SemaDeclCXX.cpp revision eb273b798760ed960edb0a619092da314e21f4ea
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getSourceRange().getBegin(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getSourceRange().getBegin(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getSourceRange().getBegin(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
129  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136
137  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
138
139  // If this function can throw any exceptions, make a note of that.
140  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
141    ClearExceptions();
142    ComputedEST = EST;
143    return;
144  }
145
146  // FIXME: If the call to this decl is using any of its default arguments, we
147  // need to search them for potentially-throwing calls.
148
149  // If this function has a basic noexcept, it doesn't affect the outcome.
150  if (EST == EST_BasicNoexcept)
151    return;
152
153  // If we have a throw-all spec at this point, ignore the function.
154  if (ComputedEST == EST_None)
155    return;
156
157  // If we're still at noexcept(true) and there's a nothrow() callee,
158  // change to that specification.
159  if (EST == EST_DynamicNone) {
160    if (ComputedEST == EST_BasicNoexcept)
161      ComputedEST = EST_DynamicNone;
162    return;
163  }
164
165  // Check out noexcept specs.
166  if (EST == EST_ComputedNoexcept) {
167    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
168    assert(NR != FunctionProtoType::NR_NoNoexcept &&
169           "Must have noexcept result for EST_ComputedNoexcept.");
170    assert(NR != FunctionProtoType::NR_Dependent &&
171           "Should not generate implicit declarations for dependent cases, "
172           "and don't know how to handle them anyway.");
173
174    // noexcept(false) -> no spec on the new function
175    if (NR == FunctionProtoType::NR_Throw) {
176      ClearExceptions();
177      ComputedEST = EST_None;
178    }
179    // noexcept(true) won't change anything either.
180    return;
181  }
182
183  assert(EST == EST_Dynamic && "EST case not considered earlier.");
184  assert(ComputedEST != EST_None &&
185         "Shouldn't collect exceptions when throw-all is guaranteed.");
186  ComputedEST = EST_Dynamic;
187  // Record the exceptions in this function's exception specification.
188  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
189                                          EEnd = Proto->exception_end();
190       E != EEnd; ++E)
191    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
192      Exceptions.push_back(*E);
193}
194
195void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
196  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
197    return;
198
199  // FIXME:
200  //
201  // C++0x [except.spec]p14:
202  //   [An] implicit exception-specification specifies the type-id T if and
203  // only if T is allowed by the exception-specification of a function directly
204  // invoked by f's implicit definition; f shall allow all exceptions if any
205  // function it directly invokes allows all exceptions, and f shall allow no
206  // exceptions if every function it directly invokes allows no exceptions.
207  //
208  // Note in particular that if an implicit exception-specification is generated
209  // for a function containing a throw-expression, that specification can still
210  // be noexcept(true).
211  //
212  // Note also that 'directly invoked' is not defined in the standard, and there
213  // is no indication that we should only consider potentially-evaluated calls.
214  //
215  // Ultimately we should implement the intent of the standard: the exception
216  // specification should be the set of exceptions which can be thrown by the
217  // implicit definition. For now, we assume that any non-nothrow expression can
218  // throw any exception.
219
220  if (E->CanThrow(*Context))
221    ComputedEST = EST_None;
222}
223
224bool
225Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
226                              SourceLocation EqualLoc) {
227  if (RequireCompleteType(Param->getLocation(), Param->getType(),
228                          diag::err_typecheck_decl_incomplete_type)) {
229    Param->setInvalidDecl();
230    return true;
231  }
232
233  // C++ [dcl.fct.default]p5
234  //   A default argument expression is implicitly converted (clause
235  //   4) to the parameter type. The default argument expression has
236  //   the same semantic constraints as the initializer expression in
237  //   a declaration of a variable of the parameter type, using the
238  //   copy-initialization semantics (8.5).
239  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
240                                                                    Param);
241  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
242                                                           EqualLoc);
243  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
244  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
245                                      MultiExprArg(*this, &Arg, 1));
246  if (Result.isInvalid())
247    return true;
248  Arg = Result.takeAs<Expr>();
249
250  CheckImplicitConversions(Arg, EqualLoc);
251  Arg = MaybeCreateExprWithCleanups(Arg);
252
253  // Okay: add the default argument to the parameter
254  Param->setDefaultArg(Arg);
255
256  // We have already instantiated this parameter; provide each of the
257  // instantiations with the uninstantiated default argument.
258  UnparsedDefaultArgInstantiationsMap::iterator InstPos
259    = UnparsedDefaultArgInstantiations.find(Param);
260  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
261    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
262      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
263
264    // We're done tracking this parameter's instantiations.
265    UnparsedDefaultArgInstantiations.erase(InstPos);
266  }
267
268  return false;
269}
270
271/// ActOnParamDefaultArgument - Check whether the default argument
272/// provided for a function parameter is well-formed. If so, attach it
273/// to the parameter declaration.
274void
275Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
276                                Expr *DefaultArg) {
277  if (!param || !DefaultArg)
278    return;
279
280  ParmVarDecl *Param = cast<ParmVarDecl>(param);
281  UnparsedDefaultArgLocs.erase(Param);
282
283  // Default arguments are only permitted in C++
284  if (!getLangOptions().CPlusPlus) {
285    Diag(EqualLoc, diag::err_param_default_argument)
286      << DefaultArg->getSourceRange();
287    Param->setInvalidDecl();
288    return;
289  }
290
291  // Check for unexpanded parameter packs.
292  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
293    Param->setInvalidDecl();
294    return;
295  }
296
297  // Check that the default argument is well-formed
298  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
299  if (DefaultArgChecker.Visit(DefaultArg)) {
300    Param->setInvalidDecl();
301    return;
302  }
303
304  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
305}
306
307/// ActOnParamUnparsedDefaultArgument - We've seen a default
308/// argument for a function parameter, but we can't parse it yet
309/// because we're inside a class definition. Note that this default
310/// argument will be parsed later.
311void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
312                                             SourceLocation EqualLoc,
313                                             SourceLocation ArgLoc) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318  if (Param)
319    Param->setUnparsedDefaultArg();
320
321  UnparsedDefaultArgLocs[Param] = ArgLoc;
322}
323
324/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
325/// the default argument for the parameter param failed.
326void Sema::ActOnParamDefaultArgumentError(Decl *param) {
327  if (!param)
328    return;
329
330  ParmVarDecl *Param = cast<ParmVarDecl>(param);
331
332  Param->setInvalidDecl();
333
334  UnparsedDefaultArgLocs.erase(Param);
335}
336
337/// CheckExtraCXXDefaultArguments - Check for any extra default
338/// arguments in the declarator, which is not a function declaration
339/// or definition and therefore is not permitted to have default
340/// arguments. This routine should be invoked for every declarator
341/// that is not a function declaration or definition.
342void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
343  // C++ [dcl.fct.default]p3
344  //   A default argument expression shall be specified only in the
345  //   parameter-declaration-clause of a function declaration or in a
346  //   template-parameter (14.1). It shall not be specified for a
347  //   parameter pack. If it is specified in a
348  //   parameter-declaration-clause, it shall not occur within a
349  //   declarator or abstract-declarator of a parameter-declaration.
350  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
351    DeclaratorChunk &chunk = D.getTypeObject(i);
352    if (chunk.Kind == DeclaratorChunk::Function) {
353      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
354        ParmVarDecl *Param =
355          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
356        if (Param->hasUnparsedDefaultArg()) {
357          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
358          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
359            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
360          delete Toks;
361          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
362        } else if (Param->getDefaultArg()) {
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << Param->getDefaultArg()->getSourceRange();
365          Param->setDefaultArg(0);
366        }
367      }
368    }
369  }
370}
371
372// MergeCXXFunctionDecl - Merge two declarations of the same C++
373// function, once we already know that they have the same
374// type. Subroutine of MergeFunctionDecl. Returns true if there was an
375// error, false otherwise.
376bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
402
403      unsigned DiagDefaultParamID =
404        diag::err_param_default_argument_redefinition;
405
406      // MSVC accepts that default parameters be redefined for member functions
407      // of template class. The new default parameter's value is ignored.
408      Invalid = true;
409      if (getLangOptions().MicrosoftExt) {
410        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
411        if (MD && MD->getParent()->getDescribedClassTemplate()) {
412          // Merge the old default argument into the new parameter.
413          NewParam->setHasInheritedDefaultArg();
414          if (OldParam->hasUninstantiatedDefaultArg())
415            NewParam->setUninstantiatedDefaultArg(
416                                      OldParam->getUninstantiatedDefaultArg());
417          else
418            NewParam->setDefaultArg(OldParam->getInit());
419          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
420          Invalid = false;
421        }
422      }
423
424      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
425      // hint here. Alternatively, we could walk the type-source information
426      // for NewParam to find the last source location in the type... but it
427      // isn't worth the effort right now. This is the kind of test case that
428      // is hard to get right:
429      //   int f(int);
430      //   void g(int (*fp)(int) = f);
431      //   void g(int (*fp)(int) = &f);
432      Diag(NewParam->getLocation(), DiagDefaultParamID)
433        << NewParam->getDefaultArgRange();
434
435      // Look for the function declaration where the default argument was
436      // actually written, which may be a declaration prior to Old.
437      for (FunctionDecl *Older = Old->getPreviousDecl();
438           Older; Older = Older->getPreviousDecl()) {
439        if (!Older->getParamDecl(p)->hasDefaultArg())
440          break;
441
442        OldParam = Older->getParamDecl(p);
443      }
444
445      Diag(OldParam->getLocation(), diag::note_previous_definition)
446        << OldParam->getDefaultArgRange();
447    } else if (OldParam->hasDefaultArg()) {
448      // Merge the old default argument into the new parameter.
449      // It's important to use getInit() here;  getDefaultArg()
450      // strips off any top-level ExprWithCleanups.
451      NewParam->setHasInheritedDefaultArg();
452      if (OldParam->hasUninstantiatedDefaultArg())
453        NewParam->setUninstantiatedDefaultArg(
454                                      OldParam->getUninstantiatedDefaultArg());
455      else
456        NewParam->setDefaultArg(OldParam->getInit());
457    } else if (NewParam->hasDefaultArg()) {
458      if (New->getDescribedFunctionTemplate()) {
459        // Paragraph 4, quoted above, only applies to non-template functions.
460        Diag(NewParam->getLocation(),
461             diag::err_param_default_argument_template_redecl)
462          << NewParam->getDefaultArgRange();
463        Diag(Old->getLocation(), diag::note_template_prev_declaration)
464          << false;
465      } else if (New->getTemplateSpecializationKind()
466                   != TSK_ImplicitInstantiation &&
467                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
468        // C++ [temp.expr.spec]p21:
469        //   Default function arguments shall not be specified in a declaration
470        //   or a definition for one of the following explicit specializations:
471        //     - the explicit specialization of a function template;
472        //     - the explicit specialization of a member function template;
473        //     - the explicit specialization of a member function of a class
474        //       template where the class template specialization to which the
475        //       member function specialization belongs is implicitly
476        //       instantiated.
477        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
478          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
479          << New->getDeclName()
480          << NewParam->getDefaultArgRange();
481      } else if (New->getDeclContext()->isDependentContext()) {
482        // C++ [dcl.fct.default]p6 (DR217):
483        //   Default arguments for a member function of a class template shall
484        //   be specified on the initial declaration of the member function
485        //   within the class template.
486        //
487        // Reading the tea leaves a bit in DR217 and its reference to DR205
488        // leads me to the conclusion that one cannot add default function
489        // arguments for an out-of-line definition of a member function of a
490        // dependent type.
491        int WhichKind = 2;
492        if (CXXRecordDecl *Record
493              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
494          if (Record->getDescribedClassTemplate())
495            WhichKind = 0;
496          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
497            WhichKind = 1;
498          else
499            WhichKind = 2;
500        }
501
502        Diag(NewParam->getLocation(),
503             diag::err_param_default_argument_member_template_redecl)
504          << WhichKind
505          << NewParam->getDefaultArgRange();
506      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
507        CXXSpecialMember NewSM = getSpecialMember(Ctor),
508                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
509        if (NewSM != OldSM) {
510          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
511            << NewParam->getDefaultArgRange() << NewSM;
512          Diag(Old->getLocation(), diag::note_previous_declaration_special)
513            << OldSM;
514        }
515      }
516    }
517  }
518
519  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
520  // template has a constexpr specifier then all its declarations shall
521  // contain the constexpr specifier. [Note: An explicit specialization can
522  // differ from the template declaration with respect to the constexpr
523  // specifier. -- end note]
524  //
525  // FIXME: Don't reject changes in constexpr in explicit specializations.
526  if (New->isConstexpr() != Old->isConstexpr()) {
527    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
528      << New << New->isConstexpr();
529    Diag(Old->getLocation(), diag::note_previous_declaration);
530    Invalid = true;
531  }
532
533  if (CheckEquivalentExceptionSpec(Old, New))
534    Invalid = true;
535
536  return Invalid;
537}
538
539/// \brief Merge the exception specifications of two variable declarations.
540///
541/// This is called when there's a redeclaration of a VarDecl. The function
542/// checks if the redeclaration might have an exception specification and
543/// validates compatibility and merges the specs if necessary.
544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
545  // Shortcut if exceptions are disabled.
546  if (!getLangOptions().CXXExceptions)
547    return;
548
549  assert(Context.hasSameType(New->getType(), Old->getType()) &&
550         "Should only be called if types are otherwise the same.");
551
552  QualType NewType = New->getType();
553  QualType OldType = Old->getType();
554
555  // We're only interested in pointers and references to functions, as well
556  // as pointers to member functions.
557  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
558    NewType = R->getPointeeType();
559    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
560  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
561    NewType = P->getPointeeType();
562    OldType = OldType->getAs<PointerType>()->getPointeeType();
563  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
564    NewType = M->getPointeeType();
565    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
566  }
567
568  if (!NewType->isFunctionProtoType())
569    return;
570
571  // There's lots of special cases for functions. For function pointers, system
572  // libraries are hopefully not as broken so that we don't need these
573  // workarounds.
574  if (CheckEquivalentExceptionSpec(
575        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
576        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
577    New->setInvalidDecl();
578  }
579}
580
581/// CheckCXXDefaultArguments - Verify that the default arguments for a
582/// function declaration are well-formed according to C++
583/// [dcl.fct.default].
584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
585  unsigned NumParams = FD->getNumParams();
586  unsigned p;
587
588  // Find first parameter with a default argument
589  for (p = 0; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (Param->hasDefaultArg())
592      break;
593  }
594
595  // C++ [dcl.fct.default]p4:
596  //   In a given function declaration, all parameters
597  //   subsequent to a parameter with a default argument shall
598  //   have default arguments supplied in this or previous
599  //   declarations. A default argument shall not be redefined
600  //   by a later declaration (not even to the same value).
601  unsigned LastMissingDefaultArg = 0;
602  for (; p < NumParams; ++p) {
603    ParmVarDecl *Param = FD->getParamDecl(p);
604    if (!Param->hasDefaultArg()) {
605      if (Param->isInvalidDecl())
606        /* We already complained about this parameter. */;
607      else if (Param->getIdentifier())
608        Diag(Param->getLocation(),
609             diag::err_param_default_argument_missing_name)
610          << Param->getIdentifier();
611      else
612        Diag(Param->getLocation(),
613             diag::err_param_default_argument_missing);
614
615      LastMissingDefaultArg = p;
616    }
617  }
618
619  if (LastMissingDefaultArg > 0) {
620    // Some default arguments were missing. Clear out all of the
621    // default arguments up to (and including) the last missing
622    // default argument, so that we leave the function parameters
623    // in a semantically valid state.
624    for (p = 0; p <= LastMissingDefaultArg; ++p) {
625      ParmVarDecl *Param = FD->getParamDecl(p);
626      if (Param->hasDefaultArg()) {
627        Param->setDefaultArg(0);
628      }
629    }
630  }
631}
632
633// CheckConstexprParameterTypes - Check whether a function's parameter types
634// are all literal types. If so, return true. If not, produce a suitable
635// diagnostic and return false.
636static bool CheckConstexprParameterTypes(Sema &SemaRef,
637                                         const FunctionDecl *FD) {
638  unsigned ArgIndex = 0;
639  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
640  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
641       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
642    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
643    SourceLocation ParamLoc = PD->getLocation();
644    if (!(*i)->isDependentType() &&
645        SemaRef.RequireLiteralType(ParamLoc, *i,
646                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
647                                     << ArgIndex+1 << PD->getSourceRange()
648                                     << isa<CXXConstructorDecl>(FD)))
649      return false;
650  }
651  return true;
652}
653
654// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
655// the requirements of a constexpr function definition or a constexpr
656// constructor definition. If so, return true. If not, produce appropriate
657// diagnostics and return false.
658//
659// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
660bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
661  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
662  if (MD && MD->isInstance()) {
663    // C++11 [dcl.constexpr]p4:
664    //  The definition of a constexpr constructor shall satisfy the following
665    //  constraints:
666    //  - the class shall not have any virtual base classes;
667    const CXXRecordDecl *RD = MD->getParent();
668    if (RD->getNumVBases()) {
669      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
670        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
671        << RD->getNumVBases();
672      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
673             E = RD->vbases_end(); I != E; ++I)
674        Diag(I->getSourceRange().getBegin(),
675             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
676      return false;
677    }
678  }
679
680  if (!isa<CXXConstructorDecl>(NewFD)) {
681    // C++11 [dcl.constexpr]p3:
682    //  The definition of a constexpr function shall satisfy the following
683    //  constraints:
684    // - it shall not be virtual;
685    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
686    if (Method && Method->isVirtual()) {
687      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
688
689      // If it's not obvious why this function is virtual, find an overridden
690      // function which uses the 'virtual' keyword.
691      const CXXMethodDecl *WrittenVirtual = Method;
692      while (!WrittenVirtual->isVirtualAsWritten())
693        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
694      if (WrittenVirtual != Method)
695        Diag(WrittenVirtual->getLocation(),
696             diag::note_overridden_virtual_function);
697      return false;
698    }
699
700    // - its return type shall be a literal type;
701    QualType RT = NewFD->getResultType();
702    if (!RT->isDependentType() &&
703        RequireLiteralType(NewFD->getLocation(), RT,
704                           PDiag(diag::err_constexpr_non_literal_return)))
705      return false;
706  }
707
708  // - each of its parameter types shall be a literal type;
709  if (!CheckConstexprParameterTypes(*this, NewFD))
710    return false;
711
712  return true;
713}
714
715/// Check the given declaration statement is legal within a constexpr function
716/// body. C++0x [dcl.constexpr]p3,p4.
717///
718/// \return true if the body is OK, false if we have diagnosed a problem.
719static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
720                                   DeclStmt *DS) {
721  // C++0x [dcl.constexpr]p3 and p4:
722  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
723  //  contain only
724  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
725         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
726    switch ((*DclIt)->getKind()) {
727    case Decl::StaticAssert:
728    case Decl::Using:
729    case Decl::UsingShadow:
730    case Decl::UsingDirective:
731    case Decl::UnresolvedUsingTypename:
732      //   - static_assert-declarations
733      //   - using-declarations,
734      //   - using-directives,
735      continue;
736
737    case Decl::Typedef:
738    case Decl::TypeAlias: {
739      //   - typedef declarations and alias-declarations that do not define
740      //     classes or enumerations,
741      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
742      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
743        // Don't allow variably-modified types in constexpr functions.
744        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
745        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
746          << TL.getSourceRange() << TL.getType()
747          << isa<CXXConstructorDecl>(Dcl);
748        return false;
749      }
750      continue;
751    }
752
753    case Decl::Enum:
754    case Decl::CXXRecord:
755      // As an extension, we allow the declaration (but not the definition) of
756      // classes and enumerations in all declarations, not just in typedef and
757      // alias declarations.
758      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
759        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
760          << isa<CXXConstructorDecl>(Dcl);
761        return false;
762      }
763      continue;
764
765    case Decl::Var:
766      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
767        << isa<CXXConstructorDecl>(Dcl);
768      return false;
769
770    default:
771      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
772        << isa<CXXConstructorDecl>(Dcl);
773      return false;
774    }
775  }
776
777  return true;
778}
779
780/// Check that the given field is initialized within a constexpr constructor.
781///
782/// \param Dcl The constexpr constructor being checked.
783/// \param Field The field being checked. This may be a member of an anonymous
784///        struct or union nested within the class being checked.
785/// \param Inits All declarations, including anonymous struct/union members and
786///        indirect members, for which any initialization was provided.
787/// \param Diagnosed Set to true if an error is produced.
788static void CheckConstexprCtorInitializer(Sema &SemaRef,
789                                          const FunctionDecl *Dcl,
790                                          FieldDecl *Field,
791                                          llvm::SmallSet<Decl*, 16> &Inits,
792                                          bool &Diagnosed) {
793  if (Field->isUnnamedBitfield())
794    return;
795
796  if (Field->isAnonymousStructOrUnion() &&
797      Field->getType()->getAsCXXRecordDecl()->isEmpty())
798    return;
799
800  if (!Inits.count(Field)) {
801    if (!Diagnosed) {
802      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
803      Diagnosed = true;
804    }
805    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
806  } else if (Field->isAnonymousStructOrUnion()) {
807    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
808    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
809         I != E; ++I)
810      // If an anonymous union contains an anonymous struct of which any member
811      // is initialized, all members must be initialized.
812      if (!RD->isUnion() || Inits.count(*I))
813        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
814  }
815}
816
817/// Check the body for the given constexpr function declaration only contains
818/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
819///
820/// \return true if the body is OK, false if we have diagnosed a problem.
821bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
822  if (isa<CXXTryStmt>(Body)) {
823    // C++11 [dcl.constexpr]p3:
824    //  The definition of a constexpr function shall satisfy the following
825    //  constraints: [...]
826    // - its function-body shall be = delete, = default, or a
827    //   compound-statement
828    //
829    // C++11 [dcl.constexpr]p4:
830    //  In the definition of a constexpr constructor, [...]
831    // - its function-body shall not be a function-try-block;
832    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
833      << isa<CXXConstructorDecl>(Dcl);
834    return false;
835  }
836
837  // - its function-body shall be [...] a compound-statement that contains only
838  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
839
840  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
841  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
842         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
843    switch ((*BodyIt)->getStmtClass()) {
844    case Stmt::NullStmtClass:
845      //   - null statements,
846      continue;
847
848    case Stmt::DeclStmtClass:
849      //   - static_assert-declarations
850      //   - using-declarations,
851      //   - using-directives,
852      //   - typedef declarations and alias-declarations that do not define
853      //     classes or enumerations,
854      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
855        return false;
856      continue;
857
858    case Stmt::ReturnStmtClass:
859      //   - and exactly one return statement;
860      if (isa<CXXConstructorDecl>(Dcl))
861        break;
862
863      ReturnStmts.push_back((*BodyIt)->getLocStart());
864      // FIXME
865      // - every constructor call and implicit conversion used in initializing
866      //   the return value shall be one of those allowed in a constant
867      //   expression.
868      // Deal with this as part of a general check that the function can produce
869      // a constant expression (for [dcl.constexpr]p5).
870      continue;
871
872    default:
873      break;
874    }
875
876    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
877      << isa<CXXConstructorDecl>(Dcl);
878    return false;
879  }
880
881  if (const CXXConstructorDecl *Constructor
882        = dyn_cast<CXXConstructorDecl>(Dcl)) {
883    const CXXRecordDecl *RD = Constructor->getParent();
884    // DR1359:
885    // - every non-variant non-static data member and base class sub-object
886    //   shall be initialized;
887    // - if the class is a non-empty union, or for each non-empty anonymous
888    //   union member of a non-union class, exactly one non-static data member
889    //   shall be initialized;
890    if (RD->isUnion()) {
891      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
892        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
893        return false;
894      }
895    } else if (!Constructor->isDependentContext() &&
896               !Constructor->isDelegatingConstructor()) {
897      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
898
899      // Skip detailed checking if we have enough initializers, and we would
900      // allow at most one initializer per member.
901      bool AnyAnonStructUnionMembers = false;
902      unsigned Fields = 0;
903      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
904           E = RD->field_end(); I != E; ++I, ++Fields) {
905        if ((*I)->isAnonymousStructOrUnion()) {
906          AnyAnonStructUnionMembers = true;
907          break;
908        }
909      }
910      if (AnyAnonStructUnionMembers ||
911          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
912        // Check initialization of non-static data members. Base classes are
913        // always initialized so do not need to be checked. Dependent bases
914        // might not have initializers in the member initializer list.
915        llvm::SmallSet<Decl*, 16> Inits;
916        for (CXXConstructorDecl::init_const_iterator
917               I = Constructor->init_begin(), E = Constructor->init_end();
918             I != E; ++I) {
919          if (FieldDecl *FD = (*I)->getMember())
920            Inits.insert(FD);
921          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
922            Inits.insert(ID->chain_begin(), ID->chain_end());
923        }
924
925        bool Diagnosed = false;
926        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
927             E = RD->field_end(); I != E; ++I)
928          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
929        if (Diagnosed)
930          return false;
931      }
932    }
933
934    // FIXME
935    // - every constructor involved in initializing non-static data members
936    //   and base class sub-objects shall be a constexpr constructor;
937    // - every assignment-expression that is an initializer-clause appearing
938    //   directly or indirectly within a brace-or-equal-initializer for
939    //   a non-static data member that is not named by a mem-initializer-id
940    //   shall be a constant expression; and
941    // - every implicit conversion used in converting a constructor argument
942    //   to the corresponding parameter type and converting
943    //   a full-expression to the corresponding member type shall be one of
944    //   those allowed in a constant expression.
945    // Deal with these as part of a general check that the function can produce
946    // a constant expression (for [dcl.constexpr]p5).
947  } else {
948    if (ReturnStmts.empty()) {
949      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
950      return false;
951    }
952    if (ReturnStmts.size() > 1) {
953      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
954      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
955        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
956      return false;
957    }
958  }
959
960  // C++11 [dcl.constexpr]p5:
961  //   if no function argument values exist such that the function invocation
962  //   substitution would produce a constant expression, the program is
963  //   ill-formed; no diagnostic required.
964  // C++11 [dcl.constexpr]p3:
965  //   - every constructor call and implicit conversion used in initializing the
966  //     return value shall be one of those allowed in a constant expression.
967  // C++11 [dcl.constexpr]p4:
968  //   - every constructor involved in initializing non-static data members and
969  //     base class sub-objects shall be a constexpr constructor.
970  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
971  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
972    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
973      << isa<CXXConstructorDecl>(Dcl);
974    for (size_t I = 0, N = Diags.size(); I != N; ++I)
975      Diag(Diags[I].first, Diags[I].second);
976    return false;
977  }
978
979  return true;
980}
981
982/// isCurrentClassName - Determine whether the identifier II is the
983/// name of the class type currently being defined. In the case of
984/// nested classes, this will only return true if II is the name of
985/// the innermost class.
986bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
987                              const CXXScopeSpec *SS) {
988  assert(getLangOptions().CPlusPlus && "No class names in C!");
989
990  CXXRecordDecl *CurDecl;
991  if (SS && SS->isSet() && !SS->isInvalid()) {
992    DeclContext *DC = computeDeclContext(*SS, true);
993    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
994  } else
995    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
996
997  if (CurDecl && CurDecl->getIdentifier())
998    return &II == CurDecl->getIdentifier();
999  else
1000    return false;
1001}
1002
1003/// \brief Check the validity of a C++ base class specifier.
1004///
1005/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1006/// and returns NULL otherwise.
1007CXXBaseSpecifier *
1008Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1009                         SourceRange SpecifierRange,
1010                         bool Virtual, AccessSpecifier Access,
1011                         TypeSourceInfo *TInfo,
1012                         SourceLocation EllipsisLoc) {
1013  QualType BaseType = TInfo->getType();
1014
1015  // C++ [class.union]p1:
1016  //   A union shall not have base classes.
1017  if (Class->isUnion()) {
1018    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1019      << SpecifierRange;
1020    return 0;
1021  }
1022
1023  if (EllipsisLoc.isValid() &&
1024      !TInfo->getType()->containsUnexpandedParameterPack()) {
1025    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1026      << TInfo->getTypeLoc().getSourceRange();
1027    EllipsisLoc = SourceLocation();
1028  }
1029
1030  if (BaseType->isDependentType())
1031    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1032                                          Class->getTagKind() == TTK_Class,
1033                                          Access, TInfo, EllipsisLoc);
1034
1035  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1036
1037  // Base specifiers must be record types.
1038  if (!BaseType->isRecordType()) {
1039    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1040    return 0;
1041  }
1042
1043  // C++ [class.union]p1:
1044  //   A union shall not be used as a base class.
1045  if (BaseType->isUnionType()) {
1046    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1047    return 0;
1048  }
1049
1050  // C++ [class.derived]p2:
1051  //   The class-name in a base-specifier shall not be an incompletely
1052  //   defined class.
1053  if (RequireCompleteType(BaseLoc, BaseType,
1054                          PDiag(diag::err_incomplete_base_class)
1055                            << SpecifierRange)) {
1056    Class->setInvalidDecl();
1057    return 0;
1058  }
1059
1060  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1061  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1062  assert(BaseDecl && "Record type has no declaration");
1063  BaseDecl = BaseDecl->getDefinition();
1064  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1065  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1066  assert(CXXBaseDecl && "Base type is not a C++ type");
1067
1068  // C++ [class]p3:
1069  //   If a class is marked final and it appears as a base-type-specifier in
1070  //   base-clause, the program is ill-formed.
1071  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1072    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1073      << CXXBaseDecl->getDeclName();
1074    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1075      << CXXBaseDecl->getDeclName();
1076    return 0;
1077  }
1078
1079  if (BaseDecl->isInvalidDecl())
1080    Class->setInvalidDecl();
1081
1082  // Create the base specifier.
1083  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1084                                        Class->getTagKind() == TTK_Class,
1085                                        Access, TInfo, EllipsisLoc);
1086}
1087
1088/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1089/// one entry in the base class list of a class specifier, for
1090/// example:
1091///    class foo : public bar, virtual private baz {
1092/// 'public bar' and 'virtual private baz' are each base-specifiers.
1093BaseResult
1094Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1095                         bool Virtual, AccessSpecifier Access,
1096                         ParsedType basetype, SourceLocation BaseLoc,
1097                         SourceLocation EllipsisLoc) {
1098  if (!classdecl)
1099    return true;
1100
1101  AdjustDeclIfTemplate(classdecl);
1102  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1103  if (!Class)
1104    return true;
1105
1106  TypeSourceInfo *TInfo = 0;
1107  GetTypeFromParser(basetype, &TInfo);
1108
1109  if (EllipsisLoc.isInvalid() &&
1110      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1111                                      UPPC_BaseType))
1112    return true;
1113
1114  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1115                                                      Virtual, Access, TInfo,
1116                                                      EllipsisLoc))
1117    return BaseSpec;
1118
1119  return true;
1120}
1121
1122/// \brief Performs the actual work of attaching the given base class
1123/// specifiers to a C++ class.
1124bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1125                                unsigned NumBases) {
1126 if (NumBases == 0)
1127    return false;
1128
1129  // Used to keep track of which base types we have already seen, so
1130  // that we can properly diagnose redundant direct base types. Note
1131  // that the key is always the unqualified canonical type of the base
1132  // class.
1133  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1134
1135  // Copy non-redundant base specifiers into permanent storage.
1136  unsigned NumGoodBases = 0;
1137  bool Invalid = false;
1138  for (unsigned idx = 0; idx < NumBases; ++idx) {
1139    QualType NewBaseType
1140      = Context.getCanonicalType(Bases[idx]->getType());
1141    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1142    if (KnownBaseTypes[NewBaseType]) {
1143      // C++ [class.mi]p3:
1144      //   A class shall not be specified as a direct base class of a
1145      //   derived class more than once.
1146      Diag(Bases[idx]->getSourceRange().getBegin(),
1147           diag::err_duplicate_base_class)
1148        << KnownBaseTypes[NewBaseType]->getType()
1149        << Bases[idx]->getSourceRange();
1150
1151      // Delete the duplicate base class specifier; we're going to
1152      // overwrite its pointer later.
1153      Context.Deallocate(Bases[idx]);
1154
1155      Invalid = true;
1156    } else {
1157      // Okay, add this new base class.
1158      KnownBaseTypes[NewBaseType] = Bases[idx];
1159      Bases[NumGoodBases++] = Bases[idx];
1160      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1161        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1162          if (RD->hasAttr<WeakAttr>())
1163            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1164    }
1165  }
1166
1167  // Attach the remaining base class specifiers to the derived class.
1168  Class->setBases(Bases, NumGoodBases);
1169
1170  // Delete the remaining (good) base class specifiers, since their
1171  // data has been copied into the CXXRecordDecl.
1172  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1173    Context.Deallocate(Bases[idx]);
1174
1175  return Invalid;
1176}
1177
1178/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1179/// class, after checking whether there are any duplicate base
1180/// classes.
1181void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1182                               unsigned NumBases) {
1183  if (!ClassDecl || !Bases || !NumBases)
1184    return;
1185
1186  AdjustDeclIfTemplate(ClassDecl);
1187  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1188                       (CXXBaseSpecifier**)(Bases), NumBases);
1189}
1190
1191static CXXRecordDecl *GetClassForType(QualType T) {
1192  if (const RecordType *RT = T->getAs<RecordType>())
1193    return cast<CXXRecordDecl>(RT->getDecl());
1194  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1195    return ICT->getDecl();
1196  else
1197    return 0;
1198}
1199
1200/// \brief Determine whether the type \p Derived is a C++ class that is
1201/// derived from the type \p Base.
1202bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1203  if (!getLangOptions().CPlusPlus)
1204    return false;
1205
1206  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1207  if (!DerivedRD)
1208    return false;
1209
1210  CXXRecordDecl *BaseRD = GetClassForType(Base);
1211  if (!BaseRD)
1212    return false;
1213
1214  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1215  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1216}
1217
1218/// \brief Determine whether the type \p Derived is a C++ class that is
1219/// derived from the type \p Base.
1220bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1221  if (!getLangOptions().CPlusPlus)
1222    return false;
1223
1224  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1225  if (!DerivedRD)
1226    return false;
1227
1228  CXXRecordDecl *BaseRD = GetClassForType(Base);
1229  if (!BaseRD)
1230    return false;
1231
1232  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1233}
1234
1235void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1236                              CXXCastPath &BasePathArray) {
1237  assert(BasePathArray.empty() && "Base path array must be empty!");
1238  assert(Paths.isRecordingPaths() && "Must record paths!");
1239
1240  const CXXBasePath &Path = Paths.front();
1241
1242  // We first go backward and check if we have a virtual base.
1243  // FIXME: It would be better if CXXBasePath had the base specifier for
1244  // the nearest virtual base.
1245  unsigned Start = 0;
1246  for (unsigned I = Path.size(); I != 0; --I) {
1247    if (Path[I - 1].Base->isVirtual()) {
1248      Start = I - 1;
1249      break;
1250    }
1251  }
1252
1253  // Now add all bases.
1254  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1255    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1256}
1257
1258/// \brief Determine whether the given base path includes a virtual
1259/// base class.
1260bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1261  for (CXXCastPath::const_iterator B = BasePath.begin(),
1262                                BEnd = BasePath.end();
1263       B != BEnd; ++B)
1264    if ((*B)->isVirtual())
1265      return true;
1266
1267  return false;
1268}
1269
1270/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1271/// conversion (where Derived and Base are class types) is
1272/// well-formed, meaning that the conversion is unambiguous (and
1273/// that all of the base classes are accessible). Returns true
1274/// and emits a diagnostic if the code is ill-formed, returns false
1275/// otherwise. Loc is the location where this routine should point to
1276/// if there is an error, and Range is the source range to highlight
1277/// if there is an error.
1278bool
1279Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1280                                   unsigned InaccessibleBaseID,
1281                                   unsigned AmbigiousBaseConvID,
1282                                   SourceLocation Loc, SourceRange Range,
1283                                   DeclarationName Name,
1284                                   CXXCastPath *BasePath) {
1285  // First, determine whether the path from Derived to Base is
1286  // ambiguous. This is slightly more expensive than checking whether
1287  // the Derived to Base conversion exists, because here we need to
1288  // explore multiple paths to determine if there is an ambiguity.
1289  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1290                     /*DetectVirtual=*/false);
1291  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1292  assert(DerivationOkay &&
1293         "Can only be used with a derived-to-base conversion");
1294  (void)DerivationOkay;
1295
1296  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1297    if (InaccessibleBaseID) {
1298      // Check that the base class can be accessed.
1299      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1300                                   InaccessibleBaseID)) {
1301        case AR_inaccessible:
1302          return true;
1303        case AR_accessible:
1304        case AR_dependent:
1305        case AR_delayed:
1306          break;
1307      }
1308    }
1309
1310    // Build a base path if necessary.
1311    if (BasePath)
1312      BuildBasePathArray(Paths, *BasePath);
1313    return false;
1314  }
1315
1316  // We know that the derived-to-base conversion is ambiguous, and
1317  // we're going to produce a diagnostic. Perform the derived-to-base
1318  // search just one more time to compute all of the possible paths so
1319  // that we can print them out. This is more expensive than any of
1320  // the previous derived-to-base checks we've done, but at this point
1321  // performance isn't as much of an issue.
1322  Paths.clear();
1323  Paths.setRecordingPaths(true);
1324  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1325  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1326  (void)StillOkay;
1327
1328  // Build up a textual representation of the ambiguous paths, e.g.,
1329  // D -> B -> A, that will be used to illustrate the ambiguous
1330  // conversions in the diagnostic. We only print one of the paths
1331  // to each base class subobject.
1332  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1333
1334  Diag(Loc, AmbigiousBaseConvID)
1335  << Derived << Base << PathDisplayStr << Range << Name;
1336  return true;
1337}
1338
1339bool
1340Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1341                                   SourceLocation Loc, SourceRange Range,
1342                                   CXXCastPath *BasePath,
1343                                   bool IgnoreAccess) {
1344  return CheckDerivedToBaseConversion(Derived, Base,
1345                                      IgnoreAccess ? 0
1346                                       : diag::err_upcast_to_inaccessible_base,
1347                                      diag::err_ambiguous_derived_to_base_conv,
1348                                      Loc, Range, DeclarationName(),
1349                                      BasePath);
1350}
1351
1352
1353/// @brief Builds a string representing ambiguous paths from a
1354/// specific derived class to different subobjects of the same base
1355/// class.
1356///
1357/// This function builds a string that can be used in error messages
1358/// to show the different paths that one can take through the
1359/// inheritance hierarchy to go from the derived class to different
1360/// subobjects of a base class. The result looks something like this:
1361/// @code
1362/// struct D -> struct B -> struct A
1363/// struct D -> struct C -> struct A
1364/// @endcode
1365std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1366  std::string PathDisplayStr;
1367  std::set<unsigned> DisplayedPaths;
1368  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1369       Path != Paths.end(); ++Path) {
1370    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1371      // We haven't displayed a path to this particular base
1372      // class subobject yet.
1373      PathDisplayStr += "\n    ";
1374      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1375      for (CXXBasePath::const_iterator Element = Path->begin();
1376           Element != Path->end(); ++Element)
1377        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1378    }
1379  }
1380
1381  return PathDisplayStr;
1382}
1383
1384//===----------------------------------------------------------------------===//
1385// C++ class member Handling
1386//===----------------------------------------------------------------------===//
1387
1388/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1389bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1390                                SourceLocation ASLoc,
1391                                SourceLocation ColonLoc,
1392                                AttributeList *Attrs) {
1393  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1394  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1395                                                  ASLoc, ColonLoc);
1396  CurContext->addHiddenDecl(ASDecl);
1397  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1398}
1399
1400/// CheckOverrideControl - Check C++0x override control semantics.
1401void Sema::CheckOverrideControl(const Decl *D) {
1402  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1403  if (!MD || !MD->isVirtual())
1404    return;
1405
1406  if (MD->isDependentContext())
1407    return;
1408
1409  // C++0x [class.virtual]p3:
1410  //   If a virtual function is marked with the virt-specifier override and does
1411  //   not override a member function of a base class,
1412  //   the program is ill-formed.
1413  bool HasOverriddenMethods =
1414    MD->begin_overridden_methods() != MD->end_overridden_methods();
1415  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1416    Diag(MD->getLocation(),
1417                 diag::err_function_marked_override_not_overriding)
1418      << MD->getDeclName();
1419    return;
1420  }
1421}
1422
1423/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1424/// function overrides a virtual member function marked 'final', according to
1425/// C++0x [class.virtual]p3.
1426bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1427                                                  const CXXMethodDecl *Old) {
1428  if (!Old->hasAttr<FinalAttr>())
1429    return false;
1430
1431  Diag(New->getLocation(), diag::err_final_function_overridden)
1432    << New->getDeclName();
1433  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1434  return true;
1435}
1436
1437/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1438/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1439/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1440/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1441/// present but parsing it has been deferred.
1442Decl *
1443Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1444                               MultiTemplateParamsArg TemplateParameterLists,
1445                               Expr *BW, const VirtSpecifiers &VS,
1446                               bool HasDeferredInit) {
1447  const DeclSpec &DS = D.getDeclSpec();
1448  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1449  DeclarationName Name = NameInfo.getName();
1450  SourceLocation Loc = NameInfo.getLoc();
1451
1452  // For anonymous bitfields, the location should point to the type.
1453  if (Loc.isInvalid())
1454    Loc = D.getSourceRange().getBegin();
1455
1456  Expr *BitWidth = static_cast<Expr*>(BW);
1457
1458  assert(isa<CXXRecordDecl>(CurContext));
1459  assert(!DS.isFriendSpecified());
1460
1461  bool isFunc = D.isDeclarationOfFunction();
1462
1463  // C++ 9.2p6: A member shall not be declared to have automatic storage
1464  // duration (auto, register) or with the extern storage-class-specifier.
1465  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1466  // data members and cannot be applied to names declared const or static,
1467  // and cannot be applied to reference members.
1468  switch (DS.getStorageClassSpec()) {
1469    case DeclSpec::SCS_unspecified:
1470    case DeclSpec::SCS_typedef:
1471    case DeclSpec::SCS_static:
1472      // FALL THROUGH.
1473      break;
1474    case DeclSpec::SCS_mutable:
1475      if (isFunc) {
1476        if (DS.getStorageClassSpecLoc().isValid())
1477          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1478        else
1479          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1480
1481        // FIXME: It would be nicer if the keyword was ignored only for this
1482        // declarator. Otherwise we could get follow-up errors.
1483        D.getMutableDeclSpec().ClearStorageClassSpecs();
1484      }
1485      break;
1486    default:
1487      if (DS.getStorageClassSpecLoc().isValid())
1488        Diag(DS.getStorageClassSpecLoc(),
1489             diag::err_storageclass_invalid_for_member);
1490      else
1491        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1492      D.getMutableDeclSpec().ClearStorageClassSpecs();
1493  }
1494
1495  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1496                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1497                      !isFunc);
1498
1499  Decl *Member;
1500  if (isInstField) {
1501    CXXScopeSpec &SS = D.getCXXScopeSpec();
1502
1503    // Data members must have identifiers for names.
1504    if (Name.getNameKind() != DeclarationName::Identifier) {
1505      Diag(Loc, diag::err_bad_variable_name)
1506        << Name;
1507      return 0;
1508    }
1509
1510    IdentifierInfo *II = Name.getAsIdentifierInfo();
1511
1512    // Member field could not be with "template" keyword.
1513    // So TemplateParameterLists should be empty in this case.
1514    if (TemplateParameterLists.size()) {
1515      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1516      if (TemplateParams->size()) {
1517        // There is no such thing as a member field template.
1518        Diag(D.getIdentifierLoc(), diag::err_template_member)
1519            << II
1520            << SourceRange(TemplateParams->getTemplateLoc(),
1521                TemplateParams->getRAngleLoc());
1522      } else {
1523        // There is an extraneous 'template<>' for this member.
1524        Diag(TemplateParams->getTemplateLoc(),
1525            diag::err_template_member_noparams)
1526            << II
1527            << SourceRange(TemplateParams->getTemplateLoc(),
1528                TemplateParams->getRAngleLoc());
1529      }
1530      return 0;
1531    }
1532
1533    if (SS.isSet() && !SS.isInvalid()) {
1534      // The user provided a superfluous scope specifier inside a class
1535      // definition:
1536      //
1537      // class X {
1538      //   int X::member;
1539      // };
1540      DeclContext *DC = 0;
1541      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1542        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1543          << Name << FixItHint::CreateRemoval(SS.getRange());
1544      else
1545        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1546          << Name << SS.getRange();
1547
1548      SS.clear();
1549    }
1550
1551    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1552                         HasDeferredInit, AS);
1553    assert(Member && "HandleField never returns null");
1554  } else {
1555    assert(!HasDeferredInit);
1556
1557    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1558    if (!Member) {
1559      return 0;
1560    }
1561
1562    // Non-instance-fields can't have a bitfield.
1563    if (BitWidth) {
1564      if (Member->isInvalidDecl()) {
1565        // don't emit another diagnostic.
1566      } else if (isa<VarDecl>(Member)) {
1567        // C++ 9.6p3: A bit-field shall not be a static member.
1568        // "static member 'A' cannot be a bit-field"
1569        Diag(Loc, diag::err_static_not_bitfield)
1570          << Name << BitWidth->getSourceRange();
1571      } else if (isa<TypedefDecl>(Member)) {
1572        // "typedef member 'x' cannot be a bit-field"
1573        Diag(Loc, diag::err_typedef_not_bitfield)
1574          << Name << BitWidth->getSourceRange();
1575      } else {
1576        // A function typedef ("typedef int f(); f a;").
1577        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1578        Diag(Loc, diag::err_not_integral_type_bitfield)
1579          << Name << cast<ValueDecl>(Member)->getType()
1580          << BitWidth->getSourceRange();
1581      }
1582
1583      BitWidth = 0;
1584      Member->setInvalidDecl();
1585    }
1586
1587    Member->setAccess(AS);
1588
1589    // If we have declared a member function template, set the access of the
1590    // templated declaration as well.
1591    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1592      FunTmpl->getTemplatedDecl()->setAccess(AS);
1593  }
1594
1595  if (VS.isOverrideSpecified()) {
1596    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1597    if (!MD || !MD->isVirtual()) {
1598      Diag(Member->getLocStart(),
1599           diag::override_keyword_only_allowed_on_virtual_member_functions)
1600        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1601    } else
1602      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1603  }
1604  if (VS.isFinalSpecified()) {
1605    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1606    if (!MD || !MD->isVirtual()) {
1607      Diag(Member->getLocStart(),
1608           diag::override_keyword_only_allowed_on_virtual_member_functions)
1609      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1610    } else
1611      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1612  }
1613
1614  if (VS.getLastLocation().isValid()) {
1615    // Update the end location of a method that has a virt-specifiers.
1616    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1617      MD->setRangeEnd(VS.getLastLocation());
1618  }
1619
1620  CheckOverrideControl(Member);
1621
1622  assert((Name || isInstField) && "No identifier for non-field ?");
1623
1624  if (isInstField)
1625    FieldCollector->Add(cast<FieldDecl>(Member));
1626  return Member;
1627}
1628
1629/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1630/// in-class initializer for a non-static C++ class member, and after
1631/// instantiating an in-class initializer in a class template. Such actions
1632/// are deferred until the class is complete.
1633void
1634Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1635                                       Expr *InitExpr) {
1636  FieldDecl *FD = cast<FieldDecl>(D);
1637
1638  if (!InitExpr) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1645    FD->setInvalidDecl();
1646    FD->removeInClassInitializer();
1647    return;
1648  }
1649
1650  ExprResult Init = InitExpr;
1651  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1652    // FIXME: if there is no EqualLoc, this is list-initialization.
1653    Init = PerformCopyInitialization(
1654      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1655    if (Init.isInvalid()) {
1656      FD->setInvalidDecl();
1657      return;
1658    }
1659
1660    CheckImplicitConversions(Init.get(), EqualLoc);
1661  }
1662
1663  // C++0x [class.base.init]p7:
1664  //   The initialization of each base and member constitutes a
1665  //   full-expression.
1666  Init = MaybeCreateExprWithCleanups(Init);
1667  if (Init.isInvalid()) {
1668    FD->setInvalidDecl();
1669    return;
1670  }
1671
1672  InitExpr = Init.release();
1673
1674  FD->setInClassInitializer(InitExpr);
1675}
1676
1677/// \brief Find the direct and/or virtual base specifiers that
1678/// correspond to the given base type, for use in base initialization
1679/// within a constructor.
1680static bool FindBaseInitializer(Sema &SemaRef,
1681                                CXXRecordDecl *ClassDecl,
1682                                QualType BaseType,
1683                                const CXXBaseSpecifier *&DirectBaseSpec,
1684                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1685  // First, check for a direct base class.
1686  DirectBaseSpec = 0;
1687  for (CXXRecordDecl::base_class_const_iterator Base
1688         = ClassDecl->bases_begin();
1689       Base != ClassDecl->bases_end(); ++Base) {
1690    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1691      // We found a direct base of this type. That's what we're
1692      // initializing.
1693      DirectBaseSpec = &*Base;
1694      break;
1695    }
1696  }
1697
1698  // Check for a virtual base class.
1699  // FIXME: We might be able to short-circuit this if we know in advance that
1700  // there are no virtual bases.
1701  VirtualBaseSpec = 0;
1702  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1703    // We haven't found a base yet; search the class hierarchy for a
1704    // virtual base class.
1705    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1706                       /*DetectVirtual=*/false);
1707    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1708                              BaseType, Paths)) {
1709      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1710           Path != Paths.end(); ++Path) {
1711        if (Path->back().Base->isVirtual()) {
1712          VirtualBaseSpec = Path->back().Base;
1713          break;
1714        }
1715      }
1716    }
1717  }
1718
1719  return DirectBaseSpec || VirtualBaseSpec;
1720}
1721
1722/// \brief Handle a C++ member initializer using braced-init-list syntax.
1723MemInitResult
1724Sema::ActOnMemInitializer(Decl *ConstructorD,
1725                          Scope *S,
1726                          CXXScopeSpec &SS,
1727                          IdentifierInfo *MemberOrBase,
1728                          ParsedType TemplateTypeTy,
1729                          const DeclSpec &DS,
1730                          SourceLocation IdLoc,
1731                          Expr *InitList,
1732                          SourceLocation EllipsisLoc) {
1733  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1734                             DS, IdLoc, InitList,
1735                             EllipsisLoc);
1736}
1737
1738/// \brief Handle a C++ member initializer using parentheses syntax.
1739MemInitResult
1740Sema::ActOnMemInitializer(Decl *ConstructorD,
1741                          Scope *S,
1742                          CXXScopeSpec &SS,
1743                          IdentifierInfo *MemberOrBase,
1744                          ParsedType TemplateTypeTy,
1745                          const DeclSpec &DS,
1746                          SourceLocation IdLoc,
1747                          SourceLocation LParenLoc,
1748                          Expr **Args, unsigned NumArgs,
1749                          SourceLocation RParenLoc,
1750                          SourceLocation EllipsisLoc) {
1751  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1752                                           RParenLoc);
1753  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1754                             DS, IdLoc, List, EllipsisLoc);
1755}
1756
1757namespace {
1758
1759// Callback to only accept typo corrections that can be a valid C++ member
1760// intializer: either a non-static field member or a base class.
1761class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1762 public:
1763  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1764      : ClassDecl(ClassDecl) {}
1765
1766  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1767    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1768      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1769        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1770      else
1771        return isa<TypeDecl>(ND);
1772    }
1773    return false;
1774  }
1775
1776 private:
1777  CXXRecordDecl *ClassDecl;
1778};
1779
1780}
1781
1782/// \brief Handle a C++ member initializer.
1783MemInitResult
1784Sema::BuildMemInitializer(Decl *ConstructorD,
1785                          Scope *S,
1786                          CXXScopeSpec &SS,
1787                          IdentifierInfo *MemberOrBase,
1788                          ParsedType TemplateTypeTy,
1789                          const DeclSpec &DS,
1790                          SourceLocation IdLoc,
1791                          Expr *Init,
1792                          SourceLocation EllipsisLoc) {
1793  if (!ConstructorD)
1794    return true;
1795
1796  AdjustDeclIfTemplate(ConstructorD);
1797
1798  CXXConstructorDecl *Constructor
1799    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1800  if (!Constructor) {
1801    // The user wrote a constructor initializer on a function that is
1802    // not a C++ constructor. Ignore the error for now, because we may
1803    // have more member initializers coming; we'll diagnose it just
1804    // once in ActOnMemInitializers.
1805    return true;
1806  }
1807
1808  CXXRecordDecl *ClassDecl = Constructor->getParent();
1809
1810  // C++ [class.base.init]p2:
1811  //   Names in a mem-initializer-id are looked up in the scope of the
1812  //   constructor's class and, if not found in that scope, are looked
1813  //   up in the scope containing the constructor's definition.
1814  //   [Note: if the constructor's class contains a member with the
1815  //   same name as a direct or virtual base class of the class, a
1816  //   mem-initializer-id naming the member or base class and composed
1817  //   of a single identifier refers to the class member. A
1818  //   mem-initializer-id for the hidden base class may be specified
1819  //   using a qualified name. ]
1820  if (!SS.getScopeRep() && !TemplateTypeTy) {
1821    // Look for a member, first.
1822    DeclContext::lookup_result Result
1823      = ClassDecl->lookup(MemberOrBase);
1824    if (Result.first != Result.second) {
1825      ValueDecl *Member;
1826      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1827          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1828        if (EllipsisLoc.isValid())
1829          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1830            << MemberOrBase
1831            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1832
1833        return BuildMemberInitializer(Member, Init, IdLoc);
1834      }
1835    }
1836  }
1837  // It didn't name a member, so see if it names a class.
1838  QualType BaseType;
1839  TypeSourceInfo *TInfo = 0;
1840
1841  if (TemplateTypeTy) {
1842    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1843  } else if (DS.getTypeSpecType() == TST_decltype) {
1844    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1845  } else {
1846    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1847    LookupParsedName(R, S, &SS);
1848
1849    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1850    if (!TyD) {
1851      if (R.isAmbiguous()) return true;
1852
1853      // We don't want access-control diagnostics here.
1854      R.suppressDiagnostics();
1855
1856      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1857        bool NotUnknownSpecialization = false;
1858        DeclContext *DC = computeDeclContext(SS, false);
1859        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1860          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1861
1862        if (!NotUnknownSpecialization) {
1863          // When the scope specifier can refer to a member of an unknown
1864          // specialization, we take it as a type name.
1865          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1866                                       SS.getWithLocInContext(Context),
1867                                       *MemberOrBase, IdLoc);
1868          if (BaseType.isNull())
1869            return true;
1870
1871          R.clear();
1872          R.setLookupName(MemberOrBase);
1873        }
1874      }
1875
1876      // If no results were found, try to correct typos.
1877      TypoCorrection Corr;
1878      MemInitializerValidatorCCC Validator(ClassDecl);
1879      if (R.empty() && BaseType.isNull() &&
1880          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1881                              Validator, ClassDecl))) {
1882        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1883        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1884        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1885          // We have found a non-static data member with a similar
1886          // name to what was typed; complain and initialize that
1887          // member.
1888          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1889            << MemberOrBase << true << CorrectedQuotedStr
1890            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1891          Diag(Member->getLocation(), diag::note_previous_decl)
1892            << CorrectedQuotedStr;
1893
1894          return BuildMemberInitializer(Member, Init, IdLoc);
1895        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1896          const CXXBaseSpecifier *DirectBaseSpec;
1897          const CXXBaseSpecifier *VirtualBaseSpec;
1898          if (FindBaseInitializer(*this, ClassDecl,
1899                                  Context.getTypeDeclType(Type),
1900                                  DirectBaseSpec, VirtualBaseSpec)) {
1901            // We have found a direct or virtual base class with a
1902            // similar name to what was typed; complain and initialize
1903            // that base class.
1904            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1905              << MemberOrBase << false << CorrectedQuotedStr
1906              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1907
1908            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1909                                                             : VirtualBaseSpec;
1910            Diag(BaseSpec->getSourceRange().getBegin(),
1911                 diag::note_base_class_specified_here)
1912              << BaseSpec->getType()
1913              << BaseSpec->getSourceRange();
1914
1915            TyD = Type;
1916          }
1917        }
1918      }
1919
1920      if (!TyD && BaseType.isNull()) {
1921        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1922          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1923        return true;
1924      }
1925    }
1926
1927    if (BaseType.isNull()) {
1928      BaseType = Context.getTypeDeclType(TyD);
1929      if (SS.isSet()) {
1930        NestedNameSpecifier *Qualifier =
1931          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1932
1933        // FIXME: preserve source range information
1934        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1935      }
1936    }
1937  }
1938
1939  if (!TInfo)
1940    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1941
1942  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1943}
1944
1945/// Checks a member initializer expression for cases where reference (or
1946/// pointer) members are bound to by-value parameters (or their addresses).
1947static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1948                                               Expr *Init,
1949                                               SourceLocation IdLoc) {
1950  QualType MemberTy = Member->getType();
1951
1952  // We only handle pointers and references currently.
1953  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1954  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1955    return;
1956
1957  const bool IsPointer = MemberTy->isPointerType();
1958  if (IsPointer) {
1959    if (const UnaryOperator *Op
1960          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1961      // The only case we're worried about with pointers requires taking the
1962      // address.
1963      if (Op->getOpcode() != UO_AddrOf)
1964        return;
1965
1966      Init = Op->getSubExpr();
1967    } else {
1968      // We only handle address-of expression initializers for pointers.
1969      return;
1970    }
1971  }
1972
1973  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1974    // Taking the address of a temporary will be diagnosed as a hard error.
1975    if (IsPointer)
1976      return;
1977
1978    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1979      << Member << Init->getSourceRange();
1980  } else if (const DeclRefExpr *DRE
1981               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1982    // We only warn when referring to a non-reference parameter declaration.
1983    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1984    if (!Parameter || Parameter->getType()->isReferenceType())
1985      return;
1986
1987    S.Diag(Init->getExprLoc(),
1988           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1989                     : diag::warn_bind_ref_member_to_parameter)
1990      << Member << Parameter << Init->getSourceRange();
1991  } else {
1992    // Other initializers are fine.
1993    return;
1994  }
1995
1996  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1997    << (unsigned)IsPointer;
1998}
1999
2000/// Checks an initializer expression for use of uninitialized fields, such as
2001/// containing the field that is being initialized. Returns true if there is an
2002/// uninitialized field was used an updates the SourceLocation parameter; false
2003/// otherwise.
2004static bool InitExprContainsUninitializedFields(const Stmt *S,
2005                                                const ValueDecl *LhsField,
2006                                                SourceLocation *L) {
2007  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2008
2009  if (isa<CallExpr>(S)) {
2010    // Do not descend into function calls or constructors, as the use
2011    // of an uninitialized field may be valid. One would have to inspect
2012    // the contents of the function/ctor to determine if it is safe or not.
2013    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2014    // may be safe, depending on what the function/ctor does.
2015    return false;
2016  }
2017  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2018    const NamedDecl *RhsField = ME->getMemberDecl();
2019
2020    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2021      // The member expression points to a static data member.
2022      assert(VD->isStaticDataMember() &&
2023             "Member points to non-static data member!");
2024      (void)VD;
2025      return false;
2026    }
2027
2028    if (isa<EnumConstantDecl>(RhsField)) {
2029      // The member expression points to an enum.
2030      return false;
2031    }
2032
2033    if (RhsField == LhsField) {
2034      // Initializing a field with itself. Throw a warning.
2035      // But wait; there are exceptions!
2036      // Exception #1:  The field may not belong to this record.
2037      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2038      const Expr *base = ME->getBase();
2039      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2040        // Even though the field matches, it does not belong to this record.
2041        return false;
2042      }
2043      // None of the exceptions triggered; return true to indicate an
2044      // uninitialized field was used.
2045      *L = ME->getMemberLoc();
2046      return true;
2047    }
2048  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2049    // sizeof/alignof doesn't reference contents, do not warn.
2050    return false;
2051  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2052    // address-of doesn't reference contents (the pointer may be dereferenced
2053    // in the same expression but it would be rare; and weird).
2054    if (UOE->getOpcode() == UO_AddrOf)
2055      return false;
2056  }
2057  for (Stmt::const_child_range it = S->children(); it; ++it) {
2058    if (!*it) {
2059      // An expression such as 'member(arg ?: "")' may trigger this.
2060      continue;
2061    }
2062    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2063      return true;
2064  }
2065  return false;
2066}
2067
2068MemInitResult
2069Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2070                             SourceLocation IdLoc) {
2071  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2072  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2073  assert((DirectMember || IndirectMember) &&
2074         "Member must be a FieldDecl or IndirectFieldDecl");
2075
2076  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2077    return true;
2078
2079  if (Member->isInvalidDecl())
2080    return true;
2081
2082  // Diagnose value-uses of fields to initialize themselves, e.g.
2083  //   foo(foo)
2084  // where foo is not also a parameter to the constructor.
2085  // TODO: implement -Wuninitialized and fold this into that framework.
2086  Expr **Args;
2087  unsigned NumArgs;
2088  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2089    Args = ParenList->getExprs();
2090    NumArgs = ParenList->getNumExprs();
2091  } else {
2092    InitListExpr *InitList = cast<InitListExpr>(Init);
2093    Args = InitList->getInits();
2094    NumArgs = InitList->getNumInits();
2095  }
2096  for (unsigned i = 0; i < NumArgs; ++i) {
2097    SourceLocation L;
2098    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2099      // FIXME: Return true in the case when other fields are used before being
2100      // uninitialized. For example, let this field be the i'th field. When
2101      // initializing the i'th field, throw a warning if any of the >= i'th
2102      // fields are used, as they are not yet initialized.
2103      // Right now we are only handling the case where the i'th field uses
2104      // itself in its initializer.
2105      Diag(L, diag::warn_field_is_uninit);
2106    }
2107  }
2108
2109  SourceRange InitRange = Init->getSourceRange();
2110
2111  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2112    // Can't check initialization for a member of dependent type or when
2113    // any of the arguments are type-dependent expressions.
2114    DiscardCleanupsInEvaluationContext();
2115  } else {
2116    bool InitList = false;
2117    if (isa<InitListExpr>(Init)) {
2118      InitList = true;
2119      Args = &Init;
2120      NumArgs = 1;
2121    }
2122
2123    // Initialize the member.
2124    InitializedEntity MemberEntity =
2125      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2126                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2127    InitializationKind Kind =
2128      InitList ? InitializationKind::CreateDirectList(IdLoc)
2129               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2130                                                  InitRange.getEnd());
2131
2132    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2133    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2134                                            MultiExprArg(*this, Args, NumArgs),
2135                                            0);
2136    if (MemberInit.isInvalid())
2137      return true;
2138
2139    CheckImplicitConversions(MemberInit.get(),
2140                             InitRange.getBegin());
2141
2142    // C++0x [class.base.init]p7:
2143    //   The initialization of each base and member constitutes a
2144    //   full-expression.
2145    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2146    if (MemberInit.isInvalid())
2147      return true;
2148
2149    // If we are in a dependent context, template instantiation will
2150    // perform this type-checking again. Just save the arguments that we
2151    // received.
2152    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2153    // of the information that we have about the member
2154    // initializer. However, deconstructing the ASTs is a dicey process,
2155    // and this approach is far more likely to get the corner cases right.
2156    if (CurContext->isDependentContext()) {
2157      // The existing Init will do fine.
2158    } else {
2159      Init = MemberInit.get();
2160      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2161    }
2162  }
2163
2164  if (DirectMember) {
2165    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2166                                            InitRange.getBegin(), Init,
2167                                            InitRange.getEnd());
2168  } else {
2169    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2170                                            InitRange.getBegin(), Init,
2171                                            InitRange.getEnd());
2172  }
2173}
2174
2175MemInitResult
2176Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2177                                 CXXRecordDecl *ClassDecl) {
2178  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2179  if (!LangOpts.CPlusPlus0x)
2180    return Diag(NameLoc, diag::err_delegating_ctor)
2181      << TInfo->getTypeLoc().getLocalSourceRange();
2182  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2183
2184  bool InitList = true;
2185  Expr **Args = &Init;
2186  unsigned NumArgs = 1;
2187  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2188    InitList = false;
2189    Args = ParenList->getExprs();
2190    NumArgs = ParenList->getNumExprs();
2191  }
2192
2193  SourceRange InitRange = Init->getSourceRange();
2194  // Initialize the object.
2195  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2196                                     QualType(ClassDecl->getTypeForDecl(), 0));
2197  InitializationKind Kind =
2198    InitList ? InitializationKind::CreateDirectList(NameLoc)
2199             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2200                                                InitRange.getEnd());
2201  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2202  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2203                                              MultiExprArg(*this, Args,NumArgs),
2204                                              0);
2205  if (DelegationInit.isInvalid())
2206    return true;
2207
2208  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2209         "Delegating constructor with no target?");
2210
2211  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2212
2213  // C++0x [class.base.init]p7:
2214  //   The initialization of each base and member constitutes a
2215  //   full-expression.
2216  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2217  if (DelegationInit.isInvalid())
2218    return true;
2219
2220  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2221                                          DelegationInit.takeAs<Expr>(),
2222                                          InitRange.getEnd());
2223}
2224
2225MemInitResult
2226Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2227                           Expr *Init, CXXRecordDecl *ClassDecl,
2228                           SourceLocation EllipsisLoc) {
2229  SourceLocation BaseLoc
2230    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2231
2232  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2233    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2234             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2235
2236  // C++ [class.base.init]p2:
2237  //   [...] Unless the mem-initializer-id names a nonstatic data
2238  //   member of the constructor's class or a direct or virtual base
2239  //   of that class, the mem-initializer is ill-formed. A
2240  //   mem-initializer-list can initialize a base class using any
2241  //   name that denotes that base class type.
2242  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2243
2244  SourceRange InitRange = Init->getSourceRange();
2245  if (EllipsisLoc.isValid()) {
2246    // This is a pack expansion.
2247    if (!BaseType->containsUnexpandedParameterPack())  {
2248      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2249        << SourceRange(BaseLoc, InitRange.getEnd());
2250
2251      EllipsisLoc = SourceLocation();
2252    }
2253  } else {
2254    // Check for any unexpanded parameter packs.
2255    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2256      return true;
2257
2258    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2259      return true;
2260  }
2261
2262  // Check for direct and virtual base classes.
2263  const CXXBaseSpecifier *DirectBaseSpec = 0;
2264  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2265  if (!Dependent) {
2266    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2267                                       BaseType))
2268      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2269
2270    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2271                        VirtualBaseSpec);
2272
2273    // C++ [base.class.init]p2:
2274    // Unless the mem-initializer-id names a nonstatic data member of the
2275    // constructor's class or a direct or virtual base of that class, the
2276    // mem-initializer is ill-formed.
2277    if (!DirectBaseSpec && !VirtualBaseSpec) {
2278      // If the class has any dependent bases, then it's possible that
2279      // one of those types will resolve to the same type as
2280      // BaseType. Therefore, just treat this as a dependent base
2281      // class initialization.  FIXME: Should we try to check the
2282      // initialization anyway? It seems odd.
2283      if (ClassDecl->hasAnyDependentBases())
2284        Dependent = true;
2285      else
2286        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2287          << BaseType << Context.getTypeDeclType(ClassDecl)
2288          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2289    }
2290  }
2291
2292  if (Dependent) {
2293    DiscardCleanupsInEvaluationContext();
2294
2295    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2296                                            /*IsVirtual=*/false,
2297                                            InitRange.getBegin(), Init,
2298                                            InitRange.getEnd(), EllipsisLoc);
2299  }
2300
2301  // C++ [base.class.init]p2:
2302  //   If a mem-initializer-id is ambiguous because it designates both
2303  //   a direct non-virtual base class and an inherited virtual base
2304  //   class, the mem-initializer is ill-formed.
2305  if (DirectBaseSpec && VirtualBaseSpec)
2306    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2307      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2308
2309  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2310  if (!BaseSpec)
2311    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2312
2313  // Initialize the base.
2314  bool InitList = true;
2315  Expr **Args = &Init;
2316  unsigned NumArgs = 1;
2317  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2318    InitList = false;
2319    Args = ParenList->getExprs();
2320    NumArgs = ParenList->getNumExprs();
2321  }
2322
2323  InitializedEntity BaseEntity =
2324    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2325  InitializationKind Kind =
2326    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2327             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2328                                                InitRange.getEnd());
2329  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2330  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2331                                          MultiExprArg(*this, Args, NumArgs),
2332                                          0);
2333  if (BaseInit.isInvalid())
2334    return true;
2335
2336  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2337
2338  // C++0x [class.base.init]p7:
2339  //   The initialization of each base and member constitutes a
2340  //   full-expression.
2341  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2342  if (BaseInit.isInvalid())
2343    return true;
2344
2345  // If we are in a dependent context, template instantiation will
2346  // perform this type-checking again. Just save the arguments that we
2347  // received in a ParenListExpr.
2348  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2349  // of the information that we have about the base
2350  // initializer. However, deconstructing the ASTs is a dicey process,
2351  // and this approach is far more likely to get the corner cases right.
2352  if (CurContext->isDependentContext())
2353    BaseInit = Owned(Init);
2354
2355  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2356                                          BaseSpec->isVirtual(),
2357                                          InitRange.getBegin(),
2358                                          BaseInit.takeAs<Expr>(),
2359                                          InitRange.getEnd(), EllipsisLoc);
2360}
2361
2362// Create a static_cast\<T&&>(expr).
2363static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2364  QualType ExprType = E->getType();
2365  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2366  SourceLocation ExprLoc = E->getLocStart();
2367  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2368      TargetType, ExprLoc);
2369
2370  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2371                                   SourceRange(ExprLoc, ExprLoc),
2372                                   E->getSourceRange()).take();
2373}
2374
2375/// ImplicitInitializerKind - How an implicit base or member initializer should
2376/// initialize its base or member.
2377enum ImplicitInitializerKind {
2378  IIK_Default,
2379  IIK_Copy,
2380  IIK_Move
2381};
2382
2383static bool
2384BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2385                             ImplicitInitializerKind ImplicitInitKind,
2386                             CXXBaseSpecifier *BaseSpec,
2387                             bool IsInheritedVirtualBase,
2388                             CXXCtorInitializer *&CXXBaseInit) {
2389  InitializedEntity InitEntity
2390    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2391                                        IsInheritedVirtualBase);
2392
2393  ExprResult BaseInit;
2394
2395  switch (ImplicitInitKind) {
2396  case IIK_Default: {
2397    InitializationKind InitKind
2398      = InitializationKind::CreateDefault(Constructor->getLocation());
2399    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2400    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2401                               MultiExprArg(SemaRef, 0, 0));
2402    break;
2403  }
2404
2405  case IIK_Move:
2406  case IIK_Copy: {
2407    bool Moving = ImplicitInitKind == IIK_Move;
2408    ParmVarDecl *Param = Constructor->getParamDecl(0);
2409    QualType ParamType = Param->getType().getNonReferenceType();
2410
2411    Expr *CopyCtorArg =
2412      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2413                          SourceLocation(), Param,
2414                          Constructor->getLocation(), ParamType,
2415                          VK_LValue, 0);
2416
2417    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2418
2419    // Cast to the base class to avoid ambiguities.
2420    QualType ArgTy =
2421      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2422                                       ParamType.getQualifiers());
2423
2424    if (Moving) {
2425      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2426    }
2427
2428    CXXCastPath BasePath;
2429    BasePath.push_back(BaseSpec);
2430    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2431                                            CK_UncheckedDerivedToBase,
2432                                            Moving ? VK_XValue : VK_LValue,
2433                                            &BasePath).take();
2434
2435    InitializationKind InitKind
2436      = InitializationKind::CreateDirect(Constructor->getLocation(),
2437                                         SourceLocation(), SourceLocation());
2438    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2439                                   &CopyCtorArg, 1);
2440    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2441                               MultiExprArg(&CopyCtorArg, 1));
2442    break;
2443  }
2444  }
2445
2446  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2447  if (BaseInit.isInvalid())
2448    return true;
2449
2450  CXXBaseInit =
2451    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2452               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2453                                                        SourceLocation()),
2454                                             BaseSpec->isVirtual(),
2455                                             SourceLocation(),
2456                                             BaseInit.takeAs<Expr>(),
2457                                             SourceLocation(),
2458                                             SourceLocation());
2459
2460  return false;
2461}
2462
2463static bool RefersToRValueRef(Expr *MemRef) {
2464  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2465  return Referenced->getType()->isRValueReferenceType();
2466}
2467
2468static bool
2469BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2470                               ImplicitInitializerKind ImplicitInitKind,
2471                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2472                               CXXCtorInitializer *&CXXMemberInit) {
2473  if (Field->isInvalidDecl())
2474    return true;
2475
2476  SourceLocation Loc = Constructor->getLocation();
2477
2478  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2479    bool Moving = ImplicitInitKind == IIK_Move;
2480    ParmVarDecl *Param = Constructor->getParamDecl(0);
2481    QualType ParamType = Param->getType().getNonReferenceType();
2482
2483    // Suppress copying zero-width bitfields.
2484    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2485      return false;
2486
2487    Expr *MemberExprBase =
2488      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2489                          SourceLocation(), Param,
2490                          Loc, ParamType, VK_LValue, 0);
2491
2492    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2493
2494    if (Moving) {
2495      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2496    }
2497
2498    // Build a reference to this field within the parameter.
2499    CXXScopeSpec SS;
2500    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2501                              Sema::LookupMemberName);
2502    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2503                                  : cast<ValueDecl>(Field), AS_public);
2504    MemberLookup.resolveKind();
2505    ExprResult CtorArg
2506      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2507                                         ParamType, Loc,
2508                                         /*IsArrow=*/false,
2509                                         SS,
2510                                         /*TemplateKWLoc=*/SourceLocation(),
2511                                         /*FirstQualifierInScope=*/0,
2512                                         MemberLookup,
2513                                         /*TemplateArgs=*/0);
2514    if (CtorArg.isInvalid())
2515      return true;
2516
2517    // C++11 [class.copy]p15:
2518    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2519    //     with static_cast<T&&>(x.m);
2520    if (RefersToRValueRef(CtorArg.get())) {
2521      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2522    }
2523
2524    // When the field we are copying is an array, create index variables for
2525    // each dimension of the array. We use these index variables to subscript
2526    // the source array, and other clients (e.g., CodeGen) will perform the
2527    // necessary iteration with these index variables.
2528    SmallVector<VarDecl *, 4> IndexVariables;
2529    QualType BaseType = Field->getType();
2530    QualType SizeType = SemaRef.Context.getSizeType();
2531    bool InitializingArray = false;
2532    while (const ConstantArrayType *Array
2533                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2534      InitializingArray = true;
2535      // Create the iteration variable for this array index.
2536      IdentifierInfo *IterationVarName = 0;
2537      {
2538        SmallString<8> Str;
2539        llvm::raw_svector_ostream OS(Str);
2540        OS << "__i" << IndexVariables.size();
2541        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2542      }
2543      VarDecl *IterationVar
2544        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2545                          IterationVarName, SizeType,
2546                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2547                          SC_None, SC_None);
2548      IndexVariables.push_back(IterationVar);
2549
2550      // Create a reference to the iteration variable.
2551      ExprResult IterationVarRef
2552        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2553      assert(!IterationVarRef.isInvalid() &&
2554             "Reference to invented variable cannot fail!");
2555      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2556      assert(!IterationVarRef.isInvalid() &&
2557             "Conversion of invented variable cannot fail!");
2558
2559      // Subscript the array with this iteration variable.
2560      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2561                                                        IterationVarRef.take(),
2562                                                        Loc);
2563      if (CtorArg.isInvalid())
2564        return true;
2565
2566      BaseType = Array->getElementType();
2567    }
2568
2569    // The array subscript expression is an lvalue, which is wrong for moving.
2570    if (Moving && InitializingArray)
2571      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2572
2573    // Construct the entity that we will be initializing. For an array, this
2574    // will be first element in the array, which may require several levels
2575    // of array-subscript entities.
2576    SmallVector<InitializedEntity, 4> Entities;
2577    Entities.reserve(1 + IndexVariables.size());
2578    if (Indirect)
2579      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2580    else
2581      Entities.push_back(InitializedEntity::InitializeMember(Field));
2582    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2583      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2584                                                              0,
2585                                                              Entities.back()));
2586
2587    // Direct-initialize to use the copy constructor.
2588    InitializationKind InitKind =
2589      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2590
2591    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2592    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2593                                   &CtorArgE, 1);
2594
2595    ExprResult MemberInit
2596      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2597                        MultiExprArg(&CtorArgE, 1));
2598    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2599    if (MemberInit.isInvalid())
2600      return true;
2601
2602    if (Indirect) {
2603      assert(IndexVariables.size() == 0 &&
2604             "Indirect field improperly initialized");
2605      CXXMemberInit
2606        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2607                                                   Loc, Loc,
2608                                                   MemberInit.takeAs<Expr>(),
2609                                                   Loc);
2610    } else
2611      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2612                                                 Loc, MemberInit.takeAs<Expr>(),
2613                                                 Loc,
2614                                                 IndexVariables.data(),
2615                                                 IndexVariables.size());
2616    return false;
2617  }
2618
2619  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2620
2621  QualType FieldBaseElementType =
2622    SemaRef.Context.getBaseElementType(Field->getType());
2623
2624  if (FieldBaseElementType->isRecordType()) {
2625    InitializedEntity InitEntity
2626      = Indirect? InitializedEntity::InitializeMember(Indirect)
2627                : InitializedEntity::InitializeMember(Field);
2628    InitializationKind InitKind =
2629      InitializationKind::CreateDefault(Loc);
2630
2631    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2632    ExprResult MemberInit =
2633      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2634
2635    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2636    if (MemberInit.isInvalid())
2637      return true;
2638
2639    if (Indirect)
2640      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2641                                                               Indirect, Loc,
2642                                                               Loc,
2643                                                               MemberInit.get(),
2644                                                               Loc);
2645    else
2646      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2647                                                               Field, Loc, Loc,
2648                                                               MemberInit.get(),
2649                                                               Loc);
2650    return false;
2651  }
2652
2653  if (!Field->getParent()->isUnion()) {
2654    if (FieldBaseElementType->isReferenceType()) {
2655      SemaRef.Diag(Constructor->getLocation(),
2656                   diag::err_uninitialized_member_in_ctor)
2657      << (int)Constructor->isImplicit()
2658      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2659      << 0 << Field->getDeclName();
2660      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2661      return true;
2662    }
2663
2664    if (FieldBaseElementType.isConstQualified()) {
2665      SemaRef.Diag(Constructor->getLocation(),
2666                   diag::err_uninitialized_member_in_ctor)
2667      << (int)Constructor->isImplicit()
2668      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2669      << 1 << Field->getDeclName();
2670      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2671      return true;
2672    }
2673  }
2674
2675  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2676      FieldBaseElementType->isObjCRetainableType() &&
2677      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2678      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2679    // Instant objects:
2680    //   Default-initialize Objective-C pointers to NULL.
2681    CXXMemberInit
2682      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2683                                                 Loc, Loc,
2684                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2685                                                 Loc);
2686    return false;
2687  }
2688
2689  // Nothing to initialize.
2690  CXXMemberInit = 0;
2691  return false;
2692}
2693
2694namespace {
2695struct BaseAndFieldInfo {
2696  Sema &S;
2697  CXXConstructorDecl *Ctor;
2698  bool AnyErrorsInInits;
2699  ImplicitInitializerKind IIK;
2700  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2701  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2702
2703  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2704    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2705    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2706    if (Generated && Ctor->isCopyConstructor())
2707      IIK = IIK_Copy;
2708    else if (Generated && Ctor->isMoveConstructor())
2709      IIK = IIK_Move;
2710    else
2711      IIK = IIK_Default;
2712  }
2713
2714  bool isImplicitCopyOrMove() const {
2715    switch (IIK) {
2716    case IIK_Copy:
2717    case IIK_Move:
2718      return true;
2719
2720    case IIK_Default:
2721      return false;
2722    }
2723
2724    llvm_unreachable("Invalid ImplicitInitializerKind!");
2725  }
2726};
2727}
2728
2729/// \brief Determine whether the given indirect field declaration is somewhere
2730/// within an anonymous union.
2731static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2732  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2733                                      CEnd = F->chain_end();
2734       C != CEnd; ++C)
2735    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2736      if (Record->isUnion())
2737        return true;
2738
2739  return false;
2740}
2741
2742/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2743/// array type.
2744static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2745  if (T->isIncompleteArrayType())
2746    return true;
2747
2748  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2749    if (!ArrayT->getSize())
2750      return true;
2751
2752    T = ArrayT->getElementType();
2753  }
2754
2755  return false;
2756}
2757
2758static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2759                                    FieldDecl *Field,
2760                                    IndirectFieldDecl *Indirect = 0) {
2761
2762  // Overwhelmingly common case: we have a direct initializer for this field.
2763  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2764    Info.AllToInit.push_back(Init);
2765    return false;
2766  }
2767
2768  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2769  // has a brace-or-equal-initializer, the entity is initialized as specified
2770  // in [dcl.init].
2771  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2772    CXXCtorInitializer *Init;
2773    if (Indirect)
2774      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2775                                                      SourceLocation(),
2776                                                      SourceLocation(), 0,
2777                                                      SourceLocation());
2778    else
2779      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2780                                                      SourceLocation(),
2781                                                      SourceLocation(), 0,
2782                                                      SourceLocation());
2783    Info.AllToInit.push_back(Init);
2784    return false;
2785  }
2786
2787  // Don't build an implicit initializer for union members if none was
2788  // explicitly specified.
2789  if (Field->getParent()->isUnion() ||
2790      (Indirect && isWithinAnonymousUnion(Indirect)))
2791    return false;
2792
2793  // Don't initialize incomplete or zero-length arrays.
2794  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2795    return false;
2796
2797  // Don't try to build an implicit initializer if there were semantic
2798  // errors in any of the initializers (and therefore we might be
2799  // missing some that the user actually wrote).
2800  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2801    return false;
2802
2803  CXXCtorInitializer *Init = 0;
2804  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2805                                     Indirect, Init))
2806    return true;
2807
2808  if (Init)
2809    Info.AllToInit.push_back(Init);
2810
2811  return false;
2812}
2813
2814bool
2815Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2816                               CXXCtorInitializer *Initializer) {
2817  assert(Initializer->isDelegatingInitializer());
2818  Constructor->setNumCtorInitializers(1);
2819  CXXCtorInitializer **initializer =
2820    new (Context) CXXCtorInitializer*[1];
2821  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2822  Constructor->setCtorInitializers(initializer);
2823
2824  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2825    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2826    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2827  }
2828
2829  DelegatingCtorDecls.push_back(Constructor);
2830
2831  return false;
2832}
2833
2834bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2835                               CXXCtorInitializer **Initializers,
2836                               unsigned NumInitializers,
2837                               bool AnyErrors) {
2838  if (Constructor->isDependentContext()) {
2839    // Just store the initializers as written, they will be checked during
2840    // instantiation.
2841    if (NumInitializers > 0) {
2842      Constructor->setNumCtorInitializers(NumInitializers);
2843      CXXCtorInitializer **baseOrMemberInitializers =
2844        new (Context) CXXCtorInitializer*[NumInitializers];
2845      memcpy(baseOrMemberInitializers, Initializers,
2846             NumInitializers * sizeof(CXXCtorInitializer*));
2847      Constructor->setCtorInitializers(baseOrMemberInitializers);
2848    }
2849
2850    return false;
2851  }
2852
2853  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2854
2855  // We need to build the initializer AST according to order of construction
2856  // and not what user specified in the Initializers list.
2857  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2858  if (!ClassDecl)
2859    return true;
2860
2861  bool HadError = false;
2862
2863  for (unsigned i = 0; i < NumInitializers; i++) {
2864    CXXCtorInitializer *Member = Initializers[i];
2865
2866    if (Member->isBaseInitializer())
2867      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2868    else
2869      Info.AllBaseFields[Member->getAnyMember()] = Member;
2870  }
2871
2872  // Keep track of the direct virtual bases.
2873  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2874  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2875       E = ClassDecl->bases_end(); I != E; ++I) {
2876    if (I->isVirtual())
2877      DirectVBases.insert(I);
2878  }
2879
2880  // Push virtual bases before others.
2881  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2882       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2883
2884    if (CXXCtorInitializer *Value
2885        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2886      Info.AllToInit.push_back(Value);
2887    } else if (!AnyErrors) {
2888      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2889      CXXCtorInitializer *CXXBaseInit;
2890      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2891                                       VBase, IsInheritedVirtualBase,
2892                                       CXXBaseInit)) {
2893        HadError = true;
2894        continue;
2895      }
2896
2897      Info.AllToInit.push_back(CXXBaseInit);
2898    }
2899  }
2900
2901  // Non-virtual bases.
2902  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2903       E = ClassDecl->bases_end(); Base != E; ++Base) {
2904    // Virtuals are in the virtual base list and already constructed.
2905    if (Base->isVirtual())
2906      continue;
2907
2908    if (CXXCtorInitializer *Value
2909          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2910      Info.AllToInit.push_back(Value);
2911    } else if (!AnyErrors) {
2912      CXXCtorInitializer *CXXBaseInit;
2913      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2914                                       Base, /*IsInheritedVirtualBase=*/false,
2915                                       CXXBaseInit)) {
2916        HadError = true;
2917        continue;
2918      }
2919
2920      Info.AllToInit.push_back(CXXBaseInit);
2921    }
2922  }
2923
2924  // Fields.
2925  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2926                               MemEnd = ClassDecl->decls_end();
2927       Mem != MemEnd; ++Mem) {
2928    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2929      // C++ [class.bit]p2:
2930      //   A declaration for a bit-field that omits the identifier declares an
2931      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2932      //   initialized.
2933      if (F->isUnnamedBitfield())
2934        continue;
2935
2936      // If we're not generating the implicit copy/move constructor, then we'll
2937      // handle anonymous struct/union fields based on their individual
2938      // indirect fields.
2939      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2940        continue;
2941
2942      if (CollectFieldInitializer(*this, Info, F))
2943        HadError = true;
2944      continue;
2945    }
2946
2947    // Beyond this point, we only consider default initialization.
2948    if (Info.IIK != IIK_Default)
2949      continue;
2950
2951    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2952      if (F->getType()->isIncompleteArrayType()) {
2953        assert(ClassDecl->hasFlexibleArrayMember() &&
2954               "Incomplete array type is not valid");
2955        continue;
2956      }
2957
2958      // Initialize each field of an anonymous struct individually.
2959      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2960        HadError = true;
2961
2962      continue;
2963    }
2964  }
2965
2966  NumInitializers = Info.AllToInit.size();
2967  if (NumInitializers > 0) {
2968    Constructor->setNumCtorInitializers(NumInitializers);
2969    CXXCtorInitializer **baseOrMemberInitializers =
2970      new (Context) CXXCtorInitializer*[NumInitializers];
2971    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2972           NumInitializers * sizeof(CXXCtorInitializer*));
2973    Constructor->setCtorInitializers(baseOrMemberInitializers);
2974
2975    // Constructors implicitly reference the base and member
2976    // destructors.
2977    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2978                                           Constructor->getParent());
2979  }
2980
2981  return HadError;
2982}
2983
2984static void *GetKeyForTopLevelField(FieldDecl *Field) {
2985  // For anonymous unions, use the class declaration as the key.
2986  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2987    if (RT->getDecl()->isAnonymousStructOrUnion())
2988      return static_cast<void *>(RT->getDecl());
2989  }
2990  return static_cast<void *>(Field);
2991}
2992
2993static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2994  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2995}
2996
2997static void *GetKeyForMember(ASTContext &Context,
2998                             CXXCtorInitializer *Member) {
2999  if (!Member->isAnyMemberInitializer())
3000    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3001
3002  // For fields injected into the class via declaration of an anonymous union,
3003  // use its anonymous union class declaration as the unique key.
3004  FieldDecl *Field = Member->getAnyMember();
3005
3006  // If the field is a member of an anonymous struct or union, our key
3007  // is the anonymous record decl that's a direct child of the class.
3008  RecordDecl *RD = Field->getParent();
3009  if (RD->isAnonymousStructOrUnion()) {
3010    while (true) {
3011      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3012      if (Parent->isAnonymousStructOrUnion())
3013        RD = Parent;
3014      else
3015        break;
3016    }
3017
3018    return static_cast<void *>(RD);
3019  }
3020
3021  return static_cast<void *>(Field);
3022}
3023
3024static void
3025DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3026                                  const CXXConstructorDecl *Constructor,
3027                                  CXXCtorInitializer **Inits,
3028                                  unsigned NumInits) {
3029  if (Constructor->getDeclContext()->isDependentContext())
3030    return;
3031
3032  // Don't check initializers order unless the warning is enabled at the
3033  // location of at least one initializer.
3034  bool ShouldCheckOrder = false;
3035  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3036    CXXCtorInitializer *Init = Inits[InitIndex];
3037    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3038                                         Init->getSourceLocation())
3039          != DiagnosticsEngine::Ignored) {
3040      ShouldCheckOrder = true;
3041      break;
3042    }
3043  }
3044  if (!ShouldCheckOrder)
3045    return;
3046
3047  // Build the list of bases and members in the order that they'll
3048  // actually be initialized.  The explicit initializers should be in
3049  // this same order but may be missing things.
3050  SmallVector<const void*, 32> IdealInitKeys;
3051
3052  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3053
3054  // 1. Virtual bases.
3055  for (CXXRecordDecl::base_class_const_iterator VBase =
3056       ClassDecl->vbases_begin(),
3057       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3058    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3059
3060  // 2. Non-virtual bases.
3061  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3062       E = ClassDecl->bases_end(); Base != E; ++Base) {
3063    if (Base->isVirtual())
3064      continue;
3065    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3066  }
3067
3068  // 3. Direct fields.
3069  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3070       E = ClassDecl->field_end(); Field != E; ++Field) {
3071    if (Field->isUnnamedBitfield())
3072      continue;
3073
3074    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3075  }
3076
3077  unsigned NumIdealInits = IdealInitKeys.size();
3078  unsigned IdealIndex = 0;
3079
3080  CXXCtorInitializer *PrevInit = 0;
3081  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3082    CXXCtorInitializer *Init = Inits[InitIndex];
3083    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3084
3085    // Scan forward to try to find this initializer in the idealized
3086    // initializers list.
3087    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3088      if (InitKey == IdealInitKeys[IdealIndex])
3089        break;
3090
3091    // If we didn't find this initializer, it must be because we
3092    // scanned past it on a previous iteration.  That can only
3093    // happen if we're out of order;  emit a warning.
3094    if (IdealIndex == NumIdealInits && PrevInit) {
3095      Sema::SemaDiagnosticBuilder D =
3096        SemaRef.Diag(PrevInit->getSourceLocation(),
3097                     diag::warn_initializer_out_of_order);
3098
3099      if (PrevInit->isAnyMemberInitializer())
3100        D << 0 << PrevInit->getAnyMember()->getDeclName();
3101      else
3102        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3103
3104      if (Init->isAnyMemberInitializer())
3105        D << 0 << Init->getAnyMember()->getDeclName();
3106      else
3107        D << 1 << Init->getTypeSourceInfo()->getType();
3108
3109      // Move back to the initializer's location in the ideal list.
3110      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3111        if (InitKey == IdealInitKeys[IdealIndex])
3112          break;
3113
3114      assert(IdealIndex != NumIdealInits &&
3115             "initializer not found in initializer list");
3116    }
3117
3118    PrevInit = Init;
3119  }
3120}
3121
3122namespace {
3123bool CheckRedundantInit(Sema &S,
3124                        CXXCtorInitializer *Init,
3125                        CXXCtorInitializer *&PrevInit) {
3126  if (!PrevInit) {
3127    PrevInit = Init;
3128    return false;
3129  }
3130
3131  if (FieldDecl *Field = Init->getMember())
3132    S.Diag(Init->getSourceLocation(),
3133           diag::err_multiple_mem_initialization)
3134      << Field->getDeclName()
3135      << Init->getSourceRange();
3136  else {
3137    const Type *BaseClass = Init->getBaseClass();
3138    assert(BaseClass && "neither field nor base");
3139    S.Diag(Init->getSourceLocation(),
3140           diag::err_multiple_base_initialization)
3141      << QualType(BaseClass, 0)
3142      << Init->getSourceRange();
3143  }
3144  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3145    << 0 << PrevInit->getSourceRange();
3146
3147  return true;
3148}
3149
3150typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3151typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3152
3153bool CheckRedundantUnionInit(Sema &S,
3154                             CXXCtorInitializer *Init,
3155                             RedundantUnionMap &Unions) {
3156  FieldDecl *Field = Init->getAnyMember();
3157  RecordDecl *Parent = Field->getParent();
3158  NamedDecl *Child = Field;
3159
3160  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3161    if (Parent->isUnion()) {
3162      UnionEntry &En = Unions[Parent];
3163      if (En.first && En.first != Child) {
3164        S.Diag(Init->getSourceLocation(),
3165               diag::err_multiple_mem_union_initialization)
3166          << Field->getDeclName()
3167          << Init->getSourceRange();
3168        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3169          << 0 << En.second->getSourceRange();
3170        return true;
3171      }
3172      if (!En.first) {
3173        En.first = Child;
3174        En.second = Init;
3175      }
3176      if (!Parent->isAnonymousStructOrUnion())
3177        return false;
3178    }
3179
3180    Child = Parent;
3181    Parent = cast<RecordDecl>(Parent->getDeclContext());
3182  }
3183
3184  return false;
3185}
3186}
3187
3188/// ActOnMemInitializers - Handle the member initializers for a constructor.
3189void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3190                                SourceLocation ColonLoc,
3191                                CXXCtorInitializer **meminits,
3192                                unsigned NumMemInits,
3193                                bool AnyErrors) {
3194  if (!ConstructorDecl)
3195    return;
3196
3197  AdjustDeclIfTemplate(ConstructorDecl);
3198
3199  CXXConstructorDecl *Constructor
3200    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3201
3202  if (!Constructor) {
3203    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3204    return;
3205  }
3206
3207  CXXCtorInitializer **MemInits =
3208    reinterpret_cast<CXXCtorInitializer **>(meminits);
3209
3210  // Mapping for the duplicate initializers check.
3211  // For member initializers, this is keyed with a FieldDecl*.
3212  // For base initializers, this is keyed with a Type*.
3213  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3214
3215  // Mapping for the inconsistent anonymous-union initializers check.
3216  RedundantUnionMap MemberUnions;
3217
3218  bool HadError = false;
3219  for (unsigned i = 0; i < NumMemInits; i++) {
3220    CXXCtorInitializer *Init = MemInits[i];
3221
3222    // Set the source order index.
3223    Init->setSourceOrder(i);
3224
3225    if (Init->isAnyMemberInitializer()) {
3226      FieldDecl *Field = Init->getAnyMember();
3227      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3228          CheckRedundantUnionInit(*this, Init, MemberUnions))
3229        HadError = true;
3230    } else if (Init->isBaseInitializer()) {
3231      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3232      if (CheckRedundantInit(*this, Init, Members[Key]))
3233        HadError = true;
3234    } else {
3235      assert(Init->isDelegatingInitializer());
3236      // This must be the only initializer
3237      if (i != 0 || NumMemInits > 1) {
3238        Diag(MemInits[0]->getSourceLocation(),
3239             diag::err_delegating_initializer_alone)
3240          << MemInits[0]->getSourceRange();
3241        HadError = true;
3242        // We will treat this as being the only initializer.
3243      }
3244      SetDelegatingInitializer(Constructor, MemInits[i]);
3245      // Return immediately as the initializer is set.
3246      return;
3247    }
3248  }
3249
3250  if (HadError)
3251    return;
3252
3253  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3254
3255  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3256}
3257
3258void
3259Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3260                                             CXXRecordDecl *ClassDecl) {
3261  // Ignore dependent contexts. Also ignore unions, since their members never
3262  // have destructors implicitly called.
3263  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3264    return;
3265
3266  // FIXME: all the access-control diagnostics are positioned on the
3267  // field/base declaration.  That's probably good; that said, the
3268  // user might reasonably want to know why the destructor is being
3269  // emitted, and we currently don't say.
3270
3271  // Non-static data members.
3272  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3273       E = ClassDecl->field_end(); I != E; ++I) {
3274    FieldDecl *Field = *I;
3275    if (Field->isInvalidDecl())
3276      continue;
3277
3278    // Don't destroy incomplete or zero-length arrays.
3279    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3280      continue;
3281
3282    QualType FieldType = Context.getBaseElementType(Field->getType());
3283
3284    const RecordType* RT = FieldType->getAs<RecordType>();
3285    if (!RT)
3286      continue;
3287
3288    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3289    if (FieldClassDecl->isInvalidDecl())
3290      continue;
3291    if (FieldClassDecl->hasTrivialDestructor())
3292      continue;
3293
3294    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3295    assert(Dtor && "No dtor found for FieldClassDecl!");
3296    CheckDestructorAccess(Field->getLocation(), Dtor,
3297                          PDiag(diag::err_access_dtor_field)
3298                            << Field->getDeclName()
3299                            << FieldType);
3300
3301    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3302  }
3303
3304  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3305
3306  // Bases.
3307  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3308       E = ClassDecl->bases_end(); Base != E; ++Base) {
3309    // Bases are always records in a well-formed non-dependent class.
3310    const RecordType *RT = Base->getType()->getAs<RecordType>();
3311
3312    // Remember direct virtual bases.
3313    if (Base->isVirtual())
3314      DirectVirtualBases.insert(RT);
3315
3316    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3317    // If our base class is invalid, we probably can't get its dtor anyway.
3318    if (BaseClassDecl->isInvalidDecl())
3319      continue;
3320    // Ignore trivial destructors.
3321    if (BaseClassDecl->hasTrivialDestructor())
3322      continue;
3323
3324    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3325    assert(Dtor && "No dtor found for BaseClassDecl!");
3326
3327    // FIXME: caret should be on the start of the class name
3328    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3329                          PDiag(diag::err_access_dtor_base)
3330                            << Base->getType()
3331                            << Base->getSourceRange());
3332
3333    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3334  }
3335
3336  // Virtual bases.
3337  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3338       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3339
3340    // Bases are always records in a well-formed non-dependent class.
3341    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3342
3343    // Ignore direct virtual bases.
3344    if (DirectVirtualBases.count(RT))
3345      continue;
3346
3347    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3348    // If our base class is invalid, we probably can't get its dtor anyway.
3349    if (BaseClassDecl->isInvalidDecl())
3350      continue;
3351    // Ignore trivial destructors.
3352    if (BaseClassDecl->hasTrivialDestructor())
3353      continue;
3354
3355    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3356    assert(Dtor && "No dtor found for BaseClassDecl!");
3357    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3358                          PDiag(diag::err_access_dtor_vbase)
3359                            << VBase->getType());
3360
3361    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3362  }
3363}
3364
3365void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3366  if (!CDtorDecl)
3367    return;
3368
3369  if (CXXConstructorDecl *Constructor
3370      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3371    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3372}
3373
3374bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3375                                  unsigned DiagID, AbstractDiagSelID SelID) {
3376  if (SelID == -1)
3377    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3378  else
3379    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3380}
3381
3382bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3383                                  const PartialDiagnostic &PD) {
3384  if (!getLangOptions().CPlusPlus)
3385    return false;
3386
3387  if (const ArrayType *AT = Context.getAsArrayType(T))
3388    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3389
3390  if (const PointerType *PT = T->getAs<PointerType>()) {
3391    // Find the innermost pointer type.
3392    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3393      PT = T;
3394
3395    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3396      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3397  }
3398
3399  const RecordType *RT = T->getAs<RecordType>();
3400  if (!RT)
3401    return false;
3402
3403  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3404
3405  // We can't answer whether something is abstract until it has a
3406  // definition.  If it's currently being defined, we'll walk back
3407  // over all the declarations when we have a full definition.
3408  const CXXRecordDecl *Def = RD->getDefinition();
3409  if (!Def || Def->isBeingDefined())
3410    return false;
3411
3412  if (!RD->isAbstract())
3413    return false;
3414
3415  Diag(Loc, PD) << RD->getDeclName();
3416  DiagnoseAbstractType(RD);
3417
3418  return true;
3419}
3420
3421void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3422  // Check if we've already emitted the list of pure virtual functions
3423  // for this class.
3424  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3425    return;
3426
3427  CXXFinalOverriderMap FinalOverriders;
3428  RD->getFinalOverriders(FinalOverriders);
3429
3430  // Keep a set of seen pure methods so we won't diagnose the same method
3431  // more than once.
3432  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3433
3434  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3435                                   MEnd = FinalOverriders.end();
3436       M != MEnd;
3437       ++M) {
3438    for (OverridingMethods::iterator SO = M->second.begin(),
3439                                  SOEnd = M->second.end();
3440         SO != SOEnd; ++SO) {
3441      // C++ [class.abstract]p4:
3442      //   A class is abstract if it contains or inherits at least one
3443      //   pure virtual function for which the final overrider is pure
3444      //   virtual.
3445
3446      //
3447      if (SO->second.size() != 1)
3448        continue;
3449
3450      if (!SO->second.front().Method->isPure())
3451        continue;
3452
3453      if (!SeenPureMethods.insert(SO->second.front().Method))
3454        continue;
3455
3456      Diag(SO->second.front().Method->getLocation(),
3457           diag::note_pure_virtual_function)
3458        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3459    }
3460  }
3461
3462  if (!PureVirtualClassDiagSet)
3463    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3464  PureVirtualClassDiagSet->insert(RD);
3465}
3466
3467namespace {
3468struct AbstractUsageInfo {
3469  Sema &S;
3470  CXXRecordDecl *Record;
3471  CanQualType AbstractType;
3472  bool Invalid;
3473
3474  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3475    : S(S), Record(Record),
3476      AbstractType(S.Context.getCanonicalType(
3477                   S.Context.getTypeDeclType(Record))),
3478      Invalid(false) {}
3479
3480  void DiagnoseAbstractType() {
3481    if (Invalid) return;
3482    S.DiagnoseAbstractType(Record);
3483    Invalid = true;
3484  }
3485
3486  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3487};
3488
3489struct CheckAbstractUsage {
3490  AbstractUsageInfo &Info;
3491  const NamedDecl *Ctx;
3492
3493  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3494    : Info(Info), Ctx(Ctx) {}
3495
3496  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3497    switch (TL.getTypeLocClass()) {
3498#define ABSTRACT_TYPELOC(CLASS, PARENT)
3499#define TYPELOC(CLASS, PARENT) \
3500    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3501#include "clang/AST/TypeLocNodes.def"
3502    }
3503  }
3504
3505  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3506    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3507    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3508      if (!TL.getArg(I))
3509        continue;
3510
3511      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3512      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3513    }
3514  }
3515
3516  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3517    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3518  }
3519
3520  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3521    // Visit the type parameters from a permissive context.
3522    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3523      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3524      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3525        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3526          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3527      // TODO: other template argument types?
3528    }
3529  }
3530
3531  // Visit pointee types from a permissive context.
3532#define CheckPolymorphic(Type) \
3533  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3534    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3535  }
3536  CheckPolymorphic(PointerTypeLoc)
3537  CheckPolymorphic(ReferenceTypeLoc)
3538  CheckPolymorphic(MemberPointerTypeLoc)
3539  CheckPolymorphic(BlockPointerTypeLoc)
3540  CheckPolymorphic(AtomicTypeLoc)
3541
3542  /// Handle all the types we haven't given a more specific
3543  /// implementation for above.
3544  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3545    // Every other kind of type that we haven't called out already
3546    // that has an inner type is either (1) sugar or (2) contains that
3547    // inner type in some way as a subobject.
3548    if (TypeLoc Next = TL.getNextTypeLoc())
3549      return Visit(Next, Sel);
3550
3551    // If there's no inner type and we're in a permissive context,
3552    // don't diagnose.
3553    if (Sel == Sema::AbstractNone) return;
3554
3555    // Check whether the type matches the abstract type.
3556    QualType T = TL.getType();
3557    if (T->isArrayType()) {
3558      Sel = Sema::AbstractArrayType;
3559      T = Info.S.Context.getBaseElementType(T);
3560    }
3561    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3562    if (CT != Info.AbstractType) return;
3563
3564    // It matched; do some magic.
3565    if (Sel == Sema::AbstractArrayType) {
3566      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3567        << T << TL.getSourceRange();
3568    } else {
3569      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3570        << Sel << T << TL.getSourceRange();
3571    }
3572    Info.DiagnoseAbstractType();
3573  }
3574};
3575
3576void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3577                                  Sema::AbstractDiagSelID Sel) {
3578  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3579}
3580
3581}
3582
3583/// Check for invalid uses of an abstract type in a method declaration.
3584static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3585                                    CXXMethodDecl *MD) {
3586  // No need to do the check on definitions, which require that
3587  // the return/param types be complete.
3588  if (MD->doesThisDeclarationHaveABody())
3589    return;
3590
3591  // For safety's sake, just ignore it if we don't have type source
3592  // information.  This should never happen for non-implicit methods,
3593  // but...
3594  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3595    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3596}
3597
3598/// Check for invalid uses of an abstract type within a class definition.
3599static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3600                                    CXXRecordDecl *RD) {
3601  for (CXXRecordDecl::decl_iterator
3602         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3603    Decl *D = *I;
3604    if (D->isImplicit()) continue;
3605
3606    // Methods and method templates.
3607    if (isa<CXXMethodDecl>(D)) {
3608      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3609    } else if (isa<FunctionTemplateDecl>(D)) {
3610      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3611      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3612
3613    // Fields and static variables.
3614    } else if (isa<FieldDecl>(D)) {
3615      FieldDecl *FD = cast<FieldDecl>(D);
3616      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3617        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3618    } else if (isa<VarDecl>(D)) {
3619      VarDecl *VD = cast<VarDecl>(D);
3620      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3621        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3622
3623    // Nested classes and class templates.
3624    } else if (isa<CXXRecordDecl>(D)) {
3625      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3626    } else if (isa<ClassTemplateDecl>(D)) {
3627      CheckAbstractClassUsage(Info,
3628                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3629    }
3630  }
3631}
3632
3633/// \brief Perform semantic checks on a class definition that has been
3634/// completing, introducing implicitly-declared members, checking for
3635/// abstract types, etc.
3636void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3637  if (!Record)
3638    return;
3639
3640  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3641    AbstractUsageInfo Info(*this, Record);
3642    CheckAbstractClassUsage(Info, Record);
3643  }
3644
3645  // If this is not an aggregate type and has no user-declared constructor,
3646  // complain about any non-static data members of reference or const scalar
3647  // type, since they will never get initializers.
3648  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3649      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3650      !Record->isLambda()) {
3651    bool Complained = false;
3652    for (RecordDecl::field_iterator F = Record->field_begin(),
3653                                 FEnd = Record->field_end();
3654         F != FEnd; ++F) {
3655      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3656        continue;
3657
3658      if (F->getType()->isReferenceType() ||
3659          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3660        if (!Complained) {
3661          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3662            << Record->getTagKind() << Record;
3663          Complained = true;
3664        }
3665
3666        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3667          << F->getType()->isReferenceType()
3668          << F->getDeclName();
3669      }
3670    }
3671  }
3672
3673  if (Record->isDynamicClass() && !Record->isDependentType())
3674    DynamicClasses.push_back(Record);
3675
3676  if (Record->getIdentifier()) {
3677    // C++ [class.mem]p13:
3678    //   If T is the name of a class, then each of the following shall have a
3679    //   name different from T:
3680    //     - every member of every anonymous union that is a member of class T.
3681    //
3682    // C++ [class.mem]p14:
3683    //   In addition, if class T has a user-declared constructor (12.1), every
3684    //   non-static data member of class T shall have a name different from T.
3685    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3686         R.first != R.second; ++R.first) {
3687      NamedDecl *D = *R.first;
3688      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3689          isa<IndirectFieldDecl>(D)) {
3690        Diag(D->getLocation(), diag::err_member_name_of_class)
3691          << D->getDeclName();
3692        break;
3693      }
3694    }
3695  }
3696
3697  // Warn if the class has virtual methods but non-virtual public destructor.
3698  if (Record->isPolymorphic() && !Record->isDependentType()) {
3699    CXXDestructorDecl *dtor = Record->getDestructor();
3700    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3701      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3702           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3703  }
3704
3705  // See if a method overloads virtual methods in a base
3706  /// class without overriding any.
3707  if (!Record->isDependentType()) {
3708    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3709                                     MEnd = Record->method_end();
3710         M != MEnd; ++M) {
3711      if (!(*M)->isStatic())
3712        DiagnoseHiddenVirtualMethods(Record, *M);
3713    }
3714  }
3715
3716  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3717  // function that is not a constructor declares that member function to be
3718  // const. [...] The class of which that function is a member shall be
3719  // a literal type.
3720  //
3721  // If the class has virtual bases, any constexpr members will already have
3722  // been diagnosed by the checks performed on the member declaration, so
3723  // suppress this (less useful) diagnostic.
3724  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3725      !Record->isLiteral() && !Record->getNumVBases()) {
3726    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3727                                     MEnd = Record->method_end();
3728         M != MEnd; ++M) {
3729      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3730        switch (Record->getTemplateSpecializationKind()) {
3731        case TSK_ImplicitInstantiation:
3732        case TSK_ExplicitInstantiationDeclaration:
3733        case TSK_ExplicitInstantiationDefinition:
3734          // If a template instantiates to a non-literal type, but its members
3735          // instantiate to constexpr functions, the template is technically
3736          // ill-formed, but we allow it for sanity.
3737          continue;
3738
3739        case TSK_Undeclared:
3740        case TSK_ExplicitSpecialization:
3741          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3742                             PDiag(diag::err_constexpr_method_non_literal));
3743          break;
3744        }
3745
3746        // Only produce one error per class.
3747        break;
3748      }
3749    }
3750  }
3751
3752  // Declare inherited constructors. We do this eagerly here because:
3753  // - The standard requires an eager diagnostic for conflicting inherited
3754  //   constructors from different classes.
3755  // - The lazy declaration of the other implicit constructors is so as to not
3756  //   waste space and performance on classes that are not meant to be
3757  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3758  //   have inherited constructors.
3759  DeclareInheritedConstructors(Record);
3760
3761  if (!Record->isDependentType())
3762    CheckExplicitlyDefaultedMethods(Record);
3763}
3764
3765void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3766  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3767                                      ME = Record->method_end();
3768       MI != ME; ++MI) {
3769    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3770      switch (getSpecialMember(*MI)) {
3771      case CXXDefaultConstructor:
3772        CheckExplicitlyDefaultedDefaultConstructor(
3773                                                  cast<CXXConstructorDecl>(*MI));
3774        break;
3775
3776      case CXXDestructor:
3777        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3778        break;
3779
3780      case CXXCopyConstructor:
3781        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3782        break;
3783
3784      case CXXCopyAssignment:
3785        CheckExplicitlyDefaultedCopyAssignment(*MI);
3786        break;
3787
3788      case CXXMoveConstructor:
3789        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3790        break;
3791
3792      case CXXMoveAssignment:
3793        CheckExplicitlyDefaultedMoveAssignment(*MI);
3794        break;
3795
3796      case CXXInvalid:
3797        llvm_unreachable("non-special member explicitly defaulted!");
3798      }
3799    }
3800  }
3801
3802}
3803
3804void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3805  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3806
3807  // Whether this was the first-declared instance of the constructor.
3808  // This affects whether we implicitly add an exception spec (and, eventually,
3809  // constexpr). It is also ill-formed to explicitly default a constructor such
3810  // that it would be deleted. (C++0x [decl.fct.def.default])
3811  bool First = CD == CD->getCanonicalDecl();
3812
3813  bool HadError = false;
3814  if (CD->getNumParams() != 0) {
3815    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3816      << CD->getSourceRange();
3817    HadError = true;
3818  }
3819
3820  ImplicitExceptionSpecification Spec
3821    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3822  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3823  if (EPI.ExceptionSpecType == EST_Delayed) {
3824    // Exception specification depends on some deferred part of the class. We'll
3825    // try again when the class's definition has been fully processed.
3826    return;
3827  }
3828  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3829                          *ExceptionType = Context.getFunctionType(
3830                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3831
3832  // C++11 [dcl.fct.def.default]p2:
3833  //   An explicitly-defaulted function may be declared constexpr only if it
3834  //   would have been implicitly declared as constexpr,
3835  // Do not apply this rule to templates, since core issue 1358 makes such
3836  // functions always instantiate to constexpr functions.
3837  if (CD->isConstexpr() &&
3838      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3839    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3840      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3841        << CXXDefaultConstructor;
3842      HadError = true;
3843    }
3844  }
3845  //   and may have an explicit exception-specification only if it is compatible
3846  //   with the exception-specification on the implicit declaration.
3847  if (CtorType->hasExceptionSpec()) {
3848    if (CheckEquivalentExceptionSpec(
3849          PDiag(diag::err_incorrect_defaulted_exception_spec)
3850            << CXXDefaultConstructor,
3851          PDiag(),
3852          ExceptionType, SourceLocation(),
3853          CtorType, CD->getLocation())) {
3854      HadError = true;
3855    }
3856  }
3857
3858  //   If a function is explicitly defaulted on its first declaration,
3859  if (First) {
3860    //  -- it is implicitly considered to be constexpr if the implicit
3861    //     definition would be,
3862    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3863
3864    //  -- it is implicitly considered to have the same
3865    //     exception-specification as if it had been implicitly declared
3866    //
3867    // FIXME: a compatible, but different, explicit exception specification
3868    // will be silently overridden. We should issue a warning if this happens.
3869    EPI.ExtInfo = CtorType->getExtInfo();
3870  }
3871
3872  if (HadError) {
3873    CD->setInvalidDecl();
3874    return;
3875  }
3876
3877  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3878    if (First) {
3879      CD->setDeletedAsWritten();
3880    } else {
3881      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3882        << CXXDefaultConstructor;
3883      CD->setInvalidDecl();
3884    }
3885  }
3886}
3887
3888void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3889  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3890
3891  // Whether this was the first-declared instance of the constructor.
3892  bool First = CD == CD->getCanonicalDecl();
3893
3894  bool HadError = false;
3895  if (CD->getNumParams() != 1) {
3896    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3897      << CD->getSourceRange();
3898    HadError = true;
3899  }
3900
3901  ImplicitExceptionSpecification Spec(Context);
3902  bool Const;
3903  llvm::tie(Spec, Const) =
3904    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3905
3906  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3907  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3908                          *ExceptionType = Context.getFunctionType(
3909                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3910
3911  // Check for parameter type matching.
3912  // This is a copy ctor so we know it's a cv-qualified reference to T.
3913  QualType ArgType = CtorType->getArgType(0);
3914  if (ArgType->getPointeeType().isVolatileQualified()) {
3915    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3916    HadError = true;
3917  }
3918  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3919    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3920    HadError = true;
3921  }
3922
3923  // C++11 [dcl.fct.def.default]p2:
3924  //   An explicitly-defaulted function may be declared constexpr only if it
3925  //   would have been implicitly declared as constexpr,
3926  // Do not apply this rule to templates, since core issue 1358 makes such
3927  // functions always instantiate to constexpr functions.
3928  if (CD->isConstexpr() &&
3929      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3930    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3931      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3932        << CXXCopyConstructor;
3933      HadError = true;
3934    }
3935  }
3936  //   and may have an explicit exception-specification only if it is compatible
3937  //   with the exception-specification on the implicit declaration.
3938  if (CtorType->hasExceptionSpec()) {
3939    if (CheckEquivalentExceptionSpec(
3940          PDiag(diag::err_incorrect_defaulted_exception_spec)
3941            << CXXCopyConstructor,
3942          PDiag(),
3943          ExceptionType, SourceLocation(),
3944          CtorType, CD->getLocation())) {
3945      HadError = true;
3946    }
3947  }
3948
3949  //   If a function is explicitly defaulted on its first declaration,
3950  if (First) {
3951    //  -- it is implicitly considered to be constexpr if the implicit
3952    //     definition would be,
3953    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3954
3955    //  -- it is implicitly considered to have the same
3956    //     exception-specification as if it had been implicitly declared, and
3957    //
3958    // FIXME: a compatible, but different, explicit exception specification
3959    // will be silently overridden. We should issue a warning if this happens.
3960    EPI.ExtInfo = CtorType->getExtInfo();
3961
3962    //  -- [...] it shall have the same parameter type as if it had been
3963    //     implicitly declared.
3964    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3965  }
3966
3967  if (HadError) {
3968    CD->setInvalidDecl();
3969    return;
3970  }
3971
3972  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3973    if (First) {
3974      CD->setDeletedAsWritten();
3975    } else {
3976      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3977        << CXXCopyConstructor;
3978      CD->setInvalidDecl();
3979    }
3980  }
3981}
3982
3983void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3984  assert(MD->isExplicitlyDefaulted());
3985
3986  // Whether this was the first-declared instance of the operator
3987  bool First = MD == MD->getCanonicalDecl();
3988
3989  bool HadError = false;
3990  if (MD->getNumParams() != 1) {
3991    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3992      << MD->getSourceRange();
3993    HadError = true;
3994  }
3995
3996  QualType ReturnType =
3997    MD->getType()->getAs<FunctionType>()->getResultType();
3998  if (!ReturnType->isLValueReferenceType() ||
3999      !Context.hasSameType(
4000        Context.getCanonicalType(ReturnType->getPointeeType()),
4001        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4002    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4003    HadError = true;
4004  }
4005
4006  ImplicitExceptionSpecification Spec(Context);
4007  bool Const;
4008  llvm::tie(Spec, Const) =
4009    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4010
4011  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4012  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4013                          *ExceptionType = Context.getFunctionType(
4014                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4015
4016  QualType ArgType = OperType->getArgType(0);
4017  if (!ArgType->isLValueReferenceType()) {
4018    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4019    HadError = true;
4020  } else {
4021    if (ArgType->getPointeeType().isVolatileQualified()) {
4022      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4023      HadError = true;
4024    }
4025    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4026      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4027      HadError = true;
4028    }
4029  }
4030
4031  if (OperType->getTypeQuals()) {
4032    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4033    HadError = true;
4034  }
4035
4036  if (OperType->hasExceptionSpec()) {
4037    if (CheckEquivalentExceptionSpec(
4038          PDiag(diag::err_incorrect_defaulted_exception_spec)
4039            << CXXCopyAssignment,
4040          PDiag(),
4041          ExceptionType, SourceLocation(),
4042          OperType, MD->getLocation())) {
4043      HadError = true;
4044    }
4045  }
4046  if (First) {
4047    // We set the declaration to have the computed exception spec here.
4048    // We duplicate the one parameter type.
4049    EPI.RefQualifier = OperType->getRefQualifier();
4050    EPI.ExtInfo = OperType->getExtInfo();
4051    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4052  }
4053
4054  if (HadError) {
4055    MD->setInvalidDecl();
4056    return;
4057  }
4058
4059  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4060    if (First) {
4061      MD->setDeletedAsWritten();
4062    } else {
4063      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4064        << CXXCopyAssignment;
4065      MD->setInvalidDecl();
4066    }
4067  }
4068}
4069
4070void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4071  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4072
4073  // Whether this was the first-declared instance of the constructor.
4074  bool First = CD == CD->getCanonicalDecl();
4075
4076  bool HadError = false;
4077  if (CD->getNumParams() != 1) {
4078    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4079      << CD->getSourceRange();
4080    HadError = true;
4081  }
4082
4083  ImplicitExceptionSpecification Spec(
4084      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4085
4086  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4087  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4088                          *ExceptionType = Context.getFunctionType(
4089                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4090
4091  // Check for parameter type matching.
4092  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4093  QualType ArgType = CtorType->getArgType(0);
4094  if (ArgType->getPointeeType().isVolatileQualified()) {
4095    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4096    HadError = true;
4097  }
4098  if (ArgType->getPointeeType().isConstQualified()) {
4099    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4100    HadError = true;
4101  }
4102
4103  // C++11 [dcl.fct.def.default]p2:
4104  //   An explicitly-defaulted function may be declared constexpr only if it
4105  //   would have been implicitly declared as constexpr,
4106  // Do not apply this rule to templates, since core issue 1358 makes such
4107  // functions always instantiate to constexpr functions.
4108  if (CD->isConstexpr() &&
4109      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4110    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4111      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4112        << CXXMoveConstructor;
4113      HadError = true;
4114    }
4115  }
4116  //   and may have an explicit exception-specification only if it is compatible
4117  //   with the exception-specification on the implicit declaration.
4118  if (CtorType->hasExceptionSpec()) {
4119    if (CheckEquivalentExceptionSpec(
4120          PDiag(diag::err_incorrect_defaulted_exception_spec)
4121            << CXXMoveConstructor,
4122          PDiag(),
4123          ExceptionType, SourceLocation(),
4124          CtorType, CD->getLocation())) {
4125      HadError = true;
4126    }
4127  }
4128
4129  //   If a function is explicitly defaulted on its first declaration,
4130  if (First) {
4131    //  -- it is implicitly considered to be constexpr if the implicit
4132    //     definition would be,
4133    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4134
4135    //  -- it is implicitly considered to have the same
4136    //     exception-specification as if it had been implicitly declared, and
4137    //
4138    // FIXME: a compatible, but different, explicit exception specification
4139    // will be silently overridden. We should issue a warning if this happens.
4140    EPI.ExtInfo = CtorType->getExtInfo();
4141
4142    //  -- [...] it shall have the same parameter type as if it had been
4143    //     implicitly declared.
4144    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4145  }
4146
4147  if (HadError) {
4148    CD->setInvalidDecl();
4149    return;
4150  }
4151
4152  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4153    if (First) {
4154      CD->setDeletedAsWritten();
4155    } else {
4156      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4157        << CXXMoveConstructor;
4158      CD->setInvalidDecl();
4159    }
4160  }
4161}
4162
4163void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4164  assert(MD->isExplicitlyDefaulted());
4165
4166  // Whether this was the first-declared instance of the operator
4167  bool First = MD == MD->getCanonicalDecl();
4168
4169  bool HadError = false;
4170  if (MD->getNumParams() != 1) {
4171    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4172      << MD->getSourceRange();
4173    HadError = true;
4174  }
4175
4176  QualType ReturnType =
4177    MD->getType()->getAs<FunctionType>()->getResultType();
4178  if (!ReturnType->isLValueReferenceType() ||
4179      !Context.hasSameType(
4180        Context.getCanonicalType(ReturnType->getPointeeType()),
4181        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4182    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4183    HadError = true;
4184  }
4185
4186  ImplicitExceptionSpecification Spec(
4187      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4188
4189  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4190  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4191                          *ExceptionType = Context.getFunctionType(
4192                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4193
4194  QualType ArgType = OperType->getArgType(0);
4195  if (!ArgType->isRValueReferenceType()) {
4196    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4197    HadError = true;
4198  } else {
4199    if (ArgType->getPointeeType().isVolatileQualified()) {
4200      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4201      HadError = true;
4202    }
4203    if (ArgType->getPointeeType().isConstQualified()) {
4204      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4205      HadError = true;
4206    }
4207  }
4208
4209  if (OperType->getTypeQuals()) {
4210    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4211    HadError = true;
4212  }
4213
4214  if (OperType->hasExceptionSpec()) {
4215    if (CheckEquivalentExceptionSpec(
4216          PDiag(diag::err_incorrect_defaulted_exception_spec)
4217            << CXXMoveAssignment,
4218          PDiag(),
4219          ExceptionType, SourceLocation(),
4220          OperType, MD->getLocation())) {
4221      HadError = true;
4222    }
4223  }
4224  if (First) {
4225    // We set the declaration to have the computed exception spec here.
4226    // We duplicate the one parameter type.
4227    EPI.RefQualifier = OperType->getRefQualifier();
4228    EPI.ExtInfo = OperType->getExtInfo();
4229    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4230  }
4231
4232  if (HadError) {
4233    MD->setInvalidDecl();
4234    return;
4235  }
4236
4237  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4238    if (First) {
4239      MD->setDeletedAsWritten();
4240    } else {
4241      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4242        << CXXMoveAssignment;
4243      MD->setInvalidDecl();
4244    }
4245  }
4246}
4247
4248void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4249  assert(DD->isExplicitlyDefaulted());
4250
4251  // Whether this was the first-declared instance of the destructor.
4252  bool First = DD == DD->getCanonicalDecl();
4253
4254  ImplicitExceptionSpecification Spec
4255    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4256  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4257  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4258                          *ExceptionType = Context.getFunctionType(
4259                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4260
4261  if (DtorType->hasExceptionSpec()) {
4262    if (CheckEquivalentExceptionSpec(
4263          PDiag(diag::err_incorrect_defaulted_exception_spec)
4264            << CXXDestructor,
4265          PDiag(),
4266          ExceptionType, SourceLocation(),
4267          DtorType, DD->getLocation())) {
4268      DD->setInvalidDecl();
4269      return;
4270    }
4271  }
4272  if (First) {
4273    // We set the declaration to have the computed exception spec here.
4274    // There are no parameters.
4275    EPI.ExtInfo = DtorType->getExtInfo();
4276    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4277  }
4278
4279  if (ShouldDeleteDestructor(DD)) {
4280    if (First) {
4281      DD->setDeletedAsWritten();
4282    } else {
4283      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4284        << CXXDestructor;
4285      DD->setInvalidDecl();
4286    }
4287  }
4288}
4289
4290/// This function implements the following C++0x paragraphs:
4291///  - [class.ctor]/5
4292///  - [class.copy]/11
4293bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4294  assert(!MD->isInvalidDecl());
4295  CXXRecordDecl *RD = MD->getParent();
4296  assert(!RD->isDependentType() && "do deletion after instantiation");
4297  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4298    return false;
4299
4300  bool IsUnion = RD->isUnion();
4301  bool IsConstructor = false;
4302  bool IsAssignment = false;
4303  bool IsMove = false;
4304
4305  bool ConstArg = false;
4306
4307  switch (CSM) {
4308  case CXXDefaultConstructor:
4309    IsConstructor = true;
4310
4311    // C++11 [expr.lambda.prim]p19:
4312    //   The closure type associated with a lambda-expression has a
4313    //   deleted (8.4.3) default constructor.
4314    if (RD->isLambda())
4315      return true;
4316
4317    break;
4318  case CXXCopyConstructor:
4319    IsConstructor = true;
4320    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4321    break;
4322  case CXXMoveConstructor:
4323    IsConstructor = true;
4324    IsMove = true;
4325    break;
4326  default:
4327    llvm_unreachable("function only currently implemented for default ctors");
4328  }
4329
4330  SourceLocation Loc = MD->getLocation();
4331
4332  // Do access control from the special member function
4333  ContextRAII MethodContext(*this, MD);
4334
4335  bool AllConst = true;
4336
4337  // We do this because we should never actually use an anonymous
4338  // union's constructor.
4339  if (IsUnion && RD->isAnonymousStructOrUnion())
4340    return false;
4341
4342  // FIXME: We should put some diagnostic logic right into this function.
4343
4344  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4345                                          BE = RD->bases_end();
4346       BI != BE; ++BI) {
4347    // We'll handle this one later
4348    if (BI->isVirtual())
4349      continue;
4350
4351    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4352    assert(BaseDecl && "base isn't a CXXRecordDecl");
4353
4354    // Unless we have an assignment operator, the base's destructor must
4355    // be accessible and not deleted.
4356    if (!IsAssignment) {
4357      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4358      if (BaseDtor->isDeleted())
4359        return true;
4360      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4361          AR_accessible)
4362        return true;
4363    }
4364
4365    // Finding the corresponding member in the base should lead to a
4366    // unique, accessible, non-deleted function. If we are doing
4367    // a destructor, we have already checked this case.
4368    if (CSM != CXXDestructor) {
4369      SpecialMemberOverloadResult *SMOR =
4370        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4371                            false);
4372      if (!SMOR->hasSuccess())
4373        return true;
4374      CXXMethodDecl *BaseMember = SMOR->getMethod();
4375      if (IsConstructor) {
4376        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4377        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4378                                   PDiag()) != AR_accessible)
4379          return true;
4380
4381        // For a move operation, the corresponding operation must actually
4382        // be a move operation (and not a copy selected by overload
4383        // resolution) unless we are working on a trivially copyable class.
4384        if (IsMove && !BaseCtor->isMoveConstructor() &&
4385            !BaseDecl->isTriviallyCopyable())
4386          return true;
4387      }
4388    }
4389  }
4390
4391  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4392                                          BE = RD->vbases_end();
4393       BI != BE; ++BI) {
4394    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4395    assert(BaseDecl && "base isn't a CXXRecordDecl");
4396
4397    // Unless we have an assignment operator, the base's destructor must
4398    // be accessible and not deleted.
4399    if (!IsAssignment) {
4400      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4401      if (BaseDtor->isDeleted())
4402        return true;
4403      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4404          AR_accessible)
4405        return true;
4406    }
4407
4408    // Finding the corresponding member in the base should lead to a
4409    // unique, accessible, non-deleted function.
4410    if (CSM != CXXDestructor) {
4411      SpecialMemberOverloadResult *SMOR =
4412        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4413                            false);
4414      if (!SMOR->hasSuccess())
4415        return true;
4416      CXXMethodDecl *BaseMember = SMOR->getMethod();
4417      if (IsConstructor) {
4418        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4419        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4420                                   PDiag()) != AR_accessible)
4421          return true;
4422
4423        // For a move operation, the corresponding operation must actually
4424        // be a move operation (and not a copy selected by overload
4425        // resolution) unless we are working on a trivially copyable class.
4426        if (IsMove && !BaseCtor->isMoveConstructor() &&
4427            !BaseDecl->isTriviallyCopyable())
4428          return true;
4429      }
4430    }
4431  }
4432
4433  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4434                                     FE = RD->field_end();
4435       FI != FE; ++FI) {
4436    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4437      continue;
4438
4439    QualType FieldType = Context.getBaseElementType(FI->getType());
4440    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4441
4442    // For a default constructor, all references must be initialized in-class
4443    // and, if a union, it must have a non-const member.
4444    if (CSM == CXXDefaultConstructor) {
4445      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4446        return true;
4447
4448      if (IsUnion && !FieldType.isConstQualified())
4449        AllConst = false;
4450    // For a copy constructor, data members must not be of rvalue reference
4451    // type.
4452    } else if (CSM == CXXCopyConstructor) {
4453      if (FieldType->isRValueReferenceType())
4454        return true;
4455    }
4456
4457    if (FieldRecord) {
4458      // For a default constructor, a const member must have a user-provided
4459      // default constructor or else be explicitly initialized.
4460      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4461          !FI->hasInClassInitializer() &&
4462          !FieldRecord->hasUserProvidedDefaultConstructor())
4463        return true;
4464
4465      // Some additional restrictions exist on the variant members.
4466      if (!IsUnion && FieldRecord->isUnion() &&
4467          FieldRecord->isAnonymousStructOrUnion()) {
4468        // We're okay to reuse AllConst here since we only care about the
4469        // value otherwise if we're in a union.
4470        AllConst = true;
4471
4472        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4473                                           UE = FieldRecord->field_end();
4474             UI != UE; ++UI) {
4475          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4476          CXXRecordDecl *UnionFieldRecord =
4477            UnionFieldType->getAsCXXRecordDecl();
4478
4479          if (!UnionFieldType.isConstQualified())
4480            AllConst = false;
4481
4482          if (UnionFieldRecord) {
4483            // FIXME: Checking for accessibility and validity of this
4484            //        destructor is technically going beyond the
4485            //        standard, but this is believed to be a defect.
4486            if (!IsAssignment) {
4487              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4488              if (FieldDtor->isDeleted())
4489                return true;
4490              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4491                  AR_accessible)
4492                return true;
4493              if (!FieldDtor->isTrivial())
4494                return true;
4495            }
4496
4497            if (CSM != CXXDestructor) {
4498              SpecialMemberOverloadResult *SMOR =
4499                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4500                                    false, false, false);
4501              // FIXME: Checking for accessibility and validity of this
4502              //        corresponding member is technically going beyond the
4503              //        standard, but this is believed to be a defect.
4504              if (!SMOR->hasSuccess())
4505                return true;
4506
4507              CXXMethodDecl *FieldMember = SMOR->getMethod();
4508              // A member of a union must have a trivial corresponding
4509              // constructor.
4510              if (!FieldMember->isTrivial())
4511                return true;
4512
4513              if (IsConstructor) {
4514                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4515                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4516                                           PDiag()) != AR_accessible)
4517                return true;
4518              }
4519            }
4520          }
4521        }
4522
4523        // At least one member in each anonymous union must be non-const
4524        if (CSM == CXXDefaultConstructor && AllConst)
4525          return true;
4526
4527        // Don't try to initialize the anonymous union
4528        // This is technically non-conformant, but sanity demands it.
4529        continue;
4530      }
4531
4532      // Unless we're doing assignment, the field's destructor must be
4533      // accessible and not deleted.
4534      if (!IsAssignment) {
4535        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4536        if (FieldDtor->isDeleted())
4537          return true;
4538        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4539            AR_accessible)
4540          return true;
4541      }
4542
4543      // Check that the corresponding member of the field is accessible,
4544      // unique, and non-deleted. We don't do this if it has an explicit
4545      // initialization when default-constructing.
4546      if (CSM != CXXDestructor &&
4547          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4548        SpecialMemberOverloadResult *SMOR =
4549          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4550                              false);
4551        if (!SMOR->hasSuccess())
4552          return true;
4553
4554        CXXMethodDecl *FieldMember = SMOR->getMethod();
4555        if (IsConstructor) {
4556          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4557          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4558                                     PDiag()) != AR_accessible)
4559          return true;
4560
4561          // For a move operation, the corresponding operation must actually
4562          // be a move operation (and not a copy selected by overload
4563          // resolution) unless we are working on a trivially copyable class.
4564          if (IsMove && !FieldCtor->isMoveConstructor() &&
4565              !FieldRecord->isTriviallyCopyable())
4566            return true;
4567        }
4568
4569        // We need the corresponding member of a union to be trivial so that
4570        // we can safely copy them all simultaneously.
4571        // FIXME: Note that performing the check here (where we rely on the lack
4572        // of an in-class initializer) is technically ill-formed. However, this
4573        // seems most obviously to be a bug in the standard.
4574        if (IsUnion && !FieldMember->isTrivial())
4575          return true;
4576      }
4577    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4578               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4579      // We can't initialize a const member of non-class type to any value.
4580      return true;
4581    }
4582  }
4583
4584  // We can't have all const members in a union when default-constructing,
4585  // or else they're all nonsensical garbage values that can't be changed.
4586  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4587    return true;
4588
4589  return false;
4590}
4591
4592bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4593  CXXRecordDecl *RD = MD->getParent();
4594  assert(!RD->isDependentType() && "do deletion after instantiation");
4595  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4596    return false;
4597
4598  // C++11 [expr.lambda.prim]p19:
4599  //   The closure type associated with a lambda-expression has a
4600  //   [...] deleted copy assignment operator.
4601  if (RD->isLambda())
4602    return true;
4603
4604  SourceLocation Loc = MD->getLocation();
4605
4606  // Do access control from the constructor
4607  ContextRAII MethodContext(*this, MD);
4608
4609  bool Union = RD->isUnion();
4610
4611  unsigned ArgQuals =
4612    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4613      Qualifiers::Const : 0;
4614
4615  // We do this because we should never actually use an anonymous
4616  // union's constructor.
4617  if (Union && RD->isAnonymousStructOrUnion())
4618    return false;
4619
4620  // FIXME: We should put some diagnostic logic right into this function.
4621
4622  // C++0x [class.copy]/20
4623  //    A defaulted [copy] assignment operator for class X is defined as deleted
4624  //    if X has:
4625
4626  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4627                                          BE = RD->bases_end();
4628       BI != BE; ++BI) {
4629    // We'll handle this one later
4630    if (BI->isVirtual())
4631      continue;
4632
4633    QualType BaseType = BI->getType();
4634    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4635    assert(BaseDecl && "base isn't a CXXRecordDecl");
4636
4637    // -- a [direct base class] B that cannot be [copied] because overload
4638    //    resolution, as applied to B's [copy] assignment operator, results in
4639    //    an ambiguity or a function that is deleted or inaccessible from the
4640    //    assignment operator
4641    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4642                                                      0);
4643    if (!CopyOper || CopyOper->isDeleted())
4644      return true;
4645    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4646      return true;
4647  }
4648
4649  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4650                                          BE = RD->vbases_end();
4651       BI != BE; ++BI) {
4652    QualType BaseType = BI->getType();
4653    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4654    assert(BaseDecl && "base isn't a CXXRecordDecl");
4655
4656    // -- a [virtual base class] B that cannot be [copied] because overload
4657    //    resolution, as applied to B's [copy] assignment operator, results in
4658    //    an ambiguity or a function that is deleted or inaccessible from the
4659    //    assignment operator
4660    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4661                                                      0);
4662    if (!CopyOper || CopyOper->isDeleted())
4663      return true;
4664    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4665      return true;
4666  }
4667
4668  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4669                                     FE = RD->field_end();
4670       FI != FE; ++FI) {
4671    if (FI->isUnnamedBitfield())
4672      continue;
4673
4674    QualType FieldType = Context.getBaseElementType(FI->getType());
4675
4676    // -- a non-static data member of reference type
4677    if (FieldType->isReferenceType())
4678      return true;
4679
4680    // -- a non-static data member of const non-class type (or array thereof)
4681    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4682      return true;
4683
4684    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4685
4686    if (FieldRecord) {
4687      // This is an anonymous union
4688      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4689        // Anonymous unions inside unions do not variant members create
4690        if (!Union) {
4691          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4692                                             UE = FieldRecord->field_end();
4693               UI != UE; ++UI) {
4694            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4695            CXXRecordDecl *UnionFieldRecord =
4696              UnionFieldType->getAsCXXRecordDecl();
4697
4698            // -- a variant member with a non-trivial [copy] assignment operator
4699            //    and X is a union-like class
4700            if (UnionFieldRecord &&
4701                !UnionFieldRecord->hasTrivialCopyAssignment())
4702              return true;
4703          }
4704        }
4705
4706        // Don't try to initalize an anonymous union
4707        continue;
4708      // -- a variant member with a non-trivial [copy] assignment operator
4709      //    and X is a union-like class
4710      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4711          return true;
4712      }
4713
4714      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4715                                                        false, 0);
4716      if (!CopyOper || CopyOper->isDeleted())
4717        return true;
4718      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4719        return true;
4720    }
4721  }
4722
4723  return false;
4724}
4725
4726bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4727  CXXRecordDecl *RD = MD->getParent();
4728  assert(!RD->isDependentType() && "do deletion after instantiation");
4729  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4730    return false;
4731
4732  SourceLocation Loc = MD->getLocation();
4733
4734  // Do access control from the constructor
4735  ContextRAII MethodContext(*this, MD);
4736
4737  bool Union = RD->isUnion();
4738
4739  // We do this because we should never actually use an anonymous
4740  // union's constructor.
4741  if (Union && RD->isAnonymousStructOrUnion())
4742    return false;
4743
4744  // C++0x [class.copy]/20
4745  //    A defaulted [move] assignment operator for class X is defined as deleted
4746  //    if X has:
4747
4748  //    -- for the move constructor, [...] any direct or indirect virtual base
4749  //       class.
4750  if (RD->getNumVBases() != 0)
4751    return true;
4752
4753  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4754                                          BE = RD->bases_end();
4755       BI != BE; ++BI) {
4756
4757    QualType BaseType = BI->getType();
4758    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4759    assert(BaseDecl && "base isn't a CXXRecordDecl");
4760
4761    // -- a [direct base class] B that cannot be [moved] because overload
4762    //    resolution, as applied to B's [move] assignment operator, results in
4763    //    an ambiguity or a function that is deleted or inaccessible from the
4764    //    assignment operator
4765    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4766    if (!MoveOper || MoveOper->isDeleted())
4767      return true;
4768    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4769      return true;
4770
4771    // -- for the move assignment operator, a [direct base class] with a type
4772    //    that does not have a move assignment operator and is not trivially
4773    //    copyable.
4774    if (!MoveOper->isMoveAssignmentOperator() &&
4775        !BaseDecl->isTriviallyCopyable())
4776      return true;
4777  }
4778
4779  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4780                                     FE = RD->field_end();
4781       FI != FE; ++FI) {
4782    if (FI->isUnnamedBitfield())
4783      continue;
4784
4785    QualType FieldType = Context.getBaseElementType(FI->getType());
4786
4787    // -- a non-static data member of reference type
4788    if (FieldType->isReferenceType())
4789      return true;
4790
4791    // -- a non-static data member of const non-class type (or array thereof)
4792    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4793      return true;
4794
4795    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4796
4797    if (FieldRecord) {
4798      // This is an anonymous union
4799      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4800        // Anonymous unions inside unions do not variant members create
4801        if (!Union) {
4802          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4803                                             UE = FieldRecord->field_end();
4804               UI != UE; ++UI) {
4805            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4806            CXXRecordDecl *UnionFieldRecord =
4807              UnionFieldType->getAsCXXRecordDecl();
4808
4809            // -- a variant member with a non-trivial [move] assignment operator
4810            //    and X is a union-like class
4811            if (UnionFieldRecord &&
4812                !UnionFieldRecord->hasTrivialMoveAssignment())
4813              return true;
4814          }
4815        }
4816
4817        // Don't try to initalize an anonymous union
4818        continue;
4819      // -- a variant member with a non-trivial [move] assignment operator
4820      //    and X is a union-like class
4821      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4822          return true;
4823      }
4824
4825      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4826      if (!MoveOper || MoveOper->isDeleted())
4827        return true;
4828      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4829        return true;
4830
4831      // -- for the move assignment operator, a [non-static data member] with a
4832      //    type that does not have a move assignment operator and is not
4833      //    trivially copyable.
4834      if (!MoveOper->isMoveAssignmentOperator() &&
4835          !FieldRecord->isTriviallyCopyable())
4836        return true;
4837    }
4838  }
4839
4840  return false;
4841}
4842
4843bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4844  CXXRecordDecl *RD = DD->getParent();
4845  assert(!RD->isDependentType() && "do deletion after instantiation");
4846  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4847    return false;
4848
4849  SourceLocation Loc = DD->getLocation();
4850
4851  // Do access control from the destructor
4852  ContextRAII CtorContext(*this, DD);
4853
4854  bool Union = RD->isUnion();
4855
4856  // We do this because we should never actually use an anonymous
4857  // union's destructor.
4858  if (Union && RD->isAnonymousStructOrUnion())
4859    return false;
4860
4861  // C++0x [class.dtor]p5
4862  //    A defaulted destructor for a class X is defined as deleted if:
4863  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4864                                          BE = RD->bases_end();
4865       BI != BE; ++BI) {
4866    // We'll handle this one later
4867    if (BI->isVirtual())
4868      continue;
4869
4870    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4871    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4872    assert(BaseDtor && "base has no destructor");
4873
4874    // -- any direct or virtual base class has a deleted destructor or
4875    //    a destructor that is inaccessible from the defaulted destructor
4876    if (BaseDtor->isDeleted())
4877      return true;
4878    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4879        AR_accessible)
4880      return true;
4881  }
4882
4883  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4884                                          BE = RD->vbases_end();
4885       BI != BE; ++BI) {
4886    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4887    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4888    assert(BaseDtor && "base has no destructor");
4889
4890    // -- any direct or virtual base class has a deleted destructor or
4891    //    a destructor that is inaccessible from the defaulted destructor
4892    if (BaseDtor->isDeleted())
4893      return true;
4894    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4895        AR_accessible)
4896      return true;
4897  }
4898
4899  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4900                                     FE = RD->field_end();
4901       FI != FE; ++FI) {
4902    QualType FieldType = Context.getBaseElementType(FI->getType());
4903    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4904    if (FieldRecord) {
4905      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4906         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4907                                            UE = FieldRecord->field_end();
4908              UI != UE; ++UI) {
4909           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4910           CXXRecordDecl *UnionFieldRecord =
4911             UnionFieldType->getAsCXXRecordDecl();
4912
4913           // -- X is a union-like class that has a variant member with a non-
4914           //    trivial destructor.
4915           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4916             return true;
4917         }
4918      // Technically we are supposed to do this next check unconditionally.
4919      // But that makes absolutely no sense.
4920      } else {
4921        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4922
4923        // -- any of the non-static data members has class type M (or array
4924        //    thereof) and M has a deleted destructor or a destructor that is
4925        //    inaccessible from the defaulted destructor
4926        if (FieldDtor->isDeleted())
4927          return true;
4928        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4929          AR_accessible)
4930        return true;
4931
4932        // -- X is a union-like class that has a variant member with a non-
4933        //    trivial destructor.
4934        if (Union && !FieldDtor->isTrivial())
4935          return true;
4936      }
4937    }
4938  }
4939
4940  if (DD->isVirtual()) {
4941    FunctionDecl *OperatorDelete = 0;
4942    DeclarationName Name =
4943      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4944    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4945          false))
4946      return true;
4947  }
4948
4949
4950  return false;
4951}
4952
4953/// \brief Data used with FindHiddenVirtualMethod
4954namespace {
4955  struct FindHiddenVirtualMethodData {
4956    Sema *S;
4957    CXXMethodDecl *Method;
4958    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4959    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4960  };
4961}
4962
4963/// \brief Member lookup function that determines whether a given C++
4964/// method overloads virtual methods in a base class without overriding any,
4965/// to be used with CXXRecordDecl::lookupInBases().
4966static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4967                                    CXXBasePath &Path,
4968                                    void *UserData) {
4969  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4970
4971  FindHiddenVirtualMethodData &Data
4972    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4973
4974  DeclarationName Name = Data.Method->getDeclName();
4975  assert(Name.getNameKind() == DeclarationName::Identifier);
4976
4977  bool foundSameNameMethod = false;
4978  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4979  for (Path.Decls = BaseRecord->lookup(Name);
4980       Path.Decls.first != Path.Decls.second;
4981       ++Path.Decls.first) {
4982    NamedDecl *D = *Path.Decls.first;
4983    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4984      MD = MD->getCanonicalDecl();
4985      foundSameNameMethod = true;
4986      // Interested only in hidden virtual methods.
4987      if (!MD->isVirtual())
4988        continue;
4989      // If the method we are checking overrides a method from its base
4990      // don't warn about the other overloaded methods.
4991      if (!Data.S->IsOverload(Data.Method, MD, false))
4992        return true;
4993      // Collect the overload only if its hidden.
4994      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4995        overloadedMethods.push_back(MD);
4996    }
4997  }
4998
4999  if (foundSameNameMethod)
5000    Data.OverloadedMethods.append(overloadedMethods.begin(),
5001                                   overloadedMethods.end());
5002  return foundSameNameMethod;
5003}
5004
5005/// \brief See if a method overloads virtual methods in a base class without
5006/// overriding any.
5007void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5008  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5009                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5010    return;
5011  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
5012    return;
5013
5014  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5015                     /*bool RecordPaths=*/false,
5016                     /*bool DetectVirtual=*/false);
5017  FindHiddenVirtualMethodData Data;
5018  Data.Method = MD;
5019  Data.S = this;
5020
5021  // Keep the base methods that were overriden or introduced in the subclass
5022  // by 'using' in a set. A base method not in this set is hidden.
5023  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5024       res.first != res.second; ++res.first) {
5025    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5026      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5027                                          E = MD->end_overridden_methods();
5028           I != E; ++I)
5029        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5030    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5031      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5032        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5033  }
5034
5035  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5036      !Data.OverloadedMethods.empty()) {
5037    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5038      << MD << (Data.OverloadedMethods.size() > 1);
5039
5040    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5041      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5042      Diag(overloadedMD->getLocation(),
5043           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5044    }
5045  }
5046}
5047
5048void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5049                                             Decl *TagDecl,
5050                                             SourceLocation LBrac,
5051                                             SourceLocation RBrac,
5052                                             AttributeList *AttrList) {
5053  if (!TagDecl)
5054    return;
5055
5056  AdjustDeclIfTemplate(TagDecl);
5057
5058  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5059              // strict aliasing violation!
5060              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5061              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5062
5063  CheckCompletedCXXClass(
5064                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5065}
5066
5067/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5068/// special functions, such as the default constructor, copy
5069/// constructor, or destructor, to the given C++ class (C++
5070/// [special]p1).  This routine can only be executed just before the
5071/// definition of the class is complete.
5072void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5073  if (!ClassDecl->hasUserDeclaredConstructor())
5074    ++ASTContext::NumImplicitDefaultConstructors;
5075
5076  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5077    ++ASTContext::NumImplicitCopyConstructors;
5078
5079  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5080    ++ASTContext::NumImplicitMoveConstructors;
5081
5082  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5083    ++ASTContext::NumImplicitCopyAssignmentOperators;
5084
5085    // If we have a dynamic class, then the copy assignment operator may be
5086    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5087    // it shows up in the right place in the vtable and that we diagnose
5088    // problems with the implicit exception specification.
5089    if (ClassDecl->isDynamicClass())
5090      DeclareImplicitCopyAssignment(ClassDecl);
5091  }
5092
5093  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5094    ++ASTContext::NumImplicitMoveAssignmentOperators;
5095
5096    // Likewise for the move assignment operator.
5097    if (ClassDecl->isDynamicClass())
5098      DeclareImplicitMoveAssignment(ClassDecl);
5099  }
5100
5101  if (!ClassDecl->hasUserDeclaredDestructor()) {
5102    ++ASTContext::NumImplicitDestructors;
5103
5104    // If we have a dynamic class, then the destructor may be virtual, so we
5105    // have to declare the destructor immediately. This ensures that, e.g., it
5106    // shows up in the right place in the vtable and that we diagnose problems
5107    // with the implicit exception specification.
5108    if (ClassDecl->isDynamicClass())
5109      DeclareImplicitDestructor(ClassDecl);
5110  }
5111}
5112
5113void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5114  if (!D)
5115    return;
5116
5117  int NumParamList = D->getNumTemplateParameterLists();
5118  for (int i = 0; i < NumParamList; i++) {
5119    TemplateParameterList* Params = D->getTemplateParameterList(i);
5120    for (TemplateParameterList::iterator Param = Params->begin(),
5121                                      ParamEnd = Params->end();
5122          Param != ParamEnd; ++Param) {
5123      NamedDecl *Named = cast<NamedDecl>(*Param);
5124      if (Named->getDeclName()) {
5125        S->AddDecl(Named);
5126        IdResolver.AddDecl(Named);
5127      }
5128    }
5129  }
5130}
5131
5132void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5133  if (!D)
5134    return;
5135
5136  TemplateParameterList *Params = 0;
5137  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5138    Params = Template->getTemplateParameters();
5139  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5140           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5141    Params = PartialSpec->getTemplateParameters();
5142  else
5143    return;
5144
5145  for (TemplateParameterList::iterator Param = Params->begin(),
5146                                    ParamEnd = Params->end();
5147       Param != ParamEnd; ++Param) {
5148    NamedDecl *Named = cast<NamedDecl>(*Param);
5149    if (Named->getDeclName()) {
5150      S->AddDecl(Named);
5151      IdResolver.AddDecl(Named);
5152    }
5153  }
5154}
5155
5156void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5157  if (!RecordD) return;
5158  AdjustDeclIfTemplate(RecordD);
5159  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5160  PushDeclContext(S, Record);
5161}
5162
5163void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5164  if (!RecordD) return;
5165  PopDeclContext();
5166}
5167
5168/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5169/// parsing a top-level (non-nested) C++ class, and we are now
5170/// parsing those parts of the given Method declaration that could
5171/// not be parsed earlier (C++ [class.mem]p2), such as default
5172/// arguments. This action should enter the scope of the given
5173/// Method declaration as if we had just parsed the qualified method
5174/// name. However, it should not bring the parameters into scope;
5175/// that will be performed by ActOnDelayedCXXMethodParameter.
5176void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5177}
5178
5179/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5180/// C++ method declaration. We're (re-)introducing the given
5181/// function parameter into scope for use in parsing later parts of
5182/// the method declaration. For example, we could see an
5183/// ActOnParamDefaultArgument event for this parameter.
5184void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5185  if (!ParamD)
5186    return;
5187
5188  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5189
5190  // If this parameter has an unparsed default argument, clear it out
5191  // to make way for the parsed default argument.
5192  if (Param->hasUnparsedDefaultArg())
5193    Param->setDefaultArg(0);
5194
5195  S->AddDecl(Param);
5196  if (Param->getDeclName())
5197    IdResolver.AddDecl(Param);
5198}
5199
5200/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5201/// processing the delayed method declaration for Method. The method
5202/// declaration is now considered finished. There may be a separate
5203/// ActOnStartOfFunctionDef action later (not necessarily
5204/// immediately!) for this method, if it was also defined inside the
5205/// class body.
5206void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5207  if (!MethodD)
5208    return;
5209
5210  AdjustDeclIfTemplate(MethodD);
5211
5212  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5213
5214  // Now that we have our default arguments, check the constructor
5215  // again. It could produce additional diagnostics or affect whether
5216  // the class has implicitly-declared destructors, among other
5217  // things.
5218  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5219    CheckConstructor(Constructor);
5220
5221  // Check the default arguments, which we may have added.
5222  if (!Method->isInvalidDecl())
5223    CheckCXXDefaultArguments(Method);
5224}
5225
5226/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5227/// the well-formedness of the constructor declarator @p D with type @p
5228/// R. If there are any errors in the declarator, this routine will
5229/// emit diagnostics and set the invalid bit to true.  In any case, the type
5230/// will be updated to reflect a well-formed type for the constructor and
5231/// returned.
5232QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5233                                          StorageClass &SC) {
5234  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5235
5236  // C++ [class.ctor]p3:
5237  //   A constructor shall not be virtual (10.3) or static (9.4). A
5238  //   constructor can be invoked for a const, volatile or const
5239  //   volatile object. A constructor shall not be declared const,
5240  //   volatile, or const volatile (9.3.2).
5241  if (isVirtual) {
5242    if (!D.isInvalidType())
5243      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5244        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5245        << SourceRange(D.getIdentifierLoc());
5246    D.setInvalidType();
5247  }
5248  if (SC == SC_Static) {
5249    if (!D.isInvalidType())
5250      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5251        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5252        << SourceRange(D.getIdentifierLoc());
5253    D.setInvalidType();
5254    SC = SC_None;
5255  }
5256
5257  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5258  if (FTI.TypeQuals != 0) {
5259    if (FTI.TypeQuals & Qualifiers::Const)
5260      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5261        << "const" << SourceRange(D.getIdentifierLoc());
5262    if (FTI.TypeQuals & Qualifiers::Volatile)
5263      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5264        << "volatile" << SourceRange(D.getIdentifierLoc());
5265    if (FTI.TypeQuals & Qualifiers::Restrict)
5266      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5267        << "restrict" << SourceRange(D.getIdentifierLoc());
5268    D.setInvalidType();
5269  }
5270
5271  // C++0x [class.ctor]p4:
5272  //   A constructor shall not be declared with a ref-qualifier.
5273  if (FTI.hasRefQualifier()) {
5274    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5275      << FTI.RefQualifierIsLValueRef
5276      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5277    D.setInvalidType();
5278  }
5279
5280  // Rebuild the function type "R" without any type qualifiers (in
5281  // case any of the errors above fired) and with "void" as the
5282  // return type, since constructors don't have return types.
5283  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5284  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5285    return R;
5286
5287  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5288  EPI.TypeQuals = 0;
5289  EPI.RefQualifier = RQ_None;
5290
5291  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5292                                 Proto->getNumArgs(), EPI);
5293}
5294
5295/// CheckConstructor - Checks a fully-formed constructor for
5296/// well-formedness, issuing any diagnostics required. Returns true if
5297/// the constructor declarator is invalid.
5298void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5299  CXXRecordDecl *ClassDecl
5300    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5301  if (!ClassDecl)
5302    return Constructor->setInvalidDecl();
5303
5304  // C++ [class.copy]p3:
5305  //   A declaration of a constructor for a class X is ill-formed if
5306  //   its first parameter is of type (optionally cv-qualified) X and
5307  //   either there are no other parameters or else all other
5308  //   parameters have default arguments.
5309  if (!Constructor->isInvalidDecl() &&
5310      ((Constructor->getNumParams() == 1) ||
5311       (Constructor->getNumParams() > 1 &&
5312        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5313      Constructor->getTemplateSpecializationKind()
5314                                              != TSK_ImplicitInstantiation) {
5315    QualType ParamType = Constructor->getParamDecl(0)->getType();
5316    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5317    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5318      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5319      const char *ConstRef
5320        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5321                                                        : " const &";
5322      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5323        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5324
5325      // FIXME: Rather that making the constructor invalid, we should endeavor
5326      // to fix the type.
5327      Constructor->setInvalidDecl();
5328    }
5329  }
5330}
5331
5332/// CheckDestructor - Checks a fully-formed destructor definition for
5333/// well-formedness, issuing any diagnostics required.  Returns true
5334/// on error.
5335bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5336  CXXRecordDecl *RD = Destructor->getParent();
5337
5338  if (Destructor->isVirtual()) {
5339    SourceLocation Loc;
5340
5341    if (!Destructor->isImplicit())
5342      Loc = Destructor->getLocation();
5343    else
5344      Loc = RD->getLocation();
5345
5346    // If we have a virtual destructor, look up the deallocation function
5347    FunctionDecl *OperatorDelete = 0;
5348    DeclarationName Name =
5349    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5350    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5351      return true;
5352
5353    MarkFunctionReferenced(Loc, OperatorDelete);
5354
5355    Destructor->setOperatorDelete(OperatorDelete);
5356  }
5357
5358  return false;
5359}
5360
5361static inline bool
5362FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5363  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5364          FTI.ArgInfo[0].Param &&
5365          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5366}
5367
5368/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5369/// the well-formednes of the destructor declarator @p D with type @p
5370/// R. If there are any errors in the declarator, this routine will
5371/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5372/// will be updated to reflect a well-formed type for the destructor and
5373/// returned.
5374QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5375                                         StorageClass& SC) {
5376  // C++ [class.dtor]p1:
5377  //   [...] A typedef-name that names a class is a class-name
5378  //   (7.1.3); however, a typedef-name that names a class shall not
5379  //   be used as the identifier in the declarator for a destructor
5380  //   declaration.
5381  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5382  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5383    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5384      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5385  else if (const TemplateSpecializationType *TST =
5386             DeclaratorType->getAs<TemplateSpecializationType>())
5387    if (TST->isTypeAlias())
5388      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5389        << DeclaratorType << 1;
5390
5391  // C++ [class.dtor]p2:
5392  //   A destructor is used to destroy objects of its class type. A
5393  //   destructor takes no parameters, and no return type can be
5394  //   specified for it (not even void). The address of a destructor
5395  //   shall not be taken. A destructor shall not be static. A
5396  //   destructor can be invoked for a const, volatile or const
5397  //   volatile object. A destructor shall not be declared const,
5398  //   volatile or const volatile (9.3.2).
5399  if (SC == SC_Static) {
5400    if (!D.isInvalidType())
5401      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5402        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5403        << SourceRange(D.getIdentifierLoc())
5404        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5405
5406    SC = SC_None;
5407  }
5408  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5409    // Destructors don't have return types, but the parser will
5410    // happily parse something like:
5411    //
5412    //   class X {
5413    //     float ~X();
5414    //   };
5415    //
5416    // The return type will be eliminated later.
5417    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5418      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5419      << SourceRange(D.getIdentifierLoc());
5420  }
5421
5422  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5423  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5424    if (FTI.TypeQuals & Qualifiers::Const)
5425      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5426        << "const" << SourceRange(D.getIdentifierLoc());
5427    if (FTI.TypeQuals & Qualifiers::Volatile)
5428      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5429        << "volatile" << SourceRange(D.getIdentifierLoc());
5430    if (FTI.TypeQuals & Qualifiers::Restrict)
5431      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5432        << "restrict" << SourceRange(D.getIdentifierLoc());
5433    D.setInvalidType();
5434  }
5435
5436  // C++0x [class.dtor]p2:
5437  //   A destructor shall not be declared with a ref-qualifier.
5438  if (FTI.hasRefQualifier()) {
5439    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5440      << FTI.RefQualifierIsLValueRef
5441      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5442    D.setInvalidType();
5443  }
5444
5445  // Make sure we don't have any parameters.
5446  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5447    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5448
5449    // Delete the parameters.
5450    FTI.freeArgs();
5451    D.setInvalidType();
5452  }
5453
5454  // Make sure the destructor isn't variadic.
5455  if (FTI.isVariadic) {
5456    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5457    D.setInvalidType();
5458  }
5459
5460  // Rebuild the function type "R" without any type qualifiers or
5461  // parameters (in case any of the errors above fired) and with
5462  // "void" as the return type, since destructors don't have return
5463  // types.
5464  if (!D.isInvalidType())
5465    return R;
5466
5467  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5468  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5469  EPI.Variadic = false;
5470  EPI.TypeQuals = 0;
5471  EPI.RefQualifier = RQ_None;
5472  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5473}
5474
5475/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5476/// well-formednes of the conversion function declarator @p D with
5477/// type @p R. If there are any errors in the declarator, this routine
5478/// will emit diagnostics and return true. Otherwise, it will return
5479/// false. Either way, the type @p R will be updated to reflect a
5480/// well-formed type for the conversion operator.
5481void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5482                                     StorageClass& SC) {
5483  // C++ [class.conv.fct]p1:
5484  //   Neither parameter types nor return type can be specified. The
5485  //   type of a conversion function (8.3.5) is "function taking no
5486  //   parameter returning conversion-type-id."
5487  if (SC == SC_Static) {
5488    if (!D.isInvalidType())
5489      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5490        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5491        << SourceRange(D.getIdentifierLoc());
5492    D.setInvalidType();
5493    SC = SC_None;
5494  }
5495
5496  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5497
5498  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5499    // Conversion functions don't have return types, but the parser will
5500    // happily parse something like:
5501    //
5502    //   class X {
5503    //     float operator bool();
5504    //   };
5505    //
5506    // The return type will be changed later anyway.
5507    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5508      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5509      << SourceRange(D.getIdentifierLoc());
5510    D.setInvalidType();
5511  }
5512
5513  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5514
5515  // Make sure we don't have any parameters.
5516  if (Proto->getNumArgs() > 0) {
5517    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5518
5519    // Delete the parameters.
5520    D.getFunctionTypeInfo().freeArgs();
5521    D.setInvalidType();
5522  } else if (Proto->isVariadic()) {
5523    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5524    D.setInvalidType();
5525  }
5526
5527  // Diagnose "&operator bool()" and other such nonsense.  This
5528  // is actually a gcc extension which we don't support.
5529  if (Proto->getResultType() != ConvType) {
5530    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5531      << Proto->getResultType();
5532    D.setInvalidType();
5533    ConvType = Proto->getResultType();
5534  }
5535
5536  // C++ [class.conv.fct]p4:
5537  //   The conversion-type-id shall not represent a function type nor
5538  //   an array type.
5539  if (ConvType->isArrayType()) {
5540    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5541    ConvType = Context.getPointerType(ConvType);
5542    D.setInvalidType();
5543  } else if (ConvType->isFunctionType()) {
5544    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5545    ConvType = Context.getPointerType(ConvType);
5546    D.setInvalidType();
5547  }
5548
5549  // Rebuild the function type "R" without any parameters (in case any
5550  // of the errors above fired) and with the conversion type as the
5551  // return type.
5552  if (D.isInvalidType())
5553    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5554
5555  // C++0x explicit conversion operators.
5556  if (D.getDeclSpec().isExplicitSpecified())
5557    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5558         getLangOptions().CPlusPlus0x ?
5559           diag::warn_cxx98_compat_explicit_conversion_functions :
5560           diag::ext_explicit_conversion_functions)
5561      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5562}
5563
5564/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5565/// the declaration of the given C++ conversion function. This routine
5566/// is responsible for recording the conversion function in the C++
5567/// class, if possible.
5568Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5569  assert(Conversion && "Expected to receive a conversion function declaration");
5570
5571  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5572
5573  // Make sure we aren't redeclaring the conversion function.
5574  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5575
5576  // C++ [class.conv.fct]p1:
5577  //   [...] A conversion function is never used to convert a
5578  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5579  //   same object type (or a reference to it), to a (possibly
5580  //   cv-qualified) base class of that type (or a reference to it),
5581  //   or to (possibly cv-qualified) void.
5582  // FIXME: Suppress this warning if the conversion function ends up being a
5583  // virtual function that overrides a virtual function in a base class.
5584  QualType ClassType
5585    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5586  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5587    ConvType = ConvTypeRef->getPointeeType();
5588  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5589      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5590    /* Suppress diagnostics for instantiations. */;
5591  else if (ConvType->isRecordType()) {
5592    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5593    if (ConvType == ClassType)
5594      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5595        << ClassType;
5596    else if (IsDerivedFrom(ClassType, ConvType))
5597      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5598        <<  ClassType << ConvType;
5599  } else if (ConvType->isVoidType()) {
5600    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5601      << ClassType << ConvType;
5602  }
5603
5604  if (FunctionTemplateDecl *ConversionTemplate
5605                                = Conversion->getDescribedFunctionTemplate())
5606    return ConversionTemplate;
5607
5608  return Conversion;
5609}
5610
5611//===----------------------------------------------------------------------===//
5612// Namespace Handling
5613//===----------------------------------------------------------------------===//
5614
5615
5616
5617/// ActOnStartNamespaceDef - This is called at the start of a namespace
5618/// definition.
5619Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5620                                   SourceLocation InlineLoc,
5621                                   SourceLocation NamespaceLoc,
5622                                   SourceLocation IdentLoc,
5623                                   IdentifierInfo *II,
5624                                   SourceLocation LBrace,
5625                                   AttributeList *AttrList) {
5626  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5627  // For anonymous namespace, take the location of the left brace.
5628  SourceLocation Loc = II ? IdentLoc : LBrace;
5629  bool IsInline = InlineLoc.isValid();
5630  bool IsInvalid = false;
5631  bool IsStd = false;
5632  bool AddToKnown = false;
5633  Scope *DeclRegionScope = NamespcScope->getParent();
5634
5635  NamespaceDecl *PrevNS = 0;
5636  if (II) {
5637    // C++ [namespace.def]p2:
5638    //   The identifier in an original-namespace-definition shall not
5639    //   have been previously defined in the declarative region in
5640    //   which the original-namespace-definition appears. The
5641    //   identifier in an original-namespace-definition is the name of
5642    //   the namespace. Subsequently in that declarative region, it is
5643    //   treated as an original-namespace-name.
5644    //
5645    // Since namespace names are unique in their scope, and we don't
5646    // look through using directives, just look for any ordinary names.
5647
5648    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5649    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5650    Decl::IDNS_Namespace;
5651    NamedDecl *PrevDecl = 0;
5652    for (DeclContext::lookup_result R
5653         = CurContext->getRedeclContext()->lookup(II);
5654         R.first != R.second; ++R.first) {
5655      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5656        PrevDecl = *R.first;
5657        break;
5658      }
5659    }
5660
5661    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5662
5663    if (PrevNS) {
5664      // This is an extended namespace definition.
5665      if (IsInline != PrevNS->isInline()) {
5666        // inline-ness must match
5667        if (PrevNS->isInline()) {
5668          // The user probably just forgot the 'inline', so suggest that it
5669          // be added back.
5670          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5671            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5672        } else {
5673          Diag(Loc, diag::err_inline_namespace_mismatch)
5674            << IsInline;
5675        }
5676        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5677
5678        IsInline = PrevNS->isInline();
5679      }
5680    } else if (PrevDecl) {
5681      // This is an invalid name redefinition.
5682      Diag(Loc, diag::err_redefinition_different_kind)
5683        << II;
5684      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5685      IsInvalid = true;
5686      // Continue on to push Namespc as current DeclContext and return it.
5687    } else if (II->isStr("std") &&
5688               CurContext->getRedeclContext()->isTranslationUnit()) {
5689      // This is the first "real" definition of the namespace "std", so update
5690      // our cache of the "std" namespace to point at this definition.
5691      PrevNS = getStdNamespace();
5692      IsStd = true;
5693      AddToKnown = !IsInline;
5694    } else {
5695      // We've seen this namespace for the first time.
5696      AddToKnown = !IsInline;
5697    }
5698  } else {
5699    // Anonymous namespaces.
5700
5701    // Determine whether the parent already has an anonymous namespace.
5702    DeclContext *Parent = CurContext->getRedeclContext();
5703    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5704      PrevNS = TU->getAnonymousNamespace();
5705    } else {
5706      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5707      PrevNS = ND->getAnonymousNamespace();
5708    }
5709
5710    if (PrevNS && IsInline != PrevNS->isInline()) {
5711      // inline-ness must match
5712      Diag(Loc, diag::err_inline_namespace_mismatch)
5713        << IsInline;
5714      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5715
5716      // Recover by ignoring the new namespace's inline status.
5717      IsInline = PrevNS->isInline();
5718    }
5719  }
5720
5721  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5722                                                 StartLoc, Loc, II, PrevNS);
5723  if (IsInvalid)
5724    Namespc->setInvalidDecl();
5725
5726  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5727
5728  // FIXME: Should we be merging attributes?
5729  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5730    PushNamespaceVisibilityAttr(Attr, Loc);
5731
5732  if (IsStd)
5733    StdNamespace = Namespc;
5734  if (AddToKnown)
5735    KnownNamespaces[Namespc] = false;
5736
5737  if (II) {
5738    PushOnScopeChains(Namespc, DeclRegionScope);
5739  } else {
5740    // Link the anonymous namespace into its parent.
5741    DeclContext *Parent = CurContext->getRedeclContext();
5742    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5743      TU->setAnonymousNamespace(Namespc);
5744    } else {
5745      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5746    }
5747
5748    CurContext->addDecl(Namespc);
5749
5750    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5751    //   behaves as if it were replaced by
5752    //     namespace unique { /* empty body */ }
5753    //     using namespace unique;
5754    //     namespace unique { namespace-body }
5755    //   where all occurrences of 'unique' in a translation unit are
5756    //   replaced by the same identifier and this identifier differs
5757    //   from all other identifiers in the entire program.
5758
5759    // We just create the namespace with an empty name and then add an
5760    // implicit using declaration, just like the standard suggests.
5761    //
5762    // CodeGen enforces the "universally unique" aspect by giving all
5763    // declarations semantically contained within an anonymous
5764    // namespace internal linkage.
5765
5766    if (!PrevNS) {
5767      UsingDirectiveDecl* UD
5768        = UsingDirectiveDecl::Create(Context, CurContext,
5769                                     /* 'using' */ LBrace,
5770                                     /* 'namespace' */ SourceLocation(),
5771                                     /* qualifier */ NestedNameSpecifierLoc(),
5772                                     /* identifier */ SourceLocation(),
5773                                     Namespc,
5774                                     /* Ancestor */ CurContext);
5775      UD->setImplicit();
5776      CurContext->addDecl(UD);
5777    }
5778  }
5779
5780  // Although we could have an invalid decl (i.e. the namespace name is a
5781  // redefinition), push it as current DeclContext and try to continue parsing.
5782  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5783  // for the namespace has the declarations that showed up in that particular
5784  // namespace definition.
5785  PushDeclContext(NamespcScope, Namespc);
5786  return Namespc;
5787}
5788
5789/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5790/// is a namespace alias, returns the namespace it points to.
5791static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5792  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5793    return AD->getNamespace();
5794  return dyn_cast_or_null<NamespaceDecl>(D);
5795}
5796
5797/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5798/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5799void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5800  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5801  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5802  Namespc->setRBraceLoc(RBrace);
5803  PopDeclContext();
5804  if (Namespc->hasAttr<VisibilityAttr>())
5805    PopPragmaVisibility(true, RBrace);
5806}
5807
5808CXXRecordDecl *Sema::getStdBadAlloc() const {
5809  return cast_or_null<CXXRecordDecl>(
5810                                  StdBadAlloc.get(Context.getExternalSource()));
5811}
5812
5813NamespaceDecl *Sema::getStdNamespace() const {
5814  return cast_or_null<NamespaceDecl>(
5815                                 StdNamespace.get(Context.getExternalSource()));
5816}
5817
5818/// \brief Retrieve the special "std" namespace, which may require us to
5819/// implicitly define the namespace.
5820NamespaceDecl *Sema::getOrCreateStdNamespace() {
5821  if (!StdNamespace) {
5822    // The "std" namespace has not yet been defined, so build one implicitly.
5823    StdNamespace = NamespaceDecl::Create(Context,
5824                                         Context.getTranslationUnitDecl(),
5825                                         /*Inline=*/false,
5826                                         SourceLocation(), SourceLocation(),
5827                                         &PP.getIdentifierTable().get("std"),
5828                                         /*PrevDecl=*/0);
5829    getStdNamespace()->setImplicit(true);
5830  }
5831
5832  return getStdNamespace();
5833}
5834
5835bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5836  assert(getLangOptions().CPlusPlus &&
5837         "Looking for std::initializer_list outside of C++.");
5838
5839  // We're looking for implicit instantiations of
5840  // template <typename E> class std::initializer_list.
5841
5842  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5843    return false;
5844
5845  ClassTemplateDecl *Template = 0;
5846  const TemplateArgument *Arguments = 0;
5847
5848  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5849
5850    ClassTemplateSpecializationDecl *Specialization =
5851        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5852    if (!Specialization)
5853      return false;
5854
5855    Template = Specialization->getSpecializedTemplate();
5856    Arguments = Specialization->getTemplateArgs().data();
5857  } else if (const TemplateSpecializationType *TST =
5858                 Ty->getAs<TemplateSpecializationType>()) {
5859    Template = dyn_cast_or_null<ClassTemplateDecl>(
5860        TST->getTemplateName().getAsTemplateDecl());
5861    Arguments = TST->getArgs();
5862  }
5863  if (!Template)
5864    return false;
5865
5866  if (!StdInitializerList) {
5867    // Haven't recognized std::initializer_list yet, maybe this is it.
5868    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5869    if (TemplateClass->getIdentifier() !=
5870            &PP.getIdentifierTable().get("initializer_list") ||
5871        !getStdNamespace()->InEnclosingNamespaceSetOf(
5872            TemplateClass->getDeclContext()))
5873      return false;
5874    // This is a template called std::initializer_list, but is it the right
5875    // template?
5876    TemplateParameterList *Params = Template->getTemplateParameters();
5877    if (Params->getMinRequiredArguments() != 1)
5878      return false;
5879    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5880      return false;
5881
5882    // It's the right template.
5883    StdInitializerList = Template;
5884  }
5885
5886  if (Template != StdInitializerList)
5887    return false;
5888
5889  // This is an instance of std::initializer_list. Find the argument type.
5890  if (Element)
5891    *Element = Arguments[0].getAsType();
5892  return true;
5893}
5894
5895static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5896  NamespaceDecl *Std = S.getStdNamespace();
5897  if (!Std) {
5898    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5899    return 0;
5900  }
5901
5902  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5903                      Loc, Sema::LookupOrdinaryName);
5904  if (!S.LookupQualifiedName(Result, Std)) {
5905    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5906    return 0;
5907  }
5908  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5909  if (!Template) {
5910    Result.suppressDiagnostics();
5911    // We found something weird. Complain about the first thing we found.
5912    NamedDecl *Found = *Result.begin();
5913    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5914    return 0;
5915  }
5916
5917  // We found some template called std::initializer_list. Now verify that it's
5918  // correct.
5919  TemplateParameterList *Params = Template->getTemplateParameters();
5920  if (Params->getMinRequiredArguments() != 1 ||
5921      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5922    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5923    return 0;
5924  }
5925
5926  return Template;
5927}
5928
5929QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5930  if (!StdInitializerList) {
5931    StdInitializerList = LookupStdInitializerList(*this, Loc);
5932    if (!StdInitializerList)
5933      return QualType();
5934  }
5935
5936  TemplateArgumentListInfo Args(Loc, Loc);
5937  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5938                                       Context.getTrivialTypeSourceInfo(Element,
5939                                                                        Loc)));
5940  return Context.getCanonicalType(
5941      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5942}
5943
5944bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5945  // C++ [dcl.init.list]p2:
5946  //   A constructor is an initializer-list constructor if its first parameter
5947  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5948  //   std::initializer_list<E> for some type E, and either there are no other
5949  //   parameters or else all other parameters have default arguments.
5950  if (Ctor->getNumParams() < 1 ||
5951      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5952    return false;
5953
5954  QualType ArgType = Ctor->getParamDecl(0)->getType();
5955  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5956    ArgType = RT->getPointeeType().getUnqualifiedType();
5957
5958  return isStdInitializerList(ArgType, 0);
5959}
5960
5961/// \brief Determine whether a using statement is in a context where it will be
5962/// apply in all contexts.
5963static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5964  switch (CurContext->getDeclKind()) {
5965    case Decl::TranslationUnit:
5966      return true;
5967    case Decl::LinkageSpec:
5968      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5969    default:
5970      return false;
5971  }
5972}
5973
5974namespace {
5975
5976// Callback to only accept typo corrections that are namespaces.
5977class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5978 public:
5979  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5980    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5981      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5982    }
5983    return false;
5984  }
5985};
5986
5987}
5988
5989static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5990                                       CXXScopeSpec &SS,
5991                                       SourceLocation IdentLoc,
5992                                       IdentifierInfo *Ident) {
5993  NamespaceValidatorCCC Validator;
5994  R.clear();
5995  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5996                                               R.getLookupKind(), Sc, &SS,
5997                                               Validator)) {
5998    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5999    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
6000    if (DeclContext *DC = S.computeDeclContext(SS, false))
6001      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6002        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6003        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6004    else
6005      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6006        << Ident << CorrectedQuotedStr
6007        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6008
6009    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6010         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6011
6012    Ident = Corrected.getCorrectionAsIdentifierInfo();
6013    R.addDecl(Corrected.getCorrectionDecl());
6014    return true;
6015  }
6016  return false;
6017}
6018
6019Decl *Sema::ActOnUsingDirective(Scope *S,
6020                                          SourceLocation UsingLoc,
6021                                          SourceLocation NamespcLoc,
6022                                          CXXScopeSpec &SS,
6023                                          SourceLocation IdentLoc,
6024                                          IdentifierInfo *NamespcName,
6025                                          AttributeList *AttrList) {
6026  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6027  assert(NamespcName && "Invalid NamespcName.");
6028  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6029
6030  // This can only happen along a recovery path.
6031  while (S->getFlags() & Scope::TemplateParamScope)
6032    S = S->getParent();
6033  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6034
6035  UsingDirectiveDecl *UDir = 0;
6036  NestedNameSpecifier *Qualifier = 0;
6037  if (SS.isSet())
6038    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6039
6040  // Lookup namespace name.
6041  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6042  LookupParsedName(R, S, &SS);
6043  if (R.isAmbiguous())
6044    return 0;
6045
6046  if (R.empty()) {
6047    R.clear();
6048    // Allow "using namespace std;" or "using namespace ::std;" even if
6049    // "std" hasn't been defined yet, for GCC compatibility.
6050    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6051        NamespcName->isStr("std")) {
6052      Diag(IdentLoc, diag::ext_using_undefined_std);
6053      R.addDecl(getOrCreateStdNamespace());
6054      R.resolveKind();
6055    }
6056    // Otherwise, attempt typo correction.
6057    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6058  }
6059
6060  if (!R.empty()) {
6061    NamedDecl *Named = R.getFoundDecl();
6062    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6063        && "expected namespace decl");
6064    // C++ [namespace.udir]p1:
6065    //   A using-directive specifies that the names in the nominated
6066    //   namespace can be used in the scope in which the
6067    //   using-directive appears after the using-directive. During
6068    //   unqualified name lookup (3.4.1), the names appear as if they
6069    //   were declared in the nearest enclosing namespace which
6070    //   contains both the using-directive and the nominated
6071    //   namespace. [Note: in this context, "contains" means "contains
6072    //   directly or indirectly". ]
6073
6074    // Find enclosing context containing both using-directive and
6075    // nominated namespace.
6076    NamespaceDecl *NS = getNamespaceDecl(Named);
6077    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6078    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6079      CommonAncestor = CommonAncestor->getParent();
6080
6081    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6082                                      SS.getWithLocInContext(Context),
6083                                      IdentLoc, Named, CommonAncestor);
6084
6085    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6086        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6087      Diag(IdentLoc, diag::warn_using_directive_in_header);
6088    }
6089
6090    PushUsingDirective(S, UDir);
6091  } else {
6092    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6093  }
6094
6095  // FIXME: We ignore attributes for now.
6096  return UDir;
6097}
6098
6099void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6100  // If scope has associated entity, then using directive is at namespace
6101  // or translation unit scope. We add UsingDirectiveDecls, into
6102  // it's lookup structure.
6103  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6104    Ctx->addDecl(UDir);
6105  else
6106    // Otherwise it is block-sope. using-directives will affect lookup
6107    // only to the end of scope.
6108    S->PushUsingDirective(UDir);
6109}
6110
6111
6112Decl *Sema::ActOnUsingDeclaration(Scope *S,
6113                                  AccessSpecifier AS,
6114                                  bool HasUsingKeyword,
6115                                  SourceLocation UsingLoc,
6116                                  CXXScopeSpec &SS,
6117                                  UnqualifiedId &Name,
6118                                  AttributeList *AttrList,
6119                                  bool IsTypeName,
6120                                  SourceLocation TypenameLoc) {
6121  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6122
6123  switch (Name.getKind()) {
6124  case UnqualifiedId::IK_ImplicitSelfParam:
6125  case UnqualifiedId::IK_Identifier:
6126  case UnqualifiedId::IK_OperatorFunctionId:
6127  case UnqualifiedId::IK_LiteralOperatorId:
6128  case UnqualifiedId::IK_ConversionFunctionId:
6129    break;
6130
6131  case UnqualifiedId::IK_ConstructorName:
6132  case UnqualifiedId::IK_ConstructorTemplateId:
6133    // C++0x inherited constructors.
6134    Diag(Name.getSourceRange().getBegin(),
6135         getLangOptions().CPlusPlus0x ?
6136           diag::warn_cxx98_compat_using_decl_constructor :
6137           diag::err_using_decl_constructor)
6138      << SS.getRange();
6139
6140    if (getLangOptions().CPlusPlus0x) break;
6141
6142    return 0;
6143
6144  case UnqualifiedId::IK_DestructorName:
6145    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6146      << SS.getRange();
6147    return 0;
6148
6149  case UnqualifiedId::IK_TemplateId:
6150    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6151      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6152    return 0;
6153  }
6154
6155  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6156  DeclarationName TargetName = TargetNameInfo.getName();
6157  if (!TargetName)
6158    return 0;
6159
6160  // Warn about using declarations.
6161  // TODO: store that the declaration was written without 'using' and
6162  // talk about access decls instead of using decls in the
6163  // diagnostics.
6164  if (!HasUsingKeyword) {
6165    UsingLoc = Name.getSourceRange().getBegin();
6166
6167    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6168      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6169  }
6170
6171  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6172      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6173    return 0;
6174
6175  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6176                                        TargetNameInfo, AttrList,
6177                                        /* IsInstantiation */ false,
6178                                        IsTypeName, TypenameLoc);
6179  if (UD)
6180    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6181
6182  return UD;
6183}
6184
6185/// \brief Determine whether a using declaration considers the given
6186/// declarations as "equivalent", e.g., if they are redeclarations of
6187/// the same entity or are both typedefs of the same type.
6188static bool
6189IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6190                         bool &SuppressRedeclaration) {
6191  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6192    SuppressRedeclaration = false;
6193    return true;
6194  }
6195
6196  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6197    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6198      SuppressRedeclaration = true;
6199      return Context.hasSameType(TD1->getUnderlyingType(),
6200                                 TD2->getUnderlyingType());
6201    }
6202
6203  return false;
6204}
6205
6206
6207/// Determines whether to create a using shadow decl for a particular
6208/// decl, given the set of decls existing prior to this using lookup.
6209bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6210                                const LookupResult &Previous) {
6211  // Diagnose finding a decl which is not from a base class of the
6212  // current class.  We do this now because there are cases where this
6213  // function will silently decide not to build a shadow decl, which
6214  // will pre-empt further diagnostics.
6215  //
6216  // We don't need to do this in C++0x because we do the check once on
6217  // the qualifier.
6218  //
6219  // FIXME: diagnose the following if we care enough:
6220  //   struct A { int foo; };
6221  //   struct B : A { using A::foo; };
6222  //   template <class T> struct C : A {};
6223  //   template <class T> struct D : C<T> { using B::foo; } // <---
6224  // This is invalid (during instantiation) in C++03 because B::foo
6225  // resolves to the using decl in B, which is not a base class of D<T>.
6226  // We can't diagnose it immediately because C<T> is an unknown
6227  // specialization.  The UsingShadowDecl in D<T> then points directly
6228  // to A::foo, which will look well-formed when we instantiate.
6229  // The right solution is to not collapse the shadow-decl chain.
6230  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6231    DeclContext *OrigDC = Orig->getDeclContext();
6232
6233    // Handle enums and anonymous structs.
6234    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6235    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6236    while (OrigRec->isAnonymousStructOrUnion())
6237      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6238
6239    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6240      if (OrigDC == CurContext) {
6241        Diag(Using->getLocation(),
6242             diag::err_using_decl_nested_name_specifier_is_current_class)
6243          << Using->getQualifierLoc().getSourceRange();
6244        Diag(Orig->getLocation(), diag::note_using_decl_target);
6245        return true;
6246      }
6247
6248      Diag(Using->getQualifierLoc().getBeginLoc(),
6249           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6250        << Using->getQualifier()
6251        << cast<CXXRecordDecl>(CurContext)
6252        << Using->getQualifierLoc().getSourceRange();
6253      Diag(Orig->getLocation(), diag::note_using_decl_target);
6254      return true;
6255    }
6256  }
6257
6258  if (Previous.empty()) return false;
6259
6260  NamedDecl *Target = Orig;
6261  if (isa<UsingShadowDecl>(Target))
6262    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6263
6264  // If the target happens to be one of the previous declarations, we
6265  // don't have a conflict.
6266  //
6267  // FIXME: but we might be increasing its access, in which case we
6268  // should redeclare it.
6269  NamedDecl *NonTag = 0, *Tag = 0;
6270  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6271         I != E; ++I) {
6272    NamedDecl *D = (*I)->getUnderlyingDecl();
6273    bool Result;
6274    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6275      return Result;
6276
6277    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6278  }
6279
6280  if (Target->isFunctionOrFunctionTemplate()) {
6281    FunctionDecl *FD;
6282    if (isa<FunctionTemplateDecl>(Target))
6283      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6284    else
6285      FD = cast<FunctionDecl>(Target);
6286
6287    NamedDecl *OldDecl = 0;
6288    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6289    case Ovl_Overload:
6290      return false;
6291
6292    case Ovl_NonFunction:
6293      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6294      break;
6295
6296    // We found a decl with the exact signature.
6297    case Ovl_Match:
6298      // If we're in a record, we want to hide the target, so we
6299      // return true (without a diagnostic) to tell the caller not to
6300      // build a shadow decl.
6301      if (CurContext->isRecord())
6302        return true;
6303
6304      // If we're not in a record, this is an error.
6305      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6306      break;
6307    }
6308
6309    Diag(Target->getLocation(), diag::note_using_decl_target);
6310    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6311    return true;
6312  }
6313
6314  // Target is not a function.
6315
6316  if (isa<TagDecl>(Target)) {
6317    // No conflict between a tag and a non-tag.
6318    if (!Tag) return false;
6319
6320    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6321    Diag(Target->getLocation(), diag::note_using_decl_target);
6322    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6323    return true;
6324  }
6325
6326  // No conflict between a tag and a non-tag.
6327  if (!NonTag) return false;
6328
6329  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6330  Diag(Target->getLocation(), diag::note_using_decl_target);
6331  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6332  return true;
6333}
6334
6335/// Builds a shadow declaration corresponding to a 'using' declaration.
6336UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6337                                            UsingDecl *UD,
6338                                            NamedDecl *Orig) {
6339
6340  // If we resolved to another shadow declaration, just coalesce them.
6341  NamedDecl *Target = Orig;
6342  if (isa<UsingShadowDecl>(Target)) {
6343    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6344    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6345  }
6346
6347  UsingShadowDecl *Shadow
6348    = UsingShadowDecl::Create(Context, CurContext,
6349                              UD->getLocation(), UD, Target);
6350  UD->addShadowDecl(Shadow);
6351
6352  Shadow->setAccess(UD->getAccess());
6353  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6354    Shadow->setInvalidDecl();
6355
6356  if (S)
6357    PushOnScopeChains(Shadow, S);
6358  else
6359    CurContext->addDecl(Shadow);
6360
6361
6362  return Shadow;
6363}
6364
6365/// Hides a using shadow declaration.  This is required by the current
6366/// using-decl implementation when a resolvable using declaration in a
6367/// class is followed by a declaration which would hide or override
6368/// one or more of the using decl's targets; for example:
6369///
6370///   struct Base { void foo(int); };
6371///   struct Derived : Base {
6372///     using Base::foo;
6373///     void foo(int);
6374///   };
6375///
6376/// The governing language is C++03 [namespace.udecl]p12:
6377///
6378///   When a using-declaration brings names from a base class into a
6379///   derived class scope, member functions in the derived class
6380///   override and/or hide member functions with the same name and
6381///   parameter types in a base class (rather than conflicting).
6382///
6383/// There are two ways to implement this:
6384///   (1) optimistically create shadow decls when they're not hidden
6385///       by existing declarations, or
6386///   (2) don't create any shadow decls (or at least don't make them
6387///       visible) until we've fully parsed/instantiated the class.
6388/// The problem with (1) is that we might have to retroactively remove
6389/// a shadow decl, which requires several O(n) operations because the
6390/// decl structures are (very reasonably) not designed for removal.
6391/// (2) avoids this but is very fiddly and phase-dependent.
6392void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6393  if (Shadow->getDeclName().getNameKind() ==
6394        DeclarationName::CXXConversionFunctionName)
6395    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6396
6397  // Remove it from the DeclContext...
6398  Shadow->getDeclContext()->removeDecl(Shadow);
6399
6400  // ...and the scope, if applicable...
6401  if (S) {
6402    S->RemoveDecl(Shadow);
6403    IdResolver.RemoveDecl(Shadow);
6404  }
6405
6406  // ...and the using decl.
6407  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6408
6409  // TODO: complain somehow if Shadow was used.  It shouldn't
6410  // be possible for this to happen, because...?
6411}
6412
6413/// Builds a using declaration.
6414///
6415/// \param IsInstantiation - Whether this call arises from an
6416///   instantiation of an unresolved using declaration.  We treat
6417///   the lookup differently for these declarations.
6418NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6419                                       SourceLocation UsingLoc,
6420                                       CXXScopeSpec &SS,
6421                                       const DeclarationNameInfo &NameInfo,
6422                                       AttributeList *AttrList,
6423                                       bool IsInstantiation,
6424                                       bool IsTypeName,
6425                                       SourceLocation TypenameLoc) {
6426  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6427  SourceLocation IdentLoc = NameInfo.getLoc();
6428  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6429
6430  // FIXME: We ignore attributes for now.
6431
6432  if (SS.isEmpty()) {
6433    Diag(IdentLoc, diag::err_using_requires_qualname);
6434    return 0;
6435  }
6436
6437  // Do the redeclaration lookup in the current scope.
6438  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6439                        ForRedeclaration);
6440  Previous.setHideTags(false);
6441  if (S) {
6442    LookupName(Previous, S);
6443
6444    // It is really dumb that we have to do this.
6445    LookupResult::Filter F = Previous.makeFilter();
6446    while (F.hasNext()) {
6447      NamedDecl *D = F.next();
6448      if (!isDeclInScope(D, CurContext, S))
6449        F.erase();
6450    }
6451    F.done();
6452  } else {
6453    assert(IsInstantiation && "no scope in non-instantiation");
6454    assert(CurContext->isRecord() && "scope not record in instantiation");
6455    LookupQualifiedName(Previous, CurContext);
6456  }
6457
6458  // Check for invalid redeclarations.
6459  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6460    return 0;
6461
6462  // Check for bad qualifiers.
6463  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6464    return 0;
6465
6466  DeclContext *LookupContext = computeDeclContext(SS);
6467  NamedDecl *D;
6468  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6469  if (!LookupContext) {
6470    if (IsTypeName) {
6471      // FIXME: not all declaration name kinds are legal here
6472      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6473                                              UsingLoc, TypenameLoc,
6474                                              QualifierLoc,
6475                                              IdentLoc, NameInfo.getName());
6476    } else {
6477      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6478                                           QualifierLoc, NameInfo);
6479    }
6480  } else {
6481    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6482                          NameInfo, IsTypeName);
6483  }
6484  D->setAccess(AS);
6485  CurContext->addDecl(D);
6486
6487  if (!LookupContext) return D;
6488  UsingDecl *UD = cast<UsingDecl>(D);
6489
6490  if (RequireCompleteDeclContext(SS, LookupContext)) {
6491    UD->setInvalidDecl();
6492    return UD;
6493  }
6494
6495  // Constructor inheriting using decls get special treatment.
6496  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6497    if (CheckInheritedConstructorUsingDecl(UD))
6498      UD->setInvalidDecl();
6499    return UD;
6500  }
6501
6502  // Otherwise, look up the target name.
6503
6504  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6505
6506  // Unlike most lookups, we don't always want to hide tag
6507  // declarations: tag names are visible through the using declaration
6508  // even if hidden by ordinary names, *except* in a dependent context
6509  // where it's important for the sanity of two-phase lookup.
6510  if (!IsInstantiation)
6511    R.setHideTags(false);
6512
6513  LookupQualifiedName(R, LookupContext);
6514
6515  if (R.empty()) {
6516    Diag(IdentLoc, diag::err_no_member)
6517      << NameInfo.getName() << LookupContext << SS.getRange();
6518    UD->setInvalidDecl();
6519    return UD;
6520  }
6521
6522  if (R.isAmbiguous()) {
6523    UD->setInvalidDecl();
6524    return UD;
6525  }
6526
6527  if (IsTypeName) {
6528    // If we asked for a typename and got a non-type decl, error out.
6529    if (!R.getAsSingle<TypeDecl>()) {
6530      Diag(IdentLoc, diag::err_using_typename_non_type);
6531      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6532        Diag((*I)->getUnderlyingDecl()->getLocation(),
6533             diag::note_using_decl_target);
6534      UD->setInvalidDecl();
6535      return UD;
6536    }
6537  } else {
6538    // If we asked for a non-typename and we got a type, error out,
6539    // but only if this is an instantiation of an unresolved using
6540    // decl.  Otherwise just silently find the type name.
6541    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6542      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6543      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6544      UD->setInvalidDecl();
6545      return UD;
6546    }
6547  }
6548
6549  // C++0x N2914 [namespace.udecl]p6:
6550  // A using-declaration shall not name a namespace.
6551  if (R.getAsSingle<NamespaceDecl>()) {
6552    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6553      << SS.getRange();
6554    UD->setInvalidDecl();
6555    return UD;
6556  }
6557
6558  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6559    if (!CheckUsingShadowDecl(UD, *I, Previous))
6560      BuildUsingShadowDecl(S, UD, *I);
6561  }
6562
6563  return UD;
6564}
6565
6566/// Additional checks for a using declaration referring to a constructor name.
6567bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6568  if (UD->isTypeName()) {
6569    // FIXME: Cannot specify typename when specifying constructor
6570    return true;
6571  }
6572
6573  const Type *SourceType = UD->getQualifier()->getAsType();
6574  assert(SourceType &&
6575         "Using decl naming constructor doesn't have type in scope spec.");
6576  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6577
6578  // Check whether the named type is a direct base class.
6579  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6580  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6581  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6582       BaseIt != BaseE; ++BaseIt) {
6583    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6584    if (CanonicalSourceType == BaseType)
6585      break;
6586  }
6587
6588  if (BaseIt == BaseE) {
6589    // Did not find SourceType in the bases.
6590    Diag(UD->getUsingLocation(),
6591         diag::err_using_decl_constructor_not_in_direct_base)
6592      << UD->getNameInfo().getSourceRange()
6593      << QualType(SourceType, 0) << TargetClass;
6594    return true;
6595  }
6596
6597  BaseIt->setInheritConstructors();
6598
6599  return false;
6600}
6601
6602/// Checks that the given using declaration is not an invalid
6603/// redeclaration.  Note that this is checking only for the using decl
6604/// itself, not for any ill-formedness among the UsingShadowDecls.
6605bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6606                                       bool isTypeName,
6607                                       const CXXScopeSpec &SS,
6608                                       SourceLocation NameLoc,
6609                                       const LookupResult &Prev) {
6610  // C++03 [namespace.udecl]p8:
6611  // C++0x [namespace.udecl]p10:
6612  //   A using-declaration is a declaration and can therefore be used
6613  //   repeatedly where (and only where) multiple declarations are
6614  //   allowed.
6615  //
6616  // That's in non-member contexts.
6617  if (!CurContext->getRedeclContext()->isRecord())
6618    return false;
6619
6620  NestedNameSpecifier *Qual
6621    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6622
6623  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6624    NamedDecl *D = *I;
6625
6626    bool DTypename;
6627    NestedNameSpecifier *DQual;
6628    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6629      DTypename = UD->isTypeName();
6630      DQual = UD->getQualifier();
6631    } else if (UnresolvedUsingValueDecl *UD
6632                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6633      DTypename = false;
6634      DQual = UD->getQualifier();
6635    } else if (UnresolvedUsingTypenameDecl *UD
6636                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6637      DTypename = true;
6638      DQual = UD->getQualifier();
6639    } else continue;
6640
6641    // using decls differ if one says 'typename' and the other doesn't.
6642    // FIXME: non-dependent using decls?
6643    if (isTypeName != DTypename) continue;
6644
6645    // using decls differ if they name different scopes (but note that
6646    // template instantiation can cause this check to trigger when it
6647    // didn't before instantiation).
6648    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6649        Context.getCanonicalNestedNameSpecifier(DQual))
6650      continue;
6651
6652    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6653    Diag(D->getLocation(), diag::note_using_decl) << 1;
6654    return true;
6655  }
6656
6657  return false;
6658}
6659
6660
6661/// Checks that the given nested-name qualifier used in a using decl
6662/// in the current context is appropriately related to the current
6663/// scope.  If an error is found, diagnoses it and returns true.
6664bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6665                                   const CXXScopeSpec &SS,
6666                                   SourceLocation NameLoc) {
6667  DeclContext *NamedContext = computeDeclContext(SS);
6668
6669  if (!CurContext->isRecord()) {
6670    // C++03 [namespace.udecl]p3:
6671    // C++0x [namespace.udecl]p8:
6672    //   A using-declaration for a class member shall be a member-declaration.
6673
6674    // If we weren't able to compute a valid scope, it must be a
6675    // dependent class scope.
6676    if (!NamedContext || NamedContext->isRecord()) {
6677      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6678        << SS.getRange();
6679      return true;
6680    }
6681
6682    // Otherwise, everything is known to be fine.
6683    return false;
6684  }
6685
6686  // The current scope is a record.
6687
6688  // If the named context is dependent, we can't decide much.
6689  if (!NamedContext) {
6690    // FIXME: in C++0x, we can diagnose if we can prove that the
6691    // nested-name-specifier does not refer to a base class, which is
6692    // still possible in some cases.
6693
6694    // Otherwise we have to conservatively report that things might be
6695    // okay.
6696    return false;
6697  }
6698
6699  if (!NamedContext->isRecord()) {
6700    // Ideally this would point at the last name in the specifier,
6701    // but we don't have that level of source info.
6702    Diag(SS.getRange().getBegin(),
6703         diag::err_using_decl_nested_name_specifier_is_not_class)
6704      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6705    return true;
6706  }
6707
6708  if (!NamedContext->isDependentContext() &&
6709      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6710    return true;
6711
6712  if (getLangOptions().CPlusPlus0x) {
6713    // C++0x [namespace.udecl]p3:
6714    //   In a using-declaration used as a member-declaration, the
6715    //   nested-name-specifier shall name a base class of the class
6716    //   being defined.
6717
6718    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6719                                 cast<CXXRecordDecl>(NamedContext))) {
6720      if (CurContext == NamedContext) {
6721        Diag(NameLoc,
6722             diag::err_using_decl_nested_name_specifier_is_current_class)
6723          << SS.getRange();
6724        return true;
6725      }
6726
6727      Diag(SS.getRange().getBegin(),
6728           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6729        << (NestedNameSpecifier*) SS.getScopeRep()
6730        << cast<CXXRecordDecl>(CurContext)
6731        << SS.getRange();
6732      return true;
6733    }
6734
6735    return false;
6736  }
6737
6738  // C++03 [namespace.udecl]p4:
6739  //   A using-declaration used as a member-declaration shall refer
6740  //   to a member of a base class of the class being defined [etc.].
6741
6742  // Salient point: SS doesn't have to name a base class as long as
6743  // lookup only finds members from base classes.  Therefore we can
6744  // diagnose here only if we can prove that that can't happen,
6745  // i.e. if the class hierarchies provably don't intersect.
6746
6747  // TODO: it would be nice if "definitely valid" results were cached
6748  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6749  // need to be repeated.
6750
6751  struct UserData {
6752    llvm::DenseSet<const CXXRecordDecl*> Bases;
6753
6754    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6755      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6756      Data->Bases.insert(Base);
6757      return true;
6758    }
6759
6760    bool hasDependentBases(const CXXRecordDecl *Class) {
6761      return !Class->forallBases(collect, this);
6762    }
6763
6764    /// Returns true if the base is dependent or is one of the
6765    /// accumulated base classes.
6766    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6767      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6768      return !Data->Bases.count(Base);
6769    }
6770
6771    bool mightShareBases(const CXXRecordDecl *Class) {
6772      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6773    }
6774  };
6775
6776  UserData Data;
6777
6778  // Returns false if we find a dependent base.
6779  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6780    return false;
6781
6782  // Returns false if the class has a dependent base or if it or one
6783  // of its bases is present in the base set of the current context.
6784  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6785    return false;
6786
6787  Diag(SS.getRange().getBegin(),
6788       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6789    << (NestedNameSpecifier*) SS.getScopeRep()
6790    << cast<CXXRecordDecl>(CurContext)
6791    << SS.getRange();
6792
6793  return true;
6794}
6795
6796Decl *Sema::ActOnAliasDeclaration(Scope *S,
6797                                  AccessSpecifier AS,
6798                                  MultiTemplateParamsArg TemplateParamLists,
6799                                  SourceLocation UsingLoc,
6800                                  UnqualifiedId &Name,
6801                                  TypeResult Type) {
6802  // Skip up to the relevant declaration scope.
6803  while (S->getFlags() & Scope::TemplateParamScope)
6804    S = S->getParent();
6805  assert((S->getFlags() & Scope::DeclScope) &&
6806         "got alias-declaration outside of declaration scope");
6807
6808  if (Type.isInvalid())
6809    return 0;
6810
6811  bool Invalid = false;
6812  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6813  TypeSourceInfo *TInfo = 0;
6814  GetTypeFromParser(Type.get(), &TInfo);
6815
6816  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6817    return 0;
6818
6819  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6820                                      UPPC_DeclarationType)) {
6821    Invalid = true;
6822    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6823                                             TInfo->getTypeLoc().getBeginLoc());
6824  }
6825
6826  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6827  LookupName(Previous, S);
6828
6829  // Warn about shadowing the name of a template parameter.
6830  if (Previous.isSingleResult() &&
6831      Previous.getFoundDecl()->isTemplateParameter()) {
6832    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6833    Previous.clear();
6834  }
6835
6836  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6837         "name in alias declaration must be an identifier");
6838  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6839                                               Name.StartLocation,
6840                                               Name.Identifier, TInfo);
6841
6842  NewTD->setAccess(AS);
6843
6844  if (Invalid)
6845    NewTD->setInvalidDecl();
6846
6847  CheckTypedefForVariablyModifiedType(S, NewTD);
6848  Invalid |= NewTD->isInvalidDecl();
6849
6850  bool Redeclaration = false;
6851
6852  NamedDecl *NewND;
6853  if (TemplateParamLists.size()) {
6854    TypeAliasTemplateDecl *OldDecl = 0;
6855    TemplateParameterList *OldTemplateParams = 0;
6856
6857    if (TemplateParamLists.size() != 1) {
6858      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6859        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6860         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6861    }
6862    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6863
6864    // Only consider previous declarations in the same scope.
6865    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6866                         /*ExplicitInstantiationOrSpecialization*/false);
6867    if (!Previous.empty()) {
6868      Redeclaration = true;
6869
6870      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6871      if (!OldDecl && !Invalid) {
6872        Diag(UsingLoc, diag::err_redefinition_different_kind)
6873          << Name.Identifier;
6874
6875        NamedDecl *OldD = Previous.getRepresentativeDecl();
6876        if (OldD->getLocation().isValid())
6877          Diag(OldD->getLocation(), diag::note_previous_definition);
6878
6879        Invalid = true;
6880      }
6881
6882      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6883        if (TemplateParameterListsAreEqual(TemplateParams,
6884                                           OldDecl->getTemplateParameters(),
6885                                           /*Complain=*/true,
6886                                           TPL_TemplateMatch))
6887          OldTemplateParams = OldDecl->getTemplateParameters();
6888        else
6889          Invalid = true;
6890
6891        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6892        if (!Invalid &&
6893            !Context.hasSameType(OldTD->getUnderlyingType(),
6894                                 NewTD->getUnderlyingType())) {
6895          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6896          // but we can't reasonably accept it.
6897          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6898            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6899          if (OldTD->getLocation().isValid())
6900            Diag(OldTD->getLocation(), diag::note_previous_definition);
6901          Invalid = true;
6902        }
6903      }
6904    }
6905
6906    // Merge any previous default template arguments into our parameters,
6907    // and check the parameter list.
6908    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6909                                   TPC_TypeAliasTemplate))
6910      return 0;
6911
6912    TypeAliasTemplateDecl *NewDecl =
6913      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6914                                    Name.Identifier, TemplateParams,
6915                                    NewTD);
6916
6917    NewDecl->setAccess(AS);
6918
6919    if (Invalid)
6920      NewDecl->setInvalidDecl();
6921    else if (OldDecl)
6922      NewDecl->setPreviousDeclaration(OldDecl);
6923
6924    NewND = NewDecl;
6925  } else {
6926    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6927    NewND = NewTD;
6928  }
6929
6930  if (!Redeclaration)
6931    PushOnScopeChains(NewND, S);
6932
6933  return NewND;
6934}
6935
6936Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6937                                             SourceLocation NamespaceLoc,
6938                                             SourceLocation AliasLoc,
6939                                             IdentifierInfo *Alias,
6940                                             CXXScopeSpec &SS,
6941                                             SourceLocation IdentLoc,
6942                                             IdentifierInfo *Ident) {
6943
6944  // Lookup the namespace name.
6945  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6946  LookupParsedName(R, S, &SS);
6947
6948  // Check if we have a previous declaration with the same name.
6949  NamedDecl *PrevDecl
6950    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6951                       ForRedeclaration);
6952  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6953    PrevDecl = 0;
6954
6955  if (PrevDecl) {
6956    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6957      // We already have an alias with the same name that points to the same
6958      // namespace, so don't create a new one.
6959      // FIXME: At some point, we'll want to create the (redundant)
6960      // declaration to maintain better source information.
6961      if (!R.isAmbiguous() && !R.empty() &&
6962          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6963        return 0;
6964    }
6965
6966    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6967      diag::err_redefinition_different_kind;
6968    Diag(AliasLoc, DiagID) << Alias;
6969    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6970    return 0;
6971  }
6972
6973  if (R.isAmbiguous())
6974    return 0;
6975
6976  if (R.empty()) {
6977    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6978      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6979      return 0;
6980    }
6981  }
6982
6983  NamespaceAliasDecl *AliasDecl =
6984    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6985                               Alias, SS.getWithLocInContext(Context),
6986                               IdentLoc, R.getFoundDecl());
6987
6988  PushOnScopeChains(AliasDecl, S);
6989  return AliasDecl;
6990}
6991
6992namespace {
6993  /// \brief Scoped object used to handle the state changes required in Sema
6994  /// to implicitly define the body of a C++ member function;
6995  class ImplicitlyDefinedFunctionScope {
6996    Sema &S;
6997    Sema::ContextRAII SavedContext;
6998
6999  public:
7000    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
7001      : S(S), SavedContext(S, Method)
7002    {
7003      S.PushFunctionScope();
7004      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
7005    }
7006
7007    ~ImplicitlyDefinedFunctionScope() {
7008      S.PopExpressionEvaluationContext();
7009      S.PopFunctionScopeInfo();
7010    }
7011  };
7012}
7013
7014Sema::ImplicitExceptionSpecification
7015Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7016  // C++ [except.spec]p14:
7017  //   An implicitly declared special member function (Clause 12) shall have an
7018  //   exception-specification. [...]
7019  ImplicitExceptionSpecification ExceptSpec(Context);
7020  if (ClassDecl->isInvalidDecl())
7021    return ExceptSpec;
7022
7023  // Direct base-class constructors.
7024  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7025                                       BEnd = ClassDecl->bases_end();
7026       B != BEnd; ++B) {
7027    if (B->isVirtual()) // Handled below.
7028      continue;
7029
7030    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7031      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7032      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7033      // If this is a deleted function, add it anyway. This might be conformant
7034      // with the standard. This might not. I'm not sure. It might not matter.
7035      if (Constructor)
7036        ExceptSpec.CalledDecl(Constructor);
7037    }
7038  }
7039
7040  // Virtual base-class constructors.
7041  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7042                                       BEnd = ClassDecl->vbases_end();
7043       B != BEnd; ++B) {
7044    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7045      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7046      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7047      // If this is a deleted function, add it anyway. This might be conformant
7048      // with the standard. This might not. I'm not sure. It might not matter.
7049      if (Constructor)
7050        ExceptSpec.CalledDecl(Constructor);
7051    }
7052  }
7053
7054  // Field constructors.
7055  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7056                               FEnd = ClassDecl->field_end();
7057       F != FEnd; ++F) {
7058    if (F->hasInClassInitializer()) {
7059      if (Expr *E = F->getInClassInitializer())
7060        ExceptSpec.CalledExpr(E);
7061      else if (!F->isInvalidDecl())
7062        ExceptSpec.SetDelayed();
7063    } else if (const RecordType *RecordTy
7064              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7065      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7066      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7067      // If this is a deleted function, add it anyway. This might be conformant
7068      // with the standard. This might not. I'm not sure. It might not matter.
7069      // In particular, the problem is that this function never gets called. It
7070      // might just be ill-formed because this function attempts to refer to
7071      // a deleted function here.
7072      if (Constructor)
7073        ExceptSpec.CalledDecl(Constructor);
7074    }
7075  }
7076
7077  return ExceptSpec;
7078}
7079
7080CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7081                                                     CXXRecordDecl *ClassDecl) {
7082  // C++ [class.ctor]p5:
7083  //   A default constructor for a class X is a constructor of class X
7084  //   that can be called without an argument. If there is no
7085  //   user-declared constructor for class X, a default constructor is
7086  //   implicitly declared. An implicitly-declared default constructor
7087  //   is an inline public member of its class.
7088  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7089         "Should not build implicit default constructor!");
7090
7091  ImplicitExceptionSpecification Spec =
7092    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7093  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7094
7095  // Create the actual constructor declaration.
7096  CanQualType ClassType
7097    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7098  SourceLocation ClassLoc = ClassDecl->getLocation();
7099  DeclarationName Name
7100    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7101  DeclarationNameInfo NameInfo(Name, ClassLoc);
7102  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7103      Context, ClassDecl, ClassLoc, NameInfo,
7104      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7105      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7106      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7107        getLangOptions().CPlusPlus0x);
7108  DefaultCon->setAccess(AS_public);
7109  DefaultCon->setDefaulted();
7110  DefaultCon->setImplicit();
7111  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7112
7113  // Note that we have declared this constructor.
7114  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7115
7116  if (Scope *S = getScopeForContext(ClassDecl))
7117    PushOnScopeChains(DefaultCon, S, false);
7118  ClassDecl->addDecl(DefaultCon);
7119
7120  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7121    DefaultCon->setDeletedAsWritten();
7122
7123  return DefaultCon;
7124}
7125
7126void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7127                                            CXXConstructorDecl *Constructor) {
7128  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7129          !Constructor->doesThisDeclarationHaveABody() &&
7130          !Constructor->isDeleted()) &&
7131    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7132
7133  CXXRecordDecl *ClassDecl = Constructor->getParent();
7134  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7135
7136  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7137  DiagnosticErrorTrap Trap(Diags);
7138  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7139      Trap.hasErrorOccurred()) {
7140    Diag(CurrentLocation, diag::note_member_synthesized_at)
7141      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7142    Constructor->setInvalidDecl();
7143    return;
7144  }
7145
7146  SourceLocation Loc = Constructor->getLocation();
7147  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7148
7149  Constructor->setUsed();
7150  MarkVTableUsed(CurrentLocation, ClassDecl);
7151
7152  if (ASTMutationListener *L = getASTMutationListener()) {
7153    L->CompletedImplicitDefinition(Constructor);
7154  }
7155}
7156
7157/// Get any existing defaulted default constructor for the given class. Do not
7158/// implicitly define one if it does not exist.
7159static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7160                                                             CXXRecordDecl *D) {
7161  ASTContext &Context = Self.Context;
7162  QualType ClassType = Context.getTypeDeclType(D);
7163  DeclarationName ConstructorName
7164    = Context.DeclarationNames.getCXXConstructorName(
7165                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7166
7167  DeclContext::lookup_const_iterator Con, ConEnd;
7168  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7169       Con != ConEnd; ++Con) {
7170    // A function template cannot be defaulted.
7171    if (isa<FunctionTemplateDecl>(*Con))
7172      continue;
7173
7174    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7175    if (Constructor->isDefaultConstructor())
7176      return Constructor->isDefaulted() ? Constructor : 0;
7177  }
7178  return 0;
7179}
7180
7181void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7182  if (!D) return;
7183  AdjustDeclIfTemplate(D);
7184
7185  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7186  CXXConstructorDecl *CtorDecl
7187    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7188
7189  if (!CtorDecl) return;
7190
7191  // Compute the exception specification for the default constructor.
7192  const FunctionProtoType *CtorTy =
7193    CtorDecl->getType()->castAs<FunctionProtoType>();
7194  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7195    ImplicitExceptionSpecification Spec =
7196      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7197    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7198    assert(EPI.ExceptionSpecType != EST_Delayed);
7199
7200    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7201  }
7202
7203  // If the default constructor is explicitly defaulted, checking the exception
7204  // specification is deferred until now.
7205  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7206      !ClassDecl->isDependentType())
7207    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7208}
7209
7210void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7211  // We start with an initial pass over the base classes to collect those that
7212  // inherit constructors from. If there are none, we can forgo all further
7213  // processing.
7214  typedef SmallVector<const RecordType *, 4> BasesVector;
7215  BasesVector BasesToInheritFrom;
7216  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7217                                          BaseE = ClassDecl->bases_end();
7218         BaseIt != BaseE; ++BaseIt) {
7219    if (BaseIt->getInheritConstructors()) {
7220      QualType Base = BaseIt->getType();
7221      if (Base->isDependentType()) {
7222        // If we inherit constructors from anything that is dependent, just
7223        // abort processing altogether. We'll get another chance for the
7224        // instantiations.
7225        return;
7226      }
7227      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7228    }
7229  }
7230  if (BasesToInheritFrom.empty())
7231    return;
7232
7233  // Now collect the constructors that we already have in the current class.
7234  // Those take precedence over inherited constructors.
7235  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7236  //   unless there is a user-declared constructor with the same signature in
7237  //   the class where the using-declaration appears.
7238  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7239  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7240                                    CtorE = ClassDecl->ctor_end();
7241       CtorIt != CtorE; ++CtorIt) {
7242    ExistingConstructors.insert(
7243        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7244  }
7245
7246  Scope *S = getScopeForContext(ClassDecl);
7247  DeclarationName CreatedCtorName =
7248      Context.DeclarationNames.getCXXConstructorName(
7249          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7250
7251  // Now comes the true work.
7252  // First, we keep a map from constructor types to the base that introduced
7253  // them. Needed for finding conflicting constructors. We also keep the
7254  // actually inserted declarations in there, for pretty diagnostics.
7255  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7256  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7257  ConstructorToSourceMap InheritedConstructors;
7258  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7259                             BaseE = BasesToInheritFrom.end();
7260       BaseIt != BaseE; ++BaseIt) {
7261    const RecordType *Base = *BaseIt;
7262    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7263    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7264    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7265                                      CtorE = BaseDecl->ctor_end();
7266         CtorIt != CtorE; ++CtorIt) {
7267      // Find the using declaration for inheriting this base's constructors.
7268      DeclarationName Name =
7269          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7270      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7271          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7272      SourceLocation UsingLoc = UD ? UD->getLocation() :
7273                                     ClassDecl->getLocation();
7274
7275      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7276      //   from the class X named in the using-declaration consists of actual
7277      //   constructors and notional constructors that result from the
7278      //   transformation of defaulted parameters as follows:
7279      //   - all non-template default constructors of X, and
7280      //   - for each non-template constructor of X that has at least one
7281      //     parameter with a default argument, the set of constructors that
7282      //     results from omitting any ellipsis parameter specification and
7283      //     successively omitting parameters with a default argument from the
7284      //     end of the parameter-type-list.
7285      CXXConstructorDecl *BaseCtor = *CtorIt;
7286      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7287      const FunctionProtoType *BaseCtorType =
7288          BaseCtor->getType()->getAs<FunctionProtoType>();
7289
7290      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7291                    maxParams = BaseCtor->getNumParams();
7292           params <= maxParams; ++params) {
7293        // Skip default constructors. They're never inherited.
7294        if (params == 0)
7295          continue;
7296        // Skip copy and move constructors for the same reason.
7297        if (CanBeCopyOrMove && params == 1)
7298          continue;
7299
7300        // Build up a function type for this particular constructor.
7301        // FIXME: The working paper does not consider that the exception spec
7302        // for the inheriting constructor might be larger than that of the
7303        // source. This code doesn't yet, either. When it does, this code will
7304        // need to be delayed until after exception specifications and in-class
7305        // member initializers are attached.
7306        const Type *NewCtorType;
7307        if (params == maxParams)
7308          NewCtorType = BaseCtorType;
7309        else {
7310          SmallVector<QualType, 16> Args;
7311          for (unsigned i = 0; i < params; ++i) {
7312            Args.push_back(BaseCtorType->getArgType(i));
7313          }
7314          FunctionProtoType::ExtProtoInfo ExtInfo =
7315              BaseCtorType->getExtProtoInfo();
7316          ExtInfo.Variadic = false;
7317          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7318                                                Args.data(), params, ExtInfo)
7319                       .getTypePtr();
7320        }
7321        const Type *CanonicalNewCtorType =
7322            Context.getCanonicalType(NewCtorType);
7323
7324        // Now that we have the type, first check if the class already has a
7325        // constructor with this signature.
7326        if (ExistingConstructors.count(CanonicalNewCtorType))
7327          continue;
7328
7329        // Then we check if we have already declared an inherited constructor
7330        // with this signature.
7331        std::pair<ConstructorToSourceMap::iterator, bool> result =
7332            InheritedConstructors.insert(std::make_pair(
7333                CanonicalNewCtorType,
7334                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7335        if (!result.second) {
7336          // Already in the map. If it came from a different class, that's an
7337          // error. Not if it's from the same.
7338          CanQualType PreviousBase = result.first->second.first;
7339          if (CanonicalBase != PreviousBase) {
7340            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7341            const CXXConstructorDecl *PrevBaseCtor =
7342                PrevCtor->getInheritedConstructor();
7343            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7344
7345            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7346            Diag(BaseCtor->getLocation(),
7347                 diag::note_using_decl_constructor_conflict_current_ctor);
7348            Diag(PrevBaseCtor->getLocation(),
7349                 diag::note_using_decl_constructor_conflict_previous_ctor);
7350            Diag(PrevCtor->getLocation(),
7351                 diag::note_using_decl_constructor_conflict_previous_using);
7352          }
7353          continue;
7354        }
7355
7356        // OK, we're there, now add the constructor.
7357        // C++0x [class.inhctor]p8: [...] that would be performed by a
7358        //   user-written inline constructor [...]
7359        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7360        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7361            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7362            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7363            /*ImplicitlyDeclared=*/true,
7364            // FIXME: Due to a defect in the standard, we treat inherited
7365            // constructors as constexpr even if that makes them ill-formed.
7366            /*Constexpr=*/BaseCtor->isConstexpr());
7367        NewCtor->setAccess(BaseCtor->getAccess());
7368
7369        // Build up the parameter decls and add them.
7370        SmallVector<ParmVarDecl *, 16> ParamDecls;
7371        for (unsigned i = 0; i < params; ++i) {
7372          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7373                                                   UsingLoc, UsingLoc,
7374                                                   /*IdentifierInfo=*/0,
7375                                                   BaseCtorType->getArgType(i),
7376                                                   /*TInfo=*/0, SC_None,
7377                                                   SC_None, /*DefaultArg=*/0));
7378        }
7379        NewCtor->setParams(ParamDecls);
7380        NewCtor->setInheritedConstructor(BaseCtor);
7381
7382        PushOnScopeChains(NewCtor, S, false);
7383        ClassDecl->addDecl(NewCtor);
7384        result.first->second.second = NewCtor;
7385      }
7386    }
7387  }
7388}
7389
7390Sema::ImplicitExceptionSpecification
7391Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7392  // C++ [except.spec]p14:
7393  //   An implicitly declared special member function (Clause 12) shall have
7394  //   an exception-specification.
7395  ImplicitExceptionSpecification ExceptSpec(Context);
7396  if (ClassDecl->isInvalidDecl())
7397    return ExceptSpec;
7398
7399  // Direct base-class destructors.
7400  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7401                                       BEnd = ClassDecl->bases_end();
7402       B != BEnd; ++B) {
7403    if (B->isVirtual()) // Handled below.
7404      continue;
7405
7406    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7407      ExceptSpec.CalledDecl(
7408                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7409  }
7410
7411  // Virtual base-class destructors.
7412  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7413                                       BEnd = ClassDecl->vbases_end();
7414       B != BEnd; ++B) {
7415    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7416      ExceptSpec.CalledDecl(
7417                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7418  }
7419
7420  // Field destructors.
7421  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7422                               FEnd = ClassDecl->field_end();
7423       F != FEnd; ++F) {
7424    if (const RecordType *RecordTy
7425        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7426      ExceptSpec.CalledDecl(
7427                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7428  }
7429
7430  return ExceptSpec;
7431}
7432
7433CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7434  // C++ [class.dtor]p2:
7435  //   If a class has no user-declared destructor, a destructor is
7436  //   declared implicitly. An implicitly-declared destructor is an
7437  //   inline public member of its class.
7438
7439  ImplicitExceptionSpecification Spec =
7440      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7441  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7442
7443  // Create the actual destructor declaration.
7444  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7445
7446  CanQualType ClassType
7447    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7448  SourceLocation ClassLoc = ClassDecl->getLocation();
7449  DeclarationName Name
7450    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7451  DeclarationNameInfo NameInfo(Name, ClassLoc);
7452  CXXDestructorDecl *Destructor
7453      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7454                                  /*isInline=*/true,
7455                                  /*isImplicitlyDeclared=*/true);
7456  Destructor->setAccess(AS_public);
7457  Destructor->setDefaulted();
7458  Destructor->setImplicit();
7459  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7460
7461  // Note that we have declared this destructor.
7462  ++ASTContext::NumImplicitDestructorsDeclared;
7463
7464  // Introduce this destructor into its scope.
7465  if (Scope *S = getScopeForContext(ClassDecl))
7466    PushOnScopeChains(Destructor, S, false);
7467  ClassDecl->addDecl(Destructor);
7468
7469  // This could be uniqued if it ever proves significant.
7470  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7471
7472  if (ShouldDeleteDestructor(Destructor))
7473    Destructor->setDeletedAsWritten();
7474
7475  AddOverriddenMethods(ClassDecl, Destructor);
7476
7477  return Destructor;
7478}
7479
7480void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7481                                    CXXDestructorDecl *Destructor) {
7482  assert((Destructor->isDefaulted() &&
7483          !Destructor->doesThisDeclarationHaveABody()) &&
7484         "DefineImplicitDestructor - call it for implicit default dtor");
7485  CXXRecordDecl *ClassDecl = Destructor->getParent();
7486  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7487
7488  if (Destructor->isInvalidDecl())
7489    return;
7490
7491  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7492
7493  DiagnosticErrorTrap Trap(Diags);
7494  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7495                                         Destructor->getParent());
7496
7497  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7498    Diag(CurrentLocation, diag::note_member_synthesized_at)
7499      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7500
7501    Destructor->setInvalidDecl();
7502    return;
7503  }
7504
7505  SourceLocation Loc = Destructor->getLocation();
7506  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7507  Destructor->setImplicitlyDefined(true);
7508  Destructor->setUsed();
7509  MarkVTableUsed(CurrentLocation, ClassDecl);
7510
7511  if (ASTMutationListener *L = getASTMutationListener()) {
7512    L->CompletedImplicitDefinition(Destructor);
7513  }
7514}
7515
7516void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7517                                         CXXDestructorDecl *destructor) {
7518  // C++11 [class.dtor]p3:
7519  //   A declaration of a destructor that does not have an exception-
7520  //   specification is implicitly considered to have the same exception-
7521  //   specification as an implicit declaration.
7522  const FunctionProtoType *dtorType = destructor->getType()->
7523                                        getAs<FunctionProtoType>();
7524  if (dtorType->hasExceptionSpec())
7525    return;
7526
7527  ImplicitExceptionSpecification exceptSpec =
7528      ComputeDefaultedDtorExceptionSpec(classDecl);
7529
7530  // Replace the destructor's type, building off the existing one. Fortunately,
7531  // the only thing of interest in the destructor type is its extended info.
7532  // The return and arguments are fixed.
7533  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7534  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7535  epi.NumExceptions = exceptSpec.size();
7536  epi.Exceptions = exceptSpec.data();
7537  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7538
7539  destructor->setType(ty);
7540
7541  // FIXME: If the destructor has a body that could throw, and the newly created
7542  // spec doesn't allow exceptions, we should emit a warning, because this
7543  // change in behavior can break conforming C++03 programs at runtime.
7544  // However, we don't have a body yet, so it needs to be done somewhere else.
7545}
7546
7547/// \brief Builds a statement that copies/moves the given entity from \p From to
7548/// \c To.
7549///
7550/// This routine is used to copy/move the members of a class with an
7551/// implicitly-declared copy/move assignment operator. When the entities being
7552/// copied are arrays, this routine builds for loops to copy them.
7553///
7554/// \param S The Sema object used for type-checking.
7555///
7556/// \param Loc The location where the implicit copy/move is being generated.
7557///
7558/// \param T The type of the expressions being copied/moved. Both expressions
7559/// must have this type.
7560///
7561/// \param To The expression we are copying/moving to.
7562///
7563/// \param From The expression we are copying/moving from.
7564///
7565/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7566/// Otherwise, it's a non-static member subobject.
7567///
7568/// \param Copying Whether we're copying or moving.
7569///
7570/// \param Depth Internal parameter recording the depth of the recursion.
7571///
7572/// \returns A statement or a loop that copies the expressions.
7573static StmtResult
7574BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7575                      Expr *To, Expr *From,
7576                      bool CopyingBaseSubobject, bool Copying,
7577                      unsigned Depth = 0) {
7578  // C++0x [class.copy]p28:
7579  //   Each subobject is assigned in the manner appropriate to its type:
7580  //
7581  //     - if the subobject is of class type, as if by a call to operator= with
7582  //       the subobject as the object expression and the corresponding
7583  //       subobject of x as a single function argument (as if by explicit
7584  //       qualification; that is, ignoring any possible virtual overriding
7585  //       functions in more derived classes);
7586  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7587    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7588
7589    // Look for operator=.
7590    DeclarationName Name
7591      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7592    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7593    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7594
7595    // Filter out any result that isn't a copy/move-assignment operator.
7596    LookupResult::Filter F = OpLookup.makeFilter();
7597    while (F.hasNext()) {
7598      NamedDecl *D = F.next();
7599      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7600        if (Copying ? Method->isCopyAssignmentOperator() :
7601                      Method->isMoveAssignmentOperator())
7602          continue;
7603
7604      F.erase();
7605    }
7606    F.done();
7607
7608    // Suppress the protected check (C++ [class.protected]) for each of the
7609    // assignment operators we found. This strange dance is required when
7610    // we're assigning via a base classes's copy-assignment operator. To
7611    // ensure that we're getting the right base class subobject (without
7612    // ambiguities), we need to cast "this" to that subobject type; to
7613    // ensure that we don't go through the virtual call mechanism, we need
7614    // to qualify the operator= name with the base class (see below). However,
7615    // this means that if the base class has a protected copy assignment
7616    // operator, the protected member access check will fail. So, we
7617    // rewrite "protected" access to "public" access in this case, since we
7618    // know by construction that we're calling from a derived class.
7619    if (CopyingBaseSubobject) {
7620      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7621           L != LEnd; ++L) {
7622        if (L.getAccess() == AS_protected)
7623          L.setAccess(AS_public);
7624      }
7625    }
7626
7627    // Create the nested-name-specifier that will be used to qualify the
7628    // reference to operator=; this is required to suppress the virtual
7629    // call mechanism.
7630    CXXScopeSpec SS;
7631    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7632    SS.MakeTrivial(S.Context,
7633                   NestedNameSpecifier::Create(S.Context, 0, false,
7634                                               CanonicalT),
7635                   Loc);
7636
7637    // Create the reference to operator=.
7638    ExprResult OpEqualRef
7639      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7640                                   /*TemplateKWLoc=*/SourceLocation(),
7641                                   /*FirstQualifierInScope=*/0,
7642                                   OpLookup,
7643                                   /*TemplateArgs=*/0,
7644                                   /*SuppressQualifierCheck=*/true);
7645    if (OpEqualRef.isInvalid())
7646      return StmtError();
7647
7648    // Build the call to the assignment operator.
7649
7650    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7651                                                  OpEqualRef.takeAs<Expr>(),
7652                                                  Loc, &From, 1, Loc);
7653    if (Call.isInvalid())
7654      return StmtError();
7655
7656    return S.Owned(Call.takeAs<Stmt>());
7657  }
7658
7659  //     - if the subobject is of scalar type, the built-in assignment
7660  //       operator is used.
7661  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7662  if (!ArrayTy) {
7663    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7664    if (Assignment.isInvalid())
7665      return StmtError();
7666
7667    return S.Owned(Assignment.takeAs<Stmt>());
7668  }
7669
7670  //     - if the subobject is an array, each element is assigned, in the
7671  //       manner appropriate to the element type;
7672
7673  // Construct a loop over the array bounds, e.g.,
7674  //
7675  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7676  //
7677  // that will copy each of the array elements.
7678  QualType SizeType = S.Context.getSizeType();
7679
7680  // Create the iteration variable.
7681  IdentifierInfo *IterationVarName = 0;
7682  {
7683    SmallString<8> Str;
7684    llvm::raw_svector_ostream OS(Str);
7685    OS << "__i" << Depth;
7686    IterationVarName = &S.Context.Idents.get(OS.str());
7687  }
7688  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7689                                          IterationVarName, SizeType,
7690                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7691                                          SC_None, SC_None);
7692
7693  // Initialize the iteration variable to zero.
7694  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7695  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7696
7697  // Create a reference to the iteration variable; we'll use this several
7698  // times throughout.
7699  Expr *IterationVarRef
7700    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7701  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7702  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7703  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7704
7705  // Create the DeclStmt that holds the iteration variable.
7706  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7707
7708  // Create the comparison against the array bound.
7709  llvm::APInt Upper
7710    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7711  Expr *Comparison
7712    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7713                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7714                                     BO_NE, S.Context.BoolTy,
7715                                     VK_RValue, OK_Ordinary, Loc);
7716
7717  // Create the pre-increment of the iteration variable.
7718  Expr *Increment
7719    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7720                                    VK_LValue, OK_Ordinary, Loc);
7721
7722  // Subscript the "from" and "to" expressions with the iteration variable.
7723  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7724                                                         IterationVarRefRVal,
7725                                                         Loc));
7726  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7727                                                       IterationVarRefRVal,
7728                                                       Loc));
7729  if (!Copying) // Cast to rvalue
7730    From = CastForMoving(S, From);
7731
7732  // Build the copy/move for an individual element of the array.
7733  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7734                                          To, From, CopyingBaseSubobject,
7735                                          Copying, Depth + 1);
7736  if (Copy.isInvalid())
7737    return StmtError();
7738
7739  // Construct the loop that copies all elements of this array.
7740  return S.ActOnForStmt(Loc, Loc, InitStmt,
7741                        S.MakeFullExpr(Comparison),
7742                        0, S.MakeFullExpr(Increment),
7743                        Loc, Copy.take());
7744}
7745
7746std::pair<Sema::ImplicitExceptionSpecification, bool>
7747Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7748                                                   CXXRecordDecl *ClassDecl) {
7749  if (ClassDecl->isInvalidDecl())
7750    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7751
7752  // C++ [class.copy]p10:
7753  //   If the class definition does not explicitly declare a copy
7754  //   assignment operator, one is declared implicitly.
7755  //   The implicitly-defined copy assignment operator for a class X
7756  //   will have the form
7757  //
7758  //       X& X::operator=(const X&)
7759  //
7760  //   if
7761  bool HasConstCopyAssignment = true;
7762
7763  //       -- each direct base class B of X has a copy assignment operator
7764  //          whose parameter is of type const B&, const volatile B& or B,
7765  //          and
7766  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7767                                       BaseEnd = ClassDecl->bases_end();
7768       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7769    // We'll handle this below
7770    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7771      continue;
7772
7773    assert(!Base->getType()->isDependentType() &&
7774           "Cannot generate implicit members for class with dependent bases.");
7775    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7776    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7777                            &HasConstCopyAssignment);
7778  }
7779
7780  // In C++11, the above citation has "or virtual" added
7781  if (LangOpts.CPlusPlus0x) {
7782    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7783                                         BaseEnd = ClassDecl->vbases_end();
7784         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7785      assert(!Base->getType()->isDependentType() &&
7786             "Cannot generate implicit members for class with dependent bases.");
7787      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7788      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7789                              &HasConstCopyAssignment);
7790    }
7791  }
7792
7793  //       -- for all the nonstatic data members of X that are of a class
7794  //          type M (or array thereof), each such class type has a copy
7795  //          assignment operator whose parameter is of type const M&,
7796  //          const volatile M& or M.
7797  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7798                                  FieldEnd = ClassDecl->field_end();
7799       HasConstCopyAssignment && Field != FieldEnd;
7800       ++Field) {
7801    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7802    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7803      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7804                              &HasConstCopyAssignment);
7805    }
7806  }
7807
7808  //   Otherwise, the implicitly declared copy assignment operator will
7809  //   have the form
7810  //
7811  //       X& X::operator=(X&)
7812
7813  // C++ [except.spec]p14:
7814  //   An implicitly declared special member function (Clause 12) shall have an
7815  //   exception-specification. [...]
7816
7817  // It is unspecified whether or not an implicit copy assignment operator
7818  // attempts to deduplicate calls to assignment operators of virtual bases are
7819  // made. As such, this exception specification is effectively unspecified.
7820  // Based on a similar decision made for constness in C++0x, we're erring on
7821  // the side of assuming such calls to be made regardless of whether they
7822  // actually happen.
7823  ImplicitExceptionSpecification ExceptSpec(Context);
7824  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7825  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7826                                       BaseEnd = ClassDecl->bases_end();
7827       Base != BaseEnd; ++Base) {
7828    if (Base->isVirtual())
7829      continue;
7830
7831    CXXRecordDecl *BaseClassDecl
7832      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7833    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7834                                                            ArgQuals, false, 0))
7835      ExceptSpec.CalledDecl(CopyAssign);
7836  }
7837
7838  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7839                                       BaseEnd = ClassDecl->vbases_end();
7840       Base != BaseEnd; ++Base) {
7841    CXXRecordDecl *BaseClassDecl
7842      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7843    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7844                                                            ArgQuals, false, 0))
7845      ExceptSpec.CalledDecl(CopyAssign);
7846  }
7847
7848  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7849                                  FieldEnd = ClassDecl->field_end();
7850       Field != FieldEnd;
7851       ++Field) {
7852    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7853    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7854      if (CXXMethodDecl *CopyAssign =
7855          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7856        ExceptSpec.CalledDecl(CopyAssign);
7857    }
7858  }
7859
7860  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7861}
7862
7863CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7864  // Note: The following rules are largely analoguous to the copy
7865  // constructor rules. Note that virtual bases are not taken into account
7866  // for determining the argument type of the operator. Note also that
7867  // operators taking an object instead of a reference are allowed.
7868
7869  ImplicitExceptionSpecification Spec(Context);
7870  bool Const;
7871  llvm::tie(Spec, Const) =
7872    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7873
7874  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7875  QualType RetType = Context.getLValueReferenceType(ArgType);
7876  if (Const)
7877    ArgType = ArgType.withConst();
7878  ArgType = Context.getLValueReferenceType(ArgType);
7879
7880  //   An implicitly-declared copy assignment operator is an inline public
7881  //   member of its class.
7882  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7883  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7884  SourceLocation ClassLoc = ClassDecl->getLocation();
7885  DeclarationNameInfo NameInfo(Name, ClassLoc);
7886  CXXMethodDecl *CopyAssignment
7887    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7888                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7889                            /*TInfo=*/0, /*isStatic=*/false,
7890                            /*StorageClassAsWritten=*/SC_None,
7891                            /*isInline=*/true, /*isConstexpr=*/false,
7892                            SourceLocation());
7893  CopyAssignment->setAccess(AS_public);
7894  CopyAssignment->setDefaulted();
7895  CopyAssignment->setImplicit();
7896  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7897
7898  // Add the parameter to the operator.
7899  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7900                                               ClassLoc, ClassLoc, /*Id=*/0,
7901                                               ArgType, /*TInfo=*/0,
7902                                               SC_None,
7903                                               SC_None, 0);
7904  CopyAssignment->setParams(FromParam);
7905
7906  // Note that we have added this copy-assignment operator.
7907  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7908
7909  if (Scope *S = getScopeForContext(ClassDecl))
7910    PushOnScopeChains(CopyAssignment, S, false);
7911  ClassDecl->addDecl(CopyAssignment);
7912
7913  // C++0x [class.copy]p19:
7914  //   ....  If the class definition does not explicitly declare a copy
7915  //   assignment operator, there is no user-declared move constructor, and
7916  //   there is no user-declared move assignment operator, a copy assignment
7917  //   operator is implicitly declared as defaulted.
7918  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7919          !getLangOptions().MicrosoftMode) ||
7920      ClassDecl->hasUserDeclaredMoveAssignment() ||
7921      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7922    CopyAssignment->setDeletedAsWritten();
7923
7924  AddOverriddenMethods(ClassDecl, CopyAssignment);
7925  return CopyAssignment;
7926}
7927
7928void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7929                                        CXXMethodDecl *CopyAssignOperator) {
7930  assert((CopyAssignOperator->isDefaulted() &&
7931          CopyAssignOperator->isOverloadedOperator() &&
7932          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7933          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7934         "DefineImplicitCopyAssignment called for wrong function");
7935
7936  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7937
7938  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7939    CopyAssignOperator->setInvalidDecl();
7940    return;
7941  }
7942
7943  CopyAssignOperator->setUsed();
7944
7945  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7946  DiagnosticErrorTrap Trap(Diags);
7947
7948  // C++0x [class.copy]p30:
7949  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7950  //   for a non-union class X performs memberwise copy assignment of its
7951  //   subobjects. The direct base classes of X are assigned first, in the
7952  //   order of their declaration in the base-specifier-list, and then the
7953  //   immediate non-static data members of X are assigned, in the order in
7954  //   which they were declared in the class definition.
7955
7956  // The statements that form the synthesized function body.
7957  ASTOwningVector<Stmt*> Statements(*this);
7958
7959  // The parameter for the "other" object, which we are copying from.
7960  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7961  Qualifiers OtherQuals = Other->getType().getQualifiers();
7962  QualType OtherRefType = Other->getType();
7963  if (const LValueReferenceType *OtherRef
7964                                = OtherRefType->getAs<LValueReferenceType>()) {
7965    OtherRefType = OtherRef->getPointeeType();
7966    OtherQuals = OtherRefType.getQualifiers();
7967  }
7968
7969  // Our location for everything implicitly-generated.
7970  SourceLocation Loc = CopyAssignOperator->getLocation();
7971
7972  // Construct a reference to the "other" object. We'll be using this
7973  // throughout the generated ASTs.
7974  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7975  assert(OtherRef && "Reference to parameter cannot fail!");
7976
7977  // Construct the "this" pointer. We'll be using this throughout the generated
7978  // ASTs.
7979  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7980  assert(This && "Reference to this cannot fail!");
7981
7982  // Assign base classes.
7983  bool Invalid = false;
7984  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7985       E = ClassDecl->bases_end(); Base != E; ++Base) {
7986    // Form the assignment:
7987    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7988    QualType BaseType = Base->getType().getUnqualifiedType();
7989    if (!BaseType->isRecordType()) {
7990      Invalid = true;
7991      continue;
7992    }
7993
7994    CXXCastPath BasePath;
7995    BasePath.push_back(Base);
7996
7997    // Construct the "from" expression, which is an implicit cast to the
7998    // appropriately-qualified base type.
7999    Expr *From = OtherRef;
8000    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8001                             CK_UncheckedDerivedToBase,
8002                             VK_LValue, &BasePath).take();
8003
8004    // Dereference "this".
8005    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8006
8007    // Implicitly cast "this" to the appropriately-qualified base type.
8008    To = ImpCastExprToType(To.take(),
8009                           Context.getCVRQualifiedType(BaseType,
8010                                     CopyAssignOperator->getTypeQualifiers()),
8011                           CK_UncheckedDerivedToBase,
8012                           VK_LValue, &BasePath);
8013
8014    // Build the copy.
8015    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
8016                                            To.get(), From,
8017                                            /*CopyingBaseSubobject=*/true,
8018                                            /*Copying=*/true);
8019    if (Copy.isInvalid()) {
8020      Diag(CurrentLocation, diag::note_member_synthesized_at)
8021        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8022      CopyAssignOperator->setInvalidDecl();
8023      return;
8024    }
8025
8026    // Success! Record the copy.
8027    Statements.push_back(Copy.takeAs<Expr>());
8028  }
8029
8030  // \brief Reference to the __builtin_memcpy function.
8031  Expr *BuiltinMemCpyRef = 0;
8032  // \brief Reference to the __builtin_objc_memmove_collectable function.
8033  Expr *CollectableMemCpyRef = 0;
8034
8035  // Assign non-static members.
8036  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8037                                  FieldEnd = ClassDecl->field_end();
8038       Field != FieldEnd; ++Field) {
8039    if (Field->isUnnamedBitfield())
8040      continue;
8041
8042    // Check for members of reference type; we can't copy those.
8043    if (Field->getType()->isReferenceType()) {
8044      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8045        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8046      Diag(Field->getLocation(), diag::note_declared_at);
8047      Diag(CurrentLocation, diag::note_member_synthesized_at)
8048        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8049      Invalid = true;
8050      continue;
8051    }
8052
8053    // Check for members of const-qualified, non-class type.
8054    QualType BaseType = Context.getBaseElementType(Field->getType());
8055    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8056      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8057        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8058      Diag(Field->getLocation(), diag::note_declared_at);
8059      Diag(CurrentLocation, diag::note_member_synthesized_at)
8060        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8061      Invalid = true;
8062      continue;
8063    }
8064
8065    // Suppress assigning zero-width bitfields.
8066    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8067      continue;
8068
8069    QualType FieldType = Field->getType().getNonReferenceType();
8070    if (FieldType->isIncompleteArrayType()) {
8071      assert(ClassDecl->hasFlexibleArrayMember() &&
8072             "Incomplete array type is not valid");
8073      continue;
8074    }
8075
8076    // Build references to the field in the object we're copying from and to.
8077    CXXScopeSpec SS; // Intentionally empty
8078    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8079                              LookupMemberName);
8080    MemberLookup.addDecl(*Field);
8081    MemberLookup.resolveKind();
8082    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8083                                               Loc, /*IsArrow=*/false,
8084                                               SS, SourceLocation(), 0,
8085                                               MemberLookup, 0);
8086    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8087                                             Loc, /*IsArrow=*/true,
8088                                             SS, SourceLocation(), 0,
8089                                             MemberLookup, 0);
8090    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8091    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8092
8093    // If the field should be copied with __builtin_memcpy rather than via
8094    // explicit assignments, do so. This optimization only applies for arrays
8095    // of scalars and arrays of class type with trivial copy-assignment
8096    // operators.
8097    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8098        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8099      // Compute the size of the memory buffer to be copied.
8100      QualType SizeType = Context.getSizeType();
8101      llvm::APInt Size(Context.getTypeSize(SizeType),
8102                       Context.getTypeSizeInChars(BaseType).getQuantity());
8103      for (const ConstantArrayType *Array
8104              = Context.getAsConstantArrayType(FieldType);
8105           Array;
8106           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8107        llvm::APInt ArraySize
8108          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8109        Size *= ArraySize;
8110      }
8111
8112      // Take the address of the field references for "from" and "to".
8113      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8114      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8115
8116      bool NeedsCollectableMemCpy =
8117          (BaseType->isRecordType() &&
8118           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8119
8120      if (NeedsCollectableMemCpy) {
8121        if (!CollectableMemCpyRef) {
8122          // Create a reference to the __builtin_objc_memmove_collectable function.
8123          LookupResult R(*this,
8124                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8125                         Loc, LookupOrdinaryName);
8126          LookupName(R, TUScope, true);
8127
8128          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8129          if (!CollectableMemCpy) {
8130            // Something went horribly wrong earlier, and we will have
8131            // complained about it.
8132            Invalid = true;
8133            continue;
8134          }
8135
8136          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8137                                                  CollectableMemCpy->getType(),
8138                                                  VK_LValue, Loc, 0).take();
8139          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8140        }
8141      }
8142      // Create a reference to the __builtin_memcpy builtin function.
8143      else if (!BuiltinMemCpyRef) {
8144        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8145                       LookupOrdinaryName);
8146        LookupName(R, TUScope, true);
8147
8148        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8149        if (!BuiltinMemCpy) {
8150          // Something went horribly wrong earlier, and we will have complained
8151          // about it.
8152          Invalid = true;
8153          continue;
8154        }
8155
8156        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8157                                            BuiltinMemCpy->getType(),
8158                                            VK_LValue, Loc, 0).take();
8159        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8160      }
8161
8162      ASTOwningVector<Expr*> CallArgs(*this);
8163      CallArgs.push_back(To.takeAs<Expr>());
8164      CallArgs.push_back(From.takeAs<Expr>());
8165      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8166      ExprResult Call = ExprError();
8167      if (NeedsCollectableMemCpy)
8168        Call = ActOnCallExpr(/*Scope=*/0,
8169                             CollectableMemCpyRef,
8170                             Loc, move_arg(CallArgs),
8171                             Loc);
8172      else
8173        Call = ActOnCallExpr(/*Scope=*/0,
8174                             BuiltinMemCpyRef,
8175                             Loc, move_arg(CallArgs),
8176                             Loc);
8177
8178      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8179      Statements.push_back(Call.takeAs<Expr>());
8180      continue;
8181    }
8182
8183    // Build the copy of this field.
8184    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8185                                            To.get(), From.get(),
8186                                            /*CopyingBaseSubobject=*/false,
8187                                            /*Copying=*/true);
8188    if (Copy.isInvalid()) {
8189      Diag(CurrentLocation, diag::note_member_synthesized_at)
8190        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8191      CopyAssignOperator->setInvalidDecl();
8192      return;
8193    }
8194
8195    // Success! Record the copy.
8196    Statements.push_back(Copy.takeAs<Stmt>());
8197  }
8198
8199  if (!Invalid) {
8200    // Add a "return *this;"
8201    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8202
8203    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8204    if (Return.isInvalid())
8205      Invalid = true;
8206    else {
8207      Statements.push_back(Return.takeAs<Stmt>());
8208
8209      if (Trap.hasErrorOccurred()) {
8210        Diag(CurrentLocation, diag::note_member_synthesized_at)
8211          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8212        Invalid = true;
8213      }
8214    }
8215  }
8216
8217  if (Invalid) {
8218    CopyAssignOperator->setInvalidDecl();
8219    return;
8220  }
8221
8222  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8223                                            /*isStmtExpr=*/false);
8224  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8225  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8226
8227  if (ASTMutationListener *L = getASTMutationListener()) {
8228    L->CompletedImplicitDefinition(CopyAssignOperator);
8229  }
8230}
8231
8232Sema::ImplicitExceptionSpecification
8233Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8234  ImplicitExceptionSpecification ExceptSpec(Context);
8235
8236  if (ClassDecl->isInvalidDecl())
8237    return ExceptSpec;
8238
8239  // C++0x [except.spec]p14:
8240  //   An implicitly declared special member function (Clause 12) shall have an
8241  //   exception-specification. [...]
8242
8243  // It is unspecified whether or not an implicit move assignment operator
8244  // attempts to deduplicate calls to assignment operators of virtual bases are
8245  // made. As such, this exception specification is effectively unspecified.
8246  // Based on a similar decision made for constness in C++0x, we're erring on
8247  // the side of assuming such calls to be made regardless of whether they
8248  // actually happen.
8249  // Note that a move constructor is not implicitly declared when there are
8250  // virtual bases, but it can still be user-declared and explicitly defaulted.
8251  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8252                                       BaseEnd = ClassDecl->bases_end();
8253       Base != BaseEnd; ++Base) {
8254    if (Base->isVirtual())
8255      continue;
8256
8257    CXXRecordDecl *BaseClassDecl
8258      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8259    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8260                                                           false, 0))
8261      ExceptSpec.CalledDecl(MoveAssign);
8262  }
8263
8264  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8265                                       BaseEnd = ClassDecl->vbases_end();
8266       Base != BaseEnd; ++Base) {
8267    CXXRecordDecl *BaseClassDecl
8268      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8269    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8270                                                           false, 0))
8271      ExceptSpec.CalledDecl(MoveAssign);
8272  }
8273
8274  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8275                                  FieldEnd = ClassDecl->field_end();
8276       Field != FieldEnd;
8277       ++Field) {
8278    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8279    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8280      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8281                                                             false, 0))
8282        ExceptSpec.CalledDecl(MoveAssign);
8283    }
8284  }
8285
8286  return ExceptSpec;
8287}
8288
8289CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8290  // Note: The following rules are largely analoguous to the move
8291  // constructor rules.
8292
8293  ImplicitExceptionSpecification Spec(
8294      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8295
8296  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8297  QualType RetType = Context.getLValueReferenceType(ArgType);
8298  ArgType = Context.getRValueReferenceType(ArgType);
8299
8300  //   An implicitly-declared move assignment operator is an inline public
8301  //   member of its class.
8302  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8303  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8304  SourceLocation ClassLoc = ClassDecl->getLocation();
8305  DeclarationNameInfo NameInfo(Name, ClassLoc);
8306  CXXMethodDecl *MoveAssignment
8307    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8308                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8309                            /*TInfo=*/0, /*isStatic=*/false,
8310                            /*StorageClassAsWritten=*/SC_None,
8311                            /*isInline=*/true,
8312                            /*isConstexpr=*/false,
8313                            SourceLocation());
8314  MoveAssignment->setAccess(AS_public);
8315  MoveAssignment->setDefaulted();
8316  MoveAssignment->setImplicit();
8317  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8318
8319  // Add the parameter to the operator.
8320  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8321                                               ClassLoc, ClassLoc, /*Id=*/0,
8322                                               ArgType, /*TInfo=*/0,
8323                                               SC_None,
8324                                               SC_None, 0);
8325  MoveAssignment->setParams(FromParam);
8326
8327  // Note that we have added this copy-assignment operator.
8328  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8329
8330  // C++0x [class.copy]p9:
8331  //   If the definition of a class X does not explicitly declare a move
8332  //   assignment operator, one will be implicitly declared as defaulted if and
8333  //   only if:
8334  //   [...]
8335  //   - the move assignment operator would not be implicitly defined as
8336  //     deleted.
8337  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8338    // Cache this result so that we don't try to generate this over and over
8339    // on every lookup, leaking memory and wasting time.
8340    ClassDecl->setFailedImplicitMoveAssignment();
8341    return 0;
8342  }
8343
8344  if (Scope *S = getScopeForContext(ClassDecl))
8345    PushOnScopeChains(MoveAssignment, S, false);
8346  ClassDecl->addDecl(MoveAssignment);
8347
8348  AddOverriddenMethods(ClassDecl, MoveAssignment);
8349  return MoveAssignment;
8350}
8351
8352void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8353                                        CXXMethodDecl *MoveAssignOperator) {
8354  assert((MoveAssignOperator->isDefaulted() &&
8355          MoveAssignOperator->isOverloadedOperator() &&
8356          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8357          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8358         "DefineImplicitMoveAssignment called for wrong function");
8359
8360  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8361
8362  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8363    MoveAssignOperator->setInvalidDecl();
8364    return;
8365  }
8366
8367  MoveAssignOperator->setUsed();
8368
8369  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8370  DiagnosticErrorTrap Trap(Diags);
8371
8372  // C++0x [class.copy]p28:
8373  //   The implicitly-defined or move assignment operator for a non-union class
8374  //   X performs memberwise move assignment of its subobjects. The direct base
8375  //   classes of X are assigned first, in the order of their declaration in the
8376  //   base-specifier-list, and then the immediate non-static data members of X
8377  //   are assigned, in the order in which they were declared in the class
8378  //   definition.
8379
8380  // The statements that form the synthesized function body.
8381  ASTOwningVector<Stmt*> Statements(*this);
8382
8383  // The parameter for the "other" object, which we are move from.
8384  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8385  QualType OtherRefType = Other->getType()->
8386      getAs<RValueReferenceType>()->getPointeeType();
8387  assert(OtherRefType.getQualifiers() == 0 &&
8388         "Bad argument type of defaulted move assignment");
8389
8390  // Our location for everything implicitly-generated.
8391  SourceLocation Loc = MoveAssignOperator->getLocation();
8392
8393  // Construct a reference to the "other" object. We'll be using this
8394  // throughout the generated ASTs.
8395  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8396  assert(OtherRef && "Reference to parameter cannot fail!");
8397  // Cast to rvalue.
8398  OtherRef = CastForMoving(*this, OtherRef);
8399
8400  // Construct the "this" pointer. We'll be using this throughout the generated
8401  // ASTs.
8402  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8403  assert(This && "Reference to this cannot fail!");
8404
8405  // Assign base classes.
8406  bool Invalid = false;
8407  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8408       E = ClassDecl->bases_end(); Base != E; ++Base) {
8409    // Form the assignment:
8410    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8411    QualType BaseType = Base->getType().getUnqualifiedType();
8412    if (!BaseType->isRecordType()) {
8413      Invalid = true;
8414      continue;
8415    }
8416
8417    CXXCastPath BasePath;
8418    BasePath.push_back(Base);
8419
8420    // Construct the "from" expression, which is an implicit cast to the
8421    // appropriately-qualified base type.
8422    Expr *From = OtherRef;
8423    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8424                             VK_XValue, &BasePath).take();
8425
8426    // Dereference "this".
8427    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8428
8429    // Implicitly cast "this" to the appropriately-qualified base type.
8430    To = ImpCastExprToType(To.take(),
8431                           Context.getCVRQualifiedType(BaseType,
8432                                     MoveAssignOperator->getTypeQualifiers()),
8433                           CK_UncheckedDerivedToBase,
8434                           VK_LValue, &BasePath);
8435
8436    // Build the move.
8437    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8438                                            To.get(), From,
8439                                            /*CopyingBaseSubobject=*/true,
8440                                            /*Copying=*/false);
8441    if (Move.isInvalid()) {
8442      Diag(CurrentLocation, diag::note_member_synthesized_at)
8443        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8444      MoveAssignOperator->setInvalidDecl();
8445      return;
8446    }
8447
8448    // Success! Record the move.
8449    Statements.push_back(Move.takeAs<Expr>());
8450  }
8451
8452  // \brief Reference to the __builtin_memcpy function.
8453  Expr *BuiltinMemCpyRef = 0;
8454  // \brief Reference to the __builtin_objc_memmove_collectable function.
8455  Expr *CollectableMemCpyRef = 0;
8456
8457  // Assign non-static members.
8458  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8459                                  FieldEnd = ClassDecl->field_end();
8460       Field != FieldEnd; ++Field) {
8461    if (Field->isUnnamedBitfield())
8462      continue;
8463
8464    // Check for members of reference type; we can't move those.
8465    if (Field->getType()->isReferenceType()) {
8466      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8467        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8468      Diag(Field->getLocation(), diag::note_declared_at);
8469      Diag(CurrentLocation, diag::note_member_synthesized_at)
8470        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8471      Invalid = true;
8472      continue;
8473    }
8474
8475    // Check for members of const-qualified, non-class type.
8476    QualType BaseType = Context.getBaseElementType(Field->getType());
8477    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8478      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8479        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8480      Diag(Field->getLocation(), diag::note_declared_at);
8481      Diag(CurrentLocation, diag::note_member_synthesized_at)
8482        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8483      Invalid = true;
8484      continue;
8485    }
8486
8487    // Suppress assigning zero-width bitfields.
8488    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8489      continue;
8490
8491    QualType FieldType = Field->getType().getNonReferenceType();
8492    if (FieldType->isIncompleteArrayType()) {
8493      assert(ClassDecl->hasFlexibleArrayMember() &&
8494             "Incomplete array type is not valid");
8495      continue;
8496    }
8497
8498    // Build references to the field in the object we're copying from and to.
8499    CXXScopeSpec SS; // Intentionally empty
8500    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8501                              LookupMemberName);
8502    MemberLookup.addDecl(*Field);
8503    MemberLookup.resolveKind();
8504    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8505                                               Loc, /*IsArrow=*/false,
8506                                               SS, SourceLocation(), 0,
8507                                               MemberLookup, 0);
8508    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8509                                             Loc, /*IsArrow=*/true,
8510                                             SS, SourceLocation(), 0,
8511                                             MemberLookup, 0);
8512    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8513    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8514
8515    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8516        "Member reference with rvalue base must be rvalue except for reference "
8517        "members, which aren't allowed for move assignment.");
8518
8519    // If the field should be copied with __builtin_memcpy rather than via
8520    // explicit assignments, do so. This optimization only applies for arrays
8521    // of scalars and arrays of class type with trivial move-assignment
8522    // operators.
8523    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8524        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8525      // Compute the size of the memory buffer to be copied.
8526      QualType SizeType = Context.getSizeType();
8527      llvm::APInt Size(Context.getTypeSize(SizeType),
8528                       Context.getTypeSizeInChars(BaseType).getQuantity());
8529      for (const ConstantArrayType *Array
8530              = Context.getAsConstantArrayType(FieldType);
8531           Array;
8532           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8533        llvm::APInt ArraySize
8534          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8535        Size *= ArraySize;
8536      }
8537
8538      // Take the address of the field references for "from" and "to". We
8539      // directly construct UnaryOperators here because semantic analysis
8540      // does not permit us to take the address of an xvalue.
8541      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8542                             Context.getPointerType(From.get()->getType()),
8543                             VK_RValue, OK_Ordinary, Loc);
8544      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8545                           Context.getPointerType(To.get()->getType()),
8546                           VK_RValue, OK_Ordinary, Loc);
8547
8548      bool NeedsCollectableMemCpy =
8549          (BaseType->isRecordType() &&
8550           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8551
8552      if (NeedsCollectableMemCpy) {
8553        if (!CollectableMemCpyRef) {
8554          // Create a reference to the __builtin_objc_memmove_collectable function.
8555          LookupResult R(*this,
8556                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8557                         Loc, LookupOrdinaryName);
8558          LookupName(R, TUScope, true);
8559
8560          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8561          if (!CollectableMemCpy) {
8562            // Something went horribly wrong earlier, and we will have
8563            // complained about it.
8564            Invalid = true;
8565            continue;
8566          }
8567
8568          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8569                                                  CollectableMemCpy->getType(),
8570                                                  VK_LValue, Loc, 0).take();
8571          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8572        }
8573      }
8574      // Create a reference to the __builtin_memcpy builtin function.
8575      else if (!BuiltinMemCpyRef) {
8576        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8577                       LookupOrdinaryName);
8578        LookupName(R, TUScope, true);
8579
8580        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8581        if (!BuiltinMemCpy) {
8582          // Something went horribly wrong earlier, and we will have complained
8583          // about it.
8584          Invalid = true;
8585          continue;
8586        }
8587
8588        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8589                                            BuiltinMemCpy->getType(),
8590                                            VK_LValue, Loc, 0).take();
8591        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8592      }
8593
8594      ASTOwningVector<Expr*> CallArgs(*this);
8595      CallArgs.push_back(To.takeAs<Expr>());
8596      CallArgs.push_back(From.takeAs<Expr>());
8597      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8598      ExprResult Call = ExprError();
8599      if (NeedsCollectableMemCpy)
8600        Call = ActOnCallExpr(/*Scope=*/0,
8601                             CollectableMemCpyRef,
8602                             Loc, move_arg(CallArgs),
8603                             Loc);
8604      else
8605        Call = ActOnCallExpr(/*Scope=*/0,
8606                             BuiltinMemCpyRef,
8607                             Loc, move_arg(CallArgs),
8608                             Loc);
8609
8610      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8611      Statements.push_back(Call.takeAs<Expr>());
8612      continue;
8613    }
8614
8615    // Build the move of this field.
8616    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8617                                            To.get(), From.get(),
8618                                            /*CopyingBaseSubobject=*/false,
8619                                            /*Copying=*/false);
8620    if (Move.isInvalid()) {
8621      Diag(CurrentLocation, diag::note_member_synthesized_at)
8622        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8623      MoveAssignOperator->setInvalidDecl();
8624      return;
8625    }
8626
8627    // Success! Record the copy.
8628    Statements.push_back(Move.takeAs<Stmt>());
8629  }
8630
8631  if (!Invalid) {
8632    // Add a "return *this;"
8633    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8634
8635    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8636    if (Return.isInvalid())
8637      Invalid = true;
8638    else {
8639      Statements.push_back(Return.takeAs<Stmt>());
8640
8641      if (Trap.hasErrorOccurred()) {
8642        Diag(CurrentLocation, diag::note_member_synthesized_at)
8643          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8644        Invalid = true;
8645      }
8646    }
8647  }
8648
8649  if (Invalid) {
8650    MoveAssignOperator->setInvalidDecl();
8651    return;
8652  }
8653
8654  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8655                                            /*isStmtExpr=*/false);
8656  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8657  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8658
8659  if (ASTMutationListener *L = getASTMutationListener()) {
8660    L->CompletedImplicitDefinition(MoveAssignOperator);
8661  }
8662}
8663
8664std::pair<Sema::ImplicitExceptionSpecification, bool>
8665Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8666  if (ClassDecl->isInvalidDecl())
8667    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8668
8669  // C++ [class.copy]p5:
8670  //   The implicitly-declared copy constructor for a class X will
8671  //   have the form
8672  //
8673  //       X::X(const X&)
8674  //
8675  //   if
8676  // FIXME: It ought to be possible to store this on the record.
8677  bool HasConstCopyConstructor = true;
8678
8679  //     -- each direct or virtual base class B of X has a copy
8680  //        constructor whose first parameter is of type const B& or
8681  //        const volatile B&, and
8682  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8683                                       BaseEnd = ClassDecl->bases_end();
8684       HasConstCopyConstructor && Base != BaseEnd;
8685       ++Base) {
8686    // Virtual bases are handled below.
8687    if (Base->isVirtual())
8688      continue;
8689
8690    CXXRecordDecl *BaseClassDecl
8691      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8692    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8693                             &HasConstCopyConstructor);
8694  }
8695
8696  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8697                                       BaseEnd = ClassDecl->vbases_end();
8698       HasConstCopyConstructor && Base != BaseEnd;
8699       ++Base) {
8700    CXXRecordDecl *BaseClassDecl
8701      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8702    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8703                             &HasConstCopyConstructor);
8704  }
8705
8706  //     -- for all the nonstatic data members of X that are of a
8707  //        class type M (or array thereof), each such class type
8708  //        has a copy constructor whose first parameter is of type
8709  //        const M& or const volatile M&.
8710  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8711                                  FieldEnd = ClassDecl->field_end();
8712       HasConstCopyConstructor && Field != FieldEnd;
8713       ++Field) {
8714    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8715    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8716      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8717                               &HasConstCopyConstructor);
8718    }
8719  }
8720  //   Otherwise, the implicitly declared copy constructor will have
8721  //   the form
8722  //
8723  //       X::X(X&)
8724
8725  // C++ [except.spec]p14:
8726  //   An implicitly declared special member function (Clause 12) shall have an
8727  //   exception-specification. [...]
8728  ImplicitExceptionSpecification ExceptSpec(Context);
8729  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8730  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8731                                       BaseEnd = ClassDecl->bases_end();
8732       Base != BaseEnd;
8733       ++Base) {
8734    // Virtual bases are handled below.
8735    if (Base->isVirtual())
8736      continue;
8737
8738    CXXRecordDecl *BaseClassDecl
8739      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8740    if (CXXConstructorDecl *CopyConstructor =
8741          LookupCopyingConstructor(BaseClassDecl, Quals))
8742      ExceptSpec.CalledDecl(CopyConstructor);
8743  }
8744  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8745                                       BaseEnd = ClassDecl->vbases_end();
8746       Base != BaseEnd;
8747       ++Base) {
8748    CXXRecordDecl *BaseClassDecl
8749      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8750    if (CXXConstructorDecl *CopyConstructor =
8751          LookupCopyingConstructor(BaseClassDecl, Quals))
8752      ExceptSpec.CalledDecl(CopyConstructor);
8753  }
8754  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8755                                  FieldEnd = ClassDecl->field_end();
8756       Field != FieldEnd;
8757       ++Field) {
8758    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8759    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8760      if (CXXConstructorDecl *CopyConstructor =
8761        LookupCopyingConstructor(FieldClassDecl, Quals))
8762      ExceptSpec.CalledDecl(CopyConstructor);
8763    }
8764  }
8765
8766  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8767}
8768
8769CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8770                                                    CXXRecordDecl *ClassDecl) {
8771  // C++ [class.copy]p4:
8772  //   If the class definition does not explicitly declare a copy
8773  //   constructor, one is declared implicitly.
8774
8775  ImplicitExceptionSpecification Spec(Context);
8776  bool Const;
8777  llvm::tie(Spec, Const) =
8778    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8779
8780  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8781  QualType ArgType = ClassType;
8782  if (Const)
8783    ArgType = ArgType.withConst();
8784  ArgType = Context.getLValueReferenceType(ArgType);
8785
8786  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8787
8788  DeclarationName Name
8789    = Context.DeclarationNames.getCXXConstructorName(
8790                                           Context.getCanonicalType(ClassType));
8791  SourceLocation ClassLoc = ClassDecl->getLocation();
8792  DeclarationNameInfo NameInfo(Name, ClassLoc);
8793
8794  //   An implicitly-declared copy constructor is an inline public
8795  //   member of its class.
8796  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8797      Context, ClassDecl, ClassLoc, NameInfo,
8798      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8799      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8800      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8801        getLangOptions().CPlusPlus0x);
8802  CopyConstructor->setAccess(AS_public);
8803  CopyConstructor->setDefaulted();
8804  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8805
8806  // Note that we have declared this constructor.
8807  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8808
8809  // Add the parameter to the constructor.
8810  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8811                                               ClassLoc, ClassLoc,
8812                                               /*IdentifierInfo=*/0,
8813                                               ArgType, /*TInfo=*/0,
8814                                               SC_None,
8815                                               SC_None, 0);
8816  CopyConstructor->setParams(FromParam);
8817
8818  if (Scope *S = getScopeForContext(ClassDecl))
8819    PushOnScopeChains(CopyConstructor, S, false);
8820  ClassDecl->addDecl(CopyConstructor);
8821
8822  // C++11 [class.copy]p8:
8823  //   ... If the class definition does not explicitly declare a copy
8824  //   constructor, there is no user-declared move constructor, and there is no
8825  //   user-declared move assignment operator, a copy constructor is implicitly
8826  //   declared as defaulted.
8827  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8828      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8829          !getLangOptions().MicrosoftMode) ||
8830      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8831    CopyConstructor->setDeletedAsWritten();
8832
8833  return CopyConstructor;
8834}
8835
8836void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8837                                   CXXConstructorDecl *CopyConstructor) {
8838  assert((CopyConstructor->isDefaulted() &&
8839          CopyConstructor->isCopyConstructor() &&
8840          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8841         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8842
8843  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8844  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8845
8846  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8847  DiagnosticErrorTrap Trap(Diags);
8848
8849  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8850      Trap.hasErrorOccurred()) {
8851    Diag(CurrentLocation, diag::note_member_synthesized_at)
8852      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8853    CopyConstructor->setInvalidDecl();
8854  }  else {
8855    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8856                                               CopyConstructor->getLocation(),
8857                                               MultiStmtArg(*this, 0, 0),
8858                                               /*isStmtExpr=*/false)
8859                                                              .takeAs<Stmt>());
8860    CopyConstructor->setImplicitlyDefined(true);
8861  }
8862
8863  CopyConstructor->setUsed();
8864  if (ASTMutationListener *L = getASTMutationListener()) {
8865    L->CompletedImplicitDefinition(CopyConstructor);
8866  }
8867}
8868
8869Sema::ImplicitExceptionSpecification
8870Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8871  // C++ [except.spec]p14:
8872  //   An implicitly declared special member function (Clause 12) shall have an
8873  //   exception-specification. [...]
8874  ImplicitExceptionSpecification ExceptSpec(Context);
8875  if (ClassDecl->isInvalidDecl())
8876    return ExceptSpec;
8877
8878  // Direct base-class constructors.
8879  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8880                                       BEnd = ClassDecl->bases_end();
8881       B != BEnd; ++B) {
8882    if (B->isVirtual()) // Handled below.
8883      continue;
8884
8885    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8886      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8887      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8888      // If this is a deleted function, add it anyway. This might be conformant
8889      // with the standard. This might not. I'm not sure. It might not matter.
8890      if (Constructor)
8891        ExceptSpec.CalledDecl(Constructor);
8892    }
8893  }
8894
8895  // Virtual base-class constructors.
8896  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8897                                       BEnd = ClassDecl->vbases_end();
8898       B != BEnd; ++B) {
8899    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8900      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8901      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8902      // If this is a deleted function, add it anyway. This might be conformant
8903      // with the standard. This might not. I'm not sure. It might not matter.
8904      if (Constructor)
8905        ExceptSpec.CalledDecl(Constructor);
8906    }
8907  }
8908
8909  // Field constructors.
8910  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8911                               FEnd = ClassDecl->field_end();
8912       F != FEnd; ++F) {
8913    if (const RecordType *RecordTy
8914              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8915      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8916      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8917      // If this is a deleted function, add it anyway. This might be conformant
8918      // with the standard. This might not. I'm not sure. It might not matter.
8919      // In particular, the problem is that this function never gets called. It
8920      // might just be ill-formed because this function attempts to refer to
8921      // a deleted function here.
8922      if (Constructor)
8923        ExceptSpec.CalledDecl(Constructor);
8924    }
8925  }
8926
8927  return ExceptSpec;
8928}
8929
8930CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8931                                                    CXXRecordDecl *ClassDecl) {
8932  ImplicitExceptionSpecification Spec(
8933      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8934
8935  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8936  QualType ArgType = Context.getRValueReferenceType(ClassType);
8937
8938  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8939
8940  DeclarationName Name
8941    = Context.DeclarationNames.getCXXConstructorName(
8942                                           Context.getCanonicalType(ClassType));
8943  SourceLocation ClassLoc = ClassDecl->getLocation();
8944  DeclarationNameInfo NameInfo(Name, ClassLoc);
8945
8946  // C++0x [class.copy]p11:
8947  //   An implicitly-declared copy/move constructor is an inline public
8948  //   member of its class.
8949  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8950      Context, ClassDecl, ClassLoc, NameInfo,
8951      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8952      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8953      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8954        getLangOptions().CPlusPlus0x);
8955  MoveConstructor->setAccess(AS_public);
8956  MoveConstructor->setDefaulted();
8957  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8958
8959  // Add the parameter to the constructor.
8960  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8961                                               ClassLoc, ClassLoc,
8962                                               /*IdentifierInfo=*/0,
8963                                               ArgType, /*TInfo=*/0,
8964                                               SC_None,
8965                                               SC_None, 0);
8966  MoveConstructor->setParams(FromParam);
8967
8968  // C++0x [class.copy]p9:
8969  //   If the definition of a class X does not explicitly declare a move
8970  //   constructor, one will be implicitly declared as defaulted if and only if:
8971  //   [...]
8972  //   - the move constructor would not be implicitly defined as deleted.
8973  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8974    // Cache this result so that we don't try to generate this over and over
8975    // on every lookup, leaking memory and wasting time.
8976    ClassDecl->setFailedImplicitMoveConstructor();
8977    return 0;
8978  }
8979
8980  // Note that we have declared this constructor.
8981  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8982
8983  if (Scope *S = getScopeForContext(ClassDecl))
8984    PushOnScopeChains(MoveConstructor, S, false);
8985  ClassDecl->addDecl(MoveConstructor);
8986
8987  return MoveConstructor;
8988}
8989
8990void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8991                                   CXXConstructorDecl *MoveConstructor) {
8992  assert((MoveConstructor->isDefaulted() &&
8993          MoveConstructor->isMoveConstructor() &&
8994          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8995         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8996
8997  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8998  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8999
9000  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
9001  DiagnosticErrorTrap Trap(Diags);
9002
9003  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
9004      Trap.hasErrorOccurred()) {
9005    Diag(CurrentLocation, diag::note_member_synthesized_at)
9006      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9007    MoveConstructor->setInvalidDecl();
9008  }  else {
9009    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9010                                               MoveConstructor->getLocation(),
9011                                               MultiStmtArg(*this, 0, 0),
9012                                               /*isStmtExpr=*/false)
9013                                                              .takeAs<Stmt>());
9014    MoveConstructor->setImplicitlyDefined(true);
9015  }
9016
9017  MoveConstructor->setUsed();
9018
9019  if (ASTMutationListener *L = getASTMutationListener()) {
9020    L->CompletedImplicitDefinition(MoveConstructor);
9021  }
9022}
9023
9024ExprResult
9025Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9026                            CXXConstructorDecl *Constructor,
9027                            MultiExprArg ExprArgs,
9028                            bool HadMultipleCandidates,
9029                            bool RequiresZeroInit,
9030                            unsigned ConstructKind,
9031                            SourceRange ParenRange) {
9032  bool Elidable = false;
9033
9034  // C++0x [class.copy]p34:
9035  //   When certain criteria are met, an implementation is allowed to
9036  //   omit the copy/move construction of a class object, even if the
9037  //   copy/move constructor and/or destructor for the object have
9038  //   side effects. [...]
9039  //     - when a temporary class object that has not been bound to a
9040  //       reference (12.2) would be copied/moved to a class object
9041  //       with the same cv-unqualified type, the copy/move operation
9042  //       can be omitted by constructing the temporary object
9043  //       directly into the target of the omitted copy/move
9044  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9045      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9046    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9047    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9048  }
9049
9050  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9051                               Elidable, move(ExprArgs), HadMultipleCandidates,
9052                               RequiresZeroInit, ConstructKind, ParenRange);
9053}
9054
9055/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9056/// including handling of its default argument expressions.
9057ExprResult
9058Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9059                            CXXConstructorDecl *Constructor, bool Elidable,
9060                            MultiExprArg ExprArgs,
9061                            bool HadMultipleCandidates,
9062                            bool RequiresZeroInit,
9063                            unsigned ConstructKind,
9064                            SourceRange ParenRange) {
9065  unsigned NumExprs = ExprArgs.size();
9066  Expr **Exprs = (Expr **)ExprArgs.release();
9067
9068  for (specific_attr_iterator<NonNullAttr>
9069           i = Constructor->specific_attr_begin<NonNullAttr>(),
9070           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9071    const NonNullAttr *NonNull = *i;
9072    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9073  }
9074
9075  MarkFunctionReferenced(ConstructLoc, Constructor);
9076  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9077                                        Constructor, Elidable, Exprs, NumExprs,
9078                                        HadMultipleCandidates, /*FIXME*/false,
9079                                        RequiresZeroInit,
9080              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9081                                        ParenRange));
9082}
9083
9084bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9085                                        CXXConstructorDecl *Constructor,
9086                                        MultiExprArg Exprs,
9087                                        bool HadMultipleCandidates) {
9088  // FIXME: Provide the correct paren SourceRange when available.
9089  ExprResult TempResult =
9090    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9091                          move(Exprs), HadMultipleCandidates, false,
9092                          CXXConstructExpr::CK_Complete, SourceRange());
9093  if (TempResult.isInvalid())
9094    return true;
9095
9096  Expr *Temp = TempResult.takeAs<Expr>();
9097  CheckImplicitConversions(Temp, VD->getLocation());
9098  MarkFunctionReferenced(VD->getLocation(), Constructor);
9099  Temp = MaybeCreateExprWithCleanups(Temp);
9100  VD->setInit(Temp);
9101
9102  return false;
9103}
9104
9105void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9106  if (VD->isInvalidDecl()) return;
9107
9108  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9109  if (ClassDecl->isInvalidDecl()) return;
9110  if (ClassDecl->hasTrivialDestructor()) return;
9111  if (ClassDecl->isDependentContext()) return;
9112
9113  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9114  MarkFunctionReferenced(VD->getLocation(), Destructor);
9115  CheckDestructorAccess(VD->getLocation(), Destructor,
9116                        PDiag(diag::err_access_dtor_var)
9117                        << VD->getDeclName()
9118                        << VD->getType());
9119
9120  if (!VD->hasGlobalStorage()) return;
9121
9122  // Emit warning for non-trivial dtor in global scope (a real global,
9123  // class-static, function-static).
9124  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9125
9126  // TODO: this should be re-enabled for static locals by !CXAAtExit
9127  if (!VD->isStaticLocal())
9128    Diag(VD->getLocation(), diag::warn_global_destructor);
9129}
9130
9131/// \brief Given a constructor and the set of arguments provided for the
9132/// constructor, convert the arguments and add any required default arguments
9133/// to form a proper call to this constructor.
9134///
9135/// \returns true if an error occurred, false otherwise.
9136bool
9137Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9138                              MultiExprArg ArgsPtr,
9139                              SourceLocation Loc,
9140                              ASTOwningVector<Expr*> &ConvertedArgs) {
9141  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9142  unsigned NumArgs = ArgsPtr.size();
9143  Expr **Args = (Expr **)ArgsPtr.get();
9144
9145  const FunctionProtoType *Proto
9146    = Constructor->getType()->getAs<FunctionProtoType>();
9147  assert(Proto && "Constructor without a prototype?");
9148  unsigned NumArgsInProto = Proto->getNumArgs();
9149
9150  // If too few arguments are available, we'll fill in the rest with defaults.
9151  if (NumArgs < NumArgsInProto)
9152    ConvertedArgs.reserve(NumArgsInProto);
9153  else
9154    ConvertedArgs.reserve(NumArgs);
9155
9156  VariadicCallType CallType =
9157    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9158  SmallVector<Expr *, 8> AllArgs;
9159  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9160                                        Proto, 0, Args, NumArgs, AllArgs,
9161                                        CallType);
9162  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9163    ConvertedArgs.push_back(AllArgs[i]);
9164  return Invalid;
9165}
9166
9167static inline bool
9168CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9169                                       const FunctionDecl *FnDecl) {
9170  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9171  if (isa<NamespaceDecl>(DC)) {
9172    return SemaRef.Diag(FnDecl->getLocation(),
9173                        diag::err_operator_new_delete_declared_in_namespace)
9174      << FnDecl->getDeclName();
9175  }
9176
9177  if (isa<TranslationUnitDecl>(DC) &&
9178      FnDecl->getStorageClass() == SC_Static) {
9179    return SemaRef.Diag(FnDecl->getLocation(),
9180                        diag::err_operator_new_delete_declared_static)
9181      << FnDecl->getDeclName();
9182  }
9183
9184  return false;
9185}
9186
9187static inline bool
9188CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9189                            CanQualType ExpectedResultType,
9190                            CanQualType ExpectedFirstParamType,
9191                            unsigned DependentParamTypeDiag,
9192                            unsigned InvalidParamTypeDiag) {
9193  QualType ResultType =
9194    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9195
9196  // Check that the result type is not dependent.
9197  if (ResultType->isDependentType())
9198    return SemaRef.Diag(FnDecl->getLocation(),
9199                        diag::err_operator_new_delete_dependent_result_type)
9200    << FnDecl->getDeclName() << ExpectedResultType;
9201
9202  // Check that the result type is what we expect.
9203  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9204    return SemaRef.Diag(FnDecl->getLocation(),
9205                        diag::err_operator_new_delete_invalid_result_type)
9206    << FnDecl->getDeclName() << ExpectedResultType;
9207
9208  // A function template must have at least 2 parameters.
9209  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9210    return SemaRef.Diag(FnDecl->getLocation(),
9211                      diag::err_operator_new_delete_template_too_few_parameters)
9212        << FnDecl->getDeclName();
9213
9214  // The function decl must have at least 1 parameter.
9215  if (FnDecl->getNumParams() == 0)
9216    return SemaRef.Diag(FnDecl->getLocation(),
9217                        diag::err_operator_new_delete_too_few_parameters)
9218      << FnDecl->getDeclName();
9219
9220  // Check the the first parameter type is not dependent.
9221  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9222  if (FirstParamType->isDependentType())
9223    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9224      << FnDecl->getDeclName() << ExpectedFirstParamType;
9225
9226  // Check that the first parameter type is what we expect.
9227  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9228      ExpectedFirstParamType)
9229    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9230    << FnDecl->getDeclName() << ExpectedFirstParamType;
9231
9232  return false;
9233}
9234
9235static bool
9236CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9237  // C++ [basic.stc.dynamic.allocation]p1:
9238  //   A program is ill-formed if an allocation function is declared in a
9239  //   namespace scope other than global scope or declared static in global
9240  //   scope.
9241  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9242    return true;
9243
9244  CanQualType SizeTy =
9245    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9246
9247  // C++ [basic.stc.dynamic.allocation]p1:
9248  //  The return type shall be void*. The first parameter shall have type
9249  //  std::size_t.
9250  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9251                                  SizeTy,
9252                                  diag::err_operator_new_dependent_param_type,
9253                                  diag::err_operator_new_param_type))
9254    return true;
9255
9256  // C++ [basic.stc.dynamic.allocation]p1:
9257  //  The first parameter shall not have an associated default argument.
9258  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9259    return SemaRef.Diag(FnDecl->getLocation(),
9260                        diag::err_operator_new_default_arg)
9261      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9262
9263  return false;
9264}
9265
9266static bool
9267CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9268  // C++ [basic.stc.dynamic.deallocation]p1:
9269  //   A program is ill-formed if deallocation functions are declared in a
9270  //   namespace scope other than global scope or declared static in global
9271  //   scope.
9272  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9273    return true;
9274
9275  // C++ [basic.stc.dynamic.deallocation]p2:
9276  //   Each deallocation function shall return void and its first parameter
9277  //   shall be void*.
9278  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9279                                  SemaRef.Context.VoidPtrTy,
9280                                 diag::err_operator_delete_dependent_param_type,
9281                                 diag::err_operator_delete_param_type))
9282    return true;
9283
9284  return false;
9285}
9286
9287/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9288/// of this overloaded operator is well-formed. If so, returns false;
9289/// otherwise, emits appropriate diagnostics and returns true.
9290bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9291  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9292         "Expected an overloaded operator declaration");
9293
9294  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9295
9296  // C++ [over.oper]p5:
9297  //   The allocation and deallocation functions, operator new,
9298  //   operator new[], operator delete and operator delete[], are
9299  //   described completely in 3.7.3. The attributes and restrictions
9300  //   found in the rest of this subclause do not apply to them unless
9301  //   explicitly stated in 3.7.3.
9302  if (Op == OO_Delete || Op == OO_Array_Delete)
9303    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9304
9305  if (Op == OO_New || Op == OO_Array_New)
9306    return CheckOperatorNewDeclaration(*this, FnDecl);
9307
9308  // C++ [over.oper]p6:
9309  //   An operator function shall either be a non-static member
9310  //   function or be a non-member function and have at least one
9311  //   parameter whose type is a class, a reference to a class, an
9312  //   enumeration, or a reference to an enumeration.
9313  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9314    if (MethodDecl->isStatic())
9315      return Diag(FnDecl->getLocation(),
9316                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9317  } else {
9318    bool ClassOrEnumParam = false;
9319    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9320                                   ParamEnd = FnDecl->param_end();
9321         Param != ParamEnd; ++Param) {
9322      QualType ParamType = (*Param)->getType().getNonReferenceType();
9323      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9324          ParamType->isEnumeralType()) {
9325        ClassOrEnumParam = true;
9326        break;
9327      }
9328    }
9329
9330    if (!ClassOrEnumParam)
9331      return Diag(FnDecl->getLocation(),
9332                  diag::err_operator_overload_needs_class_or_enum)
9333        << FnDecl->getDeclName();
9334  }
9335
9336  // C++ [over.oper]p8:
9337  //   An operator function cannot have default arguments (8.3.6),
9338  //   except where explicitly stated below.
9339  //
9340  // Only the function-call operator allows default arguments
9341  // (C++ [over.call]p1).
9342  if (Op != OO_Call) {
9343    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9344         Param != FnDecl->param_end(); ++Param) {
9345      if ((*Param)->hasDefaultArg())
9346        return Diag((*Param)->getLocation(),
9347                    diag::err_operator_overload_default_arg)
9348          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9349    }
9350  }
9351
9352  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9353    { false, false, false }
9354#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9355    , { Unary, Binary, MemberOnly }
9356#include "clang/Basic/OperatorKinds.def"
9357  };
9358
9359  bool CanBeUnaryOperator = OperatorUses[Op][0];
9360  bool CanBeBinaryOperator = OperatorUses[Op][1];
9361  bool MustBeMemberOperator = OperatorUses[Op][2];
9362
9363  // C++ [over.oper]p8:
9364  //   [...] Operator functions cannot have more or fewer parameters
9365  //   than the number required for the corresponding operator, as
9366  //   described in the rest of this subclause.
9367  unsigned NumParams = FnDecl->getNumParams()
9368                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9369  if (Op != OO_Call &&
9370      ((NumParams == 1 && !CanBeUnaryOperator) ||
9371       (NumParams == 2 && !CanBeBinaryOperator) ||
9372       (NumParams < 1) || (NumParams > 2))) {
9373    // We have the wrong number of parameters.
9374    unsigned ErrorKind;
9375    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9376      ErrorKind = 2;  // 2 -> unary or binary.
9377    } else if (CanBeUnaryOperator) {
9378      ErrorKind = 0;  // 0 -> unary
9379    } else {
9380      assert(CanBeBinaryOperator &&
9381             "All non-call overloaded operators are unary or binary!");
9382      ErrorKind = 1;  // 1 -> binary
9383    }
9384
9385    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9386      << FnDecl->getDeclName() << NumParams << ErrorKind;
9387  }
9388
9389  // Overloaded operators other than operator() cannot be variadic.
9390  if (Op != OO_Call &&
9391      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9392    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9393      << FnDecl->getDeclName();
9394  }
9395
9396  // Some operators must be non-static member functions.
9397  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9398    return Diag(FnDecl->getLocation(),
9399                diag::err_operator_overload_must_be_member)
9400      << FnDecl->getDeclName();
9401  }
9402
9403  // C++ [over.inc]p1:
9404  //   The user-defined function called operator++ implements the
9405  //   prefix and postfix ++ operator. If this function is a member
9406  //   function with no parameters, or a non-member function with one
9407  //   parameter of class or enumeration type, it defines the prefix
9408  //   increment operator ++ for objects of that type. If the function
9409  //   is a member function with one parameter (which shall be of type
9410  //   int) or a non-member function with two parameters (the second
9411  //   of which shall be of type int), it defines the postfix
9412  //   increment operator ++ for objects of that type.
9413  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9414    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9415    bool ParamIsInt = false;
9416    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9417      ParamIsInt = BT->getKind() == BuiltinType::Int;
9418
9419    if (!ParamIsInt)
9420      return Diag(LastParam->getLocation(),
9421                  diag::err_operator_overload_post_incdec_must_be_int)
9422        << LastParam->getType() << (Op == OO_MinusMinus);
9423  }
9424
9425  return false;
9426}
9427
9428/// CheckLiteralOperatorDeclaration - Check whether the declaration
9429/// of this literal operator function is well-formed. If so, returns
9430/// false; otherwise, emits appropriate diagnostics and returns true.
9431bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9432  DeclContext *DC = FnDecl->getDeclContext();
9433  Decl::Kind Kind = DC->getDeclKind();
9434  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9435      Kind != Decl::LinkageSpec) {
9436    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9437      << FnDecl->getDeclName();
9438    return true;
9439  }
9440
9441  bool Valid = false;
9442
9443  // template <char...> type operator "" name() is the only valid template
9444  // signature, and the only valid signature with no parameters.
9445  if (FnDecl->param_size() == 0) {
9446    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9447      // Must have only one template parameter
9448      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9449      if (Params->size() == 1) {
9450        NonTypeTemplateParmDecl *PmDecl =
9451          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9452
9453        // The template parameter must be a char parameter pack.
9454        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9455            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9456          Valid = true;
9457      }
9458    }
9459  } else {
9460    // Check the first parameter
9461    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9462
9463    QualType T = (*Param)->getType();
9464
9465    // unsigned long long int, long double, and any character type are allowed
9466    // as the only parameters.
9467    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9468        Context.hasSameType(T, Context.LongDoubleTy) ||
9469        Context.hasSameType(T, Context.CharTy) ||
9470        Context.hasSameType(T, Context.WCharTy) ||
9471        Context.hasSameType(T, Context.Char16Ty) ||
9472        Context.hasSameType(T, Context.Char32Ty)) {
9473      if (++Param == FnDecl->param_end())
9474        Valid = true;
9475      goto FinishedParams;
9476    }
9477
9478    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9479    const PointerType *PT = T->getAs<PointerType>();
9480    if (!PT)
9481      goto FinishedParams;
9482    T = PT->getPointeeType();
9483    if (!T.isConstQualified())
9484      goto FinishedParams;
9485    T = T.getUnqualifiedType();
9486
9487    // Move on to the second parameter;
9488    ++Param;
9489
9490    // If there is no second parameter, the first must be a const char *
9491    if (Param == FnDecl->param_end()) {
9492      if (Context.hasSameType(T, Context.CharTy))
9493        Valid = true;
9494      goto FinishedParams;
9495    }
9496
9497    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9498    // are allowed as the first parameter to a two-parameter function
9499    if (!(Context.hasSameType(T, Context.CharTy) ||
9500          Context.hasSameType(T, Context.WCharTy) ||
9501          Context.hasSameType(T, Context.Char16Ty) ||
9502          Context.hasSameType(T, Context.Char32Ty)))
9503      goto FinishedParams;
9504
9505    // The second and final parameter must be an std::size_t
9506    T = (*Param)->getType().getUnqualifiedType();
9507    if (Context.hasSameType(T, Context.getSizeType()) &&
9508        ++Param == FnDecl->param_end())
9509      Valid = true;
9510  }
9511
9512  // FIXME: This diagnostic is absolutely terrible.
9513FinishedParams:
9514  if (!Valid) {
9515    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9516      << FnDecl->getDeclName();
9517    return true;
9518  }
9519
9520  StringRef LiteralName
9521    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9522  if (LiteralName[0] != '_') {
9523    // C++0x [usrlit.suffix]p1:
9524    //   Literal suffix identifiers that do not start with an underscore are
9525    //   reserved for future standardization.
9526    bool IsHexFloat = true;
9527    if (LiteralName.size() > 1 &&
9528        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9529      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9530        if (!isdigit(LiteralName[I])) {
9531          IsHexFloat = false;
9532          break;
9533        }
9534      }
9535    }
9536
9537    if (IsHexFloat)
9538      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9539        << LiteralName;
9540    else
9541      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9542  }
9543
9544  return false;
9545}
9546
9547/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9548/// linkage specification, including the language and (if present)
9549/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9550/// the location of the language string literal, which is provided
9551/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9552/// the '{' brace. Otherwise, this linkage specification does not
9553/// have any braces.
9554Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9555                                           SourceLocation LangLoc,
9556                                           StringRef Lang,
9557                                           SourceLocation LBraceLoc) {
9558  LinkageSpecDecl::LanguageIDs Language;
9559  if (Lang == "\"C\"")
9560    Language = LinkageSpecDecl::lang_c;
9561  else if (Lang == "\"C++\"")
9562    Language = LinkageSpecDecl::lang_cxx;
9563  else {
9564    Diag(LangLoc, diag::err_bad_language);
9565    return 0;
9566  }
9567
9568  // FIXME: Add all the various semantics of linkage specifications
9569
9570  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9571                                               ExternLoc, LangLoc, Language);
9572  CurContext->addDecl(D);
9573  PushDeclContext(S, D);
9574  return D;
9575}
9576
9577/// ActOnFinishLinkageSpecification - Complete the definition of
9578/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9579/// valid, it's the position of the closing '}' brace in a linkage
9580/// specification that uses braces.
9581Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9582                                            Decl *LinkageSpec,
9583                                            SourceLocation RBraceLoc) {
9584  if (LinkageSpec) {
9585    if (RBraceLoc.isValid()) {
9586      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9587      LSDecl->setRBraceLoc(RBraceLoc);
9588    }
9589    PopDeclContext();
9590  }
9591  return LinkageSpec;
9592}
9593
9594/// \brief Perform semantic analysis for the variable declaration that
9595/// occurs within a C++ catch clause, returning the newly-created
9596/// variable.
9597VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9598                                         TypeSourceInfo *TInfo,
9599                                         SourceLocation StartLoc,
9600                                         SourceLocation Loc,
9601                                         IdentifierInfo *Name) {
9602  bool Invalid = false;
9603  QualType ExDeclType = TInfo->getType();
9604
9605  // Arrays and functions decay.
9606  if (ExDeclType->isArrayType())
9607    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9608  else if (ExDeclType->isFunctionType())
9609    ExDeclType = Context.getPointerType(ExDeclType);
9610
9611  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9612  // The exception-declaration shall not denote a pointer or reference to an
9613  // incomplete type, other than [cv] void*.
9614  // N2844 forbids rvalue references.
9615  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9616    Diag(Loc, diag::err_catch_rvalue_ref);
9617    Invalid = true;
9618  }
9619
9620  QualType BaseType = ExDeclType;
9621  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9622  unsigned DK = diag::err_catch_incomplete;
9623  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9624    BaseType = Ptr->getPointeeType();
9625    Mode = 1;
9626    DK = diag::err_catch_incomplete_ptr;
9627  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9628    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9629    BaseType = Ref->getPointeeType();
9630    Mode = 2;
9631    DK = diag::err_catch_incomplete_ref;
9632  }
9633  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9634      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9635    Invalid = true;
9636
9637  if (!Invalid && !ExDeclType->isDependentType() &&
9638      RequireNonAbstractType(Loc, ExDeclType,
9639                             diag::err_abstract_type_in_decl,
9640                             AbstractVariableType))
9641    Invalid = true;
9642
9643  // Only the non-fragile NeXT runtime currently supports C++ catches
9644  // of ObjC types, and no runtime supports catching ObjC types by value.
9645  if (!Invalid && getLangOptions().ObjC1) {
9646    QualType T = ExDeclType;
9647    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9648      T = RT->getPointeeType();
9649
9650    if (T->isObjCObjectType()) {
9651      Diag(Loc, diag::err_objc_object_catch);
9652      Invalid = true;
9653    } else if (T->isObjCObjectPointerType()) {
9654      if (!getLangOptions().ObjCNonFragileABI)
9655        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9656    }
9657  }
9658
9659  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9660                                    ExDeclType, TInfo, SC_None, SC_None);
9661  ExDecl->setExceptionVariable(true);
9662
9663  // In ARC, infer 'retaining' for variables of retainable type.
9664  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9665    Invalid = true;
9666
9667  if (!Invalid && !ExDeclType->isDependentType()) {
9668    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9669      // C++ [except.handle]p16:
9670      //   The object declared in an exception-declaration or, if the
9671      //   exception-declaration does not specify a name, a temporary (12.2) is
9672      //   copy-initialized (8.5) from the exception object. [...]
9673      //   The object is destroyed when the handler exits, after the destruction
9674      //   of any automatic objects initialized within the handler.
9675      //
9676      // We just pretend to initialize the object with itself, then make sure
9677      // it can be destroyed later.
9678      QualType initType = ExDeclType;
9679
9680      InitializedEntity entity =
9681        InitializedEntity::InitializeVariable(ExDecl);
9682      InitializationKind initKind =
9683        InitializationKind::CreateCopy(Loc, SourceLocation());
9684
9685      Expr *opaqueValue =
9686        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9687      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9688      ExprResult result = sequence.Perform(*this, entity, initKind,
9689                                           MultiExprArg(&opaqueValue, 1));
9690      if (result.isInvalid())
9691        Invalid = true;
9692      else {
9693        // If the constructor used was non-trivial, set this as the
9694        // "initializer".
9695        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9696        if (!construct->getConstructor()->isTrivial()) {
9697          Expr *init = MaybeCreateExprWithCleanups(construct);
9698          ExDecl->setInit(init);
9699        }
9700
9701        // And make sure it's destructable.
9702        FinalizeVarWithDestructor(ExDecl, recordType);
9703      }
9704    }
9705  }
9706
9707  if (Invalid)
9708    ExDecl->setInvalidDecl();
9709
9710  return ExDecl;
9711}
9712
9713/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9714/// handler.
9715Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9716  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9717  bool Invalid = D.isInvalidType();
9718
9719  // Check for unexpanded parameter packs.
9720  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9721                                               UPPC_ExceptionType)) {
9722    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9723                                             D.getIdentifierLoc());
9724    Invalid = true;
9725  }
9726
9727  IdentifierInfo *II = D.getIdentifier();
9728  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9729                                             LookupOrdinaryName,
9730                                             ForRedeclaration)) {
9731    // The scope should be freshly made just for us. There is just no way
9732    // it contains any previous declaration.
9733    assert(!S->isDeclScope(PrevDecl));
9734    if (PrevDecl->isTemplateParameter()) {
9735      // Maybe we will complain about the shadowed template parameter.
9736      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9737      PrevDecl = 0;
9738    }
9739  }
9740
9741  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9742    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9743      << D.getCXXScopeSpec().getRange();
9744    Invalid = true;
9745  }
9746
9747  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9748                                              D.getSourceRange().getBegin(),
9749                                              D.getIdentifierLoc(),
9750                                              D.getIdentifier());
9751  if (Invalid)
9752    ExDecl->setInvalidDecl();
9753
9754  // Add the exception declaration into this scope.
9755  if (II)
9756    PushOnScopeChains(ExDecl, S);
9757  else
9758    CurContext->addDecl(ExDecl);
9759
9760  ProcessDeclAttributes(S, ExDecl, D);
9761  return ExDecl;
9762}
9763
9764Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9765                                         Expr *AssertExpr,
9766                                         Expr *AssertMessageExpr_,
9767                                         SourceLocation RParenLoc) {
9768  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9769
9770  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9771    // In a static_assert-declaration, the constant-expression shall be a
9772    // constant expression that can be contextually converted to bool.
9773    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9774    if (Converted.isInvalid())
9775      return 0;
9776
9777    llvm::APSInt Cond;
9778    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9779          PDiag(diag::err_static_assert_expression_is_not_constant),
9780          /*AllowFold=*/false).isInvalid())
9781      return 0;
9782
9783    if (!Cond)
9784      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9785        << AssertMessage->getString() << AssertExpr->getSourceRange();
9786  }
9787
9788  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9789    return 0;
9790
9791  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9792                                        AssertExpr, AssertMessage, RParenLoc);
9793
9794  CurContext->addDecl(Decl);
9795  return Decl;
9796}
9797
9798/// \brief Perform semantic analysis of the given friend type declaration.
9799///
9800/// \returns A friend declaration that.
9801FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9802                                      SourceLocation FriendLoc,
9803                                      TypeSourceInfo *TSInfo) {
9804  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9805
9806  QualType T = TSInfo->getType();
9807  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9808
9809  // C++03 [class.friend]p2:
9810  //   An elaborated-type-specifier shall be used in a friend declaration
9811  //   for a class.*
9812  //
9813  //   * The class-key of the elaborated-type-specifier is required.
9814  if (!ActiveTemplateInstantiations.empty()) {
9815    // Do not complain about the form of friend template types during
9816    // template instantiation; we will already have complained when the
9817    // template was declared.
9818  } else if (!T->isElaboratedTypeSpecifier()) {
9819    // If we evaluated the type to a record type, suggest putting
9820    // a tag in front.
9821    if (const RecordType *RT = T->getAs<RecordType>()) {
9822      RecordDecl *RD = RT->getDecl();
9823
9824      std::string InsertionText = std::string(" ") + RD->getKindName();
9825
9826      Diag(TypeRange.getBegin(),
9827           getLangOptions().CPlusPlus0x ?
9828             diag::warn_cxx98_compat_unelaborated_friend_type :
9829             diag::ext_unelaborated_friend_type)
9830        << (unsigned) RD->getTagKind()
9831        << T
9832        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9833                                      InsertionText);
9834    } else {
9835      Diag(FriendLoc,
9836           getLangOptions().CPlusPlus0x ?
9837             diag::warn_cxx98_compat_nonclass_type_friend :
9838             diag::ext_nonclass_type_friend)
9839        << T
9840        << SourceRange(FriendLoc, TypeRange.getEnd());
9841    }
9842  } else if (T->getAs<EnumType>()) {
9843    Diag(FriendLoc,
9844         getLangOptions().CPlusPlus0x ?
9845           diag::warn_cxx98_compat_enum_friend :
9846           diag::ext_enum_friend)
9847      << T
9848      << SourceRange(FriendLoc, TypeRange.getEnd());
9849  }
9850
9851  // C++0x [class.friend]p3:
9852  //   If the type specifier in a friend declaration designates a (possibly
9853  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9854  //   the friend declaration is ignored.
9855
9856  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9857  // in [class.friend]p3 that we do not implement.
9858
9859  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9860}
9861
9862/// Handle a friend tag declaration where the scope specifier was
9863/// templated.
9864Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9865                                    unsigned TagSpec, SourceLocation TagLoc,
9866                                    CXXScopeSpec &SS,
9867                                    IdentifierInfo *Name, SourceLocation NameLoc,
9868                                    AttributeList *Attr,
9869                                    MultiTemplateParamsArg TempParamLists) {
9870  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9871
9872  bool isExplicitSpecialization = false;
9873  bool Invalid = false;
9874
9875  if (TemplateParameterList *TemplateParams
9876        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9877                                                  TempParamLists.get(),
9878                                                  TempParamLists.size(),
9879                                                  /*friend*/ true,
9880                                                  isExplicitSpecialization,
9881                                                  Invalid)) {
9882    if (TemplateParams->size() > 0) {
9883      // This is a declaration of a class template.
9884      if (Invalid)
9885        return 0;
9886
9887      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9888                                SS, Name, NameLoc, Attr,
9889                                TemplateParams, AS_public,
9890                                /*ModulePrivateLoc=*/SourceLocation(),
9891                                TempParamLists.size() - 1,
9892                   (TemplateParameterList**) TempParamLists.release()).take();
9893    } else {
9894      // The "template<>" header is extraneous.
9895      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9896        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9897      isExplicitSpecialization = true;
9898    }
9899  }
9900
9901  if (Invalid) return 0;
9902
9903  bool isAllExplicitSpecializations = true;
9904  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9905    if (TempParamLists.get()[I]->size()) {
9906      isAllExplicitSpecializations = false;
9907      break;
9908    }
9909  }
9910
9911  // FIXME: don't ignore attributes.
9912
9913  // If it's explicit specializations all the way down, just forget
9914  // about the template header and build an appropriate non-templated
9915  // friend.  TODO: for source fidelity, remember the headers.
9916  if (isAllExplicitSpecializations) {
9917    if (SS.isEmpty()) {
9918      bool Owned = false;
9919      bool IsDependent = false;
9920      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9921                      Attr, AS_public,
9922                      /*ModulePrivateLoc=*/SourceLocation(),
9923                      MultiTemplateParamsArg(), Owned, IsDependent,
9924                      /*ScopedEnumKWLoc=*/SourceLocation(),
9925                      /*ScopedEnumUsesClassTag=*/false,
9926                      /*UnderlyingType=*/TypeResult());
9927    }
9928
9929    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9930    ElaboratedTypeKeyword Keyword
9931      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9932    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9933                                   *Name, NameLoc);
9934    if (T.isNull())
9935      return 0;
9936
9937    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9938    if (isa<DependentNameType>(T)) {
9939      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9940      TL.setElaboratedKeywordLoc(TagLoc);
9941      TL.setQualifierLoc(QualifierLoc);
9942      TL.setNameLoc(NameLoc);
9943    } else {
9944      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9945      TL.setElaboratedKeywordLoc(TagLoc);
9946      TL.setQualifierLoc(QualifierLoc);
9947      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9948    }
9949
9950    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9951                                            TSI, FriendLoc);
9952    Friend->setAccess(AS_public);
9953    CurContext->addDecl(Friend);
9954    return Friend;
9955  }
9956
9957  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9958
9959
9960
9961  // Handle the case of a templated-scope friend class.  e.g.
9962  //   template <class T> class A<T>::B;
9963  // FIXME: we don't support these right now.
9964  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9965  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9966  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9967  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9968  TL.setElaboratedKeywordLoc(TagLoc);
9969  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9970  TL.setNameLoc(NameLoc);
9971
9972  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9973                                          TSI, FriendLoc);
9974  Friend->setAccess(AS_public);
9975  Friend->setUnsupportedFriend(true);
9976  CurContext->addDecl(Friend);
9977  return Friend;
9978}
9979
9980
9981/// Handle a friend type declaration.  This works in tandem with
9982/// ActOnTag.
9983///
9984/// Notes on friend class templates:
9985///
9986/// We generally treat friend class declarations as if they were
9987/// declaring a class.  So, for example, the elaborated type specifier
9988/// in a friend declaration is required to obey the restrictions of a
9989/// class-head (i.e. no typedefs in the scope chain), template
9990/// parameters are required to match up with simple template-ids, &c.
9991/// However, unlike when declaring a template specialization, it's
9992/// okay to refer to a template specialization without an empty
9993/// template parameter declaration, e.g.
9994///   friend class A<T>::B<unsigned>;
9995/// We permit this as a special case; if there are any template
9996/// parameters present at all, require proper matching, i.e.
9997///   template <> template <class T> friend class A<int>::B;
9998Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9999                                MultiTemplateParamsArg TempParams) {
10000  SourceLocation Loc = DS.getSourceRange().getBegin();
10001
10002  assert(DS.isFriendSpecified());
10003  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10004
10005  // Try to convert the decl specifier to a type.  This works for
10006  // friend templates because ActOnTag never produces a ClassTemplateDecl
10007  // for a TUK_Friend.
10008  Declarator TheDeclarator(DS, Declarator::MemberContext);
10009  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10010  QualType T = TSI->getType();
10011  if (TheDeclarator.isInvalidType())
10012    return 0;
10013
10014  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10015    return 0;
10016
10017  // This is definitely an error in C++98.  It's probably meant to
10018  // be forbidden in C++0x, too, but the specification is just
10019  // poorly written.
10020  //
10021  // The problem is with declarations like the following:
10022  //   template <T> friend A<T>::foo;
10023  // where deciding whether a class C is a friend or not now hinges
10024  // on whether there exists an instantiation of A that causes
10025  // 'foo' to equal C.  There are restrictions on class-heads
10026  // (which we declare (by fiat) elaborated friend declarations to
10027  // be) that makes this tractable.
10028  //
10029  // FIXME: handle "template <> friend class A<T>;", which
10030  // is possibly well-formed?  Who even knows?
10031  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10032    Diag(Loc, diag::err_tagless_friend_type_template)
10033      << DS.getSourceRange();
10034    return 0;
10035  }
10036
10037  // C++98 [class.friend]p1: A friend of a class is a function
10038  //   or class that is not a member of the class . . .
10039  // This is fixed in DR77, which just barely didn't make the C++03
10040  // deadline.  It's also a very silly restriction that seriously
10041  // affects inner classes and which nobody else seems to implement;
10042  // thus we never diagnose it, not even in -pedantic.
10043  //
10044  // But note that we could warn about it: it's always useless to
10045  // friend one of your own members (it's not, however, worthless to
10046  // friend a member of an arbitrary specialization of your template).
10047
10048  Decl *D;
10049  if (unsigned NumTempParamLists = TempParams.size())
10050    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10051                                   NumTempParamLists,
10052                                   TempParams.release(),
10053                                   TSI,
10054                                   DS.getFriendSpecLoc());
10055  else
10056    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10057
10058  if (!D)
10059    return 0;
10060
10061  D->setAccess(AS_public);
10062  CurContext->addDecl(D);
10063
10064  return D;
10065}
10066
10067Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10068                                    MultiTemplateParamsArg TemplateParams) {
10069  const DeclSpec &DS = D.getDeclSpec();
10070
10071  assert(DS.isFriendSpecified());
10072  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10073
10074  SourceLocation Loc = D.getIdentifierLoc();
10075  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10076
10077  // C++ [class.friend]p1
10078  //   A friend of a class is a function or class....
10079  // Note that this sees through typedefs, which is intended.
10080  // It *doesn't* see through dependent types, which is correct
10081  // according to [temp.arg.type]p3:
10082  //   If a declaration acquires a function type through a
10083  //   type dependent on a template-parameter and this causes
10084  //   a declaration that does not use the syntactic form of a
10085  //   function declarator to have a function type, the program
10086  //   is ill-formed.
10087  if (!TInfo->getType()->isFunctionType()) {
10088    Diag(Loc, diag::err_unexpected_friend);
10089
10090    // It might be worthwhile to try to recover by creating an
10091    // appropriate declaration.
10092    return 0;
10093  }
10094
10095  // C++ [namespace.memdef]p3
10096  //  - If a friend declaration in a non-local class first declares a
10097  //    class or function, the friend class or function is a member
10098  //    of the innermost enclosing namespace.
10099  //  - The name of the friend is not found by simple name lookup
10100  //    until a matching declaration is provided in that namespace
10101  //    scope (either before or after the class declaration granting
10102  //    friendship).
10103  //  - If a friend function is called, its name may be found by the
10104  //    name lookup that considers functions from namespaces and
10105  //    classes associated with the types of the function arguments.
10106  //  - When looking for a prior declaration of a class or a function
10107  //    declared as a friend, scopes outside the innermost enclosing
10108  //    namespace scope are not considered.
10109
10110  CXXScopeSpec &SS = D.getCXXScopeSpec();
10111  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10112  DeclarationName Name = NameInfo.getName();
10113  assert(Name);
10114
10115  // Check for unexpanded parameter packs.
10116  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10117      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10118      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10119    return 0;
10120
10121  // The context we found the declaration in, or in which we should
10122  // create the declaration.
10123  DeclContext *DC;
10124  Scope *DCScope = S;
10125  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10126                        ForRedeclaration);
10127
10128  // FIXME: there are different rules in local classes
10129
10130  // There are four cases here.
10131  //   - There's no scope specifier, in which case we just go to the
10132  //     appropriate scope and look for a function or function template
10133  //     there as appropriate.
10134  // Recover from invalid scope qualifiers as if they just weren't there.
10135  if (SS.isInvalid() || !SS.isSet()) {
10136    // C++0x [namespace.memdef]p3:
10137    //   If the name in a friend declaration is neither qualified nor
10138    //   a template-id and the declaration is a function or an
10139    //   elaborated-type-specifier, the lookup to determine whether
10140    //   the entity has been previously declared shall not consider
10141    //   any scopes outside the innermost enclosing namespace.
10142    // C++0x [class.friend]p11:
10143    //   If a friend declaration appears in a local class and the name
10144    //   specified is an unqualified name, a prior declaration is
10145    //   looked up without considering scopes that are outside the
10146    //   innermost enclosing non-class scope. For a friend function
10147    //   declaration, if there is no prior declaration, the program is
10148    //   ill-formed.
10149    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10150    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10151
10152    // Find the appropriate context according to the above.
10153    DC = CurContext;
10154    while (true) {
10155      // Skip class contexts.  If someone can cite chapter and verse
10156      // for this behavior, that would be nice --- it's what GCC and
10157      // EDG do, and it seems like a reasonable intent, but the spec
10158      // really only says that checks for unqualified existing
10159      // declarations should stop at the nearest enclosing namespace,
10160      // not that they should only consider the nearest enclosing
10161      // namespace.
10162      while (DC->isRecord())
10163        DC = DC->getParent();
10164
10165      LookupQualifiedName(Previous, DC);
10166
10167      // TODO: decide what we think about using declarations.
10168      if (isLocal || !Previous.empty())
10169        break;
10170
10171      if (isTemplateId) {
10172        if (isa<TranslationUnitDecl>(DC)) break;
10173      } else {
10174        if (DC->isFileContext()) break;
10175      }
10176      DC = DC->getParent();
10177    }
10178
10179    // C++ [class.friend]p1: A friend of a class is a function or
10180    //   class that is not a member of the class . . .
10181    // C++11 changes this for both friend types and functions.
10182    // Most C++ 98 compilers do seem to give an error here, so
10183    // we do, too.
10184    if (!Previous.empty() && DC->Equals(CurContext))
10185      Diag(DS.getFriendSpecLoc(),
10186           getLangOptions().CPlusPlus0x ?
10187             diag::warn_cxx98_compat_friend_is_member :
10188             diag::err_friend_is_member);
10189
10190    DCScope = getScopeForDeclContext(S, DC);
10191
10192    // C++ [class.friend]p6:
10193    //   A function can be defined in a friend declaration of a class if and
10194    //   only if the class is a non-local class (9.8), the function name is
10195    //   unqualified, and the function has namespace scope.
10196    if (isLocal && D.isFunctionDefinition()) {
10197      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10198    }
10199
10200  //   - There's a non-dependent scope specifier, in which case we
10201  //     compute it and do a previous lookup there for a function
10202  //     or function template.
10203  } else if (!SS.getScopeRep()->isDependent()) {
10204    DC = computeDeclContext(SS);
10205    if (!DC) return 0;
10206
10207    if (RequireCompleteDeclContext(SS, DC)) return 0;
10208
10209    LookupQualifiedName(Previous, DC);
10210
10211    // Ignore things found implicitly in the wrong scope.
10212    // TODO: better diagnostics for this case.  Suggesting the right
10213    // qualified scope would be nice...
10214    LookupResult::Filter F = Previous.makeFilter();
10215    while (F.hasNext()) {
10216      NamedDecl *D = F.next();
10217      if (!DC->InEnclosingNamespaceSetOf(
10218              D->getDeclContext()->getRedeclContext()))
10219        F.erase();
10220    }
10221    F.done();
10222
10223    if (Previous.empty()) {
10224      D.setInvalidType();
10225      Diag(Loc, diag::err_qualified_friend_not_found)
10226          << Name << TInfo->getType();
10227      return 0;
10228    }
10229
10230    // C++ [class.friend]p1: A friend of a class is a function or
10231    //   class that is not a member of the class . . .
10232    if (DC->Equals(CurContext))
10233      Diag(DS.getFriendSpecLoc(),
10234           getLangOptions().CPlusPlus0x ?
10235             diag::warn_cxx98_compat_friend_is_member :
10236             diag::err_friend_is_member);
10237
10238    if (D.isFunctionDefinition()) {
10239      // C++ [class.friend]p6:
10240      //   A function can be defined in a friend declaration of a class if and
10241      //   only if the class is a non-local class (9.8), the function name is
10242      //   unqualified, and the function has namespace scope.
10243      SemaDiagnosticBuilder DB
10244        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10245
10246      DB << SS.getScopeRep();
10247      if (DC->isFileContext())
10248        DB << FixItHint::CreateRemoval(SS.getRange());
10249      SS.clear();
10250    }
10251
10252  //   - There's a scope specifier that does not match any template
10253  //     parameter lists, in which case we use some arbitrary context,
10254  //     create a method or method template, and wait for instantiation.
10255  //   - There's a scope specifier that does match some template
10256  //     parameter lists, which we don't handle right now.
10257  } else {
10258    if (D.isFunctionDefinition()) {
10259      // C++ [class.friend]p6:
10260      //   A function can be defined in a friend declaration of a class if and
10261      //   only if the class is a non-local class (9.8), the function name is
10262      //   unqualified, and the function has namespace scope.
10263      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10264        << SS.getScopeRep();
10265    }
10266
10267    DC = CurContext;
10268    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10269  }
10270
10271  if (!DC->isRecord()) {
10272    // This implies that it has to be an operator or function.
10273    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10274        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10275        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10276      Diag(Loc, diag::err_introducing_special_friend) <<
10277        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10278         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10279      return 0;
10280    }
10281  }
10282
10283  // FIXME: This is an egregious hack to cope with cases where the scope stack
10284  // does not contain the declaration context, i.e., in an out-of-line
10285  // definition of a class.
10286  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10287  if (!DCScope) {
10288    FakeDCScope.setEntity(DC);
10289    DCScope = &FakeDCScope;
10290  }
10291
10292  bool AddToScope = true;
10293  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10294                                          move(TemplateParams), AddToScope);
10295  if (!ND) return 0;
10296
10297  assert(ND->getDeclContext() == DC);
10298  assert(ND->getLexicalDeclContext() == CurContext);
10299
10300  // Add the function declaration to the appropriate lookup tables,
10301  // adjusting the redeclarations list as necessary.  We don't
10302  // want to do this yet if the friending class is dependent.
10303  //
10304  // Also update the scope-based lookup if the target context's
10305  // lookup context is in lexical scope.
10306  if (!CurContext->isDependentContext()) {
10307    DC = DC->getRedeclContext();
10308    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10309    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10310      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10311  }
10312
10313  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10314                                       D.getIdentifierLoc(), ND,
10315                                       DS.getFriendSpecLoc());
10316  FrD->setAccess(AS_public);
10317  CurContext->addDecl(FrD);
10318
10319  if (ND->isInvalidDecl())
10320    FrD->setInvalidDecl();
10321  else {
10322    FunctionDecl *FD;
10323    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10324      FD = FTD->getTemplatedDecl();
10325    else
10326      FD = cast<FunctionDecl>(ND);
10327
10328    // Mark templated-scope function declarations as unsupported.
10329    if (FD->getNumTemplateParameterLists())
10330      FrD->setUnsupportedFriend(true);
10331  }
10332
10333  return ND;
10334}
10335
10336void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10337  AdjustDeclIfTemplate(Dcl);
10338
10339  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10340  if (!Fn) {
10341    Diag(DelLoc, diag::err_deleted_non_function);
10342    return;
10343  }
10344  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10345    Diag(DelLoc, diag::err_deleted_decl_not_first);
10346    Diag(Prev->getLocation(), diag::note_previous_declaration);
10347    // If the declaration wasn't the first, we delete the function anyway for
10348    // recovery.
10349  }
10350  Fn->setDeletedAsWritten();
10351}
10352
10353void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10354  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10355
10356  if (MD) {
10357    if (MD->getParent()->isDependentType()) {
10358      MD->setDefaulted();
10359      MD->setExplicitlyDefaulted();
10360      return;
10361    }
10362
10363    CXXSpecialMember Member = getSpecialMember(MD);
10364    if (Member == CXXInvalid) {
10365      Diag(DefaultLoc, diag::err_default_special_members);
10366      return;
10367    }
10368
10369    MD->setDefaulted();
10370    MD->setExplicitlyDefaulted();
10371
10372    // If this definition appears within the record, do the checking when
10373    // the record is complete.
10374    const FunctionDecl *Primary = MD;
10375    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10376      // Find the uninstantiated declaration that actually had the '= default'
10377      // on it.
10378      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10379
10380    if (Primary == Primary->getCanonicalDecl())
10381      return;
10382
10383    switch (Member) {
10384    case CXXDefaultConstructor: {
10385      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10386      CheckExplicitlyDefaultedDefaultConstructor(CD);
10387      if (!CD->isInvalidDecl())
10388        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10389      break;
10390    }
10391
10392    case CXXCopyConstructor: {
10393      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10394      CheckExplicitlyDefaultedCopyConstructor(CD);
10395      if (!CD->isInvalidDecl())
10396        DefineImplicitCopyConstructor(DefaultLoc, CD);
10397      break;
10398    }
10399
10400    case CXXCopyAssignment: {
10401      CheckExplicitlyDefaultedCopyAssignment(MD);
10402      if (!MD->isInvalidDecl())
10403        DefineImplicitCopyAssignment(DefaultLoc, MD);
10404      break;
10405    }
10406
10407    case CXXDestructor: {
10408      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10409      CheckExplicitlyDefaultedDestructor(DD);
10410      if (!DD->isInvalidDecl())
10411        DefineImplicitDestructor(DefaultLoc, DD);
10412      break;
10413    }
10414
10415    case CXXMoveConstructor: {
10416      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10417      CheckExplicitlyDefaultedMoveConstructor(CD);
10418      if (!CD->isInvalidDecl())
10419        DefineImplicitMoveConstructor(DefaultLoc, CD);
10420      break;
10421    }
10422
10423    case CXXMoveAssignment: {
10424      CheckExplicitlyDefaultedMoveAssignment(MD);
10425      if (!MD->isInvalidDecl())
10426        DefineImplicitMoveAssignment(DefaultLoc, MD);
10427      break;
10428    }
10429
10430    case CXXInvalid:
10431      llvm_unreachable("Invalid special member.");
10432    }
10433  } else {
10434    Diag(DefaultLoc, diag::err_default_special_members);
10435  }
10436}
10437
10438static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10439  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10440    Stmt *SubStmt = *CI;
10441    if (!SubStmt)
10442      continue;
10443    if (isa<ReturnStmt>(SubStmt))
10444      Self.Diag(SubStmt->getSourceRange().getBegin(),
10445           diag::err_return_in_constructor_handler);
10446    if (!isa<Expr>(SubStmt))
10447      SearchForReturnInStmt(Self, SubStmt);
10448  }
10449}
10450
10451void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10452  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10453    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10454    SearchForReturnInStmt(*this, Handler);
10455  }
10456}
10457
10458bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10459                                             const CXXMethodDecl *Old) {
10460  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10461  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10462
10463  if (Context.hasSameType(NewTy, OldTy) ||
10464      NewTy->isDependentType() || OldTy->isDependentType())
10465    return false;
10466
10467  // Check if the return types are covariant
10468  QualType NewClassTy, OldClassTy;
10469
10470  /// Both types must be pointers or references to classes.
10471  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10472    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10473      NewClassTy = NewPT->getPointeeType();
10474      OldClassTy = OldPT->getPointeeType();
10475    }
10476  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10477    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10478      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10479        NewClassTy = NewRT->getPointeeType();
10480        OldClassTy = OldRT->getPointeeType();
10481      }
10482    }
10483  }
10484
10485  // The return types aren't either both pointers or references to a class type.
10486  if (NewClassTy.isNull()) {
10487    Diag(New->getLocation(),
10488         diag::err_different_return_type_for_overriding_virtual_function)
10489      << New->getDeclName() << NewTy << OldTy;
10490    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10491
10492    return true;
10493  }
10494
10495  // C++ [class.virtual]p6:
10496  //   If the return type of D::f differs from the return type of B::f, the
10497  //   class type in the return type of D::f shall be complete at the point of
10498  //   declaration of D::f or shall be the class type D.
10499  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10500    if (!RT->isBeingDefined() &&
10501        RequireCompleteType(New->getLocation(), NewClassTy,
10502                            PDiag(diag::err_covariant_return_incomplete)
10503                              << New->getDeclName()))
10504    return true;
10505  }
10506
10507  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10508    // Check if the new class derives from the old class.
10509    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10510      Diag(New->getLocation(),
10511           diag::err_covariant_return_not_derived)
10512      << New->getDeclName() << NewTy << OldTy;
10513      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10514      return true;
10515    }
10516
10517    // Check if we the conversion from derived to base is valid.
10518    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10519                    diag::err_covariant_return_inaccessible_base,
10520                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10521                    // FIXME: Should this point to the return type?
10522                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10523      // FIXME: this note won't trigger for delayed access control
10524      // diagnostics, and it's impossible to get an undelayed error
10525      // here from access control during the original parse because
10526      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10527      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10528      return true;
10529    }
10530  }
10531
10532  // The qualifiers of the return types must be the same.
10533  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10534    Diag(New->getLocation(),
10535         diag::err_covariant_return_type_different_qualifications)
10536    << New->getDeclName() << NewTy << OldTy;
10537    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10538    return true;
10539  };
10540
10541
10542  // The new class type must have the same or less qualifiers as the old type.
10543  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10544    Diag(New->getLocation(),
10545         diag::err_covariant_return_type_class_type_more_qualified)
10546    << New->getDeclName() << NewTy << OldTy;
10547    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10548    return true;
10549  };
10550
10551  return false;
10552}
10553
10554/// \brief Mark the given method pure.
10555///
10556/// \param Method the method to be marked pure.
10557///
10558/// \param InitRange the source range that covers the "0" initializer.
10559bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10560  SourceLocation EndLoc = InitRange.getEnd();
10561  if (EndLoc.isValid())
10562    Method->setRangeEnd(EndLoc);
10563
10564  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10565    Method->setPure();
10566    return false;
10567  }
10568
10569  if (!Method->isInvalidDecl())
10570    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10571      << Method->getDeclName() << InitRange;
10572  return true;
10573}
10574
10575/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10576/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10577/// is a fresh scope pushed for just this purpose.
10578///
10579/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10580/// static data member of class X, names should be looked up in the scope of
10581/// class X.
10582void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10583  // If there is no declaration, there was an error parsing it.
10584  if (D == 0 || D->isInvalidDecl()) return;
10585
10586  // We should only get called for declarations with scope specifiers, like:
10587  //   int foo::bar;
10588  assert(D->isOutOfLine());
10589  EnterDeclaratorContext(S, D->getDeclContext());
10590}
10591
10592/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10593/// initializer for the out-of-line declaration 'D'.
10594void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10595  // If there is no declaration, there was an error parsing it.
10596  if (D == 0 || D->isInvalidDecl()) return;
10597
10598  assert(D->isOutOfLine());
10599  ExitDeclaratorContext(S);
10600}
10601
10602/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10603/// C++ if/switch/while/for statement.
10604/// e.g: "if (int x = f()) {...}"
10605DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10606  // C++ 6.4p2:
10607  // The declarator shall not specify a function or an array.
10608  // The type-specifier-seq shall not contain typedef and shall not declare a
10609  // new class or enumeration.
10610  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10611         "Parser allowed 'typedef' as storage class of condition decl.");
10612
10613  Decl *Dcl = ActOnDeclarator(S, D);
10614  if (!Dcl)
10615    return true;
10616
10617  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10618    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10619      << D.getSourceRange();
10620    return true;
10621  }
10622
10623  return Dcl;
10624}
10625
10626void Sema::LoadExternalVTableUses() {
10627  if (!ExternalSource)
10628    return;
10629
10630  SmallVector<ExternalVTableUse, 4> VTables;
10631  ExternalSource->ReadUsedVTables(VTables);
10632  SmallVector<VTableUse, 4> NewUses;
10633  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10634    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10635      = VTablesUsed.find(VTables[I].Record);
10636    // Even if a definition wasn't required before, it may be required now.
10637    if (Pos != VTablesUsed.end()) {
10638      if (!Pos->second && VTables[I].DefinitionRequired)
10639        Pos->second = true;
10640      continue;
10641    }
10642
10643    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10644    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10645  }
10646
10647  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10648}
10649
10650void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10651                          bool DefinitionRequired) {
10652  // Ignore any vtable uses in unevaluated operands or for classes that do
10653  // not have a vtable.
10654  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10655      CurContext->isDependentContext() ||
10656      ExprEvalContexts.back().Context == Unevaluated)
10657    return;
10658
10659  // Try to insert this class into the map.
10660  LoadExternalVTableUses();
10661  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10662  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10663    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10664  if (!Pos.second) {
10665    // If we already had an entry, check to see if we are promoting this vtable
10666    // to required a definition. If so, we need to reappend to the VTableUses
10667    // list, since we may have already processed the first entry.
10668    if (DefinitionRequired && !Pos.first->second) {
10669      Pos.first->second = true;
10670    } else {
10671      // Otherwise, we can early exit.
10672      return;
10673    }
10674  }
10675
10676  // Local classes need to have their virtual members marked
10677  // immediately. For all other classes, we mark their virtual members
10678  // at the end of the translation unit.
10679  if (Class->isLocalClass())
10680    MarkVirtualMembersReferenced(Loc, Class);
10681  else
10682    VTableUses.push_back(std::make_pair(Class, Loc));
10683}
10684
10685bool Sema::DefineUsedVTables() {
10686  LoadExternalVTableUses();
10687  if (VTableUses.empty())
10688    return false;
10689
10690  // Note: The VTableUses vector could grow as a result of marking
10691  // the members of a class as "used", so we check the size each
10692  // time through the loop and prefer indices (with are stable) to
10693  // iterators (which are not).
10694  bool DefinedAnything = false;
10695  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10696    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10697    if (!Class)
10698      continue;
10699
10700    SourceLocation Loc = VTableUses[I].second;
10701
10702    // If this class has a key function, but that key function is
10703    // defined in another translation unit, we don't need to emit the
10704    // vtable even though we're using it.
10705    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10706    if (KeyFunction && !KeyFunction->hasBody()) {
10707      switch (KeyFunction->getTemplateSpecializationKind()) {
10708      case TSK_Undeclared:
10709      case TSK_ExplicitSpecialization:
10710      case TSK_ExplicitInstantiationDeclaration:
10711        // The key function is in another translation unit.
10712        continue;
10713
10714      case TSK_ExplicitInstantiationDefinition:
10715      case TSK_ImplicitInstantiation:
10716        // We will be instantiating the key function.
10717        break;
10718      }
10719    } else if (!KeyFunction) {
10720      // If we have a class with no key function that is the subject
10721      // of an explicit instantiation declaration, suppress the
10722      // vtable; it will live with the explicit instantiation
10723      // definition.
10724      bool IsExplicitInstantiationDeclaration
10725        = Class->getTemplateSpecializationKind()
10726                                      == TSK_ExplicitInstantiationDeclaration;
10727      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10728                                 REnd = Class->redecls_end();
10729           R != REnd; ++R) {
10730        TemplateSpecializationKind TSK
10731          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10732        if (TSK == TSK_ExplicitInstantiationDeclaration)
10733          IsExplicitInstantiationDeclaration = true;
10734        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10735          IsExplicitInstantiationDeclaration = false;
10736          break;
10737        }
10738      }
10739
10740      if (IsExplicitInstantiationDeclaration)
10741        continue;
10742    }
10743
10744    // Mark all of the virtual members of this class as referenced, so
10745    // that we can build a vtable. Then, tell the AST consumer that a
10746    // vtable for this class is required.
10747    DefinedAnything = true;
10748    MarkVirtualMembersReferenced(Loc, Class);
10749    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10750    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10751
10752    // Optionally warn if we're emitting a weak vtable.
10753    if (Class->getLinkage() == ExternalLinkage &&
10754        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10755      const FunctionDecl *KeyFunctionDef = 0;
10756      if (!KeyFunction ||
10757          (KeyFunction->hasBody(KeyFunctionDef) &&
10758           KeyFunctionDef->isInlined()))
10759        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10760             TSK_ExplicitInstantiationDefinition
10761             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10762          << Class;
10763    }
10764  }
10765  VTableUses.clear();
10766
10767  return DefinedAnything;
10768}
10769
10770void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10771                                        const CXXRecordDecl *RD) {
10772  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10773       e = RD->method_end(); i != e; ++i) {
10774    CXXMethodDecl *MD = *i;
10775
10776    // C++ [basic.def.odr]p2:
10777    //   [...] A virtual member function is used if it is not pure. [...]
10778    if (MD->isVirtual() && !MD->isPure())
10779      MarkFunctionReferenced(Loc, MD);
10780  }
10781
10782  // Only classes that have virtual bases need a VTT.
10783  if (RD->getNumVBases() == 0)
10784    return;
10785
10786  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10787           e = RD->bases_end(); i != e; ++i) {
10788    const CXXRecordDecl *Base =
10789        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10790    if (Base->getNumVBases() == 0)
10791      continue;
10792    MarkVirtualMembersReferenced(Loc, Base);
10793  }
10794}
10795
10796/// SetIvarInitializers - This routine builds initialization ASTs for the
10797/// Objective-C implementation whose ivars need be initialized.
10798void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10799  if (!getLangOptions().CPlusPlus)
10800    return;
10801  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10802    SmallVector<ObjCIvarDecl*, 8> ivars;
10803    CollectIvarsToConstructOrDestruct(OID, ivars);
10804    if (ivars.empty())
10805      return;
10806    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10807    for (unsigned i = 0; i < ivars.size(); i++) {
10808      FieldDecl *Field = ivars[i];
10809      if (Field->isInvalidDecl())
10810        continue;
10811
10812      CXXCtorInitializer *Member;
10813      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10814      InitializationKind InitKind =
10815        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10816
10817      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10818      ExprResult MemberInit =
10819        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10820      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10821      // Note, MemberInit could actually come back empty if no initialization
10822      // is required (e.g., because it would call a trivial default constructor)
10823      if (!MemberInit.get() || MemberInit.isInvalid())
10824        continue;
10825
10826      Member =
10827        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10828                                         SourceLocation(),
10829                                         MemberInit.takeAs<Expr>(),
10830                                         SourceLocation());
10831      AllToInit.push_back(Member);
10832
10833      // Be sure that the destructor is accessible and is marked as referenced.
10834      if (const RecordType *RecordTy
10835                  = Context.getBaseElementType(Field->getType())
10836                                                        ->getAs<RecordType>()) {
10837                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10838        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10839          MarkFunctionReferenced(Field->getLocation(), Destructor);
10840          CheckDestructorAccess(Field->getLocation(), Destructor,
10841                            PDiag(diag::err_access_dtor_ivar)
10842                              << Context.getBaseElementType(Field->getType()));
10843        }
10844      }
10845    }
10846    ObjCImplementation->setIvarInitializers(Context,
10847                                            AllToInit.data(), AllToInit.size());
10848  }
10849}
10850
10851static
10852void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10853                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10854                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10855                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10856                           Sema &S) {
10857  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10858                                                   CE = Current.end();
10859  if (Ctor->isInvalidDecl())
10860    return;
10861
10862  const FunctionDecl *FNTarget = 0;
10863  CXXConstructorDecl *Target;
10864
10865  // We ignore the result here since if we don't have a body, Target will be
10866  // null below.
10867  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10868  Target
10869= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10870
10871  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10872                     // Avoid dereferencing a null pointer here.
10873                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10874
10875  if (!Current.insert(Canonical))
10876    return;
10877
10878  // We know that beyond here, we aren't chaining into a cycle.
10879  if (!Target || !Target->isDelegatingConstructor() ||
10880      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10881    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10882      Valid.insert(*CI);
10883    Current.clear();
10884  // We've hit a cycle.
10885  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10886             Current.count(TCanonical)) {
10887    // If we haven't diagnosed this cycle yet, do so now.
10888    if (!Invalid.count(TCanonical)) {
10889      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10890             diag::warn_delegating_ctor_cycle)
10891        << Ctor;
10892
10893      // Don't add a note for a function delegating directo to itself.
10894      if (TCanonical != Canonical)
10895        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10896
10897      CXXConstructorDecl *C = Target;
10898      while (C->getCanonicalDecl() != Canonical) {
10899        (void)C->getTargetConstructor()->hasBody(FNTarget);
10900        assert(FNTarget && "Ctor cycle through bodiless function");
10901
10902        C
10903       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10904        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10905      }
10906    }
10907
10908    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10909      Invalid.insert(*CI);
10910    Current.clear();
10911  } else {
10912    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10913  }
10914}
10915
10916
10917void Sema::CheckDelegatingCtorCycles() {
10918  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10919
10920  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10921                                                   CE = Current.end();
10922
10923  for (DelegatingCtorDeclsType::iterator
10924         I = DelegatingCtorDecls.begin(ExternalSource),
10925         E = DelegatingCtorDecls.end();
10926       I != E; ++I) {
10927   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10928  }
10929
10930  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10931    (*CI)->setInvalidDecl();
10932}
10933
10934/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10935Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10936  // Implicitly declared functions (e.g. copy constructors) are
10937  // __host__ __device__
10938  if (D->isImplicit())
10939    return CFT_HostDevice;
10940
10941  if (D->hasAttr<CUDAGlobalAttr>())
10942    return CFT_Global;
10943
10944  if (D->hasAttr<CUDADeviceAttr>()) {
10945    if (D->hasAttr<CUDAHostAttr>())
10946      return CFT_HostDevice;
10947    else
10948      return CFT_Device;
10949  }
10950
10951  return CFT_Host;
10952}
10953
10954bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10955                           CUDAFunctionTarget CalleeTarget) {
10956  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10957  // Callable from the device only."
10958  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10959    return true;
10960
10961  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10962  // Callable from the host only."
10963  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10964  // Callable from the host only."
10965  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10966      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10967    return true;
10968
10969  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10970    return true;
10971
10972  return false;
10973}
10974