SemaDeclCXX.cpp revision f143ae9b68cdd40dfb120094baaa702b810eb52c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376// MergeCXXFunctionDecl - Merge two declarations of the same C++
377// function, once we already know that they have the same
378// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678/// \brief Get diagnostic %select index for tag kind for
679/// record diagnostic message.
680/// WARNING: Indexes apply to particular diagnostics only!
681///
682/// \returns diagnostic %select index.
683static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
684  switch (Tag) {
685  case TTK_Struct: return 0;
686  case TTK_Interface: return 1;
687  case TTK_Class:  return 2;
688  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
689  }
690}
691
692// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
693// the requirements of a constexpr function definition or a constexpr
694// constructor definition. If so, return true. If not, produce appropriate
695// diagnostics and return false.
696//
697// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
698bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
699  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
700  if (MD && MD->isInstance()) {
701    // C++11 [dcl.constexpr]p4:
702    //  The definition of a constexpr constructor shall satisfy the following
703    //  constraints:
704    //  - the class shall not have any virtual base classes;
705    const CXXRecordDecl *RD = MD->getParent();
706    if (RD->getNumVBases()) {
707      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
708        << isa<CXXConstructorDecl>(NewFD)
709        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
710      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
711             E = RD->vbases_end(); I != E; ++I)
712        Diag(I->getLocStart(),
713             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
714      return false;
715    }
716  }
717
718  if (!isa<CXXConstructorDecl>(NewFD)) {
719    // C++11 [dcl.constexpr]p3:
720    //  The definition of a constexpr function shall satisfy the following
721    //  constraints:
722    // - it shall not be virtual;
723    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
724    if (Method && Method->isVirtual()) {
725      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
726
727      // If it's not obvious why this function is virtual, find an overridden
728      // function which uses the 'virtual' keyword.
729      const CXXMethodDecl *WrittenVirtual = Method;
730      while (!WrittenVirtual->isVirtualAsWritten())
731        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
732      if (WrittenVirtual != Method)
733        Diag(WrittenVirtual->getLocation(),
734             diag::note_overridden_virtual_function);
735      return false;
736    }
737
738    // - its return type shall be a literal type;
739    QualType RT = NewFD->getResultType();
740    if (!RT->isDependentType() &&
741        RequireLiteralType(NewFD->getLocation(), RT,
742                           diag::err_constexpr_non_literal_return))
743      return false;
744  }
745
746  // - each of its parameter types shall be a literal type;
747  if (!CheckConstexprParameterTypes(*this, NewFD))
748    return false;
749
750  return true;
751}
752
753/// Check the given declaration statement is legal within a constexpr function
754/// body. C++0x [dcl.constexpr]p3,p4.
755///
756/// \return true if the body is OK, false if we have diagnosed a problem.
757static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
758                                   DeclStmt *DS) {
759  // C++0x [dcl.constexpr]p3 and p4:
760  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
761  //  contain only
762  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
763         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
764    switch ((*DclIt)->getKind()) {
765    case Decl::StaticAssert:
766    case Decl::Using:
767    case Decl::UsingShadow:
768    case Decl::UsingDirective:
769    case Decl::UnresolvedUsingTypename:
770      //   - static_assert-declarations
771      //   - using-declarations,
772      //   - using-directives,
773      continue;
774
775    case Decl::Typedef:
776    case Decl::TypeAlias: {
777      //   - typedef declarations and alias-declarations that do not define
778      //     classes or enumerations,
779      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
780      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
781        // Don't allow variably-modified types in constexpr functions.
782        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
783        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
784          << TL.getSourceRange() << TL.getType()
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789    }
790
791    case Decl::Enum:
792    case Decl::CXXRecord:
793      // As an extension, we allow the declaration (but not the definition) of
794      // classes and enumerations in all declarations, not just in typedef and
795      // alias declarations.
796      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
797        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
798          << isa<CXXConstructorDecl>(Dcl);
799        return false;
800      }
801      continue;
802
803    case Decl::Var:
804      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
805        << isa<CXXConstructorDecl>(Dcl);
806      return false;
807
808    default:
809      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
810        << isa<CXXConstructorDecl>(Dcl);
811      return false;
812    }
813  }
814
815  return true;
816}
817
818/// Check that the given field is initialized within a constexpr constructor.
819///
820/// \param Dcl The constexpr constructor being checked.
821/// \param Field The field being checked. This may be a member of an anonymous
822///        struct or union nested within the class being checked.
823/// \param Inits All declarations, including anonymous struct/union members and
824///        indirect members, for which any initialization was provided.
825/// \param Diagnosed Set to true if an error is produced.
826static void CheckConstexprCtorInitializer(Sema &SemaRef,
827                                          const FunctionDecl *Dcl,
828                                          FieldDecl *Field,
829                                          llvm::SmallSet<Decl*, 16> &Inits,
830                                          bool &Diagnosed) {
831  if (Field->isUnnamedBitfield())
832    return;
833
834  if (Field->isAnonymousStructOrUnion() &&
835      Field->getType()->getAsCXXRecordDecl()->isEmpty())
836    return;
837
838  if (!Inits.count(Field)) {
839    if (!Diagnosed) {
840      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
841      Diagnosed = true;
842    }
843    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
844  } else if (Field->isAnonymousStructOrUnion()) {
845    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
846    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
847         I != E; ++I)
848      // If an anonymous union contains an anonymous struct of which any member
849      // is initialized, all members must be initialized.
850      if (!RD->isUnion() || Inits.count(*I))
851        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
852  }
853}
854
855/// Check the body for the given constexpr function declaration only contains
856/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
857///
858/// \return true if the body is OK, false if we have diagnosed a problem.
859bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
860  if (isa<CXXTryStmt>(Body)) {
861    // C++11 [dcl.constexpr]p3:
862    //  The definition of a constexpr function shall satisfy the following
863    //  constraints: [...]
864    // - its function-body shall be = delete, = default, or a
865    //   compound-statement
866    //
867    // C++11 [dcl.constexpr]p4:
868    //  In the definition of a constexpr constructor, [...]
869    // - its function-body shall not be a function-try-block;
870    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
871      << isa<CXXConstructorDecl>(Dcl);
872    return false;
873  }
874
875  // - its function-body shall be [...] a compound-statement that contains only
876  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
877
878  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
879  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
880         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
881    switch ((*BodyIt)->getStmtClass()) {
882    case Stmt::NullStmtClass:
883      //   - null statements,
884      continue;
885
886    case Stmt::DeclStmtClass:
887      //   - static_assert-declarations
888      //   - using-declarations,
889      //   - using-directives,
890      //   - typedef declarations and alias-declarations that do not define
891      //     classes or enumerations,
892      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
893        return false;
894      continue;
895
896    case Stmt::ReturnStmtClass:
897      //   - and exactly one return statement;
898      if (isa<CXXConstructorDecl>(Dcl))
899        break;
900
901      ReturnStmts.push_back((*BodyIt)->getLocStart());
902      continue;
903
904    default:
905      break;
906    }
907
908    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
909      << isa<CXXConstructorDecl>(Dcl);
910    return false;
911  }
912
913  if (const CXXConstructorDecl *Constructor
914        = dyn_cast<CXXConstructorDecl>(Dcl)) {
915    const CXXRecordDecl *RD = Constructor->getParent();
916    // DR1359:
917    // - every non-variant non-static data member and base class sub-object
918    //   shall be initialized;
919    // - if the class is a non-empty union, or for each non-empty anonymous
920    //   union member of a non-union class, exactly one non-static data member
921    //   shall be initialized;
922    if (RD->isUnion()) {
923      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
924        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
925        return false;
926      }
927    } else if (!Constructor->isDependentContext() &&
928               !Constructor->isDelegatingConstructor()) {
929      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
930
931      // Skip detailed checking if we have enough initializers, and we would
932      // allow at most one initializer per member.
933      bool AnyAnonStructUnionMembers = false;
934      unsigned Fields = 0;
935      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
936           E = RD->field_end(); I != E; ++I, ++Fields) {
937        if (I->isAnonymousStructOrUnion()) {
938          AnyAnonStructUnionMembers = true;
939          break;
940        }
941      }
942      if (AnyAnonStructUnionMembers ||
943          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
944        // Check initialization of non-static data members. Base classes are
945        // always initialized so do not need to be checked. Dependent bases
946        // might not have initializers in the member initializer list.
947        llvm::SmallSet<Decl*, 16> Inits;
948        for (CXXConstructorDecl::init_const_iterator
949               I = Constructor->init_begin(), E = Constructor->init_end();
950             I != E; ++I) {
951          if (FieldDecl *FD = (*I)->getMember())
952            Inits.insert(FD);
953          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
954            Inits.insert(ID->chain_begin(), ID->chain_end());
955        }
956
957        bool Diagnosed = false;
958        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
959             E = RD->field_end(); I != E; ++I)
960          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
961        if (Diagnosed)
962          return false;
963      }
964    }
965  } else {
966    if (ReturnStmts.empty()) {
967      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
968      return false;
969    }
970    if (ReturnStmts.size() > 1) {
971      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
972      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
973        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
974      return false;
975    }
976  }
977
978  // C++11 [dcl.constexpr]p5:
979  //   if no function argument values exist such that the function invocation
980  //   substitution would produce a constant expression, the program is
981  //   ill-formed; no diagnostic required.
982  // C++11 [dcl.constexpr]p3:
983  //   - every constructor call and implicit conversion used in initializing the
984  //     return value shall be one of those allowed in a constant expression.
985  // C++11 [dcl.constexpr]p4:
986  //   - every constructor involved in initializing non-static data members and
987  //     base class sub-objects shall be a constexpr constructor.
988  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
989  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
990    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
991      << isa<CXXConstructorDecl>(Dcl);
992    for (size_t I = 0, N = Diags.size(); I != N; ++I)
993      Diag(Diags[I].first, Diags[I].second);
994    return false;
995  }
996
997  return true;
998}
999
1000/// isCurrentClassName - Determine whether the identifier II is the
1001/// name of the class type currently being defined. In the case of
1002/// nested classes, this will only return true if II is the name of
1003/// the innermost class.
1004bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1005                              const CXXScopeSpec *SS) {
1006  assert(getLangOpts().CPlusPlus && "No class names in C!");
1007
1008  CXXRecordDecl *CurDecl;
1009  if (SS && SS->isSet() && !SS->isInvalid()) {
1010    DeclContext *DC = computeDeclContext(*SS, true);
1011    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1012  } else
1013    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1014
1015  if (CurDecl && CurDecl->getIdentifier())
1016    return &II == CurDecl->getIdentifier();
1017  else
1018    return false;
1019}
1020
1021/// \brief Check the validity of a C++ base class specifier.
1022///
1023/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1024/// and returns NULL otherwise.
1025CXXBaseSpecifier *
1026Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1027                         SourceRange SpecifierRange,
1028                         bool Virtual, AccessSpecifier Access,
1029                         TypeSourceInfo *TInfo,
1030                         SourceLocation EllipsisLoc) {
1031  QualType BaseType = TInfo->getType();
1032
1033  // C++ [class.union]p1:
1034  //   A union shall not have base classes.
1035  if (Class->isUnion()) {
1036    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1037      << SpecifierRange;
1038    return 0;
1039  }
1040
1041  if (EllipsisLoc.isValid() &&
1042      !TInfo->getType()->containsUnexpandedParameterPack()) {
1043    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1044      << TInfo->getTypeLoc().getSourceRange();
1045    EllipsisLoc = SourceLocation();
1046  }
1047
1048  if (BaseType->isDependentType())
1049    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1050                                          Class->getTagKind() == TTK_Class,
1051                                          Access, TInfo, EllipsisLoc);
1052
1053  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1054
1055  // Base specifiers must be record types.
1056  if (!BaseType->isRecordType()) {
1057    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1058    return 0;
1059  }
1060
1061  // C++ [class.union]p1:
1062  //   A union shall not be used as a base class.
1063  if (BaseType->isUnionType()) {
1064    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1065    return 0;
1066  }
1067
1068  // C++ [class.derived]p2:
1069  //   The class-name in a base-specifier shall not be an incompletely
1070  //   defined class.
1071  if (RequireCompleteType(BaseLoc, BaseType,
1072                          diag::err_incomplete_base_class, SpecifierRange)) {
1073    Class->setInvalidDecl();
1074    return 0;
1075  }
1076
1077  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1078  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1079  assert(BaseDecl && "Record type has no declaration");
1080  BaseDecl = BaseDecl->getDefinition();
1081  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1082  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1083  assert(CXXBaseDecl && "Base type is not a C++ type");
1084
1085  // C++ [class]p3:
1086  //   If a class is marked final and it appears as a base-type-specifier in
1087  //   base-clause, the program is ill-formed.
1088  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1089    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1090      << CXXBaseDecl->getDeclName();
1091    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1092      << CXXBaseDecl->getDeclName();
1093    return 0;
1094  }
1095
1096  if (BaseDecl->isInvalidDecl())
1097    Class->setInvalidDecl();
1098
1099  // Create the base specifier.
1100  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1101                                        Class->getTagKind() == TTK_Class,
1102                                        Access, TInfo, EllipsisLoc);
1103}
1104
1105/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1106/// one entry in the base class list of a class specifier, for
1107/// example:
1108///    class foo : public bar, virtual private baz {
1109/// 'public bar' and 'virtual private baz' are each base-specifiers.
1110BaseResult
1111Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1112                         bool Virtual, AccessSpecifier Access,
1113                         ParsedType basetype, SourceLocation BaseLoc,
1114                         SourceLocation EllipsisLoc) {
1115  if (!classdecl)
1116    return true;
1117
1118  AdjustDeclIfTemplate(classdecl);
1119  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1120  if (!Class)
1121    return true;
1122
1123  TypeSourceInfo *TInfo = 0;
1124  GetTypeFromParser(basetype, &TInfo);
1125
1126  if (EllipsisLoc.isInvalid() &&
1127      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1128                                      UPPC_BaseType))
1129    return true;
1130
1131  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1132                                                      Virtual, Access, TInfo,
1133                                                      EllipsisLoc))
1134    return BaseSpec;
1135  else
1136    Class->setInvalidDecl();
1137
1138  return true;
1139}
1140
1141/// \brief Performs the actual work of attaching the given base class
1142/// specifiers to a C++ class.
1143bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1144                                unsigned NumBases) {
1145 if (NumBases == 0)
1146    return false;
1147
1148  // Used to keep track of which base types we have already seen, so
1149  // that we can properly diagnose redundant direct base types. Note
1150  // that the key is always the unqualified canonical type of the base
1151  // class.
1152  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1153
1154  // Copy non-redundant base specifiers into permanent storage.
1155  unsigned NumGoodBases = 0;
1156  bool Invalid = false;
1157  for (unsigned idx = 0; idx < NumBases; ++idx) {
1158    QualType NewBaseType
1159      = Context.getCanonicalType(Bases[idx]->getType());
1160    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1161
1162    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1163    if (KnownBase) {
1164      // C++ [class.mi]p3:
1165      //   A class shall not be specified as a direct base class of a
1166      //   derived class more than once.
1167      Diag(Bases[idx]->getLocStart(),
1168           diag::err_duplicate_base_class)
1169        << KnownBase->getType()
1170        << Bases[idx]->getSourceRange();
1171
1172      // Delete the duplicate base class specifier; we're going to
1173      // overwrite its pointer later.
1174      Context.Deallocate(Bases[idx]);
1175
1176      Invalid = true;
1177    } else {
1178      // Okay, add this new base class.
1179      KnownBase = Bases[idx];
1180      Bases[NumGoodBases++] = Bases[idx];
1181      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1182        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1183          if (RD->hasAttr<WeakAttr>())
1184            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1185    }
1186  }
1187
1188  // Attach the remaining base class specifiers to the derived class.
1189  Class->setBases(Bases, NumGoodBases);
1190
1191  // Delete the remaining (good) base class specifiers, since their
1192  // data has been copied into the CXXRecordDecl.
1193  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1194    Context.Deallocate(Bases[idx]);
1195
1196  return Invalid;
1197}
1198
1199/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1200/// class, after checking whether there are any duplicate base
1201/// classes.
1202void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1203                               unsigned NumBases) {
1204  if (!ClassDecl || !Bases || !NumBases)
1205    return;
1206
1207  AdjustDeclIfTemplate(ClassDecl);
1208  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1209                       (CXXBaseSpecifier**)(Bases), NumBases);
1210}
1211
1212static CXXRecordDecl *GetClassForType(QualType T) {
1213  if (const RecordType *RT = T->getAs<RecordType>())
1214    return cast<CXXRecordDecl>(RT->getDecl());
1215  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1216    return ICT->getDecl();
1217  else
1218    return 0;
1219}
1220
1221/// \brief Determine whether the type \p Derived is a C++ class that is
1222/// derived from the type \p Base.
1223bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1224  if (!getLangOpts().CPlusPlus)
1225    return false;
1226
1227  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1228  if (!DerivedRD)
1229    return false;
1230
1231  CXXRecordDecl *BaseRD = GetClassForType(Base);
1232  if (!BaseRD)
1233    return false;
1234
1235  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1236  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1237}
1238
1239/// \brief Determine whether the type \p Derived is a C++ class that is
1240/// derived from the type \p Base.
1241bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1242  if (!getLangOpts().CPlusPlus)
1243    return false;
1244
1245  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1246  if (!DerivedRD)
1247    return false;
1248
1249  CXXRecordDecl *BaseRD = GetClassForType(Base);
1250  if (!BaseRD)
1251    return false;
1252
1253  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1254}
1255
1256void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1257                              CXXCastPath &BasePathArray) {
1258  assert(BasePathArray.empty() && "Base path array must be empty!");
1259  assert(Paths.isRecordingPaths() && "Must record paths!");
1260
1261  const CXXBasePath &Path = Paths.front();
1262
1263  // We first go backward and check if we have a virtual base.
1264  // FIXME: It would be better if CXXBasePath had the base specifier for
1265  // the nearest virtual base.
1266  unsigned Start = 0;
1267  for (unsigned I = Path.size(); I != 0; --I) {
1268    if (Path[I - 1].Base->isVirtual()) {
1269      Start = I - 1;
1270      break;
1271    }
1272  }
1273
1274  // Now add all bases.
1275  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1276    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1277}
1278
1279/// \brief Determine whether the given base path includes a virtual
1280/// base class.
1281bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1282  for (CXXCastPath::const_iterator B = BasePath.begin(),
1283                                BEnd = BasePath.end();
1284       B != BEnd; ++B)
1285    if ((*B)->isVirtual())
1286      return true;
1287
1288  return false;
1289}
1290
1291/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1292/// conversion (where Derived and Base are class types) is
1293/// well-formed, meaning that the conversion is unambiguous (and
1294/// that all of the base classes are accessible). Returns true
1295/// and emits a diagnostic if the code is ill-formed, returns false
1296/// otherwise. Loc is the location where this routine should point to
1297/// if there is an error, and Range is the source range to highlight
1298/// if there is an error.
1299bool
1300Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1301                                   unsigned InaccessibleBaseID,
1302                                   unsigned AmbigiousBaseConvID,
1303                                   SourceLocation Loc, SourceRange Range,
1304                                   DeclarationName Name,
1305                                   CXXCastPath *BasePath) {
1306  // First, determine whether the path from Derived to Base is
1307  // ambiguous. This is slightly more expensive than checking whether
1308  // the Derived to Base conversion exists, because here we need to
1309  // explore multiple paths to determine if there is an ambiguity.
1310  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1311                     /*DetectVirtual=*/false);
1312  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1313  assert(DerivationOkay &&
1314         "Can only be used with a derived-to-base conversion");
1315  (void)DerivationOkay;
1316
1317  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1318    if (InaccessibleBaseID) {
1319      // Check that the base class can be accessed.
1320      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1321                                   InaccessibleBaseID)) {
1322        case AR_inaccessible:
1323          return true;
1324        case AR_accessible:
1325        case AR_dependent:
1326        case AR_delayed:
1327          break;
1328      }
1329    }
1330
1331    // Build a base path if necessary.
1332    if (BasePath)
1333      BuildBasePathArray(Paths, *BasePath);
1334    return false;
1335  }
1336
1337  // We know that the derived-to-base conversion is ambiguous, and
1338  // we're going to produce a diagnostic. Perform the derived-to-base
1339  // search just one more time to compute all of the possible paths so
1340  // that we can print them out. This is more expensive than any of
1341  // the previous derived-to-base checks we've done, but at this point
1342  // performance isn't as much of an issue.
1343  Paths.clear();
1344  Paths.setRecordingPaths(true);
1345  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1346  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1347  (void)StillOkay;
1348
1349  // Build up a textual representation of the ambiguous paths, e.g.,
1350  // D -> B -> A, that will be used to illustrate the ambiguous
1351  // conversions in the diagnostic. We only print one of the paths
1352  // to each base class subobject.
1353  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1354
1355  Diag(Loc, AmbigiousBaseConvID)
1356  << Derived << Base << PathDisplayStr << Range << Name;
1357  return true;
1358}
1359
1360bool
1361Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1362                                   SourceLocation Loc, SourceRange Range,
1363                                   CXXCastPath *BasePath,
1364                                   bool IgnoreAccess) {
1365  return CheckDerivedToBaseConversion(Derived, Base,
1366                                      IgnoreAccess ? 0
1367                                       : diag::err_upcast_to_inaccessible_base,
1368                                      diag::err_ambiguous_derived_to_base_conv,
1369                                      Loc, Range, DeclarationName(),
1370                                      BasePath);
1371}
1372
1373
1374/// @brief Builds a string representing ambiguous paths from a
1375/// specific derived class to different subobjects of the same base
1376/// class.
1377///
1378/// This function builds a string that can be used in error messages
1379/// to show the different paths that one can take through the
1380/// inheritance hierarchy to go from the derived class to different
1381/// subobjects of a base class. The result looks something like this:
1382/// @code
1383/// struct D -> struct B -> struct A
1384/// struct D -> struct C -> struct A
1385/// @endcode
1386std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1387  std::string PathDisplayStr;
1388  std::set<unsigned> DisplayedPaths;
1389  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1390       Path != Paths.end(); ++Path) {
1391    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1392      // We haven't displayed a path to this particular base
1393      // class subobject yet.
1394      PathDisplayStr += "\n    ";
1395      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1396      for (CXXBasePath::const_iterator Element = Path->begin();
1397           Element != Path->end(); ++Element)
1398        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1399    }
1400  }
1401
1402  return PathDisplayStr;
1403}
1404
1405//===----------------------------------------------------------------------===//
1406// C++ class member Handling
1407//===----------------------------------------------------------------------===//
1408
1409/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1410bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1411                                SourceLocation ASLoc,
1412                                SourceLocation ColonLoc,
1413                                AttributeList *Attrs) {
1414  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1415  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1416                                                  ASLoc, ColonLoc);
1417  CurContext->addHiddenDecl(ASDecl);
1418  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1419}
1420
1421/// CheckOverrideControl - Check C++11 override control semantics.
1422void Sema::CheckOverrideControl(Decl *D) {
1423  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1424
1425  // Do we know which functions this declaration might be overriding?
1426  bool OverridesAreKnown = !MD ||
1427      (!MD->getParent()->hasAnyDependentBases() &&
1428       !MD->getType()->isDependentType());
1429
1430  if (!MD || !MD->isVirtual()) {
1431    if (OverridesAreKnown) {
1432      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1433        Diag(OA->getLocation(),
1434             diag::override_keyword_only_allowed_on_virtual_member_functions)
1435          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1436        D->dropAttr<OverrideAttr>();
1437      }
1438      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1439        Diag(FA->getLocation(),
1440             diag::override_keyword_only_allowed_on_virtual_member_functions)
1441          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1442        D->dropAttr<FinalAttr>();
1443      }
1444    }
1445    return;
1446  }
1447
1448  if (!OverridesAreKnown)
1449    return;
1450
1451  // C++11 [class.virtual]p5:
1452  //   If a virtual function is marked with the virt-specifier override and
1453  //   does not override a member function of a base class, the program is
1454  //   ill-formed.
1455  bool HasOverriddenMethods =
1456    MD->begin_overridden_methods() != MD->end_overridden_methods();
1457  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1458    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1459      << MD->getDeclName();
1460}
1461
1462/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1463/// function overrides a virtual member function marked 'final', according to
1464/// C++11 [class.virtual]p4.
1465bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1466                                                  const CXXMethodDecl *Old) {
1467  if (!Old->hasAttr<FinalAttr>())
1468    return false;
1469
1470  Diag(New->getLocation(), diag::err_final_function_overridden)
1471    << New->getDeclName();
1472  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1473  return true;
1474}
1475
1476static bool InitializationHasSideEffects(const FieldDecl &FD) {
1477  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1478  // FIXME: Destruction of ObjC lifetime types has side-effects.
1479  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1480    return !RD->isCompleteDefinition() ||
1481           !RD->hasTrivialDefaultConstructor() ||
1482           !RD->hasTrivialDestructor();
1483  return false;
1484}
1485
1486/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1487/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1488/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1489/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1490/// present (but parsing it has been deferred).
1491Decl *
1492Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1493                               MultiTemplateParamsArg TemplateParameterLists,
1494                               Expr *BW, const VirtSpecifiers &VS,
1495                               InClassInitStyle InitStyle) {
1496  const DeclSpec &DS = D.getDeclSpec();
1497  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1498  DeclarationName Name = NameInfo.getName();
1499  SourceLocation Loc = NameInfo.getLoc();
1500
1501  // For anonymous bitfields, the location should point to the type.
1502  if (Loc.isInvalid())
1503    Loc = D.getLocStart();
1504
1505  Expr *BitWidth = static_cast<Expr*>(BW);
1506
1507  assert(isa<CXXRecordDecl>(CurContext));
1508  assert(!DS.isFriendSpecified());
1509
1510  bool isFunc = D.isDeclarationOfFunction();
1511
1512  // C++ 9.2p6: A member shall not be declared to have automatic storage
1513  // duration (auto, register) or with the extern storage-class-specifier.
1514  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1515  // data members and cannot be applied to names declared const or static,
1516  // and cannot be applied to reference members.
1517  switch (DS.getStorageClassSpec()) {
1518    case DeclSpec::SCS_unspecified:
1519    case DeclSpec::SCS_typedef:
1520    case DeclSpec::SCS_static:
1521      // FALL THROUGH.
1522      break;
1523    case DeclSpec::SCS_mutable:
1524      if (isFunc) {
1525        if (DS.getStorageClassSpecLoc().isValid())
1526          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1527        else
1528          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1529
1530        // FIXME: It would be nicer if the keyword was ignored only for this
1531        // declarator. Otherwise we could get follow-up errors.
1532        D.getMutableDeclSpec().ClearStorageClassSpecs();
1533      }
1534      break;
1535    default:
1536      if (DS.getStorageClassSpecLoc().isValid())
1537        Diag(DS.getStorageClassSpecLoc(),
1538             diag::err_storageclass_invalid_for_member);
1539      else
1540        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1541      D.getMutableDeclSpec().ClearStorageClassSpecs();
1542  }
1543
1544  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1545                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1546                      !isFunc);
1547
1548  Decl *Member;
1549  if (isInstField) {
1550    CXXScopeSpec &SS = D.getCXXScopeSpec();
1551
1552    // Data members must have identifiers for names.
1553    if (!Name.isIdentifier()) {
1554      Diag(Loc, diag::err_bad_variable_name)
1555        << Name;
1556      return 0;
1557    }
1558
1559    IdentifierInfo *II = Name.getAsIdentifierInfo();
1560
1561    // Member field could not be with "template" keyword.
1562    // So TemplateParameterLists should be empty in this case.
1563    if (TemplateParameterLists.size()) {
1564      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1565      if (TemplateParams->size()) {
1566        // There is no such thing as a member field template.
1567        Diag(D.getIdentifierLoc(), diag::err_template_member)
1568            << II
1569            << SourceRange(TemplateParams->getTemplateLoc(),
1570                TemplateParams->getRAngleLoc());
1571      } else {
1572        // There is an extraneous 'template<>' for this member.
1573        Diag(TemplateParams->getTemplateLoc(),
1574            diag::err_template_member_noparams)
1575            << II
1576            << SourceRange(TemplateParams->getTemplateLoc(),
1577                TemplateParams->getRAngleLoc());
1578      }
1579      return 0;
1580    }
1581
1582    if (SS.isSet() && !SS.isInvalid()) {
1583      // The user provided a superfluous scope specifier inside a class
1584      // definition:
1585      //
1586      // class X {
1587      //   int X::member;
1588      // };
1589      if (DeclContext *DC = computeDeclContext(SS, false))
1590        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1591      else
1592        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1593          << Name << SS.getRange();
1594
1595      SS.clear();
1596    }
1597
1598    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1599                         InitStyle, AS);
1600    assert(Member && "HandleField never returns null");
1601  } else {
1602    assert(InitStyle == ICIS_NoInit);
1603
1604    Member = HandleDeclarator(S, D, TemplateParameterLists);
1605    if (!Member) {
1606      return 0;
1607    }
1608
1609    // Non-instance-fields can't have a bitfield.
1610    if (BitWidth) {
1611      if (Member->isInvalidDecl()) {
1612        // don't emit another diagnostic.
1613      } else if (isa<VarDecl>(Member)) {
1614        // C++ 9.6p3: A bit-field shall not be a static member.
1615        // "static member 'A' cannot be a bit-field"
1616        Diag(Loc, diag::err_static_not_bitfield)
1617          << Name << BitWidth->getSourceRange();
1618      } else if (isa<TypedefDecl>(Member)) {
1619        // "typedef member 'x' cannot be a bit-field"
1620        Diag(Loc, diag::err_typedef_not_bitfield)
1621          << Name << BitWidth->getSourceRange();
1622      } else {
1623        // A function typedef ("typedef int f(); f a;").
1624        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1625        Diag(Loc, diag::err_not_integral_type_bitfield)
1626          << Name << cast<ValueDecl>(Member)->getType()
1627          << BitWidth->getSourceRange();
1628      }
1629
1630      BitWidth = 0;
1631      Member->setInvalidDecl();
1632    }
1633
1634    Member->setAccess(AS);
1635
1636    // If we have declared a member function template, set the access of the
1637    // templated declaration as well.
1638    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1639      FunTmpl->getTemplatedDecl()->setAccess(AS);
1640  }
1641
1642  if (VS.isOverrideSpecified())
1643    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1644  if (VS.isFinalSpecified())
1645    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1646
1647  if (VS.getLastLocation().isValid()) {
1648    // Update the end location of a method that has a virt-specifiers.
1649    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1650      MD->setRangeEnd(VS.getLastLocation());
1651  }
1652
1653  CheckOverrideControl(Member);
1654
1655  assert((Name || isInstField) && "No identifier for non-field ?");
1656
1657  if (isInstField) {
1658    FieldDecl *FD = cast<FieldDecl>(Member);
1659    FieldCollector->Add(FD);
1660
1661    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1662                                 FD->getLocation())
1663          != DiagnosticsEngine::Ignored) {
1664      // Remember all explicit private FieldDecls that have a name, no side
1665      // effects and are not part of a dependent type declaration.
1666      if (!FD->isImplicit() && FD->getDeclName() &&
1667          FD->getAccess() == AS_private &&
1668          !FD->hasAttr<UnusedAttr>() &&
1669          !FD->getParent()->isDependentContext() &&
1670          !InitializationHasSideEffects(*FD))
1671        UnusedPrivateFields.insert(FD);
1672    }
1673  }
1674
1675  return Member;
1676}
1677
1678/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1679/// in-class initializer for a non-static C++ class member, and after
1680/// instantiating an in-class initializer in a class template. Such actions
1681/// are deferred until the class is complete.
1682void
1683Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1684                                       Expr *InitExpr) {
1685  FieldDecl *FD = cast<FieldDecl>(D);
1686  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1687         "must set init style when field is created");
1688
1689  if (!InitExpr) {
1690    FD->setInvalidDecl();
1691    FD->removeInClassInitializer();
1692    return;
1693  }
1694
1695  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1696    FD->setInvalidDecl();
1697    FD->removeInClassInitializer();
1698    return;
1699  }
1700
1701  ExprResult Init = InitExpr;
1702  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1703    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1704      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1705        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1706    }
1707    Expr **Inits = &InitExpr;
1708    unsigned NumInits = 1;
1709    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1710    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1711        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1712        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1713    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1714    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1715    if (Init.isInvalid()) {
1716      FD->setInvalidDecl();
1717      return;
1718    }
1719
1720    CheckImplicitConversions(Init.get(), InitLoc);
1721  }
1722
1723  // C++0x [class.base.init]p7:
1724  //   The initialization of each base and member constitutes a
1725  //   full-expression.
1726  Init = MaybeCreateExprWithCleanups(Init);
1727  if (Init.isInvalid()) {
1728    FD->setInvalidDecl();
1729    return;
1730  }
1731
1732  InitExpr = Init.release();
1733
1734  FD->setInClassInitializer(InitExpr);
1735}
1736
1737/// \brief Find the direct and/or virtual base specifiers that
1738/// correspond to the given base type, for use in base initialization
1739/// within a constructor.
1740static bool FindBaseInitializer(Sema &SemaRef,
1741                                CXXRecordDecl *ClassDecl,
1742                                QualType BaseType,
1743                                const CXXBaseSpecifier *&DirectBaseSpec,
1744                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1745  // First, check for a direct base class.
1746  DirectBaseSpec = 0;
1747  for (CXXRecordDecl::base_class_const_iterator Base
1748         = ClassDecl->bases_begin();
1749       Base != ClassDecl->bases_end(); ++Base) {
1750    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1751      // We found a direct base of this type. That's what we're
1752      // initializing.
1753      DirectBaseSpec = &*Base;
1754      break;
1755    }
1756  }
1757
1758  // Check for a virtual base class.
1759  // FIXME: We might be able to short-circuit this if we know in advance that
1760  // there are no virtual bases.
1761  VirtualBaseSpec = 0;
1762  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1763    // We haven't found a base yet; search the class hierarchy for a
1764    // virtual base class.
1765    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1766                       /*DetectVirtual=*/false);
1767    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1768                              BaseType, Paths)) {
1769      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1770           Path != Paths.end(); ++Path) {
1771        if (Path->back().Base->isVirtual()) {
1772          VirtualBaseSpec = Path->back().Base;
1773          break;
1774        }
1775      }
1776    }
1777  }
1778
1779  return DirectBaseSpec || VirtualBaseSpec;
1780}
1781
1782/// \brief Handle a C++ member initializer using braced-init-list syntax.
1783MemInitResult
1784Sema::ActOnMemInitializer(Decl *ConstructorD,
1785                          Scope *S,
1786                          CXXScopeSpec &SS,
1787                          IdentifierInfo *MemberOrBase,
1788                          ParsedType TemplateTypeTy,
1789                          const DeclSpec &DS,
1790                          SourceLocation IdLoc,
1791                          Expr *InitList,
1792                          SourceLocation EllipsisLoc) {
1793  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1794                             DS, IdLoc, InitList,
1795                             EllipsisLoc);
1796}
1797
1798/// \brief Handle a C++ member initializer using parentheses syntax.
1799MemInitResult
1800Sema::ActOnMemInitializer(Decl *ConstructorD,
1801                          Scope *S,
1802                          CXXScopeSpec &SS,
1803                          IdentifierInfo *MemberOrBase,
1804                          ParsedType TemplateTypeTy,
1805                          const DeclSpec &DS,
1806                          SourceLocation IdLoc,
1807                          SourceLocation LParenLoc,
1808                          Expr **Args, unsigned NumArgs,
1809                          SourceLocation RParenLoc,
1810                          SourceLocation EllipsisLoc) {
1811  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
1812                                           llvm::makeArrayRef(Args, NumArgs),
1813                                           RParenLoc);
1814  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1815                             DS, IdLoc, List, EllipsisLoc);
1816}
1817
1818namespace {
1819
1820// Callback to only accept typo corrections that can be a valid C++ member
1821// intializer: either a non-static field member or a base class.
1822class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1823 public:
1824  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1825      : ClassDecl(ClassDecl) {}
1826
1827  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1828    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1829      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1830        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1831      else
1832        return isa<TypeDecl>(ND);
1833    }
1834    return false;
1835  }
1836
1837 private:
1838  CXXRecordDecl *ClassDecl;
1839};
1840
1841}
1842
1843/// \brief Handle a C++ member initializer.
1844MemInitResult
1845Sema::BuildMemInitializer(Decl *ConstructorD,
1846                          Scope *S,
1847                          CXXScopeSpec &SS,
1848                          IdentifierInfo *MemberOrBase,
1849                          ParsedType TemplateTypeTy,
1850                          const DeclSpec &DS,
1851                          SourceLocation IdLoc,
1852                          Expr *Init,
1853                          SourceLocation EllipsisLoc) {
1854  if (!ConstructorD)
1855    return true;
1856
1857  AdjustDeclIfTemplate(ConstructorD);
1858
1859  CXXConstructorDecl *Constructor
1860    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1861  if (!Constructor) {
1862    // The user wrote a constructor initializer on a function that is
1863    // not a C++ constructor. Ignore the error for now, because we may
1864    // have more member initializers coming; we'll diagnose it just
1865    // once in ActOnMemInitializers.
1866    return true;
1867  }
1868
1869  CXXRecordDecl *ClassDecl = Constructor->getParent();
1870
1871  // C++ [class.base.init]p2:
1872  //   Names in a mem-initializer-id are looked up in the scope of the
1873  //   constructor's class and, if not found in that scope, are looked
1874  //   up in the scope containing the constructor's definition.
1875  //   [Note: if the constructor's class contains a member with the
1876  //   same name as a direct or virtual base class of the class, a
1877  //   mem-initializer-id naming the member or base class and composed
1878  //   of a single identifier refers to the class member. A
1879  //   mem-initializer-id for the hidden base class may be specified
1880  //   using a qualified name. ]
1881  if (!SS.getScopeRep() && !TemplateTypeTy) {
1882    // Look for a member, first.
1883    DeclContext::lookup_result Result
1884      = ClassDecl->lookup(MemberOrBase);
1885    if (Result.first != Result.second) {
1886      ValueDecl *Member;
1887      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1888          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1889        if (EllipsisLoc.isValid())
1890          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1891            << MemberOrBase
1892            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1893
1894        return BuildMemberInitializer(Member, Init, IdLoc);
1895      }
1896    }
1897  }
1898  // It didn't name a member, so see if it names a class.
1899  QualType BaseType;
1900  TypeSourceInfo *TInfo = 0;
1901
1902  if (TemplateTypeTy) {
1903    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1904  } else if (DS.getTypeSpecType() == TST_decltype) {
1905    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1906  } else {
1907    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1908    LookupParsedName(R, S, &SS);
1909
1910    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1911    if (!TyD) {
1912      if (R.isAmbiguous()) return true;
1913
1914      // We don't want access-control diagnostics here.
1915      R.suppressDiagnostics();
1916
1917      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1918        bool NotUnknownSpecialization = false;
1919        DeclContext *DC = computeDeclContext(SS, false);
1920        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1921          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1922
1923        if (!NotUnknownSpecialization) {
1924          // When the scope specifier can refer to a member of an unknown
1925          // specialization, we take it as a type name.
1926          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1927                                       SS.getWithLocInContext(Context),
1928                                       *MemberOrBase, IdLoc);
1929          if (BaseType.isNull())
1930            return true;
1931
1932          R.clear();
1933          R.setLookupName(MemberOrBase);
1934        }
1935      }
1936
1937      // If no results were found, try to correct typos.
1938      TypoCorrection Corr;
1939      MemInitializerValidatorCCC Validator(ClassDecl);
1940      if (R.empty() && BaseType.isNull() &&
1941          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1942                              Validator, ClassDecl))) {
1943        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1944        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1945        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1946          // We have found a non-static data member with a similar
1947          // name to what was typed; complain and initialize that
1948          // member.
1949          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1950            << MemberOrBase << true << CorrectedQuotedStr
1951            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1952          Diag(Member->getLocation(), diag::note_previous_decl)
1953            << CorrectedQuotedStr;
1954
1955          return BuildMemberInitializer(Member, Init, IdLoc);
1956        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1957          const CXXBaseSpecifier *DirectBaseSpec;
1958          const CXXBaseSpecifier *VirtualBaseSpec;
1959          if (FindBaseInitializer(*this, ClassDecl,
1960                                  Context.getTypeDeclType(Type),
1961                                  DirectBaseSpec, VirtualBaseSpec)) {
1962            // We have found a direct or virtual base class with a
1963            // similar name to what was typed; complain and initialize
1964            // that base class.
1965            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1966              << MemberOrBase << false << CorrectedQuotedStr
1967              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1968
1969            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1970                                                             : VirtualBaseSpec;
1971            Diag(BaseSpec->getLocStart(),
1972                 diag::note_base_class_specified_here)
1973              << BaseSpec->getType()
1974              << BaseSpec->getSourceRange();
1975
1976            TyD = Type;
1977          }
1978        }
1979      }
1980
1981      if (!TyD && BaseType.isNull()) {
1982        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1983          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1984        return true;
1985      }
1986    }
1987
1988    if (BaseType.isNull()) {
1989      BaseType = Context.getTypeDeclType(TyD);
1990      if (SS.isSet()) {
1991        NestedNameSpecifier *Qualifier =
1992          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1993
1994        // FIXME: preserve source range information
1995        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1996      }
1997    }
1998  }
1999
2000  if (!TInfo)
2001    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2002
2003  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2004}
2005
2006/// Checks a member initializer expression for cases where reference (or
2007/// pointer) members are bound to by-value parameters (or their addresses).
2008static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2009                                               Expr *Init,
2010                                               SourceLocation IdLoc) {
2011  QualType MemberTy = Member->getType();
2012
2013  // We only handle pointers and references currently.
2014  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2015  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2016    return;
2017
2018  const bool IsPointer = MemberTy->isPointerType();
2019  if (IsPointer) {
2020    if (const UnaryOperator *Op
2021          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2022      // The only case we're worried about with pointers requires taking the
2023      // address.
2024      if (Op->getOpcode() != UO_AddrOf)
2025        return;
2026
2027      Init = Op->getSubExpr();
2028    } else {
2029      // We only handle address-of expression initializers for pointers.
2030      return;
2031    }
2032  }
2033
2034  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2035    // Taking the address of a temporary will be diagnosed as a hard error.
2036    if (IsPointer)
2037      return;
2038
2039    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2040      << Member << Init->getSourceRange();
2041  } else if (const DeclRefExpr *DRE
2042               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2043    // We only warn when referring to a non-reference parameter declaration.
2044    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2045    if (!Parameter || Parameter->getType()->isReferenceType())
2046      return;
2047
2048    S.Diag(Init->getExprLoc(),
2049           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2050                     : diag::warn_bind_ref_member_to_parameter)
2051      << Member << Parameter << Init->getSourceRange();
2052  } else {
2053    // Other initializers are fine.
2054    return;
2055  }
2056
2057  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2058    << (unsigned)IsPointer;
2059}
2060
2061namespace {
2062  class UninitializedFieldVisitor
2063      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2064    Sema &S;
2065    ValueDecl *VD;
2066  public:
2067    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2068    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2069                                                        S(S), VD(VD) {
2070    }
2071
2072    void HandleExpr(Expr *E) {
2073      if (!E) return;
2074
2075      // Expressions like x(x) sometimes lack the surrounding expressions
2076      // but need to be checked anyways.
2077      HandleValue(E);
2078      Visit(E);
2079    }
2080
2081    void HandleValue(Expr *E) {
2082      E = E->IgnoreParens();
2083
2084      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2085        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2086            return;
2087        Expr *Base = E;
2088        while (isa<MemberExpr>(Base)) {
2089          ME = dyn_cast<MemberExpr>(Base);
2090          if (VarDecl *VarD = dyn_cast<VarDecl>(ME->getMemberDecl()))
2091            if (VarD->hasGlobalStorage())
2092              return;
2093          Base = ME->getBase();
2094        }
2095
2096        if (VD == ME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2097          unsigned diag = VD->getType()->isReferenceType()
2098              ? diag::warn_reference_field_is_uninit
2099              : diag::warn_field_is_uninit;
2100          S.Diag(ME->getExprLoc(), diag);
2101          return;
2102        }
2103      }
2104
2105      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2106        HandleValue(CO->getTrueExpr());
2107        HandleValue(CO->getFalseExpr());
2108        return;
2109      }
2110
2111      if (BinaryConditionalOperator *BCO =
2112              dyn_cast<BinaryConditionalOperator>(E)) {
2113        HandleValue(BCO->getCommon());
2114        HandleValue(BCO->getFalseExpr());
2115        return;
2116      }
2117
2118      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2119        switch (BO->getOpcode()) {
2120        default:
2121          return;
2122        case(BO_PtrMemD):
2123        case(BO_PtrMemI):
2124          HandleValue(BO->getLHS());
2125          return;
2126        case(BO_Comma):
2127          HandleValue(BO->getRHS());
2128          return;
2129        }
2130      }
2131    }
2132
2133    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2134      if (E->getCastKind() == CK_LValueToRValue)
2135        HandleValue(E->getSubExpr());
2136
2137      Inherited::VisitImplicitCastExpr(E);
2138    }
2139
2140    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2141      Expr *Callee = E->getCallee();
2142      if (isa<MemberExpr>(Callee))
2143        HandleValue(Callee);
2144
2145      Inherited::VisitCXXMemberCallExpr(E);
2146    }
2147  };
2148  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2149                                                       ValueDecl *VD) {
2150    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2151  }
2152} // namespace
2153
2154MemInitResult
2155Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2156                             SourceLocation IdLoc) {
2157  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2158  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2159  assert((DirectMember || IndirectMember) &&
2160         "Member must be a FieldDecl or IndirectFieldDecl");
2161
2162  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2163    return true;
2164
2165  if (Member->isInvalidDecl())
2166    return true;
2167
2168  // Diagnose value-uses of fields to initialize themselves, e.g.
2169  //   foo(foo)
2170  // where foo is not also a parameter to the constructor.
2171  // TODO: implement -Wuninitialized and fold this into that framework.
2172  Expr **Args;
2173  unsigned NumArgs;
2174  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2175    Args = ParenList->getExprs();
2176    NumArgs = ParenList->getNumExprs();
2177  } else {
2178    InitListExpr *InitList = cast<InitListExpr>(Init);
2179    Args = InitList->getInits();
2180    NumArgs = InitList->getNumInits();
2181  }
2182
2183  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2184        != DiagnosticsEngine::Ignored)
2185    for (unsigned i = 0; i < NumArgs; ++i)
2186      // FIXME: Warn about the case when other fields are used before being
2187      // uninitialized. For example, let this field be the i'th field. When
2188      // initializing the i'th field, throw a warning if any of the >= i'th
2189      // fields are used, as they are not yet initialized.
2190      // Right now we are only handling the case where the i'th field uses
2191      // itself in its initializer.
2192      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2193
2194  SourceRange InitRange = Init->getSourceRange();
2195
2196  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2197    // Can't check initialization for a member of dependent type or when
2198    // any of the arguments are type-dependent expressions.
2199    DiscardCleanupsInEvaluationContext();
2200  } else {
2201    bool InitList = false;
2202    if (isa<InitListExpr>(Init)) {
2203      InitList = true;
2204      Args = &Init;
2205      NumArgs = 1;
2206
2207      if (isStdInitializerList(Member->getType(), 0)) {
2208        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2209            << /*at end of ctor*/1 << InitRange;
2210      }
2211    }
2212
2213    // Initialize the member.
2214    InitializedEntity MemberEntity =
2215      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2216                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2217    InitializationKind Kind =
2218      InitList ? InitializationKind::CreateDirectList(IdLoc)
2219               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2220                                                  InitRange.getEnd());
2221
2222    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2223    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2224                                            MultiExprArg(Args, NumArgs),
2225                                            0);
2226    if (MemberInit.isInvalid())
2227      return true;
2228
2229    CheckImplicitConversions(MemberInit.get(),
2230                             InitRange.getBegin());
2231
2232    // C++0x [class.base.init]p7:
2233    //   The initialization of each base and member constitutes a
2234    //   full-expression.
2235    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2236    if (MemberInit.isInvalid())
2237      return true;
2238
2239    // If we are in a dependent context, template instantiation will
2240    // perform this type-checking again. Just save the arguments that we
2241    // received.
2242    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2243    // of the information that we have about the member
2244    // initializer. However, deconstructing the ASTs is a dicey process,
2245    // and this approach is far more likely to get the corner cases right.
2246    if (CurContext->isDependentContext()) {
2247      // The existing Init will do fine.
2248    } else {
2249      Init = MemberInit.get();
2250      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2251    }
2252  }
2253
2254  if (DirectMember) {
2255    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2256                                            InitRange.getBegin(), Init,
2257                                            InitRange.getEnd());
2258  } else {
2259    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2260                                            InitRange.getBegin(), Init,
2261                                            InitRange.getEnd());
2262  }
2263}
2264
2265MemInitResult
2266Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2267                                 CXXRecordDecl *ClassDecl) {
2268  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2269  if (!LangOpts.CPlusPlus0x)
2270    return Diag(NameLoc, diag::err_delegating_ctor)
2271      << TInfo->getTypeLoc().getLocalSourceRange();
2272  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2273
2274  bool InitList = true;
2275  Expr **Args = &Init;
2276  unsigned NumArgs = 1;
2277  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2278    InitList = false;
2279    Args = ParenList->getExprs();
2280    NumArgs = ParenList->getNumExprs();
2281  }
2282
2283  SourceRange InitRange = Init->getSourceRange();
2284  // Initialize the object.
2285  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2286                                     QualType(ClassDecl->getTypeForDecl(), 0));
2287  InitializationKind Kind =
2288    InitList ? InitializationKind::CreateDirectList(NameLoc)
2289             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2290                                                InitRange.getEnd());
2291  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2292  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2293                                              MultiExprArg(Args, NumArgs),
2294                                              0);
2295  if (DelegationInit.isInvalid())
2296    return true;
2297
2298  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2299         "Delegating constructor with no target?");
2300
2301  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2302
2303  // C++0x [class.base.init]p7:
2304  //   The initialization of each base and member constitutes a
2305  //   full-expression.
2306  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2307  if (DelegationInit.isInvalid())
2308    return true;
2309
2310  // If we are in a dependent context, template instantiation will
2311  // perform this type-checking again. Just save the arguments that we
2312  // received in a ParenListExpr.
2313  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2314  // of the information that we have about the base
2315  // initializer. However, deconstructing the ASTs is a dicey process,
2316  // and this approach is far more likely to get the corner cases right.
2317  if (CurContext->isDependentContext())
2318    DelegationInit = Owned(Init);
2319
2320  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2321                                          DelegationInit.takeAs<Expr>(),
2322                                          InitRange.getEnd());
2323}
2324
2325MemInitResult
2326Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2327                           Expr *Init, CXXRecordDecl *ClassDecl,
2328                           SourceLocation EllipsisLoc) {
2329  SourceLocation BaseLoc
2330    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2331
2332  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2333    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2334             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2335
2336  // C++ [class.base.init]p2:
2337  //   [...] Unless the mem-initializer-id names a nonstatic data
2338  //   member of the constructor's class or a direct or virtual base
2339  //   of that class, the mem-initializer is ill-formed. A
2340  //   mem-initializer-list can initialize a base class using any
2341  //   name that denotes that base class type.
2342  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2343
2344  SourceRange InitRange = Init->getSourceRange();
2345  if (EllipsisLoc.isValid()) {
2346    // This is a pack expansion.
2347    if (!BaseType->containsUnexpandedParameterPack())  {
2348      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2349        << SourceRange(BaseLoc, InitRange.getEnd());
2350
2351      EllipsisLoc = SourceLocation();
2352    }
2353  } else {
2354    // Check for any unexpanded parameter packs.
2355    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2356      return true;
2357
2358    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2359      return true;
2360  }
2361
2362  // Check for direct and virtual base classes.
2363  const CXXBaseSpecifier *DirectBaseSpec = 0;
2364  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2365  if (!Dependent) {
2366    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2367                                       BaseType))
2368      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2369
2370    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2371                        VirtualBaseSpec);
2372
2373    // C++ [base.class.init]p2:
2374    // Unless the mem-initializer-id names a nonstatic data member of the
2375    // constructor's class or a direct or virtual base of that class, the
2376    // mem-initializer is ill-formed.
2377    if (!DirectBaseSpec && !VirtualBaseSpec) {
2378      // If the class has any dependent bases, then it's possible that
2379      // one of those types will resolve to the same type as
2380      // BaseType. Therefore, just treat this as a dependent base
2381      // class initialization.  FIXME: Should we try to check the
2382      // initialization anyway? It seems odd.
2383      if (ClassDecl->hasAnyDependentBases())
2384        Dependent = true;
2385      else
2386        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2387          << BaseType << Context.getTypeDeclType(ClassDecl)
2388          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2389    }
2390  }
2391
2392  if (Dependent) {
2393    DiscardCleanupsInEvaluationContext();
2394
2395    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2396                                            /*IsVirtual=*/false,
2397                                            InitRange.getBegin(), Init,
2398                                            InitRange.getEnd(), EllipsisLoc);
2399  }
2400
2401  // C++ [base.class.init]p2:
2402  //   If a mem-initializer-id is ambiguous because it designates both
2403  //   a direct non-virtual base class and an inherited virtual base
2404  //   class, the mem-initializer is ill-formed.
2405  if (DirectBaseSpec && VirtualBaseSpec)
2406    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2407      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2408
2409  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2410  if (!BaseSpec)
2411    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2412
2413  // Initialize the base.
2414  bool InitList = true;
2415  Expr **Args = &Init;
2416  unsigned NumArgs = 1;
2417  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2418    InitList = false;
2419    Args = ParenList->getExprs();
2420    NumArgs = ParenList->getNumExprs();
2421  }
2422
2423  InitializedEntity BaseEntity =
2424    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2425  InitializationKind Kind =
2426    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2427             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2428                                                InitRange.getEnd());
2429  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2430  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2431                                        MultiExprArg(Args, NumArgs), 0);
2432  if (BaseInit.isInvalid())
2433    return true;
2434
2435  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2436
2437  // C++0x [class.base.init]p7:
2438  //   The initialization of each base and member constitutes a
2439  //   full-expression.
2440  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2441  if (BaseInit.isInvalid())
2442    return true;
2443
2444  // If we are in a dependent context, template instantiation will
2445  // perform this type-checking again. Just save the arguments that we
2446  // received in a ParenListExpr.
2447  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2448  // of the information that we have about the base
2449  // initializer. However, deconstructing the ASTs is a dicey process,
2450  // and this approach is far more likely to get the corner cases right.
2451  if (CurContext->isDependentContext())
2452    BaseInit = Owned(Init);
2453
2454  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2455                                          BaseSpec->isVirtual(),
2456                                          InitRange.getBegin(),
2457                                          BaseInit.takeAs<Expr>(),
2458                                          InitRange.getEnd(), EllipsisLoc);
2459}
2460
2461// Create a static_cast\<T&&>(expr).
2462static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2463  QualType ExprType = E->getType();
2464  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2465  SourceLocation ExprLoc = E->getLocStart();
2466  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2467      TargetType, ExprLoc);
2468
2469  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2470                                   SourceRange(ExprLoc, ExprLoc),
2471                                   E->getSourceRange()).take();
2472}
2473
2474/// ImplicitInitializerKind - How an implicit base or member initializer should
2475/// initialize its base or member.
2476enum ImplicitInitializerKind {
2477  IIK_Default,
2478  IIK_Copy,
2479  IIK_Move
2480};
2481
2482static bool
2483BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2484                             ImplicitInitializerKind ImplicitInitKind,
2485                             CXXBaseSpecifier *BaseSpec,
2486                             bool IsInheritedVirtualBase,
2487                             CXXCtorInitializer *&CXXBaseInit) {
2488  InitializedEntity InitEntity
2489    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2490                                        IsInheritedVirtualBase);
2491
2492  ExprResult BaseInit;
2493
2494  switch (ImplicitInitKind) {
2495  case IIK_Default: {
2496    InitializationKind InitKind
2497      = InitializationKind::CreateDefault(Constructor->getLocation());
2498    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2499    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2500    break;
2501  }
2502
2503  case IIK_Move:
2504  case IIK_Copy: {
2505    bool Moving = ImplicitInitKind == IIK_Move;
2506    ParmVarDecl *Param = Constructor->getParamDecl(0);
2507    QualType ParamType = Param->getType().getNonReferenceType();
2508
2509    Expr *CopyCtorArg =
2510      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2511                          SourceLocation(), Param, false,
2512                          Constructor->getLocation(), ParamType,
2513                          VK_LValue, 0);
2514
2515    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2516
2517    // Cast to the base class to avoid ambiguities.
2518    QualType ArgTy =
2519      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2520                                       ParamType.getQualifiers());
2521
2522    if (Moving) {
2523      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2524    }
2525
2526    CXXCastPath BasePath;
2527    BasePath.push_back(BaseSpec);
2528    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2529                                            CK_UncheckedDerivedToBase,
2530                                            Moving ? VK_XValue : VK_LValue,
2531                                            &BasePath).take();
2532
2533    InitializationKind InitKind
2534      = InitializationKind::CreateDirect(Constructor->getLocation(),
2535                                         SourceLocation(), SourceLocation());
2536    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2537                                   &CopyCtorArg, 1);
2538    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2539                               MultiExprArg(&CopyCtorArg, 1));
2540    break;
2541  }
2542  }
2543
2544  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2545  if (BaseInit.isInvalid())
2546    return true;
2547
2548  CXXBaseInit =
2549    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2550               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2551                                                        SourceLocation()),
2552                                             BaseSpec->isVirtual(),
2553                                             SourceLocation(),
2554                                             BaseInit.takeAs<Expr>(),
2555                                             SourceLocation(),
2556                                             SourceLocation());
2557
2558  return false;
2559}
2560
2561static bool RefersToRValueRef(Expr *MemRef) {
2562  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2563  return Referenced->getType()->isRValueReferenceType();
2564}
2565
2566static bool
2567BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2568                               ImplicitInitializerKind ImplicitInitKind,
2569                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2570                               CXXCtorInitializer *&CXXMemberInit) {
2571  if (Field->isInvalidDecl())
2572    return true;
2573
2574  SourceLocation Loc = Constructor->getLocation();
2575
2576  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2577    bool Moving = ImplicitInitKind == IIK_Move;
2578    ParmVarDecl *Param = Constructor->getParamDecl(0);
2579    QualType ParamType = Param->getType().getNonReferenceType();
2580
2581    // Suppress copying zero-width bitfields.
2582    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2583      return false;
2584
2585    Expr *MemberExprBase =
2586      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2587                          SourceLocation(), Param, false,
2588                          Loc, ParamType, VK_LValue, 0);
2589
2590    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2591
2592    if (Moving) {
2593      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2594    }
2595
2596    // Build a reference to this field within the parameter.
2597    CXXScopeSpec SS;
2598    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2599                              Sema::LookupMemberName);
2600    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2601                                  : cast<ValueDecl>(Field), AS_public);
2602    MemberLookup.resolveKind();
2603    ExprResult CtorArg
2604      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2605                                         ParamType, Loc,
2606                                         /*IsArrow=*/false,
2607                                         SS,
2608                                         /*TemplateKWLoc=*/SourceLocation(),
2609                                         /*FirstQualifierInScope=*/0,
2610                                         MemberLookup,
2611                                         /*TemplateArgs=*/0);
2612    if (CtorArg.isInvalid())
2613      return true;
2614
2615    // C++11 [class.copy]p15:
2616    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2617    //     with static_cast<T&&>(x.m);
2618    if (RefersToRValueRef(CtorArg.get())) {
2619      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2620    }
2621
2622    // When the field we are copying is an array, create index variables for
2623    // each dimension of the array. We use these index variables to subscript
2624    // the source array, and other clients (e.g., CodeGen) will perform the
2625    // necessary iteration with these index variables.
2626    SmallVector<VarDecl *, 4> IndexVariables;
2627    QualType BaseType = Field->getType();
2628    QualType SizeType = SemaRef.Context.getSizeType();
2629    bool InitializingArray = false;
2630    while (const ConstantArrayType *Array
2631                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2632      InitializingArray = true;
2633      // Create the iteration variable for this array index.
2634      IdentifierInfo *IterationVarName = 0;
2635      {
2636        SmallString<8> Str;
2637        llvm::raw_svector_ostream OS(Str);
2638        OS << "__i" << IndexVariables.size();
2639        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2640      }
2641      VarDecl *IterationVar
2642        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2643                          IterationVarName, SizeType,
2644                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2645                          SC_None, SC_None);
2646      IndexVariables.push_back(IterationVar);
2647
2648      // Create a reference to the iteration variable.
2649      ExprResult IterationVarRef
2650        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2651      assert(!IterationVarRef.isInvalid() &&
2652             "Reference to invented variable cannot fail!");
2653      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2654      assert(!IterationVarRef.isInvalid() &&
2655             "Conversion of invented variable cannot fail!");
2656
2657      // Subscript the array with this iteration variable.
2658      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2659                                                        IterationVarRef.take(),
2660                                                        Loc);
2661      if (CtorArg.isInvalid())
2662        return true;
2663
2664      BaseType = Array->getElementType();
2665    }
2666
2667    // The array subscript expression is an lvalue, which is wrong for moving.
2668    if (Moving && InitializingArray)
2669      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2670
2671    // Construct the entity that we will be initializing. For an array, this
2672    // will be first element in the array, which may require several levels
2673    // of array-subscript entities.
2674    SmallVector<InitializedEntity, 4> Entities;
2675    Entities.reserve(1 + IndexVariables.size());
2676    if (Indirect)
2677      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2678    else
2679      Entities.push_back(InitializedEntity::InitializeMember(Field));
2680    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2681      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2682                                                              0,
2683                                                              Entities.back()));
2684
2685    // Direct-initialize to use the copy constructor.
2686    InitializationKind InitKind =
2687      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2688
2689    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2690    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2691                                   &CtorArgE, 1);
2692
2693    ExprResult MemberInit
2694      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2695                        MultiExprArg(&CtorArgE, 1));
2696    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2697    if (MemberInit.isInvalid())
2698      return true;
2699
2700    if (Indirect) {
2701      assert(IndexVariables.size() == 0 &&
2702             "Indirect field improperly initialized");
2703      CXXMemberInit
2704        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2705                                                   Loc, Loc,
2706                                                   MemberInit.takeAs<Expr>(),
2707                                                   Loc);
2708    } else
2709      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2710                                                 Loc, MemberInit.takeAs<Expr>(),
2711                                                 Loc,
2712                                                 IndexVariables.data(),
2713                                                 IndexVariables.size());
2714    return false;
2715  }
2716
2717  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2718
2719  QualType FieldBaseElementType =
2720    SemaRef.Context.getBaseElementType(Field->getType());
2721
2722  if (FieldBaseElementType->isRecordType()) {
2723    InitializedEntity InitEntity
2724      = Indirect? InitializedEntity::InitializeMember(Indirect)
2725                : InitializedEntity::InitializeMember(Field);
2726    InitializationKind InitKind =
2727      InitializationKind::CreateDefault(Loc);
2728
2729    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2730    ExprResult MemberInit =
2731      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2732
2733    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2734    if (MemberInit.isInvalid())
2735      return true;
2736
2737    if (Indirect)
2738      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2739                                                               Indirect, Loc,
2740                                                               Loc,
2741                                                               MemberInit.get(),
2742                                                               Loc);
2743    else
2744      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2745                                                               Field, Loc, Loc,
2746                                                               MemberInit.get(),
2747                                                               Loc);
2748    return false;
2749  }
2750
2751  if (!Field->getParent()->isUnion()) {
2752    if (FieldBaseElementType->isReferenceType()) {
2753      SemaRef.Diag(Constructor->getLocation(),
2754                   diag::err_uninitialized_member_in_ctor)
2755      << (int)Constructor->isImplicit()
2756      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2757      << 0 << Field->getDeclName();
2758      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2759      return true;
2760    }
2761
2762    if (FieldBaseElementType.isConstQualified()) {
2763      SemaRef.Diag(Constructor->getLocation(),
2764                   diag::err_uninitialized_member_in_ctor)
2765      << (int)Constructor->isImplicit()
2766      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2767      << 1 << Field->getDeclName();
2768      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2769      return true;
2770    }
2771  }
2772
2773  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2774      FieldBaseElementType->isObjCRetainableType() &&
2775      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2776      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2777    // ARC:
2778    //   Default-initialize Objective-C pointers to NULL.
2779    CXXMemberInit
2780      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2781                                                 Loc, Loc,
2782                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2783                                                 Loc);
2784    return false;
2785  }
2786
2787  // Nothing to initialize.
2788  CXXMemberInit = 0;
2789  return false;
2790}
2791
2792namespace {
2793struct BaseAndFieldInfo {
2794  Sema &S;
2795  CXXConstructorDecl *Ctor;
2796  bool AnyErrorsInInits;
2797  ImplicitInitializerKind IIK;
2798  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2799  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2800
2801  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2802    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2803    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2804    if (Generated && Ctor->isCopyConstructor())
2805      IIK = IIK_Copy;
2806    else if (Generated && Ctor->isMoveConstructor())
2807      IIK = IIK_Move;
2808    else
2809      IIK = IIK_Default;
2810  }
2811
2812  bool isImplicitCopyOrMove() const {
2813    switch (IIK) {
2814    case IIK_Copy:
2815    case IIK_Move:
2816      return true;
2817
2818    case IIK_Default:
2819      return false;
2820    }
2821
2822    llvm_unreachable("Invalid ImplicitInitializerKind!");
2823  }
2824
2825  bool addFieldInitializer(CXXCtorInitializer *Init) {
2826    AllToInit.push_back(Init);
2827
2828    // Check whether this initializer makes the field "used".
2829    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
2830      S.UnusedPrivateFields.remove(Init->getAnyMember());
2831
2832    return false;
2833  }
2834};
2835}
2836
2837/// \brief Determine whether the given indirect field declaration is somewhere
2838/// within an anonymous union.
2839static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2840  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2841                                      CEnd = F->chain_end();
2842       C != CEnd; ++C)
2843    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2844      if (Record->isUnion())
2845        return true;
2846
2847  return false;
2848}
2849
2850/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2851/// array type.
2852static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2853  if (T->isIncompleteArrayType())
2854    return true;
2855
2856  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2857    if (!ArrayT->getSize())
2858      return true;
2859
2860    T = ArrayT->getElementType();
2861  }
2862
2863  return false;
2864}
2865
2866static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2867                                    FieldDecl *Field,
2868                                    IndirectFieldDecl *Indirect = 0) {
2869
2870  // Overwhelmingly common case: we have a direct initializer for this field.
2871  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
2872    return Info.addFieldInitializer(Init);
2873
2874  // C++11 [class.base.init]p8: if the entity is a non-static data member that
2875  // has a brace-or-equal-initializer, the entity is initialized as specified
2876  // in [dcl.init].
2877  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2878    CXXCtorInitializer *Init;
2879    if (Indirect)
2880      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2881                                                      SourceLocation(),
2882                                                      SourceLocation(), 0,
2883                                                      SourceLocation());
2884    else
2885      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2886                                                      SourceLocation(),
2887                                                      SourceLocation(), 0,
2888                                                      SourceLocation());
2889    return Info.addFieldInitializer(Init);
2890  }
2891
2892  // Don't build an implicit initializer for union members if none was
2893  // explicitly specified.
2894  if (Field->getParent()->isUnion() ||
2895      (Indirect && isWithinAnonymousUnion(Indirect)))
2896    return false;
2897
2898  // Don't initialize incomplete or zero-length arrays.
2899  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2900    return false;
2901
2902  // Don't try to build an implicit initializer if there were semantic
2903  // errors in any of the initializers (and therefore we might be
2904  // missing some that the user actually wrote).
2905  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2906    return false;
2907
2908  CXXCtorInitializer *Init = 0;
2909  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2910                                     Indirect, Init))
2911    return true;
2912
2913  if (!Init)
2914    return false;
2915
2916  return Info.addFieldInitializer(Init);
2917}
2918
2919bool
2920Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2921                               CXXCtorInitializer *Initializer) {
2922  assert(Initializer->isDelegatingInitializer());
2923  Constructor->setNumCtorInitializers(1);
2924  CXXCtorInitializer **initializer =
2925    new (Context) CXXCtorInitializer*[1];
2926  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2927  Constructor->setCtorInitializers(initializer);
2928
2929  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2930    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2931    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2932  }
2933
2934  DelegatingCtorDecls.push_back(Constructor);
2935
2936  return false;
2937}
2938
2939bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2940                               CXXCtorInitializer **Initializers,
2941                               unsigned NumInitializers,
2942                               bool AnyErrors) {
2943  if (Constructor->isDependentContext()) {
2944    // Just store the initializers as written, they will be checked during
2945    // instantiation.
2946    if (NumInitializers > 0) {
2947      Constructor->setNumCtorInitializers(NumInitializers);
2948      CXXCtorInitializer **baseOrMemberInitializers =
2949        new (Context) CXXCtorInitializer*[NumInitializers];
2950      memcpy(baseOrMemberInitializers, Initializers,
2951             NumInitializers * sizeof(CXXCtorInitializer*));
2952      Constructor->setCtorInitializers(baseOrMemberInitializers);
2953    }
2954
2955    return false;
2956  }
2957
2958  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2959
2960  // We need to build the initializer AST according to order of construction
2961  // and not what user specified in the Initializers list.
2962  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2963  if (!ClassDecl)
2964    return true;
2965
2966  bool HadError = false;
2967
2968  for (unsigned i = 0; i < NumInitializers; i++) {
2969    CXXCtorInitializer *Member = Initializers[i];
2970
2971    if (Member->isBaseInitializer())
2972      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2973    else
2974      Info.AllBaseFields[Member->getAnyMember()] = Member;
2975  }
2976
2977  // Keep track of the direct virtual bases.
2978  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2979  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2980       E = ClassDecl->bases_end(); I != E; ++I) {
2981    if (I->isVirtual())
2982      DirectVBases.insert(I);
2983  }
2984
2985  // Push virtual bases before others.
2986  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2987       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2988
2989    if (CXXCtorInitializer *Value
2990        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2991      Info.AllToInit.push_back(Value);
2992    } else if (!AnyErrors) {
2993      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2994      CXXCtorInitializer *CXXBaseInit;
2995      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2996                                       VBase, IsInheritedVirtualBase,
2997                                       CXXBaseInit)) {
2998        HadError = true;
2999        continue;
3000      }
3001
3002      Info.AllToInit.push_back(CXXBaseInit);
3003    }
3004  }
3005
3006  // Non-virtual bases.
3007  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3008       E = ClassDecl->bases_end(); Base != E; ++Base) {
3009    // Virtuals are in the virtual base list and already constructed.
3010    if (Base->isVirtual())
3011      continue;
3012
3013    if (CXXCtorInitializer *Value
3014          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3015      Info.AllToInit.push_back(Value);
3016    } else if (!AnyErrors) {
3017      CXXCtorInitializer *CXXBaseInit;
3018      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3019                                       Base, /*IsInheritedVirtualBase=*/false,
3020                                       CXXBaseInit)) {
3021        HadError = true;
3022        continue;
3023      }
3024
3025      Info.AllToInit.push_back(CXXBaseInit);
3026    }
3027  }
3028
3029  // Fields.
3030  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3031                               MemEnd = ClassDecl->decls_end();
3032       Mem != MemEnd; ++Mem) {
3033    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3034      // C++ [class.bit]p2:
3035      //   A declaration for a bit-field that omits the identifier declares an
3036      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3037      //   initialized.
3038      if (F->isUnnamedBitfield())
3039        continue;
3040
3041      // If we're not generating the implicit copy/move constructor, then we'll
3042      // handle anonymous struct/union fields based on their individual
3043      // indirect fields.
3044      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3045        continue;
3046
3047      if (CollectFieldInitializer(*this, Info, F))
3048        HadError = true;
3049      continue;
3050    }
3051
3052    // Beyond this point, we only consider default initialization.
3053    if (Info.IIK != IIK_Default)
3054      continue;
3055
3056    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3057      if (F->getType()->isIncompleteArrayType()) {
3058        assert(ClassDecl->hasFlexibleArrayMember() &&
3059               "Incomplete array type is not valid");
3060        continue;
3061      }
3062
3063      // Initialize each field of an anonymous struct individually.
3064      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3065        HadError = true;
3066
3067      continue;
3068    }
3069  }
3070
3071  NumInitializers = Info.AllToInit.size();
3072  if (NumInitializers > 0) {
3073    Constructor->setNumCtorInitializers(NumInitializers);
3074    CXXCtorInitializer **baseOrMemberInitializers =
3075      new (Context) CXXCtorInitializer*[NumInitializers];
3076    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3077           NumInitializers * sizeof(CXXCtorInitializer*));
3078    Constructor->setCtorInitializers(baseOrMemberInitializers);
3079
3080    // Constructors implicitly reference the base and member
3081    // destructors.
3082    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3083                                           Constructor->getParent());
3084  }
3085
3086  return HadError;
3087}
3088
3089static void *GetKeyForTopLevelField(FieldDecl *Field) {
3090  // For anonymous unions, use the class declaration as the key.
3091  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3092    if (RT->getDecl()->isAnonymousStructOrUnion())
3093      return static_cast<void *>(RT->getDecl());
3094  }
3095  return static_cast<void *>(Field);
3096}
3097
3098static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3099  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3100}
3101
3102static void *GetKeyForMember(ASTContext &Context,
3103                             CXXCtorInitializer *Member) {
3104  if (!Member->isAnyMemberInitializer())
3105    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3106
3107  // For fields injected into the class via declaration of an anonymous union,
3108  // use its anonymous union class declaration as the unique key.
3109  FieldDecl *Field = Member->getAnyMember();
3110
3111  // If the field is a member of an anonymous struct or union, our key
3112  // is the anonymous record decl that's a direct child of the class.
3113  RecordDecl *RD = Field->getParent();
3114  if (RD->isAnonymousStructOrUnion()) {
3115    while (true) {
3116      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3117      if (Parent->isAnonymousStructOrUnion())
3118        RD = Parent;
3119      else
3120        break;
3121    }
3122
3123    return static_cast<void *>(RD);
3124  }
3125
3126  return static_cast<void *>(Field);
3127}
3128
3129static void
3130DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3131                                  const CXXConstructorDecl *Constructor,
3132                                  CXXCtorInitializer **Inits,
3133                                  unsigned NumInits) {
3134  if (Constructor->getDeclContext()->isDependentContext())
3135    return;
3136
3137  // Don't check initializers order unless the warning is enabled at the
3138  // location of at least one initializer.
3139  bool ShouldCheckOrder = false;
3140  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3141    CXXCtorInitializer *Init = Inits[InitIndex];
3142    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3143                                         Init->getSourceLocation())
3144          != DiagnosticsEngine::Ignored) {
3145      ShouldCheckOrder = true;
3146      break;
3147    }
3148  }
3149  if (!ShouldCheckOrder)
3150    return;
3151
3152  // Build the list of bases and members in the order that they'll
3153  // actually be initialized.  The explicit initializers should be in
3154  // this same order but may be missing things.
3155  SmallVector<const void*, 32> IdealInitKeys;
3156
3157  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3158
3159  // 1. Virtual bases.
3160  for (CXXRecordDecl::base_class_const_iterator VBase =
3161       ClassDecl->vbases_begin(),
3162       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3163    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3164
3165  // 2. Non-virtual bases.
3166  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3167       E = ClassDecl->bases_end(); Base != E; ++Base) {
3168    if (Base->isVirtual())
3169      continue;
3170    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3171  }
3172
3173  // 3. Direct fields.
3174  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3175       E = ClassDecl->field_end(); Field != E; ++Field) {
3176    if (Field->isUnnamedBitfield())
3177      continue;
3178
3179    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3180  }
3181
3182  unsigned NumIdealInits = IdealInitKeys.size();
3183  unsigned IdealIndex = 0;
3184
3185  CXXCtorInitializer *PrevInit = 0;
3186  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3187    CXXCtorInitializer *Init = Inits[InitIndex];
3188    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3189
3190    // Scan forward to try to find this initializer in the idealized
3191    // initializers list.
3192    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3193      if (InitKey == IdealInitKeys[IdealIndex])
3194        break;
3195
3196    // If we didn't find this initializer, it must be because we
3197    // scanned past it on a previous iteration.  That can only
3198    // happen if we're out of order;  emit a warning.
3199    if (IdealIndex == NumIdealInits && PrevInit) {
3200      Sema::SemaDiagnosticBuilder D =
3201        SemaRef.Diag(PrevInit->getSourceLocation(),
3202                     diag::warn_initializer_out_of_order);
3203
3204      if (PrevInit->isAnyMemberInitializer())
3205        D << 0 << PrevInit->getAnyMember()->getDeclName();
3206      else
3207        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3208
3209      if (Init->isAnyMemberInitializer())
3210        D << 0 << Init->getAnyMember()->getDeclName();
3211      else
3212        D << 1 << Init->getTypeSourceInfo()->getType();
3213
3214      // Move back to the initializer's location in the ideal list.
3215      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3216        if (InitKey == IdealInitKeys[IdealIndex])
3217          break;
3218
3219      assert(IdealIndex != NumIdealInits &&
3220             "initializer not found in initializer list");
3221    }
3222
3223    PrevInit = Init;
3224  }
3225}
3226
3227namespace {
3228bool CheckRedundantInit(Sema &S,
3229                        CXXCtorInitializer *Init,
3230                        CXXCtorInitializer *&PrevInit) {
3231  if (!PrevInit) {
3232    PrevInit = Init;
3233    return false;
3234  }
3235
3236  if (FieldDecl *Field = Init->getMember())
3237    S.Diag(Init->getSourceLocation(),
3238           diag::err_multiple_mem_initialization)
3239      << Field->getDeclName()
3240      << Init->getSourceRange();
3241  else {
3242    const Type *BaseClass = Init->getBaseClass();
3243    assert(BaseClass && "neither field nor base");
3244    S.Diag(Init->getSourceLocation(),
3245           diag::err_multiple_base_initialization)
3246      << QualType(BaseClass, 0)
3247      << Init->getSourceRange();
3248  }
3249  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3250    << 0 << PrevInit->getSourceRange();
3251
3252  return true;
3253}
3254
3255typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3256typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3257
3258bool CheckRedundantUnionInit(Sema &S,
3259                             CXXCtorInitializer *Init,
3260                             RedundantUnionMap &Unions) {
3261  FieldDecl *Field = Init->getAnyMember();
3262  RecordDecl *Parent = Field->getParent();
3263  NamedDecl *Child = Field;
3264
3265  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3266    if (Parent->isUnion()) {
3267      UnionEntry &En = Unions[Parent];
3268      if (En.first && En.first != Child) {
3269        S.Diag(Init->getSourceLocation(),
3270               diag::err_multiple_mem_union_initialization)
3271          << Field->getDeclName()
3272          << Init->getSourceRange();
3273        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3274          << 0 << En.second->getSourceRange();
3275        return true;
3276      }
3277      if (!En.first) {
3278        En.first = Child;
3279        En.second = Init;
3280      }
3281      if (!Parent->isAnonymousStructOrUnion())
3282        return false;
3283    }
3284
3285    Child = Parent;
3286    Parent = cast<RecordDecl>(Parent->getDeclContext());
3287  }
3288
3289  return false;
3290}
3291}
3292
3293/// ActOnMemInitializers - Handle the member initializers for a constructor.
3294void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3295                                SourceLocation ColonLoc,
3296                                CXXCtorInitializer **meminits,
3297                                unsigned NumMemInits,
3298                                bool AnyErrors) {
3299  if (!ConstructorDecl)
3300    return;
3301
3302  AdjustDeclIfTemplate(ConstructorDecl);
3303
3304  CXXConstructorDecl *Constructor
3305    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3306
3307  if (!Constructor) {
3308    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3309    return;
3310  }
3311
3312  CXXCtorInitializer **MemInits =
3313    reinterpret_cast<CXXCtorInitializer **>(meminits);
3314
3315  // Mapping for the duplicate initializers check.
3316  // For member initializers, this is keyed with a FieldDecl*.
3317  // For base initializers, this is keyed with a Type*.
3318  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3319
3320  // Mapping for the inconsistent anonymous-union initializers check.
3321  RedundantUnionMap MemberUnions;
3322
3323  bool HadError = false;
3324  for (unsigned i = 0; i < NumMemInits; i++) {
3325    CXXCtorInitializer *Init = MemInits[i];
3326
3327    // Set the source order index.
3328    Init->setSourceOrder(i);
3329
3330    if (Init->isAnyMemberInitializer()) {
3331      FieldDecl *Field = Init->getAnyMember();
3332      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3333          CheckRedundantUnionInit(*this, Init, MemberUnions))
3334        HadError = true;
3335    } else if (Init->isBaseInitializer()) {
3336      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3337      if (CheckRedundantInit(*this, Init, Members[Key]))
3338        HadError = true;
3339    } else {
3340      assert(Init->isDelegatingInitializer());
3341      // This must be the only initializer
3342      if (i != 0 || NumMemInits > 1) {
3343        Diag(MemInits[0]->getSourceLocation(),
3344             diag::err_delegating_initializer_alone)
3345          << MemInits[0]->getSourceRange();
3346        HadError = true;
3347        // We will treat this as being the only initializer.
3348      }
3349      SetDelegatingInitializer(Constructor, MemInits[i]);
3350      // Return immediately as the initializer is set.
3351      return;
3352    }
3353  }
3354
3355  if (HadError)
3356    return;
3357
3358  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3359
3360  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3361}
3362
3363void
3364Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3365                                             CXXRecordDecl *ClassDecl) {
3366  // Ignore dependent contexts. Also ignore unions, since their members never
3367  // have destructors implicitly called.
3368  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3369    return;
3370
3371  // FIXME: all the access-control diagnostics are positioned on the
3372  // field/base declaration.  That's probably good; that said, the
3373  // user might reasonably want to know why the destructor is being
3374  // emitted, and we currently don't say.
3375
3376  // Non-static data members.
3377  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3378       E = ClassDecl->field_end(); I != E; ++I) {
3379    FieldDecl *Field = *I;
3380    if (Field->isInvalidDecl())
3381      continue;
3382
3383    // Don't destroy incomplete or zero-length arrays.
3384    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3385      continue;
3386
3387    QualType FieldType = Context.getBaseElementType(Field->getType());
3388
3389    const RecordType* RT = FieldType->getAs<RecordType>();
3390    if (!RT)
3391      continue;
3392
3393    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3394    if (FieldClassDecl->isInvalidDecl())
3395      continue;
3396    if (FieldClassDecl->hasIrrelevantDestructor())
3397      continue;
3398    // The destructor for an implicit anonymous union member is never invoked.
3399    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3400      continue;
3401
3402    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3403    assert(Dtor && "No dtor found for FieldClassDecl!");
3404    CheckDestructorAccess(Field->getLocation(), Dtor,
3405                          PDiag(diag::err_access_dtor_field)
3406                            << Field->getDeclName()
3407                            << FieldType);
3408
3409    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3410    DiagnoseUseOfDecl(Dtor, Location);
3411  }
3412
3413  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3414
3415  // Bases.
3416  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3417       E = ClassDecl->bases_end(); Base != E; ++Base) {
3418    // Bases are always records in a well-formed non-dependent class.
3419    const RecordType *RT = Base->getType()->getAs<RecordType>();
3420
3421    // Remember direct virtual bases.
3422    if (Base->isVirtual())
3423      DirectVirtualBases.insert(RT);
3424
3425    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3426    // If our base class is invalid, we probably can't get its dtor anyway.
3427    if (BaseClassDecl->isInvalidDecl())
3428      continue;
3429    if (BaseClassDecl->hasIrrelevantDestructor())
3430      continue;
3431
3432    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3433    assert(Dtor && "No dtor found for BaseClassDecl!");
3434
3435    // FIXME: caret should be on the start of the class name
3436    CheckDestructorAccess(Base->getLocStart(), Dtor,
3437                          PDiag(diag::err_access_dtor_base)
3438                            << Base->getType()
3439                            << Base->getSourceRange(),
3440                          Context.getTypeDeclType(ClassDecl));
3441
3442    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3443    DiagnoseUseOfDecl(Dtor, Location);
3444  }
3445
3446  // Virtual bases.
3447  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3448       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3449
3450    // Bases are always records in a well-formed non-dependent class.
3451    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3452
3453    // Ignore direct virtual bases.
3454    if (DirectVirtualBases.count(RT))
3455      continue;
3456
3457    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3458    // If our base class is invalid, we probably can't get its dtor anyway.
3459    if (BaseClassDecl->isInvalidDecl())
3460      continue;
3461    if (BaseClassDecl->hasIrrelevantDestructor())
3462      continue;
3463
3464    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3465    assert(Dtor && "No dtor found for BaseClassDecl!");
3466    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3467                          PDiag(diag::err_access_dtor_vbase)
3468                            << VBase->getType(),
3469                          Context.getTypeDeclType(ClassDecl));
3470
3471    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3472    DiagnoseUseOfDecl(Dtor, Location);
3473  }
3474}
3475
3476void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3477  if (!CDtorDecl)
3478    return;
3479
3480  if (CXXConstructorDecl *Constructor
3481      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3482    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3483}
3484
3485bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3486                                  unsigned DiagID, AbstractDiagSelID SelID) {
3487  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3488    unsigned DiagID;
3489    AbstractDiagSelID SelID;
3490
3491  public:
3492    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3493      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3494
3495    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3496      if (Suppressed) return;
3497      if (SelID == -1)
3498        S.Diag(Loc, DiagID) << T;
3499      else
3500        S.Diag(Loc, DiagID) << SelID << T;
3501    }
3502  } Diagnoser(DiagID, SelID);
3503
3504  return RequireNonAbstractType(Loc, T, Diagnoser);
3505}
3506
3507bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3508                                  TypeDiagnoser &Diagnoser) {
3509  if (!getLangOpts().CPlusPlus)
3510    return false;
3511
3512  if (const ArrayType *AT = Context.getAsArrayType(T))
3513    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3514
3515  if (const PointerType *PT = T->getAs<PointerType>()) {
3516    // Find the innermost pointer type.
3517    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3518      PT = T;
3519
3520    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3521      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3522  }
3523
3524  const RecordType *RT = T->getAs<RecordType>();
3525  if (!RT)
3526    return false;
3527
3528  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3529
3530  // We can't answer whether something is abstract until it has a
3531  // definition.  If it's currently being defined, we'll walk back
3532  // over all the declarations when we have a full definition.
3533  const CXXRecordDecl *Def = RD->getDefinition();
3534  if (!Def || Def->isBeingDefined())
3535    return false;
3536
3537  if (!RD->isAbstract())
3538    return false;
3539
3540  Diagnoser.diagnose(*this, Loc, T);
3541  DiagnoseAbstractType(RD);
3542
3543  return true;
3544}
3545
3546void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3547  // Check if we've already emitted the list of pure virtual functions
3548  // for this class.
3549  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3550    return;
3551
3552  CXXFinalOverriderMap FinalOverriders;
3553  RD->getFinalOverriders(FinalOverriders);
3554
3555  // Keep a set of seen pure methods so we won't diagnose the same method
3556  // more than once.
3557  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3558
3559  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3560                                   MEnd = FinalOverriders.end();
3561       M != MEnd;
3562       ++M) {
3563    for (OverridingMethods::iterator SO = M->second.begin(),
3564                                  SOEnd = M->second.end();
3565         SO != SOEnd; ++SO) {
3566      // C++ [class.abstract]p4:
3567      //   A class is abstract if it contains or inherits at least one
3568      //   pure virtual function for which the final overrider is pure
3569      //   virtual.
3570
3571      //
3572      if (SO->second.size() != 1)
3573        continue;
3574
3575      if (!SO->second.front().Method->isPure())
3576        continue;
3577
3578      if (!SeenPureMethods.insert(SO->second.front().Method))
3579        continue;
3580
3581      Diag(SO->second.front().Method->getLocation(),
3582           diag::note_pure_virtual_function)
3583        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3584    }
3585  }
3586
3587  if (!PureVirtualClassDiagSet)
3588    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3589  PureVirtualClassDiagSet->insert(RD);
3590}
3591
3592namespace {
3593struct AbstractUsageInfo {
3594  Sema &S;
3595  CXXRecordDecl *Record;
3596  CanQualType AbstractType;
3597  bool Invalid;
3598
3599  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3600    : S(S), Record(Record),
3601      AbstractType(S.Context.getCanonicalType(
3602                   S.Context.getTypeDeclType(Record))),
3603      Invalid(false) {}
3604
3605  void DiagnoseAbstractType() {
3606    if (Invalid) return;
3607    S.DiagnoseAbstractType(Record);
3608    Invalid = true;
3609  }
3610
3611  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3612};
3613
3614struct CheckAbstractUsage {
3615  AbstractUsageInfo &Info;
3616  const NamedDecl *Ctx;
3617
3618  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3619    : Info(Info), Ctx(Ctx) {}
3620
3621  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3622    switch (TL.getTypeLocClass()) {
3623#define ABSTRACT_TYPELOC(CLASS, PARENT)
3624#define TYPELOC(CLASS, PARENT) \
3625    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3626#include "clang/AST/TypeLocNodes.def"
3627    }
3628  }
3629
3630  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3631    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3632    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3633      if (!TL.getArg(I))
3634        continue;
3635
3636      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3637      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3638    }
3639  }
3640
3641  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3642    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3643  }
3644
3645  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3646    // Visit the type parameters from a permissive context.
3647    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3648      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3649      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3650        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3651          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3652      // TODO: other template argument types?
3653    }
3654  }
3655
3656  // Visit pointee types from a permissive context.
3657#define CheckPolymorphic(Type) \
3658  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3659    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3660  }
3661  CheckPolymorphic(PointerTypeLoc)
3662  CheckPolymorphic(ReferenceTypeLoc)
3663  CheckPolymorphic(MemberPointerTypeLoc)
3664  CheckPolymorphic(BlockPointerTypeLoc)
3665  CheckPolymorphic(AtomicTypeLoc)
3666
3667  /// Handle all the types we haven't given a more specific
3668  /// implementation for above.
3669  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3670    // Every other kind of type that we haven't called out already
3671    // that has an inner type is either (1) sugar or (2) contains that
3672    // inner type in some way as a subobject.
3673    if (TypeLoc Next = TL.getNextTypeLoc())
3674      return Visit(Next, Sel);
3675
3676    // If there's no inner type and we're in a permissive context,
3677    // don't diagnose.
3678    if (Sel == Sema::AbstractNone) return;
3679
3680    // Check whether the type matches the abstract type.
3681    QualType T = TL.getType();
3682    if (T->isArrayType()) {
3683      Sel = Sema::AbstractArrayType;
3684      T = Info.S.Context.getBaseElementType(T);
3685    }
3686    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3687    if (CT != Info.AbstractType) return;
3688
3689    // It matched; do some magic.
3690    if (Sel == Sema::AbstractArrayType) {
3691      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3692        << T << TL.getSourceRange();
3693    } else {
3694      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3695        << Sel << T << TL.getSourceRange();
3696    }
3697    Info.DiagnoseAbstractType();
3698  }
3699};
3700
3701void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3702                                  Sema::AbstractDiagSelID Sel) {
3703  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3704}
3705
3706}
3707
3708/// Check for invalid uses of an abstract type in a method declaration.
3709static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3710                                    CXXMethodDecl *MD) {
3711  // No need to do the check on definitions, which require that
3712  // the return/param types be complete.
3713  if (MD->doesThisDeclarationHaveABody())
3714    return;
3715
3716  // For safety's sake, just ignore it if we don't have type source
3717  // information.  This should never happen for non-implicit methods,
3718  // but...
3719  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3720    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3721}
3722
3723/// Check for invalid uses of an abstract type within a class definition.
3724static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3725                                    CXXRecordDecl *RD) {
3726  for (CXXRecordDecl::decl_iterator
3727         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3728    Decl *D = *I;
3729    if (D->isImplicit()) continue;
3730
3731    // Methods and method templates.
3732    if (isa<CXXMethodDecl>(D)) {
3733      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3734    } else if (isa<FunctionTemplateDecl>(D)) {
3735      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3736      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3737
3738    // Fields and static variables.
3739    } else if (isa<FieldDecl>(D)) {
3740      FieldDecl *FD = cast<FieldDecl>(D);
3741      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3742        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3743    } else if (isa<VarDecl>(D)) {
3744      VarDecl *VD = cast<VarDecl>(D);
3745      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3746        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3747
3748    // Nested classes and class templates.
3749    } else if (isa<CXXRecordDecl>(D)) {
3750      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3751    } else if (isa<ClassTemplateDecl>(D)) {
3752      CheckAbstractClassUsage(Info,
3753                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3754    }
3755  }
3756}
3757
3758/// \brief Perform semantic checks on a class definition that has been
3759/// completing, introducing implicitly-declared members, checking for
3760/// abstract types, etc.
3761void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3762  if (!Record)
3763    return;
3764
3765  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3766    AbstractUsageInfo Info(*this, Record);
3767    CheckAbstractClassUsage(Info, Record);
3768  }
3769
3770  // If this is not an aggregate type and has no user-declared constructor,
3771  // complain about any non-static data members of reference or const scalar
3772  // type, since they will never get initializers.
3773  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3774      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3775      !Record->isLambda()) {
3776    bool Complained = false;
3777    for (RecordDecl::field_iterator F = Record->field_begin(),
3778                                 FEnd = Record->field_end();
3779         F != FEnd; ++F) {
3780      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3781        continue;
3782
3783      if (F->getType()->isReferenceType() ||
3784          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3785        if (!Complained) {
3786          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3787            << Record->getTagKind() << Record;
3788          Complained = true;
3789        }
3790
3791        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3792          << F->getType()->isReferenceType()
3793          << F->getDeclName();
3794      }
3795    }
3796  }
3797
3798  if (Record->isDynamicClass() && !Record->isDependentType())
3799    DynamicClasses.push_back(Record);
3800
3801  if (Record->getIdentifier()) {
3802    // C++ [class.mem]p13:
3803    //   If T is the name of a class, then each of the following shall have a
3804    //   name different from T:
3805    //     - every member of every anonymous union that is a member of class T.
3806    //
3807    // C++ [class.mem]p14:
3808    //   In addition, if class T has a user-declared constructor (12.1), every
3809    //   non-static data member of class T shall have a name different from T.
3810    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3811         R.first != R.second; ++R.first) {
3812      NamedDecl *D = *R.first;
3813      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3814          isa<IndirectFieldDecl>(D)) {
3815        Diag(D->getLocation(), diag::err_member_name_of_class)
3816          << D->getDeclName();
3817        break;
3818      }
3819    }
3820  }
3821
3822  // Warn if the class has virtual methods but non-virtual public destructor.
3823  if (Record->isPolymorphic() && !Record->isDependentType()) {
3824    CXXDestructorDecl *dtor = Record->getDestructor();
3825    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3826      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3827           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3828  }
3829
3830  // See if a method overloads virtual methods in a base
3831  /// class without overriding any.
3832  if (!Record->isDependentType()) {
3833    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3834                                     MEnd = Record->method_end();
3835         M != MEnd; ++M) {
3836      if (!M->isStatic())
3837        DiagnoseHiddenVirtualMethods(Record, *M);
3838    }
3839  }
3840
3841  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3842  // function that is not a constructor declares that member function to be
3843  // const. [...] The class of which that function is a member shall be
3844  // a literal type.
3845  //
3846  // If the class has virtual bases, any constexpr members will already have
3847  // been diagnosed by the checks performed on the member declaration, so
3848  // suppress this (less useful) diagnostic.
3849  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3850      !Record->isLiteral() && !Record->getNumVBases()) {
3851    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3852                                     MEnd = Record->method_end();
3853         M != MEnd; ++M) {
3854      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3855        switch (Record->getTemplateSpecializationKind()) {
3856        case TSK_ImplicitInstantiation:
3857        case TSK_ExplicitInstantiationDeclaration:
3858        case TSK_ExplicitInstantiationDefinition:
3859          // If a template instantiates to a non-literal type, but its members
3860          // instantiate to constexpr functions, the template is technically
3861          // ill-formed, but we allow it for sanity.
3862          continue;
3863
3864        case TSK_Undeclared:
3865        case TSK_ExplicitSpecialization:
3866          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3867                             diag::err_constexpr_method_non_literal);
3868          break;
3869        }
3870
3871        // Only produce one error per class.
3872        break;
3873      }
3874    }
3875  }
3876
3877  // Declare inherited constructors. We do this eagerly here because:
3878  // - The standard requires an eager diagnostic for conflicting inherited
3879  //   constructors from different classes.
3880  // - The lazy declaration of the other implicit constructors is so as to not
3881  //   waste space and performance on classes that are not meant to be
3882  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3883  //   have inherited constructors.
3884  DeclareInheritedConstructors(Record);
3885}
3886
3887void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3888  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3889                                      ME = Record->method_end();
3890       MI != ME; ++MI)
3891    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3892      CheckExplicitlyDefaultedSpecialMember(*MI);
3893}
3894
3895/// Is the special member function which would be selected to perform the
3896/// specified operation on the specified class type a constexpr constructor?
3897static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3898                                     Sema::CXXSpecialMember CSM,
3899                                     bool ConstArg) {
3900  Sema::SpecialMemberOverloadResult *SMOR =
3901      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
3902                            false, false, false, false);
3903  if (!SMOR || !SMOR->getMethod())
3904    // A constructor we wouldn't select can't be "involved in initializing"
3905    // anything.
3906    return true;
3907  return SMOR->getMethod()->isConstexpr();
3908}
3909
3910/// Determine whether the specified special member function would be constexpr
3911/// if it were implicitly defined.
3912static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3913                                              Sema::CXXSpecialMember CSM,
3914                                              bool ConstArg) {
3915  if (!S.getLangOpts().CPlusPlus0x)
3916    return false;
3917
3918  // C++11 [dcl.constexpr]p4:
3919  // In the definition of a constexpr constructor [...]
3920  switch (CSM) {
3921  case Sema::CXXDefaultConstructor:
3922    // Since default constructor lookup is essentially trivial (and cannot
3923    // involve, for instance, template instantiation), we compute whether a
3924    // defaulted default constructor is constexpr directly within CXXRecordDecl.
3925    //
3926    // This is important for performance; we need to know whether the default
3927    // constructor is constexpr to determine whether the type is a literal type.
3928    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
3929
3930  case Sema::CXXCopyConstructor:
3931  case Sema::CXXMoveConstructor:
3932    // For copy or move constructors, we need to perform overload resolution.
3933    break;
3934
3935  case Sema::CXXCopyAssignment:
3936  case Sema::CXXMoveAssignment:
3937  case Sema::CXXDestructor:
3938  case Sema::CXXInvalid:
3939    return false;
3940  }
3941
3942  //   -- if the class is a non-empty union, or for each non-empty anonymous
3943  //      union member of a non-union class, exactly one non-static data member
3944  //      shall be initialized; [DR1359]
3945  //
3946  // If we squint, this is guaranteed, since exactly one non-static data member
3947  // will be initialized (if the constructor isn't deleted), we just don't know
3948  // which one.
3949  if (ClassDecl->isUnion())
3950    return true;
3951
3952  //   -- the class shall not have any virtual base classes;
3953  if (ClassDecl->getNumVBases())
3954    return false;
3955
3956  //   -- every constructor involved in initializing [...] base class
3957  //      sub-objects shall be a constexpr constructor;
3958  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
3959                                       BEnd = ClassDecl->bases_end();
3960       B != BEnd; ++B) {
3961    const RecordType *BaseType = B->getType()->getAs<RecordType>();
3962    if (!BaseType) continue;
3963
3964    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3965    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
3966      return false;
3967  }
3968
3969  //   -- every constructor involved in initializing non-static data members
3970  //      [...] shall be a constexpr constructor;
3971  //   -- every non-static data member and base class sub-object shall be
3972  //      initialized
3973  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
3974                               FEnd = ClassDecl->field_end();
3975       F != FEnd; ++F) {
3976    if (F->isInvalidDecl())
3977      continue;
3978    if (const RecordType *RecordTy =
3979            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
3980      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
3981      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
3982        return false;
3983    }
3984  }
3985
3986  // All OK, it's constexpr!
3987  return true;
3988}
3989
3990static Sema::ImplicitExceptionSpecification
3991computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
3992  switch (S.getSpecialMember(MD)) {
3993  case Sema::CXXDefaultConstructor:
3994    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
3995  case Sema::CXXCopyConstructor:
3996    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
3997  case Sema::CXXCopyAssignment:
3998    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
3999  case Sema::CXXMoveConstructor:
4000    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4001  case Sema::CXXMoveAssignment:
4002    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4003  case Sema::CXXDestructor:
4004    return S.ComputeDefaultedDtorExceptionSpec(MD);
4005  case Sema::CXXInvalid:
4006    break;
4007  }
4008  llvm_unreachable("only special members have implicit exception specs");
4009}
4010
4011static void
4012updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4013                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4014  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4015  ExceptSpec.getEPI(EPI);
4016  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4017    S.Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
4018                              FPT->getNumArgs(), EPI));
4019  FD->setType(QualType(NewFPT, 0));
4020}
4021
4022void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4023  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4024  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4025    return;
4026
4027  // Evaluate the exception specification.
4028  ImplicitExceptionSpecification ExceptSpec =
4029      computeImplicitExceptionSpec(*this, Loc, MD);
4030
4031  // Update the type of the special member to use it.
4032  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4033
4034  // A user-provided destructor can be defined outside the class. When that
4035  // happens, be sure to update the exception specification on both
4036  // declarations.
4037  const FunctionProtoType *CanonicalFPT =
4038    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4039  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4040    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4041                        CanonicalFPT, ExceptSpec);
4042}
4043
4044static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4045static bool isImplicitCopyAssignmentArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4046
4047void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4048  CXXRecordDecl *RD = MD->getParent();
4049  CXXSpecialMember CSM = getSpecialMember(MD);
4050
4051  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4052         "not an explicitly-defaulted special member");
4053
4054  // Whether this was the first-declared instance of the constructor.
4055  // This affects whether we implicitly add an exception spec and constexpr.
4056  bool First = MD == MD->getCanonicalDecl();
4057
4058  bool HadError = false;
4059
4060  // C++11 [dcl.fct.def.default]p1:
4061  //   A function that is explicitly defaulted shall
4062  //     -- be a special member function (checked elsewhere),
4063  //     -- have the same type (except for ref-qualifiers, and except that a
4064  //        copy operation can take a non-const reference) as an implicit
4065  //        declaration, and
4066  //     -- not have default arguments.
4067  unsigned ExpectedParams = 1;
4068  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4069    ExpectedParams = 0;
4070  if (MD->getNumParams() != ExpectedParams) {
4071    // This also checks for default arguments: a copy or move constructor with a
4072    // default argument is classified as a default constructor, and assignment
4073    // operations and destructors can't have default arguments.
4074    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4075      << CSM << MD->getSourceRange();
4076    HadError = true;
4077  }
4078
4079  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4080
4081  // Compute argument constness, constexpr, and triviality.
4082  bool CanHaveConstParam = false;
4083  bool Trivial;
4084  switch (CSM) {
4085  case CXXDefaultConstructor:
4086    Trivial = RD->hasTrivialDefaultConstructor();
4087    break;
4088  case CXXCopyConstructor:
4089    CanHaveConstParam = isImplicitCopyCtorArgConst(*this, RD);
4090    Trivial = RD->hasTrivialCopyConstructor();
4091    break;
4092  case CXXCopyAssignment:
4093    CanHaveConstParam = isImplicitCopyAssignmentArgConst(*this, RD);
4094    Trivial = RD->hasTrivialCopyAssignment();
4095    break;
4096  case CXXMoveConstructor:
4097    Trivial = RD->hasTrivialMoveConstructor();
4098    break;
4099  case CXXMoveAssignment:
4100    Trivial = RD->hasTrivialMoveAssignment();
4101    break;
4102  case CXXDestructor:
4103    Trivial = RD->hasTrivialDestructor();
4104    break;
4105  case CXXInvalid:
4106    llvm_unreachable("non-special member explicitly defaulted!");
4107  }
4108
4109  QualType ReturnType = Context.VoidTy;
4110  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4111    // Check for return type matching.
4112    ReturnType = Type->getResultType();
4113    QualType ExpectedReturnType =
4114        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4115    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4116      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4117        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4118      HadError = true;
4119    }
4120
4121    // A defaulted special member cannot have cv-qualifiers.
4122    if (Type->getTypeQuals()) {
4123      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4124        << (CSM == CXXMoveAssignment);
4125      HadError = true;
4126    }
4127  }
4128
4129  // Check for parameter type matching.
4130  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4131  bool HasConstParam = false;
4132  if (ExpectedParams && ArgType->isReferenceType()) {
4133    // Argument must be reference to possibly-const T.
4134    QualType ReferentType = ArgType->getPointeeType();
4135    HasConstParam = ReferentType.isConstQualified();
4136
4137    if (ReferentType.isVolatileQualified()) {
4138      Diag(MD->getLocation(),
4139           diag::err_defaulted_special_member_volatile_param) << CSM;
4140      HadError = true;
4141    }
4142
4143    if (HasConstParam && !CanHaveConstParam) {
4144      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4145        Diag(MD->getLocation(),
4146             diag::err_defaulted_special_member_copy_const_param)
4147          << (CSM == CXXCopyAssignment);
4148        // FIXME: Explain why this special member can't be const.
4149      } else {
4150        Diag(MD->getLocation(),
4151             diag::err_defaulted_special_member_move_const_param)
4152          << (CSM == CXXMoveAssignment);
4153      }
4154      HadError = true;
4155    }
4156
4157    // If a function is explicitly defaulted on its first declaration, it shall
4158    // have the same parameter type as if it had been implicitly declared.
4159    // (Presumably this is to prevent it from being trivial?)
4160    if (!HasConstParam && CanHaveConstParam && First)
4161      Diag(MD->getLocation(),
4162           diag::err_defaulted_special_member_copy_non_const_param)
4163        << (CSM == CXXCopyAssignment);
4164  } else if (ExpectedParams) {
4165    // A copy assignment operator can take its argument by value, but a
4166    // defaulted one cannot.
4167    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4168    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4169    HadError = true;
4170  }
4171
4172  // Rebuild the type with the implicit exception specification added, if we
4173  // are going to need it.
4174  const FunctionProtoType *ImplicitType = 0;
4175  if (First || Type->hasExceptionSpec()) {
4176    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4177    computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4178    ImplicitType = cast<FunctionProtoType>(
4179      Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4180  }
4181
4182  // C++11 [dcl.fct.def.default]p2:
4183  //   An explicitly-defaulted function may be declared constexpr only if it
4184  //   would have been implicitly declared as constexpr,
4185  // Do not apply this rule to members of class templates, since core issue 1358
4186  // makes such functions always instantiate to constexpr functions. For
4187  // non-constructors, this is checked elsewhere.
4188  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4189                                                     HasConstParam);
4190  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4191      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4192    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4193    // FIXME: Explain why the constructor can't be constexpr.
4194    HadError = true;
4195  }
4196  //   and may have an explicit exception-specification only if it is compatible
4197  //   with the exception-specification on the implicit declaration.
4198  if (Type->hasExceptionSpec() &&
4199      CheckEquivalentExceptionSpec(
4200        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4201        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4202    HadError = true;
4203
4204  //   If a function is explicitly defaulted on its first declaration,
4205  if (First) {
4206    //  -- it is implicitly considered to be constexpr if the implicit
4207    //     definition would be,
4208    MD->setConstexpr(Constexpr);
4209
4210    //  -- it is implicitly considered to have the same exception-specification
4211    //     as if it had been implicitly declared,
4212    MD->setType(QualType(ImplicitType, 0));
4213
4214    // Such a function is also trivial if the implicitly-declared function
4215    // would have been.
4216    MD->setTrivial(Trivial);
4217  }
4218
4219  if (ShouldDeleteSpecialMember(MD, CSM)) {
4220    if (First) {
4221      MD->setDeletedAsWritten();
4222    } else {
4223      // C++11 [dcl.fct.def.default]p4:
4224      //   [For a] user-provided explicitly-defaulted function [...] if such a
4225      //   function is implicitly defined as deleted, the program is ill-formed.
4226      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4227      HadError = true;
4228    }
4229  }
4230
4231  if (HadError)
4232    MD->setInvalidDecl();
4233}
4234
4235namespace {
4236struct SpecialMemberDeletionInfo {
4237  Sema &S;
4238  CXXMethodDecl *MD;
4239  Sema::CXXSpecialMember CSM;
4240  bool Diagnose;
4241
4242  // Properties of the special member, computed for convenience.
4243  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4244  SourceLocation Loc;
4245
4246  bool AllFieldsAreConst;
4247
4248  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4249                            Sema::CXXSpecialMember CSM, bool Diagnose)
4250    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4251      IsConstructor(false), IsAssignment(false), IsMove(false),
4252      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4253      AllFieldsAreConst(true) {
4254    switch (CSM) {
4255      case Sema::CXXDefaultConstructor:
4256      case Sema::CXXCopyConstructor:
4257        IsConstructor = true;
4258        break;
4259      case Sema::CXXMoveConstructor:
4260        IsConstructor = true;
4261        IsMove = true;
4262        break;
4263      case Sema::CXXCopyAssignment:
4264        IsAssignment = true;
4265        break;
4266      case Sema::CXXMoveAssignment:
4267        IsAssignment = true;
4268        IsMove = true;
4269        break;
4270      case Sema::CXXDestructor:
4271        break;
4272      case Sema::CXXInvalid:
4273        llvm_unreachable("invalid special member kind");
4274    }
4275
4276    if (MD->getNumParams()) {
4277      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4278      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4279    }
4280  }
4281
4282  bool inUnion() const { return MD->getParent()->isUnion(); }
4283
4284  /// Look up the corresponding special member in the given class.
4285  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4286                                              unsigned Quals) {
4287    unsigned TQ = MD->getTypeQualifiers();
4288    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4289    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4290      Quals = 0;
4291    return S.LookupSpecialMember(Class, CSM,
4292                                 ConstArg || (Quals & Qualifiers::Const),
4293                                 VolatileArg || (Quals & Qualifiers::Volatile),
4294                                 MD->getRefQualifier() == RQ_RValue,
4295                                 TQ & Qualifiers::Const,
4296                                 TQ & Qualifiers::Volatile);
4297  }
4298
4299  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4300
4301  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4302  bool shouldDeleteForField(FieldDecl *FD);
4303  bool shouldDeleteForAllConstMembers();
4304
4305  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4306                                     unsigned Quals);
4307  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4308                                    Sema::SpecialMemberOverloadResult *SMOR,
4309                                    bool IsDtorCallInCtor);
4310
4311  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4312};
4313}
4314
4315/// Is the given special member inaccessible when used on the given
4316/// sub-object.
4317bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4318                                             CXXMethodDecl *target) {
4319  /// If we're operating on a base class, the object type is the
4320  /// type of this special member.
4321  QualType objectTy;
4322  AccessSpecifier access = target->getAccess();;
4323  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4324    objectTy = S.Context.getTypeDeclType(MD->getParent());
4325    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4326
4327  // If we're operating on a field, the object type is the type of the field.
4328  } else {
4329    objectTy = S.Context.getTypeDeclType(target->getParent());
4330  }
4331
4332  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4333}
4334
4335/// Check whether we should delete a special member due to the implicit
4336/// definition containing a call to a special member of a subobject.
4337bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4338    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4339    bool IsDtorCallInCtor) {
4340  CXXMethodDecl *Decl = SMOR->getMethod();
4341  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4342
4343  int DiagKind = -1;
4344
4345  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4346    DiagKind = !Decl ? 0 : 1;
4347  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4348    DiagKind = 2;
4349  else if (!isAccessible(Subobj, Decl))
4350    DiagKind = 3;
4351  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4352           !Decl->isTrivial()) {
4353    // A member of a union must have a trivial corresponding special member.
4354    // As a weird special case, a destructor call from a union's constructor
4355    // must be accessible and non-deleted, but need not be trivial. Such a
4356    // destructor is never actually called, but is semantically checked as
4357    // if it were.
4358    DiagKind = 4;
4359  }
4360
4361  if (DiagKind == -1)
4362    return false;
4363
4364  if (Diagnose) {
4365    if (Field) {
4366      S.Diag(Field->getLocation(),
4367             diag::note_deleted_special_member_class_subobject)
4368        << CSM << MD->getParent() << /*IsField*/true
4369        << Field << DiagKind << IsDtorCallInCtor;
4370    } else {
4371      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4372      S.Diag(Base->getLocStart(),
4373             diag::note_deleted_special_member_class_subobject)
4374        << CSM << MD->getParent() << /*IsField*/false
4375        << Base->getType() << DiagKind << IsDtorCallInCtor;
4376    }
4377
4378    if (DiagKind == 1)
4379      S.NoteDeletedFunction(Decl);
4380    // FIXME: Explain inaccessibility if DiagKind == 3.
4381  }
4382
4383  return true;
4384}
4385
4386/// Check whether we should delete a special member function due to having a
4387/// direct or virtual base class or non-static data member of class type M.
4388bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4389    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4390  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4391
4392  // C++11 [class.ctor]p5:
4393  // -- any direct or virtual base class, or non-static data member with no
4394  //    brace-or-equal-initializer, has class type M (or array thereof) and
4395  //    either M has no default constructor or overload resolution as applied
4396  //    to M's default constructor results in an ambiguity or in a function
4397  //    that is deleted or inaccessible
4398  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4399  // -- a direct or virtual base class B that cannot be copied/moved because
4400  //    overload resolution, as applied to B's corresponding special member,
4401  //    results in an ambiguity or a function that is deleted or inaccessible
4402  //    from the defaulted special member
4403  // C++11 [class.dtor]p5:
4404  // -- any direct or virtual base class [...] has a type with a destructor
4405  //    that is deleted or inaccessible
4406  if (!(CSM == Sema::CXXDefaultConstructor &&
4407        Field && Field->hasInClassInitializer()) &&
4408      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4409    return true;
4410
4411  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4412  // -- any direct or virtual base class or non-static data member has a
4413  //    type with a destructor that is deleted or inaccessible
4414  if (IsConstructor) {
4415    Sema::SpecialMemberOverloadResult *SMOR =
4416        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4417                              false, false, false, false, false);
4418    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4419      return true;
4420  }
4421
4422  return false;
4423}
4424
4425/// Check whether we should delete a special member function due to the class
4426/// having a particular direct or virtual base class.
4427bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4428  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4429  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4430}
4431
4432/// Check whether we should delete a special member function due to the class
4433/// having a particular non-static data member.
4434bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4435  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4436  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4437
4438  if (CSM == Sema::CXXDefaultConstructor) {
4439    // For a default constructor, all references must be initialized in-class
4440    // and, if a union, it must have a non-const member.
4441    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4442      if (Diagnose)
4443        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4444          << MD->getParent() << FD << FieldType << /*Reference*/0;
4445      return true;
4446    }
4447    // C++11 [class.ctor]p5: any non-variant non-static data member of
4448    // const-qualified type (or array thereof) with no
4449    // brace-or-equal-initializer does not have a user-provided default
4450    // constructor.
4451    if (!inUnion() && FieldType.isConstQualified() &&
4452        !FD->hasInClassInitializer() &&
4453        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4454      if (Diagnose)
4455        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4456          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4457      return true;
4458    }
4459
4460    if (inUnion() && !FieldType.isConstQualified())
4461      AllFieldsAreConst = false;
4462  } else if (CSM == Sema::CXXCopyConstructor) {
4463    // For a copy constructor, data members must not be of rvalue reference
4464    // type.
4465    if (FieldType->isRValueReferenceType()) {
4466      if (Diagnose)
4467        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4468          << MD->getParent() << FD << FieldType;
4469      return true;
4470    }
4471  } else if (IsAssignment) {
4472    // For an assignment operator, data members must not be of reference type.
4473    if (FieldType->isReferenceType()) {
4474      if (Diagnose)
4475        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4476          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4477      return true;
4478    }
4479    if (!FieldRecord && FieldType.isConstQualified()) {
4480      // C++11 [class.copy]p23:
4481      // -- a non-static data member of const non-class type (or array thereof)
4482      if (Diagnose)
4483        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4484          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4485      return true;
4486    }
4487  }
4488
4489  if (FieldRecord) {
4490    // Some additional restrictions exist on the variant members.
4491    if (!inUnion() && FieldRecord->isUnion() &&
4492        FieldRecord->isAnonymousStructOrUnion()) {
4493      bool AllVariantFieldsAreConst = true;
4494
4495      // FIXME: Handle anonymous unions declared within anonymous unions.
4496      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4497                                         UE = FieldRecord->field_end();
4498           UI != UE; ++UI) {
4499        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4500
4501        if (!UnionFieldType.isConstQualified())
4502          AllVariantFieldsAreConst = false;
4503
4504        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4505        if (UnionFieldRecord &&
4506            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4507                                          UnionFieldType.getCVRQualifiers()))
4508          return true;
4509      }
4510
4511      // At least one member in each anonymous union must be non-const
4512      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4513          FieldRecord->field_begin() != FieldRecord->field_end()) {
4514        if (Diagnose)
4515          S.Diag(FieldRecord->getLocation(),
4516                 diag::note_deleted_default_ctor_all_const)
4517            << MD->getParent() << /*anonymous union*/1;
4518        return true;
4519      }
4520
4521      // Don't check the implicit member of the anonymous union type.
4522      // This is technically non-conformant, but sanity demands it.
4523      return false;
4524    }
4525
4526    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4527                                      FieldType.getCVRQualifiers()))
4528      return true;
4529  }
4530
4531  return false;
4532}
4533
4534/// C++11 [class.ctor] p5:
4535///   A defaulted default constructor for a class X is defined as deleted if
4536/// X is a union and all of its variant members are of const-qualified type.
4537bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4538  // This is a silly definition, because it gives an empty union a deleted
4539  // default constructor. Don't do that.
4540  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4541      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4542    if (Diagnose)
4543      S.Diag(MD->getParent()->getLocation(),
4544             diag::note_deleted_default_ctor_all_const)
4545        << MD->getParent() << /*not anonymous union*/0;
4546    return true;
4547  }
4548  return false;
4549}
4550
4551/// Determine whether a defaulted special member function should be defined as
4552/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4553/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4554bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4555                                     bool Diagnose) {
4556  if (MD->isInvalidDecl())
4557    return false;
4558  CXXRecordDecl *RD = MD->getParent();
4559  assert(!RD->isDependentType() && "do deletion after instantiation");
4560  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4561    return false;
4562
4563  // C++11 [expr.lambda.prim]p19:
4564  //   The closure type associated with a lambda-expression has a
4565  //   deleted (8.4.3) default constructor and a deleted copy
4566  //   assignment operator.
4567  if (RD->isLambda() &&
4568      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4569    if (Diagnose)
4570      Diag(RD->getLocation(), diag::note_lambda_decl);
4571    return true;
4572  }
4573
4574  // For an anonymous struct or union, the copy and assignment special members
4575  // will never be used, so skip the check. For an anonymous union declared at
4576  // namespace scope, the constructor and destructor are used.
4577  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4578      RD->isAnonymousStructOrUnion())
4579    return false;
4580
4581  // C++11 [class.copy]p7, p18:
4582  //   If the class definition declares a move constructor or move assignment
4583  //   operator, an implicitly declared copy constructor or copy assignment
4584  //   operator is defined as deleted.
4585  if (MD->isImplicit() &&
4586      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4587    CXXMethodDecl *UserDeclaredMove = 0;
4588
4589    // In Microsoft mode, a user-declared move only causes the deletion of the
4590    // corresponding copy operation, not both copy operations.
4591    if (RD->hasUserDeclaredMoveConstructor() &&
4592        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4593      if (!Diagnose) return true;
4594      UserDeclaredMove = RD->getMoveConstructor();
4595      assert(UserDeclaredMove);
4596    } else if (RD->hasUserDeclaredMoveAssignment() &&
4597               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4598      if (!Diagnose) return true;
4599      UserDeclaredMove = RD->getMoveAssignmentOperator();
4600      assert(UserDeclaredMove);
4601    }
4602
4603    if (UserDeclaredMove) {
4604      Diag(UserDeclaredMove->getLocation(),
4605           diag::note_deleted_copy_user_declared_move)
4606        << (CSM == CXXCopyAssignment) << RD
4607        << UserDeclaredMove->isMoveAssignmentOperator();
4608      return true;
4609    }
4610  }
4611
4612  // Do access control from the special member function
4613  ContextRAII MethodContext(*this, MD);
4614
4615  // C++11 [class.dtor]p5:
4616  // -- for a virtual destructor, lookup of the non-array deallocation function
4617  //    results in an ambiguity or in a function that is deleted or inaccessible
4618  if (CSM == CXXDestructor && MD->isVirtual()) {
4619    FunctionDecl *OperatorDelete = 0;
4620    DeclarationName Name =
4621      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4622    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4623                                 OperatorDelete, false)) {
4624      if (Diagnose)
4625        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4626      return true;
4627    }
4628  }
4629
4630  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4631
4632  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4633                                          BE = RD->bases_end(); BI != BE; ++BI)
4634    if (!BI->isVirtual() &&
4635        SMI.shouldDeleteForBase(BI))
4636      return true;
4637
4638  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4639                                          BE = RD->vbases_end(); BI != BE; ++BI)
4640    if (SMI.shouldDeleteForBase(BI))
4641      return true;
4642
4643  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4644                                     FE = RD->field_end(); FI != FE; ++FI)
4645    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4646        SMI.shouldDeleteForField(*FI))
4647      return true;
4648
4649  if (SMI.shouldDeleteForAllConstMembers())
4650    return true;
4651
4652  return false;
4653}
4654
4655/// \brief Data used with FindHiddenVirtualMethod
4656namespace {
4657  struct FindHiddenVirtualMethodData {
4658    Sema *S;
4659    CXXMethodDecl *Method;
4660    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4661    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4662  };
4663}
4664
4665/// \brief Member lookup function that determines whether a given C++
4666/// method overloads virtual methods in a base class without overriding any,
4667/// to be used with CXXRecordDecl::lookupInBases().
4668static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4669                                    CXXBasePath &Path,
4670                                    void *UserData) {
4671  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4672
4673  FindHiddenVirtualMethodData &Data
4674    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4675
4676  DeclarationName Name = Data.Method->getDeclName();
4677  assert(Name.getNameKind() == DeclarationName::Identifier);
4678
4679  bool foundSameNameMethod = false;
4680  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4681  for (Path.Decls = BaseRecord->lookup(Name);
4682       Path.Decls.first != Path.Decls.second;
4683       ++Path.Decls.first) {
4684    NamedDecl *D = *Path.Decls.first;
4685    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4686      MD = MD->getCanonicalDecl();
4687      foundSameNameMethod = true;
4688      // Interested only in hidden virtual methods.
4689      if (!MD->isVirtual())
4690        continue;
4691      // If the method we are checking overrides a method from its base
4692      // don't warn about the other overloaded methods.
4693      if (!Data.S->IsOverload(Data.Method, MD, false))
4694        return true;
4695      // Collect the overload only if its hidden.
4696      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4697        overloadedMethods.push_back(MD);
4698    }
4699  }
4700
4701  if (foundSameNameMethod)
4702    Data.OverloadedMethods.append(overloadedMethods.begin(),
4703                                   overloadedMethods.end());
4704  return foundSameNameMethod;
4705}
4706
4707/// \brief See if a method overloads virtual methods in a base class without
4708/// overriding any.
4709void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4710  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4711                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4712    return;
4713  if (!MD->getDeclName().isIdentifier())
4714    return;
4715
4716  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4717                     /*bool RecordPaths=*/false,
4718                     /*bool DetectVirtual=*/false);
4719  FindHiddenVirtualMethodData Data;
4720  Data.Method = MD;
4721  Data.S = this;
4722
4723  // Keep the base methods that were overriden or introduced in the subclass
4724  // by 'using' in a set. A base method not in this set is hidden.
4725  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4726       res.first != res.second; ++res.first) {
4727    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4728      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4729                                          E = MD->end_overridden_methods();
4730           I != E; ++I)
4731        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4732    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4733      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4734        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4735  }
4736
4737  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4738      !Data.OverloadedMethods.empty()) {
4739    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4740      << MD << (Data.OverloadedMethods.size() > 1);
4741
4742    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4743      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4744      Diag(overloadedMD->getLocation(),
4745           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4746    }
4747  }
4748}
4749
4750void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4751                                             Decl *TagDecl,
4752                                             SourceLocation LBrac,
4753                                             SourceLocation RBrac,
4754                                             AttributeList *AttrList) {
4755  if (!TagDecl)
4756    return;
4757
4758  AdjustDeclIfTemplate(TagDecl);
4759
4760  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4761    if (l->getKind() != AttributeList::AT_Visibility)
4762      continue;
4763    l->setInvalid();
4764    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
4765      l->getName();
4766  }
4767
4768  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4769              // strict aliasing violation!
4770              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4771              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4772
4773  CheckCompletedCXXClass(
4774                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4775}
4776
4777/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4778/// special functions, such as the default constructor, copy
4779/// constructor, or destructor, to the given C++ class (C++
4780/// [special]p1).  This routine can only be executed just before the
4781/// definition of the class is complete.
4782void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4783  if (!ClassDecl->hasUserDeclaredConstructor())
4784    ++ASTContext::NumImplicitDefaultConstructors;
4785
4786  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4787    ++ASTContext::NumImplicitCopyConstructors;
4788
4789  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4790    ++ASTContext::NumImplicitMoveConstructors;
4791
4792  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4793    ++ASTContext::NumImplicitCopyAssignmentOperators;
4794
4795    // If we have a dynamic class, then the copy assignment operator may be
4796    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4797    // it shows up in the right place in the vtable and that we diagnose
4798    // problems with the implicit exception specification.
4799    if (ClassDecl->isDynamicClass())
4800      DeclareImplicitCopyAssignment(ClassDecl);
4801  }
4802
4803  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4804    ++ASTContext::NumImplicitMoveAssignmentOperators;
4805
4806    // Likewise for the move assignment operator.
4807    if (ClassDecl->isDynamicClass())
4808      DeclareImplicitMoveAssignment(ClassDecl);
4809  }
4810
4811  if (!ClassDecl->hasUserDeclaredDestructor()) {
4812    ++ASTContext::NumImplicitDestructors;
4813
4814    // If we have a dynamic class, then the destructor may be virtual, so we
4815    // have to declare the destructor immediately. This ensures that, e.g., it
4816    // shows up in the right place in the vtable and that we diagnose problems
4817    // with the implicit exception specification.
4818    if (ClassDecl->isDynamicClass())
4819      DeclareImplicitDestructor(ClassDecl);
4820  }
4821}
4822
4823void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4824  if (!D)
4825    return;
4826
4827  int NumParamList = D->getNumTemplateParameterLists();
4828  for (int i = 0; i < NumParamList; i++) {
4829    TemplateParameterList* Params = D->getTemplateParameterList(i);
4830    for (TemplateParameterList::iterator Param = Params->begin(),
4831                                      ParamEnd = Params->end();
4832          Param != ParamEnd; ++Param) {
4833      NamedDecl *Named = cast<NamedDecl>(*Param);
4834      if (Named->getDeclName()) {
4835        S->AddDecl(Named);
4836        IdResolver.AddDecl(Named);
4837      }
4838    }
4839  }
4840}
4841
4842void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4843  if (!D)
4844    return;
4845
4846  TemplateParameterList *Params = 0;
4847  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4848    Params = Template->getTemplateParameters();
4849  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4850           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4851    Params = PartialSpec->getTemplateParameters();
4852  else
4853    return;
4854
4855  for (TemplateParameterList::iterator Param = Params->begin(),
4856                                    ParamEnd = Params->end();
4857       Param != ParamEnd; ++Param) {
4858    NamedDecl *Named = cast<NamedDecl>(*Param);
4859    if (Named->getDeclName()) {
4860      S->AddDecl(Named);
4861      IdResolver.AddDecl(Named);
4862    }
4863  }
4864}
4865
4866void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4867  if (!RecordD) return;
4868  AdjustDeclIfTemplate(RecordD);
4869  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4870  PushDeclContext(S, Record);
4871}
4872
4873void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4874  if (!RecordD) return;
4875  PopDeclContext();
4876}
4877
4878/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4879/// parsing a top-level (non-nested) C++ class, and we are now
4880/// parsing those parts of the given Method declaration that could
4881/// not be parsed earlier (C++ [class.mem]p2), such as default
4882/// arguments. This action should enter the scope of the given
4883/// Method declaration as if we had just parsed the qualified method
4884/// name. However, it should not bring the parameters into scope;
4885/// that will be performed by ActOnDelayedCXXMethodParameter.
4886void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4887}
4888
4889/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4890/// C++ method declaration. We're (re-)introducing the given
4891/// function parameter into scope for use in parsing later parts of
4892/// the method declaration. For example, we could see an
4893/// ActOnParamDefaultArgument event for this parameter.
4894void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4895  if (!ParamD)
4896    return;
4897
4898  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4899
4900  // If this parameter has an unparsed default argument, clear it out
4901  // to make way for the parsed default argument.
4902  if (Param->hasUnparsedDefaultArg())
4903    Param->setDefaultArg(0);
4904
4905  S->AddDecl(Param);
4906  if (Param->getDeclName())
4907    IdResolver.AddDecl(Param);
4908}
4909
4910/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4911/// processing the delayed method declaration for Method. The method
4912/// declaration is now considered finished. There may be a separate
4913/// ActOnStartOfFunctionDef action later (not necessarily
4914/// immediately!) for this method, if it was also defined inside the
4915/// class body.
4916void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4917  if (!MethodD)
4918    return;
4919
4920  AdjustDeclIfTemplate(MethodD);
4921
4922  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4923
4924  // Now that we have our default arguments, check the constructor
4925  // again. It could produce additional diagnostics or affect whether
4926  // the class has implicitly-declared destructors, among other
4927  // things.
4928  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4929    CheckConstructor(Constructor);
4930
4931  // Check the default arguments, which we may have added.
4932  if (!Method->isInvalidDecl())
4933    CheckCXXDefaultArguments(Method);
4934}
4935
4936/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4937/// the well-formedness of the constructor declarator @p D with type @p
4938/// R. If there are any errors in the declarator, this routine will
4939/// emit diagnostics and set the invalid bit to true.  In any case, the type
4940/// will be updated to reflect a well-formed type for the constructor and
4941/// returned.
4942QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4943                                          StorageClass &SC) {
4944  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4945
4946  // C++ [class.ctor]p3:
4947  //   A constructor shall not be virtual (10.3) or static (9.4). A
4948  //   constructor can be invoked for a const, volatile or const
4949  //   volatile object. A constructor shall not be declared const,
4950  //   volatile, or const volatile (9.3.2).
4951  if (isVirtual) {
4952    if (!D.isInvalidType())
4953      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4954        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4955        << SourceRange(D.getIdentifierLoc());
4956    D.setInvalidType();
4957  }
4958  if (SC == SC_Static) {
4959    if (!D.isInvalidType())
4960      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4961        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4962        << SourceRange(D.getIdentifierLoc());
4963    D.setInvalidType();
4964    SC = SC_None;
4965  }
4966
4967  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4968  if (FTI.TypeQuals != 0) {
4969    if (FTI.TypeQuals & Qualifiers::Const)
4970      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4971        << "const" << SourceRange(D.getIdentifierLoc());
4972    if (FTI.TypeQuals & Qualifiers::Volatile)
4973      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4974        << "volatile" << SourceRange(D.getIdentifierLoc());
4975    if (FTI.TypeQuals & Qualifiers::Restrict)
4976      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4977        << "restrict" << SourceRange(D.getIdentifierLoc());
4978    D.setInvalidType();
4979  }
4980
4981  // C++0x [class.ctor]p4:
4982  //   A constructor shall not be declared with a ref-qualifier.
4983  if (FTI.hasRefQualifier()) {
4984    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4985      << FTI.RefQualifierIsLValueRef
4986      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4987    D.setInvalidType();
4988  }
4989
4990  // Rebuild the function type "R" without any type qualifiers (in
4991  // case any of the errors above fired) and with "void" as the
4992  // return type, since constructors don't have return types.
4993  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4994  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4995    return R;
4996
4997  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4998  EPI.TypeQuals = 0;
4999  EPI.RefQualifier = RQ_None;
5000
5001  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5002                                 Proto->getNumArgs(), EPI);
5003}
5004
5005/// CheckConstructor - Checks a fully-formed constructor for
5006/// well-formedness, issuing any diagnostics required. Returns true if
5007/// the constructor declarator is invalid.
5008void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5009  CXXRecordDecl *ClassDecl
5010    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5011  if (!ClassDecl)
5012    return Constructor->setInvalidDecl();
5013
5014  // C++ [class.copy]p3:
5015  //   A declaration of a constructor for a class X is ill-formed if
5016  //   its first parameter is of type (optionally cv-qualified) X and
5017  //   either there are no other parameters or else all other
5018  //   parameters have default arguments.
5019  if (!Constructor->isInvalidDecl() &&
5020      ((Constructor->getNumParams() == 1) ||
5021       (Constructor->getNumParams() > 1 &&
5022        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5023      Constructor->getTemplateSpecializationKind()
5024                                              != TSK_ImplicitInstantiation) {
5025    QualType ParamType = Constructor->getParamDecl(0)->getType();
5026    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5027    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5028      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5029      const char *ConstRef
5030        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5031                                                        : " const &";
5032      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5033        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5034
5035      // FIXME: Rather that making the constructor invalid, we should endeavor
5036      // to fix the type.
5037      Constructor->setInvalidDecl();
5038    }
5039  }
5040}
5041
5042/// CheckDestructor - Checks a fully-formed destructor definition for
5043/// well-formedness, issuing any diagnostics required.  Returns true
5044/// on error.
5045bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5046  CXXRecordDecl *RD = Destructor->getParent();
5047
5048  if (Destructor->isVirtual()) {
5049    SourceLocation Loc;
5050
5051    if (!Destructor->isImplicit())
5052      Loc = Destructor->getLocation();
5053    else
5054      Loc = RD->getLocation();
5055
5056    // If we have a virtual destructor, look up the deallocation function
5057    FunctionDecl *OperatorDelete = 0;
5058    DeclarationName Name =
5059    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5060    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5061      return true;
5062
5063    MarkFunctionReferenced(Loc, OperatorDelete);
5064
5065    Destructor->setOperatorDelete(OperatorDelete);
5066  }
5067
5068  return false;
5069}
5070
5071static inline bool
5072FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5073  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5074          FTI.ArgInfo[0].Param &&
5075          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5076}
5077
5078/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5079/// the well-formednes of the destructor declarator @p D with type @p
5080/// R. If there are any errors in the declarator, this routine will
5081/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5082/// will be updated to reflect a well-formed type for the destructor and
5083/// returned.
5084QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5085                                         StorageClass& SC) {
5086  // C++ [class.dtor]p1:
5087  //   [...] A typedef-name that names a class is a class-name
5088  //   (7.1.3); however, a typedef-name that names a class shall not
5089  //   be used as the identifier in the declarator for a destructor
5090  //   declaration.
5091  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5092  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5093    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5094      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5095  else if (const TemplateSpecializationType *TST =
5096             DeclaratorType->getAs<TemplateSpecializationType>())
5097    if (TST->isTypeAlias())
5098      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5099        << DeclaratorType << 1;
5100
5101  // C++ [class.dtor]p2:
5102  //   A destructor is used to destroy objects of its class type. A
5103  //   destructor takes no parameters, and no return type can be
5104  //   specified for it (not even void). The address of a destructor
5105  //   shall not be taken. A destructor shall not be static. A
5106  //   destructor can be invoked for a const, volatile or const
5107  //   volatile object. A destructor shall not be declared const,
5108  //   volatile or const volatile (9.3.2).
5109  if (SC == SC_Static) {
5110    if (!D.isInvalidType())
5111      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5112        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5113        << SourceRange(D.getIdentifierLoc())
5114        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5115
5116    SC = SC_None;
5117  }
5118  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5119    // Destructors don't have return types, but the parser will
5120    // happily parse something like:
5121    //
5122    //   class X {
5123    //     float ~X();
5124    //   };
5125    //
5126    // The return type will be eliminated later.
5127    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5128      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5129      << SourceRange(D.getIdentifierLoc());
5130  }
5131
5132  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5133  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5134    if (FTI.TypeQuals & Qualifiers::Const)
5135      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5136        << "const" << SourceRange(D.getIdentifierLoc());
5137    if (FTI.TypeQuals & Qualifiers::Volatile)
5138      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5139        << "volatile" << SourceRange(D.getIdentifierLoc());
5140    if (FTI.TypeQuals & Qualifiers::Restrict)
5141      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5142        << "restrict" << SourceRange(D.getIdentifierLoc());
5143    D.setInvalidType();
5144  }
5145
5146  // C++0x [class.dtor]p2:
5147  //   A destructor shall not be declared with a ref-qualifier.
5148  if (FTI.hasRefQualifier()) {
5149    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5150      << FTI.RefQualifierIsLValueRef
5151      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5152    D.setInvalidType();
5153  }
5154
5155  // Make sure we don't have any parameters.
5156  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5157    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5158
5159    // Delete the parameters.
5160    FTI.freeArgs();
5161    D.setInvalidType();
5162  }
5163
5164  // Make sure the destructor isn't variadic.
5165  if (FTI.isVariadic) {
5166    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5167    D.setInvalidType();
5168  }
5169
5170  // Rebuild the function type "R" without any type qualifiers or
5171  // parameters (in case any of the errors above fired) and with
5172  // "void" as the return type, since destructors don't have return
5173  // types.
5174  if (!D.isInvalidType())
5175    return R;
5176
5177  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5178  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5179  EPI.Variadic = false;
5180  EPI.TypeQuals = 0;
5181  EPI.RefQualifier = RQ_None;
5182  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5183}
5184
5185/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5186/// well-formednes of the conversion function declarator @p D with
5187/// type @p R. If there are any errors in the declarator, this routine
5188/// will emit diagnostics and return true. Otherwise, it will return
5189/// false. Either way, the type @p R will be updated to reflect a
5190/// well-formed type for the conversion operator.
5191void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5192                                     StorageClass& SC) {
5193  // C++ [class.conv.fct]p1:
5194  //   Neither parameter types nor return type can be specified. The
5195  //   type of a conversion function (8.3.5) is "function taking no
5196  //   parameter returning conversion-type-id."
5197  if (SC == SC_Static) {
5198    if (!D.isInvalidType())
5199      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5200        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5201        << SourceRange(D.getIdentifierLoc());
5202    D.setInvalidType();
5203    SC = SC_None;
5204  }
5205
5206  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5207
5208  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5209    // Conversion functions don't have return types, but the parser will
5210    // happily parse something like:
5211    //
5212    //   class X {
5213    //     float operator bool();
5214    //   };
5215    //
5216    // The return type will be changed later anyway.
5217    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5218      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5219      << SourceRange(D.getIdentifierLoc());
5220    D.setInvalidType();
5221  }
5222
5223  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5224
5225  // Make sure we don't have any parameters.
5226  if (Proto->getNumArgs() > 0) {
5227    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5228
5229    // Delete the parameters.
5230    D.getFunctionTypeInfo().freeArgs();
5231    D.setInvalidType();
5232  } else if (Proto->isVariadic()) {
5233    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5234    D.setInvalidType();
5235  }
5236
5237  // Diagnose "&operator bool()" and other such nonsense.  This
5238  // is actually a gcc extension which we don't support.
5239  if (Proto->getResultType() != ConvType) {
5240    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5241      << Proto->getResultType();
5242    D.setInvalidType();
5243    ConvType = Proto->getResultType();
5244  }
5245
5246  // C++ [class.conv.fct]p4:
5247  //   The conversion-type-id shall not represent a function type nor
5248  //   an array type.
5249  if (ConvType->isArrayType()) {
5250    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5251    ConvType = Context.getPointerType(ConvType);
5252    D.setInvalidType();
5253  } else if (ConvType->isFunctionType()) {
5254    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5255    ConvType = Context.getPointerType(ConvType);
5256    D.setInvalidType();
5257  }
5258
5259  // Rebuild the function type "R" without any parameters (in case any
5260  // of the errors above fired) and with the conversion type as the
5261  // return type.
5262  if (D.isInvalidType())
5263    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5264
5265  // C++0x explicit conversion operators.
5266  if (D.getDeclSpec().isExplicitSpecified())
5267    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5268         getLangOpts().CPlusPlus0x ?
5269           diag::warn_cxx98_compat_explicit_conversion_functions :
5270           diag::ext_explicit_conversion_functions)
5271      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5272}
5273
5274/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5275/// the declaration of the given C++ conversion function. This routine
5276/// is responsible for recording the conversion function in the C++
5277/// class, if possible.
5278Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5279  assert(Conversion && "Expected to receive a conversion function declaration");
5280
5281  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5282
5283  // Make sure we aren't redeclaring the conversion function.
5284  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5285
5286  // C++ [class.conv.fct]p1:
5287  //   [...] A conversion function is never used to convert a
5288  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5289  //   same object type (or a reference to it), to a (possibly
5290  //   cv-qualified) base class of that type (or a reference to it),
5291  //   or to (possibly cv-qualified) void.
5292  // FIXME: Suppress this warning if the conversion function ends up being a
5293  // virtual function that overrides a virtual function in a base class.
5294  QualType ClassType
5295    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5296  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5297    ConvType = ConvTypeRef->getPointeeType();
5298  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5299      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5300    /* Suppress diagnostics for instantiations. */;
5301  else if (ConvType->isRecordType()) {
5302    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5303    if (ConvType == ClassType)
5304      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5305        << ClassType;
5306    else if (IsDerivedFrom(ClassType, ConvType))
5307      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5308        <<  ClassType << ConvType;
5309  } else if (ConvType->isVoidType()) {
5310    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5311      << ClassType << ConvType;
5312  }
5313
5314  if (FunctionTemplateDecl *ConversionTemplate
5315                                = Conversion->getDescribedFunctionTemplate())
5316    return ConversionTemplate;
5317
5318  return Conversion;
5319}
5320
5321//===----------------------------------------------------------------------===//
5322// Namespace Handling
5323//===----------------------------------------------------------------------===//
5324
5325
5326
5327/// ActOnStartNamespaceDef - This is called at the start of a namespace
5328/// definition.
5329Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5330                                   SourceLocation InlineLoc,
5331                                   SourceLocation NamespaceLoc,
5332                                   SourceLocation IdentLoc,
5333                                   IdentifierInfo *II,
5334                                   SourceLocation LBrace,
5335                                   AttributeList *AttrList) {
5336  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5337  // For anonymous namespace, take the location of the left brace.
5338  SourceLocation Loc = II ? IdentLoc : LBrace;
5339  bool IsInline = InlineLoc.isValid();
5340  bool IsInvalid = false;
5341  bool IsStd = false;
5342  bool AddToKnown = false;
5343  Scope *DeclRegionScope = NamespcScope->getParent();
5344
5345  NamespaceDecl *PrevNS = 0;
5346  if (II) {
5347    // C++ [namespace.def]p2:
5348    //   The identifier in an original-namespace-definition shall not
5349    //   have been previously defined in the declarative region in
5350    //   which the original-namespace-definition appears. The
5351    //   identifier in an original-namespace-definition is the name of
5352    //   the namespace. Subsequently in that declarative region, it is
5353    //   treated as an original-namespace-name.
5354    //
5355    // Since namespace names are unique in their scope, and we don't
5356    // look through using directives, just look for any ordinary names.
5357
5358    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5359    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5360    Decl::IDNS_Namespace;
5361    NamedDecl *PrevDecl = 0;
5362    for (DeclContext::lookup_result R
5363         = CurContext->getRedeclContext()->lookup(II);
5364         R.first != R.second; ++R.first) {
5365      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5366        PrevDecl = *R.first;
5367        break;
5368      }
5369    }
5370
5371    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5372
5373    if (PrevNS) {
5374      // This is an extended namespace definition.
5375      if (IsInline != PrevNS->isInline()) {
5376        // inline-ness must match
5377        if (PrevNS->isInline()) {
5378          // The user probably just forgot the 'inline', so suggest that it
5379          // be added back.
5380          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5381            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5382        } else {
5383          Diag(Loc, diag::err_inline_namespace_mismatch)
5384            << IsInline;
5385        }
5386        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5387
5388        IsInline = PrevNS->isInline();
5389      }
5390    } else if (PrevDecl) {
5391      // This is an invalid name redefinition.
5392      Diag(Loc, diag::err_redefinition_different_kind)
5393        << II;
5394      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5395      IsInvalid = true;
5396      // Continue on to push Namespc as current DeclContext and return it.
5397    } else if (II->isStr("std") &&
5398               CurContext->getRedeclContext()->isTranslationUnit()) {
5399      // This is the first "real" definition of the namespace "std", so update
5400      // our cache of the "std" namespace to point at this definition.
5401      PrevNS = getStdNamespace();
5402      IsStd = true;
5403      AddToKnown = !IsInline;
5404    } else {
5405      // We've seen this namespace for the first time.
5406      AddToKnown = !IsInline;
5407    }
5408  } else {
5409    // Anonymous namespaces.
5410
5411    // Determine whether the parent already has an anonymous namespace.
5412    DeclContext *Parent = CurContext->getRedeclContext();
5413    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5414      PrevNS = TU->getAnonymousNamespace();
5415    } else {
5416      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5417      PrevNS = ND->getAnonymousNamespace();
5418    }
5419
5420    if (PrevNS && IsInline != PrevNS->isInline()) {
5421      // inline-ness must match
5422      Diag(Loc, diag::err_inline_namespace_mismatch)
5423        << IsInline;
5424      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5425
5426      // Recover by ignoring the new namespace's inline status.
5427      IsInline = PrevNS->isInline();
5428    }
5429  }
5430
5431  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5432                                                 StartLoc, Loc, II, PrevNS);
5433  if (IsInvalid)
5434    Namespc->setInvalidDecl();
5435
5436  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5437
5438  // FIXME: Should we be merging attributes?
5439  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5440    PushNamespaceVisibilityAttr(Attr, Loc);
5441
5442  if (IsStd)
5443    StdNamespace = Namespc;
5444  if (AddToKnown)
5445    KnownNamespaces[Namespc] = false;
5446
5447  if (II) {
5448    PushOnScopeChains(Namespc, DeclRegionScope);
5449  } else {
5450    // Link the anonymous namespace into its parent.
5451    DeclContext *Parent = CurContext->getRedeclContext();
5452    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5453      TU->setAnonymousNamespace(Namespc);
5454    } else {
5455      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5456    }
5457
5458    CurContext->addDecl(Namespc);
5459
5460    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5461    //   behaves as if it were replaced by
5462    //     namespace unique { /* empty body */ }
5463    //     using namespace unique;
5464    //     namespace unique { namespace-body }
5465    //   where all occurrences of 'unique' in a translation unit are
5466    //   replaced by the same identifier and this identifier differs
5467    //   from all other identifiers in the entire program.
5468
5469    // We just create the namespace with an empty name and then add an
5470    // implicit using declaration, just like the standard suggests.
5471    //
5472    // CodeGen enforces the "universally unique" aspect by giving all
5473    // declarations semantically contained within an anonymous
5474    // namespace internal linkage.
5475
5476    if (!PrevNS) {
5477      UsingDirectiveDecl* UD
5478        = UsingDirectiveDecl::Create(Context, CurContext,
5479                                     /* 'using' */ LBrace,
5480                                     /* 'namespace' */ SourceLocation(),
5481                                     /* qualifier */ NestedNameSpecifierLoc(),
5482                                     /* identifier */ SourceLocation(),
5483                                     Namespc,
5484                                     /* Ancestor */ CurContext);
5485      UD->setImplicit();
5486      CurContext->addDecl(UD);
5487    }
5488  }
5489
5490  ActOnDocumentableDecl(Namespc);
5491
5492  // Although we could have an invalid decl (i.e. the namespace name is a
5493  // redefinition), push it as current DeclContext and try to continue parsing.
5494  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5495  // for the namespace has the declarations that showed up in that particular
5496  // namespace definition.
5497  PushDeclContext(NamespcScope, Namespc);
5498  return Namespc;
5499}
5500
5501/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5502/// is a namespace alias, returns the namespace it points to.
5503static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5504  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5505    return AD->getNamespace();
5506  return dyn_cast_or_null<NamespaceDecl>(D);
5507}
5508
5509/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5510/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5511void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5512  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5513  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5514  Namespc->setRBraceLoc(RBrace);
5515  PopDeclContext();
5516  if (Namespc->hasAttr<VisibilityAttr>())
5517    PopPragmaVisibility(true, RBrace);
5518}
5519
5520CXXRecordDecl *Sema::getStdBadAlloc() const {
5521  return cast_or_null<CXXRecordDecl>(
5522                                  StdBadAlloc.get(Context.getExternalSource()));
5523}
5524
5525NamespaceDecl *Sema::getStdNamespace() const {
5526  return cast_or_null<NamespaceDecl>(
5527                                 StdNamespace.get(Context.getExternalSource()));
5528}
5529
5530/// \brief Retrieve the special "std" namespace, which may require us to
5531/// implicitly define the namespace.
5532NamespaceDecl *Sema::getOrCreateStdNamespace() {
5533  if (!StdNamespace) {
5534    // The "std" namespace has not yet been defined, so build one implicitly.
5535    StdNamespace = NamespaceDecl::Create(Context,
5536                                         Context.getTranslationUnitDecl(),
5537                                         /*Inline=*/false,
5538                                         SourceLocation(), SourceLocation(),
5539                                         &PP.getIdentifierTable().get("std"),
5540                                         /*PrevDecl=*/0);
5541    getStdNamespace()->setImplicit(true);
5542  }
5543
5544  return getStdNamespace();
5545}
5546
5547bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5548  assert(getLangOpts().CPlusPlus &&
5549         "Looking for std::initializer_list outside of C++.");
5550
5551  // We're looking for implicit instantiations of
5552  // template <typename E> class std::initializer_list.
5553
5554  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5555    return false;
5556
5557  ClassTemplateDecl *Template = 0;
5558  const TemplateArgument *Arguments = 0;
5559
5560  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5561
5562    ClassTemplateSpecializationDecl *Specialization =
5563        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5564    if (!Specialization)
5565      return false;
5566
5567    Template = Specialization->getSpecializedTemplate();
5568    Arguments = Specialization->getTemplateArgs().data();
5569  } else if (const TemplateSpecializationType *TST =
5570                 Ty->getAs<TemplateSpecializationType>()) {
5571    Template = dyn_cast_or_null<ClassTemplateDecl>(
5572        TST->getTemplateName().getAsTemplateDecl());
5573    Arguments = TST->getArgs();
5574  }
5575  if (!Template)
5576    return false;
5577
5578  if (!StdInitializerList) {
5579    // Haven't recognized std::initializer_list yet, maybe this is it.
5580    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5581    if (TemplateClass->getIdentifier() !=
5582            &PP.getIdentifierTable().get("initializer_list") ||
5583        !getStdNamespace()->InEnclosingNamespaceSetOf(
5584            TemplateClass->getDeclContext()))
5585      return false;
5586    // This is a template called std::initializer_list, but is it the right
5587    // template?
5588    TemplateParameterList *Params = Template->getTemplateParameters();
5589    if (Params->getMinRequiredArguments() != 1)
5590      return false;
5591    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5592      return false;
5593
5594    // It's the right template.
5595    StdInitializerList = Template;
5596  }
5597
5598  if (Template != StdInitializerList)
5599    return false;
5600
5601  // This is an instance of std::initializer_list. Find the argument type.
5602  if (Element)
5603    *Element = Arguments[0].getAsType();
5604  return true;
5605}
5606
5607static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5608  NamespaceDecl *Std = S.getStdNamespace();
5609  if (!Std) {
5610    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5611    return 0;
5612  }
5613
5614  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5615                      Loc, Sema::LookupOrdinaryName);
5616  if (!S.LookupQualifiedName(Result, Std)) {
5617    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5618    return 0;
5619  }
5620  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5621  if (!Template) {
5622    Result.suppressDiagnostics();
5623    // We found something weird. Complain about the first thing we found.
5624    NamedDecl *Found = *Result.begin();
5625    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5626    return 0;
5627  }
5628
5629  // We found some template called std::initializer_list. Now verify that it's
5630  // correct.
5631  TemplateParameterList *Params = Template->getTemplateParameters();
5632  if (Params->getMinRequiredArguments() != 1 ||
5633      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5634    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5635    return 0;
5636  }
5637
5638  return Template;
5639}
5640
5641QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5642  if (!StdInitializerList) {
5643    StdInitializerList = LookupStdInitializerList(*this, Loc);
5644    if (!StdInitializerList)
5645      return QualType();
5646  }
5647
5648  TemplateArgumentListInfo Args(Loc, Loc);
5649  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5650                                       Context.getTrivialTypeSourceInfo(Element,
5651                                                                        Loc)));
5652  return Context.getCanonicalType(
5653      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5654}
5655
5656bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5657  // C++ [dcl.init.list]p2:
5658  //   A constructor is an initializer-list constructor if its first parameter
5659  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5660  //   std::initializer_list<E> for some type E, and either there are no other
5661  //   parameters or else all other parameters have default arguments.
5662  if (Ctor->getNumParams() < 1 ||
5663      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5664    return false;
5665
5666  QualType ArgType = Ctor->getParamDecl(0)->getType();
5667  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5668    ArgType = RT->getPointeeType().getUnqualifiedType();
5669
5670  return isStdInitializerList(ArgType, 0);
5671}
5672
5673/// \brief Determine whether a using statement is in a context where it will be
5674/// apply in all contexts.
5675static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5676  switch (CurContext->getDeclKind()) {
5677    case Decl::TranslationUnit:
5678      return true;
5679    case Decl::LinkageSpec:
5680      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5681    default:
5682      return false;
5683  }
5684}
5685
5686namespace {
5687
5688// Callback to only accept typo corrections that are namespaces.
5689class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5690 public:
5691  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5692    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5693      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5694    }
5695    return false;
5696  }
5697};
5698
5699}
5700
5701static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5702                                       CXXScopeSpec &SS,
5703                                       SourceLocation IdentLoc,
5704                                       IdentifierInfo *Ident) {
5705  NamespaceValidatorCCC Validator;
5706  R.clear();
5707  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5708                                               R.getLookupKind(), Sc, &SS,
5709                                               Validator)) {
5710    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5711    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5712    if (DeclContext *DC = S.computeDeclContext(SS, false))
5713      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5714        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5715        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5716    else
5717      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5718        << Ident << CorrectedQuotedStr
5719        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5720
5721    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5722         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5723
5724    R.addDecl(Corrected.getCorrectionDecl());
5725    return true;
5726  }
5727  return false;
5728}
5729
5730Decl *Sema::ActOnUsingDirective(Scope *S,
5731                                          SourceLocation UsingLoc,
5732                                          SourceLocation NamespcLoc,
5733                                          CXXScopeSpec &SS,
5734                                          SourceLocation IdentLoc,
5735                                          IdentifierInfo *NamespcName,
5736                                          AttributeList *AttrList) {
5737  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5738  assert(NamespcName && "Invalid NamespcName.");
5739  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5740
5741  // This can only happen along a recovery path.
5742  while (S->getFlags() & Scope::TemplateParamScope)
5743    S = S->getParent();
5744  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5745
5746  UsingDirectiveDecl *UDir = 0;
5747  NestedNameSpecifier *Qualifier = 0;
5748  if (SS.isSet())
5749    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5750
5751  // Lookup namespace name.
5752  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5753  LookupParsedName(R, S, &SS);
5754  if (R.isAmbiguous())
5755    return 0;
5756
5757  if (R.empty()) {
5758    R.clear();
5759    // Allow "using namespace std;" or "using namespace ::std;" even if
5760    // "std" hasn't been defined yet, for GCC compatibility.
5761    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5762        NamespcName->isStr("std")) {
5763      Diag(IdentLoc, diag::ext_using_undefined_std);
5764      R.addDecl(getOrCreateStdNamespace());
5765      R.resolveKind();
5766    }
5767    // Otherwise, attempt typo correction.
5768    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5769  }
5770
5771  if (!R.empty()) {
5772    NamedDecl *Named = R.getFoundDecl();
5773    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5774        && "expected namespace decl");
5775    // C++ [namespace.udir]p1:
5776    //   A using-directive specifies that the names in the nominated
5777    //   namespace can be used in the scope in which the
5778    //   using-directive appears after the using-directive. During
5779    //   unqualified name lookup (3.4.1), the names appear as if they
5780    //   were declared in the nearest enclosing namespace which
5781    //   contains both the using-directive and the nominated
5782    //   namespace. [Note: in this context, "contains" means "contains
5783    //   directly or indirectly". ]
5784
5785    // Find enclosing context containing both using-directive and
5786    // nominated namespace.
5787    NamespaceDecl *NS = getNamespaceDecl(Named);
5788    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5789    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5790      CommonAncestor = CommonAncestor->getParent();
5791
5792    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5793                                      SS.getWithLocInContext(Context),
5794                                      IdentLoc, Named, CommonAncestor);
5795
5796    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5797        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5798      Diag(IdentLoc, diag::warn_using_directive_in_header);
5799    }
5800
5801    PushUsingDirective(S, UDir);
5802  } else {
5803    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5804  }
5805
5806  // FIXME: We ignore attributes for now.
5807  return UDir;
5808}
5809
5810void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5811  // If the scope has an associated entity and the using directive is at
5812  // namespace or translation unit scope, add the UsingDirectiveDecl into
5813  // its lookup structure so qualified name lookup can find it.
5814  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5815  if (Ctx && !Ctx->isFunctionOrMethod())
5816    Ctx->addDecl(UDir);
5817  else
5818    // Otherwise, it is at block sope. The using-directives will affect lookup
5819    // only to the end of the scope.
5820    S->PushUsingDirective(UDir);
5821}
5822
5823
5824Decl *Sema::ActOnUsingDeclaration(Scope *S,
5825                                  AccessSpecifier AS,
5826                                  bool HasUsingKeyword,
5827                                  SourceLocation UsingLoc,
5828                                  CXXScopeSpec &SS,
5829                                  UnqualifiedId &Name,
5830                                  AttributeList *AttrList,
5831                                  bool IsTypeName,
5832                                  SourceLocation TypenameLoc) {
5833  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5834
5835  switch (Name.getKind()) {
5836  case UnqualifiedId::IK_ImplicitSelfParam:
5837  case UnqualifiedId::IK_Identifier:
5838  case UnqualifiedId::IK_OperatorFunctionId:
5839  case UnqualifiedId::IK_LiteralOperatorId:
5840  case UnqualifiedId::IK_ConversionFunctionId:
5841    break;
5842
5843  case UnqualifiedId::IK_ConstructorName:
5844  case UnqualifiedId::IK_ConstructorTemplateId:
5845    // C++11 inheriting constructors.
5846    Diag(Name.getLocStart(),
5847         getLangOpts().CPlusPlus0x ?
5848           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5849           //        instead once inheriting constructors work.
5850           diag::err_using_decl_constructor_unsupported :
5851           diag::err_using_decl_constructor)
5852      << SS.getRange();
5853
5854    if (getLangOpts().CPlusPlus0x) break;
5855
5856    return 0;
5857
5858  case UnqualifiedId::IK_DestructorName:
5859    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5860      << SS.getRange();
5861    return 0;
5862
5863  case UnqualifiedId::IK_TemplateId:
5864    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5865      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5866    return 0;
5867  }
5868
5869  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5870  DeclarationName TargetName = TargetNameInfo.getName();
5871  if (!TargetName)
5872    return 0;
5873
5874  // Warn about using declarations.
5875  // TODO: store that the declaration was written without 'using' and
5876  // talk about access decls instead of using decls in the
5877  // diagnostics.
5878  if (!HasUsingKeyword) {
5879    UsingLoc = Name.getLocStart();
5880
5881    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5882      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5883  }
5884
5885  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5886      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5887    return 0;
5888
5889  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5890                                        TargetNameInfo, AttrList,
5891                                        /* IsInstantiation */ false,
5892                                        IsTypeName, TypenameLoc);
5893  if (UD)
5894    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5895
5896  return UD;
5897}
5898
5899/// \brief Determine whether a using declaration considers the given
5900/// declarations as "equivalent", e.g., if they are redeclarations of
5901/// the same entity or are both typedefs of the same type.
5902static bool
5903IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5904                         bool &SuppressRedeclaration) {
5905  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5906    SuppressRedeclaration = false;
5907    return true;
5908  }
5909
5910  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5911    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5912      SuppressRedeclaration = true;
5913      return Context.hasSameType(TD1->getUnderlyingType(),
5914                                 TD2->getUnderlyingType());
5915    }
5916
5917  return false;
5918}
5919
5920
5921/// Determines whether to create a using shadow decl for a particular
5922/// decl, given the set of decls existing prior to this using lookup.
5923bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5924                                const LookupResult &Previous) {
5925  // Diagnose finding a decl which is not from a base class of the
5926  // current class.  We do this now because there are cases where this
5927  // function will silently decide not to build a shadow decl, which
5928  // will pre-empt further diagnostics.
5929  //
5930  // We don't need to do this in C++0x because we do the check once on
5931  // the qualifier.
5932  //
5933  // FIXME: diagnose the following if we care enough:
5934  //   struct A { int foo; };
5935  //   struct B : A { using A::foo; };
5936  //   template <class T> struct C : A {};
5937  //   template <class T> struct D : C<T> { using B::foo; } // <---
5938  // This is invalid (during instantiation) in C++03 because B::foo
5939  // resolves to the using decl in B, which is not a base class of D<T>.
5940  // We can't diagnose it immediately because C<T> is an unknown
5941  // specialization.  The UsingShadowDecl in D<T> then points directly
5942  // to A::foo, which will look well-formed when we instantiate.
5943  // The right solution is to not collapse the shadow-decl chain.
5944  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5945    DeclContext *OrigDC = Orig->getDeclContext();
5946
5947    // Handle enums and anonymous structs.
5948    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5949    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5950    while (OrigRec->isAnonymousStructOrUnion())
5951      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5952
5953    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5954      if (OrigDC == CurContext) {
5955        Diag(Using->getLocation(),
5956             diag::err_using_decl_nested_name_specifier_is_current_class)
5957          << Using->getQualifierLoc().getSourceRange();
5958        Diag(Orig->getLocation(), diag::note_using_decl_target);
5959        return true;
5960      }
5961
5962      Diag(Using->getQualifierLoc().getBeginLoc(),
5963           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5964        << Using->getQualifier()
5965        << cast<CXXRecordDecl>(CurContext)
5966        << Using->getQualifierLoc().getSourceRange();
5967      Diag(Orig->getLocation(), diag::note_using_decl_target);
5968      return true;
5969    }
5970  }
5971
5972  if (Previous.empty()) return false;
5973
5974  NamedDecl *Target = Orig;
5975  if (isa<UsingShadowDecl>(Target))
5976    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5977
5978  // If the target happens to be one of the previous declarations, we
5979  // don't have a conflict.
5980  //
5981  // FIXME: but we might be increasing its access, in which case we
5982  // should redeclare it.
5983  NamedDecl *NonTag = 0, *Tag = 0;
5984  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5985         I != E; ++I) {
5986    NamedDecl *D = (*I)->getUnderlyingDecl();
5987    bool Result;
5988    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5989      return Result;
5990
5991    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5992  }
5993
5994  if (Target->isFunctionOrFunctionTemplate()) {
5995    FunctionDecl *FD;
5996    if (isa<FunctionTemplateDecl>(Target))
5997      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5998    else
5999      FD = cast<FunctionDecl>(Target);
6000
6001    NamedDecl *OldDecl = 0;
6002    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6003    case Ovl_Overload:
6004      return false;
6005
6006    case Ovl_NonFunction:
6007      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6008      break;
6009
6010    // We found a decl with the exact signature.
6011    case Ovl_Match:
6012      // If we're in a record, we want to hide the target, so we
6013      // return true (without a diagnostic) to tell the caller not to
6014      // build a shadow decl.
6015      if (CurContext->isRecord())
6016        return true;
6017
6018      // If we're not in a record, this is an error.
6019      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6020      break;
6021    }
6022
6023    Diag(Target->getLocation(), diag::note_using_decl_target);
6024    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6025    return true;
6026  }
6027
6028  // Target is not a function.
6029
6030  if (isa<TagDecl>(Target)) {
6031    // No conflict between a tag and a non-tag.
6032    if (!Tag) return false;
6033
6034    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6035    Diag(Target->getLocation(), diag::note_using_decl_target);
6036    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6037    return true;
6038  }
6039
6040  // No conflict between a tag and a non-tag.
6041  if (!NonTag) return false;
6042
6043  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6044  Diag(Target->getLocation(), diag::note_using_decl_target);
6045  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6046  return true;
6047}
6048
6049/// Builds a shadow declaration corresponding to a 'using' declaration.
6050UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6051                                            UsingDecl *UD,
6052                                            NamedDecl *Orig) {
6053
6054  // If we resolved to another shadow declaration, just coalesce them.
6055  NamedDecl *Target = Orig;
6056  if (isa<UsingShadowDecl>(Target)) {
6057    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6058    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6059  }
6060
6061  UsingShadowDecl *Shadow
6062    = UsingShadowDecl::Create(Context, CurContext,
6063                              UD->getLocation(), UD, Target);
6064  UD->addShadowDecl(Shadow);
6065
6066  Shadow->setAccess(UD->getAccess());
6067  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6068    Shadow->setInvalidDecl();
6069
6070  if (S)
6071    PushOnScopeChains(Shadow, S);
6072  else
6073    CurContext->addDecl(Shadow);
6074
6075
6076  return Shadow;
6077}
6078
6079/// Hides a using shadow declaration.  This is required by the current
6080/// using-decl implementation when a resolvable using declaration in a
6081/// class is followed by a declaration which would hide or override
6082/// one or more of the using decl's targets; for example:
6083///
6084///   struct Base { void foo(int); };
6085///   struct Derived : Base {
6086///     using Base::foo;
6087///     void foo(int);
6088///   };
6089///
6090/// The governing language is C++03 [namespace.udecl]p12:
6091///
6092///   When a using-declaration brings names from a base class into a
6093///   derived class scope, member functions in the derived class
6094///   override and/or hide member functions with the same name and
6095///   parameter types in a base class (rather than conflicting).
6096///
6097/// There are two ways to implement this:
6098///   (1) optimistically create shadow decls when they're not hidden
6099///       by existing declarations, or
6100///   (2) don't create any shadow decls (or at least don't make them
6101///       visible) until we've fully parsed/instantiated the class.
6102/// The problem with (1) is that we might have to retroactively remove
6103/// a shadow decl, which requires several O(n) operations because the
6104/// decl structures are (very reasonably) not designed for removal.
6105/// (2) avoids this but is very fiddly and phase-dependent.
6106void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6107  if (Shadow->getDeclName().getNameKind() ==
6108        DeclarationName::CXXConversionFunctionName)
6109    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6110
6111  // Remove it from the DeclContext...
6112  Shadow->getDeclContext()->removeDecl(Shadow);
6113
6114  // ...and the scope, if applicable...
6115  if (S) {
6116    S->RemoveDecl(Shadow);
6117    IdResolver.RemoveDecl(Shadow);
6118  }
6119
6120  // ...and the using decl.
6121  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6122
6123  // TODO: complain somehow if Shadow was used.  It shouldn't
6124  // be possible for this to happen, because...?
6125}
6126
6127/// Builds a using declaration.
6128///
6129/// \param IsInstantiation - Whether this call arises from an
6130///   instantiation of an unresolved using declaration.  We treat
6131///   the lookup differently for these declarations.
6132NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6133                                       SourceLocation UsingLoc,
6134                                       CXXScopeSpec &SS,
6135                                       const DeclarationNameInfo &NameInfo,
6136                                       AttributeList *AttrList,
6137                                       bool IsInstantiation,
6138                                       bool IsTypeName,
6139                                       SourceLocation TypenameLoc) {
6140  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6141  SourceLocation IdentLoc = NameInfo.getLoc();
6142  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6143
6144  // FIXME: We ignore attributes for now.
6145
6146  if (SS.isEmpty()) {
6147    Diag(IdentLoc, diag::err_using_requires_qualname);
6148    return 0;
6149  }
6150
6151  // Do the redeclaration lookup in the current scope.
6152  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6153                        ForRedeclaration);
6154  Previous.setHideTags(false);
6155  if (S) {
6156    LookupName(Previous, S);
6157
6158    // It is really dumb that we have to do this.
6159    LookupResult::Filter F = Previous.makeFilter();
6160    while (F.hasNext()) {
6161      NamedDecl *D = F.next();
6162      if (!isDeclInScope(D, CurContext, S))
6163        F.erase();
6164    }
6165    F.done();
6166  } else {
6167    assert(IsInstantiation && "no scope in non-instantiation");
6168    assert(CurContext->isRecord() && "scope not record in instantiation");
6169    LookupQualifiedName(Previous, CurContext);
6170  }
6171
6172  // Check for invalid redeclarations.
6173  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6174    return 0;
6175
6176  // Check for bad qualifiers.
6177  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6178    return 0;
6179
6180  DeclContext *LookupContext = computeDeclContext(SS);
6181  NamedDecl *D;
6182  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6183  if (!LookupContext) {
6184    if (IsTypeName) {
6185      // FIXME: not all declaration name kinds are legal here
6186      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6187                                              UsingLoc, TypenameLoc,
6188                                              QualifierLoc,
6189                                              IdentLoc, NameInfo.getName());
6190    } else {
6191      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6192                                           QualifierLoc, NameInfo);
6193    }
6194  } else {
6195    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6196                          NameInfo, IsTypeName);
6197  }
6198  D->setAccess(AS);
6199  CurContext->addDecl(D);
6200
6201  if (!LookupContext) return D;
6202  UsingDecl *UD = cast<UsingDecl>(D);
6203
6204  if (RequireCompleteDeclContext(SS, LookupContext)) {
6205    UD->setInvalidDecl();
6206    return UD;
6207  }
6208
6209  // The normal rules do not apply to inheriting constructor declarations.
6210  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6211    if (CheckInheritingConstructorUsingDecl(UD))
6212      UD->setInvalidDecl();
6213    return UD;
6214  }
6215
6216  // Otherwise, look up the target name.
6217
6218  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6219
6220  // Unlike most lookups, we don't always want to hide tag
6221  // declarations: tag names are visible through the using declaration
6222  // even if hidden by ordinary names, *except* in a dependent context
6223  // where it's important for the sanity of two-phase lookup.
6224  if (!IsInstantiation)
6225    R.setHideTags(false);
6226
6227  // For the purposes of this lookup, we have a base object type
6228  // equal to that of the current context.
6229  if (CurContext->isRecord()) {
6230    R.setBaseObjectType(
6231                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6232  }
6233
6234  LookupQualifiedName(R, LookupContext);
6235
6236  if (R.empty()) {
6237    Diag(IdentLoc, diag::err_no_member)
6238      << NameInfo.getName() << LookupContext << SS.getRange();
6239    UD->setInvalidDecl();
6240    return UD;
6241  }
6242
6243  if (R.isAmbiguous()) {
6244    UD->setInvalidDecl();
6245    return UD;
6246  }
6247
6248  if (IsTypeName) {
6249    // If we asked for a typename and got a non-type decl, error out.
6250    if (!R.getAsSingle<TypeDecl>()) {
6251      Diag(IdentLoc, diag::err_using_typename_non_type);
6252      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6253        Diag((*I)->getUnderlyingDecl()->getLocation(),
6254             diag::note_using_decl_target);
6255      UD->setInvalidDecl();
6256      return UD;
6257    }
6258  } else {
6259    // If we asked for a non-typename and we got a type, error out,
6260    // but only if this is an instantiation of an unresolved using
6261    // decl.  Otherwise just silently find the type name.
6262    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6263      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6264      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6265      UD->setInvalidDecl();
6266      return UD;
6267    }
6268  }
6269
6270  // C++0x N2914 [namespace.udecl]p6:
6271  // A using-declaration shall not name a namespace.
6272  if (R.getAsSingle<NamespaceDecl>()) {
6273    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6274      << SS.getRange();
6275    UD->setInvalidDecl();
6276    return UD;
6277  }
6278
6279  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6280    if (!CheckUsingShadowDecl(UD, *I, Previous))
6281      BuildUsingShadowDecl(S, UD, *I);
6282  }
6283
6284  return UD;
6285}
6286
6287/// Additional checks for a using declaration referring to a constructor name.
6288bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6289  assert(!UD->isTypeName() && "expecting a constructor name");
6290
6291  const Type *SourceType = UD->getQualifier()->getAsType();
6292  assert(SourceType &&
6293         "Using decl naming constructor doesn't have type in scope spec.");
6294  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6295
6296  // Check whether the named type is a direct base class.
6297  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6298  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6299  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6300       BaseIt != BaseE; ++BaseIt) {
6301    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6302    if (CanonicalSourceType == BaseType)
6303      break;
6304    if (BaseIt->getType()->isDependentType())
6305      break;
6306  }
6307
6308  if (BaseIt == BaseE) {
6309    // Did not find SourceType in the bases.
6310    Diag(UD->getUsingLocation(),
6311         diag::err_using_decl_constructor_not_in_direct_base)
6312      << UD->getNameInfo().getSourceRange()
6313      << QualType(SourceType, 0) << TargetClass;
6314    return true;
6315  }
6316
6317  if (!CurContext->isDependentContext())
6318    BaseIt->setInheritConstructors();
6319
6320  return false;
6321}
6322
6323/// Checks that the given using declaration is not an invalid
6324/// redeclaration.  Note that this is checking only for the using decl
6325/// itself, not for any ill-formedness among the UsingShadowDecls.
6326bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6327                                       bool isTypeName,
6328                                       const CXXScopeSpec &SS,
6329                                       SourceLocation NameLoc,
6330                                       const LookupResult &Prev) {
6331  // C++03 [namespace.udecl]p8:
6332  // C++0x [namespace.udecl]p10:
6333  //   A using-declaration is a declaration and can therefore be used
6334  //   repeatedly where (and only where) multiple declarations are
6335  //   allowed.
6336  //
6337  // That's in non-member contexts.
6338  if (!CurContext->getRedeclContext()->isRecord())
6339    return false;
6340
6341  NestedNameSpecifier *Qual
6342    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6343
6344  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6345    NamedDecl *D = *I;
6346
6347    bool DTypename;
6348    NestedNameSpecifier *DQual;
6349    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6350      DTypename = UD->isTypeName();
6351      DQual = UD->getQualifier();
6352    } else if (UnresolvedUsingValueDecl *UD
6353                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6354      DTypename = false;
6355      DQual = UD->getQualifier();
6356    } else if (UnresolvedUsingTypenameDecl *UD
6357                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6358      DTypename = true;
6359      DQual = UD->getQualifier();
6360    } else continue;
6361
6362    // using decls differ if one says 'typename' and the other doesn't.
6363    // FIXME: non-dependent using decls?
6364    if (isTypeName != DTypename) continue;
6365
6366    // using decls differ if they name different scopes (but note that
6367    // template instantiation can cause this check to trigger when it
6368    // didn't before instantiation).
6369    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6370        Context.getCanonicalNestedNameSpecifier(DQual))
6371      continue;
6372
6373    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6374    Diag(D->getLocation(), diag::note_using_decl) << 1;
6375    return true;
6376  }
6377
6378  return false;
6379}
6380
6381
6382/// Checks that the given nested-name qualifier used in a using decl
6383/// in the current context is appropriately related to the current
6384/// scope.  If an error is found, diagnoses it and returns true.
6385bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6386                                   const CXXScopeSpec &SS,
6387                                   SourceLocation NameLoc) {
6388  DeclContext *NamedContext = computeDeclContext(SS);
6389
6390  if (!CurContext->isRecord()) {
6391    // C++03 [namespace.udecl]p3:
6392    // C++0x [namespace.udecl]p8:
6393    //   A using-declaration for a class member shall be a member-declaration.
6394
6395    // If we weren't able to compute a valid scope, it must be a
6396    // dependent class scope.
6397    if (!NamedContext || NamedContext->isRecord()) {
6398      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6399        << SS.getRange();
6400      return true;
6401    }
6402
6403    // Otherwise, everything is known to be fine.
6404    return false;
6405  }
6406
6407  // The current scope is a record.
6408
6409  // If the named context is dependent, we can't decide much.
6410  if (!NamedContext) {
6411    // FIXME: in C++0x, we can diagnose if we can prove that the
6412    // nested-name-specifier does not refer to a base class, which is
6413    // still possible in some cases.
6414
6415    // Otherwise we have to conservatively report that things might be
6416    // okay.
6417    return false;
6418  }
6419
6420  if (!NamedContext->isRecord()) {
6421    // Ideally this would point at the last name in the specifier,
6422    // but we don't have that level of source info.
6423    Diag(SS.getRange().getBegin(),
6424         diag::err_using_decl_nested_name_specifier_is_not_class)
6425      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6426    return true;
6427  }
6428
6429  if (!NamedContext->isDependentContext() &&
6430      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6431    return true;
6432
6433  if (getLangOpts().CPlusPlus0x) {
6434    // C++0x [namespace.udecl]p3:
6435    //   In a using-declaration used as a member-declaration, the
6436    //   nested-name-specifier shall name a base class of the class
6437    //   being defined.
6438
6439    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6440                                 cast<CXXRecordDecl>(NamedContext))) {
6441      if (CurContext == NamedContext) {
6442        Diag(NameLoc,
6443             diag::err_using_decl_nested_name_specifier_is_current_class)
6444          << SS.getRange();
6445        return true;
6446      }
6447
6448      Diag(SS.getRange().getBegin(),
6449           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6450        << (NestedNameSpecifier*) SS.getScopeRep()
6451        << cast<CXXRecordDecl>(CurContext)
6452        << SS.getRange();
6453      return true;
6454    }
6455
6456    return false;
6457  }
6458
6459  // C++03 [namespace.udecl]p4:
6460  //   A using-declaration used as a member-declaration shall refer
6461  //   to a member of a base class of the class being defined [etc.].
6462
6463  // Salient point: SS doesn't have to name a base class as long as
6464  // lookup only finds members from base classes.  Therefore we can
6465  // diagnose here only if we can prove that that can't happen,
6466  // i.e. if the class hierarchies provably don't intersect.
6467
6468  // TODO: it would be nice if "definitely valid" results were cached
6469  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6470  // need to be repeated.
6471
6472  struct UserData {
6473    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6474
6475    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6476      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6477      Data->Bases.insert(Base);
6478      return true;
6479    }
6480
6481    bool hasDependentBases(const CXXRecordDecl *Class) {
6482      return !Class->forallBases(collect, this);
6483    }
6484
6485    /// Returns true if the base is dependent or is one of the
6486    /// accumulated base classes.
6487    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6488      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6489      return !Data->Bases.count(Base);
6490    }
6491
6492    bool mightShareBases(const CXXRecordDecl *Class) {
6493      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6494    }
6495  };
6496
6497  UserData Data;
6498
6499  // Returns false if we find a dependent base.
6500  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6501    return false;
6502
6503  // Returns false if the class has a dependent base or if it or one
6504  // of its bases is present in the base set of the current context.
6505  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6506    return false;
6507
6508  Diag(SS.getRange().getBegin(),
6509       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6510    << (NestedNameSpecifier*) SS.getScopeRep()
6511    << cast<CXXRecordDecl>(CurContext)
6512    << SS.getRange();
6513
6514  return true;
6515}
6516
6517Decl *Sema::ActOnAliasDeclaration(Scope *S,
6518                                  AccessSpecifier AS,
6519                                  MultiTemplateParamsArg TemplateParamLists,
6520                                  SourceLocation UsingLoc,
6521                                  UnqualifiedId &Name,
6522                                  TypeResult Type) {
6523  // Skip up to the relevant declaration scope.
6524  while (S->getFlags() & Scope::TemplateParamScope)
6525    S = S->getParent();
6526  assert((S->getFlags() & Scope::DeclScope) &&
6527         "got alias-declaration outside of declaration scope");
6528
6529  if (Type.isInvalid())
6530    return 0;
6531
6532  bool Invalid = false;
6533  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6534  TypeSourceInfo *TInfo = 0;
6535  GetTypeFromParser(Type.get(), &TInfo);
6536
6537  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6538    return 0;
6539
6540  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6541                                      UPPC_DeclarationType)) {
6542    Invalid = true;
6543    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6544                                             TInfo->getTypeLoc().getBeginLoc());
6545  }
6546
6547  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6548  LookupName(Previous, S);
6549
6550  // Warn about shadowing the name of a template parameter.
6551  if (Previous.isSingleResult() &&
6552      Previous.getFoundDecl()->isTemplateParameter()) {
6553    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6554    Previous.clear();
6555  }
6556
6557  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6558         "name in alias declaration must be an identifier");
6559  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6560                                               Name.StartLocation,
6561                                               Name.Identifier, TInfo);
6562
6563  NewTD->setAccess(AS);
6564
6565  if (Invalid)
6566    NewTD->setInvalidDecl();
6567
6568  CheckTypedefForVariablyModifiedType(S, NewTD);
6569  Invalid |= NewTD->isInvalidDecl();
6570
6571  bool Redeclaration = false;
6572
6573  NamedDecl *NewND;
6574  if (TemplateParamLists.size()) {
6575    TypeAliasTemplateDecl *OldDecl = 0;
6576    TemplateParameterList *OldTemplateParams = 0;
6577
6578    if (TemplateParamLists.size() != 1) {
6579      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6580        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
6581         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
6582    }
6583    TemplateParameterList *TemplateParams = TemplateParamLists[0];
6584
6585    // Only consider previous declarations in the same scope.
6586    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6587                         /*ExplicitInstantiationOrSpecialization*/false);
6588    if (!Previous.empty()) {
6589      Redeclaration = true;
6590
6591      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6592      if (!OldDecl && !Invalid) {
6593        Diag(UsingLoc, diag::err_redefinition_different_kind)
6594          << Name.Identifier;
6595
6596        NamedDecl *OldD = Previous.getRepresentativeDecl();
6597        if (OldD->getLocation().isValid())
6598          Diag(OldD->getLocation(), diag::note_previous_definition);
6599
6600        Invalid = true;
6601      }
6602
6603      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6604        if (TemplateParameterListsAreEqual(TemplateParams,
6605                                           OldDecl->getTemplateParameters(),
6606                                           /*Complain=*/true,
6607                                           TPL_TemplateMatch))
6608          OldTemplateParams = OldDecl->getTemplateParameters();
6609        else
6610          Invalid = true;
6611
6612        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6613        if (!Invalid &&
6614            !Context.hasSameType(OldTD->getUnderlyingType(),
6615                                 NewTD->getUnderlyingType())) {
6616          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6617          // but we can't reasonably accept it.
6618          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6619            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6620          if (OldTD->getLocation().isValid())
6621            Diag(OldTD->getLocation(), diag::note_previous_definition);
6622          Invalid = true;
6623        }
6624      }
6625    }
6626
6627    // Merge any previous default template arguments into our parameters,
6628    // and check the parameter list.
6629    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6630                                   TPC_TypeAliasTemplate))
6631      return 0;
6632
6633    TypeAliasTemplateDecl *NewDecl =
6634      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6635                                    Name.Identifier, TemplateParams,
6636                                    NewTD);
6637
6638    NewDecl->setAccess(AS);
6639
6640    if (Invalid)
6641      NewDecl->setInvalidDecl();
6642    else if (OldDecl)
6643      NewDecl->setPreviousDeclaration(OldDecl);
6644
6645    NewND = NewDecl;
6646  } else {
6647    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6648    NewND = NewTD;
6649  }
6650
6651  if (!Redeclaration)
6652    PushOnScopeChains(NewND, S);
6653
6654  ActOnDocumentableDecl(NewND);
6655  return NewND;
6656}
6657
6658Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6659                                             SourceLocation NamespaceLoc,
6660                                             SourceLocation AliasLoc,
6661                                             IdentifierInfo *Alias,
6662                                             CXXScopeSpec &SS,
6663                                             SourceLocation IdentLoc,
6664                                             IdentifierInfo *Ident) {
6665
6666  // Lookup the namespace name.
6667  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6668  LookupParsedName(R, S, &SS);
6669
6670  // Check if we have a previous declaration with the same name.
6671  NamedDecl *PrevDecl
6672    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6673                       ForRedeclaration);
6674  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6675    PrevDecl = 0;
6676
6677  if (PrevDecl) {
6678    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6679      // We already have an alias with the same name that points to the same
6680      // namespace, so don't create a new one.
6681      // FIXME: At some point, we'll want to create the (redundant)
6682      // declaration to maintain better source information.
6683      if (!R.isAmbiguous() && !R.empty() &&
6684          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6685        return 0;
6686    }
6687
6688    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6689      diag::err_redefinition_different_kind;
6690    Diag(AliasLoc, DiagID) << Alias;
6691    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6692    return 0;
6693  }
6694
6695  if (R.isAmbiguous())
6696    return 0;
6697
6698  if (R.empty()) {
6699    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6700      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6701      return 0;
6702    }
6703  }
6704
6705  NamespaceAliasDecl *AliasDecl =
6706    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6707                               Alias, SS.getWithLocInContext(Context),
6708                               IdentLoc, R.getFoundDecl());
6709
6710  PushOnScopeChains(AliasDecl, S);
6711  return AliasDecl;
6712}
6713
6714namespace {
6715  /// \brief Scoped object used to handle the state changes required in Sema
6716  /// to implicitly define the body of a C++ member function;
6717  class ImplicitlyDefinedFunctionScope {
6718    Sema &S;
6719    Sema::ContextRAII SavedContext;
6720
6721  public:
6722    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6723      : S(S), SavedContext(S, Method)
6724    {
6725      S.PushFunctionScope();
6726      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6727    }
6728
6729    ~ImplicitlyDefinedFunctionScope() {
6730      S.PopExpressionEvaluationContext();
6731      S.PopFunctionScopeInfo();
6732    }
6733  };
6734}
6735
6736Sema::ImplicitExceptionSpecification
6737Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
6738                                               CXXMethodDecl *MD) {
6739  CXXRecordDecl *ClassDecl = MD->getParent();
6740
6741  // C++ [except.spec]p14:
6742  //   An implicitly declared special member function (Clause 12) shall have an
6743  //   exception-specification. [...]
6744  ImplicitExceptionSpecification ExceptSpec(*this);
6745  if (ClassDecl->isInvalidDecl())
6746    return ExceptSpec;
6747
6748  // Direct base-class constructors.
6749  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6750                                       BEnd = ClassDecl->bases_end();
6751       B != BEnd; ++B) {
6752    if (B->isVirtual()) // Handled below.
6753      continue;
6754
6755    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6756      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6757      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6758      // If this is a deleted function, add it anyway. This might be conformant
6759      // with the standard. This might not. I'm not sure. It might not matter.
6760      if (Constructor)
6761        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6762    }
6763  }
6764
6765  // Virtual base-class constructors.
6766  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6767                                       BEnd = ClassDecl->vbases_end();
6768       B != BEnd; ++B) {
6769    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6770      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6771      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6772      // If this is a deleted function, add it anyway. This might be conformant
6773      // with the standard. This might not. I'm not sure. It might not matter.
6774      if (Constructor)
6775        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6776    }
6777  }
6778
6779  // Field constructors.
6780  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6781                               FEnd = ClassDecl->field_end();
6782       F != FEnd; ++F) {
6783    if (F->hasInClassInitializer()) {
6784      if (Expr *E = F->getInClassInitializer())
6785        ExceptSpec.CalledExpr(E);
6786      else if (!F->isInvalidDecl())
6787        // DR1351:
6788        //   If the brace-or-equal-initializer of a non-static data member
6789        //   invokes a defaulted default constructor of its class or of an
6790        //   enclosing class in a potentially evaluated subexpression, the
6791        //   program is ill-formed.
6792        //
6793        // This resolution is unworkable: the exception specification of the
6794        // default constructor can be needed in an unevaluated context, in
6795        // particular, in the operand of a noexcept-expression, and we can be
6796        // unable to compute an exception specification for an enclosed class.
6797        //
6798        // We do not allow an in-class initializer to require the evaluation
6799        // of the exception specification for any in-class initializer whose
6800        // definition is not lexically complete.
6801        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
6802    } else if (const RecordType *RecordTy
6803              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6804      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6805      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6806      // If this is a deleted function, add it anyway. This might be conformant
6807      // with the standard. This might not. I'm not sure. It might not matter.
6808      // In particular, the problem is that this function never gets called. It
6809      // might just be ill-formed because this function attempts to refer to
6810      // a deleted function here.
6811      if (Constructor)
6812        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6813    }
6814  }
6815
6816  return ExceptSpec;
6817}
6818
6819CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6820                                                     CXXRecordDecl *ClassDecl) {
6821  // C++ [class.ctor]p5:
6822  //   A default constructor for a class X is a constructor of class X
6823  //   that can be called without an argument. If there is no
6824  //   user-declared constructor for class X, a default constructor is
6825  //   implicitly declared. An implicitly-declared default constructor
6826  //   is an inline public member of its class.
6827  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6828         "Should not build implicit default constructor!");
6829
6830  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6831                                                     CXXDefaultConstructor,
6832                                                     false);
6833
6834  // Create the actual constructor declaration.
6835  CanQualType ClassType
6836    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6837  SourceLocation ClassLoc = ClassDecl->getLocation();
6838  DeclarationName Name
6839    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6840  DeclarationNameInfo NameInfo(Name, ClassLoc);
6841  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6842      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
6843      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6844      Constexpr);
6845  DefaultCon->setAccess(AS_public);
6846  DefaultCon->setDefaulted();
6847  DefaultCon->setImplicit();
6848  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6849
6850  // Build an exception specification pointing back at this constructor.
6851  FunctionProtoType::ExtProtoInfo EPI;
6852  EPI.ExceptionSpecType = EST_Unevaluated;
6853  EPI.ExceptionSpecDecl = DefaultCon;
6854  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6855
6856  // Note that we have declared this constructor.
6857  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6858
6859  if (Scope *S = getScopeForContext(ClassDecl))
6860    PushOnScopeChains(DefaultCon, S, false);
6861  ClassDecl->addDecl(DefaultCon);
6862
6863  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6864    DefaultCon->setDeletedAsWritten();
6865
6866  return DefaultCon;
6867}
6868
6869void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6870                                            CXXConstructorDecl *Constructor) {
6871  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6872          !Constructor->doesThisDeclarationHaveABody() &&
6873          !Constructor->isDeleted()) &&
6874    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6875
6876  CXXRecordDecl *ClassDecl = Constructor->getParent();
6877  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6878
6879  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6880  DiagnosticErrorTrap Trap(Diags);
6881  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6882      Trap.hasErrorOccurred()) {
6883    Diag(CurrentLocation, diag::note_member_synthesized_at)
6884      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6885    Constructor->setInvalidDecl();
6886    return;
6887  }
6888
6889  SourceLocation Loc = Constructor->getLocation();
6890  Constructor->setBody(new (Context) CompoundStmt(Loc));
6891
6892  Constructor->setUsed();
6893  MarkVTableUsed(CurrentLocation, ClassDecl);
6894
6895  if (ASTMutationListener *L = getASTMutationListener()) {
6896    L->CompletedImplicitDefinition(Constructor);
6897  }
6898}
6899
6900void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6901  if (!D) return;
6902  AdjustDeclIfTemplate(D);
6903
6904  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6905
6906  if (!ClassDecl->isDependentType())
6907    CheckExplicitlyDefaultedMethods(ClassDecl);
6908}
6909
6910void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6911  // We start with an initial pass over the base classes to collect those that
6912  // inherit constructors from. If there are none, we can forgo all further
6913  // processing.
6914  typedef SmallVector<const RecordType *, 4> BasesVector;
6915  BasesVector BasesToInheritFrom;
6916  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6917                                          BaseE = ClassDecl->bases_end();
6918         BaseIt != BaseE; ++BaseIt) {
6919    if (BaseIt->getInheritConstructors()) {
6920      QualType Base = BaseIt->getType();
6921      if (Base->isDependentType()) {
6922        // If we inherit constructors from anything that is dependent, just
6923        // abort processing altogether. We'll get another chance for the
6924        // instantiations.
6925        return;
6926      }
6927      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6928    }
6929  }
6930  if (BasesToInheritFrom.empty())
6931    return;
6932
6933  // Now collect the constructors that we already have in the current class.
6934  // Those take precedence over inherited constructors.
6935  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6936  //   unless there is a user-declared constructor with the same signature in
6937  //   the class where the using-declaration appears.
6938  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6939  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6940                                    CtorE = ClassDecl->ctor_end();
6941       CtorIt != CtorE; ++CtorIt) {
6942    ExistingConstructors.insert(
6943        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6944  }
6945
6946  DeclarationName CreatedCtorName =
6947      Context.DeclarationNames.getCXXConstructorName(
6948          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6949
6950  // Now comes the true work.
6951  // First, we keep a map from constructor types to the base that introduced
6952  // them. Needed for finding conflicting constructors. We also keep the
6953  // actually inserted declarations in there, for pretty diagnostics.
6954  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6955  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6956  ConstructorToSourceMap InheritedConstructors;
6957  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6958                             BaseE = BasesToInheritFrom.end();
6959       BaseIt != BaseE; ++BaseIt) {
6960    const RecordType *Base = *BaseIt;
6961    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6962    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6963    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6964                                      CtorE = BaseDecl->ctor_end();
6965         CtorIt != CtorE; ++CtorIt) {
6966      // Find the using declaration for inheriting this base's constructors.
6967      // FIXME: Don't perform name lookup just to obtain a source location!
6968      DeclarationName Name =
6969          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6970      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6971      LookupQualifiedName(Result, CurContext);
6972      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6973      SourceLocation UsingLoc = UD ? UD->getLocation() :
6974                                     ClassDecl->getLocation();
6975
6976      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6977      //   from the class X named in the using-declaration consists of actual
6978      //   constructors and notional constructors that result from the
6979      //   transformation of defaulted parameters as follows:
6980      //   - all non-template default constructors of X, and
6981      //   - for each non-template constructor of X that has at least one
6982      //     parameter with a default argument, the set of constructors that
6983      //     results from omitting any ellipsis parameter specification and
6984      //     successively omitting parameters with a default argument from the
6985      //     end of the parameter-type-list.
6986      CXXConstructorDecl *BaseCtor = *CtorIt;
6987      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6988      const FunctionProtoType *BaseCtorType =
6989          BaseCtor->getType()->getAs<FunctionProtoType>();
6990
6991      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6992                    maxParams = BaseCtor->getNumParams();
6993           params <= maxParams; ++params) {
6994        // Skip default constructors. They're never inherited.
6995        if (params == 0)
6996          continue;
6997        // Skip copy and move constructors for the same reason.
6998        if (CanBeCopyOrMove && params == 1)
6999          continue;
7000
7001        // Build up a function type for this particular constructor.
7002        // FIXME: The working paper does not consider that the exception spec
7003        // for the inheriting constructor might be larger than that of the
7004        // source. This code doesn't yet, either. When it does, this code will
7005        // need to be delayed until after exception specifications and in-class
7006        // member initializers are attached.
7007        const Type *NewCtorType;
7008        if (params == maxParams)
7009          NewCtorType = BaseCtorType;
7010        else {
7011          SmallVector<QualType, 16> Args;
7012          for (unsigned i = 0; i < params; ++i) {
7013            Args.push_back(BaseCtorType->getArgType(i));
7014          }
7015          FunctionProtoType::ExtProtoInfo ExtInfo =
7016              BaseCtorType->getExtProtoInfo();
7017          ExtInfo.Variadic = false;
7018          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7019                                                Args.data(), params, ExtInfo)
7020                       .getTypePtr();
7021        }
7022        const Type *CanonicalNewCtorType =
7023            Context.getCanonicalType(NewCtorType);
7024
7025        // Now that we have the type, first check if the class already has a
7026        // constructor with this signature.
7027        if (ExistingConstructors.count(CanonicalNewCtorType))
7028          continue;
7029
7030        // Then we check if we have already declared an inherited constructor
7031        // with this signature.
7032        std::pair<ConstructorToSourceMap::iterator, bool> result =
7033            InheritedConstructors.insert(std::make_pair(
7034                CanonicalNewCtorType,
7035                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7036        if (!result.second) {
7037          // Already in the map. If it came from a different class, that's an
7038          // error. Not if it's from the same.
7039          CanQualType PreviousBase = result.first->second.first;
7040          if (CanonicalBase != PreviousBase) {
7041            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7042            const CXXConstructorDecl *PrevBaseCtor =
7043                PrevCtor->getInheritedConstructor();
7044            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7045
7046            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7047            Diag(BaseCtor->getLocation(),
7048                 diag::note_using_decl_constructor_conflict_current_ctor);
7049            Diag(PrevBaseCtor->getLocation(),
7050                 diag::note_using_decl_constructor_conflict_previous_ctor);
7051            Diag(PrevCtor->getLocation(),
7052                 diag::note_using_decl_constructor_conflict_previous_using);
7053          }
7054          continue;
7055        }
7056
7057        // OK, we're there, now add the constructor.
7058        // C++0x [class.inhctor]p8: [...] that would be performed by a
7059        //   user-written inline constructor [...]
7060        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7061        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7062            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7063            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7064            /*ImplicitlyDeclared=*/true,
7065            // FIXME: Due to a defect in the standard, we treat inherited
7066            // constructors as constexpr even if that makes them ill-formed.
7067            /*Constexpr=*/BaseCtor->isConstexpr());
7068        NewCtor->setAccess(BaseCtor->getAccess());
7069
7070        // Build up the parameter decls and add them.
7071        SmallVector<ParmVarDecl *, 16> ParamDecls;
7072        for (unsigned i = 0; i < params; ++i) {
7073          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7074                                                   UsingLoc, UsingLoc,
7075                                                   /*IdentifierInfo=*/0,
7076                                                   BaseCtorType->getArgType(i),
7077                                                   /*TInfo=*/0, SC_None,
7078                                                   SC_None, /*DefaultArg=*/0));
7079        }
7080        NewCtor->setParams(ParamDecls);
7081        NewCtor->setInheritedConstructor(BaseCtor);
7082
7083        ClassDecl->addDecl(NewCtor);
7084        result.first->second.second = NewCtor;
7085      }
7086    }
7087  }
7088}
7089
7090Sema::ImplicitExceptionSpecification
7091Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7092  CXXRecordDecl *ClassDecl = MD->getParent();
7093
7094  // C++ [except.spec]p14:
7095  //   An implicitly declared special member function (Clause 12) shall have
7096  //   an exception-specification.
7097  ImplicitExceptionSpecification ExceptSpec(*this);
7098  if (ClassDecl->isInvalidDecl())
7099    return ExceptSpec;
7100
7101  // Direct base-class destructors.
7102  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7103                                       BEnd = ClassDecl->bases_end();
7104       B != BEnd; ++B) {
7105    if (B->isVirtual()) // Handled below.
7106      continue;
7107
7108    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7109      ExceptSpec.CalledDecl(B->getLocStart(),
7110                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7111  }
7112
7113  // Virtual base-class destructors.
7114  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7115                                       BEnd = ClassDecl->vbases_end();
7116       B != BEnd; ++B) {
7117    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7118      ExceptSpec.CalledDecl(B->getLocStart(),
7119                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7120  }
7121
7122  // Field destructors.
7123  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7124                               FEnd = ClassDecl->field_end();
7125       F != FEnd; ++F) {
7126    if (const RecordType *RecordTy
7127        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7128      ExceptSpec.CalledDecl(F->getLocation(),
7129                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7130  }
7131
7132  return ExceptSpec;
7133}
7134
7135CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7136  // C++ [class.dtor]p2:
7137  //   If a class has no user-declared destructor, a destructor is
7138  //   declared implicitly. An implicitly-declared destructor is an
7139  //   inline public member of its class.
7140
7141  // Create the actual destructor declaration.
7142  CanQualType ClassType
7143    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7144  SourceLocation ClassLoc = ClassDecl->getLocation();
7145  DeclarationName Name
7146    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7147  DeclarationNameInfo NameInfo(Name, ClassLoc);
7148  CXXDestructorDecl *Destructor
7149      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7150                                  QualType(), 0, /*isInline=*/true,
7151                                  /*isImplicitlyDeclared=*/true);
7152  Destructor->setAccess(AS_public);
7153  Destructor->setDefaulted();
7154  Destructor->setImplicit();
7155  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7156
7157  // Build an exception specification pointing back at this destructor.
7158  FunctionProtoType::ExtProtoInfo EPI;
7159  EPI.ExceptionSpecType = EST_Unevaluated;
7160  EPI.ExceptionSpecDecl = Destructor;
7161  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7162
7163  // Note that we have declared this destructor.
7164  ++ASTContext::NumImplicitDestructorsDeclared;
7165
7166  // Introduce this destructor into its scope.
7167  if (Scope *S = getScopeForContext(ClassDecl))
7168    PushOnScopeChains(Destructor, S, false);
7169  ClassDecl->addDecl(Destructor);
7170
7171  AddOverriddenMethods(ClassDecl, Destructor);
7172
7173  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7174    Destructor->setDeletedAsWritten();
7175
7176  return Destructor;
7177}
7178
7179void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7180                                    CXXDestructorDecl *Destructor) {
7181  assert((Destructor->isDefaulted() &&
7182          !Destructor->doesThisDeclarationHaveABody() &&
7183          !Destructor->isDeleted()) &&
7184         "DefineImplicitDestructor - call it for implicit default dtor");
7185  CXXRecordDecl *ClassDecl = Destructor->getParent();
7186  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7187
7188  if (Destructor->isInvalidDecl())
7189    return;
7190
7191  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7192
7193  DiagnosticErrorTrap Trap(Diags);
7194  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7195                                         Destructor->getParent());
7196
7197  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7198    Diag(CurrentLocation, diag::note_member_synthesized_at)
7199      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7200
7201    Destructor->setInvalidDecl();
7202    return;
7203  }
7204
7205  SourceLocation Loc = Destructor->getLocation();
7206  Destructor->setBody(new (Context) CompoundStmt(Loc));
7207  Destructor->setImplicitlyDefined(true);
7208  Destructor->setUsed();
7209  MarkVTableUsed(CurrentLocation, ClassDecl);
7210
7211  if (ASTMutationListener *L = getASTMutationListener()) {
7212    L->CompletedImplicitDefinition(Destructor);
7213  }
7214}
7215
7216/// \brief Perform any semantic analysis which needs to be delayed until all
7217/// pending class member declarations have been parsed.
7218void Sema::ActOnFinishCXXMemberDecls() {
7219  // Perform any deferred checking of exception specifications for virtual
7220  // destructors.
7221  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7222       i != e; ++i) {
7223    const CXXDestructorDecl *Dtor =
7224        DelayedDestructorExceptionSpecChecks[i].first;
7225    assert(!Dtor->getParent()->isDependentType() &&
7226           "Should not ever add destructors of templates into the list.");
7227    CheckOverridingFunctionExceptionSpec(Dtor,
7228        DelayedDestructorExceptionSpecChecks[i].second);
7229  }
7230  DelayedDestructorExceptionSpecChecks.clear();
7231}
7232
7233void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
7234                                         CXXDestructorDecl *Destructor) {
7235  assert(getLangOpts().CPlusPlus0x &&
7236         "adjusting dtor exception specs was introduced in c++11");
7237
7238  // C++11 [class.dtor]p3:
7239  //   A declaration of a destructor that does not have an exception-
7240  //   specification is implicitly considered to have the same exception-
7241  //   specification as an implicit declaration.
7242  const FunctionProtoType *DtorType = Destructor->getType()->
7243                                        getAs<FunctionProtoType>();
7244  if (DtorType->hasExceptionSpec())
7245    return;
7246
7247  // Replace the destructor's type, building off the existing one. Fortunately,
7248  // the only thing of interest in the destructor type is its extended info.
7249  // The return and arguments are fixed.
7250  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
7251  EPI.ExceptionSpecType = EST_Unevaluated;
7252  EPI.ExceptionSpecDecl = Destructor;
7253  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7254
7255  // FIXME: If the destructor has a body that could throw, and the newly created
7256  // spec doesn't allow exceptions, we should emit a warning, because this
7257  // change in behavior can break conforming C++03 programs at runtime.
7258  // However, we don't have a body or an exception specification yet, so it
7259  // needs to be done somewhere else.
7260}
7261
7262/// \brief Builds a statement that copies/moves the given entity from \p From to
7263/// \c To.
7264///
7265/// This routine is used to copy/move the members of a class with an
7266/// implicitly-declared copy/move assignment operator. When the entities being
7267/// copied are arrays, this routine builds for loops to copy them.
7268///
7269/// \param S The Sema object used for type-checking.
7270///
7271/// \param Loc The location where the implicit copy/move is being generated.
7272///
7273/// \param T The type of the expressions being copied/moved. Both expressions
7274/// must have this type.
7275///
7276/// \param To The expression we are copying/moving to.
7277///
7278/// \param From The expression we are copying/moving from.
7279///
7280/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7281/// Otherwise, it's a non-static member subobject.
7282///
7283/// \param Copying Whether we're copying or moving.
7284///
7285/// \param Depth Internal parameter recording the depth of the recursion.
7286///
7287/// \returns A statement or a loop that copies the expressions.
7288static StmtResult
7289BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7290                      Expr *To, Expr *From,
7291                      bool CopyingBaseSubobject, bool Copying,
7292                      unsigned Depth = 0) {
7293  // C++0x [class.copy]p28:
7294  //   Each subobject is assigned in the manner appropriate to its type:
7295  //
7296  //     - if the subobject is of class type, as if by a call to operator= with
7297  //       the subobject as the object expression and the corresponding
7298  //       subobject of x as a single function argument (as if by explicit
7299  //       qualification; that is, ignoring any possible virtual overriding
7300  //       functions in more derived classes);
7301  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7302    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7303
7304    // Look for operator=.
7305    DeclarationName Name
7306      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7307    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7308    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7309
7310    // Filter out any result that isn't a copy/move-assignment operator.
7311    LookupResult::Filter F = OpLookup.makeFilter();
7312    while (F.hasNext()) {
7313      NamedDecl *D = F.next();
7314      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7315        if (Method->isCopyAssignmentOperator() ||
7316            (!Copying && Method->isMoveAssignmentOperator()))
7317          continue;
7318
7319      F.erase();
7320    }
7321    F.done();
7322
7323    // Suppress the protected check (C++ [class.protected]) for each of the
7324    // assignment operators we found. This strange dance is required when
7325    // we're assigning via a base classes's copy-assignment operator. To
7326    // ensure that we're getting the right base class subobject (without
7327    // ambiguities), we need to cast "this" to that subobject type; to
7328    // ensure that we don't go through the virtual call mechanism, we need
7329    // to qualify the operator= name with the base class (see below). However,
7330    // this means that if the base class has a protected copy assignment
7331    // operator, the protected member access check will fail. So, we
7332    // rewrite "protected" access to "public" access in this case, since we
7333    // know by construction that we're calling from a derived class.
7334    if (CopyingBaseSubobject) {
7335      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7336           L != LEnd; ++L) {
7337        if (L.getAccess() == AS_protected)
7338          L.setAccess(AS_public);
7339      }
7340    }
7341
7342    // Create the nested-name-specifier that will be used to qualify the
7343    // reference to operator=; this is required to suppress the virtual
7344    // call mechanism.
7345    CXXScopeSpec SS;
7346    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7347    SS.MakeTrivial(S.Context,
7348                   NestedNameSpecifier::Create(S.Context, 0, false,
7349                                               CanonicalT),
7350                   Loc);
7351
7352    // Create the reference to operator=.
7353    ExprResult OpEqualRef
7354      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7355                                   /*TemplateKWLoc=*/SourceLocation(),
7356                                   /*FirstQualifierInScope=*/0,
7357                                   OpLookup,
7358                                   /*TemplateArgs=*/0,
7359                                   /*SuppressQualifierCheck=*/true);
7360    if (OpEqualRef.isInvalid())
7361      return StmtError();
7362
7363    // Build the call to the assignment operator.
7364
7365    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7366                                                  OpEqualRef.takeAs<Expr>(),
7367                                                  Loc, &From, 1, Loc);
7368    if (Call.isInvalid())
7369      return StmtError();
7370
7371    return S.Owned(Call.takeAs<Stmt>());
7372  }
7373
7374  //     - if the subobject is of scalar type, the built-in assignment
7375  //       operator is used.
7376  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7377  if (!ArrayTy) {
7378    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7379    if (Assignment.isInvalid())
7380      return StmtError();
7381
7382    return S.Owned(Assignment.takeAs<Stmt>());
7383  }
7384
7385  //     - if the subobject is an array, each element is assigned, in the
7386  //       manner appropriate to the element type;
7387
7388  // Construct a loop over the array bounds, e.g.,
7389  //
7390  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7391  //
7392  // that will copy each of the array elements.
7393  QualType SizeType = S.Context.getSizeType();
7394
7395  // Create the iteration variable.
7396  IdentifierInfo *IterationVarName = 0;
7397  {
7398    SmallString<8> Str;
7399    llvm::raw_svector_ostream OS(Str);
7400    OS << "__i" << Depth;
7401    IterationVarName = &S.Context.Idents.get(OS.str());
7402  }
7403  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7404                                          IterationVarName, SizeType,
7405                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7406                                          SC_None, SC_None);
7407
7408  // Initialize the iteration variable to zero.
7409  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7410  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7411
7412  // Create a reference to the iteration variable; we'll use this several
7413  // times throughout.
7414  Expr *IterationVarRef
7415    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7416  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7417  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7418  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7419
7420  // Create the DeclStmt that holds the iteration variable.
7421  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7422
7423  // Create the comparison against the array bound.
7424  llvm::APInt Upper
7425    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7426  Expr *Comparison
7427    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7428                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7429                                     BO_NE, S.Context.BoolTy,
7430                                     VK_RValue, OK_Ordinary, Loc);
7431
7432  // Create the pre-increment of the iteration variable.
7433  Expr *Increment
7434    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7435                                    VK_LValue, OK_Ordinary, Loc);
7436
7437  // Subscript the "from" and "to" expressions with the iteration variable.
7438  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7439                                                         IterationVarRefRVal,
7440                                                         Loc));
7441  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7442                                                       IterationVarRefRVal,
7443                                                       Loc));
7444  if (!Copying) // Cast to rvalue
7445    From = CastForMoving(S, From);
7446
7447  // Build the copy/move for an individual element of the array.
7448  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7449                                          To, From, CopyingBaseSubobject,
7450                                          Copying, Depth + 1);
7451  if (Copy.isInvalid())
7452    return StmtError();
7453
7454  // Construct the loop that copies all elements of this array.
7455  return S.ActOnForStmt(Loc, Loc, InitStmt,
7456                        S.MakeFullExpr(Comparison),
7457                        0, S.MakeFullExpr(Increment),
7458                        Loc, Copy.take());
7459}
7460
7461/// Determine whether an implicit copy assignment operator for ClassDecl has a
7462/// const argument.
7463/// FIXME: It ought to be possible to store this on the record.
7464static bool isImplicitCopyAssignmentArgConst(Sema &S,
7465                                             CXXRecordDecl *ClassDecl) {
7466  if (ClassDecl->isInvalidDecl())
7467    return true;
7468
7469  // C++ [class.copy]p10:
7470  //   If the class definition does not explicitly declare a copy
7471  //   assignment operator, one is declared implicitly.
7472  //   The implicitly-defined copy assignment operator for a class X
7473  //   will have the form
7474  //
7475  //       X& X::operator=(const X&)
7476  //
7477  //   if
7478  //       -- each direct base class B of X has a copy assignment operator
7479  //          whose parameter is of type const B&, const volatile B& or B,
7480  //          and
7481  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7482                                       BaseEnd = ClassDecl->bases_end();
7483       Base != BaseEnd; ++Base) {
7484    // We'll handle this below
7485    if (S.getLangOpts().CPlusPlus0x && Base->isVirtual())
7486      continue;
7487
7488    assert(!Base->getType()->isDependentType() &&
7489           "Cannot generate implicit members for class with dependent bases.");
7490    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7491    if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0))
7492      return false;
7493  }
7494
7495  // In C++11, the above citation has "or virtual" added
7496  if (S.getLangOpts().CPlusPlus0x) {
7497    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7498                                         BaseEnd = ClassDecl->vbases_end();
7499         Base != BaseEnd; ++Base) {
7500      assert(!Base->getType()->isDependentType() &&
7501             "Cannot generate implicit members for class with dependent bases.");
7502      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7503      if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7504                                     false, 0))
7505        return false;
7506    }
7507  }
7508
7509  //       -- for all the nonstatic data members of X that are of a class
7510  //          type M (or array thereof), each such class type has a copy
7511  //          assignment operator whose parameter is of type const M&,
7512  //          const volatile M& or M.
7513  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7514                                  FieldEnd = ClassDecl->field_end();
7515       Field != FieldEnd; ++Field) {
7516    QualType FieldType = S.Context.getBaseElementType(Field->getType());
7517    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl())
7518      if (!S.LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7519                                     false, 0))
7520        return false;
7521  }
7522
7523  //   Otherwise, the implicitly declared copy assignment operator will
7524  //   have the form
7525  //
7526  //       X& X::operator=(X&)
7527
7528  return true;
7529}
7530
7531Sema::ImplicitExceptionSpecification
7532Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
7533  CXXRecordDecl *ClassDecl = MD->getParent();
7534
7535  ImplicitExceptionSpecification ExceptSpec(*this);
7536  if (ClassDecl->isInvalidDecl())
7537    return ExceptSpec;
7538
7539  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
7540  assert(T->getNumArgs() == 1 && "not a copy assignment op");
7541  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
7542
7543  // C++ [except.spec]p14:
7544  //   An implicitly declared special member function (Clause 12) shall have an
7545  //   exception-specification. [...]
7546
7547  // It is unspecified whether or not an implicit copy assignment operator
7548  // attempts to deduplicate calls to assignment operators of virtual bases are
7549  // made. As such, this exception specification is effectively unspecified.
7550  // Based on a similar decision made for constness in C++0x, we're erring on
7551  // the side of assuming such calls to be made regardless of whether they
7552  // actually happen.
7553  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7554                                       BaseEnd = ClassDecl->bases_end();
7555       Base != BaseEnd; ++Base) {
7556    if (Base->isVirtual())
7557      continue;
7558
7559    CXXRecordDecl *BaseClassDecl
7560      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7561    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7562                                                            ArgQuals, false, 0))
7563      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7564  }
7565
7566  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7567                                       BaseEnd = ClassDecl->vbases_end();
7568       Base != BaseEnd; ++Base) {
7569    CXXRecordDecl *BaseClassDecl
7570      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7571    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7572                                                            ArgQuals, false, 0))
7573      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7574  }
7575
7576  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7577                                  FieldEnd = ClassDecl->field_end();
7578       Field != FieldEnd;
7579       ++Field) {
7580    QualType FieldType = Context.getBaseElementType(Field->getType());
7581    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7582      if (CXXMethodDecl *CopyAssign =
7583          LookupCopyingAssignment(FieldClassDecl,
7584                                  ArgQuals | FieldType.getCVRQualifiers(),
7585                                  false, 0))
7586        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7587    }
7588  }
7589
7590  return ExceptSpec;
7591}
7592
7593CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7594  // Note: The following rules are largely analoguous to the copy
7595  // constructor rules. Note that virtual bases are not taken into account
7596  // for determining the argument type of the operator. Note also that
7597  // operators taking an object instead of a reference are allowed.
7598
7599  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7600  QualType RetType = Context.getLValueReferenceType(ArgType);
7601  if (isImplicitCopyAssignmentArgConst(*this, ClassDecl))
7602    ArgType = ArgType.withConst();
7603  ArgType = Context.getLValueReferenceType(ArgType);
7604
7605  //   An implicitly-declared copy assignment operator is an inline public
7606  //   member of its class.
7607  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7608  SourceLocation ClassLoc = ClassDecl->getLocation();
7609  DeclarationNameInfo NameInfo(Name, ClassLoc);
7610  CXXMethodDecl *CopyAssignment
7611    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
7612                            /*TInfo=*/0, /*isStatic=*/false,
7613                            /*StorageClassAsWritten=*/SC_None,
7614                            /*isInline=*/true, /*isConstexpr=*/false,
7615                            SourceLocation());
7616  CopyAssignment->setAccess(AS_public);
7617  CopyAssignment->setDefaulted();
7618  CopyAssignment->setImplicit();
7619  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7620
7621  // Build an exception specification pointing back at this member.
7622  FunctionProtoType::ExtProtoInfo EPI;
7623  EPI.ExceptionSpecType = EST_Unevaluated;
7624  EPI.ExceptionSpecDecl = CopyAssignment;
7625  CopyAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
7626
7627  // Add the parameter to the operator.
7628  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7629                                               ClassLoc, ClassLoc, /*Id=*/0,
7630                                               ArgType, /*TInfo=*/0,
7631                                               SC_None,
7632                                               SC_None, 0);
7633  CopyAssignment->setParams(FromParam);
7634
7635  // Note that we have added this copy-assignment operator.
7636  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7637
7638  if (Scope *S = getScopeForContext(ClassDecl))
7639    PushOnScopeChains(CopyAssignment, S, false);
7640  ClassDecl->addDecl(CopyAssignment);
7641
7642  // C++0x [class.copy]p19:
7643  //   ....  If the class definition does not explicitly declare a copy
7644  //   assignment operator, there is no user-declared move constructor, and
7645  //   there is no user-declared move assignment operator, a copy assignment
7646  //   operator is implicitly declared as defaulted.
7647  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7648    CopyAssignment->setDeletedAsWritten();
7649
7650  AddOverriddenMethods(ClassDecl, CopyAssignment);
7651  return CopyAssignment;
7652}
7653
7654void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7655                                        CXXMethodDecl *CopyAssignOperator) {
7656  assert((CopyAssignOperator->isDefaulted() &&
7657          CopyAssignOperator->isOverloadedOperator() &&
7658          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7659          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7660          !CopyAssignOperator->isDeleted()) &&
7661         "DefineImplicitCopyAssignment called for wrong function");
7662
7663  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7664
7665  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7666    CopyAssignOperator->setInvalidDecl();
7667    return;
7668  }
7669
7670  CopyAssignOperator->setUsed();
7671
7672  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7673  DiagnosticErrorTrap Trap(Diags);
7674
7675  // C++0x [class.copy]p30:
7676  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7677  //   for a non-union class X performs memberwise copy assignment of its
7678  //   subobjects. The direct base classes of X are assigned first, in the
7679  //   order of their declaration in the base-specifier-list, and then the
7680  //   immediate non-static data members of X are assigned, in the order in
7681  //   which they were declared in the class definition.
7682
7683  // The statements that form the synthesized function body.
7684  SmallVector<Stmt*, 8> Statements;
7685
7686  // The parameter for the "other" object, which we are copying from.
7687  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7688  Qualifiers OtherQuals = Other->getType().getQualifiers();
7689  QualType OtherRefType = Other->getType();
7690  if (const LValueReferenceType *OtherRef
7691                                = OtherRefType->getAs<LValueReferenceType>()) {
7692    OtherRefType = OtherRef->getPointeeType();
7693    OtherQuals = OtherRefType.getQualifiers();
7694  }
7695
7696  // Our location for everything implicitly-generated.
7697  SourceLocation Loc = CopyAssignOperator->getLocation();
7698
7699  // Construct a reference to the "other" object. We'll be using this
7700  // throughout the generated ASTs.
7701  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7702  assert(OtherRef && "Reference to parameter cannot fail!");
7703
7704  // Construct the "this" pointer. We'll be using this throughout the generated
7705  // ASTs.
7706  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7707  assert(This && "Reference to this cannot fail!");
7708
7709  // Assign base classes.
7710  bool Invalid = false;
7711  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7712       E = ClassDecl->bases_end(); Base != E; ++Base) {
7713    // Form the assignment:
7714    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7715    QualType BaseType = Base->getType().getUnqualifiedType();
7716    if (!BaseType->isRecordType()) {
7717      Invalid = true;
7718      continue;
7719    }
7720
7721    CXXCastPath BasePath;
7722    BasePath.push_back(Base);
7723
7724    // Construct the "from" expression, which is an implicit cast to the
7725    // appropriately-qualified base type.
7726    Expr *From = OtherRef;
7727    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7728                             CK_UncheckedDerivedToBase,
7729                             VK_LValue, &BasePath).take();
7730
7731    // Dereference "this".
7732    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7733
7734    // Implicitly cast "this" to the appropriately-qualified base type.
7735    To = ImpCastExprToType(To.take(),
7736                           Context.getCVRQualifiedType(BaseType,
7737                                     CopyAssignOperator->getTypeQualifiers()),
7738                           CK_UncheckedDerivedToBase,
7739                           VK_LValue, &BasePath);
7740
7741    // Build the copy.
7742    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7743                                            To.get(), From,
7744                                            /*CopyingBaseSubobject=*/true,
7745                                            /*Copying=*/true);
7746    if (Copy.isInvalid()) {
7747      Diag(CurrentLocation, diag::note_member_synthesized_at)
7748        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7749      CopyAssignOperator->setInvalidDecl();
7750      return;
7751    }
7752
7753    // Success! Record the copy.
7754    Statements.push_back(Copy.takeAs<Expr>());
7755  }
7756
7757  // \brief Reference to the __builtin_memcpy function.
7758  Expr *BuiltinMemCpyRef = 0;
7759  // \brief Reference to the __builtin_objc_memmove_collectable function.
7760  Expr *CollectableMemCpyRef = 0;
7761
7762  // Assign non-static members.
7763  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7764                                  FieldEnd = ClassDecl->field_end();
7765       Field != FieldEnd; ++Field) {
7766    if (Field->isUnnamedBitfield())
7767      continue;
7768
7769    // Check for members of reference type; we can't copy those.
7770    if (Field->getType()->isReferenceType()) {
7771      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7772        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7773      Diag(Field->getLocation(), diag::note_declared_at);
7774      Diag(CurrentLocation, diag::note_member_synthesized_at)
7775        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7776      Invalid = true;
7777      continue;
7778    }
7779
7780    // Check for members of const-qualified, non-class type.
7781    QualType BaseType = Context.getBaseElementType(Field->getType());
7782    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7783      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7784        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7785      Diag(Field->getLocation(), diag::note_declared_at);
7786      Diag(CurrentLocation, diag::note_member_synthesized_at)
7787        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7788      Invalid = true;
7789      continue;
7790    }
7791
7792    // Suppress assigning zero-width bitfields.
7793    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7794      continue;
7795
7796    QualType FieldType = Field->getType().getNonReferenceType();
7797    if (FieldType->isIncompleteArrayType()) {
7798      assert(ClassDecl->hasFlexibleArrayMember() &&
7799             "Incomplete array type is not valid");
7800      continue;
7801    }
7802
7803    // Build references to the field in the object we're copying from and to.
7804    CXXScopeSpec SS; // Intentionally empty
7805    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7806                              LookupMemberName);
7807    MemberLookup.addDecl(*Field);
7808    MemberLookup.resolveKind();
7809    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7810                                               Loc, /*IsArrow=*/false,
7811                                               SS, SourceLocation(), 0,
7812                                               MemberLookup, 0);
7813    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7814                                             Loc, /*IsArrow=*/true,
7815                                             SS, SourceLocation(), 0,
7816                                             MemberLookup, 0);
7817    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7818    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7819
7820    // If the field should be copied with __builtin_memcpy rather than via
7821    // explicit assignments, do so. This optimization only applies for arrays
7822    // of scalars and arrays of class type with trivial copy-assignment
7823    // operators.
7824    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7825        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7826      // Compute the size of the memory buffer to be copied.
7827      QualType SizeType = Context.getSizeType();
7828      llvm::APInt Size(Context.getTypeSize(SizeType),
7829                       Context.getTypeSizeInChars(BaseType).getQuantity());
7830      for (const ConstantArrayType *Array
7831              = Context.getAsConstantArrayType(FieldType);
7832           Array;
7833           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7834        llvm::APInt ArraySize
7835          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7836        Size *= ArraySize;
7837      }
7838
7839      // Take the address of the field references for "from" and "to".
7840      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7841      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7842
7843      bool NeedsCollectableMemCpy =
7844          (BaseType->isRecordType() &&
7845           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7846
7847      if (NeedsCollectableMemCpy) {
7848        if (!CollectableMemCpyRef) {
7849          // Create a reference to the __builtin_objc_memmove_collectable function.
7850          LookupResult R(*this,
7851                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7852                         Loc, LookupOrdinaryName);
7853          LookupName(R, TUScope, true);
7854
7855          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7856          if (!CollectableMemCpy) {
7857            // Something went horribly wrong earlier, and we will have
7858            // complained about it.
7859            Invalid = true;
7860            continue;
7861          }
7862
7863          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7864                                                  Context.BuiltinFnTy,
7865                                                  VK_RValue, Loc, 0).take();
7866          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7867        }
7868      }
7869      // Create a reference to the __builtin_memcpy builtin function.
7870      else if (!BuiltinMemCpyRef) {
7871        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7872                       LookupOrdinaryName);
7873        LookupName(R, TUScope, true);
7874
7875        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7876        if (!BuiltinMemCpy) {
7877          // Something went horribly wrong earlier, and we will have complained
7878          // about it.
7879          Invalid = true;
7880          continue;
7881        }
7882
7883        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7884                                            Context.BuiltinFnTy,
7885                                            VK_RValue, Loc, 0).take();
7886        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7887      }
7888
7889      SmallVector<Expr*, 8> CallArgs;
7890      CallArgs.push_back(To.takeAs<Expr>());
7891      CallArgs.push_back(From.takeAs<Expr>());
7892      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7893      ExprResult Call = ExprError();
7894      if (NeedsCollectableMemCpy)
7895        Call = ActOnCallExpr(/*Scope=*/0,
7896                             CollectableMemCpyRef,
7897                             Loc, CallArgs,
7898                             Loc);
7899      else
7900        Call = ActOnCallExpr(/*Scope=*/0,
7901                             BuiltinMemCpyRef,
7902                             Loc, CallArgs,
7903                             Loc);
7904
7905      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7906      Statements.push_back(Call.takeAs<Expr>());
7907      continue;
7908    }
7909
7910    // Build the copy of this field.
7911    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7912                                            To.get(), From.get(),
7913                                            /*CopyingBaseSubobject=*/false,
7914                                            /*Copying=*/true);
7915    if (Copy.isInvalid()) {
7916      Diag(CurrentLocation, diag::note_member_synthesized_at)
7917        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7918      CopyAssignOperator->setInvalidDecl();
7919      return;
7920    }
7921
7922    // Success! Record the copy.
7923    Statements.push_back(Copy.takeAs<Stmt>());
7924  }
7925
7926  if (!Invalid) {
7927    // Add a "return *this;"
7928    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7929
7930    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7931    if (Return.isInvalid())
7932      Invalid = true;
7933    else {
7934      Statements.push_back(Return.takeAs<Stmt>());
7935
7936      if (Trap.hasErrorOccurred()) {
7937        Diag(CurrentLocation, diag::note_member_synthesized_at)
7938          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7939        Invalid = true;
7940      }
7941    }
7942  }
7943
7944  if (Invalid) {
7945    CopyAssignOperator->setInvalidDecl();
7946    return;
7947  }
7948
7949  StmtResult Body;
7950  {
7951    CompoundScopeRAII CompoundScope(*this);
7952    Body = ActOnCompoundStmt(Loc, Loc, Statements,
7953                             /*isStmtExpr=*/false);
7954    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7955  }
7956  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7957
7958  if (ASTMutationListener *L = getASTMutationListener()) {
7959    L->CompletedImplicitDefinition(CopyAssignOperator);
7960  }
7961}
7962
7963Sema::ImplicitExceptionSpecification
7964Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
7965  CXXRecordDecl *ClassDecl = MD->getParent();
7966
7967  ImplicitExceptionSpecification ExceptSpec(*this);
7968  if (ClassDecl->isInvalidDecl())
7969    return ExceptSpec;
7970
7971  // C++0x [except.spec]p14:
7972  //   An implicitly declared special member function (Clause 12) shall have an
7973  //   exception-specification. [...]
7974
7975  // It is unspecified whether or not an implicit move assignment operator
7976  // attempts to deduplicate calls to assignment operators of virtual bases are
7977  // made. As such, this exception specification is effectively unspecified.
7978  // Based on a similar decision made for constness in C++0x, we're erring on
7979  // the side of assuming such calls to be made regardless of whether they
7980  // actually happen.
7981  // Note that a move constructor is not implicitly declared when there are
7982  // virtual bases, but it can still be user-declared and explicitly defaulted.
7983  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7984                                       BaseEnd = ClassDecl->bases_end();
7985       Base != BaseEnd; ++Base) {
7986    if (Base->isVirtual())
7987      continue;
7988
7989    CXXRecordDecl *BaseClassDecl
7990      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7991    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7992                                                           0, false, 0))
7993      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7994  }
7995
7996  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7997                                       BaseEnd = ClassDecl->vbases_end();
7998       Base != BaseEnd; ++Base) {
7999    CXXRecordDecl *BaseClassDecl
8000      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8001    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8002                                                           0, false, 0))
8003      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8004  }
8005
8006  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8007                                  FieldEnd = ClassDecl->field_end();
8008       Field != FieldEnd;
8009       ++Field) {
8010    QualType FieldType = Context.getBaseElementType(Field->getType());
8011    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8012      if (CXXMethodDecl *MoveAssign =
8013              LookupMovingAssignment(FieldClassDecl,
8014                                     FieldType.getCVRQualifiers(),
8015                                     false, 0))
8016        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8017    }
8018  }
8019
8020  return ExceptSpec;
8021}
8022
8023/// Determine whether the class type has any direct or indirect virtual base
8024/// classes which have a non-trivial move assignment operator.
8025static bool
8026hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8027  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8028                                          BaseEnd = ClassDecl->vbases_end();
8029       Base != BaseEnd; ++Base) {
8030    CXXRecordDecl *BaseClass =
8031        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8032
8033    // Try to declare the move assignment. If it would be deleted, then the
8034    // class does not have a non-trivial move assignment.
8035    if (BaseClass->needsImplicitMoveAssignment())
8036      S.DeclareImplicitMoveAssignment(BaseClass);
8037
8038    // If the class has both a trivial move assignment and a non-trivial move
8039    // assignment, hasTrivialMoveAssignment() is false.
8040    if (BaseClass->hasDeclaredMoveAssignment() &&
8041        !BaseClass->hasTrivialMoveAssignment())
8042      return true;
8043  }
8044
8045  return false;
8046}
8047
8048/// Determine whether the given type either has a move constructor or is
8049/// trivially copyable.
8050static bool
8051hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8052  Type = S.Context.getBaseElementType(Type);
8053
8054  // FIXME: Technically, non-trivially-copyable non-class types, such as
8055  // reference types, are supposed to return false here, but that appears
8056  // to be a standard defect.
8057  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8058  if (!ClassDecl || !ClassDecl->getDefinition())
8059    return true;
8060
8061  if (Type.isTriviallyCopyableType(S.Context))
8062    return true;
8063
8064  if (IsConstructor) {
8065    if (ClassDecl->needsImplicitMoveConstructor())
8066      S.DeclareImplicitMoveConstructor(ClassDecl);
8067    return ClassDecl->hasDeclaredMoveConstructor();
8068  }
8069
8070  if (ClassDecl->needsImplicitMoveAssignment())
8071    S.DeclareImplicitMoveAssignment(ClassDecl);
8072  return ClassDecl->hasDeclaredMoveAssignment();
8073}
8074
8075/// Determine whether all non-static data members and direct or virtual bases
8076/// of class \p ClassDecl have either a move operation, or are trivially
8077/// copyable.
8078static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8079                                            bool IsConstructor) {
8080  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8081                                          BaseEnd = ClassDecl->bases_end();
8082       Base != BaseEnd; ++Base) {
8083    if (Base->isVirtual())
8084      continue;
8085
8086    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8087      return false;
8088  }
8089
8090  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8091                                          BaseEnd = ClassDecl->vbases_end();
8092       Base != BaseEnd; ++Base) {
8093    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8094      return false;
8095  }
8096
8097  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8098                                     FieldEnd = ClassDecl->field_end();
8099       Field != FieldEnd; ++Field) {
8100    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8101      return false;
8102  }
8103
8104  return true;
8105}
8106
8107CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8108  // C++11 [class.copy]p20:
8109  //   If the definition of a class X does not explicitly declare a move
8110  //   assignment operator, one will be implicitly declared as defaulted
8111  //   if and only if:
8112  //
8113  //   - [first 4 bullets]
8114  assert(ClassDecl->needsImplicitMoveAssignment());
8115
8116  // [Checked after we build the declaration]
8117  //   - the move assignment operator would not be implicitly defined as
8118  //     deleted,
8119
8120  // [DR1402]:
8121  //   - X has no direct or indirect virtual base class with a non-trivial
8122  //     move assignment operator, and
8123  //   - each of X's non-static data members and direct or virtual base classes
8124  //     has a type that either has a move assignment operator or is trivially
8125  //     copyable.
8126  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8127      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8128    ClassDecl->setFailedImplicitMoveAssignment();
8129    return 0;
8130  }
8131
8132  // Note: The following rules are largely analoguous to the move
8133  // constructor rules.
8134
8135  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8136  QualType RetType = Context.getLValueReferenceType(ArgType);
8137  ArgType = Context.getRValueReferenceType(ArgType);
8138
8139  //   An implicitly-declared move assignment operator is an inline public
8140  //   member of its class.
8141  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8142  SourceLocation ClassLoc = ClassDecl->getLocation();
8143  DeclarationNameInfo NameInfo(Name, ClassLoc);
8144  CXXMethodDecl *MoveAssignment
8145    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8146                            /*TInfo=*/0, /*isStatic=*/false,
8147                            /*StorageClassAsWritten=*/SC_None,
8148                            /*isInline=*/true,
8149                            /*isConstexpr=*/false,
8150                            SourceLocation());
8151  MoveAssignment->setAccess(AS_public);
8152  MoveAssignment->setDefaulted();
8153  MoveAssignment->setImplicit();
8154  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8155
8156  // Build an exception specification pointing back at this member.
8157  FunctionProtoType::ExtProtoInfo EPI;
8158  EPI.ExceptionSpecType = EST_Unevaluated;
8159  EPI.ExceptionSpecDecl = MoveAssignment;
8160  MoveAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8161
8162  // Add the parameter to the operator.
8163  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8164                                               ClassLoc, ClassLoc, /*Id=*/0,
8165                                               ArgType, /*TInfo=*/0,
8166                                               SC_None,
8167                                               SC_None, 0);
8168  MoveAssignment->setParams(FromParam);
8169
8170  // Note that we have added this copy-assignment operator.
8171  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8172
8173  // C++0x [class.copy]p9:
8174  //   If the definition of a class X does not explicitly declare a move
8175  //   assignment operator, one will be implicitly declared as defaulted if and
8176  //   only if:
8177  //   [...]
8178  //   - the move assignment operator would not be implicitly defined as
8179  //     deleted.
8180  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8181    // Cache this result so that we don't try to generate this over and over
8182    // on every lookup, leaking memory and wasting time.
8183    ClassDecl->setFailedImplicitMoveAssignment();
8184    return 0;
8185  }
8186
8187  if (Scope *S = getScopeForContext(ClassDecl))
8188    PushOnScopeChains(MoveAssignment, S, false);
8189  ClassDecl->addDecl(MoveAssignment);
8190
8191  AddOverriddenMethods(ClassDecl, MoveAssignment);
8192  return MoveAssignment;
8193}
8194
8195void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8196                                        CXXMethodDecl *MoveAssignOperator) {
8197  assert((MoveAssignOperator->isDefaulted() &&
8198          MoveAssignOperator->isOverloadedOperator() &&
8199          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8200          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8201          !MoveAssignOperator->isDeleted()) &&
8202         "DefineImplicitMoveAssignment called for wrong function");
8203
8204  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8205
8206  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8207    MoveAssignOperator->setInvalidDecl();
8208    return;
8209  }
8210
8211  MoveAssignOperator->setUsed();
8212
8213  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8214  DiagnosticErrorTrap Trap(Diags);
8215
8216  // C++0x [class.copy]p28:
8217  //   The implicitly-defined or move assignment operator for a non-union class
8218  //   X performs memberwise move assignment of its subobjects. The direct base
8219  //   classes of X are assigned first, in the order of their declaration in the
8220  //   base-specifier-list, and then the immediate non-static data members of X
8221  //   are assigned, in the order in which they were declared in the class
8222  //   definition.
8223
8224  // The statements that form the synthesized function body.
8225  SmallVector<Stmt*, 8> Statements;
8226
8227  // The parameter for the "other" object, which we are move from.
8228  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8229  QualType OtherRefType = Other->getType()->
8230      getAs<RValueReferenceType>()->getPointeeType();
8231  assert(OtherRefType.getQualifiers() == 0 &&
8232         "Bad argument type of defaulted move assignment");
8233
8234  // Our location for everything implicitly-generated.
8235  SourceLocation Loc = MoveAssignOperator->getLocation();
8236
8237  // Construct a reference to the "other" object. We'll be using this
8238  // throughout the generated ASTs.
8239  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8240  assert(OtherRef && "Reference to parameter cannot fail!");
8241  // Cast to rvalue.
8242  OtherRef = CastForMoving(*this, OtherRef);
8243
8244  // Construct the "this" pointer. We'll be using this throughout the generated
8245  // ASTs.
8246  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8247  assert(This && "Reference to this cannot fail!");
8248
8249  // Assign base classes.
8250  bool Invalid = false;
8251  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8252       E = ClassDecl->bases_end(); Base != E; ++Base) {
8253    // Form the assignment:
8254    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8255    QualType BaseType = Base->getType().getUnqualifiedType();
8256    if (!BaseType->isRecordType()) {
8257      Invalid = true;
8258      continue;
8259    }
8260
8261    CXXCastPath BasePath;
8262    BasePath.push_back(Base);
8263
8264    // Construct the "from" expression, which is an implicit cast to the
8265    // appropriately-qualified base type.
8266    Expr *From = OtherRef;
8267    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8268                             VK_XValue, &BasePath).take();
8269
8270    // Dereference "this".
8271    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8272
8273    // Implicitly cast "this" to the appropriately-qualified base type.
8274    To = ImpCastExprToType(To.take(),
8275                           Context.getCVRQualifiedType(BaseType,
8276                                     MoveAssignOperator->getTypeQualifiers()),
8277                           CK_UncheckedDerivedToBase,
8278                           VK_LValue, &BasePath);
8279
8280    // Build the move.
8281    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8282                                            To.get(), From,
8283                                            /*CopyingBaseSubobject=*/true,
8284                                            /*Copying=*/false);
8285    if (Move.isInvalid()) {
8286      Diag(CurrentLocation, diag::note_member_synthesized_at)
8287        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8288      MoveAssignOperator->setInvalidDecl();
8289      return;
8290    }
8291
8292    // Success! Record the move.
8293    Statements.push_back(Move.takeAs<Expr>());
8294  }
8295
8296  // \brief Reference to the __builtin_memcpy function.
8297  Expr *BuiltinMemCpyRef = 0;
8298  // \brief Reference to the __builtin_objc_memmove_collectable function.
8299  Expr *CollectableMemCpyRef = 0;
8300
8301  // Assign non-static members.
8302  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8303                                  FieldEnd = ClassDecl->field_end();
8304       Field != FieldEnd; ++Field) {
8305    if (Field->isUnnamedBitfield())
8306      continue;
8307
8308    // Check for members of reference type; we can't move those.
8309    if (Field->getType()->isReferenceType()) {
8310      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8311        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8312      Diag(Field->getLocation(), diag::note_declared_at);
8313      Diag(CurrentLocation, diag::note_member_synthesized_at)
8314        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8315      Invalid = true;
8316      continue;
8317    }
8318
8319    // Check for members of const-qualified, non-class type.
8320    QualType BaseType = Context.getBaseElementType(Field->getType());
8321    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8322      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8323        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8324      Diag(Field->getLocation(), diag::note_declared_at);
8325      Diag(CurrentLocation, diag::note_member_synthesized_at)
8326        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8327      Invalid = true;
8328      continue;
8329    }
8330
8331    // Suppress assigning zero-width bitfields.
8332    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8333      continue;
8334
8335    QualType FieldType = Field->getType().getNonReferenceType();
8336    if (FieldType->isIncompleteArrayType()) {
8337      assert(ClassDecl->hasFlexibleArrayMember() &&
8338             "Incomplete array type is not valid");
8339      continue;
8340    }
8341
8342    // Build references to the field in the object we're copying from and to.
8343    CXXScopeSpec SS; // Intentionally empty
8344    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8345                              LookupMemberName);
8346    MemberLookup.addDecl(*Field);
8347    MemberLookup.resolveKind();
8348    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8349                                               Loc, /*IsArrow=*/false,
8350                                               SS, SourceLocation(), 0,
8351                                               MemberLookup, 0);
8352    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8353                                             Loc, /*IsArrow=*/true,
8354                                             SS, SourceLocation(), 0,
8355                                             MemberLookup, 0);
8356    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8357    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8358
8359    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8360        "Member reference with rvalue base must be rvalue except for reference "
8361        "members, which aren't allowed for move assignment.");
8362
8363    // If the field should be copied with __builtin_memcpy rather than via
8364    // explicit assignments, do so. This optimization only applies for arrays
8365    // of scalars and arrays of class type with trivial move-assignment
8366    // operators.
8367    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8368        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8369      // Compute the size of the memory buffer to be copied.
8370      QualType SizeType = Context.getSizeType();
8371      llvm::APInt Size(Context.getTypeSize(SizeType),
8372                       Context.getTypeSizeInChars(BaseType).getQuantity());
8373      for (const ConstantArrayType *Array
8374              = Context.getAsConstantArrayType(FieldType);
8375           Array;
8376           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8377        llvm::APInt ArraySize
8378          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8379        Size *= ArraySize;
8380      }
8381
8382      // Take the address of the field references for "from" and "to". We
8383      // directly construct UnaryOperators here because semantic analysis
8384      // does not permit us to take the address of an xvalue.
8385      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8386                             Context.getPointerType(From.get()->getType()),
8387                             VK_RValue, OK_Ordinary, Loc);
8388      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8389                           Context.getPointerType(To.get()->getType()),
8390                           VK_RValue, OK_Ordinary, Loc);
8391
8392      bool NeedsCollectableMemCpy =
8393          (BaseType->isRecordType() &&
8394           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8395
8396      if (NeedsCollectableMemCpy) {
8397        if (!CollectableMemCpyRef) {
8398          // Create a reference to the __builtin_objc_memmove_collectable function.
8399          LookupResult R(*this,
8400                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8401                         Loc, LookupOrdinaryName);
8402          LookupName(R, TUScope, true);
8403
8404          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8405          if (!CollectableMemCpy) {
8406            // Something went horribly wrong earlier, and we will have
8407            // complained about it.
8408            Invalid = true;
8409            continue;
8410          }
8411
8412          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8413                                                  Context.BuiltinFnTy,
8414                                                  VK_RValue, Loc, 0).take();
8415          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8416        }
8417      }
8418      // Create a reference to the __builtin_memcpy builtin function.
8419      else if (!BuiltinMemCpyRef) {
8420        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8421                       LookupOrdinaryName);
8422        LookupName(R, TUScope, true);
8423
8424        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8425        if (!BuiltinMemCpy) {
8426          // Something went horribly wrong earlier, and we will have complained
8427          // about it.
8428          Invalid = true;
8429          continue;
8430        }
8431
8432        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8433                                            Context.BuiltinFnTy,
8434                                            VK_RValue, Loc, 0).take();
8435        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8436      }
8437
8438      SmallVector<Expr*, 8> CallArgs;
8439      CallArgs.push_back(To.takeAs<Expr>());
8440      CallArgs.push_back(From.takeAs<Expr>());
8441      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8442      ExprResult Call = ExprError();
8443      if (NeedsCollectableMemCpy)
8444        Call = ActOnCallExpr(/*Scope=*/0,
8445                             CollectableMemCpyRef,
8446                             Loc, CallArgs,
8447                             Loc);
8448      else
8449        Call = ActOnCallExpr(/*Scope=*/0,
8450                             BuiltinMemCpyRef,
8451                             Loc, CallArgs,
8452                             Loc);
8453
8454      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8455      Statements.push_back(Call.takeAs<Expr>());
8456      continue;
8457    }
8458
8459    // Build the move of this field.
8460    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8461                                            To.get(), From.get(),
8462                                            /*CopyingBaseSubobject=*/false,
8463                                            /*Copying=*/false);
8464    if (Move.isInvalid()) {
8465      Diag(CurrentLocation, diag::note_member_synthesized_at)
8466        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8467      MoveAssignOperator->setInvalidDecl();
8468      return;
8469    }
8470
8471    // Success! Record the copy.
8472    Statements.push_back(Move.takeAs<Stmt>());
8473  }
8474
8475  if (!Invalid) {
8476    // Add a "return *this;"
8477    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8478
8479    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8480    if (Return.isInvalid())
8481      Invalid = true;
8482    else {
8483      Statements.push_back(Return.takeAs<Stmt>());
8484
8485      if (Trap.hasErrorOccurred()) {
8486        Diag(CurrentLocation, diag::note_member_synthesized_at)
8487          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8488        Invalid = true;
8489      }
8490    }
8491  }
8492
8493  if (Invalid) {
8494    MoveAssignOperator->setInvalidDecl();
8495    return;
8496  }
8497
8498  StmtResult Body;
8499  {
8500    CompoundScopeRAII CompoundScope(*this);
8501    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8502                             /*isStmtExpr=*/false);
8503    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8504  }
8505  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8506
8507  if (ASTMutationListener *L = getASTMutationListener()) {
8508    L->CompletedImplicitDefinition(MoveAssignOperator);
8509  }
8510}
8511
8512/// Determine whether an implicit copy constructor for ClassDecl has a const
8513/// argument.
8514/// FIXME: It ought to be possible to store this on the record.
8515static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl) {
8516  if (ClassDecl->isInvalidDecl())
8517    return true;
8518
8519  // C++ [class.copy]p5:
8520  //   The implicitly-declared copy constructor for a class X will
8521  //   have the form
8522  //
8523  //       X::X(const X&)
8524  //
8525  //   if
8526  //     -- each direct or virtual base class B of X has a copy
8527  //        constructor whose first parameter is of type const B& or
8528  //        const volatile B&, and
8529  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8530                                       BaseEnd = ClassDecl->bases_end();
8531       Base != BaseEnd; ++Base) {
8532    // Virtual bases are handled below.
8533    if (Base->isVirtual())
8534      continue;
8535
8536    CXXRecordDecl *BaseClassDecl
8537      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8538    // FIXME: This lookup is wrong. If the copy ctor for a member or base is
8539    // ambiguous, we should still produce a constructor with a const-qualified
8540    // parameter.
8541    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8542      return false;
8543  }
8544
8545  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8546                                       BaseEnd = ClassDecl->vbases_end();
8547       Base != BaseEnd; ++Base) {
8548    CXXRecordDecl *BaseClassDecl
8549      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8550    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8551      return false;
8552  }
8553
8554  //     -- for all the nonstatic data members of X that are of a
8555  //        class type M (or array thereof), each such class type
8556  //        has a copy constructor whose first parameter is of type
8557  //        const M& or const volatile M&.
8558  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8559                                  FieldEnd = ClassDecl->field_end();
8560       Field != FieldEnd; ++Field) {
8561    QualType FieldType = S.Context.getBaseElementType(Field->getType());
8562    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8563      if (!S.LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const))
8564        return false;
8565    }
8566  }
8567
8568  //   Otherwise, the implicitly declared copy constructor will have
8569  //   the form
8570  //
8571  //       X::X(X&)
8572
8573  return true;
8574}
8575
8576Sema::ImplicitExceptionSpecification
8577Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
8578  CXXRecordDecl *ClassDecl = MD->getParent();
8579
8580  ImplicitExceptionSpecification ExceptSpec(*this);
8581  if (ClassDecl->isInvalidDecl())
8582    return ExceptSpec;
8583
8584  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8585  assert(T->getNumArgs() >= 1 && "not a copy ctor");
8586  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8587
8588  // C++ [except.spec]p14:
8589  //   An implicitly declared special member function (Clause 12) shall have an
8590  //   exception-specification. [...]
8591  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8592                                       BaseEnd = ClassDecl->bases_end();
8593       Base != BaseEnd;
8594       ++Base) {
8595    // Virtual bases are handled below.
8596    if (Base->isVirtual())
8597      continue;
8598
8599    CXXRecordDecl *BaseClassDecl
8600      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8601    if (CXXConstructorDecl *CopyConstructor =
8602          LookupCopyingConstructor(BaseClassDecl, Quals))
8603      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8604  }
8605  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8606                                       BaseEnd = ClassDecl->vbases_end();
8607       Base != BaseEnd;
8608       ++Base) {
8609    CXXRecordDecl *BaseClassDecl
8610      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8611    if (CXXConstructorDecl *CopyConstructor =
8612          LookupCopyingConstructor(BaseClassDecl, Quals))
8613      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8614  }
8615  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8616                                  FieldEnd = ClassDecl->field_end();
8617       Field != FieldEnd;
8618       ++Field) {
8619    QualType FieldType = Context.getBaseElementType(Field->getType());
8620    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8621      if (CXXConstructorDecl *CopyConstructor =
8622              LookupCopyingConstructor(FieldClassDecl,
8623                                       Quals | FieldType.getCVRQualifiers()))
8624      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8625    }
8626  }
8627
8628  return ExceptSpec;
8629}
8630
8631CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8632                                                    CXXRecordDecl *ClassDecl) {
8633  // C++ [class.copy]p4:
8634  //   If the class definition does not explicitly declare a copy
8635  //   constructor, one is declared implicitly.
8636
8637  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8638  QualType ArgType = ClassType;
8639  bool Const = isImplicitCopyCtorArgConst(*this, ClassDecl);
8640  if (Const)
8641    ArgType = ArgType.withConst();
8642  ArgType = Context.getLValueReferenceType(ArgType);
8643
8644  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8645                                                     CXXCopyConstructor,
8646                                                     Const);
8647
8648  DeclarationName Name
8649    = Context.DeclarationNames.getCXXConstructorName(
8650                                           Context.getCanonicalType(ClassType));
8651  SourceLocation ClassLoc = ClassDecl->getLocation();
8652  DeclarationNameInfo NameInfo(Name, ClassLoc);
8653
8654  //   An implicitly-declared copy constructor is an inline public
8655  //   member of its class.
8656  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8657      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8658      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8659      Constexpr);
8660  CopyConstructor->setAccess(AS_public);
8661  CopyConstructor->setDefaulted();
8662  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8663
8664  // Build an exception specification pointing back at this member.
8665  FunctionProtoType::ExtProtoInfo EPI;
8666  EPI.ExceptionSpecType = EST_Unevaluated;
8667  EPI.ExceptionSpecDecl = CopyConstructor;
8668  CopyConstructor->setType(
8669      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8670
8671  // Note that we have declared this constructor.
8672  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8673
8674  // Add the parameter to the constructor.
8675  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8676                                               ClassLoc, ClassLoc,
8677                                               /*IdentifierInfo=*/0,
8678                                               ArgType, /*TInfo=*/0,
8679                                               SC_None,
8680                                               SC_None, 0);
8681  CopyConstructor->setParams(FromParam);
8682
8683  if (Scope *S = getScopeForContext(ClassDecl))
8684    PushOnScopeChains(CopyConstructor, S, false);
8685  ClassDecl->addDecl(CopyConstructor);
8686
8687  // C++11 [class.copy]p8:
8688  //   ... If the class definition does not explicitly declare a copy
8689  //   constructor, there is no user-declared move constructor, and there is no
8690  //   user-declared move assignment operator, a copy constructor is implicitly
8691  //   declared as defaulted.
8692  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8693    CopyConstructor->setDeletedAsWritten();
8694
8695  return CopyConstructor;
8696}
8697
8698void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8699                                   CXXConstructorDecl *CopyConstructor) {
8700  assert((CopyConstructor->isDefaulted() &&
8701          CopyConstructor->isCopyConstructor() &&
8702          !CopyConstructor->doesThisDeclarationHaveABody() &&
8703          !CopyConstructor->isDeleted()) &&
8704         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8705
8706  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8707  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8708
8709  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8710  DiagnosticErrorTrap Trap(Diags);
8711
8712  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8713      Trap.hasErrorOccurred()) {
8714    Diag(CurrentLocation, diag::note_member_synthesized_at)
8715      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8716    CopyConstructor->setInvalidDecl();
8717  }  else {
8718    Sema::CompoundScopeRAII CompoundScope(*this);
8719    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8720                                               CopyConstructor->getLocation(),
8721                                               MultiStmtArg(),
8722                                               /*isStmtExpr=*/false)
8723                                                              .takeAs<Stmt>());
8724    CopyConstructor->setImplicitlyDefined(true);
8725  }
8726
8727  CopyConstructor->setUsed();
8728  if (ASTMutationListener *L = getASTMutationListener()) {
8729    L->CompletedImplicitDefinition(CopyConstructor);
8730  }
8731}
8732
8733Sema::ImplicitExceptionSpecification
8734Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
8735  CXXRecordDecl *ClassDecl = MD->getParent();
8736
8737  // C++ [except.spec]p14:
8738  //   An implicitly declared special member function (Clause 12) shall have an
8739  //   exception-specification. [...]
8740  ImplicitExceptionSpecification ExceptSpec(*this);
8741  if (ClassDecl->isInvalidDecl())
8742    return ExceptSpec;
8743
8744  // Direct base-class constructors.
8745  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8746                                       BEnd = ClassDecl->bases_end();
8747       B != BEnd; ++B) {
8748    if (B->isVirtual()) // Handled below.
8749      continue;
8750
8751    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8752      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8753      CXXConstructorDecl *Constructor =
8754          LookupMovingConstructor(BaseClassDecl, 0);
8755      // If this is a deleted function, add it anyway. This might be conformant
8756      // with the standard. This might not. I'm not sure. It might not matter.
8757      if (Constructor)
8758        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8759    }
8760  }
8761
8762  // Virtual base-class constructors.
8763  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8764                                       BEnd = ClassDecl->vbases_end();
8765       B != BEnd; ++B) {
8766    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8767      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8768      CXXConstructorDecl *Constructor =
8769          LookupMovingConstructor(BaseClassDecl, 0);
8770      // If this is a deleted function, add it anyway. This might be conformant
8771      // with the standard. This might not. I'm not sure. It might not matter.
8772      if (Constructor)
8773        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8774    }
8775  }
8776
8777  // Field constructors.
8778  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8779                               FEnd = ClassDecl->field_end();
8780       F != FEnd; ++F) {
8781    QualType FieldType = Context.getBaseElementType(F->getType());
8782    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
8783      CXXConstructorDecl *Constructor =
8784          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
8785      // If this is a deleted function, add it anyway. This might be conformant
8786      // with the standard. This might not. I'm not sure. It might not matter.
8787      // In particular, the problem is that this function never gets called. It
8788      // might just be ill-formed because this function attempts to refer to
8789      // a deleted function here.
8790      if (Constructor)
8791        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8792    }
8793  }
8794
8795  return ExceptSpec;
8796}
8797
8798CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8799                                                    CXXRecordDecl *ClassDecl) {
8800  // C++11 [class.copy]p9:
8801  //   If the definition of a class X does not explicitly declare a move
8802  //   constructor, one will be implicitly declared as defaulted if and only if:
8803  //
8804  //   - [first 4 bullets]
8805  assert(ClassDecl->needsImplicitMoveConstructor());
8806
8807  // [Checked after we build the declaration]
8808  //   - the move assignment operator would not be implicitly defined as
8809  //     deleted,
8810
8811  // [DR1402]:
8812  //   - each of X's non-static data members and direct or virtual base classes
8813  //     has a type that either has a move constructor or is trivially copyable.
8814  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8815    ClassDecl->setFailedImplicitMoveConstructor();
8816    return 0;
8817  }
8818
8819  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8820  QualType ArgType = Context.getRValueReferenceType(ClassType);
8821
8822  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8823                                                     CXXMoveConstructor,
8824                                                     false);
8825
8826  DeclarationName Name
8827    = Context.DeclarationNames.getCXXConstructorName(
8828                                           Context.getCanonicalType(ClassType));
8829  SourceLocation ClassLoc = ClassDecl->getLocation();
8830  DeclarationNameInfo NameInfo(Name, ClassLoc);
8831
8832  // C++0x [class.copy]p11:
8833  //   An implicitly-declared copy/move constructor is an inline public
8834  //   member of its class.
8835  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8836      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8837      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8838      Constexpr);
8839  MoveConstructor->setAccess(AS_public);
8840  MoveConstructor->setDefaulted();
8841  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8842
8843  // Build an exception specification pointing back at this member.
8844  FunctionProtoType::ExtProtoInfo EPI;
8845  EPI.ExceptionSpecType = EST_Unevaluated;
8846  EPI.ExceptionSpecDecl = MoveConstructor;
8847  MoveConstructor->setType(
8848      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8849
8850  // Add the parameter to the constructor.
8851  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8852                                               ClassLoc, ClassLoc,
8853                                               /*IdentifierInfo=*/0,
8854                                               ArgType, /*TInfo=*/0,
8855                                               SC_None,
8856                                               SC_None, 0);
8857  MoveConstructor->setParams(FromParam);
8858
8859  // C++0x [class.copy]p9:
8860  //   If the definition of a class X does not explicitly declare a move
8861  //   constructor, one will be implicitly declared as defaulted if and only if:
8862  //   [...]
8863  //   - the move constructor would not be implicitly defined as deleted.
8864  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8865    // Cache this result so that we don't try to generate this over and over
8866    // on every lookup, leaking memory and wasting time.
8867    ClassDecl->setFailedImplicitMoveConstructor();
8868    return 0;
8869  }
8870
8871  // Note that we have declared this constructor.
8872  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8873
8874  if (Scope *S = getScopeForContext(ClassDecl))
8875    PushOnScopeChains(MoveConstructor, S, false);
8876  ClassDecl->addDecl(MoveConstructor);
8877
8878  return MoveConstructor;
8879}
8880
8881void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8882                                   CXXConstructorDecl *MoveConstructor) {
8883  assert((MoveConstructor->isDefaulted() &&
8884          MoveConstructor->isMoveConstructor() &&
8885          !MoveConstructor->doesThisDeclarationHaveABody() &&
8886          !MoveConstructor->isDeleted()) &&
8887         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8888
8889  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8890  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8891
8892  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8893  DiagnosticErrorTrap Trap(Diags);
8894
8895  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8896      Trap.hasErrorOccurred()) {
8897    Diag(CurrentLocation, diag::note_member_synthesized_at)
8898      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8899    MoveConstructor->setInvalidDecl();
8900  }  else {
8901    Sema::CompoundScopeRAII CompoundScope(*this);
8902    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8903                                               MoveConstructor->getLocation(),
8904                                               MultiStmtArg(),
8905                                               /*isStmtExpr=*/false)
8906                                                              .takeAs<Stmt>());
8907    MoveConstructor->setImplicitlyDefined(true);
8908  }
8909
8910  MoveConstructor->setUsed();
8911
8912  if (ASTMutationListener *L = getASTMutationListener()) {
8913    L->CompletedImplicitDefinition(MoveConstructor);
8914  }
8915}
8916
8917bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8918  return FD->isDeleted() &&
8919         (FD->isDefaulted() || FD->isImplicit()) &&
8920         isa<CXXMethodDecl>(FD);
8921}
8922
8923/// \brief Mark the call operator of the given lambda closure type as "used".
8924static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8925  CXXMethodDecl *CallOperator
8926    = cast<CXXMethodDecl>(
8927        *Lambda->lookup(
8928          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8929  CallOperator->setReferenced();
8930  CallOperator->setUsed();
8931}
8932
8933void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8934       SourceLocation CurrentLocation,
8935       CXXConversionDecl *Conv)
8936{
8937  CXXRecordDecl *Lambda = Conv->getParent();
8938
8939  // Make sure that the lambda call operator is marked used.
8940  markLambdaCallOperatorUsed(*this, Lambda);
8941
8942  Conv->setUsed();
8943
8944  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8945  DiagnosticErrorTrap Trap(Diags);
8946
8947  // Return the address of the __invoke function.
8948  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8949  CXXMethodDecl *Invoke
8950    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8951  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8952                                       VK_LValue, Conv->getLocation()).take();
8953  assert(FunctionRef && "Can't refer to __invoke function?");
8954  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8955  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8956                                           Conv->getLocation(),
8957                                           Conv->getLocation()));
8958
8959  // Fill in the __invoke function with a dummy implementation. IR generation
8960  // will fill in the actual details.
8961  Invoke->setUsed();
8962  Invoke->setReferenced();
8963  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
8964
8965  if (ASTMutationListener *L = getASTMutationListener()) {
8966    L->CompletedImplicitDefinition(Conv);
8967    L->CompletedImplicitDefinition(Invoke);
8968  }
8969}
8970
8971void Sema::DefineImplicitLambdaToBlockPointerConversion(
8972       SourceLocation CurrentLocation,
8973       CXXConversionDecl *Conv)
8974{
8975  Conv->setUsed();
8976
8977  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8978  DiagnosticErrorTrap Trap(Diags);
8979
8980  // Copy-initialize the lambda object as needed to capture it.
8981  Expr *This = ActOnCXXThis(CurrentLocation).take();
8982  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8983
8984  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8985                                                        Conv->getLocation(),
8986                                                        Conv, DerefThis);
8987
8988  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8989  // behavior.  Note that only the general conversion function does this
8990  // (since it's unusable otherwise); in the case where we inline the
8991  // block literal, it has block literal lifetime semantics.
8992  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8993    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8994                                          CK_CopyAndAutoreleaseBlockObject,
8995                                          BuildBlock.get(), 0, VK_RValue);
8996
8997  if (BuildBlock.isInvalid()) {
8998    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8999    Conv->setInvalidDecl();
9000    return;
9001  }
9002
9003  // Create the return statement that returns the block from the conversion
9004  // function.
9005  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9006  if (Return.isInvalid()) {
9007    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9008    Conv->setInvalidDecl();
9009    return;
9010  }
9011
9012  // Set the body of the conversion function.
9013  Stmt *ReturnS = Return.take();
9014  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9015                                           Conv->getLocation(),
9016                                           Conv->getLocation()));
9017
9018  // We're done; notify the mutation listener, if any.
9019  if (ASTMutationListener *L = getASTMutationListener()) {
9020    L->CompletedImplicitDefinition(Conv);
9021  }
9022}
9023
9024/// \brief Determine whether the given list arguments contains exactly one
9025/// "real" (non-default) argument.
9026static bool hasOneRealArgument(MultiExprArg Args) {
9027  switch (Args.size()) {
9028  case 0:
9029    return false;
9030
9031  default:
9032    if (!Args[1]->isDefaultArgument())
9033      return false;
9034
9035    // fall through
9036  case 1:
9037    return !Args[0]->isDefaultArgument();
9038  }
9039
9040  return false;
9041}
9042
9043ExprResult
9044Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9045                            CXXConstructorDecl *Constructor,
9046                            MultiExprArg ExprArgs,
9047                            bool HadMultipleCandidates,
9048                            bool RequiresZeroInit,
9049                            unsigned ConstructKind,
9050                            SourceRange ParenRange) {
9051  bool Elidable = false;
9052
9053  // C++0x [class.copy]p34:
9054  //   When certain criteria are met, an implementation is allowed to
9055  //   omit the copy/move construction of a class object, even if the
9056  //   copy/move constructor and/or destructor for the object have
9057  //   side effects. [...]
9058  //     - when a temporary class object that has not been bound to a
9059  //       reference (12.2) would be copied/moved to a class object
9060  //       with the same cv-unqualified type, the copy/move operation
9061  //       can be omitted by constructing the temporary object
9062  //       directly into the target of the omitted copy/move
9063  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9064      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9065    Expr *SubExpr = ExprArgs[0];
9066    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9067  }
9068
9069  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9070                               Elidable, ExprArgs, HadMultipleCandidates,
9071                               RequiresZeroInit, ConstructKind, ParenRange);
9072}
9073
9074/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9075/// including handling of its default argument expressions.
9076ExprResult
9077Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9078                            CXXConstructorDecl *Constructor, bool Elidable,
9079                            MultiExprArg ExprArgs,
9080                            bool HadMultipleCandidates,
9081                            bool RequiresZeroInit,
9082                            unsigned ConstructKind,
9083                            SourceRange ParenRange) {
9084  MarkFunctionReferenced(ConstructLoc, Constructor);
9085  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9086                                        Constructor, Elidable, ExprArgs,
9087                                        HadMultipleCandidates, /*FIXME*/false,
9088                                        RequiresZeroInit,
9089              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9090                                        ParenRange));
9091}
9092
9093bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9094                                        CXXConstructorDecl *Constructor,
9095                                        MultiExprArg Exprs,
9096                                        bool HadMultipleCandidates) {
9097  // FIXME: Provide the correct paren SourceRange when available.
9098  ExprResult TempResult =
9099    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9100                          Exprs, HadMultipleCandidates, false,
9101                          CXXConstructExpr::CK_Complete, SourceRange());
9102  if (TempResult.isInvalid())
9103    return true;
9104
9105  Expr *Temp = TempResult.takeAs<Expr>();
9106  CheckImplicitConversions(Temp, VD->getLocation());
9107  MarkFunctionReferenced(VD->getLocation(), Constructor);
9108  Temp = MaybeCreateExprWithCleanups(Temp);
9109  VD->setInit(Temp);
9110
9111  return false;
9112}
9113
9114void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9115  if (VD->isInvalidDecl()) return;
9116
9117  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9118  if (ClassDecl->isInvalidDecl()) return;
9119  if (ClassDecl->hasIrrelevantDestructor()) return;
9120  if (ClassDecl->isDependentContext()) return;
9121
9122  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9123  MarkFunctionReferenced(VD->getLocation(), Destructor);
9124  CheckDestructorAccess(VD->getLocation(), Destructor,
9125                        PDiag(diag::err_access_dtor_var)
9126                        << VD->getDeclName()
9127                        << VD->getType());
9128  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9129
9130  if (!VD->hasGlobalStorage()) return;
9131
9132  // Emit warning for non-trivial dtor in global scope (a real global,
9133  // class-static, function-static).
9134  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9135
9136  // TODO: this should be re-enabled for static locals by !CXAAtExit
9137  if (!VD->isStaticLocal())
9138    Diag(VD->getLocation(), diag::warn_global_destructor);
9139}
9140
9141/// \brief Given a constructor and the set of arguments provided for the
9142/// constructor, convert the arguments and add any required default arguments
9143/// to form a proper call to this constructor.
9144///
9145/// \returns true if an error occurred, false otherwise.
9146bool
9147Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9148                              MultiExprArg ArgsPtr,
9149                              SourceLocation Loc,
9150                              SmallVectorImpl<Expr*> &ConvertedArgs,
9151                              bool AllowExplicit) {
9152  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9153  unsigned NumArgs = ArgsPtr.size();
9154  Expr **Args = ArgsPtr.data();
9155
9156  const FunctionProtoType *Proto
9157    = Constructor->getType()->getAs<FunctionProtoType>();
9158  assert(Proto && "Constructor without a prototype?");
9159  unsigned NumArgsInProto = Proto->getNumArgs();
9160
9161  // If too few arguments are available, we'll fill in the rest with defaults.
9162  if (NumArgs < NumArgsInProto)
9163    ConvertedArgs.reserve(NumArgsInProto);
9164  else
9165    ConvertedArgs.reserve(NumArgs);
9166
9167  VariadicCallType CallType =
9168    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9169  SmallVector<Expr *, 8> AllArgs;
9170  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9171                                        Proto, 0, Args, NumArgs, AllArgs,
9172                                        CallType, AllowExplicit);
9173  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9174
9175  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9176
9177  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9178                       Proto, Loc);
9179
9180  return Invalid;
9181}
9182
9183static inline bool
9184CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9185                                       const FunctionDecl *FnDecl) {
9186  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9187  if (isa<NamespaceDecl>(DC)) {
9188    return SemaRef.Diag(FnDecl->getLocation(),
9189                        diag::err_operator_new_delete_declared_in_namespace)
9190      << FnDecl->getDeclName();
9191  }
9192
9193  if (isa<TranslationUnitDecl>(DC) &&
9194      FnDecl->getStorageClass() == SC_Static) {
9195    return SemaRef.Diag(FnDecl->getLocation(),
9196                        diag::err_operator_new_delete_declared_static)
9197      << FnDecl->getDeclName();
9198  }
9199
9200  return false;
9201}
9202
9203static inline bool
9204CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9205                            CanQualType ExpectedResultType,
9206                            CanQualType ExpectedFirstParamType,
9207                            unsigned DependentParamTypeDiag,
9208                            unsigned InvalidParamTypeDiag) {
9209  QualType ResultType =
9210    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9211
9212  // Check that the result type is not dependent.
9213  if (ResultType->isDependentType())
9214    return SemaRef.Diag(FnDecl->getLocation(),
9215                        diag::err_operator_new_delete_dependent_result_type)
9216    << FnDecl->getDeclName() << ExpectedResultType;
9217
9218  // Check that the result type is what we expect.
9219  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9220    return SemaRef.Diag(FnDecl->getLocation(),
9221                        diag::err_operator_new_delete_invalid_result_type)
9222    << FnDecl->getDeclName() << ExpectedResultType;
9223
9224  // A function template must have at least 2 parameters.
9225  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9226    return SemaRef.Diag(FnDecl->getLocation(),
9227                      diag::err_operator_new_delete_template_too_few_parameters)
9228        << FnDecl->getDeclName();
9229
9230  // The function decl must have at least 1 parameter.
9231  if (FnDecl->getNumParams() == 0)
9232    return SemaRef.Diag(FnDecl->getLocation(),
9233                        diag::err_operator_new_delete_too_few_parameters)
9234      << FnDecl->getDeclName();
9235
9236  // Check the first parameter type is not dependent.
9237  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9238  if (FirstParamType->isDependentType())
9239    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9240      << FnDecl->getDeclName() << ExpectedFirstParamType;
9241
9242  // Check that the first parameter type is what we expect.
9243  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9244      ExpectedFirstParamType)
9245    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9246    << FnDecl->getDeclName() << ExpectedFirstParamType;
9247
9248  return false;
9249}
9250
9251static bool
9252CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9253  // C++ [basic.stc.dynamic.allocation]p1:
9254  //   A program is ill-formed if an allocation function is declared in a
9255  //   namespace scope other than global scope or declared static in global
9256  //   scope.
9257  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9258    return true;
9259
9260  CanQualType SizeTy =
9261    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9262
9263  // C++ [basic.stc.dynamic.allocation]p1:
9264  //  The return type shall be void*. The first parameter shall have type
9265  //  std::size_t.
9266  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9267                                  SizeTy,
9268                                  diag::err_operator_new_dependent_param_type,
9269                                  diag::err_operator_new_param_type))
9270    return true;
9271
9272  // C++ [basic.stc.dynamic.allocation]p1:
9273  //  The first parameter shall not have an associated default argument.
9274  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9275    return SemaRef.Diag(FnDecl->getLocation(),
9276                        diag::err_operator_new_default_arg)
9277      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9278
9279  return false;
9280}
9281
9282static bool
9283CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9284  // C++ [basic.stc.dynamic.deallocation]p1:
9285  //   A program is ill-formed if deallocation functions are declared in a
9286  //   namespace scope other than global scope or declared static in global
9287  //   scope.
9288  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9289    return true;
9290
9291  // C++ [basic.stc.dynamic.deallocation]p2:
9292  //   Each deallocation function shall return void and its first parameter
9293  //   shall be void*.
9294  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9295                                  SemaRef.Context.VoidPtrTy,
9296                                 diag::err_operator_delete_dependent_param_type,
9297                                 diag::err_operator_delete_param_type))
9298    return true;
9299
9300  return false;
9301}
9302
9303/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9304/// of this overloaded operator is well-formed. If so, returns false;
9305/// otherwise, emits appropriate diagnostics and returns true.
9306bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9307  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9308         "Expected an overloaded operator declaration");
9309
9310  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9311
9312  // C++ [over.oper]p5:
9313  //   The allocation and deallocation functions, operator new,
9314  //   operator new[], operator delete and operator delete[], are
9315  //   described completely in 3.7.3. The attributes and restrictions
9316  //   found in the rest of this subclause do not apply to them unless
9317  //   explicitly stated in 3.7.3.
9318  if (Op == OO_Delete || Op == OO_Array_Delete)
9319    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9320
9321  if (Op == OO_New || Op == OO_Array_New)
9322    return CheckOperatorNewDeclaration(*this, FnDecl);
9323
9324  // C++ [over.oper]p6:
9325  //   An operator function shall either be a non-static member
9326  //   function or be a non-member function and have at least one
9327  //   parameter whose type is a class, a reference to a class, an
9328  //   enumeration, or a reference to an enumeration.
9329  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9330    if (MethodDecl->isStatic())
9331      return Diag(FnDecl->getLocation(),
9332                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9333  } else {
9334    bool ClassOrEnumParam = false;
9335    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9336                                   ParamEnd = FnDecl->param_end();
9337         Param != ParamEnd; ++Param) {
9338      QualType ParamType = (*Param)->getType().getNonReferenceType();
9339      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9340          ParamType->isEnumeralType()) {
9341        ClassOrEnumParam = true;
9342        break;
9343      }
9344    }
9345
9346    if (!ClassOrEnumParam)
9347      return Diag(FnDecl->getLocation(),
9348                  diag::err_operator_overload_needs_class_or_enum)
9349        << FnDecl->getDeclName();
9350  }
9351
9352  // C++ [over.oper]p8:
9353  //   An operator function cannot have default arguments (8.3.6),
9354  //   except where explicitly stated below.
9355  //
9356  // Only the function-call operator allows default arguments
9357  // (C++ [over.call]p1).
9358  if (Op != OO_Call) {
9359    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9360         Param != FnDecl->param_end(); ++Param) {
9361      if ((*Param)->hasDefaultArg())
9362        return Diag((*Param)->getLocation(),
9363                    diag::err_operator_overload_default_arg)
9364          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9365    }
9366  }
9367
9368  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9369    { false, false, false }
9370#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9371    , { Unary, Binary, MemberOnly }
9372#include "clang/Basic/OperatorKinds.def"
9373  };
9374
9375  bool CanBeUnaryOperator = OperatorUses[Op][0];
9376  bool CanBeBinaryOperator = OperatorUses[Op][1];
9377  bool MustBeMemberOperator = OperatorUses[Op][2];
9378
9379  // C++ [over.oper]p8:
9380  //   [...] Operator functions cannot have more or fewer parameters
9381  //   than the number required for the corresponding operator, as
9382  //   described in the rest of this subclause.
9383  unsigned NumParams = FnDecl->getNumParams()
9384                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9385  if (Op != OO_Call &&
9386      ((NumParams == 1 && !CanBeUnaryOperator) ||
9387       (NumParams == 2 && !CanBeBinaryOperator) ||
9388       (NumParams < 1) || (NumParams > 2))) {
9389    // We have the wrong number of parameters.
9390    unsigned ErrorKind;
9391    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9392      ErrorKind = 2;  // 2 -> unary or binary.
9393    } else if (CanBeUnaryOperator) {
9394      ErrorKind = 0;  // 0 -> unary
9395    } else {
9396      assert(CanBeBinaryOperator &&
9397             "All non-call overloaded operators are unary or binary!");
9398      ErrorKind = 1;  // 1 -> binary
9399    }
9400
9401    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9402      << FnDecl->getDeclName() << NumParams << ErrorKind;
9403  }
9404
9405  // Overloaded operators other than operator() cannot be variadic.
9406  if (Op != OO_Call &&
9407      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9408    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9409      << FnDecl->getDeclName();
9410  }
9411
9412  // Some operators must be non-static member functions.
9413  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9414    return Diag(FnDecl->getLocation(),
9415                diag::err_operator_overload_must_be_member)
9416      << FnDecl->getDeclName();
9417  }
9418
9419  // C++ [over.inc]p1:
9420  //   The user-defined function called operator++ implements the
9421  //   prefix and postfix ++ operator. If this function is a member
9422  //   function with no parameters, or a non-member function with one
9423  //   parameter of class or enumeration type, it defines the prefix
9424  //   increment operator ++ for objects of that type. If the function
9425  //   is a member function with one parameter (which shall be of type
9426  //   int) or a non-member function with two parameters (the second
9427  //   of which shall be of type int), it defines the postfix
9428  //   increment operator ++ for objects of that type.
9429  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9430    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9431    bool ParamIsInt = false;
9432    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9433      ParamIsInt = BT->getKind() == BuiltinType::Int;
9434
9435    if (!ParamIsInt)
9436      return Diag(LastParam->getLocation(),
9437                  diag::err_operator_overload_post_incdec_must_be_int)
9438        << LastParam->getType() << (Op == OO_MinusMinus);
9439  }
9440
9441  return false;
9442}
9443
9444/// CheckLiteralOperatorDeclaration - Check whether the declaration
9445/// of this literal operator function is well-formed. If so, returns
9446/// false; otherwise, emits appropriate diagnostics and returns true.
9447bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9448  if (isa<CXXMethodDecl>(FnDecl)) {
9449    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9450      << FnDecl->getDeclName();
9451    return true;
9452  }
9453
9454  if (FnDecl->isExternC()) {
9455    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9456    return true;
9457  }
9458
9459  bool Valid = false;
9460
9461  // This might be the definition of a literal operator template.
9462  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9463  // This might be a specialization of a literal operator template.
9464  if (!TpDecl)
9465    TpDecl = FnDecl->getPrimaryTemplate();
9466
9467  // template <char...> type operator "" name() is the only valid template
9468  // signature, and the only valid signature with no parameters.
9469  if (TpDecl) {
9470    if (FnDecl->param_size() == 0) {
9471      // Must have only one template parameter
9472      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9473      if (Params->size() == 1) {
9474        NonTypeTemplateParmDecl *PmDecl =
9475          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9476
9477        // The template parameter must be a char parameter pack.
9478        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9479            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9480          Valid = true;
9481      }
9482    }
9483  } else if (FnDecl->param_size()) {
9484    // Check the first parameter
9485    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9486
9487    QualType T = (*Param)->getType().getUnqualifiedType();
9488
9489    // unsigned long long int, long double, and any character type are allowed
9490    // as the only parameters.
9491    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9492        Context.hasSameType(T, Context.LongDoubleTy) ||
9493        Context.hasSameType(T, Context.CharTy) ||
9494        Context.hasSameType(T, Context.WCharTy) ||
9495        Context.hasSameType(T, Context.Char16Ty) ||
9496        Context.hasSameType(T, Context.Char32Ty)) {
9497      if (++Param == FnDecl->param_end())
9498        Valid = true;
9499      goto FinishedParams;
9500    }
9501
9502    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9503    const PointerType *PT = T->getAs<PointerType>();
9504    if (!PT)
9505      goto FinishedParams;
9506    T = PT->getPointeeType();
9507    if (!T.isConstQualified() || T.isVolatileQualified())
9508      goto FinishedParams;
9509    T = T.getUnqualifiedType();
9510
9511    // Move on to the second parameter;
9512    ++Param;
9513
9514    // If there is no second parameter, the first must be a const char *
9515    if (Param == FnDecl->param_end()) {
9516      if (Context.hasSameType(T, Context.CharTy))
9517        Valid = true;
9518      goto FinishedParams;
9519    }
9520
9521    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9522    // are allowed as the first parameter to a two-parameter function
9523    if (!(Context.hasSameType(T, Context.CharTy) ||
9524          Context.hasSameType(T, Context.WCharTy) ||
9525          Context.hasSameType(T, Context.Char16Ty) ||
9526          Context.hasSameType(T, Context.Char32Ty)))
9527      goto FinishedParams;
9528
9529    // The second and final parameter must be an std::size_t
9530    T = (*Param)->getType().getUnqualifiedType();
9531    if (Context.hasSameType(T, Context.getSizeType()) &&
9532        ++Param == FnDecl->param_end())
9533      Valid = true;
9534  }
9535
9536  // FIXME: This diagnostic is absolutely terrible.
9537FinishedParams:
9538  if (!Valid) {
9539    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9540      << FnDecl->getDeclName();
9541    return true;
9542  }
9543
9544  // A parameter-declaration-clause containing a default argument is not
9545  // equivalent to any of the permitted forms.
9546  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9547                                    ParamEnd = FnDecl->param_end();
9548       Param != ParamEnd; ++Param) {
9549    if ((*Param)->hasDefaultArg()) {
9550      Diag((*Param)->getDefaultArgRange().getBegin(),
9551           diag::err_literal_operator_default_argument)
9552        << (*Param)->getDefaultArgRange();
9553      break;
9554    }
9555  }
9556
9557  StringRef LiteralName
9558    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9559  if (LiteralName[0] != '_') {
9560    // C++11 [usrlit.suffix]p1:
9561    //   Literal suffix identifiers that do not start with an underscore
9562    //   are reserved for future standardization.
9563    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9564  }
9565
9566  return false;
9567}
9568
9569/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9570/// linkage specification, including the language and (if present)
9571/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9572/// the location of the language string literal, which is provided
9573/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9574/// the '{' brace. Otherwise, this linkage specification does not
9575/// have any braces.
9576Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9577                                           SourceLocation LangLoc,
9578                                           StringRef Lang,
9579                                           SourceLocation LBraceLoc) {
9580  LinkageSpecDecl::LanguageIDs Language;
9581  if (Lang == "\"C\"")
9582    Language = LinkageSpecDecl::lang_c;
9583  else if (Lang == "\"C++\"")
9584    Language = LinkageSpecDecl::lang_cxx;
9585  else {
9586    Diag(LangLoc, diag::err_bad_language);
9587    return 0;
9588  }
9589
9590  // FIXME: Add all the various semantics of linkage specifications
9591
9592  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9593                                               ExternLoc, LangLoc, Language);
9594  CurContext->addDecl(D);
9595  PushDeclContext(S, D);
9596  return D;
9597}
9598
9599/// ActOnFinishLinkageSpecification - Complete the definition of
9600/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9601/// valid, it's the position of the closing '}' brace in a linkage
9602/// specification that uses braces.
9603Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9604                                            Decl *LinkageSpec,
9605                                            SourceLocation RBraceLoc) {
9606  if (LinkageSpec) {
9607    if (RBraceLoc.isValid()) {
9608      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9609      LSDecl->setRBraceLoc(RBraceLoc);
9610    }
9611    PopDeclContext();
9612  }
9613  return LinkageSpec;
9614}
9615
9616/// \brief Perform semantic analysis for the variable declaration that
9617/// occurs within a C++ catch clause, returning the newly-created
9618/// variable.
9619VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9620                                         TypeSourceInfo *TInfo,
9621                                         SourceLocation StartLoc,
9622                                         SourceLocation Loc,
9623                                         IdentifierInfo *Name) {
9624  bool Invalid = false;
9625  QualType ExDeclType = TInfo->getType();
9626
9627  // Arrays and functions decay.
9628  if (ExDeclType->isArrayType())
9629    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9630  else if (ExDeclType->isFunctionType())
9631    ExDeclType = Context.getPointerType(ExDeclType);
9632
9633  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9634  // The exception-declaration shall not denote a pointer or reference to an
9635  // incomplete type, other than [cv] void*.
9636  // N2844 forbids rvalue references.
9637  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9638    Diag(Loc, diag::err_catch_rvalue_ref);
9639    Invalid = true;
9640  }
9641
9642  QualType BaseType = ExDeclType;
9643  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9644  unsigned DK = diag::err_catch_incomplete;
9645  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9646    BaseType = Ptr->getPointeeType();
9647    Mode = 1;
9648    DK = diag::err_catch_incomplete_ptr;
9649  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9650    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9651    BaseType = Ref->getPointeeType();
9652    Mode = 2;
9653    DK = diag::err_catch_incomplete_ref;
9654  }
9655  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9656      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9657    Invalid = true;
9658
9659  if (!Invalid && !ExDeclType->isDependentType() &&
9660      RequireNonAbstractType(Loc, ExDeclType,
9661                             diag::err_abstract_type_in_decl,
9662                             AbstractVariableType))
9663    Invalid = true;
9664
9665  // Only the non-fragile NeXT runtime currently supports C++ catches
9666  // of ObjC types, and no runtime supports catching ObjC types by value.
9667  if (!Invalid && getLangOpts().ObjC1) {
9668    QualType T = ExDeclType;
9669    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9670      T = RT->getPointeeType();
9671
9672    if (T->isObjCObjectType()) {
9673      Diag(Loc, diag::err_objc_object_catch);
9674      Invalid = true;
9675    } else if (T->isObjCObjectPointerType()) {
9676      // FIXME: should this be a test for macosx-fragile specifically?
9677      if (getLangOpts().ObjCRuntime.isFragile())
9678        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9679    }
9680  }
9681
9682  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9683                                    ExDeclType, TInfo, SC_None, SC_None);
9684  ExDecl->setExceptionVariable(true);
9685
9686  // In ARC, infer 'retaining' for variables of retainable type.
9687  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9688    Invalid = true;
9689
9690  if (!Invalid && !ExDeclType->isDependentType()) {
9691    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9692      // C++ [except.handle]p16:
9693      //   The object declared in an exception-declaration or, if the
9694      //   exception-declaration does not specify a name, a temporary (12.2) is
9695      //   copy-initialized (8.5) from the exception object. [...]
9696      //   The object is destroyed when the handler exits, after the destruction
9697      //   of any automatic objects initialized within the handler.
9698      //
9699      // We just pretend to initialize the object with itself, then make sure
9700      // it can be destroyed later.
9701      QualType initType = ExDeclType;
9702
9703      InitializedEntity entity =
9704        InitializedEntity::InitializeVariable(ExDecl);
9705      InitializationKind initKind =
9706        InitializationKind::CreateCopy(Loc, SourceLocation());
9707
9708      Expr *opaqueValue =
9709        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9710      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9711      ExprResult result = sequence.Perform(*this, entity, initKind,
9712                                           MultiExprArg(&opaqueValue, 1));
9713      if (result.isInvalid())
9714        Invalid = true;
9715      else {
9716        // If the constructor used was non-trivial, set this as the
9717        // "initializer".
9718        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9719        if (!construct->getConstructor()->isTrivial()) {
9720          Expr *init = MaybeCreateExprWithCleanups(construct);
9721          ExDecl->setInit(init);
9722        }
9723
9724        // And make sure it's destructable.
9725        FinalizeVarWithDestructor(ExDecl, recordType);
9726      }
9727    }
9728  }
9729
9730  if (Invalid)
9731    ExDecl->setInvalidDecl();
9732
9733  return ExDecl;
9734}
9735
9736/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9737/// handler.
9738Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9739  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9740  bool Invalid = D.isInvalidType();
9741
9742  // Check for unexpanded parameter packs.
9743  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9744                                               UPPC_ExceptionType)) {
9745    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9746                                             D.getIdentifierLoc());
9747    Invalid = true;
9748  }
9749
9750  IdentifierInfo *II = D.getIdentifier();
9751  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9752                                             LookupOrdinaryName,
9753                                             ForRedeclaration)) {
9754    // The scope should be freshly made just for us. There is just no way
9755    // it contains any previous declaration.
9756    assert(!S->isDeclScope(PrevDecl));
9757    if (PrevDecl->isTemplateParameter()) {
9758      // Maybe we will complain about the shadowed template parameter.
9759      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9760      PrevDecl = 0;
9761    }
9762  }
9763
9764  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9765    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9766      << D.getCXXScopeSpec().getRange();
9767    Invalid = true;
9768  }
9769
9770  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9771                                              D.getLocStart(),
9772                                              D.getIdentifierLoc(),
9773                                              D.getIdentifier());
9774  if (Invalid)
9775    ExDecl->setInvalidDecl();
9776
9777  // Add the exception declaration into this scope.
9778  if (II)
9779    PushOnScopeChains(ExDecl, S);
9780  else
9781    CurContext->addDecl(ExDecl);
9782
9783  ProcessDeclAttributes(S, ExDecl, D);
9784  return ExDecl;
9785}
9786
9787Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9788                                         Expr *AssertExpr,
9789                                         Expr *AssertMessageExpr,
9790                                         SourceLocation RParenLoc) {
9791  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
9792
9793  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9794    return 0;
9795
9796  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
9797                                      AssertMessage, RParenLoc, false);
9798}
9799
9800Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9801                                         Expr *AssertExpr,
9802                                         StringLiteral *AssertMessage,
9803                                         SourceLocation RParenLoc,
9804                                         bool Failed) {
9805  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
9806      !Failed) {
9807    // In a static_assert-declaration, the constant-expression shall be a
9808    // constant expression that can be contextually converted to bool.
9809    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9810    if (Converted.isInvalid())
9811      Failed = true;
9812
9813    llvm::APSInt Cond;
9814    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
9815          diag::err_static_assert_expression_is_not_constant,
9816          /*AllowFold=*/false).isInvalid())
9817      Failed = true;
9818
9819    if (!Failed && !Cond) {
9820      llvm::SmallString<256> MsgBuffer;
9821      llvm::raw_svector_ostream Msg(MsgBuffer);
9822      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
9823      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9824        << Msg.str() << AssertExpr->getSourceRange();
9825      Failed = true;
9826    }
9827  }
9828
9829  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9830                                        AssertExpr, AssertMessage, RParenLoc,
9831                                        Failed);
9832
9833  CurContext->addDecl(Decl);
9834  return Decl;
9835}
9836
9837/// \brief Perform semantic analysis of the given friend type declaration.
9838///
9839/// \returns A friend declaration that.
9840FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9841                                      SourceLocation FriendLoc,
9842                                      TypeSourceInfo *TSInfo) {
9843  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9844
9845  QualType T = TSInfo->getType();
9846  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9847
9848  // C++03 [class.friend]p2:
9849  //   An elaborated-type-specifier shall be used in a friend declaration
9850  //   for a class.*
9851  //
9852  //   * The class-key of the elaborated-type-specifier is required.
9853  if (!ActiveTemplateInstantiations.empty()) {
9854    // Do not complain about the form of friend template types during
9855    // template instantiation; we will already have complained when the
9856    // template was declared.
9857  } else if (!T->isElaboratedTypeSpecifier()) {
9858    // If we evaluated the type to a record type, suggest putting
9859    // a tag in front.
9860    if (const RecordType *RT = T->getAs<RecordType>()) {
9861      RecordDecl *RD = RT->getDecl();
9862
9863      std::string InsertionText = std::string(" ") + RD->getKindName();
9864
9865      Diag(TypeRange.getBegin(),
9866           getLangOpts().CPlusPlus0x ?
9867             diag::warn_cxx98_compat_unelaborated_friend_type :
9868             diag::ext_unelaborated_friend_type)
9869        << (unsigned) RD->getTagKind()
9870        << T
9871        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9872                                      InsertionText);
9873    } else {
9874      Diag(FriendLoc,
9875           getLangOpts().CPlusPlus0x ?
9876             diag::warn_cxx98_compat_nonclass_type_friend :
9877             diag::ext_nonclass_type_friend)
9878        << T
9879        << SourceRange(FriendLoc, TypeRange.getEnd());
9880    }
9881  } else if (T->getAs<EnumType>()) {
9882    Diag(FriendLoc,
9883         getLangOpts().CPlusPlus0x ?
9884           diag::warn_cxx98_compat_enum_friend :
9885           diag::ext_enum_friend)
9886      << T
9887      << SourceRange(FriendLoc, TypeRange.getEnd());
9888  }
9889
9890  // C++0x [class.friend]p3:
9891  //   If the type specifier in a friend declaration designates a (possibly
9892  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9893  //   the friend declaration is ignored.
9894
9895  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9896  // in [class.friend]p3 that we do not implement.
9897
9898  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9899}
9900
9901/// Handle a friend tag declaration where the scope specifier was
9902/// templated.
9903Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9904                                    unsigned TagSpec, SourceLocation TagLoc,
9905                                    CXXScopeSpec &SS,
9906                                    IdentifierInfo *Name, SourceLocation NameLoc,
9907                                    AttributeList *Attr,
9908                                    MultiTemplateParamsArg TempParamLists) {
9909  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9910
9911  bool isExplicitSpecialization = false;
9912  bool Invalid = false;
9913
9914  if (TemplateParameterList *TemplateParams
9915        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9916                                                  TempParamLists.data(),
9917                                                  TempParamLists.size(),
9918                                                  /*friend*/ true,
9919                                                  isExplicitSpecialization,
9920                                                  Invalid)) {
9921    if (TemplateParams->size() > 0) {
9922      // This is a declaration of a class template.
9923      if (Invalid)
9924        return 0;
9925
9926      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9927                                SS, Name, NameLoc, Attr,
9928                                TemplateParams, AS_public,
9929                                /*ModulePrivateLoc=*/SourceLocation(),
9930                                TempParamLists.size() - 1,
9931                                TempParamLists.data()).take();
9932    } else {
9933      // The "template<>" header is extraneous.
9934      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9935        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9936      isExplicitSpecialization = true;
9937    }
9938  }
9939
9940  if (Invalid) return 0;
9941
9942  bool isAllExplicitSpecializations = true;
9943  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9944    if (TempParamLists[I]->size()) {
9945      isAllExplicitSpecializations = false;
9946      break;
9947    }
9948  }
9949
9950  // FIXME: don't ignore attributes.
9951
9952  // If it's explicit specializations all the way down, just forget
9953  // about the template header and build an appropriate non-templated
9954  // friend.  TODO: for source fidelity, remember the headers.
9955  if (isAllExplicitSpecializations) {
9956    if (SS.isEmpty()) {
9957      bool Owned = false;
9958      bool IsDependent = false;
9959      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9960                      Attr, AS_public,
9961                      /*ModulePrivateLoc=*/SourceLocation(),
9962                      MultiTemplateParamsArg(), Owned, IsDependent,
9963                      /*ScopedEnumKWLoc=*/SourceLocation(),
9964                      /*ScopedEnumUsesClassTag=*/false,
9965                      /*UnderlyingType=*/TypeResult());
9966    }
9967
9968    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9969    ElaboratedTypeKeyword Keyword
9970      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9971    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9972                                   *Name, NameLoc);
9973    if (T.isNull())
9974      return 0;
9975
9976    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9977    if (isa<DependentNameType>(T)) {
9978      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9979      TL.setElaboratedKeywordLoc(TagLoc);
9980      TL.setQualifierLoc(QualifierLoc);
9981      TL.setNameLoc(NameLoc);
9982    } else {
9983      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9984      TL.setElaboratedKeywordLoc(TagLoc);
9985      TL.setQualifierLoc(QualifierLoc);
9986      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9987    }
9988
9989    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9990                                            TSI, FriendLoc);
9991    Friend->setAccess(AS_public);
9992    CurContext->addDecl(Friend);
9993    return Friend;
9994  }
9995
9996  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9997
9998
9999
10000  // Handle the case of a templated-scope friend class.  e.g.
10001  //   template <class T> class A<T>::B;
10002  // FIXME: we don't support these right now.
10003  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10004  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10005  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10006  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10007  TL.setElaboratedKeywordLoc(TagLoc);
10008  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10009  TL.setNameLoc(NameLoc);
10010
10011  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10012                                          TSI, FriendLoc);
10013  Friend->setAccess(AS_public);
10014  Friend->setUnsupportedFriend(true);
10015  CurContext->addDecl(Friend);
10016  return Friend;
10017}
10018
10019
10020/// Handle a friend type declaration.  This works in tandem with
10021/// ActOnTag.
10022///
10023/// Notes on friend class templates:
10024///
10025/// We generally treat friend class declarations as if they were
10026/// declaring a class.  So, for example, the elaborated type specifier
10027/// in a friend declaration is required to obey the restrictions of a
10028/// class-head (i.e. no typedefs in the scope chain), template
10029/// parameters are required to match up with simple template-ids, &c.
10030/// However, unlike when declaring a template specialization, it's
10031/// okay to refer to a template specialization without an empty
10032/// template parameter declaration, e.g.
10033///   friend class A<T>::B<unsigned>;
10034/// We permit this as a special case; if there are any template
10035/// parameters present at all, require proper matching, i.e.
10036///   template <> template \<class T> friend class A<int>::B;
10037Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10038                                MultiTemplateParamsArg TempParams) {
10039  SourceLocation Loc = DS.getLocStart();
10040
10041  assert(DS.isFriendSpecified());
10042  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10043
10044  // Try to convert the decl specifier to a type.  This works for
10045  // friend templates because ActOnTag never produces a ClassTemplateDecl
10046  // for a TUK_Friend.
10047  Declarator TheDeclarator(DS, Declarator::MemberContext);
10048  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10049  QualType T = TSI->getType();
10050  if (TheDeclarator.isInvalidType())
10051    return 0;
10052
10053  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10054    return 0;
10055
10056  // This is definitely an error in C++98.  It's probably meant to
10057  // be forbidden in C++0x, too, but the specification is just
10058  // poorly written.
10059  //
10060  // The problem is with declarations like the following:
10061  //   template <T> friend A<T>::foo;
10062  // where deciding whether a class C is a friend or not now hinges
10063  // on whether there exists an instantiation of A that causes
10064  // 'foo' to equal C.  There are restrictions on class-heads
10065  // (which we declare (by fiat) elaborated friend declarations to
10066  // be) that makes this tractable.
10067  //
10068  // FIXME: handle "template <> friend class A<T>;", which
10069  // is possibly well-formed?  Who even knows?
10070  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10071    Diag(Loc, diag::err_tagless_friend_type_template)
10072      << DS.getSourceRange();
10073    return 0;
10074  }
10075
10076  // C++98 [class.friend]p1: A friend of a class is a function
10077  //   or class that is not a member of the class . . .
10078  // This is fixed in DR77, which just barely didn't make the C++03
10079  // deadline.  It's also a very silly restriction that seriously
10080  // affects inner classes and which nobody else seems to implement;
10081  // thus we never diagnose it, not even in -pedantic.
10082  //
10083  // But note that we could warn about it: it's always useless to
10084  // friend one of your own members (it's not, however, worthless to
10085  // friend a member of an arbitrary specialization of your template).
10086
10087  Decl *D;
10088  if (unsigned NumTempParamLists = TempParams.size())
10089    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10090                                   NumTempParamLists,
10091                                   TempParams.data(),
10092                                   TSI,
10093                                   DS.getFriendSpecLoc());
10094  else
10095    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10096
10097  if (!D)
10098    return 0;
10099
10100  D->setAccess(AS_public);
10101  CurContext->addDecl(D);
10102
10103  return D;
10104}
10105
10106Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10107                                    MultiTemplateParamsArg TemplateParams) {
10108  const DeclSpec &DS = D.getDeclSpec();
10109
10110  assert(DS.isFriendSpecified());
10111  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10112
10113  SourceLocation Loc = D.getIdentifierLoc();
10114  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10115
10116  // C++ [class.friend]p1
10117  //   A friend of a class is a function or class....
10118  // Note that this sees through typedefs, which is intended.
10119  // It *doesn't* see through dependent types, which is correct
10120  // according to [temp.arg.type]p3:
10121  //   If a declaration acquires a function type through a
10122  //   type dependent on a template-parameter and this causes
10123  //   a declaration that does not use the syntactic form of a
10124  //   function declarator to have a function type, the program
10125  //   is ill-formed.
10126  if (!TInfo->getType()->isFunctionType()) {
10127    Diag(Loc, diag::err_unexpected_friend);
10128
10129    // It might be worthwhile to try to recover by creating an
10130    // appropriate declaration.
10131    return 0;
10132  }
10133
10134  // C++ [namespace.memdef]p3
10135  //  - If a friend declaration in a non-local class first declares a
10136  //    class or function, the friend class or function is a member
10137  //    of the innermost enclosing namespace.
10138  //  - The name of the friend is not found by simple name lookup
10139  //    until a matching declaration is provided in that namespace
10140  //    scope (either before or after the class declaration granting
10141  //    friendship).
10142  //  - If a friend function is called, its name may be found by the
10143  //    name lookup that considers functions from namespaces and
10144  //    classes associated with the types of the function arguments.
10145  //  - When looking for a prior declaration of a class or a function
10146  //    declared as a friend, scopes outside the innermost enclosing
10147  //    namespace scope are not considered.
10148
10149  CXXScopeSpec &SS = D.getCXXScopeSpec();
10150  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10151  DeclarationName Name = NameInfo.getName();
10152  assert(Name);
10153
10154  // Check for unexpanded parameter packs.
10155  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10156      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10157      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10158    return 0;
10159
10160  // The context we found the declaration in, or in which we should
10161  // create the declaration.
10162  DeclContext *DC;
10163  Scope *DCScope = S;
10164  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10165                        ForRedeclaration);
10166
10167  // FIXME: there are different rules in local classes
10168
10169  // There are four cases here.
10170  //   - There's no scope specifier, in which case we just go to the
10171  //     appropriate scope and look for a function or function template
10172  //     there as appropriate.
10173  // Recover from invalid scope qualifiers as if they just weren't there.
10174  if (SS.isInvalid() || !SS.isSet()) {
10175    // C++0x [namespace.memdef]p3:
10176    //   If the name in a friend declaration is neither qualified nor
10177    //   a template-id and the declaration is a function or an
10178    //   elaborated-type-specifier, the lookup to determine whether
10179    //   the entity has been previously declared shall not consider
10180    //   any scopes outside the innermost enclosing namespace.
10181    // C++0x [class.friend]p11:
10182    //   If a friend declaration appears in a local class and the name
10183    //   specified is an unqualified name, a prior declaration is
10184    //   looked up without considering scopes that are outside the
10185    //   innermost enclosing non-class scope. For a friend function
10186    //   declaration, if there is no prior declaration, the program is
10187    //   ill-formed.
10188    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10189    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10190
10191    // Find the appropriate context according to the above.
10192    DC = CurContext;
10193    while (true) {
10194      // Skip class contexts.  If someone can cite chapter and verse
10195      // for this behavior, that would be nice --- it's what GCC and
10196      // EDG do, and it seems like a reasonable intent, but the spec
10197      // really only says that checks for unqualified existing
10198      // declarations should stop at the nearest enclosing namespace,
10199      // not that they should only consider the nearest enclosing
10200      // namespace.
10201      while (DC->isRecord() || DC->isTransparentContext())
10202        DC = DC->getParent();
10203
10204      LookupQualifiedName(Previous, DC);
10205
10206      // TODO: decide what we think about using declarations.
10207      if (isLocal || !Previous.empty())
10208        break;
10209
10210      if (isTemplateId) {
10211        if (isa<TranslationUnitDecl>(DC)) break;
10212      } else {
10213        if (DC->isFileContext()) break;
10214      }
10215      DC = DC->getParent();
10216    }
10217
10218    // C++ [class.friend]p1: A friend of a class is a function or
10219    //   class that is not a member of the class . . .
10220    // C++11 changes this for both friend types and functions.
10221    // Most C++ 98 compilers do seem to give an error here, so
10222    // we do, too.
10223    if (!Previous.empty() && DC->Equals(CurContext))
10224      Diag(DS.getFriendSpecLoc(),
10225           getLangOpts().CPlusPlus0x ?
10226             diag::warn_cxx98_compat_friend_is_member :
10227             diag::err_friend_is_member);
10228
10229    DCScope = getScopeForDeclContext(S, DC);
10230
10231    // C++ [class.friend]p6:
10232    //   A function can be defined in a friend declaration of a class if and
10233    //   only if the class is a non-local class (9.8), the function name is
10234    //   unqualified, and the function has namespace scope.
10235    if (isLocal && D.isFunctionDefinition()) {
10236      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10237    }
10238
10239  //   - There's a non-dependent scope specifier, in which case we
10240  //     compute it and do a previous lookup there for a function
10241  //     or function template.
10242  } else if (!SS.getScopeRep()->isDependent()) {
10243    DC = computeDeclContext(SS);
10244    if (!DC) return 0;
10245
10246    if (RequireCompleteDeclContext(SS, DC)) return 0;
10247
10248    LookupQualifiedName(Previous, DC);
10249
10250    // Ignore things found implicitly in the wrong scope.
10251    // TODO: better diagnostics for this case.  Suggesting the right
10252    // qualified scope would be nice...
10253    LookupResult::Filter F = Previous.makeFilter();
10254    while (F.hasNext()) {
10255      NamedDecl *D = F.next();
10256      if (!DC->InEnclosingNamespaceSetOf(
10257              D->getDeclContext()->getRedeclContext()))
10258        F.erase();
10259    }
10260    F.done();
10261
10262    if (Previous.empty()) {
10263      D.setInvalidType();
10264      Diag(Loc, diag::err_qualified_friend_not_found)
10265          << Name << TInfo->getType();
10266      return 0;
10267    }
10268
10269    // C++ [class.friend]p1: A friend of a class is a function or
10270    //   class that is not a member of the class . . .
10271    if (DC->Equals(CurContext))
10272      Diag(DS.getFriendSpecLoc(),
10273           getLangOpts().CPlusPlus0x ?
10274             diag::warn_cxx98_compat_friend_is_member :
10275             diag::err_friend_is_member);
10276
10277    if (D.isFunctionDefinition()) {
10278      // C++ [class.friend]p6:
10279      //   A function can be defined in a friend declaration of a class if and
10280      //   only if the class is a non-local class (9.8), the function name is
10281      //   unqualified, and the function has namespace scope.
10282      SemaDiagnosticBuilder DB
10283        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10284
10285      DB << SS.getScopeRep();
10286      if (DC->isFileContext())
10287        DB << FixItHint::CreateRemoval(SS.getRange());
10288      SS.clear();
10289    }
10290
10291  //   - There's a scope specifier that does not match any template
10292  //     parameter lists, in which case we use some arbitrary context,
10293  //     create a method or method template, and wait for instantiation.
10294  //   - There's a scope specifier that does match some template
10295  //     parameter lists, which we don't handle right now.
10296  } else {
10297    if (D.isFunctionDefinition()) {
10298      // C++ [class.friend]p6:
10299      //   A function can be defined in a friend declaration of a class if and
10300      //   only if the class is a non-local class (9.8), the function name is
10301      //   unqualified, and the function has namespace scope.
10302      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10303        << SS.getScopeRep();
10304    }
10305
10306    DC = CurContext;
10307    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10308  }
10309
10310  if (!DC->isRecord()) {
10311    // This implies that it has to be an operator or function.
10312    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10313        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10314        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10315      Diag(Loc, diag::err_introducing_special_friend) <<
10316        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10317         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10318      return 0;
10319    }
10320  }
10321
10322  // FIXME: This is an egregious hack to cope with cases where the scope stack
10323  // does not contain the declaration context, i.e., in an out-of-line
10324  // definition of a class.
10325  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10326  if (!DCScope) {
10327    FakeDCScope.setEntity(DC);
10328    DCScope = &FakeDCScope;
10329  }
10330
10331  bool AddToScope = true;
10332  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10333                                          TemplateParams, AddToScope);
10334  if (!ND) return 0;
10335
10336  assert(ND->getDeclContext() == DC);
10337  assert(ND->getLexicalDeclContext() == CurContext);
10338
10339  // Add the function declaration to the appropriate lookup tables,
10340  // adjusting the redeclarations list as necessary.  We don't
10341  // want to do this yet if the friending class is dependent.
10342  //
10343  // Also update the scope-based lookup if the target context's
10344  // lookup context is in lexical scope.
10345  if (!CurContext->isDependentContext()) {
10346    DC = DC->getRedeclContext();
10347    DC->makeDeclVisibleInContext(ND);
10348    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10349      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10350  }
10351
10352  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10353                                       D.getIdentifierLoc(), ND,
10354                                       DS.getFriendSpecLoc());
10355  FrD->setAccess(AS_public);
10356  CurContext->addDecl(FrD);
10357
10358  if (ND->isInvalidDecl()) {
10359    FrD->setInvalidDecl();
10360  } else {
10361    if (DC->isRecord()) CheckFriendAccess(ND);
10362
10363    FunctionDecl *FD;
10364    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10365      FD = FTD->getTemplatedDecl();
10366    else
10367      FD = cast<FunctionDecl>(ND);
10368
10369    // Mark templated-scope function declarations as unsupported.
10370    if (FD->getNumTemplateParameterLists())
10371      FrD->setUnsupportedFriend(true);
10372  }
10373
10374  return ND;
10375}
10376
10377void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10378  AdjustDeclIfTemplate(Dcl);
10379
10380  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10381  if (!Fn) {
10382    Diag(DelLoc, diag::err_deleted_non_function);
10383    return;
10384  }
10385  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10386    // Don't consider the implicit declaration we generate for explicit
10387    // specializations. FIXME: Do not generate these implicit declarations.
10388    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10389        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10390      Diag(DelLoc, diag::err_deleted_decl_not_first);
10391      Diag(Prev->getLocation(), diag::note_previous_declaration);
10392    }
10393    // If the declaration wasn't the first, we delete the function anyway for
10394    // recovery.
10395  }
10396  Fn->setDeletedAsWritten();
10397
10398  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10399  if (!MD)
10400    return;
10401
10402  // A deleted special member function is trivial if the corresponding
10403  // implicitly-declared function would have been.
10404  switch (getSpecialMember(MD)) {
10405  case CXXInvalid:
10406    break;
10407  case CXXDefaultConstructor:
10408    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10409    break;
10410  case CXXCopyConstructor:
10411    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10412    break;
10413  case CXXMoveConstructor:
10414    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10415    break;
10416  case CXXCopyAssignment:
10417    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10418    break;
10419  case CXXMoveAssignment:
10420    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10421    break;
10422  case CXXDestructor:
10423    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10424    break;
10425  }
10426}
10427
10428void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10429  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10430
10431  if (MD) {
10432    if (MD->getParent()->isDependentType()) {
10433      MD->setDefaulted();
10434      MD->setExplicitlyDefaulted();
10435      return;
10436    }
10437
10438    CXXSpecialMember Member = getSpecialMember(MD);
10439    if (Member == CXXInvalid) {
10440      Diag(DefaultLoc, diag::err_default_special_members);
10441      return;
10442    }
10443
10444    MD->setDefaulted();
10445    MD->setExplicitlyDefaulted();
10446
10447    // If this definition appears within the record, do the checking when
10448    // the record is complete.
10449    const FunctionDecl *Primary = MD;
10450    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
10451      // Find the uninstantiated declaration that actually had the '= default'
10452      // on it.
10453      Pattern->isDefined(Primary);
10454
10455    if (Primary == Primary->getCanonicalDecl())
10456      return;
10457
10458    CheckExplicitlyDefaultedSpecialMember(MD);
10459
10460    switch (Member) {
10461    case CXXDefaultConstructor: {
10462      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10463      if (!CD->isInvalidDecl())
10464        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10465      break;
10466    }
10467
10468    case CXXCopyConstructor: {
10469      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10470      if (!CD->isInvalidDecl())
10471        DefineImplicitCopyConstructor(DefaultLoc, CD);
10472      break;
10473    }
10474
10475    case CXXCopyAssignment: {
10476      if (!MD->isInvalidDecl())
10477        DefineImplicitCopyAssignment(DefaultLoc, MD);
10478      break;
10479    }
10480
10481    case CXXDestructor: {
10482      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10483      if (!DD->isInvalidDecl())
10484        DefineImplicitDestructor(DefaultLoc, DD);
10485      break;
10486    }
10487
10488    case CXXMoveConstructor: {
10489      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10490      if (!CD->isInvalidDecl())
10491        DefineImplicitMoveConstructor(DefaultLoc, CD);
10492      break;
10493    }
10494
10495    case CXXMoveAssignment: {
10496      if (!MD->isInvalidDecl())
10497        DefineImplicitMoveAssignment(DefaultLoc, MD);
10498      break;
10499    }
10500
10501    case CXXInvalid:
10502      llvm_unreachable("Invalid special member.");
10503    }
10504  } else {
10505    Diag(DefaultLoc, diag::err_default_special_members);
10506  }
10507}
10508
10509static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10510  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10511    Stmt *SubStmt = *CI;
10512    if (!SubStmt)
10513      continue;
10514    if (isa<ReturnStmt>(SubStmt))
10515      Self.Diag(SubStmt->getLocStart(),
10516           diag::err_return_in_constructor_handler);
10517    if (!isa<Expr>(SubStmt))
10518      SearchForReturnInStmt(Self, SubStmt);
10519  }
10520}
10521
10522void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10523  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10524    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10525    SearchForReturnInStmt(*this, Handler);
10526  }
10527}
10528
10529bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10530                                             const CXXMethodDecl *Old) {
10531  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10532  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10533
10534  if (Context.hasSameType(NewTy, OldTy) ||
10535      NewTy->isDependentType() || OldTy->isDependentType())
10536    return false;
10537
10538  // Check if the return types are covariant
10539  QualType NewClassTy, OldClassTy;
10540
10541  /// Both types must be pointers or references to classes.
10542  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10543    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10544      NewClassTy = NewPT->getPointeeType();
10545      OldClassTy = OldPT->getPointeeType();
10546    }
10547  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10548    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10549      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10550        NewClassTy = NewRT->getPointeeType();
10551        OldClassTy = OldRT->getPointeeType();
10552      }
10553    }
10554  }
10555
10556  // The return types aren't either both pointers or references to a class type.
10557  if (NewClassTy.isNull()) {
10558    Diag(New->getLocation(),
10559         diag::err_different_return_type_for_overriding_virtual_function)
10560      << New->getDeclName() << NewTy << OldTy;
10561    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10562
10563    return true;
10564  }
10565
10566  // C++ [class.virtual]p6:
10567  //   If the return type of D::f differs from the return type of B::f, the
10568  //   class type in the return type of D::f shall be complete at the point of
10569  //   declaration of D::f or shall be the class type D.
10570  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10571    if (!RT->isBeingDefined() &&
10572        RequireCompleteType(New->getLocation(), NewClassTy,
10573                            diag::err_covariant_return_incomplete,
10574                            New->getDeclName()))
10575    return true;
10576  }
10577
10578  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10579    // Check if the new class derives from the old class.
10580    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10581      Diag(New->getLocation(),
10582           diag::err_covariant_return_not_derived)
10583      << New->getDeclName() << NewTy << OldTy;
10584      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10585      return true;
10586    }
10587
10588    // Check if we the conversion from derived to base is valid.
10589    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10590                    diag::err_covariant_return_inaccessible_base,
10591                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10592                    // FIXME: Should this point to the return type?
10593                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10594      // FIXME: this note won't trigger for delayed access control
10595      // diagnostics, and it's impossible to get an undelayed error
10596      // here from access control during the original parse because
10597      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10598      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10599      return true;
10600    }
10601  }
10602
10603  // The qualifiers of the return types must be the same.
10604  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10605    Diag(New->getLocation(),
10606         diag::err_covariant_return_type_different_qualifications)
10607    << New->getDeclName() << NewTy << OldTy;
10608    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10609    return true;
10610  };
10611
10612
10613  // The new class type must have the same or less qualifiers as the old type.
10614  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10615    Diag(New->getLocation(),
10616         diag::err_covariant_return_type_class_type_more_qualified)
10617    << New->getDeclName() << NewTy << OldTy;
10618    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10619    return true;
10620  };
10621
10622  return false;
10623}
10624
10625/// \brief Mark the given method pure.
10626///
10627/// \param Method the method to be marked pure.
10628///
10629/// \param InitRange the source range that covers the "0" initializer.
10630bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10631  SourceLocation EndLoc = InitRange.getEnd();
10632  if (EndLoc.isValid())
10633    Method->setRangeEnd(EndLoc);
10634
10635  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10636    Method->setPure();
10637    return false;
10638  }
10639
10640  if (!Method->isInvalidDecl())
10641    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10642      << Method->getDeclName() << InitRange;
10643  return true;
10644}
10645
10646/// \brief Determine whether the given declaration is a static data member.
10647static bool isStaticDataMember(Decl *D) {
10648  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10649  if (!Var)
10650    return false;
10651
10652  return Var->isStaticDataMember();
10653}
10654/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10655/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10656/// is a fresh scope pushed for just this purpose.
10657///
10658/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10659/// static data member of class X, names should be looked up in the scope of
10660/// class X.
10661void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10662  // If there is no declaration, there was an error parsing it.
10663  if (D == 0 || D->isInvalidDecl()) return;
10664
10665  // We should only get called for declarations with scope specifiers, like:
10666  //   int foo::bar;
10667  assert(D->isOutOfLine());
10668  EnterDeclaratorContext(S, D->getDeclContext());
10669
10670  // If we are parsing the initializer for a static data member, push a
10671  // new expression evaluation context that is associated with this static
10672  // data member.
10673  if (isStaticDataMember(D))
10674    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10675}
10676
10677/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10678/// initializer for the out-of-line declaration 'D'.
10679void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10680  // If there is no declaration, there was an error parsing it.
10681  if (D == 0 || D->isInvalidDecl()) return;
10682
10683  if (isStaticDataMember(D))
10684    PopExpressionEvaluationContext();
10685
10686  assert(D->isOutOfLine());
10687  ExitDeclaratorContext(S);
10688}
10689
10690/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10691/// C++ if/switch/while/for statement.
10692/// e.g: "if (int x = f()) {...}"
10693DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10694  // C++ 6.4p2:
10695  // The declarator shall not specify a function or an array.
10696  // The type-specifier-seq shall not contain typedef and shall not declare a
10697  // new class or enumeration.
10698  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10699         "Parser allowed 'typedef' as storage class of condition decl.");
10700
10701  Decl *Dcl = ActOnDeclarator(S, D);
10702  if (!Dcl)
10703    return true;
10704
10705  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10706    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10707      << D.getSourceRange();
10708    return true;
10709  }
10710
10711  return Dcl;
10712}
10713
10714void Sema::LoadExternalVTableUses() {
10715  if (!ExternalSource)
10716    return;
10717
10718  SmallVector<ExternalVTableUse, 4> VTables;
10719  ExternalSource->ReadUsedVTables(VTables);
10720  SmallVector<VTableUse, 4> NewUses;
10721  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10722    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10723      = VTablesUsed.find(VTables[I].Record);
10724    // Even if a definition wasn't required before, it may be required now.
10725    if (Pos != VTablesUsed.end()) {
10726      if (!Pos->second && VTables[I].DefinitionRequired)
10727        Pos->second = true;
10728      continue;
10729    }
10730
10731    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10732    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10733  }
10734
10735  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10736}
10737
10738void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10739                          bool DefinitionRequired) {
10740  // Ignore any vtable uses in unevaluated operands or for classes that do
10741  // not have a vtable.
10742  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10743      CurContext->isDependentContext() ||
10744      ExprEvalContexts.back().Context == Unevaluated)
10745    return;
10746
10747  // Try to insert this class into the map.
10748  LoadExternalVTableUses();
10749  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10750  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10751    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10752  if (!Pos.second) {
10753    // If we already had an entry, check to see if we are promoting this vtable
10754    // to required a definition. If so, we need to reappend to the VTableUses
10755    // list, since we may have already processed the first entry.
10756    if (DefinitionRequired && !Pos.first->second) {
10757      Pos.first->second = true;
10758    } else {
10759      // Otherwise, we can early exit.
10760      return;
10761    }
10762  }
10763
10764  // Local classes need to have their virtual members marked
10765  // immediately. For all other classes, we mark their virtual members
10766  // at the end of the translation unit.
10767  if (Class->isLocalClass())
10768    MarkVirtualMembersReferenced(Loc, Class);
10769  else
10770    VTableUses.push_back(std::make_pair(Class, Loc));
10771}
10772
10773bool Sema::DefineUsedVTables() {
10774  LoadExternalVTableUses();
10775  if (VTableUses.empty())
10776    return false;
10777
10778  // Note: The VTableUses vector could grow as a result of marking
10779  // the members of a class as "used", so we check the size each
10780  // time through the loop and prefer indices (which are stable) to
10781  // iterators (which are not).
10782  bool DefinedAnything = false;
10783  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10784    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10785    if (!Class)
10786      continue;
10787
10788    SourceLocation Loc = VTableUses[I].second;
10789
10790    bool DefineVTable = true;
10791
10792    // If this class has a key function, but that key function is
10793    // defined in another translation unit, we don't need to emit the
10794    // vtable even though we're using it.
10795    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10796    if (KeyFunction && !KeyFunction->hasBody()) {
10797      switch (KeyFunction->getTemplateSpecializationKind()) {
10798      case TSK_Undeclared:
10799      case TSK_ExplicitSpecialization:
10800      case TSK_ExplicitInstantiationDeclaration:
10801        // The key function is in another translation unit.
10802        DefineVTable = false;
10803        break;
10804
10805      case TSK_ExplicitInstantiationDefinition:
10806      case TSK_ImplicitInstantiation:
10807        // We will be instantiating the key function.
10808        break;
10809      }
10810    } else if (!KeyFunction) {
10811      // If we have a class with no key function that is the subject
10812      // of an explicit instantiation declaration, suppress the
10813      // vtable; it will live with the explicit instantiation
10814      // definition.
10815      bool IsExplicitInstantiationDeclaration
10816        = Class->getTemplateSpecializationKind()
10817                                      == TSK_ExplicitInstantiationDeclaration;
10818      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10819                                 REnd = Class->redecls_end();
10820           R != REnd; ++R) {
10821        TemplateSpecializationKind TSK
10822          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10823        if (TSK == TSK_ExplicitInstantiationDeclaration)
10824          IsExplicitInstantiationDeclaration = true;
10825        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10826          IsExplicitInstantiationDeclaration = false;
10827          break;
10828        }
10829      }
10830
10831      if (IsExplicitInstantiationDeclaration)
10832        DefineVTable = false;
10833    }
10834
10835    // The exception specifications for all virtual members may be needed even
10836    // if we are not providing an authoritative form of the vtable in this TU.
10837    // We may choose to emit it available_externally anyway.
10838    if (!DefineVTable) {
10839      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
10840      continue;
10841    }
10842
10843    // Mark all of the virtual members of this class as referenced, so
10844    // that we can build a vtable. Then, tell the AST consumer that a
10845    // vtable for this class is required.
10846    DefinedAnything = true;
10847    MarkVirtualMembersReferenced(Loc, Class);
10848    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10849    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10850
10851    // Optionally warn if we're emitting a weak vtable.
10852    if (Class->getLinkage() == ExternalLinkage &&
10853        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10854      const FunctionDecl *KeyFunctionDef = 0;
10855      if (!KeyFunction ||
10856          (KeyFunction->hasBody(KeyFunctionDef) &&
10857           KeyFunctionDef->isInlined()))
10858        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10859             TSK_ExplicitInstantiationDefinition
10860             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10861          << Class;
10862    }
10863  }
10864  VTableUses.clear();
10865
10866  return DefinedAnything;
10867}
10868
10869void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
10870                                                 const CXXRecordDecl *RD) {
10871  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
10872                                      E = RD->method_end(); I != E; ++I)
10873    if ((*I)->isVirtual() && !(*I)->isPure())
10874      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
10875}
10876
10877void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10878                                        const CXXRecordDecl *RD) {
10879  // Mark all functions which will appear in RD's vtable as used.
10880  CXXFinalOverriderMap FinalOverriders;
10881  RD->getFinalOverriders(FinalOverriders);
10882  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
10883                                            E = FinalOverriders.end();
10884       I != E; ++I) {
10885    for (OverridingMethods::const_iterator OI = I->second.begin(),
10886                                           OE = I->second.end();
10887         OI != OE; ++OI) {
10888      assert(OI->second.size() > 0 && "no final overrider");
10889      CXXMethodDecl *Overrider = OI->second.front().Method;
10890
10891      // C++ [basic.def.odr]p2:
10892      //   [...] A virtual member function is used if it is not pure. [...]
10893      if (!Overrider->isPure())
10894        MarkFunctionReferenced(Loc, Overrider);
10895    }
10896  }
10897
10898  // Only classes that have virtual bases need a VTT.
10899  if (RD->getNumVBases() == 0)
10900    return;
10901
10902  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10903           e = RD->bases_end(); i != e; ++i) {
10904    const CXXRecordDecl *Base =
10905        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10906    if (Base->getNumVBases() == 0)
10907      continue;
10908    MarkVirtualMembersReferenced(Loc, Base);
10909  }
10910}
10911
10912/// SetIvarInitializers - This routine builds initialization ASTs for the
10913/// Objective-C implementation whose ivars need be initialized.
10914void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10915  if (!getLangOpts().CPlusPlus)
10916    return;
10917  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10918    SmallVector<ObjCIvarDecl*, 8> ivars;
10919    CollectIvarsToConstructOrDestruct(OID, ivars);
10920    if (ivars.empty())
10921      return;
10922    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10923    for (unsigned i = 0; i < ivars.size(); i++) {
10924      FieldDecl *Field = ivars[i];
10925      if (Field->isInvalidDecl())
10926        continue;
10927
10928      CXXCtorInitializer *Member;
10929      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10930      InitializationKind InitKind =
10931        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10932
10933      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10934      ExprResult MemberInit =
10935        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10936      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10937      // Note, MemberInit could actually come back empty if no initialization
10938      // is required (e.g., because it would call a trivial default constructor)
10939      if (!MemberInit.get() || MemberInit.isInvalid())
10940        continue;
10941
10942      Member =
10943        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10944                                         SourceLocation(),
10945                                         MemberInit.takeAs<Expr>(),
10946                                         SourceLocation());
10947      AllToInit.push_back(Member);
10948
10949      // Be sure that the destructor is accessible and is marked as referenced.
10950      if (const RecordType *RecordTy
10951                  = Context.getBaseElementType(Field->getType())
10952                                                        ->getAs<RecordType>()) {
10953                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10954        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10955          MarkFunctionReferenced(Field->getLocation(), Destructor);
10956          CheckDestructorAccess(Field->getLocation(), Destructor,
10957                            PDiag(diag::err_access_dtor_ivar)
10958                              << Context.getBaseElementType(Field->getType()));
10959        }
10960      }
10961    }
10962    ObjCImplementation->setIvarInitializers(Context,
10963                                            AllToInit.data(), AllToInit.size());
10964  }
10965}
10966
10967static
10968void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10969                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10970                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10971                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10972                           Sema &S) {
10973  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10974                                                   CE = Current.end();
10975  if (Ctor->isInvalidDecl())
10976    return;
10977
10978  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
10979
10980  // Target may not be determinable yet, for instance if this is a dependent
10981  // call in an uninstantiated template.
10982  if (Target) {
10983    const FunctionDecl *FNTarget = 0;
10984    (void)Target->hasBody(FNTarget);
10985    Target = const_cast<CXXConstructorDecl*>(
10986      cast_or_null<CXXConstructorDecl>(FNTarget));
10987  }
10988
10989  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10990                     // Avoid dereferencing a null pointer here.
10991                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10992
10993  if (!Current.insert(Canonical))
10994    return;
10995
10996  // We know that beyond here, we aren't chaining into a cycle.
10997  if (!Target || !Target->isDelegatingConstructor() ||
10998      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10999    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11000      Valid.insert(*CI);
11001    Current.clear();
11002  // We've hit a cycle.
11003  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11004             Current.count(TCanonical)) {
11005    // If we haven't diagnosed this cycle yet, do so now.
11006    if (!Invalid.count(TCanonical)) {
11007      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11008             diag::warn_delegating_ctor_cycle)
11009        << Ctor;
11010
11011      // Don't add a note for a function delegating directly to itself.
11012      if (TCanonical != Canonical)
11013        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11014
11015      CXXConstructorDecl *C = Target;
11016      while (C->getCanonicalDecl() != Canonical) {
11017        const FunctionDecl *FNTarget = 0;
11018        (void)C->getTargetConstructor()->hasBody(FNTarget);
11019        assert(FNTarget && "Ctor cycle through bodiless function");
11020
11021        C = const_cast<CXXConstructorDecl*>(
11022          cast<CXXConstructorDecl>(FNTarget));
11023        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11024      }
11025    }
11026
11027    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11028      Invalid.insert(*CI);
11029    Current.clear();
11030  } else {
11031    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11032  }
11033}
11034
11035
11036void Sema::CheckDelegatingCtorCycles() {
11037  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11038
11039  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11040                                                   CE = Current.end();
11041
11042  for (DelegatingCtorDeclsType::iterator
11043         I = DelegatingCtorDecls.begin(ExternalSource),
11044         E = DelegatingCtorDecls.end();
11045       I != E; ++I)
11046    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11047
11048  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11049    (*CI)->setInvalidDecl();
11050}
11051
11052namespace {
11053  /// \brief AST visitor that finds references to the 'this' expression.
11054  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11055    Sema &S;
11056
11057  public:
11058    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11059
11060    bool VisitCXXThisExpr(CXXThisExpr *E) {
11061      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11062        << E->isImplicit();
11063      return false;
11064    }
11065  };
11066}
11067
11068bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11069  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11070  if (!TSInfo)
11071    return false;
11072
11073  TypeLoc TL = TSInfo->getTypeLoc();
11074  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11075  if (!ProtoTL)
11076    return false;
11077
11078  // C++11 [expr.prim.general]p3:
11079  //   [The expression this] shall not appear before the optional
11080  //   cv-qualifier-seq and it shall not appear within the declaration of a
11081  //   static member function (although its type and value category are defined
11082  //   within a static member function as they are within a non-static member
11083  //   function). [ Note: this is because declaration matching does not occur
11084  //  until the complete declarator is known. - end note ]
11085  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11086  FindCXXThisExpr Finder(*this);
11087
11088  // If the return type came after the cv-qualifier-seq, check it now.
11089  if (Proto->hasTrailingReturn() &&
11090      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11091    return true;
11092
11093  // Check the exception specification.
11094  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11095    return true;
11096
11097  return checkThisInStaticMemberFunctionAttributes(Method);
11098}
11099
11100bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11101  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11102  if (!TSInfo)
11103    return false;
11104
11105  TypeLoc TL = TSInfo->getTypeLoc();
11106  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11107  if (!ProtoTL)
11108    return false;
11109
11110  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11111  FindCXXThisExpr Finder(*this);
11112
11113  switch (Proto->getExceptionSpecType()) {
11114  case EST_Uninstantiated:
11115  case EST_Unevaluated:
11116  case EST_BasicNoexcept:
11117  case EST_DynamicNone:
11118  case EST_MSAny:
11119  case EST_None:
11120    break;
11121
11122  case EST_ComputedNoexcept:
11123    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11124      return true;
11125
11126  case EST_Dynamic:
11127    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11128         EEnd = Proto->exception_end();
11129         E != EEnd; ++E) {
11130      if (!Finder.TraverseType(*E))
11131        return true;
11132    }
11133    break;
11134  }
11135
11136  return false;
11137}
11138
11139bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11140  FindCXXThisExpr Finder(*this);
11141
11142  // Check attributes.
11143  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11144       A != AEnd; ++A) {
11145    // FIXME: This should be emitted by tblgen.
11146    Expr *Arg = 0;
11147    ArrayRef<Expr *> Args;
11148    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11149      Arg = G->getArg();
11150    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11151      Arg = G->getArg();
11152    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11153      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11154    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11155      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11156    else if (ExclusiveLockFunctionAttr *ELF
11157               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11158      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11159    else if (SharedLockFunctionAttr *SLF
11160               = dyn_cast<SharedLockFunctionAttr>(*A))
11161      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11162    else if (ExclusiveTrylockFunctionAttr *ETLF
11163               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11164      Arg = ETLF->getSuccessValue();
11165      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11166    } else if (SharedTrylockFunctionAttr *STLF
11167                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11168      Arg = STLF->getSuccessValue();
11169      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11170    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11171      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11172    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11173      Arg = LR->getArg();
11174    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11175      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11176    else if (ExclusiveLocksRequiredAttr *ELR
11177               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11178      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11179    else if (SharedLocksRequiredAttr *SLR
11180               = dyn_cast<SharedLocksRequiredAttr>(*A))
11181      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11182
11183    if (Arg && !Finder.TraverseStmt(Arg))
11184      return true;
11185
11186    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11187      if (!Finder.TraverseStmt(Args[I]))
11188        return true;
11189    }
11190  }
11191
11192  return false;
11193}
11194
11195void
11196Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11197                                  ArrayRef<ParsedType> DynamicExceptions,
11198                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11199                                  Expr *NoexceptExpr,
11200                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11201                                  FunctionProtoType::ExtProtoInfo &EPI) {
11202  Exceptions.clear();
11203  EPI.ExceptionSpecType = EST;
11204  if (EST == EST_Dynamic) {
11205    Exceptions.reserve(DynamicExceptions.size());
11206    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11207      // FIXME: Preserve type source info.
11208      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11209
11210      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11211      collectUnexpandedParameterPacks(ET, Unexpanded);
11212      if (!Unexpanded.empty()) {
11213        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11214                                         UPPC_ExceptionType,
11215                                         Unexpanded);
11216        continue;
11217      }
11218
11219      // Check that the type is valid for an exception spec, and
11220      // drop it if not.
11221      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11222        Exceptions.push_back(ET);
11223    }
11224    EPI.NumExceptions = Exceptions.size();
11225    EPI.Exceptions = Exceptions.data();
11226    return;
11227  }
11228
11229  if (EST == EST_ComputedNoexcept) {
11230    // If an error occurred, there's no expression here.
11231    if (NoexceptExpr) {
11232      assert((NoexceptExpr->isTypeDependent() ||
11233              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11234              Context.BoolTy) &&
11235             "Parser should have made sure that the expression is boolean");
11236      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11237        EPI.ExceptionSpecType = EST_BasicNoexcept;
11238        return;
11239      }
11240
11241      if (!NoexceptExpr->isValueDependent())
11242        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11243                         diag::err_noexcept_needs_constant_expression,
11244                         /*AllowFold*/ false).take();
11245      EPI.NoexceptExpr = NoexceptExpr;
11246    }
11247    return;
11248  }
11249}
11250
11251/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11252Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11253  // Implicitly declared functions (e.g. copy constructors) are
11254  // __host__ __device__
11255  if (D->isImplicit())
11256    return CFT_HostDevice;
11257
11258  if (D->hasAttr<CUDAGlobalAttr>())
11259    return CFT_Global;
11260
11261  if (D->hasAttr<CUDADeviceAttr>()) {
11262    if (D->hasAttr<CUDAHostAttr>())
11263      return CFT_HostDevice;
11264    else
11265      return CFT_Device;
11266  }
11267
11268  return CFT_Host;
11269}
11270
11271bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11272                           CUDAFunctionTarget CalleeTarget) {
11273  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11274  // Callable from the device only."
11275  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11276    return true;
11277
11278  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11279  // Callable from the host only."
11280  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11281  // Callable from the host only."
11282  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11283      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11284    return true;
11285
11286  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11287    return true;
11288
11289  return false;
11290}
11291