldEnd;
8235       ++Field) {
8236    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8237    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8238      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8239                                                             false, 0))
8240        ExceptSpec.CalledDecl(MoveAssign);
8241    }
8242  }
8243
8244  return ExceptSpec;
8245}
8246
8247CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8248  // Note: The following rules are largely analoguous to the move
8249  // constructor rules.
8250
8251  ImplicitExceptionSpecification Spec(
8252      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8253
8254  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8255  QualType RetType = Context.getLValueReferenceType(ArgType);
8256  ArgType = Context.getRValueReferenceType(ArgType);
8257
8258  //   An implicitly-declared move assignment operator is an inline public
8259  //   member of its class.
8260  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8261  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8262  SourceLocation ClassLoc = ClassDecl->getLocation();
8263  DeclarationNameInfo NameInfo(Name, ClassLoc);
8264  CXXMethodDecl *MoveAssignment
8265    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8266                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8267                            /*TInfo=*/0, /*isStatic=*/false,
8268                            /*StorageClassAsWritten=*/SC_None,
8269                            /*isInline=*/true,
8270                            /*isConstexpr=*/false,
8271                            SourceLocation());
8272  MoveAssignment->setAccess(AS_public);
8273  MoveAssignment->setDefaulted();
8274  MoveAssignment->setImplicit();
8275  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8276
8277  // Add the parameter to the operator.
8278  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8279                                               ClassLoc, ClassLoc, /*Id=*/0,
8280                                               ArgType, /*TInfo=*/0,
8281                                               SC_None,
8282                                               SC_None, 0);
8283  MoveAssignment->setParams(FromParam);
8284
8285  // Note that we have added this copy-assignment operator.
8286  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8287
8288  // C++0x [class.copy]p9:
8289  //   If the definition of a class X does not explicitly declare a move
8290  //   assignment operator, one will be implicitly declared as defaulted if and
8291  //   only if:
8292  //   [...]
8293  //   - the move assignment operator would not be implicitly defined as
8294  //     deleted.
8295  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8296    // Cache this result so that we don't try to generate this over and over
8297    // on every lookup, leaking memory and wasting time.
8298    ClassDecl->setFailedImplicitMoveAssignment();
8299    return 0;
8300  }
8301
8302  if (Scope *S = getScopeForContext(ClassDecl))
8303    PushOnScopeChains(MoveAssignment, S, false);
8304  ClassDecl->addDecl(MoveAssignment);
8305
8306  AddOverriddenMethods(ClassDecl, MoveAssignment);
8307  return MoveAssignment;
8308}
8309
8310void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8311                                        CXXMethodDecl *MoveAssignOperator) {
8312  assert((MoveAssignOperator->isDefaulted() &&
8313          MoveAssignOperator->isOverloadedOperator() &&
8314          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8315          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8316         "DefineImplicitMoveAssignment called for wrong function");
8317
8318  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8319
8320  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8321    MoveAssignOperator->setInvalidDecl();
8322    return;
8323  }
8324
8325  MoveAssignOperator->setUsed();
8326
8327  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8328  DiagnosticErrorTrap Trap(Diags);
8329
8330  // C++0x [class.copy]p28:
8331  //   The implicitly-defined or move assignment operator for a non-union class
8332  //   X performs memberwise move assignment of its subobjects. The direct base
8333  //   classes of X are assigned first, in the order of their declaration in the
8334  //   base-specifier-list, and then the immediate non-static data members of X
8335  //   are assigned, in the order in which they were declared in the class
8336  //   definition.
8337
8338  // The statements that form the synthesized function body.
8339  ASTOwningVector<Stmt*> Statements(*this);
8340
8341  // The parameter for the "other" object, which we are move from.
8342  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8343  QualType OtherRefType = Other->getType()->
8344      getAs<RValueReferenceType>()->getPointeeType();
8345  assert(OtherRefType.getQualifiers() == 0 &&
8346         "Bad argument type of defaulted move assignment");
8347
8348  // Our location for everything implicitly-generated.
8349  SourceLocation Loc = MoveAssignOperator->getLocation();
8350
8351  // Construct a reference to the "other" object. We'll be using this
8352  // throughout the generated ASTs.
8353  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8354  assert(OtherRef && "Reference to parameter cannot fail!");
8355  // Cast to rvalue.
8356  OtherRef = CastForMoving(*this, OtherRef);
8357
8358  // Construct the "this" pointer. We'll be using this throughout the generated
8359  // ASTs.
8360  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8361  assert(This && "Reference to this cannot fail!");
8362
8363  // Assign base classes.
8364  bool Invalid = false;
8365  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8366       E = ClassDecl->bases_end(); Base != E; ++Base) {
8367    // Form the assignment:
8368    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8369    QualType BaseType = Base->getType().getUnqualifiedType();
8370    if (!BaseType->isRecordType()) {
8371      Invalid = true;
8372      continue;
8373    }
8374
8375    CXXCastPath BasePath;
8376    BasePath.push_back(Base);
8377
8378    // Construct the "from" expression, which is an implicit cast to the
8379    // appropriately-qualified base type.
8380    Expr *From = OtherRef;
8381    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8382                             VK_XValue, &BasePath).take();
8383
8384    // Dereference "this".
8385    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8386
8387    // Implicitly cast "this" to the appropriately-qualified base type.
8388    To = ImpCastExprToType(To.take(),
8389                           Context.getCVRQualifiedType(BaseType,
8390                                     MoveAssignOperator->getTypeQualifiers()),
8391                           CK_UncheckedDerivedToBase,
8392                           VK_LValue, &BasePath);
8393
8394    // Build the move.
8395    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8396                                            To.get(), From,
8397                                            /*CopyingBaseSubobject=*/true,
8398                                            /*Copying=*/false);
8399    if (Move.isInvalid()) {
8400      Diag(CurrentLocation, diag::note_member_synthesized_at)
8401        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8402      MoveAssignOperator->setInvalidDecl();
8403      return;
8404    }
8405
8406    // Success! Record the move.
8407    Statements.push_back(Move.takeAs<Expr>());
8408  }
8409
8410  // \brief Reference to the __builtin_memcpy function.
8411  Expr *BuiltinMemCpyRef = 0;
8412  // \brief Reference to the __builtin_objc_memmove_collectable function.
8413  Expr *CollectableMemCpyRef = 0;
8414
8415  // Assign non-static members.
8416  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8417                                  FieldEnd = ClassDecl->field_end();
8418       Field != FieldEnd; ++Field) {
8419    if (Field->isUnnamedBitfield())
8420      continue;
8421
8422    // Check for members of reference type; we can't move those.
8423    if (Field->getType()->isReferenceType()) {
8424      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8425        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8426      Diag(Field->getLocation(), diag::note_declared_at);
8427      Diag(CurrentLocation, diag::note_member_synthesized_at)
8428        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8429      Invalid = true;
8430      continue;
8431    }
8432
8433    // Check for members of const-qualified, non-class type.
8434    QualType BaseType = Context.getBaseElementType(Field->getType());
8435    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8436      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8437        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8438      Diag(Field->getLocation(), diag::note_declared_at);
8439      Diag(CurrentLocation, diag::note_member_synthesized_at)
8440        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8441      Invalid = true;
8442      continue;
8443    }
8444
8445    // Suppress assigning zero-width bitfields.
8446    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8447      continue;
8448
8449    QualType FieldType = Field->getType().getNonReferenceType();
8450    if (FieldType->isIncompleteArrayType()) {
8451      assert(ClassDecl->hasFlexibleArrayMember() &&
8452             "Incomplete array type is not valid");
8453      continue;
8454    }
8455
8456    // Build references to the field in the object we're copying from and to.
8457    CXXScopeSpec SS; // Intentionally empty
8458    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8459                              LookupMemberName);
8460    MemberLookup.addDecl(*Field);
8461    MemberLookup.resolveKind();
8462    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8463                                               Loc, /*IsArrow=*/false,
8464                                               SS, SourceLocation(), 0,
8465                                               MemberLookup, 0);
8466    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8467                                             Loc, /*IsArrow=*/true,
8468                                             SS, SourceLocation(), 0,
8469                                             MemberLookup, 0);
8470    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8471    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8472
8473    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8474        "Member reference with rvalue base must be rvalue except for reference "
8475        "members, which aren't allowed for move assignment.");
8476
8477    // If the field should be copied with __builtin_memcpy rather than via
8478    // explicit assignments, do so. This optimization only applies for arrays
8479    // of scalars and arrays of class type with trivial move-assignment
8480    // operators.
8481    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8482        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8483      // Compute the size of the memory buffer to be copied.
8484      QualType SizeType = Context.getSizeType();
8485      llvm::APInt Size(Context.getTypeSize(SizeType),
8486                       Context.getTypeSizeInChars(BaseType).getQuantity());
8487      for (const ConstantArrayType *Array
8488              = Context.getAsConstantArrayType(FieldType);
8489           Array;
8490           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8491        llvm::APInt ArraySize
8492          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8493        Size *= ArraySize;
8494      }
8495
8496      // Take the address of the field references for "from" and "to". We
8497      // directly construct UnaryOperators here because semantic analysis
8498      // does not permit us to take the address of an xvalue.
8499      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8500                             Context.getPointerType(From.get()->getType()),
8501                             VK_RValue, OK_Ordinary, Loc);
8502      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8503                           Context.getPointerType(To.get()->getType()),
8504                           VK_RValue, OK_Ordinary, Loc);
8505
8506      bool NeedsCollectableMemCpy =
8507          (BaseType->isRecordType() &&
8508           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8509
8510      if (NeedsCollectableMemCpy) {
8511        if (!CollectableMemCpyRef) {
8512          // Create a reference to the __builtin_objc_memmove_collectable function.
8513          LookupResult R(*this,
8514                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8515                         Loc, LookupOrdinaryName);
8516          LookupName(R, TUScope, true);
8517
8518          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8519          if (!CollectableMemCpy) {
8520            // Something went horribly wrong earlier, and we will have
8521            // complained about it.
8522            Invalid = true;
8523            continue;
8524          }
8525
8526          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8527                                                  CollectableMemCpy->getType(),
8528                                                  VK_LValue, Loc, 0).take();
8529          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8530        }
8531      }
8532      // Create a reference to the __builtin_memcpy builtin function.
8533      else if (!BuiltinMemCpyRef) {
8534        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8535                       LookupOrdinaryName);
8536        LookupName(R, TUScope, true);
8537
8538        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8539        if (!BuiltinMemCpy) {
8540          // Something went horribly wrong earlier, and we will have complained
8541          // about it.
8542          Invalid = true;
8543          continue;
8544        }
8545
8546        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8547                                            BuiltinMemCpy->getType(),
8548                                            VK_LValue, Loc, 0).take();
8549        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8550      }
8551
8552      ASTOwningVector<Expr*> CallArgs(*this);
8553      CallArgs.push_back(To.takeAs<Expr>());
8554      CallArgs.push_back(From.takeAs<Expr>());
8555      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8556      ExprResult Call = ExprError();
8557      if (NeedsCollectableMemCpy)
8558        Call = ActOnCallExpr(/*Scope=*/0,
8559                             CollectableMemCpyRef,
8560                             Loc, move_arg(CallArgs),
8561                             Loc);
8562      else
8563        Call = ActOnCallExpr(/*Scope=*/0,
8564                             BuiltinMemCpyRef,
8565                             Loc, move_arg(CallArgs),
8566                             Loc);
8567
8568      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8569      Statements.push_back(Call.takeAs<Expr>());
8570      continue;
8571    }
8572
8573    // Build the move of this field.
8574    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8575                                            To.get(), From.get(),
8576                                            /*CopyingBaseSubobject=*/false,
8577                                            /*Copying=*/false);
8578    if (Move.isInvalid()) {
8579      Diag(CurrentLocation, diag::note_member_synthesized_at)
8580        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8581      MoveAssignOperator->setInvalidDecl();
8582      return;
8583    }
8584
8585    // Success! Record the copy.
8586    Statements.push_back(Move.takeAs<Stmt>());
8587  }
8588
8589  if (!Invalid) {
8590    // Add a "return *this;"
8591    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8592
8593    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8594    if (Return.isInvalid())
8595      Invalid = true;
8596    else {
8597      Statements.push_back(Return.takeAs<Stmt>());
8598
8599      if (Trap.hasErrorOccurred()) {
8600        Diag(CurrentLocation, diag::note_member_synthesized_at)
8601          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8602        Invalid = true;
8603      }
8604    }
8605  }
8606
8607  if (Invalid) {
8608    MoveAssignOperator->setInvalidDecl();
8609    return;
8610  }
8611
8612  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8613                                            /*isStmtExpr=*/false);
8614  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8615  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8616
8617  if (ASTMutationListener *L = getASTMutationListener()) {
8618    L->CompletedImplicitDefinition(MoveAssignOperator);
8619  }
8620}
8621
8622std::pair<Sema::ImplicitExceptionSpecification, bool>
8623Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8624  if (ClassDecl->isInvalidDecl())
8625    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8626
8627  // C++ [class.copy]p5:
8628  //   The implicitly-declared copy constructor for a class X will
8629  //   have the form
8630  //
8631  //       X::X(const X&)
8632  //
8633  //   if
8634  // FIXME: It ought to be possible to store this on the record.
8635  bool HasConstCopyConstructor = true;
8636
8637  //     -- each direct or virtual base class B of X has a copy
8638  //        constructor whose first parameter is of type const B& or
8639  //        const volatile B&, and
8640  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8641                                       BaseEnd = ClassDecl->bases_end();
8642       HasConstCopyConstructor && Base != BaseEnd;
8643       ++Base) {
8644    // Virtual bases are handled below.
8645    if (Base->isVirtual())
8646      continue;
8647
8648    CXXRecordDecl *BaseClassDecl
8649      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8650    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8651                             &HasConstCopyConstructor);
8652  }
8653
8654  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8655                                       BaseEnd = ClassDecl->vbases_end();
8656       HasConstCopyConstructor && Base != BaseEnd;
8657       ++Base) {
8658    CXXRecordDecl *BaseClassDecl
8659      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8660    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8661                             &HasConstCopyConstructor);
8662  }
8663
8664  //     -- for all the nonstatic data members of X that are of a
8665  //        class type M (or array thereof), each such class type
8666  //        has a copy constructor whose first parameter is of type
8667  //        const M& or const volatile M&.
8668  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8669                                  FieldEnd = ClassDecl->field_end();
8670       HasConstCopyConstructor && Field != FieldEnd;
8671       ++Field) {
8672    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8673    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8674      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8675                               &HasConstCopyConstructor);
8676    }
8677  }
8678  //   Otherwise, the implicitly declared copy constructor will have
8679  //   the form
8680  //
8681  //       X::X(X&)
8682
8683  // C++ [except.spec]p14:
8684  //   An implicitly declared special member function (Clause 12) shall have an
8685  //   exception-specification. [...]
8686  ImplicitExceptionSpecification ExceptSpec(Context);
8687  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8688  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8689                                       BaseEnd = ClassDecl->bases_end();
8690       Base != BaseEnd;
8691       ++Base) {
8692    // Virtual bases are handled below.
8693    if (Base->isVirtual())
8694      continue;
8695
8696    CXXRecordDecl *BaseClassDecl
8697      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8698    if (CXXConstructorDecl *CopyConstructor =
8699          LookupCopyingConstructor(BaseClassDecl, Quals))
8700      ExceptSpec.CalledDecl(CopyConstructor);
8701  }
8702  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8703                                       BaseEnd = ClassDecl->vbases_end();
8704       Base != BaseEnd;
8705       ++Base) {
8706    CXXRecordDecl *BaseClassDecl
8707      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8708    if (CXXConstructorDecl *CopyConstructor =
8709          LookupCopyingConstructor(BaseClassDecl, Quals))
8710      ExceptSpec.CalledDecl(CopyConstructor);
8711  }
8712  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8713                                  FieldEnd = ClassDecl->field_end();
8714       Field != FieldEnd;
8715       ++Field) {
8716    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8717    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8718      if (CXXConstructorDecl *CopyConstructor =
8719        LookupCopyingConstructor(FieldClassDecl, Quals))
8720      ExceptSpec.CalledDecl(CopyConstructor);
8721    }
8722  }
8723
8724  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8725}
8726
8727CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8728                                                    CXXRecordDecl *ClassDecl) {
8729  // C++ [class.copy]p4:
8730  //   If the class definition does not explicitly declare a copy
8731  //   constructor, one is declared implicitly.
8732
8733  ImplicitExceptionSpecification Spec(Context);
8734  bool Const;
8735  llvm::tie(Spec, Const) =
8736    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8737
8738  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8739  QualType ArgType = ClassType;
8740  if (Const)
8741    ArgType = ArgType.withConst();
8742  ArgType = Context.getLValueReferenceType(ArgType);
8743
8744  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8745
8746  DeclarationName Name
8747    = Context.DeclarationNames.getCXXConstructorName(
8748                                           Context.getCanonicalType(ClassType));
8749  SourceLocation ClassLoc = ClassDecl->getLocation();
8750  DeclarationNameInfo NameInfo(Name, ClassLoc);
8751
8752  //   An implicitly-declared copy constructor is an inline public
8753  //   member of its class.
8754  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8755      Context, ClassDecl, ClassLoc, NameInfo,
8756      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8757      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8758      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8759        getLangOptions().CPlusPlus0x);
8760  CopyConstructor->setAccess(AS_public);
8761  CopyConstructor->setDefaulted();
8762  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8763
8764  // Note that we have declared this constructor.
8765  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8766
8767  // Add the parameter to the constructor.
8768  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8769                                               ClassLoc, ClassLoc,
8770                                               /*IdentifierInfo=*/0,
8771                                               ArgType, /*TInfo=*/0,
8772                                               SC_None,
8773                                               SC_None, 0);
8774  CopyConstructor->setParams(FromParam);
8775
8776  if (Scope *S = getScopeForContext(ClassDecl))
8777    PushOnScopeChains(CopyConstructor, S, false);
8778  ClassDecl->addDecl(CopyConstructor);
8779
8780  // C++11 [class.copy]p8:
8781  //   ... If the class definition does not explicitly declare a copy
8782  //   constructor, there is no user-declared move constructor, and there is no
8783  //   user-declared move assignment operator, a copy constructor is implicitly
8784  //   declared as defaulted.
8785  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8786      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8787          !getLangOptions().MicrosoftMode) ||
8788      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8789    CopyConstructor->setDeletedAsWritten();
8790
8791  return CopyConstructor;
8792}
8793
8794void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8795                                   CXXConstructorDecl *CopyConstructor) {
8796  assert((CopyConstructor->isDefaulted() &&
8797          CopyConstructor->isCopyConstructor() &&
8798          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8799         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8800
8801  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8802  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8803
8804  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8805  DiagnosticErrorTrap Trap(Diags);
8806
8807  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8808      Trap.hasErrorOccurred()) {
8809    Diag(CurrentLocation, diag::note_member_synthesized_at)
8810      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8811    CopyConstructor->setInvalidDecl();
8812  }  else {
8813    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8814                                               CopyConstructor->getLocation(),
8815                                               MultiStmtArg(*this, 0, 0),
8816                                               /*isStmtExpr=*/false)
8817                                                              .takeAs<Stmt>());
8818    CopyConstructor->setImplicitlyDefined(true);
8819  }
8820
8821  CopyConstructor->setUsed();
8822  if (ASTMutationListener *L = getASTMutationListener()) {
8823    L->CompletedImplicitDefinition(CopyConstructor);
8824  }
8825}
8826
8827Sema::ImplicitExceptionSpecification
8828Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8829  // C++ [except.spec]p14:
8830  //   An implicitly declared special member function (Clause 12) shall have an
8831  //   exception-specification. [...]
8832  ImplicitExceptionSpecification ExceptSpec(Context);
8833  if (ClassDecl->isInvalidDecl())
8834    return ExceptSpec;
8835
8836  // Direct base-class constructors.
8837  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8838                                       BEnd = ClassDecl->bases_end();
8839       B != BEnd; ++B) {
8840    if (B->isVirtual()) // Handled below.
8841      continue;
8842
8843    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8844      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8845      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8846      // If this is a deleted function, add it anyway. This might be conformant
8847      // with the standard. This might not. I'm not sure. It might not matter.
8848      if (Constructor)
8849        ExceptSpec.CalledDecl(Constructor);
8850    }
8851  }
8852
8853  // Virtual base-class constructors.
8854  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8855                                       BEnd = ClassDecl->vbases_end();
8856       B != BEnd; ++B) {
8857    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8858      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8859      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8860      // If this is a deleted function, add it anyway. This might be conformant
8861      // with the standard. This might not. I'm not sure. It might not matter.
8862      if (Constructor)
8863        ExceptSpec.CalledDecl(Constructor);
8864    }
8865  }
8866
8867  // Field constructors.
8868  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8869                               FEnd = ClassDecl->field_end();
8870       F != FEnd; ++F) {
8871    if (const RecordType *RecordTy
8872              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8873      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8874      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8875      // If this is a deleted function, add it anyway. This might be conformant
8876      // with the standard. This might not. I'm not sure. It might not matter.
8877      // In particular, the problem is that this function never gets called. It
8878      // might just be ill-formed because this function attempts to refer to
8879      // a deleted function here.
8880      if (Constructor)
8881        ExceptSpec.CalledDecl(Constructor);
8882    }
8883  }
8884
8885  return ExceptSpec;
8886}
8887
8888CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8889                                                    CXXRecordDecl *ClassDecl) {
8890  ImplicitExceptionSpecification Spec(
8891      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8892
8893  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8894  QualType ArgType = Context.getRValueReferenceType(ClassType);
8895
8896  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8897
8898  DeclarationName Name
8899    = Context.DeclarationNames.getCXXConstructorName(
8900                                           Context.getCanonicalType(ClassType));
8901  SourceLocation ClassLoc = ClassDecl->getLocation();
8902  DeclarationNameInfo NameInfo(Name, ClassLoc);
8903
8904  // C++0x [class.copy]p11:
8905  //   An implicitly-declared copy/move constructor is an inline public
8906  //   member of its class.
8907  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8908      Context, ClassDecl, ClassLoc, NameInfo,
8909      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8910      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8911      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8912        getLangOptions().CPlusPlus0x);
8913  MoveConstructor->setAccess(AS_public);
8914  MoveConstructor->setDefaulted();
8915  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8916
8917  // Add the parameter to the constructor.
8918  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8919                                               ClassLoc, ClassLoc,
8920                                               /*IdentifierInfo=*/0,
8921                                               ArgType, /*TInfo=*/0,
8922                                               SC_None,
8923                                               SC_None, 0);
8924  MoveConstructor->setParams(FromParam);
8925
8926  // C++0x [class.copy]p9:
8927  //   If the definition of a class X does not explicitly declare a move
8928  //   constructor, one will be implicitly declared as defaulted if and only if:
8929  //   [...]
8930  //   - the move constructor would not be implicitly defined as deleted.
8931  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8932    // Cache this result so that we don't try to generate this over and over
8933    // on every lookup, leaking memory and wasting time.
8934    ClassDecl->setFailedImplicitMoveConstructor();
8935    return 0;
8936  }
8937
8938  // Note that we have declared this constructor.
8939  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8940
8941  if (Scope *S = getScopeForContext(ClassDecl))
8942    PushOnScopeChains(MoveConstructor, S, false);
8943  ClassDecl->addDecl(MoveConstructor);
8944
8945  return MoveConstructor;
8946}
8947
8948void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8949                                   CXXConstructorDecl *MoveConstructor) {
8950  assert((MoveConstructor->isDefaulted() &&
8951          MoveConstructor->isMoveConstructor() &&
8952          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8953         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8954
8955  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8956  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8957
8958  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8959  DiagnosticErrorTrap Trap(Diags);
8960
8961  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8962      Trap.hasErrorOccurred()) {
8963    Diag(CurrentLocation, diag::note_member_synthesized_at)
8964      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8965    MoveConstructor->setInvalidDecl();
8966  }  else {
8967    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8968                                               MoveConstructor->getLocation(),
8969                                               MultiStmtArg(*this, 0, 0),
8970                                               /*isStmtExpr=*/false)
8971                                                              .takeAs<Stmt>());
8972    MoveConstructor->setImplicitlyDefined(true);
8973  }
8974
8975  MoveConstructor->setUsed();
8976
8977  if (ASTMutationListener *L = getASTMutationListener()) {
8978    L->CompletedImplicitDefinition(MoveConstructor);
8979  }
8980}
8981
8982ExprResult
8983Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8984                            CXXConstructorDecl *Constructor,
8985                            MultiExprArg ExprArgs,
8986                            bool HadMultipleCandidates,
8987                            bool RequiresZeroInit,
8988                            unsigned ConstructKind,
8989                            SourceRange ParenRange) {
8990  bool Elidable = false;
8991
8992  // C++0x [class.copy]p34:
8993  //   When certain criteria are met, an implementation is allowed to
8994  //   omit the copy/move construction of a class object, even if the
8995  //   copy/move constructor and/or destructor for the object have
8996  //   side effects. [...]
8997  //     - when a temporary class object that has not been bound to a
8998  //       reference (12.2) would be copied/moved to a class object
8999  //       with the same cv-unqualified type, the copy/move operation
9000  //       can be omitted by constructing the temporary object
9001  //       directly into the target of the omitted copy/move
9002  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9003      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9004    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9005    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9006  }
9007
9008  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9009                               Elidable, move(ExprArgs), HadMultipleCandidates,
9010                               RequiresZeroInit, ConstructKind, ParenRange);
9011}
9012
9013/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9014/// including handling of its default argument expressions.
9015ExprResult
9016Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9017                            CXXConstructorDecl *Constructor, bool Elidable,
9018                            MultiExprArg ExprArgs,
9019                            bool HadMultipleCandidates,
9020                            bool RequiresZeroInit,
9021                            unsigned ConstructKind,
9022                            SourceRange ParenRange) {
9023  unsigned NumExprs = ExprArgs.size();
9024  Expr **Exprs = (Expr **)ExprArgs.release();
9025
9026  for (specific_attr_iterator<NonNullAttr>
9027           i = Constructor->specific_attr_begin<NonNullAttr>(),
9028           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9029    const NonNullAttr *NonNull = *i;
9030    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9031  }
9032
9033  MarkDeclarationReferenced(ConstructLoc, Constructor);
9034  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9035                                        Constructor, Elidable, Exprs, NumExprs,
9036                                        HadMultipleCandidates, RequiresZeroInit,
9037              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9038                                        ParenRange));
9039}
9040
9041bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9042                                        CXXConstructorDecl *Constructor,
9043                                        MultiExprArg Exprs,
9044                                        bool HadMultipleCandidates) {
9045  // FIXME: Provide the correct paren SourceRange when available.
9046  ExprResult TempResult =
9047    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9048                          move(Exprs), HadMultipleCandidates, false,
9049                          CXXConstructExpr::CK_Complete, SourceRange());
9050  if (TempResult.isInvalid())
9051    return true;
9052
9053  Expr *Temp = TempResult.takeAs<Expr>();
9054  CheckImplicitConversions(Temp, VD->getLocation());
9055  MarkDeclarationReferenced(VD->getLocation(), Constructor);
9056  Temp = MaybeCreateExprWithCleanups(Temp);
9057  VD->setInit(Temp);
9058
9059  return false;
9060}
9061
9062void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9063  if (VD->isInvalidDecl()) return;
9064
9065  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9066  if (ClassDecl->isInvalidDecl()) return;
9067  if (ClassDecl->hasTrivialDestructor()) return;
9068  if (ClassDecl->isDependentContext()) return;
9069
9070  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9071  MarkDeclarationReferenced(VD->getLocation(), Destructor);
9072  CheckDestructorAccess(VD->getLocation(), Destructor,
9073                        PDiag(diag::err_access_dtor_var)
9074                        << VD->getDeclName()
9075                        << VD->getType());
9076
9077  if (!VD->hasGlobalStorage()) return;
9078
9079  // Emit warning for non-trivial dtor in global scope (a real global,
9080  // class-static, function-static).
9081  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9082
9083  // TODO: this should be re-enabled for static locals by !CXAAtExit
9084  if (!VD->isStaticLocal())
9085    Diag(VD->getLocation(), diag::warn_global_destructor);
9086}
9087
9088/// AddCXXDirectInitializerToDecl - This action is called immediately after
9089/// ActOnDeclarator, when a C++ direct initializer is present.
9090/// e.g: "int x(1);"
9091void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9092                                         SourceLocation LParenLoc,
9093                                         MultiExprArg Exprs,
9094                                         SourceLocation RParenLoc,
9095                                         bool TypeMayContainAuto) {
9096  // If there is no declaration, there was an error parsing it.  Just ignore
9097  // the initializer.
9098  if (RealDecl == 0)
9099    return;
9100
9101  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9102  if (!VDecl) {
9103    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9104    RealDecl->setInvalidDecl();
9105    return;
9106  }
9107
9108  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9109  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9110    if (Exprs.size() == 0) {
9111      // It isn't possible to write this directly, but it is possible to
9112      // end up in this situation with "auto x(some_pack...);"
9113      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9114        << VDecl->getDeclName() << VDecl->getType()
9115        << VDecl->getSourceRange();
9116      RealDecl->setInvalidDecl();
9117      return;
9118    }
9119
9120    if (Exprs.size() > 1) {
9121      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9122           diag::err_auto_var_init_multiple_expressions)
9123        << VDecl->getDeclName() << VDecl->getType()
9124        << VDecl->getSourceRange();
9125      RealDecl->setInvalidDecl();
9126      return;
9127    }
9128
9129    Expr *Init = Exprs.get()[0];
9130    TypeSourceInfo *DeducedType = 0;
9131    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9132            DAR_Failed)
9133      DiagnoseAutoDeductionFailure(VDecl, Init);
9134    if (!DeducedType) {
9135      RealDecl->setInvalidDecl();
9136      return;
9137    }
9138    VDecl->setTypeSourceInfo(DeducedType);
9139    VDecl->setType(DeducedType->getType());
9140
9141    // In ARC, infer lifetime.
9142    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9143      VDecl->setInvalidDecl();
9144
9145    // If this is a redeclaration, check that the type we just deduced matches
9146    // the previously declared type.
9147    if (VarDecl *Old = VDecl->getPreviousDecl())
9148      MergeVarDeclTypes(VDecl, Old);
9149  }
9150
9151  // We will represent direct-initialization similarly to copy-initialization:
9152  //    int x(1);  -as-> int x = 1;
9153  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9154  //
9155  // Clients that want to distinguish between the two forms, can check for
9156  // direct initializer using VarDecl::hasCXXDirectInitializer().
9157  // A major benefit is that clients that don't particularly care about which
9158  // exactly form was it (like the CodeGen) can handle both cases without
9159  // special case code.
9160
9161  // C++ 8.5p11:
9162  // The form of initialization (using parentheses or '=') is generally
9163  // insignificant, but does matter when the entity being initialized has a
9164  // class type.
9165
9166  if (!VDecl->getType()->isDependentType() &&
9167      !VDecl->getType()->isIncompleteArrayType() &&
9168      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9169                          diag::err_typecheck_decl_incomplete_type)) {
9170    VDecl->setInvalidDecl();
9171    return;
9172  }
9173
9174  // The variable can not have an abstract class type.
9175  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9176                             diag::err_abstract_type_in_decl,
9177                             AbstractVariableType))
9178    VDecl->setInvalidDecl();
9179
9180  const VarDecl *Def;
9181  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9182    Diag(VDecl->getLocation(), diag::err_redefinition)
9183    << VDecl->getDeclName();
9184    Diag(Def->getLocation(), diag::note_previous_definition);
9185    VDecl->setInvalidDecl();
9186    return;
9187  }
9188
9189  // C++ [class.static.data]p4
9190  //   If a static data member is of const integral or const
9191  //   enumeration type, its declaration in the class definition can
9192  //   specify a constant-initializer which shall be an integral
9193  //   constant expression (5.19). In that case, the member can appear
9194  //   in integral constant expressions. The member shall still be
9195  //   defined in a namespace scope if it is used in the program and the
9196  //   namespace scope definition shall not contain an initializer.
9197  //
9198  // We already performed a redefinition check above, but for static
9199  // data members we also need to check whether there was an in-class
9200  // declaration with an initializer.
9201  const VarDecl* PrevInit = 0;
9202  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9203    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9204    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9205    return;
9206  }
9207
9208  bool IsDependent = false;
9209  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9210    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9211      VDecl->setInvalidDecl();
9212      return;
9213    }
9214
9215    if (Exprs.get()[I]->isTypeDependent())
9216      IsDependent = true;
9217  }
9218
9219  // If either the declaration has a dependent type or if any of the
9220  // expressions is type-dependent, we represent the initialization
9221  // via a ParenListExpr for later use during template instantiation.
9222  if (VDecl->getType()->isDependentType() || IsDependent) {
9223    // Let clients know that initialization was done with a direct initializer.
9224    VDecl->setCXXDirectInitializer(true);
9225
9226    // Store the initialization expressions as a ParenListExpr.
9227    unsigned NumExprs = Exprs.size();
9228    VDecl->setInit(new (Context) ParenListExpr(
9229        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9230        VDecl->getType().getNonReferenceType()));
9231    return;
9232  }
9233
9234  // Capture the variable that is being initialized and the style of
9235  // initialization.
9236  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9237
9238  // FIXME: Poor source location information.
9239  InitializationKind Kind
9240    = InitializationKind::CreateDirect(VDecl->getLocation(),
9241                                       LParenLoc, RParenLoc);
9242
9243  QualType T = VDecl->getType();
9244  InitializationSequence InitSeq(*this, Entity, Kind,
9245                                 Exprs.get(), Exprs.size());
9246  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9247  if (Result.isInvalid()) {
9248    VDecl->setInvalidDecl();
9249    return;
9250  } else if (T != VDecl->getType()) {
9251    VDecl->setType(T);
9252    Result.get()->setType(T);
9253  }
9254
9255
9256  Expr *Init = Result.get();
9257  CheckImplicitConversions(Init, LParenLoc);
9258
9259  Init = MaybeCreateExprWithCleanups(Init);
9260  VDecl->setInit(Init);
9261  VDecl->setCXXDirectInitializer(true);
9262
9263  CheckCompleteVariableDeclaration(VDecl);
9264}
9265
9266/// \brief Given a constructor and the set of arguments provided for the
9267/// constructor, convert the arguments and add any required default arguments
9268/// to form a proper call to this constructor.
9269///
9270/// \returns true if an error occurred, false otherwise.
9271bool
9272Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9273                              MultiExprArg ArgsPtr,
9274                              SourceLocation Loc,
9275                              ASTOwningVector<Expr*> &ConvertedArgs) {
9276  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9277  unsigned NumArgs = ArgsPtr.size();
9278  Expr **Args = (Expr **)ArgsPtr.get();
9279
9280  const FunctionProtoType *Proto
9281    = Constructor->getType()->getAs<FunctionProtoType>();
9282  assert(Proto && "Constructor without a prototype?");
9283  unsigned NumArgsInProto = Proto->getNumArgs();
9284
9285  // If too few arguments are available, we'll fill in the rest with defaults.
9286  if (NumArgs < NumArgsInProto)
9287    ConvertedArgs.reserve(NumArgsInProto);
9288  else
9289    ConvertedArgs.reserve(NumArgs);
9290
9291  VariadicCallType CallType =
9292    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9293  SmallVector<Expr *, 8> AllArgs;
9294  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9295                                        Proto, 0, Args, NumArgs, AllArgs,
9296                                        CallType);
9297  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9298    ConvertedArgs.push_back(AllArgs[i]);
9299  return Invalid;
9300}
9301
9302static inline bool
9303CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9304                                       const FunctionDecl *FnDecl) {
9305  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9306  if (isa<NamespaceDecl>(DC)) {
9307    return SemaRef.Diag(FnDecl->getLocation(),
9308                        diag::err_operator_new_delete_declared_in_namespace)
9309      << FnDecl->getDeclName();
9310  }
9311
9312  if (isa<TranslationUnitDecl>(DC) &&
9313      FnDecl->getStorageClass() == SC_Static) {
9314    return SemaRef.Diag(FnDecl->getLocation(),
9315                        diag::err_operator_new_delete_declared_static)
9316      << FnDecl->getDeclName();
9317  }
9318
9319  return false;
9320}
9321
9322static inline bool
9323CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9324                            CanQualType ExpectedResultType,
9325                            CanQualType ExpectedFirstParamType,
9326                            unsigned DependentParamTypeDiag,
9327                            unsigned InvalidParamTypeDiag) {
9328  QualType ResultType =
9329    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9330
9331  // Check that the result type is not dependent.
9332  if (ResultType->isDependentType())
9333    return SemaRef.Diag(FnDecl->getLocation(),
9334                        diag::err_operator_new_delete_dependent_result_type)
9335    << FnDecl->getDeclName() << ExpectedResultType;
9336
9337  // Check that the result type is what we expect.
9338  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9339    return SemaRef.Diag(FnDecl->getLocation(),
9340                        diag::err_operator_new_delete_invalid_result_type)
9341    << FnDecl->getDeclName() << ExpectedResultType;
9342
9343  // A function template must have at least 2 parameters.
9344  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9345    return SemaRef.Diag(FnDecl->getLocation(),
9346                      diag::err_operator_new_delete_template_too_few_parameters)
9347        << FnDecl->getDeclName();
9348
9349  // The function decl must have at least 1 parameter.
9350  if (FnDecl->getNumParams() == 0)
9351    return SemaRef.Diag(FnDecl->getLocation(),
9352                        diag::err_operator_new_delete_too_few_parameters)
9353      << FnDecl->getDeclName();
9354
9355  // Check the the first parameter type is not dependent.
9356  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9357  if (FirstParamType->isDependentType())
9358    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9359      << FnDecl->getDeclName() << ExpectedFirstParamType;
9360
9361  // Check that the first parameter type is what we expect.
9362  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9363      ExpectedFirstParamType)
9364    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9365    << FnDecl->getDeclName() << ExpectedFirstParamType;
9366
9367  return false;
9368}
9369
9370static bool
9371CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9372  // C++ [basic.stc.dynamic.allocation]p1:
9373  //   A program is ill-formed if an allocation function is declared in a
9374  //   namespace scope other than global scope or declared static in global
9375  //   scope.
9376  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9377    return true;
9378
9379  CanQualType SizeTy =
9380    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9381
9382  // C++ [basic.stc.dynamic.allocation]p1:
9383  //  The return type shall be void*. The first parameter shall have type
9384  //  std::size_t.
9385  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9386                                  SizeTy,
9387                                  diag::err_operator_new_dependent_param_type,
9388                                  diag::err_operator_new_param_type))
9389    return true;
9390
9391  // C++ [basic.stc.dynamic.allocation]p1:
9392  //  The first parameter shall not have an associated default argument.
9393  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9394    return SemaRef.Diag(FnDecl->getLocation(),
9395                        diag::err_operator_new_default_arg)
9396      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9397
9398  return false;
9399}
9400
9401static bool
9402CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9403  // C++ [basic.stc.dynamic.deallocation]p1:
9404  //   A program is ill-formed if deallocation functions are declared in a
9405  //   namespace scope other than global scope or declared static in global
9406  //   scope.
9407  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9408    return true;
9409
9410  // C++ [basic.stc.dynamic.deallocation]p2:
9411  //   Each deallocation function shall return void and its first parameter
9412  //   shall be void*.
9413  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9414                                  SemaRef.Context.VoidPtrTy,
9415                                 diag::err_operator_delete_dependent_param_type,
9416                                 diag::err_operator_delete_param_type))
9417    return true;
9418
9419  return false;
9420}
9421
9422/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9423/// of this overloaded operator is well-formed. If so, returns false;
9424/// otherwise, emits appropriate diagnostics and returns true.
9425bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9426  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9427         "Expected an overloaded operator declaration");
9428
9429  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9430
9431  // C++ [over.oper]p5:
9432  //   The allocation and deallocation functions, operator new,
9433  //   operator new[], operator delete and operator delete[], are
9434  //   described completely in 3.7.3. The attributes and restrictions
9435  //   found in the rest of this subclause do not apply to them unless
9436  //   explicitly stated in 3.7.3.
9437  if (Op == OO_Delete || Op == OO_Array_Delete)
9438    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9439
9440  if (Op == OO_New || Op == OO_Array_New)
9441    return CheckOperatorNewDeclaration(*this, FnDecl);
9442
9443  // C++ [over.oper]p6:
9444  //   An operator function shall either be a non-static member
9445  //   function or be a non-member function and have at least one
9446  //   parameter whose type is a class, a reference to a class, an
9447  //   enumeration, or a reference to an enumeration.
9448  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9449    if (MethodDecl->isStatic())
9450      return Diag(FnDecl->getLocation(),
9451                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9452  } else {
9453    bool ClassOrEnumParam = false;
9454    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9455                                   ParamEnd = FnDecl->param_end();
9456         Param != ParamEnd; ++Param) {
9457      QualType ParamType = (*Param)->getType().getNonReferenceType();
9458      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9459          ParamType->isEnumeralType()) {
9460        ClassOrEnumParam = true;
9461        break;
9462      }
9463    }
9464
9465    if (!ClassOrEnumParam)
9466      return Diag(FnDecl->getLocation(),
9467                  diag::err_operator_overload_needs_class_or_enum)
9468        << FnDecl->getDeclName();
9469  }
9470
9471  // C++ [over.oper]p8:
9472  //   An operator function cannot have default arguments (8.3.6),
9473  //   except where explicitly stated below.
9474  //
9475  // Only the function-call operator allows default arguments
9476  // (C++ [over.call]p1).
9477  if (Op != OO_Call) {
9478    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9479         Param != FnDecl->param_end(); ++Param) {
9480      if ((*Param)->hasDefaultArg())
9481        return Diag((*Param)->getLocation(),
9482                    diag::err_operator_overload_default_arg)
9483          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9484    }
9485  }
9486
9487  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9488    { false, false, false }
9489#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9490    , { Unary, Binary, MemberOnly }
9491#include "clang/Basic/OperatorKinds.def"
9492  };
9493
9494  bool CanBeUnaryOperator = OperatorUses[Op][0];
9495  bool CanBeBinaryOperator = OperatorUses[Op][1];
9496  bool MustBeMemberOperator = OperatorUses[Op][2];
9497
9498  // C++ [over.oper]p8:
9499  //   [...] Operator functions cannot have more or fewer parameters
9500  //   than the number required for the corresponding operator, as
9501  //   described in the rest of this subclause.
9502  unsigned NumParams = FnDecl->getNumParams()
9503                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9504  if (Op != OO_Call &&
9505      ((NumParams == 1 && !CanBeUnaryOperator) ||
9506       (NumParams == 2 && !CanBeBinaryOperator) ||
9507       (NumParams < 1) || (NumParams > 2))) {
9508    // We have the wrong number of parameters.
9509    unsigned ErrorKind;
9510    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9511      ErrorKind = 2;  // 2 -> unary or binary.
9512    } else if (CanBeUnaryOperator) {
9513      ErrorKind = 0;  // 0 -> unary
9514    } else {
9515      assert(CanBeBinaryOperator &&
9516             "All non-call overloaded operators are unary or binary!");
9517      ErrorKind = 1;  // 1 -> binary
9518    }
9519
9520    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9521      << FnDecl->getDeclName() << NumParams << ErrorKind;
9522  }
9523
9524  // Overloaded operators other than operator() cannot be variadic.
9525  if (Op != OO_Call &&
9526      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9527    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9528      << FnDecl->getDeclName();
9529  }
9530
9531  // Some operators must be non-static member functions.
9532  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9533    return Diag(FnDecl->getLocation(),
9534                diag::err_operator_overload_must_be_member)
9535      << FnDecl->getDeclName();
9536  }
9537
9538  // C++ [over.inc]p1:
9539  //   The user-defined function called operator++ implements the
9540  //   prefix and postfix ++ operator. If this function is a member
9541  //   function with no parameters, or a non-member function with one
9542  //   parameter of class or enumeration type, it defines the prefix
9543  //   increment operator ++ for objects of that type. If the function
9544  //   is a member function with one parameter (which shall be of type
9545  //   int) or a non-member function with two parameters (the second
9546  //   of which shall be of type int), it defines the postfix
9547  //   increment operator ++ for objects of that type.
9548  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9549    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9550    bool ParamIsInt = false;
9551    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9552      ParamIsInt = BT->getKind() == BuiltinType::Int;
9553
9554    if (!ParamIsInt)
9555      return Diag(LastParam->getLocation(),
9556                  diag::err_operator_overload_post_incdec_must_be_int)
9557        << LastParam->getType() << (Op == OO_MinusMinus);
9558  }
9559
9560  return false;
9561}
9562
9563/// CheckLiteralOperatorDeclaration - Check whether the declaration
9564/// of this literal operator function is well-formed. If so, returns
9565/// false; otherwise, emits appropriate diagnostics and returns true.
9566bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9567  DeclContext *DC = FnDecl->getDeclContext();
9568  Decl::Kind Kind = DC->getDeclKind();
9569  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9570      Kind != Decl::LinkageSpec) {
9571    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9572      << FnDecl->getDeclName();
9573    return true;
9574  }
9575
9576  bool Valid = false;
9577
9578  // template <char...> type operator "" name() is the only valid template
9579  // signature, and the only valid signature with no parameters.
9580  if (FnDecl->param_size() == 0) {
9581    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9582      // Must have only one template parameter
9583      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9584      if (Params->size() == 1) {
9585        NonTypeTemplateParmDecl *PmDecl =
9586          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9587
9588        // The template parameter must be a char parameter pack.
9589        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9590            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9591          Valid = true;
9592      }
9593    }
9594  } else {
9595    // Check the first parameter
9596    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9597
9598    QualType T = (*Param)->getType();
9599
9600    // unsigned long long int, long double, and any character type are allowed
9601    // as the only parameters.
9602    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9603        Context.hasSameType(T, Context.LongDoubleTy) ||
9604        Context.hasSameType(T, Context.CharTy) ||
9605        Context.hasSameType(T, Context.WCharTy) ||
9606        Context.hasSameType(T, Context.Char16Ty) ||
9607        Context.hasSameType(T, Context.Char32Ty)) {
9608      if (++Param == FnDecl->param_end())
9609        Valid = true;
9610      goto FinishedParams;
9611    }
9612
9613    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9614    const PointerType *PT = T->getAs<PointerType>();
9615    if (!PT)
9616      goto FinishedParams;
9617    T = PT->getPointeeType();
9618    if (!T.isConstQualified())
9619      goto FinishedParams;
9620    T = T.getUnqualifiedType();
9621
9622    // Move on to the second parameter;
9623    ++Param;
9624
9625    // If there is no second parameter, the first must be a const char *
9626    if (Param == FnDecl->param_end()) {
9627      if (Context.hasSameType(T, Context.CharTy))
9628        Valid = true;
9629      goto FinishedParams;
9630    }
9631
9632    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9633    // are allowed as the first parameter to a two-parameter function
9634    if (!(Context.hasSameType(T, Context.CharTy) ||
9635          Context.hasSameType(T, Context.WCharTy) ||
9636          Context.hasSameType(T, Context.Char16Ty) ||
9637          Context.hasSameType(T, Context.Char32Ty)))
9638      goto FinishedParams;
9639
9640    // The second and final parameter must be an std::size_t
9641    T = (*Param)->getType().getUnqualifiedType();
9642    if (Context.hasSameType(T, Context.getSizeType()) &&
9643        ++Param == FnDecl->param_end())
9644      Valid = true;
9645  }
9646
9647  // FIXME: This diagnostic is absolutely terrible.
9648FinishedParams:
9649  if (!Valid) {
9650    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9651      << FnDecl->getDeclName();
9652    return true;
9653  }
9654
9655  StringRef LiteralName
9656    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9657  if (LiteralName[0] != '_') {
9658    // C++0x [usrlit.suffix]p1:
9659    //   Literal suffix identifiers that do not start with an underscore are
9660    //   reserved for future standardization.
9661    bool IsHexFloat = true;
9662    if (LiteralName.size() > 1 &&
9663        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9664      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9665        if (!isdigit(LiteralName[I])) {
9666          IsHexFloat = false;
9667          break;
9668        }
9669      }
9670    }
9671
9672    if (IsHexFloat)
9673      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9674        << LiteralName;
9675    else
9676      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9677  }
9678
9679  return false;
9680}
9681
9682/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9683/// linkage specification, including the language and (if present)
9684/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9685/// the location of the language string literal, which is provided
9686/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9687/// the '{' brace. Otherwise, this linkage specification does not
9688/// have any braces.
9689Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9690                                           SourceLocation LangLoc,
9691                                           StringRef Lang,
9692                                           SourceLocation LBraceLoc) {
9693  LinkageSpecDecl::LanguageIDs Language;
9694  if (Lang == "\"C\"")
9695    Language = LinkageSpecDecl::lang_c;
9696  else if (Lang == "\"C++\"")
9697    Language = LinkageSpecDecl::lang_cxx;
9698  else {
9699    Diag(LangLoc, diag::err_bad_language);
9700    return 0;
9701  }
9702
9703  // FIXME: Add all the various semantics of linkage specifications
9704
9705  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9706                                               ExternLoc, LangLoc, Language);
9707  CurContext->addDecl(D);
9708  PushDeclContext(S, D);
9709  return D;
9710}
9711
9712/// ActOnFinishLinkageSpecification - Complete the definition of
9713/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9714/// valid, it's the position of the closing '}' brace in a linkage
9715/// specification that uses braces.
9716Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9717                                            Decl *LinkageSpec,
9718                                            SourceLocation RBraceLoc) {
9719  if (LinkageSpec) {
9720    if (RBraceLoc.isValid()) {
9721      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9722      LSDecl->setRBraceLoc(RBraceLoc);
9723    }
9724    PopDeclContext();
9725  }
9726  return LinkageSpec;
9727}
9728
9729/// \brief Perform semantic analysis for the variable declaration that
9730/// occurs within a C++ catch clause, returning the newly-created
9731/// variable.
9732VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9733                                         TypeSourceInfo *TInfo,
9734                                         SourceLocation StartLoc,
9735                                         SourceLocation Loc,
9736                                         IdentifierInfo *Name) {
9737  bool Invalid = false;
9738  QualType ExDeclType = TInfo->getType();
9739
9740  // Arrays and functions decay.
9741  if (ExDeclType->isArrayType())
9742    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9743  else if (ExDeclType->isFunctionType())
9744    ExDeclType = Context.getPointerType(ExDeclType);
9745
9746  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9747  // The exception-declaration shall not denote a pointer or reference to an
9748  // incomplete type, other than [cv] void*.
9749  // N2844 forbids rvalue references.
9750  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9751    Diag(Loc, diag::err_catch_rvalue_ref);
9752    Invalid = true;
9753  }
9754
9755  QualType BaseType = ExDeclType;
9756  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9757  unsigned DK = diag::err_catch_incomplete;
9758  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9759    BaseType = Ptr->getPointeeType();
9760    Mode = 1;
9761    DK = diag::err_catch_incomplete_ptr;
9762  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9763    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9764    BaseType = Ref->getPointeeType();
9765    Mode = 2;
9766    DK = diag::err_catch_incomplete_ref;
9767  }
9768  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9769      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9770    Invalid = true;
9771
9772  if (!Invalid && !ExDeclType->isDependentType() &&
9773      RequireNonAbstractType(Loc, ExDeclType,
9774                             diag::err_abstract_type_in_decl,
9775                             AbstractVariableType))
9776    Invalid = true;
9777
9778  // Only the non-fragile NeXT runtime currently supports C++ catches
9779  // of ObjC types, and no runtime supports catching ObjC types by value.
9780  if (!Invalid && getLangOptions().ObjC1) {
9781    QualType T = ExDeclType;
9782    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9783      T = RT->getPointeeType();
9784
9785    if (T->isObjCObjectType()) {
9786      Diag(Loc, diag::err_objc_object_catch);
9787      Invalid = true;
9788    } else if (T->isObjCObjectPointerType()) {
9789      if (!getLangOptions().ObjCNonFragileABI)
9790        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9791    }
9792  }
9793
9794  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9795                                    ExDeclType, TInfo, SC_None, SC_None);
9796  ExDecl->setExceptionVariable(true);
9797
9798  // In ARC, infer 'retaining' for variables of retainable type.
9799  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9800    Invalid = true;
9801
9802  if (!Invalid && !ExDeclType->isDependentType()) {
9803    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9804      // C++ [except.handle]p16:
9805      //   The object declared in an exception-declaration or, if the
9806      //   exception-declaration does not specify a name, a temporary (12.2) is
9807      //   copy-initialized (8.5) from the exception object. [...]
9808      //   The object is destroyed when the handler exits, after the destruction
9809      //   of any automatic objects initialized within the handler.
9810      //
9811      // We just pretend to initialize the object with itself, then make sure
9812      // it can be destroyed later.
9813      QualType initType = ExDeclType;
9814
9815      InitializedEntity entity =
9816        InitializedEntity::InitializeVariable(ExDecl);
9817      InitializationKind initKind =
9818        InitializationKind::CreateCopy(Loc, SourceLocation());
9819
9820      Expr *opaqueValue =
9821        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9822      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9823      ExprResult result = sequence.Perform(*this, entity, initKind,
9824                                           MultiExprArg(&opaqueValue, 1));
9825      if (result.isInvalid())
9826        Invalid = true;
9827      else {
9828        // If the constructor used was non-trivial, set this as the
9829        // "initializer".
9830        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9831        if (!construct->getConstructor()->isTrivial()) {
9832          Expr *init = MaybeCreateExprWithCleanups(construct);
9833          ExDecl->setInit(init);
9834        }
9835
9836        // And make sure it's destructable.
9837        FinalizeVarWithDestructor(ExDecl, recordType);
9838      }
9839    }
9840  }
9841
9842  if (Invalid)
9843    ExDecl->setInvalidDecl();
9844
9845  return ExDecl;
9846}
9847
9848/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9849/// handler.
9850Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9851  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9852  bool Invalid = D.isInvalidType();
9853
9854  // Check for unexpanded parameter packs.
9855  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9856                                               UPPC_ExceptionType)) {
9857    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9858                                             D.getIdentifierLoc());
9859    Invalid = true;
9860  }
9861
9862  IdentifierInfo *II = D.getIdentifier();
9863  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9864                                             LookupOrdinaryName,
9865                                             ForRedeclaration)) {
9866    // The scope should be freshly made just for us. There is just no way
9867    // it contains any previous declaration.
9868    assert(!S->isDeclScope(PrevDecl));
9869    if (PrevDecl->isTemplateParameter()) {
9870      // Maybe we will complain about the shadowed template parameter.
9871      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9872      PrevDecl = 0;
9873    }
9874  }
9875
9876  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9877    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9878      << D.getCXXScopeSpec().getRange();
9879    Invalid = true;
9880  }
9881
9882  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9883                                              D.getSourceRange().getBegin(),
9884                                              D.getIdentifierLoc(),
9885                                              D.getIdentifier());
9886  if (Invalid)
9887    ExDecl->setInvalidDecl();
9888
9889  // Add the exception declaration into this scope.
9890  if (II)
9891    PushOnScopeChains(ExDecl, S);
9892  else
9893    CurContext->addDecl(ExDecl);
9894
9895  ProcessDeclAttributes(S, ExDecl, D);
9896  return ExDecl;
9897}
9898
9899Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9900                                         Expr *AssertExpr,
9901                                         Expr *AssertMessageExpr_,
9902                                         SourceLocation RParenLoc) {
9903  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9904
9905  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9906    llvm::APSInt Cond;
9907    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9908                             diag::err_static_assert_expression_is_not_constant,
9909                                        /*AllowFold=*/false))
9910      return 0;
9911
9912    if (!Cond)
9913      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9914        << AssertMessage->getString() << AssertExpr->getSourceRange();
9915  }
9916
9917  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9918    return 0;
9919
9920  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9921                                        AssertExpr, AssertMessage, RParenLoc);
9922
9923  CurContext->addDecl(Decl);
9924  return Decl;
9925}
9926
9927/// \brief Perform semantic analysis of the given friend type declaration.
9928///
9929/// \returns A friend declaration that.
9930FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9931                                      SourceLocation FriendLoc,
9932                                      TypeSourceInfo *TSInfo) {
9933  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9934
9935  QualType T = TSInfo->getType();
9936  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9937
9938  // C++03 [class.friend]p2:
9939  //   An elaborated-type-specifier shall be used in a friend declaration
9940  //   for a class.*
9941  //
9942  //   * The class-key of the elaborated-type-specifier is required.
9943  if (!ActiveTemplateInstantiations.empty()) {
9944    // Do not complain about the form of friend template types during
9945    // template instantiation; we will already have complained when the
9946    // template was declared.
9947  } else if (!T->isElaboratedTypeSpecifier()) {
9948    // If we evaluated the type to a record type, suggest putting
9949    // a tag in front.
9950    if (const RecordType *RT = T->getAs<RecordType>()) {
9951      RecordDecl *RD = RT->getDecl();
9952
9953      std::string InsertionText = std::string(" ") + RD->getKindName();
9954
9955      Diag(TypeRange.getBegin(),
9956           getLangOptions().CPlusPlus0x ?
9957             diag::warn_cxx98_compat_unelaborated_friend_type :
9958             diag::ext_unelaborated_friend_type)
9959        << (unsigned) RD->getTagKind()
9960        << T
9961        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9962                                      InsertionText);
9963    } else {
9964      Diag(FriendLoc,
9965           getLangOptions().CPlusPlus0x ?
9966             diag::warn_cxx98_compat_nonclass_type_friend :
9967             diag::ext_nonclass_type_friend)
9968        << T
9969        << SourceRange(FriendLoc, TypeRange.getEnd());
9970    }
9971  } else if (T->getAs<EnumType>()) {
9972    Diag(FriendLoc,
9973         getLangOptions().CPlusPlus0x ?
9974           diag::warn_cxx98_compat_enum_friend :
9975           diag::ext_enum_friend)
9976      << T
9977      << SourceRange(FriendLoc, TypeRange.getEnd());
9978  }
9979
9980  // C++0x [class.friend]p3:
9981  //   If the type specifier in a friend declaration designates a (possibly
9982  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9983  //   the friend declaration is ignored.
9984
9985  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9986  // in [class.friend]p3 that we do not implement.
9987
9988  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9989}
9990
9991/// Handle a friend tag declaration where the scope specifier was
9992/// templated.
9993Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9994                                    unsigned TagSpec, SourceLocation TagLoc,
9995                                    CXXScopeSpec &SS,
9996                                    IdentifierInfo *Name, SourceLocation NameLoc,
9997                                    AttributeList *Attr,
9998                                    MultiTemplateParamsArg TempParamLists) {
9999  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10000
10001  bool isExplicitSpecialization = false;
10002  bool Invalid = false;
10003
10004  if (TemplateParameterList *TemplateParams
10005        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10006                                                  TempParamLists.get(),
10007                                                  TempParamLists.size(),
10008                                                  /*friend*/ true,
10009                                                  isExplicitSpecialization,
10010                                                  Invalid)) {
10011    if (TemplateParams->size() > 0) {
10012      // This is a declaration of a class template.
10013      if (Invalid)
10014        return 0;
10015
10016      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10017                                SS, Name, NameLoc, Attr,
10018                                TemplateParams, AS_public,
10019                                /*ModulePrivateLoc=*/SourceLocation(),
10020                                TempParamLists.size() - 1,
10021                   (TemplateParameterList**) TempParamLists.release()).take();
10022    } else {
10023      // The "template<>" header is extraneous.
10024      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10025        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10026      isExplicitSpecialization = true;
10027    }
10028  }
10029
10030  if (Invalid) return 0;
10031
10032  bool isAllExplicitSpecializations = true;
10033  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10034    if (TempParamLists.get()[I]->size()) {
10035      isAllExplicitSpecializations = false;
10036      break;
10037    }
10038  }
10039
10040  // FIXME: don't ignore attributes.
10041
10042  // If it's explicit specializations all the way down, just forget
10043  // about the template header and build an appropriate non-templated
10044  // friend.  TODO: for source fidelity, remember the headers.
10045  if (isAllExplicitSpecializations) {
10046    if (SS.isEmpty()) {
10047      bool Owned = false;
10048      bool IsDependent = false;
10049      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10050                      Attr, AS_public,
10051                      /*ModulePrivateLoc=*/SourceLocation(),
10052                      MultiTemplateParamsArg(), Owned, IsDependent,
10053                      /*ScopedEnumKWLoc=*/SourceLocation(),
10054                      /*ScopedEnumUsesClassTag=*/false,
10055                      /*UnderlyingType=*/TypeResult());
10056    }
10057
10058    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10059    ElaboratedTypeKeyword Keyword
10060      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10061    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10062                                   *Name, NameLoc);
10063    if (T.isNull())
10064      return 0;
10065
10066    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10067    if (isa<DependentNameType>(T)) {
10068      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10069      TL.setKeywordLoc(TagLoc);
10070      TL.setQualifierLoc(QualifierLoc);
10071      TL.setNameLoc(NameLoc);
10072    } else {
10073      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10074      TL.setKeywordLoc(TagLoc);
10075      TL.setQualifierLoc(QualifierLoc);
10076      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10077    }
10078
10079    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10080                                            TSI, FriendLoc);
10081    Friend->setAccess(AS_public);
10082    CurContext->addDecl(Friend);
10083    return Friend;
10084  }
10085
10086  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10087
10088
10089
10090  // Handle the case of a templated-scope friend class.  e.g.
10091  //   template <class T> class A<T>::B;
10092  // FIXME: we don't support these right now.
10093  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10094  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10095  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10096  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10097  TL.setKeywordLoc(TagLoc);
10098  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10099  TL.setNameLoc(NameLoc);
10100
10101  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10102                                          TSI, FriendLoc);
10103  Friend->setAccess(AS_public);
10104  Friend->setUnsupportedFriend(true);
10105  CurContext->addDecl(Friend);
10106  return Friend;
10107}
10108
10109
10110/// Handle a friend type declaration.  This works in tandem with
10111/// ActOnTag.
10112///
10113/// Notes on friend class templates:
10114///
10115/// We generally treat friend class declarations as if they were
10116/// declaring a class.  So, for example, the elaborated type specifier
10117/// in a friend declaration is required to obey the restrictions of a
10118/// class-head (i.e. no typedefs in the scope chain), template
10119/// parameters are required to match up with simple template-ids, &c.
10120/// However, unlike when declaring a template specialization, it's
10121/// okay to refer to a template specialization without an empty
10122/// template parameter declaration, e.g.
10123///   friend class A<T>::B<unsigned>;
10124/// We permit this as a special case; if there are any template
10125/// parameters present at all, require proper matching, i.e.
10126///   template <> template <class T> friend class A<int>::B;
10127Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10128                                MultiTemplateParamsArg TempParams) {
10129  SourceLocation Loc = DS.getSourceRange().getBegin();
10130
10131  assert(DS.isFriendSpecified());
10132  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10133
10134  // Try to convert the decl specifier to a type.  This works for
10135  // friend templates because ActOnTag never produces a ClassTemplateDecl
10136  // for a TUK_Friend.
10137  Declarator TheDeclarator(DS, Declarator::MemberContext);
10138  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10139  QualType T = TSI->getType();
10140  if (TheDeclarator.isInvalidType())
10141    return 0;
10142
10143  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10144    return 0;
10145
10146  // This is definitely an error in C++98.  It's probably meant to
10147  // be forbidden in C++0x, too, but the specification is just
10148  // poorly written.
10149  //
10150  // The problem is with declarations like the following:
10151  //   template <T> friend A<T>::foo;
10152  // where deciding whether a class C is a friend or not now hinges
10153  // on whether there exists an instantiation of A that causes
10154  // 'foo' to equal C.  There are restrictions on class-heads
10155  // (which we declare (by fiat) elaborated friend declarations to
10156  // be) that makes this tractable.
10157  //
10158  // FIXME: handle "template <> friend class A<T>;", which
10159  // is possibly well-formed?  Who even knows?
10160  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10161    Diag(Loc, diag::err_tagless_friend_type_template)
10162      << DS.getSourceRange();
10163    return 0;
10164  }
10165
10166  // C++98 [class.friend]p1: A friend of a class is a function
10167  //   or class that is not a member of the class . . .
10168  // This is fixed in DR77, which just barely didn't make the C++03
10169  // deadline.  It's also a very silly restriction that seriously
10170  // affects inner classes and which nobody else seems to implement;
10171  // thus we never diagnose it, not even in -pedantic.
10172  //
10173  // But note that we could warn about it: it's always useless to
10174  // friend one of your own members (it's not, however, worthless to
10175  // friend a member of an arbitrary specialization of your template).
10176
10177  Decl *D;
10178  if (unsigned NumTempParamLists = TempParams.size())
10179    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10180                                   NumTempParamLists,
10181                                   TempParams.release(),
10182                                   TSI,
10183                                   DS.getFriendSpecLoc());
10184  else
10185    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10186
10187  if (!D)
10188    return 0;
10189
10190  D->setAccess(AS_public);
10191  CurContext->addDecl(D);
10192
10193  return D;
10194}
10195
10196Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10197                                    MultiTemplateParamsArg TemplateParams) {
10198  const DeclSpec &DS = D.getDeclSpec();
10199
10200  assert(DS.isFriendSpecified());
10201  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10202
10203  SourceLocation Loc = D.getIdentifierLoc();
10204  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10205
10206  // C++ [class.friend]p1
10207  //   A friend of a class is a function or class....
10208  // Note that this sees through typedefs, which is intended.
10209  // It *doesn't* see through dependent types, which is correct
10210  // according to [temp.arg.type]p3:
10211  //   If a declaration acquires a function type through a
10212  //   type dependent on a template-parameter and this causes
10213  //   a declaration that does not use the syntactic form of a
10214  //   function declarator to have a function type, the program
10215  //   is ill-formed.
10216  if (!TInfo->getType()->isFunctionType()) {
10217    Diag(Loc, diag::err_unexpected_friend);
10218
10219    // It might be worthwhile to try to recover by creating an
10220    // appropriate declaration.
10221    return 0;
10222  }
10223
10224  // C++ [namespace.memdef]p3
10225  //  - If a friend declaration in a non-local class first declares a
10226  //    class or function, the friend class or function is a member
10227  //    of the innermost enclosing namespace.
10228  //  - The name of the friend is not found by simple name lookup
10229  //    until a matching declaration is provided in that namespace
10230  //    scope (either before or after the class declaration granting
10231  //    friendship).
10232  //  - If a friend function is called, its name may be found by the
10233  //    name lookup that considers functions from namespaces and
10234  //    classes associated with the types of the function arguments.
10235  //  - When looking for a prior declaration of a class or a function
10236  //    declared as a friend, scopes outside the innermost enclosing
10237  //    namespace scope are not considered.
10238
10239  CXXScopeSpec &SS = D.getCXXScopeSpec();
10240  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10241  DeclarationName Name = NameInfo.getName();
10242  assert(Name);
10243
10244  // Check for unexpanded parameter packs.
10245  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10246      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10247      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10248    return 0;
10249
10250  // The context we found the declaration in, or in which we should
10251  // create the declaration.
10252  DeclContext *DC;
10253  Scope *DCScope = S;
10254  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10255                        ForRedeclaration);
10256
10257  // FIXME: there are different rules in local classes
10258
10259  // There are four cases here.
10260  //   - There's no scope specifier, in which case we just go to the
10261  //     appropriate scope and look for a function or function template
10262  //     there as appropriate.
10263  // Recover from invalid scope qualifiers as if they just weren't there.
10264  if (SS.isInvalid() || !SS.isSet()) {
10265    // C++0x [namespace.memdef]p3:
10266    //   If the name in a friend declaration is neither qualified nor
10267    //   a template-id and the declaration is a function or an
10268    //   elaborated-type-specifier, the lookup to determine whether
10269    //   the entity has been previously declared shall not consider
10270    //   any scopes outside the innermost enclosing namespace.
10271    // C++0x [class.friend]p11:
10272    //   If a friend declaration appears in a local class and the name
10273    //   specified is an unqualified name, a prior declaration is
10274    //   looked up without considering scopes that are outside the
10275    //   innermost enclosing non-class scope. For a friend function
10276    //   declaration, if there is no prior declaration, the program is
10277    //   ill-formed.
10278    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10279    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10280
10281    // Find the appropriate context according to the above.
10282    DC = CurContext;
10283    while (true) {
10284      // Skip class contexts.  If someone can cite chapter and verse
10285      // for this behavior, that would be nice --- it's what GCC and
10286      // EDG do, and it seems like a reasonable intent, but the spec
10287      // really only says that checks for unqualified existing
10288      // declarations should stop at the nearest enclosing namespace,
10289      // not that they should only consider the nearest enclosing
10290      // namespace.
10291      while (DC->isRecord())
10292        DC = DC->getParent();
10293
10294      LookupQualifiedName(Previous, DC);
10295
10296      // TODO: decide what we think about using declarations.
10297      if (isLocal || !Previous.empty())
10298        break;
10299
10300      if (isTemplateId) {
10301        if (isa<TranslationUnitDecl>(DC)) break;
10302      } else {
10303        if (DC->isFileContext()) break;
10304      }
10305      DC = DC->getParent();
10306    }
10307
10308    // C++ [class.friend]p1: A friend of a class is a function or
10309    //   class that is not a member of the class . . .
10310    // C++11 changes this for both friend types and functions.
10311    // Most C++ 98 compilers do seem to give an error here, so
10312    // we do, too.
10313    if (!Previous.empty() && DC->Equals(CurContext))
10314      Diag(DS.getFriendSpecLoc(),
10315           getLangOptions().CPlusPlus0x ?
10316             diag::warn_cxx98_compat_friend_is_member :
10317             diag::err_friend_is_member);
10318
10319    DCScope = getScopeForDeclContext(S, DC);
10320
10321    // C++ [class.friend]p6:
10322    //   A function can be defined in a friend declaration of a class if and
10323    //   only if the class is a non-local class (9.8), the function name is
10324    //   unqualified, and the function has namespace scope.
10325    if (isLocal && D.isFunctionDefinition()) {
10326      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10327    }
10328
10329  //   - There's a non-dependent scope specifier, in which case we
10330  //     compute it and do a previous lookup there for a function
10331  //     or function template.
10332  } else if (!SS.getScopeRep()->isDependent()) {
10333    DC = computeDeclContext(SS);
10334    if (!DC) return 0;
10335
10336    if (RequireCompleteDeclContext(SS, DC)) return 0;
10337
10338    LookupQualifiedName(Previous, DC);
10339
10340    // Ignore things found implicitly in the wrong scope.
10341    // TODO: better diagnostics for this case.  Suggesting the right
10342    // qualified scope would be nice...
10343    LookupResult::Filter F = Previous.makeFilter();
10344    while (F.hasNext()) {
10345      NamedDecl *D = F.next();
10346      if (!DC->InEnclosingNamespaceSetOf(
10347              D->getDeclContext()->getRedeclContext()))
10348        F.erase();
10349    }
10350    F.done();
10351
10352    if (Previous.empty()) {
10353      D.setInvalidType();
10354      Diag(Loc, diag::err_qualified_friend_not_found)
10355          << Name << TInfo->getType();
10356      return 0;
10357    }
10358
10359    // C++ [class.friend]p1: A friend of a class is a function or
10360    //   class that is not a member of the class . . .
10361    if (DC->Equals(CurContext))
10362      Diag(DS.getFriendSpecLoc(),
10363           getLangOptions().CPlusPlus0x ?
10364             diag::warn_cxx98_compat_friend_is_member :
10365             diag::err_friend_is_member);
10366
10367    if (D.isFunctionDefinition()) {
10368      // C++ [class.friend]p6:
10369      //   A function can be defined in a friend declaration of a class if and
10370      //   only if the class is a non-local class (9.8), the function name is
10371      //   unqualified, and the function has namespace scope.
10372      SemaDiagnosticBuilder DB
10373        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10374
10375      DB << SS.getScopeRep();
10376      if (DC->isFileContext())
10377        DB << FixItHint::CreateRemoval(SS.getRange());
10378      SS.clear();
10379    }
10380
10381  //   - There's a scope specifier that does not match any template
10382  //     parameter lists, in which case we use some arbitrary context,
10383  //     create a method or method template, and wait for instantiation.
10384  //   - There's a scope specifier that does match some template
10385  //     parameter lists, which we don't handle right now.
10386  } else {
10387    if (D.isFunctionDefinition()) {
10388      // C++ [class.friend]p6:
10389      //   A function can be defined in a friend declaration of a class if and
10390      //   only if the class is a non-local class (9.8), the function name is
10391      //   unqualified, and the function has namespace scope.
10392      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10393        << SS.getScopeRep();
10394    }
10395
10396    DC = CurContext;
10397    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10398  }
10399
10400  if (!DC->isRecord()) {
10401    // This implies that it has to be an operator or function.
10402    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10403        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10404        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10405      Diag(Loc, diag::err_introducing_special_friend) <<
10406        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10407         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10408      return 0;
10409    }
10410  }
10411
10412  // FIXME: This is an egregious hack to cope with cases where the scope stack
10413  // does not contain the declaration context, i.e., in an out-of-line
10414  // definition of a class.
10415  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10416  if (!DCScope) {
10417    FakeDCScope.setEntity(DC);
10418    DCScope = &FakeDCScope;
10419  }
10420
10421  bool AddToScope = true;
10422  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10423                                          move(TemplateParams), AddToScope);
10424  if (!ND) return 0;
10425
10426  assert(ND->getDeclContext() == DC);
10427  assert(ND->getLexicalDeclContext() == CurContext);
10428
10429  // Add the function declaration to the appropriate lookup tables,
10430  // adjusting the redeclarations list as necessary.  We don't
10431  // want to do this yet if the friending class is dependent.
10432  //
10433  // Also update the scope-based lookup if the target context's
10434  // lookup context is in lexical scope.
10435  if (!CurContext->isDependentContext()) {
10436    DC = DC->getRedeclContext();
10437    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10438    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10439      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10440  }
10441
10442  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10443                                       D.getIdentifierLoc(), ND,
10444                                       DS.getFriendSpecLoc());
10445  FrD->setAccess(AS_public);
10446  CurContext->addDecl(FrD);
10447
10448  if (ND->isInvalidDecl())
10449    FrD->setInvalidDecl();
10450  else {
10451    FunctionDecl *FD;
10452    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10453      FD = FTD->getTemplatedDecl();
10454    else
10455      FD = cast<FunctionDecl>(ND);
10456
10457    // Mark templated-scope function declarations as unsupported.
10458    if (FD->getNumTemplateParameterLists())
10459      FrD->setUnsupportedFriend(true);
10460  }
10461
10462  return ND;
10463}
10464
10465void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10466  AdjustDeclIfTemplate(Dcl);
10467
10468  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10469  if (!Fn) {
10470    Diag(DelLoc, diag::err_deleted_non_function);
10471    return;
10472  }
10473  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10474    Diag(DelLoc, diag::err_deleted_decl_not_first);
10475    Diag(Prev->getLocation(), diag::note_previous_declaration);
10476    // If the declaration wasn't the first, we delete the function anyway for
10477    // recovery.
10478  }
10479  Fn->setDeletedAsWritten();
10480}
10481
10482void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10483  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10484
10485  if (MD) {
10486    if (MD->getParent()->isDependentType()) {
10487      MD->setDefaulted();
10488      MD->setExplicitlyDefaulted();
10489      return;
10490    }
10491
10492    CXXSpecialMember Member = getSpecialMember(MD);
10493    if (Member == CXXInvalid) {
10494      Diag(DefaultLoc, diag::err_default_special_members);
10495      return;
10496    }
10497
10498    MD->setDefaulted();
10499    MD->setExplicitlyDefaulted();
10500
10501    // If this definition appears within the record, do the checking when
10502    // the record is complete.
10503    const FunctionDecl *Primary = MD;
10504    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10505      // Find the uninstantiated declaration that actually had the '= default'
10506      // on it.
10507      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10508
10509    if (Primary == Primary->getCanonicalDecl())
10510      return;
10511
10512    switch (Member) {
10513    case CXXDefaultConstructor: {
10514      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10515      CheckExplicitlyDefaultedDefaultConstructor(CD);
10516      if (!CD->isInvalidDecl())
10517        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10518      break;
10519    }
10520
10521    case CXXCopyConstructor: {
10522      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10523      CheckExplicitlyDefaultedCopyConstructor(CD);
10524      if (!CD->isInvalidDecl())
10525        DefineImplicitCopyConstructor(DefaultLoc, CD);
10526      break;
10527    }
10528
10529    case CXXCopyAssignment: {
10530      CheckExplicitlyDefaultedCopyAssignment(MD);
10531      if (!MD->isInvalidDecl())
10532        DefineImplicitCopyAssignment(DefaultLoc, MD);
10533      break;
10534    }
10535
10536    case CXXDestructor: {
10537      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10538      CheckExplicitlyDefaultedDestructor(DD);
10539      if (!DD->isInvalidDecl())
10540        DefineImplicitDestructor(DefaultLoc, DD);
10541      break;
10542    }
10543
10544    case CXXMoveConstructor: {
10545      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10546      CheckExplicitlyDefaultedMoveConstructor(CD);
10547      if (!CD->isInvalidDecl())
10548        DefineImplicitMoveConstructor(DefaultLoc, CD);
10549      break;
10550    }
10551
10552    case CXXMoveAssignment: {
10553      CheckExplicitlyDefaultedMoveAssignment(MD);
10554      if (!MD->isInvalidDecl())
10555        DefineImplicitMoveAssignment(DefaultLoc, MD);
10556      break;
10557    }
10558
10559    case CXXInvalid:
10560      llvm_unreachable("Invalid special member.");
10561    }
10562  } else {
10563    Diag(DefaultLoc, diag::err_default_special_members);
10564  }
10565}
10566
10567static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10568  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10569    Stmt *SubStmt = *CI;
10570    if (!SubStmt)
10571      continue;
10572    if (isa<ReturnStmt>(SubStmt))
10573      Self.Diag(SubStmt->getSourceRange().getBegin(),
10574           diag::err_return_in_constructor_handler);
10575    if (!isa<Expr>(SubStmt))
10576      SearchForReturnInStmt(Self, SubStmt);
10577  }
10578}
10579
10580void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10581  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10582    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10583    SearchForReturnInStmt(*this, Handler);
10584  }
10585}
10586
10587bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10588                                             const CXXMethodDecl *Old) {
10589  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10590  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10591
10592  if (Context.hasSameType(NewTy, OldTy) ||
10593      NewTy->isDependentType() || OldTy->isDependentType())
10594    return false;
10595
10596  // Check if the return types are covariant
10597  QualType NewClassTy, OldClassTy;
10598
10599  /// Both types must be pointers or references to classes.
10600  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10601    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10602      NewClassTy = NewPT->getPointeeType();
10603      OldClassTy = OldPT->getPointeeType();
10604    }
10605  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10606    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10607      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10608        NewClassTy = NewRT->getPointeeType();
10609        OldClassTy = OldRT->getPointeeType();
10610      }
10611    }
10612  }
10613
10614  // The return types aren't either both pointers or references to a class type.
10615  if (NewClassTy.isNull()) {
10616    Diag(New->getLocation(),
10617         diag::err_different_return_type_for_overriding_virtual_function)
10618      << New->getDeclName() << NewTy << OldTy;
10619    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10620
10621    return true;
10622  }
10623
10624  // C++ [class.virtual]p6:
10625  //   If the return type of D::f differs from the return type of B::f, the
10626  //   class type in the return type of D::f shall be complete at the point of
10627  //   declaration of D::f or shall be the class type D.
10628  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10629    if (!RT->isBeingDefined() &&
10630        RequireCompleteType(New->getLocation(), NewClassTy,
10631                            PDiag(diag::err_covariant_return_incomplete)
10632                              << New->getDeclName()))
10633    return true;
10634  }
10635
10636  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10637    // Check if the new class derives from the old class.
10638    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10639      Diag(New->getLocation(),
10640           diag::err_covariant_return_not_derived)
10641      << New->getDeclName() << NewTy << OldTy;
10642      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10643      return true;
10644    }
10645
10646    // Check if we the conversion from derived to base is valid.
10647    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10648                    diag::err_covariant_return_inaccessible_base,
10649                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10650                    // FIXME: Should this point to the return type?
10651                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10652      // FIXME: this note won't trigger for delayed access control
10653      // diagnostics, and it's impossible to get an undelayed error
10654      // here from access control during the original parse because
10655      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10656      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10657      return true;
10658    }
10659  }
10660
10661  // The qualifiers of the return types must be the same.
10662  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10663    Diag(New->getLocation(),
10664         diag::err_covariant_return_type_different_qualifications)
10665    << New->getDeclName() << NewTy << OldTy;
10666    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10667    return true;
10668  };
10669
10670
10671  // The new class type must have the same or less qualifiers as the old type.
10672  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10673    Diag(New->getLocation(),
10674         diag::err_covariant_return_type_class_type_more_qualified)
10675    << New->getDeclName() << NewTy << OldTy;
10676    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10677    return true;
10678  };
10679
10680  return false;
10681}
10682
10683/// \brief Mark the given method pure.
10684///
10685/// \param Method the method to be marked pure.
10686///
10687/// \param InitRange the source range that covers the "0" initializer.
10688bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10689  SourceLocation EndLoc = InitRange.getEnd();
10690  if (EndLoc.isValid())
10691    Method->setRangeEnd(EndLoc);
10692
10693  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10694    Method->setPure();
10695    return false;
10696  }
10697
10698  if (!Method->isInvalidDecl())
10699    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10700      << Method->getDeclName() << InitRange;
10701  return true;
10702}
10703
10704/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10705/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10706/// is a fresh scope pushed for just this purpose.
10707///
10708/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10709/// static data member of class X, names should be looked up in the scope of
10710/// class X.
10711void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10712  // If there is no declaration, there was an error parsing it.
10713  if (D == 0 || D->isInvalidDecl()) return;
10714
10715  // We should only get called for declarations with scope specifiers, like:
10716  //   int foo::bar;
10717  assert(D->isOutOfLine());
10718  EnterDeclaratorContext(S, D->getDeclContext());
10719}
10720
10721/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10722/// initializer for the out-of-line declaration 'D'.
10723void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10724  // If there is no declaration, there was an error parsing it.
10725  if (D == 0 || D->isInvalidDecl()) return;
10726
10727  assert(D->isOutOfLine());
10728  ExitDeclaratorContext(S);
10729}
10730
10731/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10732/// C++ if/switch/while/for statement.
10733/// e.g: "if (int x = f()) {...}"
10734DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10735  // C++ 6.4p2:
10736  // The declarator shall not specify a function or an array.
10737  // The type-specifier-seq shall not contain typedef and shall not declare a
10738  // new class or enumeration.
10739  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10740         "Parser allowed 'typedef' as storage class of condition decl.");
10741
10742  Decl *Dcl = ActOnDeclarator(S, D);
10743  if (!Dcl)
10744    return true;
10745
10746  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10747    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10748      << D.getSourceRange();
10749    return true;
10750  }
10751
10752  return Dcl;
10753}
10754
10755void Sema::LoadExternalVTableUses() {
10756  if (!ExternalSource)
10757    return;
10758
10759  SmallVector<ExternalVTableUse, 4> VTables;
10760  ExternalSource->ReadUsedVTables(VTables);
10761  SmallVector<VTableUse, 4> NewUses;
10762  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10763    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10764      = VTablesUsed.find(VTables[I].Record);
10765    // Even if a definition wasn't required before, it may be required now.
10766    if (Pos != VTablesUsed.end()) {
10767      if (!Pos->second && VTables[I].DefinitionRequired)
10768        Pos->second = true;
10769      continue;
10770    }
10771
10772    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10773    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10774  }
10775
10776  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10777}
10778
10779void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10780                          bool DefinitionRequired) {
10781  // Ignore any vtable uses in unevaluated operands or for classes that do
10782  // not have a vtable.
10783  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10784      CurContext->isDependentContext() ||
10785      ExprEvalContexts.back().Context == Unevaluated)
10786    return;
10787
10788  // Try to insert this class into the map.
10789  LoadExternalVTableUses();
10790  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10791  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10792    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10793  if (!Pos.second) {
10794    // If we already had an entry, check to see if we are promoting this vtable
10795    // to required a definition. If so, we need to reappend to the VTableUses
10796    // list, since we may have already processed the first entry.
10797    if (DefinitionRequired && !Pos.first->second) {
10798      Pos.first->second = true;
10799    } else {
10800      // Otherwise, we can early exit.
10801      return;
10802    }
10803  }
10804
10805  // Local classes need to have their virtual members marked
10806  // immediately. For all other classes, we mark their virtual members
10807  // at the end of the translation unit.
10808  if (Class->isLocalClass())
10809    MarkVirtualMembersReferenced(Loc, Class);
10810  else
10811    VTableUses.push_back(std::make_pair(Class, Loc));
10812}
10813
10814bool Sema::DefineUsedVTables() {
10815  LoadExternalVTableUses();
10816  if (VTableUses.empty())
10817    return false;
10818
10819  // Note: The VTableUses vector could grow as a result of marking
10820  // the members of a class as "used", so we check the size each
10821  // time through the loop and prefer indices (with are stable) to
10822  // iterators (which are not).
10823  bool DefinedAnything = false;
10824  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10825    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10826    if (!Class)
10827      continue;
10828
10829    SourceLocation Loc = VTableUses[I].second;
10830
10831    // If this class has a key function, but that key function is
10832    // defined in another translation unit, we don't need to emit the
10833    // vtable even though we're using it.
10834    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10835    if (KeyFunction && !KeyFunction->hasBody()) {
10836      switch (KeyFunction->getTemplateSpecializationKind()) {
10837      case TSK_Undeclared:
10838      case TSK_ExplicitSpecialization:
10839      case TSK_ExplicitInstantiationDeclaration:
10840        // The key function is in another translation unit.
10841        continue;
10842
10843      case TSK_ExplicitInstantiationDefinition:
10844      case TSK_ImplicitInstantiation:
10845        // We will be instantiating the key function.
10846        break;
10847      }
10848    } else if (!KeyFunction) {
10849      // If we have a class with no key function that is the subject
10850      // of an explicit instantiation declaration, suppress the
10851      // vtable; it will live with the explicit instantiation
10852      // definition.
10853      bool IsExplicitInstantiationDeclaration
10854        = Class->getTemplateSpecializationKind()
10855                                      == TSK_ExplicitInstantiationDeclaration;
10856      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10857                                 REnd = Class->redecls_end();
10858           R != REnd; ++R) {
10859        TemplateSpecializationKind TSK
10860          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10861        if (TSK == TSK_ExplicitInstantiationDeclaration)
10862          IsExplicitInstantiationDeclaration = true;
10863        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10864          IsExplicitInstantiationDeclaration = false;
10865          break;
10866        }
10867      }
10868
10869      if (IsExplicitInstantiationDeclaration)
10870        continue;
10871    }
10872
10873    // Mark all of the virtual members of this class as referenced, so
10874    // that we can build a vtable. Then, tell the AST consumer that a
10875    // vtable for this class is required.
10876    DefinedAnything = true;
10877    MarkVirtualMembersReferenced(Loc, Class);
10878    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10879    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10880
10881    // Optionally warn if we're emitting a weak vtable.
10882    if (Class->getLinkage() == ExternalLinkage &&
10883        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10884      const FunctionDecl *KeyFunctionDef = 0;
10885      if (!KeyFunction ||
10886          (KeyFunction->hasBody(KeyFunctionDef) &&
10887           KeyFunctionDef->isInlined()))
10888        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10889             TSK_ExplicitInstantiationDefinition
10890             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10891          << Class;
10892    }
10893  }
10894  VTableUses.clear();
10895
10896  return DefinedAnything;
10897}
10898
10899void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10900                                        const CXXRecordDecl *RD) {
10901  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10902       e = RD->method_end(); i != e; ++i) {
10903    CXXMethodDecl *MD = *i;
10904
10905    // C++ [basic.def.odr]p2:
10906    //   [...] A virtual member function is used if it is not pure. [...]
10907    if (MD->isVirtual() && !MD->isPure())
10908      MarkDeclarationReferenced(Loc, MD);
10909  }
10910
10911  // Only classes that have virtual bases need a VTT.
10912  if (RD->getNumVBases() == 0)
10913    return;
10914
10915  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10916           e = RD->bases_end(); i != e; ++i) {
10917    const CXXRecordDecl *Base =
10918        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10919    if (Base->getNumVBases() == 0)
10920      continue;
10921    MarkVirtualMembersReferenced(Loc, Base);
10922  }
10923}
10924
10925/// SetIvarInitializers - This routine builds initialization ASTs for the
10926/// Objective-C implementation whose ivars need be initialized.
10927void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10928  if (!getLangOptions().CPlusPlus)
10929    return;
10930  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10931    SmallVector<ObjCIvarDecl*, 8> ivars;
10932    CollectIvarsToConstructOrDestruct(OID, ivars);
10933    if (ivars.empty())
10934      return;
10935    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10936    for (unsigned i = 0; i < ivars.size(); i++) {
10937      FieldDecl *Field = ivars[i];
10938      if (Field->isInvalidDecl())
10939        continue;
10940
10941      CXXCtorInitializer *Member;
10942      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10943      InitializationKind InitKind =
10944        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10945
10946      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10947      ExprResult MemberInit =
10948        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10949      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10950      // Note, MemberInit could actually come back empty if no initialization
10951      // is required (e.g., because it would call a trivial default constructor)
10952      if (!MemberInit.get() || MemberInit.isInvalid())
10953        continue;
10954
10955      Member =
10956        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10957                                         SourceLocation(),
10958                                         MemberInit.takeAs<Expr>(),
10959                                         SourceLocation());
10960      AllToInit.push_back(Member);
10961
10962      // Be sure that the destructor is accessible and is marked as referenced.
10963      if (const RecordType *RecordTy
10964                  = Context.getBaseElementType(Field->getType())
10965                                                        ->getAs<RecordType>()) {
10966                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10967        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10968          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10969          CheckDestructorAccess(Field->getLocation(), Destructor,
10970                            PDiag(diag::err_access_dtor_ivar)
10971                              << Context.getBaseElementType(Field->getType()));
10972        }
10973      }
10974    }
10975    ObjCImplementation->setIvarInitializers(Context,
10976                                            AllToInit.data(), AllToInit.size());
10977  }
10978}
10979
10980static
10981void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10982                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10983                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10984                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10985                           Sema &S) {
10986  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10987                                                   CE = Current.end();
10988  if (Ctor->isInvalidDecl())
10989    return;
10990
10991  const FunctionDecl *FNTarget = 0;
10992  CXXConstructorDecl *Target;
10993
10994  // We ignore the result here since if we don't have a body, Target will be
10995  // null below.
10996  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10997  Target
10998= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10999
11000  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11001                     // Avoid dereferencing a null pointer here.
11002                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11003
11004  if (!Current.insert(Canonical))
11005    return;
11006
11007  // We know that beyond here, we aren't chaining into a cycle.
11008  if (!Target || !Target->isDelegatingConstructor() ||
11009      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11010    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11011      Valid.insert(*CI);
11012    Current.clear();
11013  // We've hit a cycle.
11014  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11015             Current.count(TCanonical)) {
11016    // If we haven't diagnosed this cycle yet, do so now.
11017    if (!Invalid.count(TCanonical)) {
11018      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11019             diag::warn_delegating_ctor_cycle)
11020        << Ctor;
11021
11022      // Don't add a note for a function delegating directo to itself.
11023      if (TCanonical != Canonical)
11024        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11025
11026      CXXConstructorDecl *C = Target;
11027      while (C->getCanonicalDecl() != Canonical) {
11028        (void)C->getTargetConstructor()->hasBody(FNTarget);
11029        assert(FNTarget && "Ctor cycle through bodiless function");
11030
11031        C
11032       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11033        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11034      }
11035    }
11036
11037    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11038      Invalid.insert(*CI);
11039    Current.clear();
11040  } else {
11041    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11042  }
11043}
11044
11045
11046void Sema::CheckDelegatingCtorCycles() {
11047  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11048
11049  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11050                                                   CE = Current.end();
11051
11052  for (DelegatingCtorDeclsType::iterator
11053         I = DelegatingCtorDecls.begin(ExternalSource),
11054         E = DelegatingCtorDecls.end();
11055       I != E; ++I) {
11056   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11057  }
11058
11059  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11060    (*CI)->setInvalidDecl();
11061}
11062
11063/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11064Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11065  // Implicitly declared functions (e.g. copy constructors) are
11066  // __host__ __device__
11067  if (D->isImplicit())
11068    return CFT_HostDevice;
11069
11070  if (D->hasAttr<CUDAGlobalAttr>())
11071    return CFT_Global;
11072
11073  if (D->hasAttr<CUDADeviceAttr>()) {
11074    if (D->hasAttr<CUDAHostAttr>())
11075      return CFT_HostDevice;
11076    else
11077      return CFT_Device;
11078  }
11079
11080  return CFT_Host;
11081}
11082
11083bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11084                           CUDAFunctionTarget CalleeTarget) {
11085  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11086  // Callable from the device only."
11087  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11088    return true;
11089
11090  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11091  // Callable from the host only."
11092  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11093  // Callable from the host only."
11094  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11095      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11096    return true;
11097
11098  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11099    return true;
11100
11101  return false;
11102}
11103