SemaDeclCXX.cpp revision ec3332bcae6466dc69227742d2c4145fbe88e975
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          const CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1080        bool NotUnknownSpecialization = false;
1081        DeclContext *DC = computeDeclContext(SS, false);
1082        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1083          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1084
1085        if (!NotUnknownSpecialization) {
1086          // When the scope specifier can refer to a member of an unknown
1087          // specialization, we take it as a type name.
1088          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1089                                       *MemberOrBase, SS.getRange());
1090          if (BaseType.isNull())
1091            return true;
1092
1093          R.clear();
1094        }
1095      }
1096
1097      // If no results were found, try to correct typos.
1098      if (R.empty() && BaseType.isNull() &&
1099          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1100        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1101          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1102            // We have found a non-static data member with a similar
1103            // name to what was typed; complain and initialize that
1104            // member.
1105            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1106              << MemberOrBase << true << R.getLookupName()
1107              << FixItHint::CreateReplacement(R.getNameLoc(),
1108                                              R.getLookupName().getAsString());
1109            Diag(Member->getLocation(), diag::note_previous_decl)
1110              << Member->getDeclName();
1111
1112            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                          LParenLoc, RParenLoc);
1114          }
1115        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1116          const CXXBaseSpecifier *DirectBaseSpec;
1117          const CXXBaseSpecifier *VirtualBaseSpec;
1118          if (FindBaseInitializer(*this, ClassDecl,
1119                                  Context.getTypeDeclType(Type),
1120                                  DirectBaseSpec, VirtualBaseSpec)) {
1121            // We have found a direct or virtual base class with a
1122            // similar name to what was typed; complain and initialize
1123            // that base class.
1124            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1125              << MemberOrBase << false << R.getLookupName()
1126              << FixItHint::CreateReplacement(R.getNameLoc(),
1127                                              R.getLookupName().getAsString());
1128
1129            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1130                                                             : VirtualBaseSpec;
1131            Diag(BaseSpec->getSourceRange().getBegin(),
1132                 diag::note_base_class_specified_here)
1133              << BaseSpec->getType()
1134              << BaseSpec->getSourceRange();
1135
1136            TyD = Type;
1137          }
1138        }
1139      }
1140
1141      if (!TyD && BaseType.isNull()) {
1142        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1143          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1144        return true;
1145      }
1146    }
1147
1148    if (BaseType.isNull()) {
1149      BaseType = Context.getTypeDeclType(TyD);
1150      if (SS.isSet()) {
1151        NestedNameSpecifier *Qualifier =
1152          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1153
1154        // FIXME: preserve source range information
1155        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1156      }
1157    }
1158  }
1159
1160  if (!TInfo)
1161    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1162
1163  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1164                              LParenLoc, RParenLoc, ClassDecl);
1165}
1166
1167/// Checks an initializer expression for use of uninitialized fields, such as
1168/// containing the field that is being initialized. Returns true if there is an
1169/// uninitialized field was used an updates the SourceLocation parameter; false
1170/// otherwise.
1171static bool InitExprContainsUninitializedFields(const Stmt* S,
1172                                                const FieldDecl* LhsField,
1173                                                SourceLocation* L) {
1174  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1175  if (ME) {
1176    const NamedDecl* RhsField = ME->getMemberDecl();
1177    if (RhsField == LhsField) {
1178      // Initializing a field with itself. Throw a warning.
1179      // But wait; there are exceptions!
1180      // Exception #1:  The field may not belong to this record.
1181      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1182      const Expr* base = ME->getBase();
1183      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1184        // Even though the field matches, it does not belong to this record.
1185        return false;
1186      }
1187      // None of the exceptions triggered; return true to indicate an
1188      // uninitialized field was used.
1189      *L = ME->getMemberLoc();
1190      return true;
1191    }
1192  }
1193  bool found = false;
1194  for (Stmt::const_child_iterator it = S->child_begin();
1195       it != S->child_end() && found == false;
1196       ++it) {
1197    if (isa<CallExpr>(S)) {
1198      // Do not descend into function calls or constructors, as the use
1199      // of an uninitialized field may be valid. One would have to inspect
1200      // the contents of the function/ctor to determine if it is safe or not.
1201      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1202      // may be safe, depending on what the function/ctor does.
1203      continue;
1204    }
1205    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1206  }
1207  return found;
1208}
1209
1210Sema::MemInitResult
1211Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1212                             unsigned NumArgs, SourceLocation IdLoc,
1213                             SourceLocation LParenLoc,
1214                             SourceLocation RParenLoc) {
1215  // Diagnose value-uses of fields to initialize themselves, e.g.
1216  //   foo(foo)
1217  // where foo is not also a parameter to the constructor.
1218  // TODO: implement -Wuninitialized and fold this into that framework.
1219  for (unsigned i = 0; i < NumArgs; ++i) {
1220    SourceLocation L;
1221    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1222      // FIXME: Return true in the case when other fields are used before being
1223      // uninitialized. For example, let this field be the i'th field. When
1224      // initializing the i'th field, throw a warning if any of the >= i'th
1225      // fields are used, as they are not yet initialized.
1226      // Right now we are only handling the case where the i'th field uses
1227      // itself in its initializer.
1228      Diag(L, diag::warn_field_is_uninit);
1229    }
1230  }
1231
1232  bool HasDependentArg = false;
1233  for (unsigned i = 0; i < NumArgs; i++)
1234    HasDependentArg |= Args[i]->isTypeDependent();
1235
1236  QualType FieldType = Member->getType();
1237  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1238    FieldType = Array->getElementType();
1239  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1240  if (FieldType->isDependentType() || HasDependentArg) {
1241    // Can't check initialization for a member of dependent type or when
1242    // any of the arguments are type-dependent expressions.
1243    OwningExprResult Init
1244      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1245                                          RParenLoc));
1246
1247    // Erase any temporaries within this evaluation context; we're not
1248    // going to track them in the AST, since we'll be rebuilding the
1249    // ASTs during template instantiation.
1250    ExprTemporaries.erase(
1251              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1252                          ExprTemporaries.end());
1253
1254    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1255                                                    LParenLoc,
1256                                                    Init.takeAs<Expr>(),
1257                                                    RParenLoc);
1258
1259  }
1260
1261  if (Member->isInvalidDecl())
1262    return true;
1263
1264  // Initialize the member.
1265  InitializedEntity MemberEntity =
1266    InitializedEntity::InitializeMember(Member, 0);
1267  InitializationKind Kind =
1268    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1269
1270  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1271
1272  OwningExprResult MemberInit =
1273    InitSeq.Perform(*this, MemberEntity, Kind,
1274                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1275  if (MemberInit.isInvalid())
1276    return true;
1277
1278  // C++0x [class.base.init]p7:
1279  //   The initialization of each base and member constitutes a
1280  //   full-expression.
1281  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1282  if (MemberInit.isInvalid())
1283    return true;
1284
1285  // If we are in a dependent context, template instantiation will
1286  // perform this type-checking again. Just save the arguments that we
1287  // received in a ParenListExpr.
1288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1289  // of the information that we have about the member
1290  // initializer. However, deconstructing the ASTs is a dicey process,
1291  // and this approach is far more likely to get the corner cases right.
1292  if (CurContext->isDependentContext()) {
1293    // Bump the reference count of all of the arguments.
1294    for (unsigned I = 0; I != NumArgs; ++I)
1295      Args[I]->Retain();
1296
1297    OwningExprResult Init
1298      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                          RParenLoc));
1300    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1301                                                    LParenLoc,
1302                                                    Init.takeAs<Expr>(),
1303                                                    RParenLoc);
1304  }
1305
1306  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1307                                                  LParenLoc,
1308                                                  MemberInit.takeAs<Expr>(),
1309                                                  RParenLoc);
1310}
1311
1312Sema::MemInitResult
1313Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1314                           Expr **Args, unsigned NumArgs,
1315                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1316                           CXXRecordDecl *ClassDecl) {
1317  bool HasDependentArg = false;
1318  for (unsigned i = 0; i < NumArgs; i++)
1319    HasDependentArg |= Args[i]->isTypeDependent();
1320
1321  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1322  if (BaseType->isDependentType() || HasDependentArg) {
1323    // Can't check initialization for a base of dependent type or when
1324    // any of the arguments are type-dependent expressions.
1325    OwningExprResult BaseInit
1326      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1327                                          RParenLoc));
1328
1329    // Erase any temporaries within this evaluation context; we're not
1330    // going to track them in the AST, since we'll be rebuilding the
1331    // ASTs during template instantiation.
1332    ExprTemporaries.erase(
1333              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1334                          ExprTemporaries.end());
1335
1336    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1337                                                    LParenLoc,
1338                                                    BaseInit.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  if (!BaseType->isRecordType())
1343    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1344             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1345
1346  // C++ [class.base.init]p2:
1347  //   [...] Unless the mem-initializer-id names a nonstatic data
1348  //   member of the constructor’s class or a direct or virtual base
1349  //   of that class, the mem-initializer is ill-formed. A
1350  //   mem-initializer-list can initialize a base class using any
1351  //   name that denotes that base class type.
1352
1353  // Check for direct and virtual base classes.
1354  const CXXBaseSpecifier *DirectBaseSpec = 0;
1355  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1356  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1357                      VirtualBaseSpec);
1358
1359  // C++ [base.class.init]p2:
1360  //   If a mem-initializer-id is ambiguous because it designates both
1361  //   a direct non-virtual base class and an inherited virtual base
1362  //   class, the mem-initializer is ill-formed.
1363  if (DirectBaseSpec && VirtualBaseSpec)
1364    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1365      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1366  // C++ [base.class.init]p2:
1367  // Unless the mem-initializer-id names a nonstatic data membeer of the
1368  // constructor's class ot a direst or virtual base of that class, the
1369  // mem-initializer is ill-formed.
1370  if (!DirectBaseSpec && !VirtualBaseSpec)
1371    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1372      << BaseType << ClassDecl->getNameAsCString()
1373      << BaseTInfo->getTypeLoc().getSourceRange();
1374
1375  CXXBaseSpecifier *BaseSpec
1376    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1377  if (!BaseSpec)
1378    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1379
1380  // Initialize the base.
1381  InitializedEntity BaseEntity =
1382    InitializedEntity::InitializeBase(Context, BaseSpec);
1383  InitializationKind Kind =
1384    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1385
1386  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1387
1388  OwningExprResult BaseInit =
1389    InitSeq.Perform(*this, BaseEntity, Kind,
1390                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1391  if (BaseInit.isInvalid())
1392    return true;
1393
1394  // C++0x [class.base.init]p7:
1395  //   The initialization of each base and member constitutes a
1396  //   full-expression.
1397  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1398  if (BaseInit.isInvalid())
1399    return true;
1400
1401  // If we are in a dependent context, template instantiation will
1402  // perform this type-checking again. Just save the arguments that we
1403  // received in a ParenListExpr.
1404  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1405  // of the information that we have about the base
1406  // initializer. However, deconstructing the ASTs is a dicey process,
1407  // and this approach is far more likely to get the corner cases right.
1408  if (CurContext->isDependentContext()) {
1409    // Bump the reference count of all of the arguments.
1410    for (unsigned I = 0; I != NumArgs; ++I)
1411      Args[I]->Retain();
1412
1413    OwningExprResult Init
1414      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1415                                          RParenLoc));
1416    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1417                                                    LParenLoc,
1418                                                    Init.takeAs<Expr>(),
1419                                                    RParenLoc);
1420  }
1421
1422  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1423                                                  LParenLoc,
1424                                                  BaseInit.takeAs<Expr>(),
1425                                                  RParenLoc);
1426}
1427
1428bool
1429Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1430                                  CXXBaseOrMemberInitializer **Initializers,
1431                                  unsigned NumInitializers,
1432                                  bool AnyErrors) {
1433//  assert((Constructor->isImplicit() == IsImplicitConstructor));
1434
1435  // We need to build the initializer AST according to order of construction
1436  // and not what user specified in the Initializers list.
1437  CXXRecordDecl *ClassDecl
1438    = cast<CXXRecordDecl>(Constructor->getDeclContext())->getDefinition();
1439  if (!ClassDecl)
1440    return true;
1441
1442  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1443  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1444  bool HasDependentBaseInit = false;
1445  bool HadError = false;
1446
1447  for (unsigned i = 0; i < NumInitializers; i++) {
1448    CXXBaseOrMemberInitializer *Member = Initializers[i];
1449    if (Member->isBaseInitializer()) {
1450      if (Member->getBaseClass()->isDependentType())
1451        HasDependentBaseInit = true;
1452      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1453    } else {
1454      AllBaseFields[Member->getMember()] = Member;
1455    }
1456  }
1457
1458  if (HasDependentBaseInit) {
1459    // FIXME. This does not preserve the ordering of the initializers.
1460    // Try (with -Wreorder)
1461    // template<class X> struct A {};
1462    // template<class X> struct B : A<X> {
1463    //   B() : x1(10), A<X>() {}
1464    //   int x1;
1465    // };
1466    // B<int> x;
1467    // On seeing one dependent type, we should essentially exit this routine
1468    // while preserving user-declared initializer list. When this routine is
1469    // called during instantiatiation process, this routine will rebuild the
1470    // ordered initializer list correctly.
1471
1472    // If we have a dependent base initialization, we can't determine the
1473    // association between initializers and bases; just dump the known
1474    // initializers into the list, and don't try to deal with other bases.
1475    for (unsigned i = 0; i < NumInitializers; i++) {
1476      CXXBaseOrMemberInitializer *Member = Initializers[i];
1477      if (Member->isBaseInitializer())
1478        AllToInit.push_back(Member);
1479    }
1480  } else {
1481    llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1482
1483    // Push virtual bases before others.
1484    for (CXXRecordDecl::base_class_iterator VBase =
1485         ClassDecl->vbases_begin(),
1486         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1487      if (VBase->getType()->isDependentType())
1488        continue;
1489      if (CXXBaseOrMemberInitializer *Value
1490            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1491        AllToInit.push_back(Value);
1492      } else if (!AnyErrors) {
1493        InitializedEntity InitEntity
1494          = InitializedEntity::InitializeBase(Context, VBase);
1495        InitializationKind InitKind
1496          = InitializationKind::CreateDefault(Constructor->getLocation());
1497        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1498        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1499                                                    MultiExprArg(*this, 0, 0));
1500        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1501        if (BaseInit.isInvalid()) {
1502          HadError = true;
1503          continue;
1504        }
1505
1506        // Don't attach synthesized base initializers in a dependent
1507        // context; they'll be checked again at template instantiation
1508        // time.
1509        if (CurContext->isDependentContext())
1510          continue;
1511
1512        CXXBaseOrMemberInitializer *CXXBaseInit =
1513          new (Context) CXXBaseOrMemberInitializer(Context,
1514                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1515                                                              SourceLocation()),
1516                                                   SourceLocation(),
1517                                                   BaseInit.takeAs<Expr>(),
1518                                                   SourceLocation());
1519        AllToInit.push_back(CXXBaseInit);
1520      }
1521    }
1522
1523    for (CXXRecordDecl::base_class_iterator Base =
1524         ClassDecl->bases_begin(),
1525         E = ClassDecl->bases_end(); Base != E; ++Base) {
1526      // Virtuals are in the virtual base list and already constructed.
1527      if (Base->isVirtual())
1528        continue;
1529      // Skip dependent types.
1530      if (Base->getType()->isDependentType())
1531        continue;
1532      if (CXXBaseOrMemberInitializer *Value
1533            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1534        AllToInit.push_back(Value);
1535      }
1536      else if (!AnyErrors) {
1537        InitializedEntity InitEntity
1538          = InitializedEntity::InitializeBase(Context, Base);
1539        InitializationKind InitKind
1540          = InitializationKind::CreateDefault(Constructor->getLocation());
1541        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1542        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1543                                                    MultiExprArg(*this, 0, 0));
1544        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1545        if (BaseInit.isInvalid()) {
1546          HadError = true;
1547          continue;
1548        }
1549
1550        // Don't attach synthesized base initializers in a dependent
1551        // context; they'll be regenerated at template instantiation
1552        // time.
1553        if (CurContext->isDependentContext())
1554          continue;
1555
1556        CXXBaseOrMemberInitializer *CXXBaseInit =
1557          new (Context) CXXBaseOrMemberInitializer(Context,
1558                             Context.getTrivialTypeSourceInfo(Base->getType(),
1559                                                              SourceLocation()),
1560                                                   SourceLocation(),
1561                                                   BaseInit.takeAs<Expr>(),
1562                                                   SourceLocation());
1563        AllToInit.push_back(CXXBaseInit);
1564      }
1565    }
1566  }
1567
1568  // non-static data members.
1569  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1570       E = ClassDecl->field_end(); Field != E; ++Field) {
1571    if ((*Field)->isAnonymousStructOrUnion()) {
1572      if (const RecordType *FieldClassType =
1573          Field->getType()->getAs<RecordType>()) {
1574        CXXRecordDecl *FieldClassDecl
1575          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1576        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1577            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1578          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1579            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1580            // set to the anonymous union data member used in the initializer
1581            // list.
1582            Value->setMember(*Field);
1583            Value->setAnonUnionMember(*FA);
1584            AllToInit.push_back(Value);
1585            break;
1586          }
1587        }
1588      }
1589      continue;
1590    }
1591    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1592      AllToInit.push_back(Value);
1593      continue;
1594    }
1595
1596    if ((*Field)->getType()->isDependentType() || AnyErrors)
1597      continue;
1598
1599    QualType FT = Context.getBaseElementType((*Field)->getType());
1600    if (FT->getAs<RecordType>()) {
1601      InitializedEntity InitEntity
1602        = InitializedEntity::InitializeMember(*Field);
1603      InitializationKind InitKind
1604        = InitializationKind::CreateDefault(Constructor->getLocation());
1605
1606      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1607      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1608                                                    MultiExprArg(*this, 0, 0));
1609      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1610      if (MemberInit.isInvalid()) {
1611        HadError = true;
1612        continue;
1613      }
1614
1615      // Don't attach synthesized member initializers in a dependent
1616      // context; they'll be regenerated a template instantiation
1617      // time.
1618      if (CurContext->isDependentContext())
1619        continue;
1620
1621      CXXBaseOrMemberInitializer *Member =
1622        new (Context) CXXBaseOrMemberInitializer(Context,
1623                                                 *Field, SourceLocation(),
1624                                                 SourceLocation(),
1625                                                 MemberInit.takeAs<Expr>(),
1626                                                 SourceLocation());
1627
1628      AllToInit.push_back(Member);
1629    }
1630    else if (FT->isReferenceType()) {
1631      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1632        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1633        << 0 << (*Field)->getDeclName();
1634      Diag((*Field)->getLocation(), diag::note_declared_at);
1635      HadError = true;
1636    }
1637    else if (FT.isConstQualified()) {
1638      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1639        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1640        << 1 << (*Field)->getDeclName();
1641      Diag((*Field)->getLocation(), diag::note_declared_at);
1642      HadError = true;
1643    }
1644  }
1645
1646  NumInitializers = AllToInit.size();
1647  if (NumInitializers > 0) {
1648    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1649    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1650      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1651    memcpy(baseOrMemberInitializers, AllToInit.data(),
1652           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1653    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1654
1655    // Constructors implicitly reference the base and member
1656    // destructors.
1657    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1658                                           Constructor->getParent());
1659  }
1660
1661  return HadError;
1662}
1663
1664static void *GetKeyForTopLevelField(FieldDecl *Field) {
1665  // For anonymous unions, use the class declaration as the key.
1666  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1667    if (RT->getDecl()->isAnonymousStructOrUnion())
1668      return static_cast<void *>(RT->getDecl());
1669  }
1670  return static_cast<void *>(Field);
1671}
1672
1673static void *GetKeyForBase(QualType BaseType) {
1674  if (const RecordType *RT = BaseType->getAs<RecordType>())
1675    return (void *)RT;
1676
1677  assert(0 && "Unexpected base type!");
1678  return 0;
1679}
1680
1681static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1682                             bool MemberMaybeAnon = false) {
1683  if (!Member->isMemberInitializer())
1684    return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1685
1686  // For fields injected into the class via declaration of an anonymous union,
1687  // use its anonymous union class declaration as the unique key.
1688  FieldDecl *Field = Member->getMember();
1689
1690  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1691  // data member of the class. Data member used in the initializer list is
1692  // in AnonUnionMember field.
1693  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1694    Field = Member->getAnonUnionMember();
1695
1696  // If the field is a member of an anonymous union, we use record decl of the
1697  // union as the key.
1698  RecordDecl *RD = Field->getParent();
1699  if (RD->isAnonymousStructOrUnion() && RD->isUnion())
1700    return static_cast<void *>(RD);
1701
1702  return static_cast<void *>(Field);
1703}
1704
1705static void
1706DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1707                                  const CXXConstructorDecl *Constructor,
1708                                  CXXBaseOrMemberInitializer **MemInits,
1709                                  unsigned NumMemInits) {
1710  if (Constructor->isDependentContext())
1711    return;
1712
1713  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1714      Diagnostic::Ignored &&
1715      SemaRef.Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1716      Diagnostic::Ignored)
1717    return;
1718
1719  // Also issue warning if order of ctor-initializer list does not match order
1720  // of 1) base class declarations and 2) order of non-static data members.
1721  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1722
1723  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1724
1725  // Push virtual bases before others.
1726  for (CXXRecordDecl::base_class_const_iterator VBase =
1727       ClassDecl->vbases_begin(),
1728       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1729    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1730
1731  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1732       E = ClassDecl->bases_end(); Base != E; ++Base) {
1733    // Virtuals are alread in the virtual base list and are constructed
1734    // first.
1735    if (Base->isVirtual())
1736      continue;
1737    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1738  }
1739
1740  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1741       E = ClassDecl->field_end(); Field != E; ++Field)
1742    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1743
1744  int Last = AllBaseOrMembers.size();
1745  int curIndex = 0;
1746  CXXBaseOrMemberInitializer *PrevMember = 0;
1747  for (unsigned i = 0; i < NumMemInits; i++) {
1748    CXXBaseOrMemberInitializer *Member = MemInits[i];
1749    void *MemberInCtorList = GetKeyForMember(Member, true);
1750
1751    for (; curIndex < Last; curIndex++)
1752      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1753        break;
1754    if (curIndex == Last) {
1755      assert(PrevMember && "Member not in member list?!");
1756      // Initializer as specified in ctor-initializer list is out of order.
1757      // Issue a warning diagnostic.
1758      if (PrevMember->isBaseInitializer()) {
1759        // Diagnostics is for an initialized base class.
1760        Type *BaseClass = PrevMember->getBaseClass();
1761        SemaRef.Diag(PrevMember->getSourceLocation(),
1762                     diag::warn_base_initialized)
1763          << QualType(BaseClass, 0);
1764      } else {
1765        FieldDecl *Field = PrevMember->getMember();
1766        SemaRef.Diag(PrevMember->getSourceLocation(),
1767                     diag::warn_field_initialized)
1768          << Field->getNameAsString();
1769      }
1770      // Also the note!
1771      if (FieldDecl *Field = Member->getMember())
1772        SemaRef.Diag(Member->getSourceLocation(),
1773                     diag::note_fieldorbase_initialized_here) << 0
1774          << Field->getNameAsString();
1775      else {
1776        Type *BaseClass = Member->getBaseClass();
1777        SemaRef.Diag(Member->getSourceLocation(),
1778             diag::note_fieldorbase_initialized_here) << 1
1779          << QualType(BaseClass, 0);
1780      }
1781      for (curIndex = 0; curIndex < Last; curIndex++)
1782        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1783          break;
1784    }
1785    PrevMember = Member;
1786  }
1787}
1788
1789/// ActOnMemInitializers - Handle the member initializers for a constructor.
1790void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1791                                SourceLocation ColonLoc,
1792                                MemInitTy **meminits, unsigned NumMemInits,
1793                                bool AnyErrors) {
1794  if (!ConstructorDecl)
1795    return;
1796
1797  AdjustDeclIfTemplate(ConstructorDecl);
1798
1799  CXXConstructorDecl *Constructor
1800    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1801
1802  if (!Constructor) {
1803    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1804    return;
1805  }
1806
1807  CXXBaseOrMemberInitializer **MemInits =
1808    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1809
1810  if (!Constructor->isDependentContext()) {
1811    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1812    bool err = false;
1813    for (unsigned i = 0; i < NumMemInits; i++) {
1814      CXXBaseOrMemberInitializer *Member = MemInits[i];
1815
1816      void *KeyToMember = GetKeyForMember(Member);
1817      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1818      if (!PrevMember) {
1819        PrevMember = Member;
1820        continue;
1821      }
1822      if (FieldDecl *Field = Member->getMember())
1823        Diag(Member->getSourceLocation(),
1824             diag::error_multiple_mem_initialization)
1825          << Field->getNameAsString()
1826          << Member->getSourceRange();
1827      else {
1828        Type *BaseClass = Member->getBaseClass();
1829        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1830        Diag(Member->getSourceLocation(),
1831             diag::error_multiple_base_initialization)
1832          << QualType(BaseClass, 0)
1833          << Member->getSourceRange();
1834      }
1835      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1836        << 0;
1837      err = true;
1838    }
1839
1840    if (err)
1841      return;
1842  }
1843
1844  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1845
1846  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
1847}
1848
1849void
1850Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1851                                             CXXRecordDecl *ClassDecl) {
1852  // Ignore dependent contexts.
1853  if (ClassDecl->isDependentContext())
1854    return;
1855
1856  // FIXME: all the access-control diagnostics are positioned on the
1857  // field/base declaration.  That's probably good; that said, the
1858  // user might reasonably want to know why the destructor is being
1859  // emitted, and we currently don't say.
1860
1861  // Non-static data members.
1862  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1863       E = ClassDecl->field_end(); I != E; ++I) {
1864    FieldDecl *Field = *I;
1865
1866    QualType FieldType = Context.getBaseElementType(Field->getType());
1867
1868    const RecordType* RT = FieldType->getAs<RecordType>();
1869    if (!RT)
1870      continue;
1871
1872    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1873    if (FieldClassDecl->hasTrivialDestructor())
1874      continue;
1875
1876    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1877    CheckDestructorAccess(Field->getLocation(), Dtor,
1878                          PDiag(diag::err_access_dtor_field)
1879                            << Field->getDeclName()
1880                            << FieldType);
1881
1882    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1883  }
1884
1885  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1886
1887  // Bases.
1888  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1889       E = ClassDecl->bases_end(); Base != E; ++Base) {
1890    // Bases are always records in a well-formed non-dependent class.
1891    const RecordType *RT = Base->getType()->getAs<RecordType>();
1892
1893    // Remember direct virtual bases.
1894    if (Base->isVirtual())
1895      DirectVirtualBases.insert(RT);
1896
1897    // Ignore trivial destructors.
1898    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1899    if (BaseClassDecl->hasTrivialDestructor())
1900      continue;
1901
1902    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1903
1904    // FIXME: caret should be on the start of the class name
1905    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1906                          PDiag(diag::err_access_dtor_base)
1907                            << Base->getType()
1908                            << Base->getSourceRange());
1909
1910    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1911  }
1912
1913  // Virtual bases.
1914  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1915       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1916
1917    // Bases are always records in a well-formed non-dependent class.
1918    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1919
1920    // Ignore direct virtual bases.
1921    if (DirectVirtualBases.count(RT))
1922      continue;
1923
1924    // Ignore trivial destructors.
1925    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1926    if (BaseClassDecl->hasTrivialDestructor())
1927      continue;
1928
1929    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1930    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1931                          PDiag(diag::err_access_dtor_vbase)
1932                            << VBase->getType());
1933
1934    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1935  }
1936}
1937
1938void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1939  if (!CDtorDecl)
1940    return;
1941
1942  if (CXXConstructorDecl *Constructor
1943      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1944    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
1945}
1946
1947bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1948                                  unsigned DiagID, AbstractDiagSelID SelID,
1949                                  const CXXRecordDecl *CurrentRD) {
1950  if (SelID == -1)
1951    return RequireNonAbstractType(Loc, T,
1952                                  PDiag(DiagID), CurrentRD);
1953  else
1954    return RequireNonAbstractType(Loc, T,
1955                                  PDiag(DiagID) << SelID, CurrentRD);
1956}
1957
1958bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1959                                  const PartialDiagnostic &PD,
1960                                  const CXXRecordDecl *CurrentRD) {
1961  if (!getLangOptions().CPlusPlus)
1962    return false;
1963
1964  if (const ArrayType *AT = Context.getAsArrayType(T))
1965    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1966                                  CurrentRD);
1967
1968  if (const PointerType *PT = T->getAs<PointerType>()) {
1969    // Find the innermost pointer type.
1970    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1971      PT = T;
1972
1973    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1974      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1975  }
1976
1977  const RecordType *RT = T->getAs<RecordType>();
1978  if (!RT)
1979    return false;
1980
1981  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1982
1983  if (CurrentRD && CurrentRD != RD)
1984    return false;
1985
1986  // FIXME: is this reasonable?  It matches current behavior, but....
1987  if (!RD->getDefinition())
1988    return false;
1989
1990  if (!RD->isAbstract())
1991    return false;
1992
1993  Diag(Loc, PD) << RD->getDeclName();
1994
1995  // Check if we've already emitted the list of pure virtual functions for this
1996  // class.
1997  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1998    return true;
1999
2000  CXXFinalOverriderMap FinalOverriders;
2001  RD->getFinalOverriders(FinalOverriders);
2002
2003  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2004                                   MEnd = FinalOverriders.end();
2005       M != MEnd;
2006       ++M) {
2007    for (OverridingMethods::iterator SO = M->second.begin(),
2008                                  SOEnd = M->second.end();
2009         SO != SOEnd; ++SO) {
2010      // C++ [class.abstract]p4:
2011      //   A class is abstract if it contains or inherits at least one
2012      //   pure virtual function for which the final overrider is pure
2013      //   virtual.
2014
2015      //
2016      if (SO->second.size() != 1)
2017        continue;
2018
2019      if (!SO->second.front().Method->isPure())
2020        continue;
2021
2022      Diag(SO->second.front().Method->getLocation(),
2023           diag::note_pure_virtual_function)
2024        << SO->second.front().Method->getDeclName();
2025    }
2026  }
2027
2028  if (!PureVirtualClassDiagSet)
2029    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2030  PureVirtualClassDiagSet->insert(RD);
2031
2032  return true;
2033}
2034
2035namespace {
2036  class AbstractClassUsageDiagnoser
2037    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2038    Sema &SemaRef;
2039    CXXRecordDecl *AbstractClass;
2040
2041    bool VisitDeclContext(const DeclContext *DC) {
2042      bool Invalid = false;
2043
2044      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2045           E = DC->decls_end(); I != E; ++I)
2046        Invalid |= Visit(*I);
2047
2048      return Invalid;
2049    }
2050
2051  public:
2052    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2053      : SemaRef(SemaRef), AbstractClass(ac) {
2054        Visit(SemaRef.Context.getTranslationUnitDecl());
2055    }
2056
2057    bool VisitFunctionDecl(const FunctionDecl *FD) {
2058      if (FD->isThisDeclarationADefinition()) {
2059        // No need to do the check if we're in a definition, because it requires
2060        // that the return/param types are complete.
2061        // because that requires
2062        return VisitDeclContext(FD);
2063      }
2064
2065      // Check the return type.
2066      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2067      bool Invalid =
2068        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2069                                       diag::err_abstract_type_in_decl,
2070                                       Sema::AbstractReturnType,
2071                                       AbstractClass);
2072
2073      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2074           E = FD->param_end(); I != E; ++I) {
2075        const ParmVarDecl *VD = *I;
2076        Invalid |=
2077          SemaRef.RequireNonAbstractType(VD->getLocation(),
2078                                         VD->getOriginalType(),
2079                                         diag::err_abstract_type_in_decl,
2080                                         Sema::AbstractParamType,
2081                                         AbstractClass);
2082      }
2083
2084      return Invalid;
2085    }
2086
2087    bool VisitDecl(const Decl* D) {
2088      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2089        return VisitDeclContext(DC);
2090
2091      return false;
2092    }
2093  };
2094}
2095
2096/// \brief Perform semantic checks on a class definition that has been
2097/// completing, introducing implicitly-declared members, checking for
2098/// abstract types, etc.
2099void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2100  if (!Record || Record->isInvalidDecl())
2101    return;
2102
2103  if (!Record->isDependentType())
2104    AddImplicitlyDeclaredMembersToClass(Record);
2105
2106  if (Record->isInvalidDecl())
2107    return;
2108
2109  // Set access bits correctly on the directly-declared conversions.
2110  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2111  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2112    Convs->setAccess(I, (*I)->getAccess());
2113
2114  // Determine whether we need to check for final overriders. We do
2115  // this either when there are virtual base classes (in which case we
2116  // may end up finding multiple final overriders for a given virtual
2117  // function) or any of the base classes is abstract (in which case
2118  // we might detect that this class is abstract).
2119  bool CheckFinalOverriders = false;
2120  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2121      !Record->isDependentType()) {
2122    if (Record->getNumVBases())
2123      CheckFinalOverriders = true;
2124    else if (!Record->isAbstract()) {
2125      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2126                                                 BEnd = Record->bases_end();
2127           B != BEnd; ++B) {
2128        CXXRecordDecl *BaseDecl
2129          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2130        if (BaseDecl->isAbstract()) {
2131          CheckFinalOverriders = true;
2132          break;
2133        }
2134      }
2135    }
2136  }
2137
2138  if (CheckFinalOverriders) {
2139    CXXFinalOverriderMap FinalOverriders;
2140    Record->getFinalOverriders(FinalOverriders);
2141
2142    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2143                                     MEnd = FinalOverriders.end();
2144         M != MEnd; ++M) {
2145      for (OverridingMethods::iterator SO = M->second.begin(),
2146                                    SOEnd = M->second.end();
2147           SO != SOEnd; ++SO) {
2148        assert(SO->second.size() > 0 &&
2149               "All virtual functions have overridding virtual functions");
2150        if (SO->second.size() == 1) {
2151          // C++ [class.abstract]p4:
2152          //   A class is abstract if it contains or inherits at least one
2153          //   pure virtual function for which the final overrider is pure
2154          //   virtual.
2155          if (SO->second.front().Method->isPure())
2156            Record->setAbstract(true);
2157          continue;
2158        }
2159
2160        // C++ [class.virtual]p2:
2161        //   In a derived class, if a virtual member function of a base
2162        //   class subobject has more than one final overrider the
2163        //   program is ill-formed.
2164        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2165          << (NamedDecl *)M->first << Record;
2166        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2167        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2168                                                 OMEnd = SO->second.end();
2169             OM != OMEnd; ++OM)
2170          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2171            << (NamedDecl *)M->first << OM->Method->getParent();
2172
2173        Record->setInvalidDecl();
2174      }
2175    }
2176  }
2177
2178  if (Record->isAbstract() && !Record->isInvalidDecl())
2179    (void)AbstractClassUsageDiagnoser(*this, Record);
2180}
2181
2182void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2183                                             DeclPtrTy TagDecl,
2184                                             SourceLocation LBrac,
2185                                             SourceLocation RBrac,
2186                                             AttributeList *AttrList) {
2187  if (!TagDecl)
2188    return;
2189
2190  AdjustDeclIfTemplate(TagDecl);
2191
2192  ActOnFields(S, RLoc, TagDecl,
2193              (DeclPtrTy*)FieldCollector->getCurFields(),
2194              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2195
2196  CheckCompletedCXXClass(
2197                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2198}
2199
2200/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2201/// special functions, such as the default constructor, copy
2202/// constructor, or destructor, to the given C++ class (C++
2203/// [special]p1).  This routine can only be executed just before the
2204/// definition of the class is complete.
2205void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2206  CanQualType ClassType
2207    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2208
2209  // FIXME: Implicit declarations have exception specifications, which are
2210  // the union of the specifications of the implicitly called functions.
2211
2212  if (!ClassDecl->hasUserDeclaredConstructor()) {
2213    // C++ [class.ctor]p5:
2214    //   A default constructor for a class X is a constructor of class X
2215    //   that can be called without an argument. If there is no
2216    //   user-declared constructor for class X, a default constructor is
2217    //   implicitly declared. An implicitly-declared default constructor
2218    //   is an inline public member of its class.
2219    DeclarationName Name
2220      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2221    CXXConstructorDecl *DefaultCon =
2222      CXXConstructorDecl::Create(Context, ClassDecl,
2223                                 ClassDecl->getLocation(), Name,
2224                                 Context.getFunctionType(Context.VoidTy,
2225                                                         0, 0, false, 0,
2226                                                         /*FIXME*/false, false,
2227                                                         0, 0,
2228                                                       FunctionType::ExtInfo()),
2229                                 /*TInfo=*/0,
2230                                 /*isExplicit=*/false,
2231                                 /*isInline=*/true,
2232                                 /*isImplicitlyDeclared=*/true);
2233    DefaultCon->setAccess(AS_public);
2234    DefaultCon->setImplicit();
2235    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2236    ClassDecl->addDecl(DefaultCon);
2237  }
2238
2239  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2240    // C++ [class.copy]p4:
2241    //   If the class definition does not explicitly declare a copy
2242    //   constructor, one is declared implicitly.
2243
2244    // C++ [class.copy]p5:
2245    //   The implicitly-declared copy constructor for a class X will
2246    //   have the form
2247    //
2248    //       X::X(const X&)
2249    //
2250    //   if
2251    bool HasConstCopyConstructor = true;
2252
2253    //     -- each direct or virtual base class B of X has a copy
2254    //        constructor whose first parameter is of type const B& or
2255    //        const volatile B&, and
2256    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2257         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2258      const CXXRecordDecl *BaseClassDecl
2259        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2260      HasConstCopyConstructor
2261        = BaseClassDecl->hasConstCopyConstructor(Context);
2262    }
2263
2264    //     -- for all the nonstatic data members of X that are of a
2265    //        class type M (or array thereof), each such class type
2266    //        has a copy constructor whose first parameter is of type
2267    //        const M& or const volatile M&.
2268    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2269         HasConstCopyConstructor && Field != ClassDecl->field_end();
2270         ++Field) {
2271      QualType FieldType = (*Field)->getType();
2272      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2273        FieldType = Array->getElementType();
2274      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2275        const CXXRecordDecl *FieldClassDecl
2276          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2277        HasConstCopyConstructor
2278          = FieldClassDecl->hasConstCopyConstructor(Context);
2279      }
2280    }
2281
2282    //   Otherwise, the implicitly declared copy constructor will have
2283    //   the form
2284    //
2285    //       X::X(X&)
2286    QualType ArgType = ClassType;
2287    if (HasConstCopyConstructor)
2288      ArgType = ArgType.withConst();
2289    ArgType = Context.getLValueReferenceType(ArgType);
2290
2291    //   An implicitly-declared copy constructor is an inline public
2292    //   member of its class.
2293    DeclarationName Name
2294      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2295    CXXConstructorDecl *CopyConstructor
2296      = CXXConstructorDecl::Create(Context, ClassDecl,
2297                                   ClassDecl->getLocation(), Name,
2298                                   Context.getFunctionType(Context.VoidTy,
2299                                                           &ArgType, 1,
2300                                                           false, 0,
2301                                                           /*FIXME:*/false,
2302                                                           false, 0, 0,
2303                                                       FunctionType::ExtInfo()),
2304                                   /*TInfo=*/0,
2305                                   /*isExplicit=*/false,
2306                                   /*isInline=*/true,
2307                                   /*isImplicitlyDeclared=*/true);
2308    CopyConstructor->setAccess(AS_public);
2309    CopyConstructor->setImplicit();
2310    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2311
2312    // Add the parameter to the constructor.
2313    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2314                                                 ClassDecl->getLocation(),
2315                                                 /*IdentifierInfo=*/0,
2316                                                 ArgType, /*TInfo=*/0,
2317                                                 VarDecl::None, 0);
2318    CopyConstructor->setParams(&FromParam, 1);
2319    ClassDecl->addDecl(CopyConstructor);
2320  }
2321
2322  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2323    // Note: The following rules are largely analoguous to the copy
2324    // constructor rules. Note that virtual bases are not taken into account
2325    // for determining the argument type of the operator. Note also that
2326    // operators taking an object instead of a reference are allowed.
2327    //
2328    // C++ [class.copy]p10:
2329    //   If the class definition does not explicitly declare a copy
2330    //   assignment operator, one is declared implicitly.
2331    //   The implicitly-defined copy assignment operator for a class X
2332    //   will have the form
2333    //
2334    //       X& X::operator=(const X&)
2335    //
2336    //   if
2337    bool HasConstCopyAssignment = true;
2338
2339    //       -- each direct base class B of X has a copy assignment operator
2340    //          whose parameter is of type const B&, const volatile B& or B,
2341    //          and
2342    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2343         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2344      assert(!Base->getType()->isDependentType() &&
2345            "Cannot generate implicit members for class with dependent bases.");
2346      const CXXRecordDecl *BaseClassDecl
2347        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2348      const CXXMethodDecl *MD = 0;
2349      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2350                                                                     MD);
2351    }
2352
2353    //       -- for all the nonstatic data members of X that are of a class
2354    //          type M (or array thereof), each such class type has a copy
2355    //          assignment operator whose parameter is of type const M&,
2356    //          const volatile M& or M.
2357    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2358         HasConstCopyAssignment && Field != ClassDecl->field_end();
2359         ++Field) {
2360      QualType FieldType = (*Field)->getType();
2361      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2362        FieldType = Array->getElementType();
2363      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2364        const CXXRecordDecl *FieldClassDecl
2365          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2366        const CXXMethodDecl *MD = 0;
2367        HasConstCopyAssignment
2368          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2369      }
2370    }
2371
2372    //   Otherwise, the implicitly declared copy assignment operator will
2373    //   have the form
2374    //
2375    //       X& X::operator=(X&)
2376    QualType ArgType = ClassType;
2377    QualType RetType = Context.getLValueReferenceType(ArgType);
2378    if (HasConstCopyAssignment)
2379      ArgType = ArgType.withConst();
2380    ArgType = Context.getLValueReferenceType(ArgType);
2381
2382    //   An implicitly-declared copy assignment operator is an inline public
2383    //   member of its class.
2384    DeclarationName Name =
2385      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2386    CXXMethodDecl *CopyAssignment =
2387      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2388                            Context.getFunctionType(RetType, &ArgType, 1,
2389                                                    false, 0,
2390                                                    /*FIXME:*/false,
2391                                                    false, 0, 0,
2392                                                    FunctionType::ExtInfo()),
2393                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2394    CopyAssignment->setAccess(AS_public);
2395    CopyAssignment->setImplicit();
2396    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2397    CopyAssignment->setCopyAssignment(true);
2398
2399    // Add the parameter to the operator.
2400    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2401                                                 ClassDecl->getLocation(),
2402                                                 /*IdentifierInfo=*/0,
2403                                                 ArgType, /*TInfo=*/0,
2404                                                 VarDecl::None, 0);
2405    CopyAssignment->setParams(&FromParam, 1);
2406
2407    // Don't call addedAssignmentOperator. There is no way to distinguish an
2408    // implicit from an explicit assignment operator.
2409    ClassDecl->addDecl(CopyAssignment);
2410    AddOverriddenMethods(ClassDecl, CopyAssignment);
2411  }
2412
2413  if (!ClassDecl->hasUserDeclaredDestructor()) {
2414    // C++ [class.dtor]p2:
2415    //   If a class has no user-declared destructor, a destructor is
2416    //   declared implicitly. An implicitly-declared destructor is an
2417    //   inline public member of its class.
2418    QualType Ty = Context.getFunctionType(Context.VoidTy,
2419                                          0, 0, false, 0,
2420                                          /*FIXME:*/false,
2421                                          false, 0, 0, FunctionType::ExtInfo());
2422
2423    DeclarationName Name
2424      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2425    CXXDestructorDecl *Destructor
2426      = CXXDestructorDecl::Create(Context, ClassDecl,
2427                                  ClassDecl->getLocation(), Name, Ty,
2428                                  /*isInline=*/true,
2429                                  /*isImplicitlyDeclared=*/true);
2430    Destructor->setAccess(AS_public);
2431    Destructor->setImplicit();
2432    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2433    ClassDecl->addDecl(Destructor);
2434
2435    // This could be uniqued if it ever proves significant.
2436    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2437
2438    AddOverriddenMethods(ClassDecl, Destructor);
2439  }
2440}
2441
2442void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2443  Decl *D = TemplateD.getAs<Decl>();
2444  if (!D)
2445    return;
2446
2447  TemplateParameterList *Params = 0;
2448  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2449    Params = Template->getTemplateParameters();
2450  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2451           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2452    Params = PartialSpec->getTemplateParameters();
2453  else
2454    return;
2455
2456  for (TemplateParameterList::iterator Param = Params->begin(),
2457                                    ParamEnd = Params->end();
2458       Param != ParamEnd; ++Param) {
2459    NamedDecl *Named = cast<NamedDecl>(*Param);
2460    if (Named->getDeclName()) {
2461      S->AddDecl(DeclPtrTy::make(Named));
2462      IdResolver.AddDecl(Named);
2463    }
2464  }
2465}
2466
2467void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2468  if (!RecordD) return;
2469  AdjustDeclIfTemplate(RecordD);
2470  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2471  PushDeclContext(S, Record);
2472}
2473
2474void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2475  if (!RecordD) return;
2476  PopDeclContext();
2477}
2478
2479/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2480/// parsing a top-level (non-nested) C++ class, and we are now
2481/// parsing those parts of the given Method declaration that could
2482/// not be parsed earlier (C++ [class.mem]p2), such as default
2483/// arguments. This action should enter the scope of the given
2484/// Method declaration as if we had just parsed the qualified method
2485/// name. However, it should not bring the parameters into scope;
2486/// that will be performed by ActOnDelayedCXXMethodParameter.
2487void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2488}
2489
2490/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2491/// C++ method declaration. We're (re-)introducing the given
2492/// function parameter into scope for use in parsing later parts of
2493/// the method declaration. For example, we could see an
2494/// ActOnParamDefaultArgument event for this parameter.
2495void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2496  if (!ParamD)
2497    return;
2498
2499  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2500
2501  // If this parameter has an unparsed default argument, clear it out
2502  // to make way for the parsed default argument.
2503  if (Param->hasUnparsedDefaultArg())
2504    Param->setDefaultArg(0);
2505
2506  S->AddDecl(DeclPtrTy::make(Param));
2507  if (Param->getDeclName())
2508    IdResolver.AddDecl(Param);
2509}
2510
2511/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2512/// processing the delayed method declaration for Method. The method
2513/// declaration is now considered finished. There may be a separate
2514/// ActOnStartOfFunctionDef action later (not necessarily
2515/// immediately!) for this method, if it was also defined inside the
2516/// class body.
2517void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2518  if (!MethodD)
2519    return;
2520
2521  AdjustDeclIfTemplate(MethodD);
2522
2523  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2524
2525  // Now that we have our default arguments, check the constructor
2526  // again. It could produce additional diagnostics or affect whether
2527  // the class has implicitly-declared destructors, among other
2528  // things.
2529  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2530    CheckConstructor(Constructor);
2531
2532  // Check the default arguments, which we may have added.
2533  if (!Method->isInvalidDecl())
2534    CheckCXXDefaultArguments(Method);
2535}
2536
2537/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2538/// the well-formedness of the constructor declarator @p D with type @p
2539/// R. If there are any errors in the declarator, this routine will
2540/// emit diagnostics and set the invalid bit to true.  In any case, the type
2541/// will be updated to reflect a well-formed type for the constructor and
2542/// returned.
2543QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2544                                          FunctionDecl::StorageClass &SC) {
2545  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2546
2547  // C++ [class.ctor]p3:
2548  //   A constructor shall not be virtual (10.3) or static (9.4). A
2549  //   constructor can be invoked for a const, volatile or const
2550  //   volatile object. A constructor shall not be declared const,
2551  //   volatile, or const volatile (9.3.2).
2552  if (isVirtual) {
2553    if (!D.isInvalidType())
2554      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2555        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2556        << SourceRange(D.getIdentifierLoc());
2557    D.setInvalidType();
2558  }
2559  if (SC == FunctionDecl::Static) {
2560    if (!D.isInvalidType())
2561      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2562        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2563        << SourceRange(D.getIdentifierLoc());
2564    D.setInvalidType();
2565    SC = FunctionDecl::None;
2566  }
2567
2568  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2569  if (FTI.TypeQuals != 0) {
2570    if (FTI.TypeQuals & Qualifiers::Const)
2571      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2572        << "const" << SourceRange(D.getIdentifierLoc());
2573    if (FTI.TypeQuals & Qualifiers::Volatile)
2574      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2575        << "volatile" << SourceRange(D.getIdentifierLoc());
2576    if (FTI.TypeQuals & Qualifiers::Restrict)
2577      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2578        << "restrict" << SourceRange(D.getIdentifierLoc());
2579  }
2580
2581  // Rebuild the function type "R" without any type qualifiers (in
2582  // case any of the errors above fired) and with "void" as the
2583  // return type, since constructors don't have return types. We
2584  // *always* have to do this, because GetTypeForDeclarator will
2585  // put in a result type of "int" when none was specified.
2586  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2587  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2588                                 Proto->getNumArgs(),
2589                                 Proto->isVariadic(), 0,
2590                                 Proto->hasExceptionSpec(),
2591                                 Proto->hasAnyExceptionSpec(),
2592                                 Proto->getNumExceptions(),
2593                                 Proto->exception_begin(),
2594                                 Proto->getExtInfo());
2595}
2596
2597/// CheckConstructor - Checks a fully-formed constructor for
2598/// well-formedness, issuing any diagnostics required. Returns true if
2599/// the constructor declarator is invalid.
2600void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2601  CXXRecordDecl *ClassDecl
2602    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2603  if (!ClassDecl)
2604    return Constructor->setInvalidDecl();
2605
2606  // C++ [class.copy]p3:
2607  //   A declaration of a constructor for a class X is ill-formed if
2608  //   its first parameter is of type (optionally cv-qualified) X and
2609  //   either there are no other parameters or else all other
2610  //   parameters have default arguments.
2611  if (!Constructor->isInvalidDecl() &&
2612      ((Constructor->getNumParams() == 1) ||
2613       (Constructor->getNumParams() > 1 &&
2614        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2615      Constructor->getTemplateSpecializationKind()
2616                                              != TSK_ImplicitInstantiation) {
2617    QualType ParamType = Constructor->getParamDecl(0)->getType();
2618    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2619    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2620      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2621      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2622        << FixItHint::CreateInsertion(ParamLoc, " const &");
2623
2624      // FIXME: Rather that making the constructor invalid, we should endeavor
2625      // to fix the type.
2626      Constructor->setInvalidDecl();
2627    }
2628  }
2629
2630  // Notify the class that we've added a constructor.
2631  ClassDecl->addedConstructor(Context, Constructor);
2632}
2633
2634/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2635/// issuing any diagnostics required. Returns true on error.
2636bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2637  CXXRecordDecl *RD = Destructor->getParent();
2638
2639  if (Destructor->isVirtual()) {
2640    SourceLocation Loc;
2641
2642    if (!Destructor->isImplicit())
2643      Loc = Destructor->getLocation();
2644    else
2645      Loc = RD->getLocation();
2646
2647    // If we have a virtual destructor, look up the deallocation function
2648    FunctionDecl *OperatorDelete = 0;
2649    DeclarationName Name =
2650    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2651    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2652      return true;
2653
2654    Destructor->setOperatorDelete(OperatorDelete);
2655  }
2656
2657  return false;
2658}
2659
2660static inline bool
2661FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2662  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2663          FTI.ArgInfo[0].Param &&
2664          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2665}
2666
2667/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2668/// the well-formednes of the destructor declarator @p D with type @p
2669/// R. If there are any errors in the declarator, this routine will
2670/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2671/// will be updated to reflect a well-formed type for the destructor and
2672/// returned.
2673QualType Sema::CheckDestructorDeclarator(Declarator &D,
2674                                         FunctionDecl::StorageClass& SC) {
2675  // C++ [class.dtor]p1:
2676  //   [...] A typedef-name that names a class is a class-name
2677  //   (7.1.3); however, a typedef-name that names a class shall not
2678  //   be used as the identifier in the declarator for a destructor
2679  //   declaration.
2680  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2681  if (isa<TypedefType>(DeclaratorType)) {
2682    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2683      << DeclaratorType;
2684    D.setInvalidType();
2685  }
2686
2687  // C++ [class.dtor]p2:
2688  //   A destructor is used to destroy objects of its class type. A
2689  //   destructor takes no parameters, and no return type can be
2690  //   specified for it (not even void). The address of a destructor
2691  //   shall not be taken. A destructor shall not be static. A
2692  //   destructor can be invoked for a const, volatile or const
2693  //   volatile object. A destructor shall not be declared const,
2694  //   volatile or const volatile (9.3.2).
2695  if (SC == FunctionDecl::Static) {
2696    if (!D.isInvalidType())
2697      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2698        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2699        << SourceRange(D.getIdentifierLoc());
2700    SC = FunctionDecl::None;
2701    D.setInvalidType();
2702  }
2703  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2704    // Destructors don't have return types, but the parser will
2705    // happily parse something like:
2706    //
2707    //   class X {
2708    //     float ~X();
2709    //   };
2710    //
2711    // The return type will be eliminated later.
2712    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2713      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2714      << SourceRange(D.getIdentifierLoc());
2715  }
2716
2717  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2718  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2719    if (FTI.TypeQuals & Qualifiers::Const)
2720      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2721        << "const" << SourceRange(D.getIdentifierLoc());
2722    if (FTI.TypeQuals & Qualifiers::Volatile)
2723      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2724        << "volatile" << SourceRange(D.getIdentifierLoc());
2725    if (FTI.TypeQuals & Qualifiers::Restrict)
2726      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2727        << "restrict" << SourceRange(D.getIdentifierLoc());
2728    D.setInvalidType();
2729  }
2730
2731  // Make sure we don't have any parameters.
2732  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2733    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2734
2735    // Delete the parameters.
2736    FTI.freeArgs();
2737    D.setInvalidType();
2738  }
2739
2740  // Make sure the destructor isn't variadic.
2741  if (FTI.isVariadic) {
2742    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2743    D.setInvalidType();
2744  }
2745
2746  // Rebuild the function type "R" without any type qualifiers or
2747  // parameters (in case any of the errors above fired) and with
2748  // "void" as the return type, since destructors don't have return
2749  // types. We *always* have to do this, because GetTypeForDeclarator
2750  // will put in a result type of "int" when none was specified.
2751  // FIXME: Exceptions!
2752  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2753                                 false, false, 0, 0, FunctionType::ExtInfo());
2754}
2755
2756/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2757/// well-formednes of the conversion function declarator @p D with
2758/// type @p R. If there are any errors in the declarator, this routine
2759/// will emit diagnostics and return true. Otherwise, it will return
2760/// false. Either way, the type @p R will be updated to reflect a
2761/// well-formed type for the conversion operator.
2762void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2763                                     FunctionDecl::StorageClass& SC) {
2764  // C++ [class.conv.fct]p1:
2765  //   Neither parameter types nor return type can be specified. The
2766  //   type of a conversion function (8.3.5) is "function taking no
2767  //   parameter returning conversion-type-id."
2768  if (SC == FunctionDecl::Static) {
2769    if (!D.isInvalidType())
2770      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2771        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2772        << SourceRange(D.getIdentifierLoc());
2773    D.setInvalidType();
2774    SC = FunctionDecl::None;
2775  }
2776  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2777    // Conversion functions don't have return types, but the parser will
2778    // happily parse something like:
2779    //
2780    //   class X {
2781    //     float operator bool();
2782    //   };
2783    //
2784    // The return type will be changed later anyway.
2785    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2786      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2787      << SourceRange(D.getIdentifierLoc());
2788  }
2789
2790  // Make sure we don't have any parameters.
2791  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2792    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2793
2794    // Delete the parameters.
2795    D.getTypeObject(0).Fun.freeArgs();
2796    D.setInvalidType();
2797  }
2798
2799  // Make sure the conversion function isn't variadic.
2800  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2801    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2802    D.setInvalidType();
2803  }
2804
2805  // C++ [class.conv.fct]p4:
2806  //   The conversion-type-id shall not represent a function type nor
2807  //   an array type.
2808  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2809  if (ConvType->isArrayType()) {
2810    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2811    ConvType = Context.getPointerType(ConvType);
2812    D.setInvalidType();
2813  } else if (ConvType->isFunctionType()) {
2814    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2815    ConvType = Context.getPointerType(ConvType);
2816    D.setInvalidType();
2817  }
2818
2819  // Rebuild the function type "R" without any parameters (in case any
2820  // of the errors above fired) and with the conversion type as the
2821  // return type.
2822  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2823  R = Context.getFunctionType(ConvType, 0, 0, false,
2824                              Proto->getTypeQuals(),
2825                              Proto->hasExceptionSpec(),
2826                              Proto->hasAnyExceptionSpec(),
2827                              Proto->getNumExceptions(),
2828                              Proto->exception_begin(),
2829                              Proto->getExtInfo());
2830
2831  // C++0x explicit conversion operators.
2832  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2833    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2834         diag::warn_explicit_conversion_functions)
2835      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2836}
2837
2838/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2839/// the declaration of the given C++ conversion function. This routine
2840/// is responsible for recording the conversion function in the C++
2841/// class, if possible.
2842Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2843  assert(Conversion && "Expected to receive a conversion function declaration");
2844
2845  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2846
2847  // Make sure we aren't redeclaring the conversion function.
2848  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2849
2850  // C++ [class.conv.fct]p1:
2851  //   [...] A conversion function is never used to convert a
2852  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2853  //   same object type (or a reference to it), to a (possibly
2854  //   cv-qualified) base class of that type (or a reference to it),
2855  //   or to (possibly cv-qualified) void.
2856  // FIXME: Suppress this warning if the conversion function ends up being a
2857  // virtual function that overrides a virtual function in a base class.
2858  QualType ClassType
2859    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2860  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2861    ConvType = ConvTypeRef->getPointeeType();
2862  if (ConvType->isRecordType()) {
2863    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2864    if (ConvType == ClassType)
2865      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2866        << ClassType;
2867    else if (IsDerivedFrom(ClassType, ConvType))
2868      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2869        <<  ClassType << ConvType;
2870  } else if (ConvType->isVoidType()) {
2871    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2872      << ClassType << ConvType;
2873  }
2874
2875  if (Conversion->getPrimaryTemplate()) {
2876    // ignore specializations
2877  } else if (Conversion->getPreviousDeclaration()) {
2878    if (FunctionTemplateDecl *ConversionTemplate
2879                                  = Conversion->getDescribedFunctionTemplate()) {
2880      if (ClassDecl->replaceConversion(
2881                                   ConversionTemplate->getPreviousDeclaration(),
2882                                       ConversionTemplate))
2883        return DeclPtrTy::make(ConversionTemplate);
2884    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2885                                            Conversion))
2886      return DeclPtrTy::make(Conversion);
2887    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2888  } else if (FunctionTemplateDecl *ConversionTemplate
2889               = Conversion->getDescribedFunctionTemplate())
2890    ClassDecl->addConversionFunction(ConversionTemplate);
2891  else
2892    ClassDecl->addConversionFunction(Conversion);
2893
2894  return DeclPtrTy::make(Conversion);
2895}
2896
2897//===----------------------------------------------------------------------===//
2898// Namespace Handling
2899//===----------------------------------------------------------------------===//
2900
2901/// ActOnStartNamespaceDef - This is called at the start of a namespace
2902/// definition.
2903Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2904                                             SourceLocation IdentLoc,
2905                                             IdentifierInfo *II,
2906                                             SourceLocation LBrace,
2907                                             AttributeList *AttrList) {
2908  NamespaceDecl *Namespc =
2909      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2910  Namespc->setLBracLoc(LBrace);
2911
2912  Scope *DeclRegionScope = NamespcScope->getParent();
2913
2914  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2915
2916  if (II) {
2917    // C++ [namespace.def]p2:
2918    // The identifier in an original-namespace-definition shall not have been
2919    // previously defined in the declarative region in which the
2920    // original-namespace-definition appears. The identifier in an
2921    // original-namespace-definition is the name of the namespace. Subsequently
2922    // in that declarative region, it is treated as an original-namespace-name.
2923
2924    NamedDecl *PrevDecl
2925      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2926                         ForRedeclaration);
2927
2928    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2929      // This is an extended namespace definition.
2930      // Attach this namespace decl to the chain of extended namespace
2931      // definitions.
2932      OrigNS->setNextNamespace(Namespc);
2933      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2934
2935      // Remove the previous declaration from the scope.
2936      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2937        IdResolver.RemoveDecl(OrigNS);
2938        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2939      }
2940    } else if (PrevDecl) {
2941      // This is an invalid name redefinition.
2942      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2943       << Namespc->getDeclName();
2944      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2945      Namespc->setInvalidDecl();
2946      // Continue on to push Namespc as current DeclContext and return it.
2947    } else if (II->isStr("std") &&
2948               CurContext->getLookupContext()->isTranslationUnit()) {
2949      // This is the first "real" definition of the namespace "std", so update
2950      // our cache of the "std" namespace to point at this definition.
2951      if (StdNamespace) {
2952        // We had already defined a dummy namespace "std". Link this new
2953        // namespace definition to the dummy namespace "std".
2954        StdNamespace->setNextNamespace(Namespc);
2955        StdNamespace->setLocation(IdentLoc);
2956        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2957      }
2958
2959      // Make our StdNamespace cache point at the first real definition of the
2960      // "std" namespace.
2961      StdNamespace = Namespc;
2962    }
2963
2964    PushOnScopeChains(Namespc, DeclRegionScope);
2965  } else {
2966    // Anonymous namespaces.
2967    assert(Namespc->isAnonymousNamespace());
2968
2969    // Link the anonymous namespace into its parent.
2970    NamespaceDecl *PrevDecl;
2971    DeclContext *Parent = CurContext->getLookupContext();
2972    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2973      PrevDecl = TU->getAnonymousNamespace();
2974      TU->setAnonymousNamespace(Namespc);
2975    } else {
2976      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2977      PrevDecl = ND->getAnonymousNamespace();
2978      ND->setAnonymousNamespace(Namespc);
2979    }
2980
2981    // Link the anonymous namespace with its previous declaration.
2982    if (PrevDecl) {
2983      assert(PrevDecl->isAnonymousNamespace());
2984      assert(!PrevDecl->getNextNamespace());
2985      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2986      PrevDecl->setNextNamespace(Namespc);
2987    }
2988
2989    CurContext->addDecl(Namespc);
2990
2991    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2992    //   behaves as if it were replaced by
2993    //     namespace unique { /* empty body */ }
2994    //     using namespace unique;
2995    //     namespace unique { namespace-body }
2996    //   where all occurrences of 'unique' in a translation unit are
2997    //   replaced by the same identifier and this identifier differs
2998    //   from all other identifiers in the entire program.
2999
3000    // We just create the namespace with an empty name and then add an
3001    // implicit using declaration, just like the standard suggests.
3002    //
3003    // CodeGen enforces the "universally unique" aspect by giving all
3004    // declarations semantically contained within an anonymous
3005    // namespace internal linkage.
3006
3007    if (!PrevDecl) {
3008      UsingDirectiveDecl* UD
3009        = UsingDirectiveDecl::Create(Context, CurContext,
3010                                     /* 'using' */ LBrace,
3011                                     /* 'namespace' */ SourceLocation(),
3012                                     /* qualifier */ SourceRange(),
3013                                     /* NNS */ NULL,
3014                                     /* identifier */ SourceLocation(),
3015                                     Namespc,
3016                                     /* Ancestor */ CurContext);
3017      UD->setImplicit();
3018      CurContext->addDecl(UD);
3019    }
3020  }
3021
3022  // Although we could have an invalid decl (i.e. the namespace name is a
3023  // redefinition), push it as current DeclContext and try to continue parsing.
3024  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3025  // for the namespace has the declarations that showed up in that particular
3026  // namespace definition.
3027  PushDeclContext(NamespcScope, Namespc);
3028  return DeclPtrTy::make(Namespc);
3029}
3030
3031/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3032/// is a namespace alias, returns the namespace it points to.
3033static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3034  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3035    return AD->getNamespace();
3036  return dyn_cast_or_null<NamespaceDecl>(D);
3037}
3038
3039/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3040/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3041void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3042  Decl *Dcl = D.getAs<Decl>();
3043  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3044  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3045  Namespc->setRBracLoc(RBrace);
3046  PopDeclContext();
3047}
3048
3049Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3050                                          SourceLocation UsingLoc,
3051                                          SourceLocation NamespcLoc,
3052                                          const CXXScopeSpec &SS,
3053                                          SourceLocation IdentLoc,
3054                                          IdentifierInfo *NamespcName,
3055                                          AttributeList *AttrList) {
3056  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3057  assert(NamespcName && "Invalid NamespcName.");
3058  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3059  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3060
3061  UsingDirectiveDecl *UDir = 0;
3062
3063  // Lookup namespace name.
3064  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3065  LookupParsedName(R, S, &SS);
3066  if (R.isAmbiguous())
3067    return DeclPtrTy();
3068
3069  if (!R.empty()) {
3070    NamedDecl *Named = R.getFoundDecl();
3071    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3072        && "expected namespace decl");
3073    // C++ [namespace.udir]p1:
3074    //   A using-directive specifies that the names in the nominated
3075    //   namespace can be used in the scope in which the
3076    //   using-directive appears after the using-directive. During
3077    //   unqualified name lookup (3.4.1), the names appear as if they
3078    //   were declared in the nearest enclosing namespace which
3079    //   contains both the using-directive and the nominated
3080    //   namespace. [Note: in this context, "contains" means "contains
3081    //   directly or indirectly". ]
3082
3083    // Find enclosing context containing both using-directive and
3084    // nominated namespace.
3085    NamespaceDecl *NS = getNamespaceDecl(Named);
3086    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3087    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3088      CommonAncestor = CommonAncestor->getParent();
3089
3090    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3091                                      SS.getRange(),
3092                                      (NestedNameSpecifier *)SS.getScopeRep(),
3093                                      IdentLoc, Named, CommonAncestor);
3094    PushUsingDirective(S, UDir);
3095  } else {
3096    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3097  }
3098
3099  // FIXME: We ignore attributes for now.
3100  delete AttrList;
3101  return DeclPtrTy::make(UDir);
3102}
3103
3104void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3105  // If scope has associated entity, then using directive is at namespace
3106  // or translation unit scope. We add UsingDirectiveDecls, into
3107  // it's lookup structure.
3108  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3109    Ctx->addDecl(UDir);
3110  else
3111    // Otherwise it is block-sope. using-directives will affect lookup
3112    // only to the end of scope.
3113    S->PushUsingDirective(DeclPtrTy::make(UDir));
3114}
3115
3116
3117Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3118                                            AccessSpecifier AS,
3119                                            bool HasUsingKeyword,
3120                                            SourceLocation UsingLoc,
3121                                            const CXXScopeSpec &SS,
3122                                            UnqualifiedId &Name,
3123                                            AttributeList *AttrList,
3124                                            bool IsTypeName,
3125                                            SourceLocation TypenameLoc) {
3126  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3127
3128  switch (Name.getKind()) {
3129  case UnqualifiedId::IK_Identifier:
3130  case UnqualifiedId::IK_OperatorFunctionId:
3131  case UnqualifiedId::IK_LiteralOperatorId:
3132  case UnqualifiedId::IK_ConversionFunctionId:
3133    break;
3134
3135  case UnqualifiedId::IK_ConstructorName:
3136  case UnqualifiedId::IK_ConstructorTemplateId:
3137    // C++0x inherited constructors.
3138    if (getLangOptions().CPlusPlus0x) break;
3139
3140    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3141      << SS.getRange();
3142    return DeclPtrTy();
3143
3144  case UnqualifiedId::IK_DestructorName:
3145    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3146      << SS.getRange();
3147    return DeclPtrTy();
3148
3149  case UnqualifiedId::IK_TemplateId:
3150    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3151      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3152    return DeclPtrTy();
3153  }
3154
3155  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3156  if (!TargetName)
3157    return DeclPtrTy();
3158
3159  // Warn about using declarations.
3160  // TODO: store that the declaration was written without 'using' and
3161  // talk about access decls instead of using decls in the
3162  // diagnostics.
3163  if (!HasUsingKeyword) {
3164    UsingLoc = Name.getSourceRange().getBegin();
3165
3166    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3167      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3168  }
3169
3170  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3171                                        Name.getSourceRange().getBegin(),
3172                                        TargetName, AttrList,
3173                                        /* IsInstantiation */ false,
3174                                        IsTypeName, TypenameLoc);
3175  if (UD)
3176    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3177
3178  return DeclPtrTy::make(UD);
3179}
3180
3181/// Determines whether to create a using shadow decl for a particular
3182/// decl, given the set of decls existing prior to this using lookup.
3183bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3184                                const LookupResult &Previous) {
3185  // Diagnose finding a decl which is not from a base class of the
3186  // current class.  We do this now because there are cases where this
3187  // function will silently decide not to build a shadow decl, which
3188  // will pre-empt further diagnostics.
3189  //
3190  // We don't need to do this in C++0x because we do the check once on
3191  // the qualifier.
3192  //
3193  // FIXME: diagnose the following if we care enough:
3194  //   struct A { int foo; };
3195  //   struct B : A { using A::foo; };
3196  //   template <class T> struct C : A {};
3197  //   template <class T> struct D : C<T> { using B::foo; } // <---
3198  // This is invalid (during instantiation) in C++03 because B::foo
3199  // resolves to the using decl in B, which is not a base class of D<T>.
3200  // We can't diagnose it immediately because C<T> is an unknown
3201  // specialization.  The UsingShadowDecl in D<T> then points directly
3202  // to A::foo, which will look well-formed when we instantiate.
3203  // The right solution is to not collapse the shadow-decl chain.
3204  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3205    DeclContext *OrigDC = Orig->getDeclContext();
3206
3207    // Handle enums and anonymous structs.
3208    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3209    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3210    while (OrigRec->isAnonymousStructOrUnion())
3211      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3212
3213    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3214      if (OrigDC == CurContext) {
3215        Diag(Using->getLocation(),
3216             diag::err_using_decl_nested_name_specifier_is_current_class)
3217          << Using->getNestedNameRange();
3218        Diag(Orig->getLocation(), diag::note_using_decl_target);
3219        return true;
3220      }
3221
3222      Diag(Using->getNestedNameRange().getBegin(),
3223           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3224        << Using->getTargetNestedNameDecl()
3225        << cast<CXXRecordDecl>(CurContext)
3226        << Using->getNestedNameRange();
3227      Diag(Orig->getLocation(), diag::note_using_decl_target);
3228      return true;
3229    }
3230  }
3231
3232  if (Previous.empty()) return false;
3233
3234  NamedDecl *Target = Orig;
3235  if (isa<UsingShadowDecl>(Target))
3236    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3237
3238  // If the target happens to be one of the previous declarations, we
3239  // don't have a conflict.
3240  //
3241  // FIXME: but we might be increasing its access, in which case we
3242  // should redeclare it.
3243  NamedDecl *NonTag = 0, *Tag = 0;
3244  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3245         I != E; ++I) {
3246    NamedDecl *D = (*I)->getUnderlyingDecl();
3247    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3248      return false;
3249
3250    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3251  }
3252
3253  if (Target->isFunctionOrFunctionTemplate()) {
3254    FunctionDecl *FD;
3255    if (isa<FunctionTemplateDecl>(Target))
3256      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3257    else
3258      FD = cast<FunctionDecl>(Target);
3259
3260    NamedDecl *OldDecl = 0;
3261    switch (CheckOverload(FD, Previous, OldDecl)) {
3262    case Ovl_Overload:
3263      return false;
3264
3265    case Ovl_NonFunction:
3266      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3267      break;
3268
3269    // We found a decl with the exact signature.
3270    case Ovl_Match:
3271      if (isa<UsingShadowDecl>(OldDecl)) {
3272        // Silently ignore the possible conflict.
3273        return false;
3274      }
3275
3276      // If we're in a record, we want to hide the target, so we
3277      // return true (without a diagnostic) to tell the caller not to
3278      // build a shadow decl.
3279      if (CurContext->isRecord())
3280        return true;
3281
3282      // If we're not in a record, this is an error.
3283      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3284      break;
3285    }
3286
3287    Diag(Target->getLocation(), diag::note_using_decl_target);
3288    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3289    return true;
3290  }
3291
3292  // Target is not a function.
3293
3294  if (isa<TagDecl>(Target)) {
3295    // No conflict between a tag and a non-tag.
3296    if (!Tag) return false;
3297
3298    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3299    Diag(Target->getLocation(), diag::note_using_decl_target);
3300    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3301    return true;
3302  }
3303
3304  // No conflict between a tag and a non-tag.
3305  if (!NonTag) return false;
3306
3307  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3308  Diag(Target->getLocation(), diag::note_using_decl_target);
3309  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3310  return true;
3311}
3312
3313/// Builds a shadow declaration corresponding to a 'using' declaration.
3314UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3315                                            UsingDecl *UD,
3316                                            NamedDecl *Orig) {
3317
3318  // If we resolved to another shadow declaration, just coalesce them.
3319  NamedDecl *Target = Orig;
3320  if (isa<UsingShadowDecl>(Target)) {
3321    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3322    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3323  }
3324
3325  UsingShadowDecl *Shadow
3326    = UsingShadowDecl::Create(Context, CurContext,
3327                              UD->getLocation(), UD, Target);
3328  UD->addShadowDecl(Shadow);
3329
3330  if (S)
3331    PushOnScopeChains(Shadow, S);
3332  else
3333    CurContext->addDecl(Shadow);
3334  Shadow->setAccess(UD->getAccess());
3335
3336  // Register it as a conversion if appropriate.
3337  if (Shadow->getDeclName().getNameKind()
3338        == DeclarationName::CXXConversionFunctionName)
3339    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3340
3341  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3342    Shadow->setInvalidDecl();
3343
3344  return Shadow;
3345}
3346
3347/// Hides a using shadow declaration.  This is required by the current
3348/// using-decl implementation when a resolvable using declaration in a
3349/// class is followed by a declaration which would hide or override
3350/// one or more of the using decl's targets; for example:
3351///
3352///   struct Base { void foo(int); };
3353///   struct Derived : Base {
3354///     using Base::foo;
3355///     void foo(int);
3356///   };
3357///
3358/// The governing language is C++03 [namespace.udecl]p12:
3359///
3360///   When a using-declaration brings names from a base class into a
3361///   derived class scope, member functions in the derived class
3362///   override and/or hide member functions with the same name and
3363///   parameter types in a base class (rather than conflicting).
3364///
3365/// There are two ways to implement this:
3366///   (1) optimistically create shadow decls when they're not hidden
3367///       by existing declarations, or
3368///   (2) don't create any shadow decls (or at least don't make them
3369///       visible) until we've fully parsed/instantiated the class.
3370/// The problem with (1) is that we might have to retroactively remove
3371/// a shadow decl, which requires several O(n) operations because the
3372/// decl structures are (very reasonably) not designed for removal.
3373/// (2) avoids this but is very fiddly and phase-dependent.
3374void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3375  if (Shadow->getDeclName().getNameKind() ==
3376        DeclarationName::CXXConversionFunctionName)
3377    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3378
3379  // Remove it from the DeclContext...
3380  Shadow->getDeclContext()->removeDecl(Shadow);
3381
3382  // ...and the scope, if applicable...
3383  if (S) {
3384    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3385    IdResolver.RemoveDecl(Shadow);
3386  }
3387
3388  // ...and the using decl.
3389  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3390
3391  // TODO: complain somehow if Shadow was used.  It shouldn't
3392  // be possible for this to happen, because...?
3393}
3394
3395/// Builds a using declaration.
3396///
3397/// \param IsInstantiation - Whether this call arises from an
3398///   instantiation of an unresolved using declaration.  We treat
3399///   the lookup differently for these declarations.
3400NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3401                                       SourceLocation UsingLoc,
3402                                       const CXXScopeSpec &SS,
3403                                       SourceLocation IdentLoc,
3404                                       DeclarationName Name,
3405                                       AttributeList *AttrList,
3406                                       bool IsInstantiation,
3407                                       bool IsTypeName,
3408                                       SourceLocation TypenameLoc) {
3409  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3410  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3411
3412  // FIXME: We ignore attributes for now.
3413  delete AttrList;
3414
3415  if (SS.isEmpty()) {
3416    Diag(IdentLoc, diag::err_using_requires_qualname);
3417    return 0;
3418  }
3419
3420  // Do the redeclaration lookup in the current scope.
3421  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3422                        ForRedeclaration);
3423  Previous.setHideTags(false);
3424  if (S) {
3425    LookupName(Previous, S);
3426
3427    // It is really dumb that we have to do this.
3428    LookupResult::Filter F = Previous.makeFilter();
3429    while (F.hasNext()) {
3430      NamedDecl *D = F.next();
3431      if (!isDeclInScope(D, CurContext, S))
3432        F.erase();
3433    }
3434    F.done();
3435  } else {
3436    assert(IsInstantiation && "no scope in non-instantiation");
3437    assert(CurContext->isRecord() && "scope not record in instantiation");
3438    LookupQualifiedName(Previous, CurContext);
3439  }
3440
3441  NestedNameSpecifier *NNS =
3442    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3443
3444  // Check for invalid redeclarations.
3445  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3446    return 0;
3447
3448  // Check for bad qualifiers.
3449  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3450    return 0;
3451
3452  DeclContext *LookupContext = computeDeclContext(SS);
3453  NamedDecl *D;
3454  if (!LookupContext) {
3455    if (IsTypeName) {
3456      // FIXME: not all declaration name kinds are legal here
3457      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3458                                              UsingLoc, TypenameLoc,
3459                                              SS.getRange(), NNS,
3460                                              IdentLoc, Name);
3461    } else {
3462      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3463                                           UsingLoc, SS.getRange(), NNS,
3464                                           IdentLoc, Name);
3465    }
3466  } else {
3467    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3468                          SS.getRange(), UsingLoc, NNS, Name,
3469                          IsTypeName);
3470  }
3471  D->setAccess(AS);
3472  CurContext->addDecl(D);
3473
3474  if (!LookupContext) return D;
3475  UsingDecl *UD = cast<UsingDecl>(D);
3476
3477  if (RequireCompleteDeclContext(SS)) {
3478    UD->setInvalidDecl();
3479    return UD;
3480  }
3481
3482  // Look up the target name.
3483
3484  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3485
3486  // Unlike most lookups, we don't always want to hide tag
3487  // declarations: tag names are visible through the using declaration
3488  // even if hidden by ordinary names, *except* in a dependent context
3489  // where it's important for the sanity of two-phase lookup.
3490  if (!IsInstantiation)
3491    R.setHideTags(false);
3492
3493  LookupQualifiedName(R, LookupContext);
3494
3495  if (R.empty()) {
3496    Diag(IdentLoc, diag::err_no_member)
3497      << Name << LookupContext << SS.getRange();
3498    UD->setInvalidDecl();
3499    return UD;
3500  }
3501
3502  if (R.isAmbiguous()) {
3503    UD->setInvalidDecl();
3504    return UD;
3505  }
3506
3507  if (IsTypeName) {
3508    // If we asked for a typename and got a non-type decl, error out.
3509    if (!R.getAsSingle<TypeDecl>()) {
3510      Diag(IdentLoc, diag::err_using_typename_non_type);
3511      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3512        Diag((*I)->getUnderlyingDecl()->getLocation(),
3513             diag::note_using_decl_target);
3514      UD->setInvalidDecl();
3515      return UD;
3516    }
3517  } else {
3518    // If we asked for a non-typename and we got a type, error out,
3519    // but only if this is an instantiation of an unresolved using
3520    // decl.  Otherwise just silently find the type name.
3521    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3522      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3523      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3524      UD->setInvalidDecl();
3525      return UD;
3526    }
3527  }
3528
3529  // C++0x N2914 [namespace.udecl]p6:
3530  // A using-declaration shall not name a namespace.
3531  if (R.getAsSingle<NamespaceDecl>()) {
3532    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3533      << SS.getRange();
3534    UD->setInvalidDecl();
3535    return UD;
3536  }
3537
3538  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3539    if (!CheckUsingShadowDecl(UD, *I, Previous))
3540      BuildUsingShadowDecl(S, UD, *I);
3541  }
3542
3543  return UD;
3544}
3545
3546/// Checks that the given using declaration is not an invalid
3547/// redeclaration.  Note that this is checking only for the using decl
3548/// itself, not for any ill-formedness among the UsingShadowDecls.
3549bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3550                                       bool isTypeName,
3551                                       const CXXScopeSpec &SS,
3552                                       SourceLocation NameLoc,
3553                                       const LookupResult &Prev) {
3554  // C++03 [namespace.udecl]p8:
3555  // C++0x [namespace.udecl]p10:
3556  //   A using-declaration is a declaration and can therefore be used
3557  //   repeatedly where (and only where) multiple declarations are
3558  //   allowed.
3559  // That's only in file contexts.
3560  if (CurContext->getLookupContext()->isFileContext())
3561    return false;
3562
3563  NestedNameSpecifier *Qual
3564    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3565
3566  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3567    NamedDecl *D = *I;
3568
3569    bool DTypename;
3570    NestedNameSpecifier *DQual;
3571    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3572      DTypename = UD->isTypeName();
3573      DQual = UD->getTargetNestedNameDecl();
3574    } else if (UnresolvedUsingValueDecl *UD
3575                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3576      DTypename = false;
3577      DQual = UD->getTargetNestedNameSpecifier();
3578    } else if (UnresolvedUsingTypenameDecl *UD
3579                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3580      DTypename = true;
3581      DQual = UD->getTargetNestedNameSpecifier();
3582    } else continue;
3583
3584    // using decls differ if one says 'typename' and the other doesn't.
3585    // FIXME: non-dependent using decls?
3586    if (isTypeName != DTypename) continue;
3587
3588    // using decls differ if they name different scopes (but note that
3589    // template instantiation can cause this check to trigger when it
3590    // didn't before instantiation).
3591    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3592        Context.getCanonicalNestedNameSpecifier(DQual))
3593      continue;
3594
3595    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3596    Diag(D->getLocation(), diag::note_using_decl) << 1;
3597    return true;
3598  }
3599
3600  return false;
3601}
3602
3603
3604/// Checks that the given nested-name qualifier used in a using decl
3605/// in the current context is appropriately related to the current
3606/// scope.  If an error is found, diagnoses it and returns true.
3607bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3608                                   const CXXScopeSpec &SS,
3609                                   SourceLocation NameLoc) {
3610  DeclContext *NamedContext = computeDeclContext(SS);
3611
3612  if (!CurContext->isRecord()) {
3613    // C++03 [namespace.udecl]p3:
3614    // C++0x [namespace.udecl]p8:
3615    //   A using-declaration for a class member shall be a member-declaration.
3616
3617    // If we weren't able to compute a valid scope, it must be a
3618    // dependent class scope.
3619    if (!NamedContext || NamedContext->isRecord()) {
3620      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3621        << SS.getRange();
3622      return true;
3623    }
3624
3625    // Otherwise, everything is known to be fine.
3626    return false;
3627  }
3628
3629  // The current scope is a record.
3630
3631  // If the named context is dependent, we can't decide much.
3632  if (!NamedContext) {
3633    // FIXME: in C++0x, we can diagnose if we can prove that the
3634    // nested-name-specifier does not refer to a base class, which is
3635    // still possible in some cases.
3636
3637    // Otherwise we have to conservatively report that things might be
3638    // okay.
3639    return false;
3640  }
3641
3642  if (!NamedContext->isRecord()) {
3643    // Ideally this would point at the last name in the specifier,
3644    // but we don't have that level of source info.
3645    Diag(SS.getRange().getBegin(),
3646         diag::err_using_decl_nested_name_specifier_is_not_class)
3647      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3648    return true;
3649  }
3650
3651  if (getLangOptions().CPlusPlus0x) {
3652    // C++0x [namespace.udecl]p3:
3653    //   In a using-declaration used as a member-declaration, the
3654    //   nested-name-specifier shall name a base class of the class
3655    //   being defined.
3656
3657    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3658                                 cast<CXXRecordDecl>(NamedContext))) {
3659      if (CurContext == NamedContext) {
3660        Diag(NameLoc,
3661             diag::err_using_decl_nested_name_specifier_is_current_class)
3662          << SS.getRange();
3663        return true;
3664      }
3665
3666      Diag(SS.getRange().getBegin(),
3667           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3668        << (NestedNameSpecifier*) SS.getScopeRep()
3669        << cast<CXXRecordDecl>(CurContext)
3670        << SS.getRange();
3671      return true;
3672    }
3673
3674    return false;
3675  }
3676
3677  // C++03 [namespace.udecl]p4:
3678  //   A using-declaration used as a member-declaration shall refer
3679  //   to a member of a base class of the class being defined [etc.].
3680
3681  // Salient point: SS doesn't have to name a base class as long as
3682  // lookup only finds members from base classes.  Therefore we can
3683  // diagnose here only if we can prove that that can't happen,
3684  // i.e. if the class hierarchies provably don't intersect.
3685
3686  // TODO: it would be nice if "definitely valid" results were cached
3687  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3688  // need to be repeated.
3689
3690  struct UserData {
3691    llvm::DenseSet<const CXXRecordDecl*> Bases;
3692
3693    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3694      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3695      Data->Bases.insert(Base);
3696      return true;
3697    }
3698
3699    bool hasDependentBases(const CXXRecordDecl *Class) {
3700      return !Class->forallBases(collect, this);
3701    }
3702
3703    /// Returns true if the base is dependent or is one of the
3704    /// accumulated base classes.
3705    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3706      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3707      return !Data->Bases.count(Base);
3708    }
3709
3710    bool mightShareBases(const CXXRecordDecl *Class) {
3711      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3712    }
3713  };
3714
3715  UserData Data;
3716
3717  // Returns false if we find a dependent base.
3718  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3719    return false;
3720
3721  // Returns false if the class has a dependent base or if it or one
3722  // of its bases is present in the base set of the current context.
3723  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3724    return false;
3725
3726  Diag(SS.getRange().getBegin(),
3727       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3728    << (NestedNameSpecifier*) SS.getScopeRep()
3729    << cast<CXXRecordDecl>(CurContext)
3730    << SS.getRange();
3731
3732  return true;
3733}
3734
3735Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3736                                             SourceLocation NamespaceLoc,
3737                                             SourceLocation AliasLoc,
3738                                             IdentifierInfo *Alias,
3739                                             const CXXScopeSpec &SS,
3740                                             SourceLocation IdentLoc,
3741                                             IdentifierInfo *Ident) {
3742
3743  // Lookup the namespace name.
3744  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3745  LookupParsedName(R, S, &SS);
3746
3747  // Check if we have a previous declaration with the same name.
3748  if (NamedDecl *PrevDecl
3749        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3750    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3751      // We already have an alias with the same name that points to the same
3752      // namespace, so don't create a new one.
3753      // FIXME: At some point, we'll want to create the (redundant)
3754      // declaration to maintain better source information.
3755      if (!R.isAmbiguous() && !R.empty() &&
3756          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3757        return DeclPtrTy();
3758    }
3759
3760    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3761      diag::err_redefinition_different_kind;
3762    Diag(AliasLoc, DiagID) << Alias;
3763    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3764    return DeclPtrTy();
3765  }
3766
3767  if (R.isAmbiguous())
3768    return DeclPtrTy();
3769
3770  if (R.empty()) {
3771    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3772    return DeclPtrTy();
3773  }
3774
3775  NamespaceAliasDecl *AliasDecl =
3776    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3777                               Alias, SS.getRange(),
3778                               (NestedNameSpecifier *)SS.getScopeRep(),
3779                               IdentLoc, R.getFoundDecl());
3780
3781  PushOnScopeChains(AliasDecl, S);
3782  return DeclPtrTy::make(AliasDecl);
3783}
3784
3785void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3786                                            CXXConstructorDecl *Constructor) {
3787  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3788          !Constructor->isUsed()) &&
3789    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3790
3791  CXXRecordDecl *ClassDecl
3792    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3793  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3794
3795  DeclContext *PreviousContext = CurContext;
3796  CurContext = Constructor;
3797  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
3798    Diag(CurrentLocation, diag::note_member_synthesized_at)
3799      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3800    Constructor->setInvalidDecl();
3801  } else {
3802    Constructor->setUsed();
3803  }
3804  CurContext = PreviousContext;
3805}
3806
3807void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3808                                    CXXDestructorDecl *Destructor) {
3809  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3810         "DefineImplicitDestructor - call it for implicit default dtor");
3811  CXXRecordDecl *ClassDecl = Destructor->getParent();
3812  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3813
3814  DeclContext *PreviousContext = CurContext;
3815  CurContext = Destructor;
3816
3817  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3818                                         Destructor->getParent());
3819
3820  // FIXME: If CheckDestructor fails, we should emit a note about where the
3821  // implicit destructor was needed.
3822  if (CheckDestructor(Destructor)) {
3823    Diag(CurrentLocation, diag::note_member_synthesized_at)
3824      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3825
3826    Destructor->setInvalidDecl();
3827    CurContext = PreviousContext;
3828
3829    return;
3830  }
3831  CurContext = PreviousContext;
3832
3833  Destructor->setUsed();
3834}
3835
3836void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3837                                          CXXMethodDecl *MethodDecl) {
3838  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3839          MethodDecl->getOverloadedOperator() == OO_Equal &&
3840          !MethodDecl->isUsed()) &&
3841         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3842
3843  CXXRecordDecl *ClassDecl
3844    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3845
3846  DeclContext *PreviousContext = CurContext;
3847  CurContext = MethodDecl;
3848
3849  // C++[class.copy] p12
3850  // Before the implicitly-declared copy assignment operator for a class is
3851  // implicitly defined, all implicitly-declared copy assignment operators
3852  // for its direct base classes and its nonstatic data members shall have
3853  // been implicitly defined.
3854  bool err = false;
3855  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3856       E = ClassDecl->bases_end(); Base != E; ++Base) {
3857    CXXRecordDecl *BaseClassDecl
3858      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3859    if (CXXMethodDecl *BaseAssignOpMethod =
3860          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3861                                  BaseClassDecl)) {
3862      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3863                              BaseAssignOpMethod,
3864                              PDiag(diag::err_access_assign_base)
3865                                << Base->getType());
3866
3867      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3868    }
3869  }
3870  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3871       E = ClassDecl->field_end(); Field != E; ++Field) {
3872    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3873    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3874      FieldType = Array->getElementType();
3875    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3876      CXXRecordDecl *FieldClassDecl
3877        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3878      if (CXXMethodDecl *FieldAssignOpMethod =
3879          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3880                                  FieldClassDecl)) {
3881        CheckDirectMemberAccess(Field->getLocation(),
3882                                FieldAssignOpMethod,
3883                                PDiag(diag::err_access_assign_field)
3884                                  << Field->getDeclName() << Field->getType());
3885
3886        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3887      }
3888    } else if (FieldType->isReferenceType()) {
3889      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3890      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3891      Diag(Field->getLocation(), diag::note_declared_at);
3892      Diag(CurrentLocation, diag::note_first_required_here);
3893      err = true;
3894    } else if (FieldType.isConstQualified()) {
3895      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3896      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3897      Diag(Field->getLocation(), diag::note_declared_at);
3898      Diag(CurrentLocation, diag::note_first_required_here);
3899      err = true;
3900    }
3901  }
3902  if (!err)
3903    MethodDecl->setUsed();
3904
3905  CurContext = PreviousContext;
3906}
3907
3908CXXMethodDecl *
3909Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3910                              ParmVarDecl *ParmDecl,
3911                              CXXRecordDecl *ClassDecl) {
3912  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3913  QualType RHSType(LHSType);
3914  // If class's assignment operator argument is const/volatile qualified,
3915  // look for operator = (const/volatile B&). Otherwise, look for
3916  // operator = (B&).
3917  RHSType = Context.getCVRQualifiedType(RHSType,
3918                                     ParmDecl->getType().getCVRQualifiers());
3919  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3920                                                           LHSType,
3921                                                           SourceLocation()));
3922  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3923                                                           RHSType,
3924                                                           CurrentLocation));
3925  Expr *Args[2] = { &*LHS, &*RHS };
3926  OverloadCandidateSet CandidateSet(CurrentLocation);
3927  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3928                              CandidateSet);
3929  OverloadCandidateSet::iterator Best;
3930  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3931    return cast<CXXMethodDecl>(Best->Function);
3932  assert(false &&
3933         "getAssignOperatorMethod - copy assignment operator method not found");
3934  return 0;
3935}
3936
3937void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3938                                   CXXConstructorDecl *CopyConstructor,
3939                                   unsigned TypeQuals) {
3940  assert((CopyConstructor->isImplicit() &&
3941          CopyConstructor->isCopyConstructor(TypeQuals) &&
3942          !CopyConstructor->isUsed()) &&
3943         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3944
3945  CXXRecordDecl *ClassDecl
3946    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3947  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3948
3949  DeclContext *PreviousContext = CurContext;
3950  CurContext = CopyConstructor;
3951
3952  // C++ [class.copy] p209
3953  // Before the implicitly-declared copy constructor for a class is
3954  // implicitly defined, all the implicitly-declared copy constructors
3955  // for its base class and its non-static data members shall have been
3956  // implicitly defined.
3957  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3958       Base != ClassDecl->bases_end(); ++Base) {
3959    CXXRecordDecl *BaseClassDecl
3960      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3961    if (CXXConstructorDecl *BaseCopyCtor =
3962        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
3963      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3964                              BaseCopyCtor,
3965                              PDiag(diag::err_access_copy_base)
3966                                << Base->getType());
3967
3968      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3969    }
3970  }
3971  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3972                                  FieldEnd = ClassDecl->field_end();
3973       Field != FieldEnd; ++Field) {
3974    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3975    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3976      FieldType = Array->getElementType();
3977    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3978      CXXRecordDecl *FieldClassDecl
3979        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3980      if (CXXConstructorDecl *FieldCopyCtor =
3981          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
3982        CheckDirectMemberAccess(Field->getLocation(),
3983                                FieldCopyCtor,
3984                                PDiag(diag::err_access_copy_field)
3985                                  << Field->getDeclName() << Field->getType());
3986
3987        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3988      }
3989    }
3990  }
3991  CopyConstructor->setUsed();
3992
3993  CurContext = PreviousContext;
3994}
3995
3996Sema::OwningExprResult
3997Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3998                            CXXConstructorDecl *Constructor,
3999                            MultiExprArg ExprArgs,
4000                            bool RequiresZeroInit,
4001                            bool BaseInitialization) {
4002  bool Elidable = false;
4003
4004  // C++ [class.copy]p15:
4005  //   Whenever a temporary class object is copied using a copy constructor, and
4006  //   this object and the copy have the same cv-unqualified type, an
4007  //   implementation is permitted to treat the original and the copy as two
4008  //   different ways of referring to the same object and not perform a copy at
4009  //   all, even if the class copy constructor or destructor have side effects.
4010
4011  // FIXME: Is this enough?
4012  if (Constructor->isCopyConstructor()) {
4013    Expr *E = ((Expr **)ExprArgs.get())[0];
4014    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4015      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4016        E = ICE->getSubExpr();
4017    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
4018      E = FCE->getSubExpr();
4019    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
4020      E = BE->getSubExpr();
4021    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4022      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4023        E = ICE->getSubExpr();
4024
4025    if (CallExpr *CE = dyn_cast<CallExpr>(E))
4026      Elidable = !CE->getCallReturnType()->isReferenceType();
4027    else if (isa<CXXTemporaryObjectExpr>(E))
4028      Elidable = true;
4029    else if (isa<CXXConstructExpr>(E))
4030      Elidable = true;
4031  }
4032
4033  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4034                               Elidable, move(ExprArgs), RequiresZeroInit,
4035                               BaseInitialization);
4036}
4037
4038/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4039/// including handling of its default argument expressions.
4040Sema::OwningExprResult
4041Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4042                            CXXConstructorDecl *Constructor, bool Elidable,
4043                            MultiExprArg ExprArgs,
4044                            bool RequiresZeroInit,
4045                            bool BaseInitialization) {
4046  unsigned NumExprs = ExprArgs.size();
4047  Expr **Exprs = (Expr **)ExprArgs.release();
4048
4049  MarkDeclarationReferenced(ConstructLoc, Constructor);
4050  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4051                                        Constructor, Elidable, Exprs, NumExprs,
4052                                        RequiresZeroInit, BaseInitialization));
4053}
4054
4055bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4056                                        CXXConstructorDecl *Constructor,
4057                                        MultiExprArg Exprs) {
4058  OwningExprResult TempResult =
4059    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4060                          move(Exprs));
4061  if (TempResult.isInvalid())
4062    return true;
4063
4064  Expr *Temp = TempResult.takeAs<Expr>();
4065  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4066  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4067  VD->setInit(Temp);
4068
4069  return false;
4070}
4071
4072void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4073  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4074  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4075      !ClassDecl->hasTrivialDestructor()) {
4076    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4077    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4078    CheckDestructorAccess(VD->getLocation(), Destructor,
4079                          PDiag(diag::err_access_dtor_var)
4080                            << VD->getDeclName()
4081                            << VD->getType());
4082  }
4083}
4084
4085/// AddCXXDirectInitializerToDecl - This action is called immediately after
4086/// ActOnDeclarator, when a C++ direct initializer is present.
4087/// e.g: "int x(1);"
4088void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4089                                         SourceLocation LParenLoc,
4090                                         MultiExprArg Exprs,
4091                                         SourceLocation *CommaLocs,
4092                                         SourceLocation RParenLoc) {
4093  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4094  Decl *RealDecl = Dcl.getAs<Decl>();
4095
4096  // If there is no declaration, there was an error parsing it.  Just ignore
4097  // the initializer.
4098  if (RealDecl == 0)
4099    return;
4100
4101  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4102  if (!VDecl) {
4103    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4104    RealDecl->setInvalidDecl();
4105    return;
4106  }
4107
4108  // We will represent direct-initialization similarly to copy-initialization:
4109  //    int x(1);  -as-> int x = 1;
4110  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4111  //
4112  // Clients that want to distinguish between the two forms, can check for
4113  // direct initializer using VarDecl::hasCXXDirectInitializer().
4114  // A major benefit is that clients that don't particularly care about which
4115  // exactly form was it (like the CodeGen) can handle both cases without
4116  // special case code.
4117
4118  // C++ 8.5p11:
4119  // The form of initialization (using parentheses or '=') is generally
4120  // insignificant, but does matter when the entity being initialized has a
4121  // class type.
4122  QualType DeclInitType = VDecl->getType();
4123  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4124    DeclInitType = Context.getBaseElementType(Array);
4125
4126  if (!VDecl->getType()->isDependentType() &&
4127      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4128                          diag::err_typecheck_decl_incomplete_type)) {
4129    VDecl->setInvalidDecl();
4130    return;
4131  }
4132
4133  // The variable can not have an abstract class type.
4134  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4135                             diag::err_abstract_type_in_decl,
4136                             AbstractVariableType))
4137    VDecl->setInvalidDecl();
4138
4139  const VarDecl *Def;
4140  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4141    Diag(VDecl->getLocation(), diag::err_redefinition)
4142    << VDecl->getDeclName();
4143    Diag(Def->getLocation(), diag::note_previous_definition);
4144    VDecl->setInvalidDecl();
4145    return;
4146  }
4147
4148  // If either the declaration has a dependent type or if any of the
4149  // expressions is type-dependent, we represent the initialization
4150  // via a ParenListExpr for later use during template instantiation.
4151  if (VDecl->getType()->isDependentType() ||
4152      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4153    // Let clients know that initialization was done with a direct initializer.
4154    VDecl->setCXXDirectInitializer(true);
4155
4156    // Store the initialization expressions as a ParenListExpr.
4157    unsigned NumExprs = Exprs.size();
4158    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4159                                               (Expr **)Exprs.release(),
4160                                               NumExprs, RParenLoc));
4161    return;
4162  }
4163
4164  // Capture the variable that is being initialized and the style of
4165  // initialization.
4166  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4167
4168  // FIXME: Poor source location information.
4169  InitializationKind Kind
4170    = InitializationKind::CreateDirect(VDecl->getLocation(),
4171                                       LParenLoc, RParenLoc);
4172
4173  InitializationSequence InitSeq(*this, Entity, Kind,
4174                                 (Expr**)Exprs.get(), Exprs.size());
4175  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4176  if (Result.isInvalid()) {
4177    VDecl->setInvalidDecl();
4178    return;
4179  }
4180
4181  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4182  VDecl->setInit(Result.takeAs<Expr>());
4183  VDecl->setCXXDirectInitializer(true);
4184
4185  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4186    FinalizeVarWithDestructor(VDecl, Record);
4187}
4188
4189/// \brief Add the applicable constructor candidates for an initialization
4190/// by constructor.
4191static void AddConstructorInitializationCandidates(Sema &SemaRef,
4192                                                   QualType ClassType,
4193                                                   Expr **Args,
4194                                                   unsigned NumArgs,
4195                                                   InitializationKind Kind,
4196                                           OverloadCandidateSet &CandidateSet) {
4197  // C++ [dcl.init]p14:
4198  //   If the initialization is direct-initialization, or if it is
4199  //   copy-initialization where the cv-unqualified version of the
4200  //   source type is the same class as, or a derived class of, the
4201  //   class of the destination, constructors are considered. The
4202  //   applicable constructors are enumerated (13.3.1.3), and the
4203  //   best one is chosen through overload resolution (13.3). The
4204  //   constructor so selected is called to initialize the object,
4205  //   with the initializer expression(s) as its argument(s). If no
4206  //   constructor applies, or the overload resolution is ambiguous,
4207  //   the initialization is ill-formed.
4208  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4209  assert(ClassRec && "Can only initialize a class type here");
4210
4211  // FIXME: When we decide not to synthesize the implicitly-declared
4212  // constructors, we'll need to make them appear here.
4213
4214  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4215  DeclarationName ConstructorName
4216    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4217              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4218  DeclContext::lookup_const_iterator Con, ConEnd;
4219  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4220       Con != ConEnd; ++Con) {
4221    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4222
4223    // Find the constructor (which may be a template).
4224    CXXConstructorDecl *Constructor = 0;
4225    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4226    if (ConstructorTmpl)
4227      Constructor
4228      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4229    else
4230      Constructor = cast<CXXConstructorDecl>(*Con);
4231
4232    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4233        (Kind.getKind() == InitializationKind::IK_Value) ||
4234        (Kind.getKind() == InitializationKind::IK_Copy &&
4235         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4236        ((Kind.getKind() == InitializationKind::IK_Default) &&
4237         Constructor->isDefaultConstructor())) {
4238      if (ConstructorTmpl)
4239        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4240                                             /*ExplicitArgs*/ 0,
4241                                             Args, NumArgs, CandidateSet);
4242      else
4243        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4244                                     Args, NumArgs, CandidateSet);
4245    }
4246  }
4247}
4248
4249/// \brief Attempt to perform initialization by constructor
4250/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4251/// copy-initialization.
4252///
4253/// This routine determines whether initialization by constructor is possible,
4254/// but it does not emit any diagnostics in the case where the initialization
4255/// is ill-formed.
4256///
4257/// \param ClassType the type of the object being initialized, which must have
4258/// class type.
4259///
4260/// \param Args the arguments provided to initialize the object
4261///
4262/// \param NumArgs the number of arguments provided to initialize the object
4263///
4264/// \param Kind the type of initialization being performed
4265///
4266/// \returns the constructor used to initialize the object, if successful.
4267/// Otherwise, emits a diagnostic and returns NULL.
4268CXXConstructorDecl *
4269Sema::TryInitializationByConstructor(QualType ClassType,
4270                                     Expr **Args, unsigned NumArgs,
4271                                     SourceLocation Loc,
4272                                     InitializationKind Kind) {
4273  // Build the overload candidate set
4274  OverloadCandidateSet CandidateSet(Loc);
4275  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4276                                         CandidateSet);
4277
4278  // Determine whether we found a constructor we can use.
4279  OverloadCandidateSet::iterator Best;
4280  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4281    case OR_Success:
4282    case OR_Deleted:
4283      // We found a constructor. Return it.
4284      return cast<CXXConstructorDecl>(Best->Function);
4285
4286    case OR_No_Viable_Function:
4287    case OR_Ambiguous:
4288      // Overload resolution failed. Return nothing.
4289      return 0;
4290  }
4291
4292  // Silence GCC warning
4293  return 0;
4294}
4295
4296/// \brief Given a constructor and the set of arguments provided for the
4297/// constructor, convert the arguments and add any required default arguments
4298/// to form a proper call to this constructor.
4299///
4300/// \returns true if an error occurred, false otherwise.
4301bool
4302Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4303                              MultiExprArg ArgsPtr,
4304                              SourceLocation Loc,
4305                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4306  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4307  unsigned NumArgs = ArgsPtr.size();
4308  Expr **Args = (Expr **)ArgsPtr.get();
4309
4310  const FunctionProtoType *Proto
4311    = Constructor->getType()->getAs<FunctionProtoType>();
4312  assert(Proto && "Constructor without a prototype?");
4313  unsigned NumArgsInProto = Proto->getNumArgs();
4314
4315  // If too few arguments are available, we'll fill in the rest with defaults.
4316  if (NumArgs < NumArgsInProto)
4317    ConvertedArgs.reserve(NumArgsInProto);
4318  else
4319    ConvertedArgs.reserve(NumArgs);
4320
4321  VariadicCallType CallType =
4322    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4323  llvm::SmallVector<Expr *, 8> AllArgs;
4324  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4325                                        Proto, 0, Args, NumArgs, AllArgs,
4326                                        CallType);
4327  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4328    ConvertedArgs.push_back(AllArgs[i]);
4329  return Invalid;
4330}
4331
4332/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4333/// determine whether they are reference-related,
4334/// reference-compatible, reference-compatible with added
4335/// qualification, or incompatible, for use in C++ initialization by
4336/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4337/// type, and the first type (T1) is the pointee type of the reference
4338/// type being initialized.
4339Sema::ReferenceCompareResult
4340Sema::CompareReferenceRelationship(SourceLocation Loc,
4341                                   QualType OrigT1, QualType OrigT2,
4342                                   bool& DerivedToBase) {
4343  assert(!OrigT1->isReferenceType() &&
4344    "T1 must be the pointee type of the reference type");
4345  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4346
4347  QualType T1 = Context.getCanonicalType(OrigT1);
4348  QualType T2 = Context.getCanonicalType(OrigT2);
4349  Qualifiers T1Quals, T2Quals;
4350  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4351  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4352
4353  // C++ [dcl.init.ref]p4:
4354  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4355  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4356  //   T1 is a base class of T2.
4357  if (UnqualT1 == UnqualT2)
4358    DerivedToBase = false;
4359  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4360           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4361           IsDerivedFrom(UnqualT2, UnqualT1))
4362    DerivedToBase = true;
4363  else
4364    return Ref_Incompatible;
4365
4366  // At this point, we know that T1 and T2 are reference-related (at
4367  // least).
4368
4369  // If the type is an array type, promote the element qualifiers to the type
4370  // for comparison.
4371  if (isa<ArrayType>(T1) && T1Quals)
4372    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4373  if (isa<ArrayType>(T2) && T2Quals)
4374    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4375
4376  // C++ [dcl.init.ref]p4:
4377  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4378  //   reference-related to T2 and cv1 is the same cv-qualification
4379  //   as, or greater cv-qualification than, cv2. For purposes of
4380  //   overload resolution, cases for which cv1 is greater
4381  //   cv-qualification than cv2 are identified as
4382  //   reference-compatible with added qualification (see 13.3.3.2).
4383  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4384    return Ref_Compatible;
4385  else if (T1.isMoreQualifiedThan(T2))
4386    return Ref_Compatible_With_Added_Qualification;
4387  else
4388    return Ref_Related;
4389}
4390
4391/// CheckReferenceInit - Check the initialization of a reference
4392/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4393/// the initializer (either a simple initializer or an initializer
4394/// list), and DeclType is the type of the declaration. When ICS is
4395/// non-null, this routine will compute the implicit conversion
4396/// sequence according to C++ [over.ics.ref] and will not produce any
4397/// diagnostics; when ICS is null, it will emit diagnostics when any
4398/// errors are found. Either way, a return value of true indicates
4399/// that there was a failure, a return value of false indicates that
4400/// the reference initialization succeeded.
4401///
4402/// When @p SuppressUserConversions, user-defined conversions are
4403/// suppressed.
4404/// When @p AllowExplicit, we also permit explicit user-defined
4405/// conversion functions.
4406/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4407/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4408/// This is used when this is called from a C-style cast.
4409bool
4410Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4411                         SourceLocation DeclLoc,
4412                         bool SuppressUserConversions,
4413                         bool AllowExplicit, bool ForceRValue,
4414                         ImplicitConversionSequence *ICS,
4415                         bool IgnoreBaseAccess) {
4416  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4417
4418  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4419  QualType T2 = Init->getType();
4420
4421  // If the initializer is the address of an overloaded function, try
4422  // to resolve the overloaded function. If all goes well, T2 is the
4423  // type of the resulting function.
4424  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4425    DeclAccessPair Found;
4426    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4427                                                          ICS != 0, Found);
4428    if (Fn) {
4429      // Since we're performing this reference-initialization for
4430      // real, update the initializer with the resulting function.
4431      if (!ICS) {
4432        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4433          return true;
4434
4435        CheckAddressOfMemberAccess(Init, Found);
4436        Init = FixOverloadedFunctionReference(Init, Found, Fn);
4437      }
4438
4439      T2 = Fn->getType();
4440    }
4441  }
4442
4443  // Compute some basic properties of the types and the initializer.
4444  bool isRValRef = DeclType->isRValueReferenceType();
4445  bool DerivedToBase = false;
4446  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4447                                                  Init->isLvalue(Context);
4448  ReferenceCompareResult RefRelationship
4449    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4450
4451  // Most paths end in a failed conversion.
4452  if (ICS) {
4453    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4454  }
4455
4456  // C++ [dcl.init.ref]p5:
4457  //   A reference to type "cv1 T1" is initialized by an expression
4458  //   of type "cv2 T2" as follows:
4459
4460  //     -- If the initializer expression
4461
4462  // Rvalue references cannot bind to lvalues (N2812).
4463  // There is absolutely no situation where they can. In particular, note that
4464  // this is ill-formed, even if B has a user-defined conversion to A&&:
4465  //   B b;
4466  //   A&& r = b;
4467  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4468    if (!ICS)
4469      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4470        << Init->getSourceRange();
4471    return true;
4472  }
4473
4474  bool BindsDirectly = false;
4475  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4476  //          reference-compatible with "cv2 T2," or
4477  //
4478  // Note that the bit-field check is skipped if we are just computing
4479  // the implicit conversion sequence (C++ [over.best.ics]p2).
4480  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4481      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4482    BindsDirectly = true;
4483
4484    if (ICS) {
4485      // C++ [over.ics.ref]p1:
4486      //   When a parameter of reference type binds directly (8.5.3)
4487      //   to an argument expression, the implicit conversion sequence
4488      //   is the identity conversion, unless the argument expression
4489      //   has a type that is a derived class of the parameter type,
4490      //   in which case the implicit conversion sequence is a
4491      //   derived-to-base Conversion (13.3.3.1).
4492      ICS->setStandard();
4493      ICS->Standard.First = ICK_Identity;
4494      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4495      ICS->Standard.Third = ICK_Identity;
4496      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4497      ICS->Standard.setToType(0, T2);
4498      ICS->Standard.setToType(1, T1);
4499      ICS->Standard.setToType(2, T1);
4500      ICS->Standard.ReferenceBinding = true;
4501      ICS->Standard.DirectBinding = true;
4502      ICS->Standard.RRefBinding = false;
4503      ICS->Standard.CopyConstructor = 0;
4504
4505      // Nothing more to do: the inaccessibility/ambiguity check for
4506      // derived-to-base conversions is suppressed when we're
4507      // computing the implicit conversion sequence (C++
4508      // [over.best.ics]p2).
4509      return false;
4510    } else {
4511      // Perform the conversion.
4512      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4513      if (DerivedToBase)
4514        CK = CastExpr::CK_DerivedToBase;
4515      else if(CheckExceptionSpecCompatibility(Init, T1))
4516        return true;
4517      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4518    }
4519  }
4520
4521  //       -- has a class type (i.e., T2 is a class type) and can be
4522  //          implicitly converted to an lvalue of type "cv3 T3,"
4523  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4524  //          92) (this conversion is selected by enumerating the
4525  //          applicable conversion functions (13.3.1.6) and choosing
4526  //          the best one through overload resolution (13.3)),
4527  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4528      !RequireCompleteType(DeclLoc, T2, 0)) {
4529    CXXRecordDecl *T2RecordDecl
4530      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4531
4532    OverloadCandidateSet CandidateSet(DeclLoc);
4533    const UnresolvedSetImpl *Conversions
4534      = T2RecordDecl->getVisibleConversionFunctions();
4535    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4536           E = Conversions->end(); I != E; ++I) {
4537      NamedDecl *D = *I;
4538      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4539      if (isa<UsingShadowDecl>(D))
4540        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4541
4542      FunctionTemplateDecl *ConvTemplate
4543        = dyn_cast<FunctionTemplateDecl>(D);
4544      CXXConversionDecl *Conv;
4545      if (ConvTemplate)
4546        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4547      else
4548        Conv = cast<CXXConversionDecl>(D);
4549
4550      // If the conversion function doesn't return a reference type,
4551      // it can't be considered for this conversion.
4552      if (Conv->getConversionType()->isLValueReferenceType() &&
4553          (AllowExplicit || !Conv->isExplicit())) {
4554        if (ConvTemplate)
4555          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4556                                         Init, DeclType, CandidateSet);
4557        else
4558          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4559                                 DeclType, CandidateSet);
4560      }
4561    }
4562
4563    OverloadCandidateSet::iterator Best;
4564    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4565    case OR_Success:
4566      // C++ [over.ics.ref]p1:
4567      //
4568      //   [...] If the parameter binds directly to the result of
4569      //   applying a conversion function to the argument
4570      //   expression, the implicit conversion sequence is a
4571      //   user-defined conversion sequence (13.3.3.1.2), with the
4572      //   second standard conversion sequence either an identity
4573      //   conversion or, if the conversion function returns an
4574      //   entity of a type that is a derived class of the parameter
4575      //   type, a derived-to-base Conversion.
4576      if (!Best->FinalConversion.DirectBinding)
4577        break;
4578
4579      // This is a direct binding.
4580      BindsDirectly = true;
4581
4582      if (ICS) {
4583        ICS->setUserDefined();
4584        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4585        ICS->UserDefined.After = Best->FinalConversion;
4586        ICS->UserDefined.ConversionFunction = Best->Function;
4587        ICS->UserDefined.EllipsisConversion = false;
4588        assert(ICS->UserDefined.After.ReferenceBinding &&
4589               ICS->UserDefined.After.DirectBinding &&
4590               "Expected a direct reference binding!");
4591        return false;
4592      } else {
4593        OwningExprResult InitConversion =
4594          BuildCXXCastArgument(DeclLoc, QualType(),
4595                               CastExpr::CK_UserDefinedConversion,
4596                               cast<CXXMethodDecl>(Best->Function),
4597                               Owned(Init));
4598        Init = InitConversion.takeAs<Expr>();
4599
4600        if (CheckExceptionSpecCompatibility(Init, T1))
4601          return true;
4602        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4603                          /*isLvalue=*/true);
4604      }
4605      break;
4606
4607    case OR_Ambiguous:
4608      if (ICS) {
4609        ICS->setAmbiguous();
4610        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4611             Cand != CandidateSet.end(); ++Cand)
4612          if (Cand->Viable)
4613            ICS->Ambiguous.addConversion(Cand->Function);
4614        break;
4615      }
4616      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4617            << Init->getSourceRange();
4618      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4619      return true;
4620
4621    case OR_No_Viable_Function:
4622    case OR_Deleted:
4623      // There was no suitable conversion, or we found a deleted
4624      // conversion; continue with other checks.
4625      break;
4626    }
4627  }
4628
4629  if (BindsDirectly) {
4630    // C++ [dcl.init.ref]p4:
4631    //   [...] In all cases where the reference-related or
4632    //   reference-compatible relationship of two types is used to
4633    //   establish the validity of a reference binding, and T1 is a
4634    //   base class of T2, a program that necessitates such a binding
4635    //   is ill-formed if T1 is an inaccessible (clause 11) or
4636    //   ambiguous (10.2) base class of T2.
4637    //
4638    // Note that we only check this condition when we're allowed to
4639    // complain about errors, because we should not be checking for
4640    // ambiguity (or inaccessibility) unless the reference binding
4641    // actually happens.
4642    if (DerivedToBase)
4643      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4644                                          Init->getSourceRange(),
4645                                          IgnoreBaseAccess);
4646    else
4647      return false;
4648  }
4649
4650  //     -- Otherwise, the reference shall be to a non-volatile const
4651  //        type (i.e., cv1 shall be const), or the reference shall be an
4652  //        rvalue reference and the initializer expression shall be an rvalue.
4653  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4654    if (!ICS)
4655      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4656        << T1.isVolatileQualified()
4657        << T1 << int(InitLvalue != Expr::LV_Valid)
4658        << T2 << Init->getSourceRange();
4659    return true;
4660  }
4661
4662  //       -- If the initializer expression is an rvalue, with T2 a
4663  //          class type, and "cv1 T1" is reference-compatible with
4664  //          "cv2 T2," the reference is bound in one of the
4665  //          following ways (the choice is implementation-defined):
4666  //
4667  //          -- The reference is bound to the object represented by
4668  //             the rvalue (see 3.10) or to a sub-object within that
4669  //             object.
4670  //
4671  //          -- A temporary of type "cv1 T2" [sic] is created, and
4672  //             a constructor is called to copy the entire rvalue
4673  //             object into the temporary. The reference is bound to
4674  //             the temporary or to a sub-object within the
4675  //             temporary.
4676  //
4677  //          The constructor that would be used to make the copy
4678  //          shall be callable whether or not the copy is actually
4679  //          done.
4680  //
4681  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4682  // freedom, so we will always take the first option and never build
4683  // a temporary in this case. FIXME: We will, however, have to check
4684  // for the presence of a copy constructor in C++98/03 mode.
4685  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4686      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4687    if (ICS) {
4688      ICS->setStandard();
4689      ICS->Standard.First = ICK_Identity;
4690      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4691      ICS->Standard.Third = ICK_Identity;
4692      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4693      ICS->Standard.setToType(0, T2);
4694      ICS->Standard.setToType(1, T1);
4695      ICS->Standard.setToType(2, T1);
4696      ICS->Standard.ReferenceBinding = true;
4697      ICS->Standard.DirectBinding = false;
4698      ICS->Standard.RRefBinding = isRValRef;
4699      ICS->Standard.CopyConstructor = 0;
4700    } else {
4701      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4702      if (DerivedToBase)
4703        CK = CastExpr::CK_DerivedToBase;
4704      else if(CheckExceptionSpecCompatibility(Init, T1))
4705        return true;
4706      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4707    }
4708    return false;
4709  }
4710
4711  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4712  //          initialized from the initializer expression using the
4713  //          rules for a non-reference copy initialization (8.5). The
4714  //          reference is then bound to the temporary. If T1 is
4715  //          reference-related to T2, cv1 must be the same
4716  //          cv-qualification as, or greater cv-qualification than,
4717  //          cv2; otherwise, the program is ill-formed.
4718  if (RefRelationship == Ref_Related) {
4719    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4720    // we would be reference-compatible or reference-compatible with
4721    // added qualification. But that wasn't the case, so the reference
4722    // initialization fails.
4723    if (!ICS)
4724      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4725        << T1 << int(InitLvalue != Expr::LV_Valid)
4726        << T2 << Init->getSourceRange();
4727    return true;
4728  }
4729
4730  // If at least one of the types is a class type, the types are not
4731  // related, and we aren't allowed any user conversions, the
4732  // reference binding fails. This case is important for breaking
4733  // recursion, since TryImplicitConversion below will attempt to
4734  // create a temporary through the use of a copy constructor.
4735  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4736      (T1->isRecordType() || T2->isRecordType())) {
4737    if (!ICS)
4738      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4739        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4740    return true;
4741  }
4742
4743  // Actually try to convert the initializer to T1.
4744  if (ICS) {
4745    // C++ [over.ics.ref]p2:
4746    //
4747    //   When a parameter of reference type is not bound directly to
4748    //   an argument expression, the conversion sequence is the one
4749    //   required to convert the argument expression to the
4750    //   underlying type of the reference according to
4751    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4752    //   to copy-initializing a temporary of the underlying type with
4753    //   the argument expression. Any difference in top-level
4754    //   cv-qualification is subsumed by the initialization itself
4755    //   and does not constitute a conversion.
4756    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4757                                 /*AllowExplicit=*/false,
4758                                 /*ForceRValue=*/false,
4759                                 /*InOverloadResolution=*/false);
4760
4761    // Of course, that's still a reference binding.
4762    if (ICS->isStandard()) {
4763      ICS->Standard.ReferenceBinding = true;
4764      ICS->Standard.RRefBinding = isRValRef;
4765    } else if (ICS->isUserDefined()) {
4766      ICS->UserDefined.After.ReferenceBinding = true;
4767      ICS->UserDefined.After.RRefBinding = isRValRef;
4768    }
4769    return ICS->isBad();
4770  } else {
4771    ImplicitConversionSequence Conversions;
4772    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4773                                                   false, false,
4774                                                   Conversions);
4775    if (badConversion) {
4776      if (Conversions.isAmbiguous()) {
4777        Diag(DeclLoc,
4778             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4779        for (int j = Conversions.Ambiguous.conversions().size()-1;
4780             j >= 0; j--) {
4781          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4782          NoteOverloadCandidate(Func);
4783        }
4784      }
4785      else {
4786        if (isRValRef)
4787          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4788            << Init->getSourceRange();
4789        else
4790          Diag(DeclLoc, diag::err_invalid_initialization)
4791            << DeclType << Init->getType() << Init->getSourceRange();
4792      }
4793    }
4794    return badConversion;
4795  }
4796}
4797
4798static inline bool
4799CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4800                                       const FunctionDecl *FnDecl) {
4801  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4802  if (isa<NamespaceDecl>(DC)) {
4803    return SemaRef.Diag(FnDecl->getLocation(),
4804                        diag::err_operator_new_delete_declared_in_namespace)
4805      << FnDecl->getDeclName();
4806  }
4807
4808  if (isa<TranslationUnitDecl>(DC) &&
4809      FnDecl->getStorageClass() == FunctionDecl::Static) {
4810    return SemaRef.Diag(FnDecl->getLocation(),
4811                        diag::err_operator_new_delete_declared_static)
4812      << FnDecl->getDeclName();
4813  }
4814
4815  return false;
4816}
4817
4818static inline bool
4819CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4820                            CanQualType ExpectedResultType,
4821                            CanQualType ExpectedFirstParamType,
4822                            unsigned DependentParamTypeDiag,
4823                            unsigned InvalidParamTypeDiag) {
4824  QualType ResultType =
4825    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4826
4827  // Check that the result type is not dependent.
4828  if (ResultType->isDependentType())
4829    return SemaRef.Diag(FnDecl->getLocation(),
4830                        diag::err_operator_new_delete_dependent_result_type)
4831    << FnDecl->getDeclName() << ExpectedResultType;
4832
4833  // Check that the result type is what we expect.
4834  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4835    return SemaRef.Diag(FnDecl->getLocation(),
4836                        diag::err_operator_new_delete_invalid_result_type)
4837    << FnDecl->getDeclName() << ExpectedResultType;
4838
4839  // A function template must have at least 2 parameters.
4840  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4841    return SemaRef.Diag(FnDecl->getLocation(),
4842                      diag::err_operator_new_delete_template_too_few_parameters)
4843        << FnDecl->getDeclName();
4844
4845  // The function decl must have at least 1 parameter.
4846  if (FnDecl->getNumParams() == 0)
4847    return SemaRef.Diag(FnDecl->getLocation(),
4848                        diag::err_operator_new_delete_too_few_parameters)
4849      << FnDecl->getDeclName();
4850
4851  // Check the the first parameter type is not dependent.
4852  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4853  if (FirstParamType->isDependentType())
4854    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4855      << FnDecl->getDeclName() << ExpectedFirstParamType;
4856
4857  // Check that the first parameter type is what we expect.
4858  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4859      ExpectedFirstParamType)
4860    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4861    << FnDecl->getDeclName() << ExpectedFirstParamType;
4862
4863  return false;
4864}
4865
4866static bool
4867CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4868  // C++ [basic.stc.dynamic.allocation]p1:
4869  //   A program is ill-formed if an allocation function is declared in a
4870  //   namespace scope other than global scope or declared static in global
4871  //   scope.
4872  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4873    return true;
4874
4875  CanQualType SizeTy =
4876    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4877
4878  // C++ [basic.stc.dynamic.allocation]p1:
4879  //  The return type shall be void*. The first parameter shall have type
4880  //  std::size_t.
4881  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4882                                  SizeTy,
4883                                  diag::err_operator_new_dependent_param_type,
4884                                  diag::err_operator_new_param_type))
4885    return true;
4886
4887  // C++ [basic.stc.dynamic.allocation]p1:
4888  //  The first parameter shall not have an associated default argument.
4889  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4890    return SemaRef.Diag(FnDecl->getLocation(),
4891                        diag::err_operator_new_default_arg)
4892      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4893
4894  return false;
4895}
4896
4897static bool
4898CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4899  // C++ [basic.stc.dynamic.deallocation]p1:
4900  //   A program is ill-formed if deallocation functions are declared in a
4901  //   namespace scope other than global scope or declared static in global
4902  //   scope.
4903  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4904    return true;
4905
4906  // C++ [basic.stc.dynamic.deallocation]p2:
4907  //   Each deallocation function shall return void and its first parameter
4908  //   shall be void*.
4909  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4910                                  SemaRef.Context.VoidPtrTy,
4911                                 diag::err_operator_delete_dependent_param_type,
4912                                 diag::err_operator_delete_param_type))
4913    return true;
4914
4915  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4916  if (FirstParamType->isDependentType())
4917    return SemaRef.Diag(FnDecl->getLocation(),
4918                        diag::err_operator_delete_dependent_param_type)
4919    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4920
4921  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4922      SemaRef.Context.VoidPtrTy)
4923    return SemaRef.Diag(FnDecl->getLocation(),
4924                        diag::err_operator_delete_param_type)
4925      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4926
4927  return false;
4928}
4929
4930/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4931/// of this overloaded operator is well-formed. If so, returns false;
4932/// otherwise, emits appropriate diagnostics and returns true.
4933bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4934  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4935         "Expected an overloaded operator declaration");
4936
4937  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4938
4939  // C++ [over.oper]p5:
4940  //   The allocation and deallocation functions, operator new,
4941  //   operator new[], operator delete and operator delete[], are
4942  //   described completely in 3.7.3. The attributes and restrictions
4943  //   found in the rest of this subclause do not apply to them unless
4944  //   explicitly stated in 3.7.3.
4945  if (Op == OO_Delete || Op == OO_Array_Delete)
4946    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4947
4948  if (Op == OO_New || Op == OO_Array_New)
4949    return CheckOperatorNewDeclaration(*this, FnDecl);
4950
4951  // C++ [over.oper]p6:
4952  //   An operator function shall either be a non-static member
4953  //   function or be a non-member function and have at least one
4954  //   parameter whose type is a class, a reference to a class, an
4955  //   enumeration, or a reference to an enumeration.
4956  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4957    if (MethodDecl->isStatic())
4958      return Diag(FnDecl->getLocation(),
4959                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4960  } else {
4961    bool ClassOrEnumParam = false;
4962    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4963                                   ParamEnd = FnDecl->param_end();
4964         Param != ParamEnd; ++Param) {
4965      QualType ParamType = (*Param)->getType().getNonReferenceType();
4966      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4967          ParamType->isEnumeralType()) {
4968        ClassOrEnumParam = true;
4969        break;
4970      }
4971    }
4972
4973    if (!ClassOrEnumParam)
4974      return Diag(FnDecl->getLocation(),
4975                  diag::err_operator_overload_needs_class_or_enum)
4976        << FnDecl->getDeclName();
4977  }
4978
4979  // C++ [over.oper]p8:
4980  //   An operator function cannot have default arguments (8.3.6),
4981  //   except where explicitly stated below.
4982  //
4983  // Only the function-call operator allows default arguments
4984  // (C++ [over.call]p1).
4985  if (Op != OO_Call) {
4986    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4987         Param != FnDecl->param_end(); ++Param) {
4988      if ((*Param)->hasDefaultArg())
4989        return Diag((*Param)->getLocation(),
4990                    diag::err_operator_overload_default_arg)
4991          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4992    }
4993  }
4994
4995  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4996    { false, false, false }
4997#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4998    , { Unary, Binary, MemberOnly }
4999#include "clang/Basic/OperatorKinds.def"
5000  };
5001
5002  bool CanBeUnaryOperator = OperatorUses[Op][0];
5003  bool CanBeBinaryOperator = OperatorUses[Op][1];
5004  bool MustBeMemberOperator = OperatorUses[Op][2];
5005
5006  // C++ [over.oper]p8:
5007  //   [...] Operator functions cannot have more or fewer parameters
5008  //   than the number required for the corresponding operator, as
5009  //   described in the rest of this subclause.
5010  unsigned NumParams = FnDecl->getNumParams()
5011                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5012  if (Op != OO_Call &&
5013      ((NumParams == 1 && !CanBeUnaryOperator) ||
5014       (NumParams == 2 && !CanBeBinaryOperator) ||
5015       (NumParams < 1) || (NumParams > 2))) {
5016    // We have the wrong number of parameters.
5017    unsigned ErrorKind;
5018    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5019      ErrorKind = 2;  // 2 -> unary or binary.
5020    } else if (CanBeUnaryOperator) {
5021      ErrorKind = 0;  // 0 -> unary
5022    } else {
5023      assert(CanBeBinaryOperator &&
5024             "All non-call overloaded operators are unary or binary!");
5025      ErrorKind = 1;  // 1 -> binary
5026    }
5027
5028    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5029      << FnDecl->getDeclName() << NumParams << ErrorKind;
5030  }
5031
5032  // Overloaded operators other than operator() cannot be variadic.
5033  if (Op != OO_Call &&
5034      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5035    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5036      << FnDecl->getDeclName();
5037  }
5038
5039  // Some operators must be non-static member functions.
5040  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5041    return Diag(FnDecl->getLocation(),
5042                diag::err_operator_overload_must_be_member)
5043      << FnDecl->getDeclName();
5044  }
5045
5046  // C++ [over.inc]p1:
5047  //   The user-defined function called operator++ implements the
5048  //   prefix and postfix ++ operator. If this function is a member
5049  //   function with no parameters, or a non-member function with one
5050  //   parameter of class or enumeration type, it defines the prefix
5051  //   increment operator ++ for objects of that type. If the function
5052  //   is a member function with one parameter (which shall be of type
5053  //   int) or a non-member function with two parameters (the second
5054  //   of which shall be of type int), it defines the postfix
5055  //   increment operator ++ for objects of that type.
5056  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5057    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5058    bool ParamIsInt = false;
5059    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5060      ParamIsInt = BT->getKind() == BuiltinType::Int;
5061
5062    if (!ParamIsInt)
5063      return Diag(LastParam->getLocation(),
5064                  diag::err_operator_overload_post_incdec_must_be_int)
5065        << LastParam->getType() << (Op == OO_MinusMinus);
5066  }
5067
5068  // Notify the class if it got an assignment operator.
5069  if (Op == OO_Equal) {
5070    // Would have returned earlier otherwise.
5071    assert(isa<CXXMethodDecl>(FnDecl) &&
5072      "Overloaded = not member, but not filtered.");
5073    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5074    Method->getParent()->addedAssignmentOperator(Context, Method);
5075  }
5076
5077  return false;
5078}
5079
5080/// CheckLiteralOperatorDeclaration - Check whether the declaration
5081/// of this literal operator function is well-formed. If so, returns
5082/// false; otherwise, emits appropriate diagnostics and returns true.
5083bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5084  DeclContext *DC = FnDecl->getDeclContext();
5085  Decl::Kind Kind = DC->getDeclKind();
5086  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5087      Kind != Decl::LinkageSpec) {
5088    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5089      << FnDecl->getDeclName();
5090    return true;
5091  }
5092
5093  bool Valid = false;
5094
5095  // FIXME: Check for the one valid template signature
5096  // template <char...> type operator "" name();
5097
5098  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5099    // Check the first parameter
5100    QualType T = (*Param)->getType();
5101
5102    // unsigned long long int and long double are allowed, but only
5103    // alone.
5104    // We also allow any character type; their omission seems to be a bug
5105    // in n3000
5106    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5107        Context.hasSameType(T, Context.LongDoubleTy) ||
5108        Context.hasSameType(T, Context.CharTy) ||
5109        Context.hasSameType(T, Context.WCharTy) ||
5110        Context.hasSameType(T, Context.Char16Ty) ||
5111        Context.hasSameType(T, Context.Char32Ty)) {
5112      if (++Param == FnDecl->param_end())
5113        Valid = true;
5114      goto FinishedParams;
5115    }
5116
5117    // Otherwise it must be a pointer to const; let's strip those.
5118    const PointerType *PT = T->getAs<PointerType>();
5119    if (!PT)
5120      goto FinishedParams;
5121    T = PT->getPointeeType();
5122    if (!T.isConstQualified())
5123      goto FinishedParams;
5124    T = T.getUnqualifiedType();
5125
5126    // Move on to the second parameter;
5127    ++Param;
5128
5129    // If there is no second parameter, the first must be a const char *
5130    if (Param == FnDecl->param_end()) {
5131      if (Context.hasSameType(T, Context.CharTy))
5132        Valid = true;
5133      goto FinishedParams;
5134    }
5135
5136    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5137    // are allowed as the first parameter to a two-parameter function
5138    if (!(Context.hasSameType(T, Context.CharTy) ||
5139          Context.hasSameType(T, Context.WCharTy) ||
5140          Context.hasSameType(T, Context.Char16Ty) ||
5141          Context.hasSameType(T, Context.Char32Ty)))
5142      goto FinishedParams;
5143
5144    // The second and final parameter must be an std::size_t
5145    T = (*Param)->getType().getUnqualifiedType();
5146    if (Context.hasSameType(T, Context.getSizeType()) &&
5147        ++Param == FnDecl->param_end())
5148      Valid = true;
5149  }
5150
5151  // FIXME: This diagnostic is absolutely terrible.
5152FinishedParams:
5153  if (!Valid) {
5154    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5155      << FnDecl->getDeclName();
5156    return true;
5157  }
5158
5159  return false;
5160}
5161
5162/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5163/// linkage specification, including the language and (if present)
5164/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5165/// the location of the language string literal, which is provided
5166/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5167/// the '{' brace. Otherwise, this linkage specification does not
5168/// have any braces.
5169Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5170                                                     SourceLocation ExternLoc,
5171                                                     SourceLocation LangLoc,
5172                                                     const char *Lang,
5173                                                     unsigned StrSize,
5174                                                     SourceLocation LBraceLoc) {
5175  LinkageSpecDecl::LanguageIDs Language;
5176  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5177    Language = LinkageSpecDecl::lang_c;
5178  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5179    Language = LinkageSpecDecl::lang_cxx;
5180  else {
5181    Diag(LangLoc, diag::err_bad_language);
5182    return DeclPtrTy();
5183  }
5184
5185  // FIXME: Add all the various semantics of linkage specifications
5186
5187  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5188                                               LangLoc, Language,
5189                                               LBraceLoc.isValid());
5190  CurContext->addDecl(D);
5191  PushDeclContext(S, D);
5192  return DeclPtrTy::make(D);
5193}
5194
5195/// ActOnFinishLinkageSpecification - Completely the definition of
5196/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5197/// valid, it's the position of the closing '}' brace in a linkage
5198/// specification that uses braces.
5199Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5200                                                      DeclPtrTy LinkageSpec,
5201                                                      SourceLocation RBraceLoc) {
5202  if (LinkageSpec)
5203    PopDeclContext();
5204  return LinkageSpec;
5205}
5206
5207/// \brief Perform semantic analysis for the variable declaration that
5208/// occurs within a C++ catch clause, returning the newly-created
5209/// variable.
5210VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5211                                         TypeSourceInfo *TInfo,
5212                                         IdentifierInfo *Name,
5213                                         SourceLocation Loc,
5214                                         SourceRange Range) {
5215  bool Invalid = false;
5216
5217  // Arrays and functions decay.
5218  if (ExDeclType->isArrayType())
5219    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5220  else if (ExDeclType->isFunctionType())
5221    ExDeclType = Context.getPointerType(ExDeclType);
5222
5223  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5224  // The exception-declaration shall not denote a pointer or reference to an
5225  // incomplete type, other than [cv] void*.
5226  // N2844 forbids rvalue references.
5227  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5228    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5229    Invalid = true;
5230  }
5231
5232  // GCC allows catching pointers and references to incomplete types
5233  // as an extension; so do we, but we warn by default.
5234
5235  QualType BaseType = ExDeclType;
5236  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5237  unsigned DK = diag::err_catch_incomplete;
5238  bool IncompleteCatchIsInvalid = true;
5239  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5240    BaseType = Ptr->getPointeeType();
5241    Mode = 1;
5242    DK = diag::ext_catch_incomplete_ptr;
5243    IncompleteCatchIsInvalid = false;
5244  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5245    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5246    BaseType = Ref->getPointeeType();
5247    Mode = 2;
5248    DK = diag::ext_catch_incomplete_ref;
5249    IncompleteCatchIsInvalid = false;
5250  }
5251  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5252      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5253      IncompleteCatchIsInvalid)
5254    Invalid = true;
5255
5256  if (!Invalid && !ExDeclType->isDependentType() &&
5257      RequireNonAbstractType(Loc, ExDeclType,
5258                             diag::err_abstract_type_in_decl,
5259                             AbstractVariableType))
5260    Invalid = true;
5261
5262  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5263                                    Name, ExDeclType, TInfo, VarDecl::None);
5264
5265  if (!Invalid) {
5266    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5267      // C++ [except.handle]p16:
5268      //   The object declared in an exception-declaration or, if the
5269      //   exception-declaration does not specify a name, a temporary (12.2) is
5270      //   copy-initialized (8.5) from the exception object. [...]
5271      //   The object is destroyed when the handler exits, after the destruction
5272      //   of any automatic objects initialized within the handler.
5273      //
5274      // We just pretend to initialize the object with itself, then make sure
5275      // it can be destroyed later.
5276      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5277      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5278                                            Loc, ExDeclType, 0);
5279      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5280                                                               SourceLocation());
5281      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5282      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5283                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5284      if (Result.isInvalid())
5285        Invalid = true;
5286      else
5287        FinalizeVarWithDestructor(ExDecl, RecordTy);
5288    }
5289  }
5290
5291  if (Invalid)
5292    ExDecl->setInvalidDecl();
5293
5294  return ExDecl;
5295}
5296
5297/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5298/// handler.
5299Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5300  TypeSourceInfo *TInfo = 0;
5301  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5302
5303  bool Invalid = D.isInvalidType();
5304  IdentifierInfo *II = D.getIdentifier();
5305  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5306    // The scope should be freshly made just for us. There is just no way
5307    // it contains any previous declaration.
5308    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5309    if (PrevDecl->isTemplateParameter()) {
5310      // Maybe we will complain about the shadowed template parameter.
5311      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5312    }
5313  }
5314
5315  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5316    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5317      << D.getCXXScopeSpec().getRange();
5318    Invalid = true;
5319  }
5320
5321  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5322                                              D.getIdentifier(),
5323                                              D.getIdentifierLoc(),
5324                                            D.getDeclSpec().getSourceRange());
5325
5326  if (Invalid)
5327    ExDecl->setInvalidDecl();
5328
5329  // Add the exception declaration into this scope.
5330  if (II)
5331    PushOnScopeChains(ExDecl, S);
5332  else
5333    CurContext->addDecl(ExDecl);
5334
5335  ProcessDeclAttributes(S, ExDecl, D);
5336  return DeclPtrTy::make(ExDecl);
5337}
5338
5339Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5340                                                   ExprArg assertexpr,
5341                                                   ExprArg assertmessageexpr) {
5342  Expr *AssertExpr = (Expr *)assertexpr.get();
5343  StringLiteral *AssertMessage =
5344    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5345
5346  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5347    llvm::APSInt Value(32);
5348    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5349      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5350        AssertExpr->getSourceRange();
5351      return DeclPtrTy();
5352    }
5353
5354    if (Value == 0) {
5355      Diag(AssertLoc, diag::err_static_assert_failed)
5356        << AssertMessage->getString() << AssertExpr->getSourceRange();
5357    }
5358  }
5359
5360  assertexpr.release();
5361  assertmessageexpr.release();
5362  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5363                                        AssertExpr, AssertMessage);
5364
5365  CurContext->addDecl(Decl);
5366  return DeclPtrTy::make(Decl);
5367}
5368
5369/// Handle a friend type declaration.  This works in tandem with
5370/// ActOnTag.
5371///
5372/// Notes on friend class templates:
5373///
5374/// We generally treat friend class declarations as if they were
5375/// declaring a class.  So, for example, the elaborated type specifier
5376/// in a friend declaration is required to obey the restrictions of a
5377/// class-head (i.e. no typedefs in the scope chain), template
5378/// parameters are required to match up with simple template-ids, &c.
5379/// However, unlike when declaring a template specialization, it's
5380/// okay to refer to a template specialization without an empty
5381/// template parameter declaration, e.g.
5382///   friend class A<T>::B<unsigned>;
5383/// We permit this as a special case; if there are any template
5384/// parameters present at all, require proper matching, i.e.
5385///   template <> template <class T> friend class A<int>::B;
5386Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5387                                          MultiTemplateParamsArg TempParams) {
5388  SourceLocation Loc = DS.getSourceRange().getBegin();
5389
5390  assert(DS.isFriendSpecified());
5391  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5392
5393  // Try to convert the decl specifier to a type.  This works for
5394  // friend templates because ActOnTag never produces a ClassTemplateDecl
5395  // for a TUK_Friend.
5396  Declarator TheDeclarator(DS, Declarator::MemberContext);
5397  TypeSourceInfo *TSI;
5398  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5399  if (TheDeclarator.isInvalidType())
5400    return DeclPtrTy();
5401
5402  // This is definitely an error in C++98.  It's probably meant to
5403  // be forbidden in C++0x, too, but the specification is just
5404  // poorly written.
5405  //
5406  // The problem is with declarations like the following:
5407  //   template <T> friend A<T>::foo;
5408  // where deciding whether a class C is a friend or not now hinges
5409  // on whether there exists an instantiation of A that causes
5410  // 'foo' to equal C.  There are restrictions on class-heads
5411  // (which we declare (by fiat) elaborated friend declarations to
5412  // be) that makes this tractable.
5413  //
5414  // FIXME: handle "template <> friend class A<T>;", which
5415  // is possibly well-formed?  Who even knows?
5416  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5417    Diag(Loc, diag::err_tagless_friend_type_template)
5418      << DS.getSourceRange();
5419    return DeclPtrTy();
5420  }
5421
5422  // C++ [class.friend]p2:
5423  //   An elaborated-type-specifier shall be used in a friend declaration
5424  //   for a class.*
5425  //   * The class-key of the elaborated-type-specifier is required.
5426  // This is one of the rare places in Clang where it's legitimate to
5427  // ask about the "spelling" of the type.
5428  if (!getLangOptions().CPlusPlus0x && !T->isElaboratedTypeSpecifier()) {
5429    // If we evaluated the type to a record type, suggest putting
5430    // a tag in front.
5431    if (const RecordType *RT = T->getAs<RecordType>()) {
5432      RecordDecl *RD = RT->getDecl();
5433
5434      std::string InsertionText = std::string(" ") + RD->getKindName();
5435
5436      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5437        << (unsigned) RD->getTagKind()
5438        << T
5439        << SourceRange(DS.getFriendSpecLoc())
5440        << FixItHint::CreateInsertion(DS.getTypeSpecTypeLoc(), InsertionText);
5441      return DeclPtrTy();
5442    }else {
5443      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5444          << DS.getSourceRange();
5445      return DeclPtrTy();
5446    }
5447  }
5448
5449  // Enum types cannot be friends.
5450  if (T->getAs<EnumType>()) {
5451    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5452      << SourceRange(DS.getFriendSpecLoc());
5453    return DeclPtrTy();
5454  }
5455
5456  // C++98 [class.friend]p1: A friend of a class is a function
5457  //   or class that is not a member of the class . . .
5458  // This is fixed in DR77, which just barely didn't make the C++03
5459  // deadline.  It's also a very silly restriction that seriously
5460  // affects inner classes and which nobody else seems to implement;
5461  // thus we never diagnose it, not even in -pedantic.
5462  //
5463  // But note that we could warn about it: it's always useless to
5464  // friend one of your own members (it's not, however, worthless to
5465  // friend a member of an arbitrary specialization of your template).
5466
5467  Decl *D;
5468  if (TempParams.size())
5469    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5470                                   TempParams.size(),
5471                                 (TemplateParameterList**) TempParams.release(),
5472                                   TSI,
5473                                   DS.getFriendSpecLoc());
5474  else
5475    D = FriendDecl::Create(Context, CurContext, Loc, TSI,
5476                           DS.getFriendSpecLoc());
5477  D->setAccess(AS_public);
5478  CurContext->addDecl(D);
5479
5480  return DeclPtrTy::make(D);
5481}
5482
5483Sema::DeclPtrTy
5484Sema::ActOnFriendFunctionDecl(Scope *S,
5485                              Declarator &D,
5486                              bool IsDefinition,
5487                              MultiTemplateParamsArg TemplateParams) {
5488  const DeclSpec &DS = D.getDeclSpec();
5489
5490  assert(DS.isFriendSpecified());
5491  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5492
5493  SourceLocation Loc = D.getIdentifierLoc();
5494  TypeSourceInfo *TInfo = 0;
5495  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5496
5497  // C++ [class.friend]p1
5498  //   A friend of a class is a function or class....
5499  // Note that this sees through typedefs, which is intended.
5500  // It *doesn't* see through dependent types, which is correct
5501  // according to [temp.arg.type]p3:
5502  //   If a declaration acquires a function type through a
5503  //   type dependent on a template-parameter and this causes
5504  //   a declaration that does not use the syntactic form of a
5505  //   function declarator to have a function type, the program
5506  //   is ill-formed.
5507  if (!T->isFunctionType()) {
5508    Diag(Loc, diag::err_unexpected_friend);
5509
5510    // It might be worthwhile to try to recover by creating an
5511    // appropriate declaration.
5512    return DeclPtrTy();
5513  }
5514
5515  // C++ [namespace.memdef]p3
5516  //  - If a friend declaration in a non-local class first declares a
5517  //    class or function, the friend class or function is a member
5518  //    of the innermost enclosing namespace.
5519  //  - The name of the friend is not found by simple name lookup
5520  //    until a matching declaration is provided in that namespace
5521  //    scope (either before or after the class declaration granting
5522  //    friendship).
5523  //  - If a friend function is called, its name may be found by the
5524  //    name lookup that considers functions from namespaces and
5525  //    classes associated with the types of the function arguments.
5526  //  - When looking for a prior declaration of a class or a function
5527  //    declared as a friend, scopes outside the innermost enclosing
5528  //    namespace scope are not considered.
5529
5530  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5531  DeclarationName Name = GetNameForDeclarator(D);
5532  assert(Name);
5533
5534  // The context we found the declaration in, or in which we should
5535  // create the declaration.
5536  DeclContext *DC;
5537
5538  // FIXME: handle local classes
5539
5540  // Recover from invalid scope qualifiers as if they just weren't there.
5541  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5542                        ForRedeclaration);
5543  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5544    // FIXME: RequireCompleteDeclContext
5545    DC = computeDeclContext(ScopeQual);
5546
5547    // FIXME: handle dependent contexts
5548    if (!DC) return DeclPtrTy();
5549
5550    LookupQualifiedName(Previous, DC);
5551
5552    // If searching in that context implicitly found a declaration in
5553    // a different context, treat it like it wasn't found at all.
5554    // TODO: better diagnostics for this case.  Suggesting the right
5555    // qualified scope would be nice...
5556    // FIXME: getRepresentativeDecl() is not right here at all
5557    if (Previous.empty() ||
5558        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5559      D.setInvalidType();
5560      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5561      return DeclPtrTy();
5562    }
5563
5564    // C++ [class.friend]p1: A friend of a class is a function or
5565    //   class that is not a member of the class . . .
5566    if (DC->Equals(CurContext))
5567      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5568
5569  // Otherwise walk out to the nearest namespace scope looking for matches.
5570  } else {
5571    // TODO: handle local class contexts.
5572
5573    DC = CurContext;
5574    while (true) {
5575      // Skip class contexts.  If someone can cite chapter and verse
5576      // for this behavior, that would be nice --- it's what GCC and
5577      // EDG do, and it seems like a reasonable intent, but the spec
5578      // really only says that checks for unqualified existing
5579      // declarations should stop at the nearest enclosing namespace,
5580      // not that they should only consider the nearest enclosing
5581      // namespace.
5582      while (DC->isRecord())
5583        DC = DC->getParent();
5584
5585      LookupQualifiedName(Previous, DC);
5586
5587      // TODO: decide what we think about using declarations.
5588      if (!Previous.empty())
5589        break;
5590
5591      if (DC->isFileContext()) break;
5592      DC = DC->getParent();
5593    }
5594
5595    // C++ [class.friend]p1: A friend of a class is a function or
5596    //   class that is not a member of the class . . .
5597    // C++0x changes this for both friend types and functions.
5598    // Most C++ 98 compilers do seem to give an error here, so
5599    // we do, too.
5600    if (!Previous.empty() && DC->Equals(CurContext)
5601        && !getLangOptions().CPlusPlus0x)
5602      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5603  }
5604
5605  if (DC->isFileContext()) {
5606    // This implies that it has to be an operator or function.
5607    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5608        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5609        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5610      Diag(Loc, diag::err_introducing_special_friend) <<
5611        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5612         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5613      return DeclPtrTy();
5614    }
5615  }
5616
5617  bool Redeclaration = false;
5618  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5619                                          move(TemplateParams),
5620                                          IsDefinition,
5621                                          Redeclaration);
5622  if (!ND) return DeclPtrTy();
5623
5624  assert(ND->getDeclContext() == DC);
5625  assert(ND->getLexicalDeclContext() == CurContext);
5626
5627  // Add the function declaration to the appropriate lookup tables,
5628  // adjusting the redeclarations list as necessary.  We don't
5629  // want to do this yet if the friending class is dependent.
5630  //
5631  // Also update the scope-based lookup if the target context's
5632  // lookup context is in lexical scope.
5633  if (!CurContext->isDependentContext()) {
5634    DC = DC->getLookupContext();
5635    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5636    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5637      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5638  }
5639
5640  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5641                                       D.getIdentifierLoc(), ND,
5642                                       DS.getFriendSpecLoc());
5643  FrD->setAccess(AS_public);
5644  CurContext->addDecl(FrD);
5645
5646  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5647    FrD->setSpecialization(true);
5648
5649  return DeclPtrTy::make(ND);
5650}
5651
5652void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5653  AdjustDeclIfTemplate(dcl);
5654
5655  Decl *Dcl = dcl.getAs<Decl>();
5656  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5657  if (!Fn) {
5658    Diag(DelLoc, diag::err_deleted_non_function);
5659    return;
5660  }
5661  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5662    Diag(DelLoc, diag::err_deleted_decl_not_first);
5663    Diag(Prev->getLocation(), diag::note_previous_declaration);
5664    // If the declaration wasn't the first, we delete the function anyway for
5665    // recovery.
5666  }
5667  Fn->setDeleted();
5668}
5669
5670static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5671  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5672       ++CI) {
5673    Stmt *SubStmt = *CI;
5674    if (!SubStmt)
5675      continue;
5676    if (isa<ReturnStmt>(SubStmt))
5677      Self.Diag(SubStmt->getSourceRange().getBegin(),
5678           diag::err_return_in_constructor_handler);
5679    if (!isa<Expr>(SubStmt))
5680      SearchForReturnInStmt(Self, SubStmt);
5681  }
5682}
5683
5684void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5685  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5686    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5687    SearchForReturnInStmt(*this, Handler);
5688  }
5689}
5690
5691bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5692                                             const CXXMethodDecl *Old) {
5693  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5694  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5695
5696  if (Context.hasSameType(NewTy, OldTy) ||
5697      NewTy->isDependentType() || OldTy->isDependentType())
5698    return false;
5699
5700  // Check if the return types are covariant
5701  QualType NewClassTy, OldClassTy;
5702
5703  /// Both types must be pointers or references to classes.
5704  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5705    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5706      NewClassTy = NewPT->getPointeeType();
5707      OldClassTy = OldPT->getPointeeType();
5708    }
5709  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5710    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5711      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5712        NewClassTy = NewRT->getPointeeType();
5713        OldClassTy = OldRT->getPointeeType();
5714      }
5715    }
5716  }
5717
5718  // The return types aren't either both pointers or references to a class type.
5719  if (NewClassTy.isNull()) {
5720    Diag(New->getLocation(),
5721         diag::err_different_return_type_for_overriding_virtual_function)
5722      << New->getDeclName() << NewTy << OldTy;
5723    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5724
5725    return true;
5726  }
5727
5728  // C++ [class.virtual]p6:
5729  //   If the return type of D::f differs from the return type of B::f, the
5730  //   class type in the return type of D::f shall be complete at the point of
5731  //   declaration of D::f or shall be the class type D.
5732  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5733    if (!RT->isBeingDefined() &&
5734        RequireCompleteType(New->getLocation(), NewClassTy,
5735                            PDiag(diag::err_covariant_return_incomplete)
5736                              << New->getDeclName()))
5737    return true;
5738  }
5739
5740  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5741    // Check if the new class derives from the old class.
5742    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5743      Diag(New->getLocation(),
5744           diag::err_covariant_return_not_derived)
5745      << New->getDeclName() << NewTy << OldTy;
5746      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5747      return true;
5748    }
5749
5750    // Check if we the conversion from derived to base is valid.
5751    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5752                      diag::err_covariant_return_inaccessible_base,
5753                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5754                      // FIXME: Should this point to the return type?
5755                      New->getLocation(), SourceRange(), New->getDeclName())) {
5756      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5757      return true;
5758    }
5759  }
5760
5761  // The qualifiers of the return types must be the same.
5762  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5763    Diag(New->getLocation(),
5764         diag::err_covariant_return_type_different_qualifications)
5765    << New->getDeclName() << NewTy << OldTy;
5766    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5767    return true;
5768  };
5769
5770
5771  // The new class type must have the same or less qualifiers as the old type.
5772  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5773    Diag(New->getLocation(),
5774         diag::err_covariant_return_type_class_type_more_qualified)
5775    << New->getDeclName() << NewTy << OldTy;
5776    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5777    return true;
5778  };
5779
5780  return false;
5781}
5782
5783bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5784                                             const CXXMethodDecl *Old)
5785{
5786  if (Old->hasAttr<FinalAttr>()) {
5787    Diag(New->getLocation(), diag::err_final_function_overridden)
5788      << New->getDeclName();
5789    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5790    return true;
5791  }
5792
5793  return false;
5794}
5795
5796/// \brief Mark the given method pure.
5797///
5798/// \param Method the method to be marked pure.
5799///
5800/// \param InitRange the source range that covers the "0" initializer.
5801bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5802  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5803    Method->setPure();
5804
5805    // A class is abstract if at least one function is pure virtual.
5806    Method->getParent()->setAbstract(true);
5807    return false;
5808  }
5809
5810  if (!Method->isInvalidDecl())
5811    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5812      << Method->getDeclName() << InitRange;
5813  return true;
5814}
5815
5816/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5817/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5818/// is a fresh scope pushed for just this purpose.
5819///
5820/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5821/// static data member of class X, names should be looked up in the scope of
5822/// class X.
5823void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5824  // If there is no declaration, there was an error parsing it.
5825  Decl *D = Dcl.getAs<Decl>();
5826  if (D == 0) return;
5827
5828  // We should only get called for declarations with scope specifiers, like:
5829  //   int foo::bar;
5830  assert(D->isOutOfLine());
5831  EnterDeclaratorContext(S, D->getDeclContext());
5832}
5833
5834/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5835/// initializer for the out-of-line declaration 'Dcl'.
5836void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5837  // If there is no declaration, there was an error parsing it.
5838  Decl *D = Dcl.getAs<Decl>();
5839  if (D == 0) return;
5840
5841  assert(D->isOutOfLine());
5842  ExitDeclaratorContext(S);
5843}
5844
5845/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5846/// C++ if/switch/while/for statement.
5847/// e.g: "if (int x = f()) {...}"
5848Action::DeclResult
5849Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5850  // C++ 6.4p2:
5851  // The declarator shall not specify a function or an array.
5852  // The type-specifier-seq shall not contain typedef and shall not declare a
5853  // new class or enumeration.
5854  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5855         "Parser allowed 'typedef' as storage class of condition decl.");
5856
5857  TypeSourceInfo *TInfo = 0;
5858  TagDecl *OwnedTag = 0;
5859  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5860
5861  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5862                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5863                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5864    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5865      << D.getSourceRange();
5866    return DeclResult();
5867  } else if (OwnedTag && OwnedTag->isDefinition()) {
5868    // The type-specifier-seq shall not declare a new class or enumeration.
5869    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5870  }
5871
5872  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5873  if (!Dcl)
5874    return DeclResult();
5875
5876  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5877  VD->setDeclaredInCondition(true);
5878  return Dcl;
5879}
5880
5881static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5882  // Ignore dependent types.
5883  if (MD->isDependentContext())
5884    return false;
5885
5886  // Ignore declarations that are not definitions.
5887  if (!MD->isThisDeclarationADefinition())
5888    return false;
5889
5890  CXXRecordDecl *RD = MD->getParent();
5891
5892  // Ignore classes without a vtable.
5893  if (!RD->isDynamicClass())
5894    return false;
5895
5896  switch (MD->getParent()->getTemplateSpecializationKind()) {
5897  case TSK_Undeclared:
5898  case TSK_ExplicitSpecialization:
5899    // Classes that aren't instantiations of templates don't need their
5900    // virtual methods marked until we see the definition of the key
5901    // function.
5902    break;
5903
5904  case TSK_ImplicitInstantiation:
5905    // This is a constructor of a class template; mark all of the virtual
5906    // members as referenced to ensure that they get instantiatied.
5907    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5908      return true;
5909    break;
5910
5911  case TSK_ExplicitInstantiationDeclaration:
5912    return false;
5913
5914  case TSK_ExplicitInstantiationDefinition:
5915    // This is method of a explicit instantiation; mark all of the virtual
5916    // members as referenced to ensure that they get instantiatied.
5917    return true;
5918  }
5919
5920  // Consider only out-of-line definitions of member functions. When we see
5921  // an inline definition, it's too early to compute the key function.
5922  if (!MD->isOutOfLine())
5923    return false;
5924
5925  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5926
5927  // If there is no key function, we will need a copy of the vtable.
5928  if (!KeyFunction)
5929    return true;
5930
5931  // If this is the key function, we need to mark virtual members.
5932  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5933    return true;
5934
5935  return false;
5936}
5937
5938void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5939                                             CXXMethodDecl *MD) {
5940  CXXRecordDecl *RD = MD->getParent();
5941
5942  // We will need to mark all of the virtual members as referenced to build the
5943  // vtable.
5944  if (!needsVtable(MD, Context))
5945    return;
5946
5947  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5948  if (kind == TSK_ImplicitInstantiation)
5949    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5950  else
5951    MarkVirtualMembersReferenced(Loc, RD);
5952}
5953
5954bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5955  if (ClassesWithUnmarkedVirtualMembers.empty())
5956    return false;
5957
5958  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5959    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5960    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5961    ClassesWithUnmarkedVirtualMembers.pop_back();
5962    MarkVirtualMembersReferenced(Loc, RD);
5963  }
5964
5965  return true;
5966}
5967
5968void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5969                                        const CXXRecordDecl *RD) {
5970  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5971       e = RD->method_end(); i != e; ++i) {
5972    CXXMethodDecl *MD = *i;
5973
5974    // C++ [basic.def.odr]p2:
5975    //   [...] A virtual member function is used if it is not pure. [...]
5976    if (MD->isVirtual() && !MD->isPure())
5977      MarkDeclarationReferenced(Loc, MD);
5978  }
5979
5980  // Only classes that have virtual bases need a VTT.
5981  if (RD->getNumVBases() == 0)
5982    return;
5983
5984  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5985           e = RD->bases_end(); i != e; ++i) {
5986    const CXXRecordDecl *Base =
5987        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5988    if (i->isVirtual())
5989      continue;
5990    if (Base->getNumVBases() == 0)
5991      continue;
5992    MarkVirtualMembersReferenced(Loc, Base);
5993  }
5994}
5995