SemaDeclCXX.cpp revision ea356fb65cc844abeab1176f6333a86b69644735
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          const CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1080        bool NotUnknownSpecialization = false;
1081        DeclContext *DC = computeDeclContext(SS, false);
1082        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1083          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1084
1085        if (!NotUnknownSpecialization) {
1086          // When the scope specifier can refer to a member of an unknown
1087          // specialization, we take it as a type name.
1088          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1089                                       *MemberOrBase, SS.getRange());
1090          if (BaseType.isNull())
1091            return true;
1092
1093          R.clear();
1094        }
1095      }
1096
1097      // If no results were found, try to correct typos.
1098      if (R.empty() && BaseType.isNull() &&
1099          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1100        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1101          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1102            // We have found a non-static data member with a similar
1103            // name to what was typed; complain and initialize that
1104            // member.
1105            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1106              << MemberOrBase << true << R.getLookupName()
1107              << FixItHint::CreateReplacement(R.getNameLoc(),
1108                                              R.getLookupName().getAsString());
1109            Diag(Member->getLocation(), diag::note_previous_decl)
1110              << Member->getDeclName();
1111
1112            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                          LParenLoc, RParenLoc);
1114          }
1115        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1116          const CXXBaseSpecifier *DirectBaseSpec;
1117          const CXXBaseSpecifier *VirtualBaseSpec;
1118          if (FindBaseInitializer(*this, ClassDecl,
1119                                  Context.getTypeDeclType(Type),
1120                                  DirectBaseSpec, VirtualBaseSpec)) {
1121            // We have found a direct or virtual base class with a
1122            // similar name to what was typed; complain and initialize
1123            // that base class.
1124            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1125              << MemberOrBase << false << R.getLookupName()
1126              << FixItHint::CreateReplacement(R.getNameLoc(),
1127                                              R.getLookupName().getAsString());
1128
1129            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1130                                                             : VirtualBaseSpec;
1131            Diag(BaseSpec->getSourceRange().getBegin(),
1132                 diag::note_base_class_specified_here)
1133              << BaseSpec->getType()
1134              << BaseSpec->getSourceRange();
1135
1136            TyD = Type;
1137          }
1138        }
1139      }
1140
1141      if (!TyD && BaseType.isNull()) {
1142        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1143          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1144        return true;
1145      }
1146    }
1147
1148    if (BaseType.isNull()) {
1149      BaseType = Context.getTypeDeclType(TyD);
1150      if (SS.isSet()) {
1151        NestedNameSpecifier *Qualifier =
1152          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1153
1154        // FIXME: preserve source range information
1155        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1156      }
1157    }
1158  }
1159
1160  if (!TInfo)
1161    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1162
1163  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1164                              LParenLoc, RParenLoc, ClassDecl);
1165}
1166
1167/// Checks an initializer expression for use of uninitialized fields, such as
1168/// containing the field that is being initialized. Returns true if there is an
1169/// uninitialized field was used an updates the SourceLocation parameter; false
1170/// otherwise.
1171static bool InitExprContainsUninitializedFields(const Stmt* S,
1172                                                const FieldDecl* LhsField,
1173                                                SourceLocation* L) {
1174  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1175  if (ME) {
1176    const NamedDecl* RhsField = ME->getMemberDecl();
1177    if (RhsField == LhsField) {
1178      // Initializing a field with itself. Throw a warning.
1179      // But wait; there are exceptions!
1180      // Exception #1:  The field may not belong to this record.
1181      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1182      const Expr* base = ME->getBase();
1183      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1184        // Even though the field matches, it does not belong to this record.
1185        return false;
1186      }
1187      // None of the exceptions triggered; return true to indicate an
1188      // uninitialized field was used.
1189      *L = ME->getMemberLoc();
1190      return true;
1191    }
1192  }
1193  bool found = false;
1194  for (Stmt::const_child_iterator it = S->child_begin();
1195       it != S->child_end() && found == false;
1196       ++it) {
1197    if (isa<CallExpr>(S)) {
1198      // Do not descend into function calls or constructors, as the use
1199      // of an uninitialized field may be valid. One would have to inspect
1200      // the contents of the function/ctor to determine if it is safe or not.
1201      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1202      // may be safe, depending on what the function/ctor does.
1203      continue;
1204    }
1205    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1206  }
1207  return found;
1208}
1209
1210Sema::MemInitResult
1211Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1212                             unsigned NumArgs, SourceLocation IdLoc,
1213                             SourceLocation LParenLoc,
1214                             SourceLocation RParenLoc) {
1215  // Diagnose value-uses of fields to initialize themselves, e.g.
1216  //   foo(foo)
1217  // where foo is not also a parameter to the constructor.
1218  // TODO: implement -Wuninitialized and fold this into that framework.
1219  for (unsigned i = 0; i < NumArgs; ++i) {
1220    SourceLocation L;
1221    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1222      // FIXME: Return true in the case when other fields are used before being
1223      // uninitialized. For example, let this field be the i'th field. When
1224      // initializing the i'th field, throw a warning if any of the >= i'th
1225      // fields are used, as they are not yet initialized.
1226      // Right now we are only handling the case where the i'th field uses
1227      // itself in its initializer.
1228      Diag(L, diag::warn_field_is_uninit);
1229    }
1230  }
1231
1232  bool HasDependentArg = false;
1233  for (unsigned i = 0; i < NumArgs; i++)
1234    HasDependentArg |= Args[i]->isTypeDependent();
1235
1236  QualType FieldType = Member->getType();
1237  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1238    FieldType = Array->getElementType();
1239  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1240  if (FieldType->isDependentType() || HasDependentArg) {
1241    // Can't check initialization for a member of dependent type or when
1242    // any of the arguments are type-dependent expressions.
1243    OwningExprResult Init
1244      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1245                                          RParenLoc));
1246
1247    // Erase any temporaries within this evaluation context; we're not
1248    // going to track them in the AST, since we'll be rebuilding the
1249    // ASTs during template instantiation.
1250    ExprTemporaries.erase(
1251              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1252                          ExprTemporaries.end());
1253
1254    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1255                                                    LParenLoc,
1256                                                    Init.takeAs<Expr>(),
1257                                                    RParenLoc);
1258
1259  }
1260
1261  if (Member->isInvalidDecl())
1262    return true;
1263
1264  // Initialize the member.
1265  InitializedEntity MemberEntity =
1266    InitializedEntity::InitializeMember(Member, 0);
1267  InitializationKind Kind =
1268    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1269
1270  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1271
1272  OwningExprResult MemberInit =
1273    InitSeq.Perform(*this, MemberEntity, Kind,
1274                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1275  if (MemberInit.isInvalid())
1276    return true;
1277
1278  // C++0x [class.base.init]p7:
1279  //   The initialization of each base and member constitutes a
1280  //   full-expression.
1281  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1282  if (MemberInit.isInvalid())
1283    return true;
1284
1285  // If we are in a dependent context, template instantiation will
1286  // perform this type-checking again. Just save the arguments that we
1287  // received in a ParenListExpr.
1288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1289  // of the information that we have about the member
1290  // initializer. However, deconstructing the ASTs is a dicey process,
1291  // and this approach is far more likely to get the corner cases right.
1292  if (CurContext->isDependentContext()) {
1293    // Bump the reference count of all of the arguments.
1294    for (unsigned I = 0; I != NumArgs; ++I)
1295      Args[I]->Retain();
1296
1297    OwningExprResult Init
1298      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                          RParenLoc));
1300    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1301                                                    LParenLoc,
1302                                                    Init.takeAs<Expr>(),
1303                                                    RParenLoc);
1304  }
1305
1306  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1307                                                  LParenLoc,
1308                                                  MemberInit.takeAs<Expr>(),
1309                                                  RParenLoc);
1310}
1311
1312Sema::MemInitResult
1313Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1314                           Expr **Args, unsigned NumArgs,
1315                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1316                           CXXRecordDecl *ClassDecl) {
1317  bool HasDependentArg = false;
1318  for (unsigned i = 0; i < NumArgs; i++)
1319    HasDependentArg |= Args[i]->isTypeDependent();
1320
1321  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1322  if (BaseType->isDependentType() || HasDependentArg) {
1323    // Can't check initialization for a base of dependent type or when
1324    // any of the arguments are type-dependent expressions.
1325    OwningExprResult BaseInit
1326      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1327                                          RParenLoc));
1328
1329    // Erase any temporaries within this evaluation context; we're not
1330    // going to track them in the AST, since we'll be rebuilding the
1331    // ASTs during template instantiation.
1332    ExprTemporaries.erase(
1333              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1334                          ExprTemporaries.end());
1335
1336    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1337                                                    LParenLoc,
1338                                                    BaseInit.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  if (!BaseType->isRecordType())
1343    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1344             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1345
1346  // C++ [class.base.init]p2:
1347  //   [...] Unless the mem-initializer-id names a nonstatic data
1348  //   member of the constructor’s class or a direct or virtual base
1349  //   of that class, the mem-initializer is ill-formed. A
1350  //   mem-initializer-list can initialize a base class using any
1351  //   name that denotes that base class type.
1352
1353  // Check for direct and virtual base classes.
1354  const CXXBaseSpecifier *DirectBaseSpec = 0;
1355  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1356  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1357                      VirtualBaseSpec);
1358
1359  // C++ [base.class.init]p2:
1360  //   If a mem-initializer-id is ambiguous because it designates both
1361  //   a direct non-virtual base class and an inherited virtual base
1362  //   class, the mem-initializer is ill-formed.
1363  if (DirectBaseSpec && VirtualBaseSpec)
1364    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1365      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1366  // C++ [base.class.init]p2:
1367  // Unless the mem-initializer-id names a nonstatic data membeer of the
1368  // constructor's class ot a direst or virtual base of that class, the
1369  // mem-initializer is ill-formed.
1370  if (!DirectBaseSpec && !VirtualBaseSpec)
1371    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1372      << BaseType << ClassDecl->getNameAsCString()
1373      << BaseTInfo->getTypeLoc().getSourceRange();
1374
1375  CXXBaseSpecifier *BaseSpec
1376    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1377  if (!BaseSpec)
1378    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1379
1380  // Initialize the base.
1381  InitializedEntity BaseEntity =
1382    InitializedEntity::InitializeBase(Context, BaseSpec);
1383  InitializationKind Kind =
1384    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1385
1386  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1387
1388  OwningExprResult BaseInit =
1389    InitSeq.Perform(*this, BaseEntity, Kind,
1390                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1391  if (BaseInit.isInvalid())
1392    return true;
1393
1394  // C++0x [class.base.init]p7:
1395  //   The initialization of each base and member constitutes a
1396  //   full-expression.
1397  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1398  if (BaseInit.isInvalid())
1399    return true;
1400
1401  // If we are in a dependent context, template instantiation will
1402  // perform this type-checking again. Just save the arguments that we
1403  // received in a ParenListExpr.
1404  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1405  // of the information that we have about the base
1406  // initializer. However, deconstructing the ASTs is a dicey process,
1407  // and this approach is far more likely to get the corner cases right.
1408  if (CurContext->isDependentContext()) {
1409    // Bump the reference count of all of the arguments.
1410    for (unsigned I = 0; I != NumArgs; ++I)
1411      Args[I]->Retain();
1412
1413    OwningExprResult Init
1414      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1415                                          RParenLoc));
1416    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1417                                                    LParenLoc,
1418                                                    Init.takeAs<Expr>(),
1419                                                    RParenLoc);
1420  }
1421
1422  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1423                                                  LParenLoc,
1424                                                  BaseInit.takeAs<Expr>(),
1425                                                  RParenLoc);
1426}
1427
1428bool
1429Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1430                                  CXXBaseOrMemberInitializer **Initializers,
1431                                  unsigned NumInitializers,
1432                                  bool AnyErrors) {
1433  // We need to build the initializer AST according to order of construction
1434  // and not what user specified in the Initializers list.
1435  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1436  if (!ClassDecl)
1437    return true;
1438
1439  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1440  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1441  bool HasDependentBaseInit = false;
1442  bool HadError = false;
1443
1444  for (unsigned i = 0; i < NumInitializers; i++) {
1445    CXXBaseOrMemberInitializer *Member = Initializers[i];
1446    if (Member->isBaseInitializer()) {
1447      if (Member->getBaseClass()->isDependentType())
1448        HasDependentBaseInit = true;
1449      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1450    } else {
1451      AllBaseFields[Member->getMember()] = Member;
1452    }
1453  }
1454
1455  if (HasDependentBaseInit) {
1456    // FIXME. This does not preserve the ordering of the initializers.
1457    // Try (with -Wreorder)
1458    // template<class X> struct A {};
1459    // template<class X> struct B : A<X> {
1460    //   B() : x1(10), A<X>() {}
1461    //   int x1;
1462    // };
1463    // B<int> x;
1464    // On seeing one dependent type, we should essentially exit this routine
1465    // while preserving user-declared initializer list. When this routine is
1466    // called during instantiatiation process, this routine will rebuild the
1467    // ordered initializer list correctly.
1468
1469    // If we have a dependent base initialization, we can't determine the
1470    // association between initializers and bases; just dump the known
1471    // initializers into the list, and don't try to deal with other bases.
1472    for (unsigned i = 0; i < NumInitializers; i++) {
1473      CXXBaseOrMemberInitializer *Member = Initializers[i];
1474      if (Member->isBaseInitializer())
1475        AllToInit.push_back(Member);
1476    }
1477  } else {
1478    llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1479
1480    // Push virtual bases before others.
1481    for (CXXRecordDecl::base_class_iterator VBase =
1482         ClassDecl->vbases_begin(),
1483         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1484      if (VBase->getType()->isDependentType())
1485        continue;
1486      if (CXXBaseOrMemberInitializer *Value
1487            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1488        AllToInit.push_back(Value);
1489      } else if (!AnyErrors) {
1490        InitializedEntity InitEntity
1491          = InitializedEntity::InitializeBase(Context, VBase);
1492        InitializationKind InitKind
1493          = InitializationKind::CreateDefault(Constructor->getLocation());
1494        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1495        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1496                                                    MultiExprArg(*this, 0, 0));
1497        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1498        if (BaseInit.isInvalid()) {
1499          HadError = true;
1500          continue;
1501        }
1502
1503        // Don't attach synthesized base initializers in a dependent
1504        // context; they'll be checked again at template instantiation
1505        // time.
1506        if (CurContext->isDependentContext())
1507          continue;
1508
1509        CXXBaseOrMemberInitializer *CXXBaseInit =
1510          new (Context) CXXBaseOrMemberInitializer(Context,
1511                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1512                                                              SourceLocation()),
1513                                                   SourceLocation(),
1514                                                   BaseInit.takeAs<Expr>(),
1515                                                   SourceLocation());
1516        AllToInit.push_back(CXXBaseInit);
1517      }
1518    }
1519
1520    for (CXXRecordDecl::base_class_iterator Base =
1521         ClassDecl->bases_begin(),
1522         E = ClassDecl->bases_end(); Base != E; ++Base) {
1523      // Virtuals are in the virtual base list and already constructed.
1524      if (Base->isVirtual())
1525        continue;
1526      // Skip dependent types.
1527      if (Base->getType()->isDependentType())
1528        continue;
1529      if (CXXBaseOrMemberInitializer *Value
1530            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1531        AllToInit.push_back(Value);
1532      }
1533      else if (!AnyErrors) {
1534        InitializedEntity InitEntity
1535          = InitializedEntity::InitializeBase(Context, Base);
1536        InitializationKind InitKind
1537          = InitializationKind::CreateDefault(Constructor->getLocation());
1538        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1539        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1540                                                    MultiExprArg(*this, 0, 0));
1541        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1542        if (BaseInit.isInvalid()) {
1543          HadError = true;
1544          continue;
1545        }
1546
1547        // Don't attach synthesized base initializers in a dependent
1548        // context; they'll be regenerated at template instantiation
1549        // time.
1550        if (CurContext->isDependentContext())
1551          continue;
1552
1553        CXXBaseOrMemberInitializer *CXXBaseInit =
1554          new (Context) CXXBaseOrMemberInitializer(Context,
1555                             Context.getTrivialTypeSourceInfo(Base->getType(),
1556                                                              SourceLocation()),
1557                                                   SourceLocation(),
1558                                                   BaseInit.takeAs<Expr>(),
1559                                                   SourceLocation());
1560        AllToInit.push_back(CXXBaseInit);
1561      }
1562    }
1563  }
1564
1565  // non-static data members.
1566  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1567       E = ClassDecl->field_end(); Field != E; ++Field) {
1568    if ((*Field)->isAnonymousStructOrUnion()) {
1569      if (const RecordType *FieldClassType =
1570          Field->getType()->getAs<RecordType>()) {
1571        CXXRecordDecl *FieldClassDecl
1572          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1573        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1574            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1575          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1576            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1577            // set to the anonymous union data member used in the initializer
1578            // list.
1579            Value->setMember(*Field);
1580            Value->setAnonUnionMember(*FA);
1581            AllToInit.push_back(Value);
1582            break;
1583          }
1584        }
1585      }
1586      continue;
1587    }
1588    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1589      AllToInit.push_back(Value);
1590      continue;
1591    }
1592
1593    if ((*Field)->getType()->isDependentType() || AnyErrors)
1594      continue;
1595
1596    QualType FT = Context.getBaseElementType((*Field)->getType());
1597    if (FT->getAs<RecordType>()) {
1598      InitializedEntity InitEntity
1599        = InitializedEntity::InitializeMember(*Field);
1600      InitializationKind InitKind
1601        = InitializationKind::CreateDefault(Constructor->getLocation());
1602
1603      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1604      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1605                                                    MultiExprArg(*this, 0, 0));
1606      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1607      if (MemberInit.isInvalid()) {
1608        HadError = true;
1609        continue;
1610      }
1611
1612      // Don't attach synthesized member initializers in a dependent
1613      // context; they'll be regenerated a template instantiation
1614      // time.
1615      if (CurContext->isDependentContext())
1616        continue;
1617
1618      CXXBaseOrMemberInitializer *Member =
1619        new (Context) CXXBaseOrMemberInitializer(Context,
1620                                                 *Field, SourceLocation(),
1621                                                 SourceLocation(),
1622                                                 MemberInit.takeAs<Expr>(),
1623                                                 SourceLocation());
1624
1625      AllToInit.push_back(Member);
1626    }
1627    else if (FT->isReferenceType()) {
1628      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1629        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1630        << 0 << (*Field)->getDeclName();
1631      Diag((*Field)->getLocation(), diag::note_declared_at);
1632      HadError = true;
1633    }
1634    else if (FT.isConstQualified()) {
1635      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1636        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1637        << 1 << (*Field)->getDeclName();
1638      Diag((*Field)->getLocation(), diag::note_declared_at);
1639      HadError = true;
1640    }
1641  }
1642
1643  NumInitializers = AllToInit.size();
1644  if (NumInitializers > 0) {
1645    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1646    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1647      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1648    memcpy(baseOrMemberInitializers, AllToInit.data(),
1649           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1650    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1651
1652    // Constructors implicitly reference the base and member
1653    // destructors.
1654    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1655                                           Constructor->getParent());
1656  }
1657
1658  return HadError;
1659}
1660
1661static void *GetKeyForTopLevelField(FieldDecl *Field) {
1662  // For anonymous unions, use the class declaration as the key.
1663  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1664    if (RT->getDecl()->isAnonymousStructOrUnion())
1665      return static_cast<void *>(RT->getDecl());
1666  }
1667  return static_cast<void *>(Field);
1668}
1669
1670static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1671  return Context.getCanonicalType(BaseType).getTypePtr();
1672}
1673
1674static void *GetKeyForMember(ASTContext &Context,
1675                             CXXBaseOrMemberInitializer *Member,
1676                             bool MemberMaybeAnon = false) {
1677  if (!Member->isMemberInitializer())
1678    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1679
1680  // For fields injected into the class via declaration of an anonymous union,
1681  // use its anonymous union class declaration as the unique key.
1682  FieldDecl *Field = Member->getMember();
1683
1684  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1685  // data member of the class. Data member used in the initializer list is
1686  // in AnonUnionMember field.
1687  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1688    Field = Member->getAnonUnionMember();
1689
1690  // If the field is a member of an anonymous union, we use record decl of the
1691  // union as the key.
1692  RecordDecl *RD = Field->getParent();
1693  if (RD->isAnonymousStructOrUnion() && RD->isUnion())
1694    return static_cast<void *>(RD);
1695
1696  return static_cast<void *>(Field);
1697}
1698
1699static void
1700DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1701                                  const CXXConstructorDecl *Constructor,
1702                                  CXXBaseOrMemberInitializer **MemInits,
1703                                  unsigned NumMemInits) {
1704  if (Constructor->isDependentContext())
1705    return;
1706
1707  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1708      Diagnostic::Ignored &&
1709      SemaRef.Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1710      Diagnostic::Ignored)
1711    return;
1712
1713  // Also issue warning if order of ctor-initializer list does not match order
1714  // of 1) base class declarations and 2) order of non-static data members.
1715  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1716
1717  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1718
1719  // Push virtual bases before others.
1720  for (CXXRecordDecl::base_class_const_iterator VBase =
1721       ClassDecl->vbases_begin(),
1722       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1723    AllBaseOrMembers.push_back(GetKeyForBase(SemaRef.Context,
1724                                             VBase->getType()));
1725
1726  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1727       E = ClassDecl->bases_end(); Base != E; ++Base) {
1728    // Virtuals are alread in the virtual base list and are constructed
1729    // first.
1730    if (Base->isVirtual())
1731      continue;
1732    AllBaseOrMembers.push_back(GetKeyForBase(SemaRef.Context,
1733                                             Base->getType()));
1734  }
1735
1736  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1737       E = ClassDecl->field_end(); Field != E; ++Field)
1738    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1739
1740  int Last = AllBaseOrMembers.size();
1741  int curIndex = 0;
1742  CXXBaseOrMemberInitializer *PrevMember = 0;
1743  for (unsigned i = 0; i < NumMemInits; i++) {
1744    CXXBaseOrMemberInitializer *Member = MemInits[i];
1745    void *MemberInCtorList = GetKeyForMember(SemaRef.Context, Member, true);
1746
1747    for (; curIndex < Last; curIndex++)
1748      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1749        break;
1750    if (curIndex == Last) {
1751      assert(PrevMember && "Member not in member list?!");
1752      // Initializer as specified in ctor-initializer list is out of order.
1753      // Issue a warning diagnostic.
1754      if (PrevMember->isBaseInitializer()) {
1755        // Diagnostics is for an initialized base class.
1756        Type *BaseClass = PrevMember->getBaseClass();
1757        SemaRef.Diag(PrevMember->getSourceLocation(),
1758                     diag::warn_base_initialized)
1759          << QualType(BaseClass, 0);
1760      } else {
1761        FieldDecl *Field = PrevMember->getMember();
1762        SemaRef.Diag(PrevMember->getSourceLocation(),
1763                     diag::warn_field_initialized)
1764          << Field->getNameAsString();
1765      }
1766      // Also the note!
1767      if (FieldDecl *Field = Member->getMember())
1768        SemaRef.Diag(Member->getSourceLocation(),
1769                     diag::note_fieldorbase_initialized_here) << 0
1770          << Field->getNameAsString();
1771      else {
1772        Type *BaseClass = Member->getBaseClass();
1773        SemaRef.Diag(Member->getSourceLocation(),
1774             diag::note_fieldorbase_initialized_here) << 1
1775          << QualType(BaseClass, 0);
1776      }
1777      for (curIndex = 0; curIndex < Last; curIndex++)
1778        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1779          break;
1780    }
1781    PrevMember = Member;
1782  }
1783}
1784
1785/// ActOnMemInitializers - Handle the member initializers for a constructor.
1786void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1787                                SourceLocation ColonLoc,
1788                                MemInitTy **meminits, unsigned NumMemInits,
1789                                bool AnyErrors) {
1790  if (!ConstructorDecl)
1791    return;
1792
1793  AdjustDeclIfTemplate(ConstructorDecl);
1794
1795  CXXConstructorDecl *Constructor
1796    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1797
1798  if (!Constructor) {
1799    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1800    return;
1801  }
1802
1803  CXXBaseOrMemberInitializer **MemInits =
1804    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1805
1806  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1807  bool HadError = false;
1808  for (unsigned i = 0; i < NumMemInits; i++) {
1809    CXXBaseOrMemberInitializer *Member = MemInits[i];
1810
1811    void *KeyToMember = GetKeyForMember(Context, Member);
1812    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1813    if (!PrevMember) {
1814      PrevMember = Member;
1815      continue;
1816    }
1817    if (FieldDecl *Field = Member->getMember())
1818      Diag(Member->getSourceLocation(),
1819           diag::error_multiple_mem_initialization)
1820        << Field->getNameAsString()
1821        << Member->getSourceRange();
1822    else {
1823      Type *BaseClass = Member->getBaseClass();
1824      assert(BaseClass && "ActOnMemInitializers - neither field or base");
1825      Diag(Member->getSourceLocation(),
1826           diag::error_multiple_base_initialization)
1827        << QualType(BaseClass, 0)
1828        << Member->getSourceRange();
1829    }
1830    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1831      << 0;
1832    HadError = true;
1833  }
1834
1835  if (HadError)
1836    return;
1837
1838  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1839
1840  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
1841}
1842
1843void
1844Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1845                                             CXXRecordDecl *ClassDecl) {
1846  // Ignore dependent contexts.
1847  if (ClassDecl->isDependentContext())
1848    return;
1849
1850  // FIXME: all the access-control diagnostics are positioned on the
1851  // field/base declaration.  That's probably good; that said, the
1852  // user might reasonably want to know why the destructor is being
1853  // emitted, and we currently don't say.
1854
1855  // Non-static data members.
1856  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1857       E = ClassDecl->field_end(); I != E; ++I) {
1858    FieldDecl *Field = *I;
1859
1860    QualType FieldType = Context.getBaseElementType(Field->getType());
1861
1862    const RecordType* RT = FieldType->getAs<RecordType>();
1863    if (!RT)
1864      continue;
1865
1866    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1867    if (FieldClassDecl->hasTrivialDestructor())
1868      continue;
1869
1870    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1871    CheckDestructorAccess(Field->getLocation(), Dtor,
1872                          PDiag(diag::err_access_dtor_field)
1873                            << Field->getDeclName()
1874                            << FieldType);
1875
1876    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1877  }
1878
1879  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1880
1881  // Bases.
1882  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1883       E = ClassDecl->bases_end(); Base != E; ++Base) {
1884    // Bases are always records in a well-formed non-dependent class.
1885    const RecordType *RT = Base->getType()->getAs<RecordType>();
1886
1887    // Remember direct virtual bases.
1888    if (Base->isVirtual())
1889      DirectVirtualBases.insert(RT);
1890
1891    // Ignore trivial destructors.
1892    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1893    if (BaseClassDecl->hasTrivialDestructor())
1894      continue;
1895
1896    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1897
1898    // FIXME: caret should be on the start of the class name
1899    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1900                          PDiag(diag::err_access_dtor_base)
1901                            << Base->getType()
1902                            << Base->getSourceRange());
1903
1904    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1905  }
1906
1907  // Virtual bases.
1908  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1909       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1910
1911    // Bases are always records in a well-formed non-dependent class.
1912    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1913
1914    // Ignore direct virtual bases.
1915    if (DirectVirtualBases.count(RT))
1916      continue;
1917
1918    // Ignore trivial destructors.
1919    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1920    if (BaseClassDecl->hasTrivialDestructor())
1921      continue;
1922
1923    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1924    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1925                          PDiag(diag::err_access_dtor_vbase)
1926                            << VBase->getType());
1927
1928    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1929  }
1930}
1931
1932void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1933  if (!CDtorDecl)
1934    return;
1935
1936  if (CXXConstructorDecl *Constructor
1937      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1938    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
1939}
1940
1941bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1942                                  unsigned DiagID, AbstractDiagSelID SelID,
1943                                  const CXXRecordDecl *CurrentRD) {
1944  if (SelID == -1)
1945    return RequireNonAbstractType(Loc, T,
1946                                  PDiag(DiagID), CurrentRD);
1947  else
1948    return RequireNonAbstractType(Loc, T,
1949                                  PDiag(DiagID) << SelID, CurrentRD);
1950}
1951
1952bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1953                                  const PartialDiagnostic &PD,
1954                                  const CXXRecordDecl *CurrentRD) {
1955  if (!getLangOptions().CPlusPlus)
1956    return false;
1957
1958  if (const ArrayType *AT = Context.getAsArrayType(T))
1959    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1960                                  CurrentRD);
1961
1962  if (const PointerType *PT = T->getAs<PointerType>()) {
1963    // Find the innermost pointer type.
1964    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1965      PT = T;
1966
1967    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1968      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1969  }
1970
1971  const RecordType *RT = T->getAs<RecordType>();
1972  if (!RT)
1973    return false;
1974
1975  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1976
1977  if (CurrentRD && CurrentRD != RD)
1978    return false;
1979
1980  // FIXME: is this reasonable?  It matches current behavior, but....
1981  if (!RD->getDefinition())
1982    return false;
1983
1984  if (!RD->isAbstract())
1985    return false;
1986
1987  Diag(Loc, PD) << RD->getDeclName();
1988
1989  // Check if we've already emitted the list of pure virtual functions for this
1990  // class.
1991  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1992    return true;
1993
1994  CXXFinalOverriderMap FinalOverriders;
1995  RD->getFinalOverriders(FinalOverriders);
1996
1997  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
1998                                   MEnd = FinalOverriders.end();
1999       M != MEnd;
2000       ++M) {
2001    for (OverridingMethods::iterator SO = M->second.begin(),
2002                                  SOEnd = M->second.end();
2003         SO != SOEnd; ++SO) {
2004      // C++ [class.abstract]p4:
2005      //   A class is abstract if it contains or inherits at least one
2006      //   pure virtual function for which the final overrider is pure
2007      //   virtual.
2008
2009      //
2010      if (SO->second.size() != 1)
2011        continue;
2012
2013      if (!SO->second.front().Method->isPure())
2014        continue;
2015
2016      Diag(SO->second.front().Method->getLocation(),
2017           diag::note_pure_virtual_function)
2018        << SO->second.front().Method->getDeclName();
2019    }
2020  }
2021
2022  if (!PureVirtualClassDiagSet)
2023    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2024  PureVirtualClassDiagSet->insert(RD);
2025
2026  return true;
2027}
2028
2029namespace {
2030  class AbstractClassUsageDiagnoser
2031    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2032    Sema &SemaRef;
2033    CXXRecordDecl *AbstractClass;
2034
2035    bool VisitDeclContext(const DeclContext *DC) {
2036      bool Invalid = false;
2037
2038      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2039           E = DC->decls_end(); I != E; ++I)
2040        Invalid |= Visit(*I);
2041
2042      return Invalid;
2043    }
2044
2045  public:
2046    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2047      : SemaRef(SemaRef), AbstractClass(ac) {
2048        Visit(SemaRef.Context.getTranslationUnitDecl());
2049    }
2050
2051    bool VisitFunctionDecl(const FunctionDecl *FD) {
2052      if (FD->isThisDeclarationADefinition()) {
2053        // No need to do the check if we're in a definition, because it requires
2054        // that the return/param types are complete.
2055        // because that requires
2056        return VisitDeclContext(FD);
2057      }
2058
2059      // Check the return type.
2060      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2061      bool Invalid =
2062        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2063                                       diag::err_abstract_type_in_decl,
2064                                       Sema::AbstractReturnType,
2065                                       AbstractClass);
2066
2067      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2068           E = FD->param_end(); I != E; ++I) {
2069        const ParmVarDecl *VD = *I;
2070        Invalid |=
2071          SemaRef.RequireNonAbstractType(VD->getLocation(),
2072                                         VD->getOriginalType(),
2073                                         diag::err_abstract_type_in_decl,
2074                                         Sema::AbstractParamType,
2075                                         AbstractClass);
2076      }
2077
2078      return Invalid;
2079    }
2080
2081    bool VisitDecl(const Decl* D) {
2082      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2083        return VisitDeclContext(DC);
2084
2085      return false;
2086    }
2087  };
2088}
2089
2090/// \brief Perform semantic checks on a class definition that has been
2091/// completing, introducing implicitly-declared members, checking for
2092/// abstract types, etc.
2093void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2094  if (!Record || Record->isInvalidDecl())
2095    return;
2096
2097  if (!Record->isDependentType())
2098    AddImplicitlyDeclaredMembersToClass(Record);
2099
2100  if (Record->isInvalidDecl())
2101    return;
2102
2103  // Set access bits correctly on the directly-declared conversions.
2104  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2105  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2106    Convs->setAccess(I, (*I)->getAccess());
2107
2108  // Determine whether we need to check for final overriders. We do
2109  // this either when there are virtual base classes (in which case we
2110  // may end up finding multiple final overriders for a given virtual
2111  // function) or any of the base classes is abstract (in which case
2112  // we might detect that this class is abstract).
2113  bool CheckFinalOverriders = false;
2114  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2115      !Record->isDependentType()) {
2116    if (Record->getNumVBases())
2117      CheckFinalOverriders = true;
2118    else if (!Record->isAbstract()) {
2119      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2120                                                 BEnd = Record->bases_end();
2121           B != BEnd; ++B) {
2122        CXXRecordDecl *BaseDecl
2123          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2124        if (BaseDecl->isAbstract()) {
2125          CheckFinalOverriders = true;
2126          break;
2127        }
2128      }
2129    }
2130  }
2131
2132  if (CheckFinalOverriders) {
2133    CXXFinalOverriderMap FinalOverriders;
2134    Record->getFinalOverriders(FinalOverriders);
2135
2136    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2137                                     MEnd = FinalOverriders.end();
2138         M != MEnd; ++M) {
2139      for (OverridingMethods::iterator SO = M->second.begin(),
2140                                    SOEnd = M->second.end();
2141           SO != SOEnd; ++SO) {
2142        assert(SO->second.size() > 0 &&
2143               "All virtual functions have overridding virtual functions");
2144        if (SO->second.size() == 1) {
2145          // C++ [class.abstract]p4:
2146          //   A class is abstract if it contains or inherits at least one
2147          //   pure virtual function for which the final overrider is pure
2148          //   virtual.
2149          if (SO->second.front().Method->isPure())
2150            Record->setAbstract(true);
2151          continue;
2152        }
2153
2154        // C++ [class.virtual]p2:
2155        //   In a derived class, if a virtual member function of a base
2156        //   class subobject has more than one final overrider the
2157        //   program is ill-formed.
2158        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2159          << (NamedDecl *)M->first << Record;
2160        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2161        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2162                                                 OMEnd = SO->second.end();
2163             OM != OMEnd; ++OM)
2164          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2165            << (NamedDecl *)M->first << OM->Method->getParent();
2166
2167        Record->setInvalidDecl();
2168      }
2169    }
2170  }
2171
2172  if (Record->isAbstract() && !Record->isInvalidDecl())
2173    (void)AbstractClassUsageDiagnoser(*this, Record);
2174}
2175
2176void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2177                                             DeclPtrTy TagDecl,
2178                                             SourceLocation LBrac,
2179                                             SourceLocation RBrac,
2180                                             AttributeList *AttrList) {
2181  if (!TagDecl)
2182    return;
2183
2184  AdjustDeclIfTemplate(TagDecl);
2185
2186  ActOnFields(S, RLoc, TagDecl,
2187              (DeclPtrTy*)FieldCollector->getCurFields(),
2188              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2189
2190  CheckCompletedCXXClass(
2191                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2192}
2193
2194/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2195/// special functions, such as the default constructor, copy
2196/// constructor, or destructor, to the given C++ class (C++
2197/// [special]p1).  This routine can only be executed just before the
2198/// definition of the class is complete.
2199void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2200  CanQualType ClassType
2201    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2202
2203  // FIXME: Implicit declarations have exception specifications, which are
2204  // the union of the specifications of the implicitly called functions.
2205
2206  if (!ClassDecl->hasUserDeclaredConstructor()) {
2207    // C++ [class.ctor]p5:
2208    //   A default constructor for a class X is a constructor of class X
2209    //   that can be called without an argument. If there is no
2210    //   user-declared constructor for class X, a default constructor is
2211    //   implicitly declared. An implicitly-declared default constructor
2212    //   is an inline public member of its class.
2213    DeclarationName Name
2214      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2215    CXXConstructorDecl *DefaultCon =
2216      CXXConstructorDecl::Create(Context, ClassDecl,
2217                                 ClassDecl->getLocation(), Name,
2218                                 Context.getFunctionType(Context.VoidTy,
2219                                                         0, 0, false, 0,
2220                                                         /*FIXME*/false, false,
2221                                                         0, 0,
2222                                                       FunctionType::ExtInfo()),
2223                                 /*TInfo=*/0,
2224                                 /*isExplicit=*/false,
2225                                 /*isInline=*/true,
2226                                 /*isImplicitlyDeclared=*/true);
2227    DefaultCon->setAccess(AS_public);
2228    DefaultCon->setImplicit();
2229    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2230    ClassDecl->addDecl(DefaultCon);
2231  }
2232
2233  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2234    // C++ [class.copy]p4:
2235    //   If the class definition does not explicitly declare a copy
2236    //   constructor, one is declared implicitly.
2237
2238    // C++ [class.copy]p5:
2239    //   The implicitly-declared copy constructor for a class X will
2240    //   have the form
2241    //
2242    //       X::X(const X&)
2243    //
2244    //   if
2245    bool HasConstCopyConstructor = true;
2246
2247    //     -- each direct or virtual base class B of X has a copy
2248    //        constructor whose first parameter is of type const B& or
2249    //        const volatile B&, and
2250    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2251         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2252      const CXXRecordDecl *BaseClassDecl
2253        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2254      HasConstCopyConstructor
2255        = BaseClassDecl->hasConstCopyConstructor(Context);
2256    }
2257
2258    //     -- for all the nonstatic data members of X that are of a
2259    //        class type M (or array thereof), each such class type
2260    //        has a copy constructor whose first parameter is of type
2261    //        const M& or const volatile M&.
2262    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2263         HasConstCopyConstructor && Field != ClassDecl->field_end();
2264         ++Field) {
2265      QualType FieldType = (*Field)->getType();
2266      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2267        FieldType = Array->getElementType();
2268      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2269        const CXXRecordDecl *FieldClassDecl
2270          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2271        HasConstCopyConstructor
2272          = FieldClassDecl->hasConstCopyConstructor(Context);
2273      }
2274    }
2275
2276    //   Otherwise, the implicitly declared copy constructor will have
2277    //   the form
2278    //
2279    //       X::X(X&)
2280    QualType ArgType = ClassType;
2281    if (HasConstCopyConstructor)
2282      ArgType = ArgType.withConst();
2283    ArgType = Context.getLValueReferenceType(ArgType);
2284
2285    //   An implicitly-declared copy constructor is an inline public
2286    //   member of its class.
2287    DeclarationName Name
2288      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2289    CXXConstructorDecl *CopyConstructor
2290      = CXXConstructorDecl::Create(Context, ClassDecl,
2291                                   ClassDecl->getLocation(), Name,
2292                                   Context.getFunctionType(Context.VoidTy,
2293                                                           &ArgType, 1,
2294                                                           false, 0,
2295                                                           /*FIXME:*/false,
2296                                                           false, 0, 0,
2297                                                       FunctionType::ExtInfo()),
2298                                   /*TInfo=*/0,
2299                                   /*isExplicit=*/false,
2300                                   /*isInline=*/true,
2301                                   /*isImplicitlyDeclared=*/true);
2302    CopyConstructor->setAccess(AS_public);
2303    CopyConstructor->setImplicit();
2304    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2305
2306    // Add the parameter to the constructor.
2307    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2308                                                 ClassDecl->getLocation(),
2309                                                 /*IdentifierInfo=*/0,
2310                                                 ArgType, /*TInfo=*/0,
2311                                                 VarDecl::None, 0);
2312    CopyConstructor->setParams(&FromParam, 1);
2313    ClassDecl->addDecl(CopyConstructor);
2314  }
2315
2316  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2317    // Note: The following rules are largely analoguous to the copy
2318    // constructor rules. Note that virtual bases are not taken into account
2319    // for determining the argument type of the operator. Note also that
2320    // operators taking an object instead of a reference are allowed.
2321    //
2322    // C++ [class.copy]p10:
2323    //   If the class definition does not explicitly declare a copy
2324    //   assignment operator, one is declared implicitly.
2325    //   The implicitly-defined copy assignment operator for a class X
2326    //   will have the form
2327    //
2328    //       X& X::operator=(const X&)
2329    //
2330    //   if
2331    bool HasConstCopyAssignment = true;
2332
2333    //       -- each direct base class B of X has a copy assignment operator
2334    //          whose parameter is of type const B&, const volatile B& or B,
2335    //          and
2336    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2337         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2338      assert(!Base->getType()->isDependentType() &&
2339            "Cannot generate implicit members for class with dependent bases.");
2340      const CXXRecordDecl *BaseClassDecl
2341        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2342      const CXXMethodDecl *MD = 0;
2343      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2344                                                                     MD);
2345    }
2346
2347    //       -- for all the nonstatic data members of X that are of a class
2348    //          type M (or array thereof), each such class type has a copy
2349    //          assignment operator whose parameter is of type const M&,
2350    //          const volatile M& or M.
2351    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2352         HasConstCopyAssignment && Field != ClassDecl->field_end();
2353         ++Field) {
2354      QualType FieldType = (*Field)->getType();
2355      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2356        FieldType = Array->getElementType();
2357      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2358        const CXXRecordDecl *FieldClassDecl
2359          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2360        const CXXMethodDecl *MD = 0;
2361        HasConstCopyAssignment
2362          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2363      }
2364    }
2365
2366    //   Otherwise, the implicitly declared copy assignment operator will
2367    //   have the form
2368    //
2369    //       X& X::operator=(X&)
2370    QualType ArgType = ClassType;
2371    QualType RetType = Context.getLValueReferenceType(ArgType);
2372    if (HasConstCopyAssignment)
2373      ArgType = ArgType.withConst();
2374    ArgType = Context.getLValueReferenceType(ArgType);
2375
2376    //   An implicitly-declared copy assignment operator is an inline public
2377    //   member of its class.
2378    DeclarationName Name =
2379      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2380    CXXMethodDecl *CopyAssignment =
2381      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2382                            Context.getFunctionType(RetType, &ArgType, 1,
2383                                                    false, 0,
2384                                                    /*FIXME:*/false,
2385                                                    false, 0, 0,
2386                                                    FunctionType::ExtInfo()),
2387                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2388    CopyAssignment->setAccess(AS_public);
2389    CopyAssignment->setImplicit();
2390    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2391    CopyAssignment->setCopyAssignment(true);
2392
2393    // Add the parameter to the operator.
2394    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2395                                                 ClassDecl->getLocation(),
2396                                                 /*IdentifierInfo=*/0,
2397                                                 ArgType, /*TInfo=*/0,
2398                                                 VarDecl::None, 0);
2399    CopyAssignment->setParams(&FromParam, 1);
2400
2401    // Don't call addedAssignmentOperator. There is no way to distinguish an
2402    // implicit from an explicit assignment operator.
2403    ClassDecl->addDecl(CopyAssignment);
2404    AddOverriddenMethods(ClassDecl, CopyAssignment);
2405  }
2406
2407  if (!ClassDecl->hasUserDeclaredDestructor()) {
2408    // C++ [class.dtor]p2:
2409    //   If a class has no user-declared destructor, a destructor is
2410    //   declared implicitly. An implicitly-declared destructor is an
2411    //   inline public member of its class.
2412    QualType Ty = Context.getFunctionType(Context.VoidTy,
2413                                          0, 0, false, 0,
2414                                          /*FIXME:*/false,
2415                                          false, 0, 0, FunctionType::ExtInfo());
2416
2417    DeclarationName Name
2418      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2419    CXXDestructorDecl *Destructor
2420      = CXXDestructorDecl::Create(Context, ClassDecl,
2421                                  ClassDecl->getLocation(), Name, Ty,
2422                                  /*isInline=*/true,
2423                                  /*isImplicitlyDeclared=*/true);
2424    Destructor->setAccess(AS_public);
2425    Destructor->setImplicit();
2426    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2427    ClassDecl->addDecl(Destructor);
2428
2429    // This could be uniqued if it ever proves significant.
2430    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2431
2432    AddOverriddenMethods(ClassDecl, Destructor);
2433  }
2434}
2435
2436void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2437  Decl *D = TemplateD.getAs<Decl>();
2438  if (!D)
2439    return;
2440
2441  TemplateParameterList *Params = 0;
2442  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2443    Params = Template->getTemplateParameters();
2444  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2445           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2446    Params = PartialSpec->getTemplateParameters();
2447  else
2448    return;
2449
2450  for (TemplateParameterList::iterator Param = Params->begin(),
2451                                    ParamEnd = Params->end();
2452       Param != ParamEnd; ++Param) {
2453    NamedDecl *Named = cast<NamedDecl>(*Param);
2454    if (Named->getDeclName()) {
2455      S->AddDecl(DeclPtrTy::make(Named));
2456      IdResolver.AddDecl(Named);
2457    }
2458  }
2459}
2460
2461void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2462  if (!RecordD) return;
2463  AdjustDeclIfTemplate(RecordD);
2464  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2465  PushDeclContext(S, Record);
2466}
2467
2468void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2469  if (!RecordD) return;
2470  PopDeclContext();
2471}
2472
2473/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2474/// parsing a top-level (non-nested) C++ class, and we are now
2475/// parsing those parts of the given Method declaration that could
2476/// not be parsed earlier (C++ [class.mem]p2), such as default
2477/// arguments. This action should enter the scope of the given
2478/// Method declaration as if we had just parsed the qualified method
2479/// name. However, it should not bring the parameters into scope;
2480/// that will be performed by ActOnDelayedCXXMethodParameter.
2481void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2482}
2483
2484/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2485/// C++ method declaration. We're (re-)introducing the given
2486/// function parameter into scope for use in parsing later parts of
2487/// the method declaration. For example, we could see an
2488/// ActOnParamDefaultArgument event for this parameter.
2489void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2490  if (!ParamD)
2491    return;
2492
2493  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2494
2495  // If this parameter has an unparsed default argument, clear it out
2496  // to make way for the parsed default argument.
2497  if (Param->hasUnparsedDefaultArg())
2498    Param->setDefaultArg(0);
2499
2500  S->AddDecl(DeclPtrTy::make(Param));
2501  if (Param->getDeclName())
2502    IdResolver.AddDecl(Param);
2503}
2504
2505/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2506/// processing the delayed method declaration for Method. The method
2507/// declaration is now considered finished. There may be a separate
2508/// ActOnStartOfFunctionDef action later (not necessarily
2509/// immediately!) for this method, if it was also defined inside the
2510/// class body.
2511void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2512  if (!MethodD)
2513    return;
2514
2515  AdjustDeclIfTemplate(MethodD);
2516
2517  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2518
2519  // Now that we have our default arguments, check the constructor
2520  // again. It could produce additional diagnostics or affect whether
2521  // the class has implicitly-declared destructors, among other
2522  // things.
2523  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2524    CheckConstructor(Constructor);
2525
2526  // Check the default arguments, which we may have added.
2527  if (!Method->isInvalidDecl())
2528    CheckCXXDefaultArguments(Method);
2529}
2530
2531/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2532/// the well-formedness of the constructor declarator @p D with type @p
2533/// R. If there are any errors in the declarator, this routine will
2534/// emit diagnostics and set the invalid bit to true.  In any case, the type
2535/// will be updated to reflect a well-formed type for the constructor and
2536/// returned.
2537QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2538                                          FunctionDecl::StorageClass &SC) {
2539  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2540
2541  // C++ [class.ctor]p3:
2542  //   A constructor shall not be virtual (10.3) or static (9.4). A
2543  //   constructor can be invoked for a const, volatile or const
2544  //   volatile object. A constructor shall not be declared const,
2545  //   volatile, or const volatile (9.3.2).
2546  if (isVirtual) {
2547    if (!D.isInvalidType())
2548      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2549        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2550        << SourceRange(D.getIdentifierLoc());
2551    D.setInvalidType();
2552  }
2553  if (SC == FunctionDecl::Static) {
2554    if (!D.isInvalidType())
2555      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2556        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2557        << SourceRange(D.getIdentifierLoc());
2558    D.setInvalidType();
2559    SC = FunctionDecl::None;
2560  }
2561
2562  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2563  if (FTI.TypeQuals != 0) {
2564    if (FTI.TypeQuals & Qualifiers::Const)
2565      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2566        << "const" << SourceRange(D.getIdentifierLoc());
2567    if (FTI.TypeQuals & Qualifiers::Volatile)
2568      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2569        << "volatile" << SourceRange(D.getIdentifierLoc());
2570    if (FTI.TypeQuals & Qualifiers::Restrict)
2571      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2572        << "restrict" << SourceRange(D.getIdentifierLoc());
2573  }
2574
2575  // Rebuild the function type "R" without any type qualifiers (in
2576  // case any of the errors above fired) and with "void" as the
2577  // return type, since constructors don't have return types. We
2578  // *always* have to do this, because GetTypeForDeclarator will
2579  // put in a result type of "int" when none was specified.
2580  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2581  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2582                                 Proto->getNumArgs(),
2583                                 Proto->isVariadic(), 0,
2584                                 Proto->hasExceptionSpec(),
2585                                 Proto->hasAnyExceptionSpec(),
2586                                 Proto->getNumExceptions(),
2587                                 Proto->exception_begin(),
2588                                 Proto->getExtInfo());
2589}
2590
2591/// CheckConstructor - Checks a fully-formed constructor for
2592/// well-formedness, issuing any diagnostics required. Returns true if
2593/// the constructor declarator is invalid.
2594void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2595  CXXRecordDecl *ClassDecl
2596    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2597  if (!ClassDecl)
2598    return Constructor->setInvalidDecl();
2599
2600  // C++ [class.copy]p3:
2601  //   A declaration of a constructor for a class X is ill-formed if
2602  //   its first parameter is of type (optionally cv-qualified) X and
2603  //   either there are no other parameters or else all other
2604  //   parameters have default arguments.
2605  if (!Constructor->isInvalidDecl() &&
2606      ((Constructor->getNumParams() == 1) ||
2607       (Constructor->getNumParams() > 1 &&
2608        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2609      Constructor->getTemplateSpecializationKind()
2610                                              != TSK_ImplicitInstantiation) {
2611    QualType ParamType = Constructor->getParamDecl(0)->getType();
2612    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2613    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2614      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2615      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2616        << FixItHint::CreateInsertion(ParamLoc, " const &");
2617
2618      // FIXME: Rather that making the constructor invalid, we should endeavor
2619      // to fix the type.
2620      Constructor->setInvalidDecl();
2621    }
2622  }
2623
2624  // Notify the class that we've added a constructor.
2625  ClassDecl->addedConstructor(Context, Constructor);
2626}
2627
2628/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2629/// issuing any diagnostics required. Returns true on error.
2630bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2631  CXXRecordDecl *RD = Destructor->getParent();
2632
2633  if (Destructor->isVirtual()) {
2634    SourceLocation Loc;
2635
2636    if (!Destructor->isImplicit())
2637      Loc = Destructor->getLocation();
2638    else
2639      Loc = RD->getLocation();
2640
2641    // If we have a virtual destructor, look up the deallocation function
2642    FunctionDecl *OperatorDelete = 0;
2643    DeclarationName Name =
2644    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2645    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2646      return true;
2647
2648    Destructor->setOperatorDelete(OperatorDelete);
2649  }
2650
2651  return false;
2652}
2653
2654static inline bool
2655FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2656  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2657          FTI.ArgInfo[0].Param &&
2658          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2659}
2660
2661/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2662/// the well-formednes of the destructor declarator @p D with type @p
2663/// R. If there are any errors in the declarator, this routine will
2664/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2665/// will be updated to reflect a well-formed type for the destructor and
2666/// returned.
2667QualType Sema::CheckDestructorDeclarator(Declarator &D,
2668                                         FunctionDecl::StorageClass& SC) {
2669  // C++ [class.dtor]p1:
2670  //   [...] A typedef-name that names a class is a class-name
2671  //   (7.1.3); however, a typedef-name that names a class shall not
2672  //   be used as the identifier in the declarator for a destructor
2673  //   declaration.
2674  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2675  if (isa<TypedefType>(DeclaratorType)) {
2676    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2677      << DeclaratorType;
2678    D.setInvalidType();
2679  }
2680
2681  // C++ [class.dtor]p2:
2682  //   A destructor is used to destroy objects of its class type. A
2683  //   destructor takes no parameters, and no return type can be
2684  //   specified for it (not even void). The address of a destructor
2685  //   shall not be taken. A destructor shall not be static. A
2686  //   destructor can be invoked for a const, volatile or const
2687  //   volatile object. A destructor shall not be declared const,
2688  //   volatile or const volatile (9.3.2).
2689  if (SC == FunctionDecl::Static) {
2690    if (!D.isInvalidType())
2691      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2692        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2693        << SourceRange(D.getIdentifierLoc());
2694    SC = FunctionDecl::None;
2695    D.setInvalidType();
2696  }
2697  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2698    // Destructors don't have return types, but the parser will
2699    // happily parse something like:
2700    //
2701    //   class X {
2702    //     float ~X();
2703    //   };
2704    //
2705    // The return type will be eliminated later.
2706    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2707      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2708      << SourceRange(D.getIdentifierLoc());
2709  }
2710
2711  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2712  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2713    if (FTI.TypeQuals & Qualifiers::Const)
2714      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2715        << "const" << SourceRange(D.getIdentifierLoc());
2716    if (FTI.TypeQuals & Qualifiers::Volatile)
2717      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2718        << "volatile" << SourceRange(D.getIdentifierLoc());
2719    if (FTI.TypeQuals & Qualifiers::Restrict)
2720      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2721        << "restrict" << SourceRange(D.getIdentifierLoc());
2722    D.setInvalidType();
2723  }
2724
2725  // Make sure we don't have any parameters.
2726  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2727    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2728
2729    // Delete the parameters.
2730    FTI.freeArgs();
2731    D.setInvalidType();
2732  }
2733
2734  // Make sure the destructor isn't variadic.
2735  if (FTI.isVariadic) {
2736    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2737    D.setInvalidType();
2738  }
2739
2740  // Rebuild the function type "R" without any type qualifiers or
2741  // parameters (in case any of the errors above fired) and with
2742  // "void" as the return type, since destructors don't have return
2743  // types. We *always* have to do this, because GetTypeForDeclarator
2744  // will put in a result type of "int" when none was specified.
2745  // FIXME: Exceptions!
2746  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2747                                 false, false, 0, 0, FunctionType::ExtInfo());
2748}
2749
2750/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2751/// well-formednes of the conversion function declarator @p D with
2752/// type @p R. If there are any errors in the declarator, this routine
2753/// will emit diagnostics and return true. Otherwise, it will return
2754/// false. Either way, the type @p R will be updated to reflect a
2755/// well-formed type for the conversion operator.
2756void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2757                                     FunctionDecl::StorageClass& SC) {
2758  // C++ [class.conv.fct]p1:
2759  //   Neither parameter types nor return type can be specified. The
2760  //   type of a conversion function (8.3.5) is "function taking no
2761  //   parameter returning conversion-type-id."
2762  if (SC == FunctionDecl::Static) {
2763    if (!D.isInvalidType())
2764      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2765        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2766        << SourceRange(D.getIdentifierLoc());
2767    D.setInvalidType();
2768    SC = FunctionDecl::None;
2769  }
2770  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2771    // Conversion functions don't have return types, but the parser will
2772    // happily parse something like:
2773    //
2774    //   class X {
2775    //     float operator bool();
2776    //   };
2777    //
2778    // The return type will be changed later anyway.
2779    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2780      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2781      << SourceRange(D.getIdentifierLoc());
2782  }
2783
2784  // Make sure we don't have any parameters.
2785  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2786    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2787
2788    // Delete the parameters.
2789    D.getTypeObject(0).Fun.freeArgs();
2790    D.setInvalidType();
2791  }
2792
2793  // Make sure the conversion function isn't variadic.
2794  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2795    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2796    D.setInvalidType();
2797  }
2798
2799  // C++ [class.conv.fct]p4:
2800  //   The conversion-type-id shall not represent a function type nor
2801  //   an array type.
2802  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2803  if (ConvType->isArrayType()) {
2804    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2805    ConvType = Context.getPointerType(ConvType);
2806    D.setInvalidType();
2807  } else if (ConvType->isFunctionType()) {
2808    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2809    ConvType = Context.getPointerType(ConvType);
2810    D.setInvalidType();
2811  }
2812
2813  // Rebuild the function type "R" without any parameters (in case any
2814  // of the errors above fired) and with the conversion type as the
2815  // return type.
2816  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2817  R = Context.getFunctionType(ConvType, 0, 0, false,
2818                              Proto->getTypeQuals(),
2819                              Proto->hasExceptionSpec(),
2820                              Proto->hasAnyExceptionSpec(),
2821                              Proto->getNumExceptions(),
2822                              Proto->exception_begin(),
2823                              Proto->getExtInfo());
2824
2825  // C++0x explicit conversion operators.
2826  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2827    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2828         diag::warn_explicit_conversion_functions)
2829      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2830}
2831
2832/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2833/// the declaration of the given C++ conversion function. This routine
2834/// is responsible for recording the conversion function in the C++
2835/// class, if possible.
2836Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2837  assert(Conversion && "Expected to receive a conversion function declaration");
2838
2839  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2840
2841  // Make sure we aren't redeclaring the conversion function.
2842  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2843
2844  // C++ [class.conv.fct]p1:
2845  //   [...] A conversion function is never used to convert a
2846  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2847  //   same object type (or a reference to it), to a (possibly
2848  //   cv-qualified) base class of that type (or a reference to it),
2849  //   or to (possibly cv-qualified) void.
2850  // FIXME: Suppress this warning if the conversion function ends up being a
2851  // virtual function that overrides a virtual function in a base class.
2852  QualType ClassType
2853    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2854  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2855    ConvType = ConvTypeRef->getPointeeType();
2856  if (ConvType->isRecordType()) {
2857    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2858    if (ConvType == ClassType)
2859      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2860        << ClassType;
2861    else if (IsDerivedFrom(ClassType, ConvType))
2862      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2863        <<  ClassType << ConvType;
2864  } else if (ConvType->isVoidType()) {
2865    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2866      << ClassType << ConvType;
2867  }
2868
2869  if (Conversion->getPrimaryTemplate()) {
2870    // ignore specializations
2871  } else if (Conversion->getPreviousDeclaration()) {
2872    if (FunctionTemplateDecl *ConversionTemplate
2873                                  = Conversion->getDescribedFunctionTemplate()) {
2874      if (ClassDecl->replaceConversion(
2875                                   ConversionTemplate->getPreviousDeclaration(),
2876                                       ConversionTemplate))
2877        return DeclPtrTy::make(ConversionTemplate);
2878    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2879                                            Conversion))
2880      return DeclPtrTy::make(Conversion);
2881    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2882  } else if (FunctionTemplateDecl *ConversionTemplate
2883               = Conversion->getDescribedFunctionTemplate())
2884    ClassDecl->addConversionFunction(ConversionTemplate);
2885  else
2886    ClassDecl->addConversionFunction(Conversion);
2887
2888  return DeclPtrTy::make(Conversion);
2889}
2890
2891//===----------------------------------------------------------------------===//
2892// Namespace Handling
2893//===----------------------------------------------------------------------===//
2894
2895/// ActOnStartNamespaceDef - This is called at the start of a namespace
2896/// definition.
2897Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2898                                             SourceLocation IdentLoc,
2899                                             IdentifierInfo *II,
2900                                             SourceLocation LBrace,
2901                                             AttributeList *AttrList) {
2902  NamespaceDecl *Namespc =
2903      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2904  Namespc->setLBracLoc(LBrace);
2905
2906  Scope *DeclRegionScope = NamespcScope->getParent();
2907
2908  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2909
2910  if (II) {
2911    // C++ [namespace.def]p2:
2912    // The identifier in an original-namespace-definition shall not have been
2913    // previously defined in the declarative region in which the
2914    // original-namespace-definition appears. The identifier in an
2915    // original-namespace-definition is the name of the namespace. Subsequently
2916    // in that declarative region, it is treated as an original-namespace-name.
2917
2918    NamedDecl *PrevDecl
2919      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2920                         ForRedeclaration);
2921
2922    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2923      // This is an extended namespace definition.
2924      // Attach this namespace decl to the chain of extended namespace
2925      // definitions.
2926      OrigNS->setNextNamespace(Namespc);
2927      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2928
2929      // Remove the previous declaration from the scope.
2930      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2931        IdResolver.RemoveDecl(OrigNS);
2932        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2933      }
2934    } else if (PrevDecl) {
2935      // This is an invalid name redefinition.
2936      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2937       << Namespc->getDeclName();
2938      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2939      Namespc->setInvalidDecl();
2940      // Continue on to push Namespc as current DeclContext and return it.
2941    } else if (II->isStr("std") &&
2942               CurContext->getLookupContext()->isTranslationUnit()) {
2943      // This is the first "real" definition of the namespace "std", so update
2944      // our cache of the "std" namespace to point at this definition.
2945      if (StdNamespace) {
2946        // We had already defined a dummy namespace "std". Link this new
2947        // namespace definition to the dummy namespace "std".
2948        StdNamespace->setNextNamespace(Namespc);
2949        StdNamespace->setLocation(IdentLoc);
2950        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2951      }
2952
2953      // Make our StdNamespace cache point at the first real definition of the
2954      // "std" namespace.
2955      StdNamespace = Namespc;
2956    }
2957
2958    PushOnScopeChains(Namespc, DeclRegionScope);
2959  } else {
2960    // Anonymous namespaces.
2961    assert(Namespc->isAnonymousNamespace());
2962
2963    // Link the anonymous namespace into its parent.
2964    NamespaceDecl *PrevDecl;
2965    DeclContext *Parent = CurContext->getLookupContext();
2966    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2967      PrevDecl = TU->getAnonymousNamespace();
2968      TU->setAnonymousNamespace(Namespc);
2969    } else {
2970      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2971      PrevDecl = ND->getAnonymousNamespace();
2972      ND->setAnonymousNamespace(Namespc);
2973    }
2974
2975    // Link the anonymous namespace with its previous declaration.
2976    if (PrevDecl) {
2977      assert(PrevDecl->isAnonymousNamespace());
2978      assert(!PrevDecl->getNextNamespace());
2979      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2980      PrevDecl->setNextNamespace(Namespc);
2981    }
2982
2983    CurContext->addDecl(Namespc);
2984
2985    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2986    //   behaves as if it were replaced by
2987    //     namespace unique { /* empty body */ }
2988    //     using namespace unique;
2989    //     namespace unique { namespace-body }
2990    //   where all occurrences of 'unique' in a translation unit are
2991    //   replaced by the same identifier and this identifier differs
2992    //   from all other identifiers in the entire program.
2993
2994    // We just create the namespace with an empty name and then add an
2995    // implicit using declaration, just like the standard suggests.
2996    //
2997    // CodeGen enforces the "universally unique" aspect by giving all
2998    // declarations semantically contained within an anonymous
2999    // namespace internal linkage.
3000
3001    if (!PrevDecl) {
3002      UsingDirectiveDecl* UD
3003        = UsingDirectiveDecl::Create(Context, CurContext,
3004                                     /* 'using' */ LBrace,
3005                                     /* 'namespace' */ SourceLocation(),
3006                                     /* qualifier */ SourceRange(),
3007                                     /* NNS */ NULL,
3008                                     /* identifier */ SourceLocation(),
3009                                     Namespc,
3010                                     /* Ancestor */ CurContext);
3011      UD->setImplicit();
3012      CurContext->addDecl(UD);
3013    }
3014  }
3015
3016  // Although we could have an invalid decl (i.e. the namespace name is a
3017  // redefinition), push it as current DeclContext and try to continue parsing.
3018  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3019  // for the namespace has the declarations that showed up in that particular
3020  // namespace definition.
3021  PushDeclContext(NamespcScope, Namespc);
3022  return DeclPtrTy::make(Namespc);
3023}
3024
3025/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3026/// is a namespace alias, returns the namespace it points to.
3027static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3028  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3029    return AD->getNamespace();
3030  return dyn_cast_or_null<NamespaceDecl>(D);
3031}
3032
3033/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3034/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3035void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3036  Decl *Dcl = D.getAs<Decl>();
3037  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3038  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3039  Namespc->setRBracLoc(RBrace);
3040  PopDeclContext();
3041}
3042
3043Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3044                                          SourceLocation UsingLoc,
3045                                          SourceLocation NamespcLoc,
3046                                          const CXXScopeSpec &SS,
3047                                          SourceLocation IdentLoc,
3048                                          IdentifierInfo *NamespcName,
3049                                          AttributeList *AttrList) {
3050  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3051  assert(NamespcName && "Invalid NamespcName.");
3052  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3053  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3054
3055  UsingDirectiveDecl *UDir = 0;
3056
3057  // Lookup namespace name.
3058  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3059  LookupParsedName(R, S, &SS);
3060  if (R.isAmbiguous())
3061    return DeclPtrTy();
3062
3063  if (!R.empty()) {
3064    NamedDecl *Named = R.getFoundDecl();
3065    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3066        && "expected namespace decl");
3067    // C++ [namespace.udir]p1:
3068    //   A using-directive specifies that the names in the nominated
3069    //   namespace can be used in the scope in which the
3070    //   using-directive appears after the using-directive. During
3071    //   unqualified name lookup (3.4.1), the names appear as if they
3072    //   were declared in the nearest enclosing namespace which
3073    //   contains both the using-directive and the nominated
3074    //   namespace. [Note: in this context, "contains" means "contains
3075    //   directly or indirectly". ]
3076
3077    // Find enclosing context containing both using-directive and
3078    // nominated namespace.
3079    NamespaceDecl *NS = getNamespaceDecl(Named);
3080    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3081    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3082      CommonAncestor = CommonAncestor->getParent();
3083
3084    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3085                                      SS.getRange(),
3086                                      (NestedNameSpecifier *)SS.getScopeRep(),
3087                                      IdentLoc, Named, CommonAncestor);
3088    PushUsingDirective(S, UDir);
3089  } else {
3090    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3091  }
3092
3093  // FIXME: We ignore attributes for now.
3094  delete AttrList;
3095  return DeclPtrTy::make(UDir);
3096}
3097
3098void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3099  // If scope has associated entity, then using directive is at namespace
3100  // or translation unit scope. We add UsingDirectiveDecls, into
3101  // it's lookup structure.
3102  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3103    Ctx->addDecl(UDir);
3104  else
3105    // Otherwise it is block-sope. using-directives will affect lookup
3106    // only to the end of scope.
3107    S->PushUsingDirective(DeclPtrTy::make(UDir));
3108}
3109
3110
3111Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3112                                            AccessSpecifier AS,
3113                                            bool HasUsingKeyword,
3114                                            SourceLocation UsingLoc,
3115                                            const CXXScopeSpec &SS,
3116                                            UnqualifiedId &Name,
3117                                            AttributeList *AttrList,
3118                                            bool IsTypeName,
3119                                            SourceLocation TypenameLoc) {
3120  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3121
3122  switch (Name.getKind()) {
3123  case UnqualifiedId::IK_Identifier:
3124  case UnqualifiedId::IK_OperatorFunctionId:
3125  case UnqualifiedId::IK_LiteralOperatorId:
3126  case UnqualifiedId::IK_ConversionFunctionId:
3127    break;
3128
3129  case UnqualifiedId::IK_ConstructorName:
3130  case UnqualifiedId::IK_ConstructorTemplateId:
3131    // C++0x inherited constructors.
3132    if (getLangOptions().CPlusPlus0x) break;
3133
3134    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3135      << SS.getRange();
3136    return DeclPtrTy();
3137
3138  case UnqualifiedId::IK_DestructorName:
3139    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3140      << SS.getRange();
3141    return DeclPtrTy();
3142
3143  case UnqualifiedId::IK_TemplateId:
3144    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3145      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3146    return DeclPtrTy();
3147  }
3148
3149  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3150  if (!TargetName)
3151    return DeclPtrTy();
3152
3153  // Warn about using declarations.
3154  // TODO: store that the declaration was written without 'using' and
3155  // talk about access decls instead of using decls in the
3156  // diagnostics.
3157  if (!HasUsingKeyword) {
3158    UsingLoc = Name.getSourceRange().getBegin();
3159
3160    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3161      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3162  }
3163
3164  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3165                                        Name.getSourceRange().getBegin(),
3166                                        TargetName, AttrList,
3167                                        /* IsInstantiation */ false,
3168                                        IsTypeName, TypenameLoc);
3169  if (UD)
3170    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3171
3172  return DeclPtrTy::make(UD);
3173}
3174
3175/// Determines whether to create a using shadow decl for a particular
3176/// decl, given the set of decls existing prior to this using lookup.
3177bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3178                                const LookupResult &Previous) {
3179  // Diagnose finding a decl which is not from a base class of the
3180  // current class.  We do this now because there are cases where this
3181  // function will silently decide not to build a shadow decl, which
3182  // will pre-empt further diagnostics.
3183  //
3184  // We don't need to do this in C++0x because we do the check once on
3185  // the qualifier.
3186  //
3187  // FIXME: diagnose the following if we care enough:
3188  //   struct A { int foo; };
3189  //   struct B : A { using A::foo; };
3190  //   template <class T> struct C : A {};
3191  //   template <class T> struct D : C<T> { using B::foo; } // <---
3192  // This is invalid (during instantiation) in C++03 because B::foo
3193  // resolves to the using decl in B, which is not a base class of D<T>.
3194  // We can't diagnose it immediately because C<T> is an unknown
3195  // specialization.  The UsingShadowDecl in D<T> then points directly
3196  // to A::foo, which will look well-formed when we instantiate.
3197  // The right solution is to not collapse the shadow-decl chain.
3198  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3199    DeclContext *OrigDC = Orig->getDeclContext();
3200
3201    // Handle enums and anonymous structs.
3202    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3203    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3204    while (OrigRec->isAnonymousStructOrUnion())
3205      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3206
3207    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3208      if (OrigDC == CurContext) {
3209        Diag(Using->getLocation(),
3210             diag::err_using_decl_nested_name_specifier_is_current_class)
3211          << Using->getNestedNameRange();
3212        Diag(Orig->getLocation(), diag::note_using_decl_target);
3213        return true;
3214      }
3215
3216      Diag(Using->getNestedNameRange().getBegin(),
3217           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3218        << Using->getTargetNestedNameDecl()
3219        << cast<CXXRecordDecl>(CurContext)
3220        << Using->getNestedNameRange();
3221      Diag(Orig->getLocation(), diag::note_using_decl_target);
3222      return true;
3223    }
3224  }
3225
3226  if (Previous.empty()) return false;
3227
3228  NamedDecl *Target = Orig;
3229  if (isa<UsingShadowDecl>(Target))
3230    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3231
3232  // If the target happens to be one of the previous declarations, we
3233  // don't have a conflict.
3234  //
3235  // FIXME: but we might be increasing its access, in which case we
3236  // should redeclare it.
3237  NamedDecl *NonTag = 0, *Tag = 0;
3238  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3239         I != E; ++I) {
3240    NamedDecl *D = (*I)->getUnderlyingDecl();
3241    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3242      return false;
3243
3244    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3245  }
3246
3247  if (Target->isFunctionOrFunctionTemplate()) {
3248    FunctionDecl *FD;
3249    if (isa<FunctionTemplateDecl>(Target))
3250      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3251    else
3252      FD = cast<FunctionDecl>(Target);
3253
3254    NamedDecl *OldDecl = 0;
3255    switch (CheckOverload(FD, Previous, OldDecl)) {
3256    case Ovl_Overload:
3257      return false;
3258
3259    case Ovl_NonFunction:
3260      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3261      break;
3262
3263    // We found a decl with the exact signature.
3264    case Ovl_Match:
3265      if (isa<UsingShadowDecl>(OldDecl)) {
3266        // Silently ignore the possible conflict.
3267        return false;
3268      }
3269
3270      // If we're in a record, we want to hide the target, so we
3271      // return true (without a diagnostic) to tell the caller not to
3272      // build a shadow decl.
3273      if (CurContext->isRecord())
3274        return true;
3275
3276      // If we're not in a record, this is an error.
3277      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3278      break;
3279    }
3280
3281    Diag(Target->getLocation(), diag::note_using_decl_target);
3282    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3283    return true;
3284  }
3285
3286  // Target is not a function.
3287
3288  if (isa<TagDecl>(Target)) {
3289    // No conflict between a tag and a non-tag.
3290    if (!Tag) return false;
3291
3292    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3293    Diag(Target->getLocation(), diag::note_using_decl_target);
3294    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3295    return true;
3296  }
3297
3298  // No conflict between a tag and a non-tag.
3299  if (!NonTag) return false;
3300
3301  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3302  Diag(Target->getLocation(), diag::note_using_decl_target);
3303  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3304  return true;
3305}
3306
3307/// Builds a shadow declaration corresponding to a 'using' declaration.
3308UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3309                                            UsingDecl *UD,
3310                                            NamedDecl *Orig) {
3311
3312  // If we resolved to another shadow declaration, just coalesce them.
3313  NamedDecl *Target = Orig;
3314  if (isa<UsingShadowDecl>(Target)) {
3315    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3316    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3317  }
3318
3319  UsingShadowDecl *Shadow
3320    = UsingShadowDecl::Create(Context, CurContext,
3321                              UD->getLocation(), UD, Target);
3322  UD->addShadowDecl(Shadow);
3323
3324  if (S)
3325    PushOnScopeChains(Shadow, S);
3326  else
3327    CurContext->addDecl(Shadow);
3328  Shadow->setAccess(UD->getAccess());
3329
3330  // Register it as a conversion if appropriate.
3331  if (Shadow->getDeclName().getNameKind()
3332        == DeclarationName::CXXConversionFunctionName)
3333    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3334
3335  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3336    Shadow->setInvalidDecl();
3337
3338  return Shadow;
3339}
3340
3341/// Hides a using shadow declaration.  This is required by the current
3342/// using-decl implementation when a resolvable using declaration in a
3343/// class is followed by a declaration which would hide or override
3344/// one or more of the using decl's targets; for example:
3345///
3346///   struct Base { void foo(int); };
3347///   struct Derived : Base {
3348///     using Base::foo;
3349///     void foo(int);
3350///   };
3351///
3352/// The governing language is C++03 [namespace.udecl]p12:
3353///
3354///   When a using-declaration brings names from a base class into a
3355///   derived class scope, member functions in the derived class
3356///   override and/or hide member functions with the same name and
3357///   parameter types in a base class (rather than conflicting).
3358///
3359/// There are two ways to implement this:
3360///   (1) optimistically create shadow decls when they're not hidden
3361///       by existing declarations, or
3362///   (2) don't create any shadow decls (or at least don't make them
3363///       visible) until we've fully parsed/instantiated the class.
3364/// The problem with (1) is that we might have to retroactively remove
3365/// a shadow decl, which requires several O(n) operations because the
3366/// decl structures are (very reasonably) not designed for removal.
3367/// (2) avoids this but is very fiddly and phase-dependent.
3368void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3369  if (Shadow->getDeclName().getNameKind() ==
3370        DeclarationName::CXXConversionFunctionName)
3371    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3372
3373  // Remove it from the DeclContext...
3374  Shadow->getDeclContext()->removeDecl(Shadow);
3375
3376  // ...and the scope, if applicable...
3377  if (S) {
3378    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3379    IdResolver.RemoveDecl(Shadow);
3380  }
3381
3382  // ...and the using decl.
3383  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3384
3385  // TODO: complain somehow if Shadow was used.  It shouldn't
3386  // be possible for this to happen, because...?
3387}
3388
3389/// Builds a using declaration.
3390///
3391/// \param IsInstantiation - Whether this call arises from an
3392///   instantiation of an unresolved using declaration.  We treat
3393///   the lookup differently for these declarations.
3394NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3395                                       SourceLocation UsingLoc,
3396                                       const CXXScopeSpec &SS,
3397                                       SourceLocation IdentLoc,
3398                                       DeclarationName Name,
3399                                       AttributeList *AttrList,
3400                                       bool IsInstantiation,
3401                                       bool IsTypeName,
3402                                       SourceLocation TypenameLoc) {
3403  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3404  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3405
3406  // FIXME: We ignore attributes for now.
3407  delete AttrList;
3408
3409  if (SS.isEmpty()) {
3410    Diag(IdentLoc, diag::err_using_requires_qualname);
3411    return 0;
3412  }
3413
3414  // Do the redeclaration lookup in the current scope.
3415  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3416                        ForRedeclaration);
3417  Previous.setHideTags(false);
3418  if (S) {
3419    LookupName(Previous, S);
3420
3421    // It is really dumb that we have to do this.
3422    LookupResult::Filter F = Previous.makeFilter();
3423    while (F.hasNext()) {
3424      NamedDecl *D = F.next();
3425      if (!isDeclInScope(D, CurContext, S))
3426        F.erase();
3427    }
3428    F.done();
3429  } else {
3430    assert(IsInstantiation && "no scope in non-instantiation");
3431    assert(CurContext->isRecord() && "scope not record in instantiation");
3432    LookupQualifiedName(Previous, CurContext);
3433  }
3434
3435  NestedNameSpecifier *NNS =
3436    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3437
3438  // Check for invalid redeclarations.
3439  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3440    return 0;
3441
3442  // Check for bad qualifiers.
3443  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3444    return 0;
3445
3446  DeclContext *LookupContext = computeDeclContext(SS);
3447  NamedDecl *D;
3448  if (!LookupContext) {
3449    if (IsTypeName) {
3450      // FIXME: not all declaration name kinds are legal here
3451      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3452                                              UsingLoc, TypenameLoc,
3453                                              SS.getRange(), NNS,
3454                                              IdentLoc, Name);
3455    } else {
3456      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3457                                           UsingLoc, SS.getRange(), NNS,
3458                                           IdentLoc, Name);
3459    }
3460  } else {
3461    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3462                          SS.getRange(), UsingLoc, NNS, Name,
3463                          IsTypeName);
3464  }
3465  D->setAccess(AS);
3466  CurContext->addDecl(D);
3467
3468  if (!LookupContext) return D;
3469  UsingDecl *UD = cast<UsingDecl>(D);
3470
3471  if (RequireCompleteDeclContext(SS)) {
3472    UD->setInvalidDecl();
3473    return UD;
3474  }
3475
3476  // Look up the target name.
3477
3478  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3479
3480  // Unlike most lookups, we don't always want to hide tag
3481  // declarations: tag names are visible through the using declaration
3482  // even if hidden by ordinary names, *except* in a dependent context
3483  // where it's important for the sanity of two-phase lookup.
3484  if (!IsInstantiation)
3485    R.setHideTags(false);
3486
3487  LookupQualifiedName(R, LookupContext);
3488
3489  if (R.empty()) {
3490    Diag(IdentLoc, diag::err_no_member)
3491      << Name << LookupContext << SS.getRange();
3492    UD->setInvalidDecl();
3493    return UD;
3494  }
3495
3496  if (R.isAmbiguous()) {
3497    UD->setInvalidDecl();
3498    return UD;
3499  }
3500
3501  if (IsTypeName) {
3502    // If we asked for a typename and got a non-type decl, error out.
3503    if (!R.getAsSingle<TypeDecl>()) {
3504      Diag(IdentLoc, diag::err_using_typename_non_type);
3505      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3506        Diag((*I)->getUnderlyingDecl()->getLocation(),
3507             diag::note_using_decl_target);
3508      UD->setInvalidDecl();
3509      return UD;
3510    }
3511  } else {
3512    // If we asked for a non-typename and we got a type, error out,
3513    // but only if this is an instantiation of an unresolved using
3514    // decl.  Otherwise just silently find the type name.
3515    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3516      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3517      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3518      UD->setInvalidDecl();
3519      return UD;
3520    }
3521  }
3522
3523  // C++0x N2914 [namespace.udecl]p6:
3524  // A using-declaration shall not name a namespace.
3525  if (R.getAsSingle<NamespaceDecl>()) {
3526    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3527      << SS.getRange();
3528    UD->setInvalidDecl();
3529    return UD;
3530  }
3531
3532  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3533    if (!CheckUsingShadowDecl(UD, *I, Previous))
3534      BuildUsingShadowDecl(S, UD, *I);
3535  }
3536
3537  return UD;
3538}
3539
3540/// Checks that the given using declaration is not an invalid
3541/// redeclaration.  Note that this is checking only for the using decl
3542/// itself, not for any ill-formedness among the UsingShadowDecls.
3543bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3544                                       bool isTypeName,
3545                                       const CXXScopeSpec &SS,
3546                                       SourceLocation NameLoc,
3547                                       const LookupResult &Prev) {
3548  // C++03 [namespace.udecl]p8:
3549  // C++0x [namespace.udecl]p10:
3550  //   A using-declaration is a declaration and can therefore be used
3551  //   repeatedly where (and only where) multiple declarations are
3552  //   allowed.
3553  // That's only in file contexts.
3554  if (CurContext->getLookupContext()->isFileContext())
3555    return false;
3556
3557  NestedNameSpecifier *Qual
3558    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3559
3560  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3561    NamedDecl *D = *I;
3562
3563    bool DTypename;
3564    NestedNameSpecifier *DQual;
3565    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3566      DTypename = UD->isTypeName();
3567      DQual = UD->getTargetNestedNameDecl();
3568    } else if (UnresolvedUsingValueDecl *UD
3569                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3570      DTypename = false;
3571      DQual = UD->getTargetNestedNameSpecifier();
3572    } else if (UnresolvedUsingTypenameDecl *UD
3573                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3574      DTypename = true;
3575      DQual = UD->getTargetNestedNameSpecifier();
3576    } else continue;
3577
3578    // using decls differ if one says 'typename' and the other doesn't.
3579    // FIXME: non-dependent using decls?
3580    if (isTypeName != DTypename) continue;
3581
3582    // using decls differ if they name different scopes (but note that
3583    // template instantiation can cause this check to trigger when it
3584    // didn't before instantiation).
3585    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3586        Context.getCanonicalNestedNameSpecifier(DQual))
3587      continue;
3588
3589    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3590    Diag(D->getLocation(), diag::note_using_decl) << 1;
3591    return true;
3592  }
3593
3594  return false;
3595}
3596
3597
3598/// Checks that the given nested-name qualifier used in a using decl
3599/// in the current context is appropriately related to the current
3600/// scope.  If an error is found, diagnoses it and returns true.
3601bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3602                                   const CXXScopeSpec &SS,
3603                                   SourceLocation NameLoc) {
3604  DeclContext *NamedContext = computeDeclContext(SS);
3605
3606  if (!CurContext->isRecord()) {
3607    // C++03 [namespace.udecl]p3:
3608    // C++0x [namespace.udecl]p8:
3609    //   A using-declaration for a class member shall be a member-declaration.
3610
3611    // If we weren't able to compute a valid scope, it must be a
3612    // dependent class scope.
3613    if (!NamedContext || NamedContext->isRecord()) {
3614      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3615        << SS.getRange();
3616      return true;
3617    }
3618
3619    // Otherwise, everything is known to be fine.
3620    return false;
3621  }
3622
3623  // The current scope is a record.
3624
3625  // If the named context is dependent, we can't decide much.
3626  if (!NamedContext) {
3627    // FIXME: in C++0x, we can diagnose if we can prove that the
3628    // nested-name-specifier does not refer to a base class, which is
3629    // still possible in some cases.
3630
3631    // Otherwise we have to conservatively report that things might be
3632    // okay.
3633    return false;
3634  }
3635
3636  if (!NamedContext->isRecord()) {
3637    // Ideally this would point at the last name in the specifier,
3638    // but we don't have that level of source info.
3639    Diag(SS.getRange().getBegin(),
3640         diag::err_using_decl_nested_name_specifier_is_not_class)
3641      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3642    return true;
3643  }
3644
3645  if (getLangOptions().CPlusPlus0x) {
3646    // C++0x [namespace.udecl]p3:
3647    //   In a using-declaration used as a member-declaration, the
3648    //   nested-name-specifier shall name a base class of the class
3649    //   being defined.
3650
3651    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3652                                 cast<CXXRecordDecl>(NamedContext))) {
3653      if (CurContext == NamedContext) {
3654        Diag(NameLoc,
3655             diag::err_using_decl_nested_name_specifier_is_current_class)
3656          << SS.getRange();
3657        return true;
3658      }
3659
3660      Diag(SS.getRange().getBegin(),
3661           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3662        << (NestedNameSpecifier*) SS.getScopeRep()
3663        << cast<CXXRecordDecl>(CurContext)
3664        << SS.getRange();
3665      return true;
3666    }
3667
3668    return false;
3669  }
3670
3671  // C++03 [namespace.udecl]p4:
3672  //   A using-declaration used as a member-declaration shall refer
3673  //   to a member of a base class of the class being defined [etc.].
3674
3675  // Salient point: SS doesn't have to name a base class as long as
3676  // lookup only finds members from base classes.  Therefore we can
3677  // diagnose here only if we can prove that that can't happen,
3678  // i.e. if the class hierarchies provably don't intersect.
3679
3680  // TODO: it would be nice if "definitely valid" results were cached
3681  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3682  // need to be repeated.
3683
3684  struct UserData {
3685    llvm::DenseSet<const CXXRecordDecl*> Bases;
3686
3687    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3688      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3689      Data->Bases.insert(Base);
3690      return true;
3691    }
3692
3693    bool hasDependentBases(const CXXRecordDecl *Class) {
3694      return !Class->forallBases(collect, this);
3695    }
3696
3697    /// Returns true if the base is dependent or is one of the
3698    /// accumulated base classes.
3699    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3700      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3701      return !Data->Bases.count(Base);
3702    }
3703
3704    bool mightShareBases(const CXXRecordDecl *Class) {
3705      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3706    }
3707  };
3708
3709  UserData Data;
3710
3711  // Returns false if we find a dependent base.
3712  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3713    return false;
3714
3715  // Returns false if the class has a dependent base or if it or one
3716  // of its bases is present in the base set of the current context.
3717  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3718    return false;
3719
3720  Diag(SS.getRange().getBegin(),
3721       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3722    << (NestedNameSpecifier*) SS.getScopeRep()
3723    << cast<CXXRecordDecl>(CurContext)
3724    << SS.getRange();
3725
3726  return true;
3727}
3728
3729Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3730                                             SourceLocation NamespaceLoc,
3731                                             SourceLocation AliasLoc,
3732                                             IdentifierInfo *Alias,
3733                                             const CXXScopeSpec &SS,
3734                                             SourceLocation IdentLoc,
3735                                             IdentifierInfo *Ident) {
3736
3737  // Lookup the namespace name.
3738  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3739  LookupParsedName(R, S, &SS);
3740
3741  // Check if we have a previous declaration with the same name.
3742  if (NamedDecl *PrevDecl
3743        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3744    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3745      // We already have an alias with the same name that points to the same
3746      // namespace, so don't create a new one.
3747      // FIXME: At some point, we'll want to create the (redundant)
3748      // declaration to maintain better source information.
3749      if (!R.isAmbiguous() && !R.empty() &&
3750          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3751        return DeclPtrTy();
3752    }
3753
3754    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3755      diag::err_redefinition_different_kind;
3756    Diag(AliasLoc, DiagID) << Alias;
3757    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3758    return DeclPtrTy();
3759  }
3760
3761  if (R.isAmbiguous())
3762    return DeclPtrTy();
3763
3764  if (R.empty()) {
3765    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3766    return DeclPtrTy();
3767  }
3768
3769  NamespaceAliasDecl *AliasDecl =
3770    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3771                               Alias, SS.getRange(),
3772                               (NestedNameSpecifier *)SS.getScopeRep(),
3773                               IdentLoc, R.getFoundDecl());
3774
3775  PushOnScopeChains(AliasDecl, S);
3776  return DeclPtrTy::make(AliasDecl);
3777}
3778
3779void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3780                                            CXXConstructorDecl *Constructor) {
3781  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3782          !Constructor->isUsed()) &&
3783    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3784
3785  CXXRecordDecl *ClassDecl
3786    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3787  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3788
3789  DeclContext *PreviousContext = CurContext;
3790  CurContext = Constructor;
3791  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
3792    Diag(CurrentLocation, diag::note_member_synthesized_at)
3793      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3794    Constructor->setInvalidDecl();
3795  } else {
3796    Constructor->setUsed();
3797  }
3798  CurContext = PreviousContext;
3799}
3800
3801void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3802                                    CXXDestructorDecl *Destructor) {
3803  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3804         "DefineImplicitDestructor - call it for implicit default dtor");
3805  CXXRecordDecl *ClassDecl = Destructor->getParent();
3806  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3807
3808  DeclContext *PreviousContext = CurContext;
3809  CurContext = Destructor;
3810
3811  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3812                                         Destructor->getParent());
3813
3814  // FIXME: If CheckDestructor fails, we should emit a note about where the
3815  // implicit destructor was needed.
3816  if (CheckDestructor(Destructor)) {
3817    Diag(CurrentLocation, diag::note_member_synthesized_at)
3818      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3819
3820    Destructor->setInvalidDecl();
3821    CurContext = PreviousContext;
3822
3823    return;
3824  }
3825  CurContext = PreviousContext;
3826
3827  Destructor->setUsed();
3828}
3829
3830void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3831                                          CXXMethodDecl *MethodDecl) {
3832  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3833          MethodDecl->getOverloadedOperator() == OO_Equal &&
3834          !MethodDecl->isUsed()) &&
3835         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3836
3837  CXXRecordDecl *ClassDecl
3838    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3839
3840  DeclContext *PreviousContext = CurContext;
3841  CurContext = MethodDecl;
3842
3843  // C++[class.copy] p12
3844  // Before the implicitly-declared copy assignment operator for a class is
3845  // implicitly defined, all implicitly-declared copy assignment operators
3846  // for its direct base classes and its nonstatic data members shall have
3847  // been implicitly defined.
3848  bool err = false;
3849  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3850       E = ClassDecl->bases_end(); Base != E; ++Base) {
3851    CXXRecordDecl *BaseClassDecl
3852      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3853    if (CXXMethodDecl *BaseAssignOpMethod =
3854          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3855                                  BaseClassDecl)) {
3856      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3857                              BaseAssignOpMethod,
3858                              PDiag(diag::err_access_assign_base)
3859                                << Base->getType());
3860
3861      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3862    }
3863  }
3864  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3865       E = ClassDecl->field_end(); Field != E; ++Field) {
3866    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3867    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3868      FieldType = Array->getElementType();
3869    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3870      CXXRecordDecl *FieldClassDecl
3871        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3872      if (CXXMethodDecl *FieldAssignOpMethod =
3873          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3874                                  FieldClassDecl)) {
3875        CheckDirectMemberAccess(Field->getLocation(),
3876                                FieldAssignOpMethod,
3877                                PDiag(diag::err_access_assign_field)
3878                                  << Field->getDeclName() << Field->getType());
3879
3880        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3881      }
3882    } else if (FieldType->isReferenceType()) {
3883      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3884      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3885      Diag(Field->getLocation(), diag::note_declared_at);
3886      Diag(CurrentLocation, diag::note_first_required_here);
3887      err = true;
3888    } else if (FieldType.isConstQualified()) {
3889      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3890      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3891      Diag(Field->getLocation(), diag::note_declared_at);
3892      Diag(CurrentLocation, diag::note_first_required_here);
3893      err = true;
3894    }
3895  }
3896  if (!err)
3897    MethodDecl->setUsed();
3898
3899  CurContext = PreviousContext;
3900}
3901
3902CXXMethodDecl *
3903Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3904                              ParmVarDecl *ParmDecl,
3905                              CXXRecordDecl *ClassDecl) {
3906  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3907  QualType RHSType(LHSType);
3908  // If class's assignment operator argument is const/volatile qualified,
3909  // look for operator = (const/volatile B&). Otherwise, look for
3910  // operator = (B&).
3911  RHSType = Context.getCVRQualifiedType(RHSType,
3912                                     ParmDecl->getType().getCVRQualifiers());
3913  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3914                                                           LHSType,
3915                                                           SourceLocation()));
3916  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3917                                                           RHSType,
3918                                                           CurrentLocation));
3919  Expr *Args[2] = { &*LHS, &*RHS };
3920  OverloadCandidateSet CandidateSet(CurrentLocation);
3921  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3922                              CandidateSet);
3923  OverloadCandidateSet::iterator Best;
3924  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3925    return cast<CXXMethodDecl>(Best->Function);
3926  assert(false &&
3927         "getAssignOperatorMethod - copy assignment operator method not found");
3928  return 0;
3929}
3930
3931void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3932                                   CXXConstructorDecl *CopyConstructor,
3933                                   unsigned TypeQuals) {
3934  assert((CopyConstructor->isImplicit() &&
3935          CopyConstructor->isCopyConstructor(TypeQuals) &&
3936          !CopyConstructor->isUsed()) &&
3937         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3938
3939  CXXRecordDecl *ClassDecl
3940    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3941  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3942
3943  DeclContext *PreviousContext = CurContext;
3944  CurContext = CopyConstructor;
3945
3946  // C++ [class.copy] p209
3947  // Before the implicitly-declared copy constructor for a class is
3948  // implicitly defined, all the implicitly-declared copy constructors
3949  // for its base class and its non-static data members shall have been
3950  // implicitly defined.
3951  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3952       Base != ClassDecl->bases_end(); ++Base) {
3953    CXXRecordDecl *BaseClassDecl
3954      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3955    if (CXXConstructorDecl *BaseCopyCtor =
3956        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
3957      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3958                              BaseCopyCtor,
3959                              PDiag(diag::err_access_copy_base)
3960                                << Base->getType());
3961
3962      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3963    }
3964  }
3965  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3966                                  FieldEnd = ClassDecl->field_end();
3967       Field != FieldEnd; ++Field) {
3968    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3969    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3970      FieldType = Array->getElementType();
3971    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3972      CXXRecordDecl *FieldClassDecl
3973        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3974      if (CXXConstructorDecl *FieldCopyCtor =
3975          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
3976        CheckDirectMemberAccess(Field->getLocation(),
3977                                FieldCopyCtor,
3978                                PDiag(diag::err_access_copy_field)
3979                                  << Field->getDeclName() << Field->getType());
3980
3981        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3982      }
3983    }
3984  }
3985  CopyConstructor->setUsed();
3986
3987  CurContext = PreviousContext;
3988}
3989
3990Sema::OwningExprResult
3991Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3992                            CXXConstructorDecl *Constructor,
3993                            MultiExprArg ExprArgs,
3994                            bool RequiresZeroInit,
3995                            bool BaseInitialization) {
3996  bool Elidable = false;
3997
3998  // C++ [class.copy]p15:
3999  //   Whenever a temporary class object is copied using a copy constructor, and
4000  //   this object and the copy have the same cv-unqualified type, an
4001  //   implementation is permitted to treat the original and the copy as two
4002  //   different ways of referring to the same object and not perform a copy at
4003  //   all, even if the class copy constructor or destructor have side effects.
4004
4005  // FIXME: Is this enough?
4006  if (Constructor->isCopyConstructor()) {
4007    Expr *E = ((Expr **)ExprArgs.get())[0];
4008    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4009      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4010        E = ICE->getSubExpr();
4011    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
4012      E = FCE->getSubExpr();
4013    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
4014      E = BE->getSubExpr();
4015    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4016      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4017        E = ICE->getSubExpr();
4018
4019    if (CallExpr *CE = dyn_cast<CallExpr>(E))
4020      Elidable = !CE->getCallReturnType()->isReferenceType();
4021    else if (isa<CXXTemporaryObjectExpr>(E))
4022      Elidable = true;
4023    else if (isa<CXXConstructExpr>(E))
4024      Elidable = true;
4025  }
4026
4027  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4028                               Elidable, move(ExprArgs), RequiresZeroInit,
4029                               BaseInitialization);
4030}
4031
4032/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4033/// including handling of its default argument expressions.
4034Sema::OwningExprResult
4035Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4036                            CXXConstructorDecl *Constructor, bool Elidable,
4037                            MultiExprArg ExprArgs,
4038                            bool RequiresZeroInit,
4039                            bool BaseInitialization) {
4040  unsigned NumExprs = ExprArgs.size();
4041  Expr **Exprs = (Expr **)ExprArgs.release();
4042
4043  MarkDeclarationReferenced(ConstructLoc, Constructor);
4044  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4045                                        Constructor, Elidable, Exprs, NumExprs,
4046                                        RequiresZeroInit, BaseInitialization));
4047}
4048
4049bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4050                                        CXXConstructorDecl *Constructor,
4051                                        MultiExprArg Exprs) {
4052  OwningExprResult TempResult =
4053    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4054                          move(Exprs));
4055  if (TempResult.isInvalid())
4056    return true;
4057
4058  Expr *Temp = TempResult.takeAs<Expr>();
4059  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4060  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4061  VD->setInit(Temp);
4062
4063  return false;
4064}
4065
4066void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4067  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4068  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4069      !ClassDecl->hasTrivialDestructor()) {
4070    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4071    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4072    CheckDestructorAccess(VD->getLocation(), Destructor,
4073                          PDiag(diag::err_access_dtor_var)
4074                            << VD->getDeclName()
4075                            << VD->getType());
4076  }
4077}
4078
4079/// AddCXXDirectInitializerToDecl - This action is called immediately after
4080/// ActOnDeclarator, when a C++ direct initializer is present.
4081/// e.g: "int x(1);"
4082void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4083                                         SourceLocation LParenLoc,
4084                                         MultiExprArg Exprs,
4085                                         SourceLocation *CommaLocs,
4086                                         SourceLocation RParenLoc) {
4087  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4088  Decl *RealDecl = Dcl.getAs<Decl>();
4089
4090  // If there is no declaration, there was an error parsing it.  Just ignore
4091  // the initializer.
4092  if (RealDecl == 0)
4093    return;
4094
4095  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4096  if (!VDecl) {
4097    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4098    RealDecl->setInvalidDecl();
4099    return;
4100  }
4101
4102  // We will represent direct-initialization similarly to copy-initialization:
4103  //    int x(1);  -as-> int x = 1;
4104  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4105  //
4106  // Clients that want to distinguish between the two forms, can check for
4107  // direct initializer using VarDecl::hasCXXDirectInitializer().
4108  // A major benefit is that clients that don't particularly care about which
4109  // exactly form was it (like the CodeGen) can handle both cases without
4110  // special case code.
4111
4112  // C++ 8.5p11:
4113  // The form of initialization (using parentheses or '=') is generally
4114  // insignificant, but does matter when the entity being initialized has a
4115  // class type.
4116  QualType DeclInitType = VDecl->getType();
4117  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4118    DeclInitType = Context.getBaseElementType(Array);
4119
4120  if (!VDecl->getType()->isDependentType() &&
4121      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4122                          diag::err_typecheck_decl_incomplete_type)) {
4123    VDecl->setInvalidDecl();
4124    return;
4125  }
4126
4127  // The variable can not have an abstract class type.
4128  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4129                             diag::err_abstract_type_in_decl,
4130                             AbstractVariableType))
4131    VDecl->setInvalidDecl();
4132
4133  const VarDecl *Def;
4134  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4135    Diag(VDecl->getLocation(), diag::err_redefinition)
4136    << VDecl->getDeclName();
4137    Diag(Def->getLocation(), diag::note_previous_definition);
4138    VDecl->setInvalidDecl();
4139    return;
4140  }
4141
4142  // If either the declaration has a dependent type or if any of the
4143  // expressions is type-dependent, we represent the initialization
4144  // via a ParenListExpr for later use during template instantiation.
4145  if (VDecl->getType()->isDependentType() ||
4146      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4147    // Let clients know that initialization was done with a direct initializer.
4148    VDecl->setCXXDirectInitializer(true);
4149
4150    // Store the initialization expressions as a ParenListExpr.
4151    unsigned NumExprs = Exprs.size();
4152    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4153                                               (Expr **)Exprs.release(),
4154                                               NumExprs, RParenLoc));
4155    return;
4156  }
4157
4158  // Capture the variable that is being initialized and the style of
4159  // initialization.
4160  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4161
4162  // FIXME: Poor source location information.
4163  InitializationKind Kind
4164    = InitializationKind::CreateDirect(VDecl->getLocation(),
4165                                       LParenLoc, RParenLoc);
4166
4167  InitializationSequence InitSeq(*this, Entity, Kind,
4168                                 (Expr**)Exprs.get(), Exprs.size());
4169  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4170  if (Result.isInvalid()) {
4171    VDecl->setInvalidDecl();
4172    return;
4173  }
4174
4175  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4176  VDecl->setInit(Result.takeAs<Expr>());
4177  VDecl->setCXXDirectInitializer(true);
4178
4179  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4180    FinalizeVarWithDestructor(VDecl, Record);
4181}
4182
4183/// \brief Add the applicable constructor candidates for an initialization
4184/// by constructor.
4185static void AddConstructorInitializationCandidates(Sema &SemaRef,
4186                                                   QualType ClassType,
4187                                                   Expr **Args,
4188                                                   unsigned NumArgs,
4189                                                   InitializationKind Kind,
4190                                           OverloadCandidateSet &CandidateSet) {
4191  // C++ [dcl.init]p14:
4192  //   If the initialization is direct-initialization, or if it is
4193  //   copy-initialization where the cv-unqualified version of the
4194  //   source type is the same class as, or a derived class of, the
4195  //   class of the destination, constructors are considered. The
4196  //   applicable constructors are enumerated (13.3.1.3), and the
4197  //   best one is chosen through overload resolution (13.3). The
4198  //   constructor so selected is called to initialize the object,
4199  //   with the initializer expression(s) as its argument(s). If no
4200  //   constructor applies, or the overload resolution is ambiguous,
4201  //   the initialization is ill-formed.
4202  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4203  assert(ClassRec && "Can only initialize a class type here");
4204
4205  // FIXME: When we decide not to synthesize the implicitly-declared
4206  // constructors, we'll need to make them appear here.
4207
4208  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4209  DeclarationName ConstructorName
4210    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4211              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4212  DeclContext::lookup_const_iterator Con, ConEnd;
4213  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4214       Con != ConEnd; ++Con) {
4215    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4216
4217    // Find the constructor (which may be a template).
4218    CXXConstructorDecl *Constructor = 0;
4219    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4220    if (ConstructorTmpl)
4221      Constructor
4222      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4223    else
4224      Constructor = cast<CXXConstructorDecl>(*Con);
4225
4226    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4227        (Kind.getKind() == InitializationKind::IK_Value) ||
4228        (Kind.getKind() == InitializationKind::IK_Copy &&
4229         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4230        ((Kind.getKind() == InitializationKind::IK_Default) &&
4231         Constructor->isDefaultConstructor())) {
4232      if (ConstructorTmpl)
4233        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4234                                             /*ExplicitArgs*/ 0,
4235                                             Args, NumArgs, CandidateSet);
4236      else
4237        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4238                                     Args, NumArgs, CandidateSet);
4239    }
4240  }
4241}
4242
4243/// \brief Attempt to perform initialization by constructor
4244/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4245/// copy-initialization.
4246///
4247/// This routine determines whether initialization by constructor is possible,
4248/// but it does not emit any diagnostics in the case where the initialization
4249/// is ill-formed.
4250///
4251/// \param ClassType the type of the object being initialized, which must have
4252/// class type.
4253///
4254/// \param Args the arguments provided to initialize the object
4255///
4256/// \param NumArgs the number of arguments provided to initialize the object
4257///
4258/// \param Kind the type of initialization being performed
4259///
4260/// \returns the constructor used to initialize the object, if successful.
4261/// Otherwise, emits a diagnostic and returns NULL.
4262CXXConstructorDecl *
4263Sema::TryInitializationByConstructor(QualType ClassType,
4264                                     Expr **Args, unsigned NumArgs,
4265                                     SourceLocation Loc,
4266                                     InitializationKind Kind) {
4267  // Build the overload candidate set
4268  OverloadCandidateSet CandidateSet(Loc);
4269  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4270                                         CandidateSet);
4271
4272  // Determine whether we found a constructor we can use.
4273  OverloadCandidateSet::iterator Best;
4274  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4275    case OR_Success:
4276    case OR_Deleted:
4277      // We found a constructor. Return it.
4278      return cast<CXXConstructorDecl>(Best->Function);
4279
4280    case OR_No_Viable_Function:
4281    case OR_Ambiguous:
4282      // Overload resolution failed. Return nothing.
4283      return 0;
4284  }
4285
4286  // Silence GCC warning
4287  return 0;
4288}
4289
4290/// \brief Given a constructor and the set of arguments provided for the
4291/// constructor, convert the arguments and add any required default arguments
4292/// to form a proper call to this constructor.
4293///
4294/// \returns true if an error occurred, false otherwise.
4295bool
4296Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4297                              MultiExprArg ArgsPtr,
4298                              SourceLocation Loc,
4299                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4300  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4301  unsigned NumArgs = ArgsPtr.size();
4302  Expr **Args = (Expr **)ArgsPtr.get();
4303
4304  const FunctionProtoType *Proto
4305    = Constructor->getType()->getAs<FunctionProtoType>();
4306  assert(Proto && "Constructor without a prototype?");
4307  unsigned NumArgsInProto = Proto->getNumArgs();
4308
4309  // If too few arguments are available, we'll fill in the rest with defaults.
4310  if (NumArgs < NumArgsInProto)
4311    ConvertedArgs.reserve(NumArgsInProto);
4312  else
4313    ConvertedArgs.reserve(NumArgs);
4314
4315  VariadicCallType CallType =
4316    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4317  llvm::SmallVector<Expr *, 8> AllArgs;
4318  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4319                                        Proto, 0, Args, NumArgs, AllArgs,
4320                                        CallType);
4321  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4322    ConvertedArgs.push_back(AllArgs[i]);
4323  return Invalid;
4324}
4325
4326/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4327/// determine whether they are reference-related,
4328/// reference-compatible, reference-compatible with added
4329/// qualification, or incompatible, for use in C++ initialization by
4330/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4331/// type, and the first type (T1) is the pointee type of the reference
4332/// type being initialized.
4333Sema::ReferenceCompareResult
4334Sema::CompareReferenceRelationship(SourceLocation Loc,
4335                                   QualType OrigT1, QualType OrigT2,
4336                                   bool& DerivedToBase) {
4337  assert(!OrigT1->isReferenceType() &&
4338    "T1 must be the pointee type of the reference type");
4339  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4340
4341  QualType T1 = Context.getCanonicalType(OrigT1);
4342  QualType T2 = Context.getCanonicalType(OrigT2);
4343  Qualifiers T1Quals, T2Quals;
4344  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4345  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4346
4347  // C++ [dcl.init.ref]p4:
4348  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4349  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4350  //   T1 is a base class of T2.
4351  if (UnqualT1 == UnqualT2)
4352    DerivedToBase = false;
4353  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4354           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4355           IsDerivedFrom(UnqualT2, UnqualT1))
4356    DerivedToBase = true;
4357  else
4358    return Ref_Incompatible;
4359
4360  // At this point, we know that T1 and T2 are reference-related (at
4361  // least).
4362
4363  // If the type is an array type, promote the element qualifiers to the type
4364  // for comparison.
4365  if (isa<ArrayType>(T1) && T1Quals)
4366    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4367  if (isa<ArrayType>(T2) && T2Quals)
4368    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4369
4370  // C++ [dcl.init.ref]p4:
4371  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4372  //   reference-related to T2 and cv1 is the same cv-qualification
4373  //   as, or greater cv-qualification than, cv2. For purposes of
4374  //   overload resolution, cases for which cv1 is greater
4375  //   cv-qualification than cv2 are identified as
4376  //   reference-compatible with added qualification (see 13.3.3.2).
4377  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4378    return Ref_Compatible;
4379  else if (T1.isMoreQualifiedThan(T2))
4380    return Ref_Compatible_With_Added_Qualification;
4381  else
4382    return Ref_Related;
4383}
4384
4385/// CheckReferenceInit - Check the initialization of a reference
4386/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4387/// the initializer (either a simple initializer or an initializer
4388/// list), and DeclType is the type of the declaration. When ICS is
4389/// non-null, this routine will compute the implicit conversion
4390/// sequence according to C++ [over.ics.ref] and will not produce any
4391/// diagnostics; when ICS is null, it will emit diagnostics when any
4392/// errors are found. Either way, a return value of true indicates
4393/// that there was a failure, a return value of false indicates that
4394/// the reference initialization succeeded.
4395///
4396/// When @p SuppressUserConversions, user-defined conversions are
4397/// suppressed.
4398/// When @p AllowExplicit, we also permit explicit user-defined
4399/// conversion functions.
4400/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4401/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4402/// This is used when this is called from a C-style cast.
4403bool
4404Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4405                         SourceLocation DeclLoc,
4406                         bool SuppressUserConversions,
4407                         bool AllowExplicit, bool ForceRValue,
4408                         ImplicitConversionSequence *ICS,
4409                         bool IgnoreBaseAccess) {
4410  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4411
4412  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4413  QualType T2 = Init->getType();
4414
4415  // If the initializer is the address of an overloaded function, try
4416  // to resolve the overloaded function. If all goes well, T2 is the
4417  // type of the resulting function.
4418  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4419    DeclAccessPair Found;
4420    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4421                                                          ICS != 0, Found);
4422    if (Fn) {
4423      // Since we're performing this reference-initialization for
4424      // real, update the initializer with the resulting function.
4425      if (!ICS) {
4426        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4427          return true;
4428
4429        CheckAddressOfMemberAccess(Init, Found);
4430        Init = FixOverloadedFunctionReference(Init, Found, Fn);
4431      }
4432
4433      T2 = Fn->getType();
4434    }
4435  }
4436
4437  // Compute some basic properties of the types and the initializer.
4438  bool isRValRef = DeclType->isRValueReferenceType();
4439  bool DerivedToBase = false;
4440  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4441                                                  Init->isLvalue(Context);
4442  ReferenceCompareResult RefRelationship
4443    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4444
4445  // Most paths end in a failed conversion.
4446  if (ICS) {
4447    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4448  }
4449
4450  // C++ [dcl.init.ref]p5:
4451  //   A reference to type "cv1 T1" is initialized by an expression
4452  //   of type "cv2 T2" as follows:
4453
4454  //     -- If the initializer expression
4455
4456  // Rvalue references cannot bind to lvalues (N2812).
4457  // There is absolutely no situation where they can. In particular, note that
4458  // this is ill-formed, even if B has a user-defined conversion to A&&:
4459  //   B b;
4460  //   A&& r = b;
4461  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4462    if (!ICS)
4463      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4464        << Init->getSourceRange();
4465    return true;
4466  }
4467
4468  bool BindsDirectly = false;
4469  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4470  //          reference-compatible with "cv2 T2," or
4471  //
4472  // Note that the bit-field check is skipped if we are just computing
4473  // the implicit conversion sequence (C++ [over.best.ics]p2).
4474  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4475      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4476    BindsDirectly = true;
4477
4478    if (ICS) {
4479      // C++ [over.ics.ref]p1:
4480      //   When a parameter of reference type binds directly (8.5.3)
4481      //   to an argument expression, the implicit conversion sequence
4482      //   is the identity conversion, unless the argument expression
4483      //   has a type that is a derived class of the parameter type,
4484      //   in which case the implicit conversion sequence is a
4485      //   derived-to-base Conversion (13.3.3.1).
4486      ICS->setStandard();
4487      ICS->Standard.First = ICK_Identity;
4488      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4489      ICS->Standard.Third = ICK_Identity;
4490      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4491      ICS->Standard.setToType(0, T2);
4492      ICS->Standard.setToType(1, T1);
4493      ICS->Standard.setToType(2, T1);
4494      ICS->Standard.ReferenceBinding = true;
4495      ICS->Standard.DirectBinding = true;
4496      ICS->Standard.RRefBinding = false;
4497      ICS->Standard.CopyConstructor = 0;
4498
4499      // Nothing more to do: the inaccessibility/ambiguity check for
4500      // derived-to-base conversions is suppressed when we're
4501      // computing the implicit conversion sequence (C++
4502      // [over.best.ics]p2).
4503      return false;
4504    } else {
4505      // Perform the conversion.
4506      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4507      if (DerivedToBase)
4508        CK = CastExpr::CK_DerivedToBase;
4509      else if(CheckExceptionSpecCompatibility(Init, T1))
4510        return true;
4511      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4512    }
4513  }
4514
4515  //       -- has a class type (i.e., T2 is a class type) and can be
4516  //          implicitly converted to an lvalue of type "cv3 T3,"
4517  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4518  //          92) (this conversion is selected by enumerating the
4519  //          applicable conversion functions (13.3.1.6) and choosing
4520  //          the best one through overload resolution (13.3)),
4521  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4522      !RequireCompleteType(DeclLoc, T2, 0)) {
4523    CXXRecordDecl *T2RecordDecl
4524      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4525
4526    OverloadCandidateSet CandidateSet(DeclLoc);
4527    const UnresolvedSetImpl *Conversions
4528      = T2RecordDecl->getVisibleConversionFunctions();
4529    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4530           E = Conversions->end(); I != E; ++I) {
4531      NamedDecl *D = *I;
4532      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4533      if (isa<UsingShadowDecl>(D))
4534        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4535
4536      FunctionTemplateDecl *ConvTemplate
4537        = dyn_cast<FunctionTemplateDecl>(D);
4538      CXXConversionDecl *Conv;
4539      if (ConvTemplate)
4540        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4541      else
4542        Conv = cast<CXXConversionDecl>(D);
4543
4544      // If the conversion function doesn't return a reference type,
4545      // it can't be considered for this conversion.
4546      if (Conv->getConversionType()->isLValueReferenceType() &&
4547          (AllowExplicit || !Conv->isExplicit())) {
4548        if (ConvTemplate)
4549          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4550                                         Init, DeclType, CandidateSet);
4551        else
4552          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4553                                 DeclType, CandidateSet);
4554      }
4555    }
4556
4557    OverloadCandidateSet::iterator Best;
4558    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4559    case OR_Success:
4560      // C++ [over.ics.ref]p1:
4561      //
4562      //   [...] If the parameter binds directly to the result of
4563      //   applying a conversion function to the argument
4564      //   expression, the implicit conversion sequence is a
4565      //   user-defined conversion sequence (13.3.3.1.2), with the
4566      //   second standard conversion sequence either an identity
4567      //   conversion or, if the conversion function returns an
4568      //   entity of a type that is a derived class of the parameter
4569      //   type, a derived-to-base Conversion.
4570      if (!Best->FinalConversion.DirectBinding)
4571        break;
4572
4573      // This is a direct binding.
4574      BindsDirectly = true;
4575
4576      if (ICS) {
4577        ICS->setUserDefined();
4578        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4579        ICS->UserDefined.After = Best->FinalConversion;
4580        ICS->UserDefined.ConversionFunction = Best->Function;
4581        ICS->UserDefined.EllipsisConversion = false;
4582        assert(ICS->UserDefined.After.ReferenceBinding &&
4583               ICS->UserDefined.After.DirectBinding &&
4584               "Expected a direct reference binding!");
4585        return false;
4586      } else {
4587        OwningExprResult InitConversion =
4588          BuildCXXCastArgument(DeclLoc, QualType(),
4589                               CastExpr::CK_UserDefinedConversion,
4590                               cast<CXXMethodDecl>(Best->Function),
4591                               Owned(Init));
4592        Init = InitConversion.takeAs<Expr>();
4593
4594        if (CheckExceptionSpecCompatibility(Init, T1))
4595          return true;
4596        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4597                          /*isLvalue=*/true);
4598      }
4599      break;
4600
4601    case OR_Ambiguous:
4602      if (ICS) {
4603        ICS->setAmbiguous();
4604        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4605             Cand != CandidateSet.end(); ++Cand)
4606          if (Cand->Viable)
4607            ICS->Ambiguous.addConversion(Cand->Function);
4608        break;
4609      }
4610      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4611            << Init->getSourceRange();
4612      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4613      return true;
4614
4615    case OR_No_Viable_Function:
4616    case OR_Deleted:
4617      // There was no suitable conversion, or we found a deleted
4618      // conversion; continue with other checks.
4619      break;
4620    }
4621  }
4622
4623  if (BindsDirectly) {
4624    // C++ [dcl.init.ref]p4:
4625    //   [...] In all cases where the reference-related or
4626    //   reference-compatible relationship of two types is used to
4627    //   establish the validity of a reference binding, and T1 is a
4628    //   base class of T2, a program that necessitates such a binding
4629    //   is ill-formed if T1 is an inaccessible (clause 11) or
4630    //   ambiguous (10.2) base class of T2.
4631    //
4632    // Note that we only check this condition when we're allowed to
4633    // complain about errors, because we should not be checking for
4634    // ambiguity (or inaccessibility) unless the reference binding
4635    // actually happens.
4636    if (DerivedToBase)
4637      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4638                                          Init->getSourceRange(),
4639                                          IgnoreBaseAccess);
4640    else
4641      return false;
4642  }
4643
4644  //     -- Otherwise, the reference shall be to a non-volatile const
4645  //        type (i.e., cv1 shall be const), or the reference shall be an
4646  //        rvalue reference and the initializer expression shall be an rvalue.
4647  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4648    if (!ICS)
4649      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4650        << T1.isVolatileQualified()
4651        << T1 << int(InitLvalue != Expr::LV_Valid)
4652        << T2 << Init->getSourceRange();
4653    return true;
4654  }
4655
4656  //       -- If the initializer expression is an rvalue, with T2 a
4657  //          class type, and "cv1 T1" is reference-compatible with
4658  //          "cv2 T2," the reference is bound in one of the
4659  //          following ways (the choice is implementation-defined):
4660  //
4661  //          -- The reference is bound to the object represented by
4662  //             the rvalue (see 3.10) or to a sub-object within that
4663  //             object.
4664  //
4665  //          -- A temporary of type "cv1 T2" [sic] is created, and
4666  //             a constructor is called to copy the entire rvalue
4667  //             object into the temporary. The reference is bound to
4668  //             the temporary or to a sub-object within the
4669  //             temporary.
4670  //
4671  //          The constructor that would be used to make the copy
4672  //          shall be callable whether or not the copy is actually
4673  //          done.
4674  //
4675  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4676  // freedom, so we will always take the first option and never build
4677  // a temporary in this case. FIXME: We will, however, have to check
4678  // for the presence of a copy constructor in C++98/03 mode.
4679  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4680      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4681    if (ICS) {
4682      ICS->setStandard();
4683      ICS->Standard.First = ICK_Identity;
4684      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4685      ICS->Standard.Third = ICK_Identity;
4686      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4687      ICS->Standard.setToType(0, T2);
4688      ICS->Standard.setToType(1, T1);
4689      ICS->Standard.setToType(2, T1);
4690      ICS->Standard.ReferenceBinding = true;
4691      ICS->Standard.DirectBinding = false;
4692      ICS->Standard.RRefBinding = isRValRef;
4693      ICS->Standard.CopyConstructor = 0;
4694    } else {
4695      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4696      if (DerivedToBase)
4697        CK = CastExpr::CK_DerivedToBase;
4698      else if(CheckExceptionSpecCompatibility(Init, T1))
4699        return true;
4700      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4701    }
4702    return false;
4703  }
4704
4705  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4706  //          initialized from the initializer expression using the
4707  //          rules for a non-reference copy initialization (8.5). The
4708  //          reference is then bound to the temporary. If T1 is
4709  //          reference-related to T2, cv1 must be the same
4710  //          cv-qualification as, or greater cv-qualification than,
4711  //          cv2; otherwise, the program is ill-formed.
4712  if (RefRelationship == Ref_Related) {
4713    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4714    // we would be reference-compatible or reference-compatible with
4715    // added qualification. But that wasn't the case, so the reference
4716    // initialization fails.
4717    if (!ICS)
4718      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4719        << T1 << int(InitLvalue != Expr::LV_Valid)
4720        << T2 << Init->getSourceRange();
4721    return true;
4722  }
4723
4724  // If at least one of the types is a class type, the types are not
4725  // related, and we aren't allowed any user conversions, the
4726  // reference binding fails. This case is important for breaking
4727  // recursion, since TryImplicitConversion below will attempt to
4728  // create a temporary through the use of a copy constructor.
4729  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4730      (T1->isRecordType() || T2->isRecordType())) {
4731    if (!ICS)
4732      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4733        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4734    return true;
4735  }
4736
4737  // Actually try to convert the initializer to T1.
4738  if (ICS) {
4739    // C++ [over.ics.ref]p2:
4740    //
4741    //   When a parameter of reference type is not bound directly to
4742    //   an argument expression, the conversion sequence is the one
4743    //   required to convert the argument expression to the
4744    //   underlying type of the reference according to
4745    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4746    //   to copy-initializing a temporary of the underlying type with
4747    //   the argument expression. Any difference in top-level
4748    //   cv-qualification is subsumed by the initialization itself
4749    //   and does not constitute a conversion.
4750    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4751                                 /*AllowExplicit=*/false,
4752                                 /*ForceRValue=*/false,
4753                                 /*InOverloadResolution=*/false);
4754
4755    // Of course, that's still a reference binding.
4756    if (ICS->isStandard()) {
4757      ICS->Standard.ReferenceBinding = true;
4758      ICS->Standard.RRefBinding = isRValRef;
4759    } else if (ICS->isUserDefined()) {
4760      ICS->UserDefined.After.ReferenceBinding = true;
4761      ICS->UserDefined.After.RRefBinding = isRValRef;
4762    }
4763    return ICS->isBad();
4764  } else {
4765    ImplicitConversionSequence Conversions;
4766    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4767                                                   false, false,
4768                                                   Conversions);
4769    if (badConversion) {
4770      if (Conversions.isAmbiguous()) {
4771        Diag(DeclLoc,
4772             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4773        for (int j = Conversions.Ambiguous.conversions().size()-1;
4774             j >= 0; j--) {
4775          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4776          NoteOverloadCandidate(Func);
4777        }
4778      }
4779      else {
4780        if (isRValRef)
4781          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4782            << Init->getSourceRange();
4783        else
4784          Diag(DeclLoc, diag::err_invalid_initialization)
4785            << DeclType << Init->getType() << Init->getSourceRange();
4786      }
4787    }
4788    return badConversion;
4789  }
4790}
4791
4792static inline bool
4793CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4794                                       const FunctionDecl *FnDecl) {
4795  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4796  if (isa<NamespaceDecl>(DC)) {
4797    return SemaRef.Diag(FnDecl->getLocation(),
4798                        diag::err_operator_new_delete_declared_in_namespace)
4799      << FnDecl->getDeclName();
4800  }
4801
4802  if (isa<TranslationUnitDecl>(DC) &&
4803      FnDecl->getStorageClass() == FunctionDecl::Static) {
4804    return SemaRef.Diag(FnDecl->getLocation(),
4805                        diag::err_operator_new_delete_declared_static)
4806      << FnDecl->getDeclName();
4807  }
4808
4809  return false;
4810}
4811
4812static inline bool
4813CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4814                            CanQualType ExpectedResultType,
4815                            CanQualType ExpectedFirstParamType,
4816                            unsigned DependentParamTypeDiag,
4817                            unsigned InvalidParamTypeDiag) {
4818  QualType ResultType =
4819    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4820
4821  // Check that the result type is not dependent.
4822  if (ResultType->isDependentType())
4823    return SemaRef.Diag(FnDecl->getLocation(),
4824                        diag::err_operator_new_delete_dependent_result_type)
4825    << FnDecl->getDeclName() << ExpectedResultType;
4826
4827  // Check that the result type is what we expect.
4828  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4829    return SemaRef.Diag(FnDecl->getLocation(),
4830                        diag::err_operator_new_delete_invalid_result_type)
4831    << FnDecl->getDeclName() << ExpectedResultType;
4832
4833  // A function template must have at least 2 parameters.
4834  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4835    return SemaRef.Diag(FnDecl->getLocation(),
4836                      diag::err_operator_new_delete_template_too_few_parameters)
4837        << FnDecl->getDeclName();
4838
4839  // The function decl must have at least 1 parameter.
4840  if (FnDecl->getNumParams() == 0)
4841    return SemaRef.Diag(FnDecl->getLocation(),
4842                        diag::err_operator_new_delete_too_few_parameters)
4843      << FnDecl->getDeclName();
4844
4845  // Check the the first parameter type is not dependent.
4846  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4847  if (FirstParamType->isDependentType())
4848    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4849      << FnDecl->getDeclName() << ExpectedFirstParamType;
4850
4851  // Check that the first parameter type is what we expect.
4852  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4853      ExpectedFirstParamType)
4854    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4855    << FnDecl->getDeclName() << ExpectedFirstParamType;
4856
4857  return false;
4858}
4859
4860static bool
4861CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4862  // C++ [basic.stc.dynamic.allocation]p1:
4863  //   A program is ill-formed if an allocation function is declared in a
4864  //   namespace scope other than global scope or declared static in global
4865  //   scope.
4866  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4867    return true;
4868
4869  CanQualType SizeTy =
4870    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4871
4872  // C++ [basic.stc.dynamic.allocation]p1:
4873  //  The return type shall be void*. The first parameter shall have type
4874  //  std::size_t.
4875  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4876                                  SizeTy,
4877                                  diag::err_operator_new_dependent_param_type,
4878                                  diag::err_operator_new_param_type))
4879    return true;
4880
4881  // C++ [basic.stc.dynamic.allocation]p1:
4882  //  The first parameter shall not have an associated default argument.
4883  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4884    return SemaRef.Diag(FnDecl->getLocation(),
4885                        diag::err_operator_new_default_arg)
4886      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4887
4888  return false;
4889}
4890
4891static bool
4892CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4893  // C++ [basic.stc.dynamic.deallocation]p1:
4894  //   A program is ill-formed if deallocation functions are declared in a
4895  //   namespace scope other than global scope or declared static in global
4896  //   scope.
4897  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4898    return true;
4899
4900  // C++ [basic.stc.dynamic.deallocation]p2:
4901  //   Each deallocation function shall return void and its first parameter
4902  //   shall be void*.
4903  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4904                                  SemaRef.Context.VoidPtrTy,
4905                                 diag::err_operator_delete_dependent_param_type,
4906                                 diag::err_operator_delete_param_type))
4907    return true;
4908
4909  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4910  if (FirstParamType->isDependentType())
4911    return SemaRef.Diag(FnDecl->getLocation(),
4912                        diag::err_operator_delete_dependent_param_type)
4913    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4914
4915  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4916      SemaRef.Context.VoidPtrTy)
4917    return SemaRef.Diag(FnDecl->getLocation(),
4918                        diag::err_operator_delete_param_type)
4919      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4920
4921  return false;
4922}
4923
4924/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4925/// of this overloaded operator is well-formed. If so, returns false;
4926/// otherwise, emits appropriate diagnostics and returns true.
4927bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4928  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4929         "Expected an overloaded operator declaration");
4930
4931  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4932
4933  // C++ [over.oper]p5:
4934  //   The allocation and deallocation functions, operator new,
4935  //   operator new[], operator delete and operator delete[], are
4936  //   described completely in 3.7.3. The attributes and restrictions
4937  //   found in the rest of this subclause do not apply to them unless
4938  //   explicitly stated in 3.7.3.
4939  if (Op == OO_Delete || Op == OO_Array_Delete)
4940    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4941
4942  if (Op == OO_New || Op == OO_Array_New)
4943    return CheckOperatorNewDeclaration(*this, FnDecl);
4944
4945  // C++ [over.oper]p6:
4946  //   An operator function shall either be a non-static member
4947  //   function or be a non-member function and have at least one
4948  //   parameter whose type is a class, a reference to a class, an
4949  //   enumeration, or a reference to an enumeration.
4950  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4951    if (MethodDecl->isStatic())
4952      return Diag(FnDecl->getLocation(),
4953                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4954  } else {
4955    bool ClassOrEnumParam = false;
4956    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4957                                   ParamEnd = FnDecl->param_end();
4958         Param != ParamEnd; ++Param) {
4959      QualType ParamType = (*Param)->getType().getNonReferenceType();
4960      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4961          ParamType->isEnumeralType()) {
4962        ClassOrEnumParam = true;
4963        break;
4964      }
4965    }
4966
4967    if (!ClassOrEnumParam)
4968      return Diag(FnDecl->getLocation(),
4969                  diag::err_operator_overload_needs_class_or_enum)
4970        << FnDecl->getDeclName();
4971  }
4972
4973  // C++ [over.oper]p8:
4974  //   An operator function cannot have default arguments (8.3.6),
4975  //   except where explicitly stated below.
4976  //
4977  // Only the function-call operator allows default arguments
4978  // (C++ [over.call]p1).
4979  if (Op != OO_Call) {
4980    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4981         Param != FnDecl->param_end(); ++Param) {
4982      if ((*Param)->hasDefaultArg())
4983        return Diag((*Param)->getLocation(),
4984                    diag::err_operator_overload_default_arg)
4985          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4986    }
4987  }
4988
4989  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4990    { false, false, false }
4991#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4992    , { Unary, Binary, MemberOnly }
4993#include "clang/Basic/OperatorKinds.def"
4994  };
4995
4996  bool CanBeUnaryOperator = OperatorUses[Op][0];
4997  bool CanBeBinaryOperator = OperatorUses[Op][1];
4998  bool MustBeMemberOperator = OperatorUses[Op][2];
4999
5000  // C++ [over.oper]p8:
5001  //   [...] Operator functions cannot have more or fewer parameters
5002  //   than the number required for the corresponding operator, as
5003  //   described in the rest of this subclause.
5004  unsigned NumParams = FnDecl->getNumParams()
5005                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5006  if (Op != OO_Call &&
5007      ((NumParams == 1 && !CanBeUnaryOperator) ||
5008       (NumParams == 2 && !CanBeBinaryOperator) ||
5009       (NumParams < 1) || (NumParams > 2))) {
5010    // We have the wrong number of parameters.
5011    unsigned ErrorKind;
5012    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5013      ErrorKind = 2;  // 2 -> unary or binary.
5014    } else if (CanBeUnaryOperator) {
5015      ErrorKind = 0;  // 0 -> unary
5016    } else {
5017      assert(CanBeBinaryOperator &&
5018             "All non-call overloaded operators are unary or binary!");
5019      ErrorKind = 1;  // 1 -> binary
5020    }
5021
5022    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5023      << FnDecl->getDeclName() << NumParams << ErrorKind;
5024  }
5025
5026  // Overloaded operators other than operator() cannot be variadic.
5027  if (Op != OO_Call &&
5028      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5029    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5030      << FnDecl->getDeclName();
5031  }
5032
5033  // Some operators must be non-static member functions.
5034  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5035    return Diag(FnDecl->getLocation(),
5036                diag::err_operator_overload_must_be_member)
5037      << FnDecl->getDeclName();
5038  }
5039
5040  // C++ [over.inc]p1:
5041  //   The user-defined function called operator++ implements the
5042  //   prefix and postfix ++ operator. If this function is a member
5043  //   function with no parameters, or a non-member function with one
5044  //   parameter of class or enumeration type, it defines the prefix
5045  //   increment operator ++ for objects of that type. If the function
5046  //   is a member function with one parameter (which shall be of type
5047  //   int) or a non-member function with two parameters (the second
5048  //   of which shall be of type int), it defines the postfix
5049  //   increment operator ++ for objects of that type.
5050  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5051    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5052    bool ParamIsInt = false;
5053    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5054      ParamIsInt = BT->getKind() == BuiltinType::Int;
5055
5056    if (!ParamIsInt)
5057      return Diag(LastParam->getLocation(),
5058                  diag::err_operator_overload_post_incdec_must_be_int)
5059        << LastParam->getType() << (Op == OO_MinusMinus);
5060  }
5061
5062  // Notify the class if it got an assignment operator.
5063  if (Op == OO_Equal) {
5064    // Would have returned earlier otherwise.
5065    assert(isa<CXXMethodDecl>(FnDecl) &&
5066      "Overloaded = not member, but not filtered.");
5067    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5068    Method->getParent()->addedAssignmentOperator(Context, Method);
5069  }
5070
5071  return false;
5072}
5073
5074/// CheckLiteralOperatorDeclaration - Check whether the declaration
5075/// of this literal operator function is well-formed. If so, returns
5076/// false; otherwise, emits appropriate diagnostics and returns true.
5077bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5078  DeclContext *DC = FnDecl->getDeclContext();
5079  Decl::Kind Kind = DC->getDeclKind();
5080  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5081      Kind != Decl::LinkageSpec) {
5082    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5083      << FnDecl->getDeclName();
5084    return true;
5085  }
5086
5087  bool Valid = false;
5088
5089  // FIXME: Check for the one valid template signature
5090  // template <char...> type operator "" name();
5091
5092  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5093    // Check the first parameter
5094    QualType T = (*Param)->getType();
5095
5096    // unsigned long long int and long double are allowed, but only
5097    // alone.
5098    // We also allow any character type; their omission seems to be a bug
5099    // in n3000
5100    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5101        Context.hasSameType(T, Context.LongDoubleTy) ||
5102        Context.hasSameType(T, Context.CharTy) ||
5103        Context.hasSameType(T, Context.WCharTy) ||
5104        Context.hasSameType(T, Context.Char16Ty) ||
5105        Context.hasSameType(T, Context.Char32Ty)) {
5106      if (++Param == FnDecl->param_end())
5107        Valid = true;
5108      goto FinishedParams;
5109    }
5110
5111    // Otherwise it must be a pointer to const; let's strip those.
5112    const PointerType *PT = T->getAs<PointerType>();
5113    if (!PT)
5114      goto FinishedParams;
5115    T = PT->getPointeeType();
5116    if (!T.isConstQualified())
5117      goto FinishedParams;
5118    T = T.getUnqualifiedType();
5119
5120    // Move on to the second parameter;
5121    ++Param;
5122
5123    // If there is no second parameter, the first must be a const char *
5124    if (Param == FnDecl->param_end()) {
5125      if (Context.hasSameType(T, Context.CharTy))
5126        Valid = true;
5127      goto FinishedParams;
5128    }
5129
5130    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5131    // are allowed as the first parameter to a two-parameter function
5132    if (!(Context.hasSameType(T, Context.CharTy) ||
5133          Context.hasSameType(T, Context.WCharTy) ||
5134          Context.hasSameType(T, Context.Char16Ty) ||
5135          Context.hasSameType(T, Context.Char32Ty)))
5136      goto FinishedParams;
5137
5138    // The second and final parameter must be an std::size_t
5139    T = (*Param)->getType().getUnqualifiedType();
5140    if (Context.hasSameType(T, Context.getSizeType()) &&
5141        ++Param == FnDecl->param_end())
5142      Valid = true;
5143  }
5144
5145  // FIXME: This diagnostic is absolutely terrible.
5146FinishedParams:
5147  if (!Valid) {
5148    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5149      << FnDecl->getDeclName();
5150    return true;
5151  }
5152
5153  return false;
5154}
5155
5156/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5157/// linkage specification, including the language and (if present)
5158/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5159/// the location of the language string literal, which is provided
5160/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5161/// the '{' brace. Otherwise, this linkage specification does not
5162/// have any braces.
5163Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5164                                                     SourceLocation ExternLoc,
5165                                                     SourceLocation LangLoc,
5166                                                     const char *Lang,
5167                                                     unsigned StrSize,
5168                                                     SourceLocation LBraceLoc) {
5169  LinkageSpecDecl::LanguageIDs Language;
5170  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5171    Language = LinkageSpecDecl::lang_c;
5172  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5173    Language = LinkageSpecDecl::lang_cxx;
5174  else {
5175    Diag(LangLoc, diag::err_bad_language);
5176    return DeclPtrTy();
5177  }
5178
5179  // FIXME: Add all the various semantics of linkage specifications
5180
5181  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5182                                               LangLoc, Language,
5183                                               LBraceLoc.isValid());
5184  CurContext->addDecl(D);
5185  PushDeclContext(S, D);
5186  return DeclPtrTy::make(D);
5187}
5188
5189/// ActOnFinishLinkageSpecification - Completely the definition of
5190/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5191/// valid, it's the position of the closing '}' brace in a linkage
5192/// specification that uses braces.
5193Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5194                                                      DeclPtrTy LinkageSpec,
5195                                                      SourceLocation RBraceLoc) {
5196  if (LinkageSpec)
5197    PopDeclContext();
5198  return LinkageSpec;
5199}
5200
5201/// \brief Perform semantic analysis for the variable declaration that
5202/// occurs within a C++ catch clause, returning the newly-created
5203/// variable.
5204VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5205                                         TypeSourceInfo *TInfo,
5206                                         IdentifierInfo *Name,
5207                                         SourceLocation Loc,
5208                                         SourceRange Range) {
5209  bool Invalid = false;
5210
5211  // Arrays and functions decay.
5212  if (ExDeclType->isArrayType())
5213    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5214  else if (ExDeclType->isFunctionType())
5215    ExDeclType = Context.getPointerType(ExDeclType);
5216
5217  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5218  // The exception-declaration shall not denote a pointer or reference to an
5219  // incomplete type, other than [cv] void*.
5220  // N2844 forbids rvalue references.
5221  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5222    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5223    Invalid = true;
5224  }
5225
5226  // GCC allows catching pointers and references to incomplete types
5227  // as an extension; so do we, but we warn by default.
5228
5229  QualType BaseType = ExDeclType;
5230  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5231  unsigned DK = diag::err_catch_incomplete;
5232  bool IncompleteCatchIsInvalid = true;
5233  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5234    BaseType = Ptr->getPointeeType();
5235    Mode = 1;
5236    DK = diag::ext_catch_incomplete_ptr;
5237    IncompleteCatchIsInvalid = false;
5238  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5239    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5240    BaseType = Ref->getPointeeType();
5241    Mode = 2;
5242    DK = diag::ext_catch_incomplete_ref;
5243    IncompleteCatchIsInvalid = false;
5244  }
5245  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5246      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5247      IncompleteCatchIsInvalid)
5248    Invalid = true;
5249
5250  if (!Invalid && !ExDeclType->isDependentType() &&
5251      RequireNonAbstractType(Loc, ExDeclType,
5252                             diag::err_abstract_type_in_decl,
5253                             AbstractVariableType))
5254    Invalid = true;
5255
5256  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5257                                    Name, ExDeclType, TInfo, VarDecl::None);
5258
5259  if (!Invalid) {
5260    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5261      // C++ [except.handle]p16:
5262      //   The object declared in an exception-declaration or, if the
5263      //   exception-declaration does not specify a name, a temporary (12.2) is
5264      //   copy-initialized (8.5) from the exception object. [...]
5265      //   The object is destroyed when the handler exits, after the destruction
5266      //   of any automatic objects initialized within the handler.
5267      //
5268      // We just pretend to initialize the object with itself, then make sure
5269      // it can be destroyed later.
5270      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5271      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5272                                            Loc, ExDeclType, 0);
5273      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5274                                                               SourceLocation());
5275      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5276      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5277                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5278      if (Result.isInvalid())
5279        Invalid = true;
5280      else
5281        FinalizeVarWithDestructor(ExDecl, RecordTy);
5282    }
5283  }
5284
5285  if (Invalid)
5286    ExDecl->setInvalidDecl();
5287
5288  return ExDecl;
5289}
5290
5291/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5292/// handler.
5293Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5294  TypeSourceInfo *TInfo = 0;
5295  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5296
5297  bool Invalid = D.isInvalidType();
5298  IdentifierInfo *II = D.getIdentifier();
5299  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5300    // The scope should be freshly made just for us. There is just no way
5301    // it contains any previous declaration.
5302    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5303    if (PrevDecl->isTemplateParameter()) {
5304      // Maybe we will complain about the shadowed template parameter.
5305      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5306    }
5307  }
5308
5309  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5310    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5311      << D.getCXXScopeSpec().getRange();
5312    Invalid = true;
5313  }
5314
5315  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5316                                              D.getIdentifier(),
5317                                              D.getIdentifierLoc(),
5318                                            D.getDeclSpec().getSourceRange());
5319
5320  if (Invalid)
5321    ExDecl->setInvalidDecl();
5322
5323  // Add the exception declaration into this scope.
5324  if (II)
5325    PushOnScopeChains(ExDecl, S);
5326  else
5327    CurContext->addDecl(ExDecl);
5328
5329  ProcessDeclAttributes(S, ExDecl, D);
5330  return DeclPtrTy::make(ExDecl);
5331}
5332
5333Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5334                                                   ExprArg assertexpr,
5335                                                   ExprArg assertmessageexpr) {
5336  Expr *AssertExpr = (Expr *)assertexpr.get();
5337  StringLiteral *AssertMessage =
5338    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5339
5340  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5341    llvm::APSInt Value(32);
5342    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5343      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5344        AssertExpr->getSourceRange();
5345      return DeclPtrTy();
5346    }
5347
5348    if (Value == 0) {
5349      Diag(AssertLoc, diag::err_static_assert_failed)
5350        << AssertMessage->getString() << AssertExpr->getSourceRange();
5351    }
5352  }
5353
5354  assertexpr.release();
5355  assertmessageexpr.release();
5356  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5357                                        AssertExpr, AssertMessage);
5358
5359  CurContext->addDecl(Decl);
5360  return DeclPtrTy::make(Decl);
5361}
5362
5363/// Handle a friend type declaration.  This works in tandem with
5364/// ActOnTag.
5365///
5366/// Notes on friend class templates:
5367///
5368/// We generally treat friend class declarations as if they were
5369/// declaring a class.  So, for example, the elaborated type specifier
5370/// in a friend declaration is required to obey the restrictions of a
5371/// class-head (i.e. no typedefs in the scope chain), template
5372/// parameters are required to match up with simple template-ids, &c.
5373/// However, unlike when declaring a template specialization, it's
5374/// okay to refer to a template specialization without an empty
5375/// template parameter declaration, e.g.
5376///   friend class A<T>::B<unsigned>;
5377/// We permit this as a special case; if there are any template
5378/// parameters present at all, require proper matching, i.e.
5379///   template <> template <class T> friend class A<int>::B;
5380Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5381                                          MultiTemplateParamsArg TempParams) {
5382  SourceLocation Loc = DS.getSourceRange().getBegin();
5383
5384  assert(DS.isFriendSpecified());
5385  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5386
5387  // Try to convert the decl specifier to a type.  This works for
5388  // friend templates because ActOnTag never produces a ClassTemplateDecl
5389  // for a TUK_Friend.
5390  Declarator TheDeclarator(DS, Declarator::MemberContext);
5391  TypeSourceInfo *TSI;
5392  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5393  if (TheDeclarator.isInvalidType())
5394    return DeclPtrTy();
5395
5396  // This is definitely an error in C++98.  It's probably meant to
5397  // be forbidden in C++0x, too, but the specification is just
5398  // poorly written.
5399  //
5400  // The problem is with declarations like the following:
5401  //   template <T> friend A<T>::foo;
5402  // where deciding whether a class C is a friend or not now hinges
5403  // on whether there exists an instantiation of A that causes
5404  // 'foo' to equal C.  There are restrictions on class-heads
5405  // (which we declare (by fiat) elaborated friend declarations to
5406  // be) that makes this tractable.
5407  //
5408  // FIXME: handle "template <> friend class A<T>;", which
5409  // is possibly well-formed?  Who even knows?
5410  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5411    Diag(Loc, diag::err_tagless_friend_type_template)
5412      << DS.getSourceRange();
5413    return DeclPtrTy();
5414  }
5415
5416  // C++ [class.friend]p2:
5417  //   An elaborated-type-specifier shall be used in a friend declaration
5418  //   for a class.*
5419  //   * The class-key of the elaborated-type-specifier is required.
5420  // This is one of the rare places in Clang where it's legitimate to
5421  // ask about the "spelling" of the type.
5422  if (!getLangOptions().CPlusPlus0x && !T->isElaboratedTypeSpecifier()) {
5423    // If we evaluated the type to a record type, suggest putting
5424    // a tag in front.
5425    if (const RecordType *RT = T->getAs<RecordType>()) {
5426      RecordDecl *RD = RT->getDecl();
5427
5428      std::string InsertionText = std::string(" ") + RD->getKindName();
5429
5430      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5431        << (unsigned) RD->getTagKind()
5432        << T
5433        << SourceRange(DS.getFriendSpecLoc())
5434        << FixItHint::CreateInsertion(DS.getTypeSpecTypeLoc(), InsertionText);
5435      return DeclPtrTy();
5436    }else {
5437      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5438          << DS.getSourceRange();
5439      return DeclPtrTy();
5440    }
5441  }
5442
5443  // Enum types cannot be friends.
5444  if (T->getAs<EnumType>()) {
5445    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5446      << SourceRange(DS.getFriendSpecLoc());
5447    return DeclPtrTy();
5448  }
5449
5450  // C++98 [class.friend]p1: A friend of a class is a function
5451  //   or class that is not a member of the class . . .
5452  // This is fixed in DR77, which just barely didn't make the C++03
5453  // deadline.  It's also a very silly restriction that seriously
5454  // affects inner classes and which nobody else seems to implement;
5455  // thus we never diagnose it, not even in -pedantic.
5456  //
5457  // But note that we could warn about it: it's always useless to
5458  // friend one of your own members (it's not, however, worthless to
5459  // friend a member of an arbitrary specialization of your template).
5460
5461  Decl *D;
5462  if (TempParams.size())
5463    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5464                                   TempParams.size(),
5465                                 (TemplateParameterList**) TempParams.release(),
5466                                   TSI,
5467                                   DS.getFriendSpecLoc());
5468  else
5469    D = FriendDecl::Create(Context, CurContext, Loc, TSI,
5470                           DS.getFriendSpecLoc());
5471  D->setAccess(AS_public);
5472  CurContext->addDecl(D);
5473
5474  return DeclPtrTy::make(D);
5475}
5476
5477Sema::DeclPtrTy
5478Sema::ActOnFriendFunctionDecl(Scope *S,
5479                              Declarator &D,
5480                              bool IsDefinition,
5481                              MultiTemplateParamsArg TemplateParams) {
5482  const DeclSpec &DS = D.getDeclSpec();
5483
5484  assert(DS.isFriendSpecified());
5485  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5486
5487  SourceLocation Loc = D.getIdentifierLoc();
5488  TypeSourceInfo *TInfo = 0;
5489  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5490
5491  // C++ [class.friend]p1
5492  //   A friend of a class is a function or class....
5493  // Note that this sees through typedefs, which is intended.
5494  // It *doesn't* see through dependent types, which is correct
5495  // according to [temp.arg.type]p3:
5496  //   If a declaration acquires a function type through a
5497  //   type dependent on a template-parameter and this causes
5498  //   a declaration that does not use the syntactic form of a
5499  //   function declarator to have a function type, the program
5500  //   is ill-formed.
5501  if (!T->isFunctionType()) {
5502    Diag(Loc, diag::err_unexpected_friend);
5503
5504    // It might be worthwhile to try to recover by creating an
5505    // appropriate declaration.
5506    return DeclPtrTy();
5507  }
5508
5509  // C++ [namespace.memdef]p3
5510  //  - If a friend declaration in a non-local class first declares a
5511  //    class or function, the friend class or function is a member
5512  //    of the innermost enclosing namespace.
5513  //  - The name of the friend is not found by simple name lookup
5514  //    until a matching declaration is provided in that namespace
5515  //    scope (either before or after the class declaration granting
5516  //    friendship).
5517  //  - If a friend function is called, its name may be found by the
5518  //    name lookup that considers functions from namespaces and
5519  //    classes associated with the types of the function arguments.
5520  //  - When looking for a prior declaration of a class or a function
5521  //    declared as a friend, scopes outside the innermost enclosing
5522  //    namespace scope are not considered.
5523
5524  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5525  DeclarationName Name = GetNameForDeclarator(D);
5526  assert(Name);
5527
5528  // The context we found the declaration in, or in which we should
5529  // create the declaration.
5530  DeclContext *DC;
5531
5532  // FIXME: handle local classes
5533
5534  // Recover from invalid scope qualifiers as if they just weren't there.
5535  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5536                        ForRedeclaration);
5537  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5538    // FIXME: RequireCompleteDeclContext
5539    DC = computeDeclContext(ScopeQual);
5540
5541    // FIXME: handle dependent contexts
5542    if (!DC) return DeclPtrTy();
5543
5544    LookupQualifiedName(Previous, DC);
5545
5546    // If searching in that context implicitly found a declaration in
5547    // a different context, treat it like it wasn't found at all.
5548    // TODO: better diagnostics for this case.  Suggesting the right
5549    // qualified scope would be nice...
5550    // FIXME: getRepresentativeDecl() is not right here at all
5551    if (Previous.empty() ||
5552        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5553      D.setInvalidType();
5554      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5555      return DeclPtrTy();
5556    }
5557
5558    // C++ [class.friend]p1: A friend of a class is a function or
5559    //   class that is not a member of the class . . .
5560    if (DC->Equals(CurContext))
5561      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5562
5563  // Otherwise walk out to the nearest namespace scope looking for matches.
5564  } else {
5565    // TODO: handle local class contexts.
5566
5567    DC = CurContext;
5568    while (true) {
5569      // Skip class contexts.  If someone can cite chapter and verse
5570      // for this behavior, that would be nice --- it's what GCC and
5571      // EDG do, and it seems like a reasonable intent, but the spec
5572      // really only says that checks for unqualified existing
5573      // declarations should stop at the nearest enclosing namespace,
5574      // not that they should only consider the nearest enclosing
5575      // namespace.
5576      while (DC->isRecord())
5577        DC = DC->getParent();
5578
5579      LookupQualifiedName(Previous, DC);
5580
5581      // TODO: decide what we think about using declarations.
5582      if (!Previous.empty())
5583        break;
5584
5585      if (DC->isFileContext()) break;
5586      DC = DC->getParent();
5587    }
5588
5589    // C++ [class.friend]p1: A friend of a class is a function or
5590    //   class that is not a member of the class . . .
5591    // C++0x changes this for both friend types and functions.
5592    // Most C++ 98 compilers do seem to give an error here, so
5593    // we do, too.
5594    if (!Previous.empty() && DC->Equals(CurContext)
5595        && !getLangOptions().CPlusPlus0x)
5596      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5597  }
5598
5599  if (DC->isFileContext()) {
5600    // This implies that it has to be an operator or function.
5601    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5602        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5603        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5604      Diag(Loc, diag::err_introducing_special_friend) <<
5605        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5606         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5607      return DeclPtrTy();
5608    }
5609  }
5610
5611  bool Redeclaration = false;
5612  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5613                                          move(TemplateParams),
5614                                          IsDefinition,
5615                                          Redeclaration);
5616  if (!ND) return DeclPtrTy();
5617
5618  assert(ND->getDeclContext() == DC);
5619  assert(ND->getLexicalDeclContext() == CurContext);
5620
5621  // Add the function declaration to the appropriate lookup tables,
5622  // adjusting the redeclarations list as necessary.  We don't
5623  // want to do this yet if the friending class is dependent.
5624  //
5625  // Also update the scope-based lookup if the target context's
5626  // lookup context is in lexical scope.
5627  if (!CurContext->isDependentContext()) {
5628    DC = DC->getLookupContext();
5629    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5630    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5631      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5632  }
5633
5634  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5635                                       D.getIdentifierLoc(), ND,
5636                                       DS.getFriendSpecLoc());
5637  FrD->setAccess(AS_public);
5638  CurContext->addDecl(FrD);
5639
5640  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5641    FrD->setSpecialization(true);
5642
5643  return DeclPtrTy::make(ND);
5644}
5645
5646void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5647  AdjustDeclIfTemplate(dcl);
5648
5649  Decl *Dcl = dcl.getAs<Decl>();
5650  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5651  if (!Fn) {
5652    Diag(DelLoc, diag::err_deleted_non_function);
5653    return;
5654  }
5655  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5656    Diag(DelLoc, diag::err_deleted_decl_not_first);
5657    Diag(Prev->getLocation(), diag::note_previous_declaration);
5658    // If the declaration wasn't the first, we delete the function anyway for
5659    // recovery.
5660  }
5661  Fn->setDeleted();
5662}
5663
5664static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5665  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5666       ++CI) {
5667    Stmt *SubStmt = *CI;
5668    if (!SubStmt)
5669      continue;
5670    if (isa<ReturnStmt>(SubStmt))
5671      Self.Diag(SubStmt->getSourceRange().getBegin(),
5672           diag::err_return_in_constructor_handler);
5673    if (!isa<Expr>(SubStmt))
5674      SearchForReturnInStmt(Self, SubStmt);
5675  }
5676}
5677
5678void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5679  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5680    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5681    SearchForReturnInStmt(*this, Handler);
5682  }
5683}
5684
5685bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5686                                             const CXXMethodDecl *Old) {
5687  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5688  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5689
5690  if (Context.hasSameType(NewTy, OldTy) ||
5691      NewTy->isDependentType() || OldTy->isDependentType())
5692    return false;
5693
5694  // Check if the return types are covariant
5695  QualType NewClassTy, OldClassTy;
5696
5697  /// Both types must be pointers or references to classes.
5698  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5699    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5700      NewClassTy = NewPT->getPointeeType();
5701      OldClassTy = OldPT->getPointeeType();
5702    }
5703  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5704    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5705      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5706        NewClassTy = NewRT->getPointeeType();
5707        OldClassTy = OldRT->getPointeeType();
5708      }
5709    }
5710  }
5711
5712  // The return types aren't either both pointers or references to a class type.
5713  if (NewClassTy.isNull()) {
5714    Diag(New->getLocation(),
5715         diag::err_different_return_type_for_overriding_virtual_function)
5716      << New->getDeclName() << NewTy << OldTy;
5717    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5718
5719    return true;
5720  }
5721
5722  // C++ [class.virtual]p6:
5723  //   If the return type of D::f differs from the return type of B::f, the
5724  //   class type in the return type of D::f shall be complete at the point of
5725  //   declaration of D::f or shall be the class type D.
5726  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5727    if (!RT->isBeingDefined() &&
5728        RequireCompleteType(New->getLocation(), NewClassTy,
5729                            PDiag(diag::err_covariant_return_incomplete)
5730                              << New->getDeclName()))
5731    return true;
5732  }
5733
5734  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5735    // Check if the new class derives from the old class.
5736    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5737      Diag(New->getLocation(),
5738           diag::err_covariant_return_not_derived)
5739      << New->getDeclName() << NewTy << OldTy;
5740      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5741      return true;
5742    }
5743
5744    // Check if we the conversion from derived to base is valid.
5745    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5746                      diag::err_covariant_return_inaccessible_base,
5747                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5748                      // FIXME: Should this point to the return type?
5749                      New->getLocation(), SourceRange(), New->getDeclName())) {
5750      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5751      return true;
5752    }
5753  }
5754
5755  // The qualifiers of the return types must be the same.
5756  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5757    Diag(New->getLocation(),
5758         diag::err_covariant_return_type_different_qualifications)
5759    << New->getDeclName() << NewTy << OldTy;
5760    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5761    return true;
5762  };
5763
5764
5765  // The new class type must have the same or less qualifiers as the old type.
5766  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5767    Diag(New->getLocation(),
5768         diag::err_covariant_return_type_class_type_more_qualified)
5769    << New->getDeclName() << NewTy << OldTy;
5770    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5771    return true;
5772  };
5773
5774  return false;
5775}
5776
5777bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5778                                             const CXXMethodDecl *Old)
5779{
5780  if (Old->hasAttr<FinalAttr>()) {
5781    Diag(New->getLocation(), diag::err_final_function_overridden)
5782      << New->getDeclName();
5783    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5784    return true;
5785  }
5786
5787  return false;
5788}
5789
5790/// \brief Mark the given method pure.
5791///
5792/// \param Method the method to be marked pure.
5793///
5794/// \param InitRange the source range that covers the "0" initializer.
5795bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5796  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5797    Method->setPure();
5798
5799    // A class is abstract if at least one function is pure virtual.
5800    Method->getParent()->setAbstract(true);
5801    return false;
5802  }
5803
5804  if (!Method->isInvalidDecl())
5805    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5806      << Method->getDeclName() << InitRange;
5807  return true;
5808}
5809
5810/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5811/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5812/// is a fresh scope pushed for just this purpose.
5813///
5814/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5815/// static data member of class X, names should be looked up in the scope of
5816/// class X.
5817void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5818  // If there is no declaration, there was an error parsing it.
5819  Decl *D = Dcl.getAs<Decl>();
5820  if (D == 0) return;
5821
5822  // We should only get called for declarations with scope specifiers, like:
5823  //   int foo::bar;
5824  assert(D->isOutOfLine());
5825  EnterDeclaratorContext(S, D->getDeclContext());
5826}
5827
5828/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5829/// initializer for the out-of-line declaration 'Dcl'.
5830void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5831  // If there is no declaration, there was an error parsing it.
5832  Decl *D = Dcl.getAs<Decl>();
5833  if (D == 0) return;
5834
5835  assert(D->isOutOfLine());
5836  ExitDeclaratorContext(S);
5837}
5838
5839/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5840/// C++ if/switch/while/for statement.
5841/// e.g: "if (int x = f()) {...}"
5842Action::DeclResult
5843Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5844  // C++ 6.4p2:
5845  // The declarator shall not specify a function or an array.
5846  // The type-specifier-seq shall not contain typedef and shall not declare a
5847  // new class or enumeration.
5848  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5849         "Parser allowed 'typedef' as storage class of condition decl.");
5850
5851  TypeSourceInfo *TInfo = 0;
5852  TagDecl *OwnedTag = 0;
5853  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5854
5855  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5856                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5857                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5858    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5859      << D.getSourceRange();
5860    return DeclResult();
5861  } else if (OwnedTag && OwnedTag->isDefinition()) {
5862    // The type-specifier-seq shall not declare a new class or enumeration.
5863    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5864  }
5865
5866  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5867  if (!Dcl)
5868    return DeclResult();
5869
5870  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5871  VD->setDeclaredInCondition(true);
5872  return Dcl;
5873}
5874
5875static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5876  // Ignore dependent types.
5877  if (MD->isDependentContext())
5878    return false;
5879
5880  // Ignore declarations that are not definitions.
5881  if (!MD->isThisDeclarationADefinition())
5882    return false;
5883
5884  CXXRecordDecl *RD = MD->getParent();
5885
5886  // Ignore classes without a vtable.
5887  if (!RD->isDynamicClass())
5888    return false;
5889
5890  switch (MD->getParent()->getTemplateSpecializationKind()) {
5891  case TSK_Undeclared:
5892  case TSK_ExplicitSpecialization:
5893    // Classes that aren't instantiations of templates don't need their
5894    // virtual methods marked until we see the definition of the key
5895    // function.
5896    break;
5897
5898  case TSK_ImplicitInstantiation:
5899    // This is a constructor of a class template; mark all of the virtual
5900    // members as referenced to ensure that they get instantiatied.
5901    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5902      return true;
5903    break;
5904
5905  case TSK_ExplicitInstantiationDeclaration:
5906    return false;
5907
5908  case TSK_ExplicitInstantiationDefinition:
5909    // This is method of a explicit instantiation; mark all of the virtual
5910    // members as referenced to ensure that they get instantiatied.
5911    return true;
5912  }
5913
5914  // Consider only out-of-line definitions of member functions. When we see
5915  // an inline definition, it's too early to compute the key function.
5916  if (!MD->isOutOfLine())
5917    return false;
5918
5919  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5920
5921  // If there is no key function, we will need a copy of the vtable.
5922  if (!KeyFunction)
5923    return true;
5924
5925  // If this is the key function, we need to mark virtual members.
5926  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5927    return true;
5928
5929  return false;
5930}
5931
5932void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5933                                             CXXMethodDecl *MD) {
5934  CXXRecordDecl *RD = MD->getParent();
5935
5936  // We will need to mark all of the virtual members as referenced to build the
5937  // vtable.
5938  if (!needsVtable(MD, Context))
5939    return;
5940
5941  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5942  if (kind == TSK_ImplicitInstantiation)
5943    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5944  else
5945    MarkVirtualMembersReferenced(Loc, RD);
5946}
5947
5948bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5949  if (ClassesWithUnmarkedVirtualMembers.empty())
5950    return false;
5951
5952  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5953    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5954    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5955    ClassesWithUnmarkedVirtualMembers.pop_back();
5956    MarkVirtualMembersReferenced(Loc, RD);
5957  }
5958
5959  return true;
5960}
5961
5962void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5963                                        const CXXRecordDecl *RD) {
5964  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5965       e = RD->method_end(); i != e; ++i) {
5966    CXXMethodDecl *MD = *i;
5967
5968    // C++ [basic.def.odr]p2:
5969    //   [...] A virtual member function is used if it is not pure. [...]
5970    if (MD->isVirtual() && !MD->isPure())
5971      MarkDeclarationReferenced(Loc, MD);
5972  }
5973
5974  // Only classes that have virtual bases need a VTT.
5975  if (RD->getNumVBases() == 0)
5976    return;
5977
5978  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5979           e = RD->bases_end(); i != e; ++i) {
5980    const CXXRecordDecl *Base =
5981        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5982    if (i->isVirtual())
5983      continue;
5984    if (Base->getNumVBases() == 0)
5985      continue;
5986    MarkVirtualMembersReferenced(Loc, Base);
5987  }
5988}
5989