SemaDeclCXX.cpp revision f1860e5c381a2710fcebe6d55d799c6b25c21041
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625
626    if (KnownBaseTypes[NewBaseType]) {
627      // C++ [class.mi]p3:
628      //   A class shall not be specified as a direct base class of a
629      //   derived class more than once.
630      Diag(Bases[idx]->getSourceRange().getBegin(),
631           diag::err_duplicate_base_class)
632        << KnownBaseTypes[NewBaseType]->getType()
633        << Bases[idx]->getSourceRange();
634
635      // Delete the duplicate base class specifier; we're going to
636      // overwrite its pointer later.
637      Context.Deallocate(Bases[idx]);
638
639      Invalid = true;
640    } else {
641      // Okay, add this new base class.
642      KnownBaseTypes[NewBaseType] = Bases[idx];
643      Bases[NumGoodBases++] = Bases[idx];
644    }
645  }
646
647  // Attach the remaining base class specifiers to the derived class.
648  Class->setBases(Bases, NumGoodBases);
649
650  // Delete the remaining (good) base class specifiers, since their
651  // data has been copied into the CXXRecordDecl.
652  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
653    Context.Deallocate(Bases[idx]);
654
655  return Invalid;
656}
657
658/// ActOnBaseSpecifiers - Attach the given base specifiers to the
659/// class, after checking whether there are any duplicate base
660/// classes.
661void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
662                               unsigned NumBases) {
663  if (!ClassDecl || !Bases || !NumBases)
664    return;
665
666  AdjustDeclIfTemplate(ClassDecl);
667  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
668                       (CXXBaseSpecifier**)(Bases), NumBases);
669}
670
671static CXXRecordDecl *GetClassForType(QualType T) {
672  if (const RecordType *RT = T->getAs<RecordType>())
673    return cast<CXXRecordDecl>(RT->getDecl());
674  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
675    return ICT->getDecl();
676  else
677    return 0;
678}
679
680/// \brief Determine whether the type \p Derived is a C++ class that is
681/// derived from the type \p Base.
682bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
683  if (!getLangOptions().CPlusPlus)
684    return false;
685
686  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
687  if (!DerivedRD)
688    return false;
689
690  CXXRecordDecl *BaseRD = GetClassForType(Base);
691  if (!BaseRD)
692    return false;
693
694  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
695  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
696}
697
698/// \brief Determine whether the type \p Derived is a C++ class that is
699/// derived from the type \p Base.
700bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
701  if (!getLangOptions().CPlusPlus)
702    return false;
703
704  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
705  if (!DerivedRD)
706    return false;
707
708  CXXRecordDecl *BaseRD = GetClassForType(Base);
709  if (!BaseRD)
710    return false;
711
712  return DerivedRD->isDerivedFrom(BaseRD, Paths);
713}
714
715void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
716                              CXXBaseSpecifierArray &BasePathArray) {
717  assert(BasePathArray.empty() && "Base path array must be empty!");
718  assert(Paths.isRecordingPaths() && "Must record paths!");
719
720  const CXXBasePath &Path = Paths.front();
721
722  // We first go backward and check if we have a virtual base.
723  // FIXME: It would be better if CXXBasePath had the base specifier for
724  // the nearest virtual base.
725  unsigned Start = 0;
726  for (unsigned I = Path.size(); I != 0; --I) {
727    if (Path[I - 1].Base->isVirtual()) {
728      Start = I - 1;
729      break;
730    }
731  }
732
733  // Now add all bases.
734  for (unsigned I = Start, E = Path.size(); I != E; ++I)
735    BasePathArray.push_back(Path[I].Base);
736}
737
738/// \brief Determine whether the given base path includes a virtual
739/// base class.
740bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
741  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
742                                    BEnd = BasePath.end();
743       B != BEnd; ++B)
744    if ((*B)->isVirtual())
745      return true;
746
747  return false;
748}
749
750/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
751/// conversion (where Derived and Base are class types) is
752/// well-formed, meaning that the conversion is unambiguous (and
753/// that all of the base classes are accessible). Returns true
754/// and emits a diagnostic if the code is ill-formed, returns false
755/// otherwise. Loc is the location where this routine should point to
756/// if there is an error, and Range is the source range to highlight
757/// if there is an error.
758bool
759Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
760                                   unsigned InaccessibleBaseID,
761                                   unsigned AmbigiousBaseConvID,
762                                   SourceLocation Loc, SourceRange Range,
763                                   DeclarationName Name,
764                                   CXXBaseSpecifierArray *BasePath) {
765  // First, determine whether the path from Derived to Base is
766  // ambiguous. This is slightly more expensive than checking whether
767  // the Derived to Base conversion exists, because here we need to
768  // explore multiple paths to determine if there is an ambiguity.
769  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
770                     /*DetectVirtual=*/false);
771  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
772  assert(DerivationOkay &&
773         "Can only be used with a derived-to-base conversion");
774  (void)DerivationOkay;
775
776  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
777    if (InaccessibleBaseID) {
778      // Check that the base class can be accessed.
779      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
780                                   InaccessibleBaseID)) {
781        case AR_inaccessible:
782          return true;
783        case AR_accessible:
784        case AR_dependent:
785        case AR_delayed:
786          break;
787      }
788    }
789
790    // Build a base path if necessary.
791    if (BasePath)
792      BuildBasePathArray(Paths, *BasePath);
793    return false;
794  }
795
796  // We know that the derived-to-base conversion is ambiguous, and
797  // we're going to produce a diagnostic. Perform the derived-to-base
798  // search just one more time to compute all of the possible paths so
799  // that we can print them out. This is more expensive than any of
800  // the previous derived-to-base checks we've done, but at this point
801  // performance isn't as much of an issue.
802  Paths.clear();
803  Paths.setRecordingPaths(true);
804  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
805  assert(StillOkay && "Can only be used with a derived-to-base conversion");
806  (void)StillOkay;
807
808  // Build up a textual representation of the ambiguous paths, e.g.,
809  // D -> B -> A, that will be used to illustrate the ambiguous
810  // conversions in the diagnostic. We only print one of the paths
811  // to each base class subobject.
812  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
813
814  Diag(Loc, AmbigiousBaseConvID)
815  << Derived << Base << PathDisplayStr << Range << Name;
816  return true;
817}
818
819bool
820Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
821                                   SourceLocation Loc, SourceRange Range,
822                                   CXXBaseSpecifierArray *BasePath,
823                                   bool IgnoreAccess) {
824  return CheckDerivedToBaseConversion(Derived, Base,
825                                      IgnoreAccess ? 0
826                                       : diag::err_upcast_to_inaccessible_base,
827                                      diag::err_ambiguous_derived_to_base_conv,
828                                      Loc, Range, DeclarationName(),
829                                      BasePath);
830}
831
832
833/// @brief Builds a string representing ambiguous paths from a
834/// specific derived class to different subobjects of the same base
835/// class.
836///
837/// This function builds a string that can be used in error messages
838/// to show the different paths that one can take through the
839/// inheritance hierarchy to go from the derived class to different
840/// subobjects of a base class. The result looks something like this:
841/// @code
842/// struct D -> struct B -> struct A
843/// struct D -> struct C -> struct A
844/// @endcode
845std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
846  std::string PathDisplayStr;
847  std::set<unsigned> DisplayedPaths;
848  for (CXXBasePaths::paths_iterator Path = Paths.begin();
849       Path != Paths.end(); ++Path) {
850    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
851      // We haven't displayed a path to this particular base
852      // class subobject yet.
853      PathDisplayStr += "\n    ";
854      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
855      for (CXXBasePath::const_iterator Element = Path->begin();
856           Element != Path->end(); ++Element)
857        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
858    }
859  }
860
861  return PathDisplayStr;
862}
863
864//===----------------------------------------------------------------------===//
865// C++ class member Handling
866//===----------------------------------------------------------------------===//
867
868/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
869/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
870/// bitfield width if there is one and 'InitExpr' specifies the initializer if
871/// any.
872Sema::DeclPtrTy
873Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
874                               MultiTemplateParamsArg TemplateParameterLists,
875                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
876                               bool Deleted) {
877  const DeclSpec &DS = D.getDeclSpec();
878  DeclarationName Name = GetNameForDeclarator(D);
879  Expr *BitWidth = static_cast<Expr*>(BW);
880  Expr *Init = static_cast<Expr*>(InitExpr);
881  SourceLocation Loc = D.getIdentifierLoc();
882
883  bool isFunc = D.isFunctionDeclarator();
884
885  assert(!DS.isFriendSpecified());
886
887  // C++ 9.2p6: A member shall not be declared to have automatic storage
888  // duration (auto, register) or with the extern storage-class-specifier.
889  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
890  // data members and cannot be applied to names declared const or static,
891  // and cannot be applied to reference members.
892  switch (DS.getStorageClassSpec()) {
893    case DeclSpec::SCS_unspecified:
894    case DeclSpec::SCS_typedef:
895    case DeclSpec::SCS_static:
896      // FALL THROUGH.
897      break;
898    case DeclSpec::SCS_mutable:
899      if (isFunc) {
900        if (DS.getStorageClassSpecLoc().isValid())
901          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
902        else
903          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
904
905        // FIXME: It would be nicer if the keyword was ignored only for this
906        // declarator. Otherwise we could get follow-up errors.
907        D.getMutableDeclSpec().ClearStorageClassSpecs();
908      } else {
909        QualType T = GetTypeForDeclarator(D, S);
910        diag::kind err = static_cast<diag::kind>(0);
911        if (T->isReferenceType())
912          err = diag::err_mutable_reference;
913        else if (T.isConstQualified())
914          err = diag::err_mutable_const;
915        if (err != 0) {
916          if (DS.getStorageClassSpecLoc().isValid())
917            Diag(DS.getStorageClassSpecLoc(), err);
918          else
919            Diag(DS.getThreadSpecLoc(), err);
920          // FIXME: It would be nicer if the keyword was ignored only for this
921          // declarator. Otherwise we could get follow-up errors.
922          D.getMutableDeclSpec().ClearStorageClassSpecs();
923        }
924      }
925      break;
926    default:
927      if (DS.getStorageClassSpecLoc().isValid())
928        Diag(DS.getStorageClassSpecLoc(),
929             diag::err_storageclass_invalid_for_member);
930      else
931        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
932      D.getMutableDeclSpec().ClearStorageClassSpecs();
933  }
934
935  if (!isFunc &&
936      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
937      D.getNumTypeObjects() == 0) {
938    // Check also for this case:
939    //
940    // typedef int f();
941    // f a;
942    //
943    QualType TDType = GetTypeFromParser(DS.getTypeRep());
944    isFunc = TDType->isFunctionType();
945  }
946
947  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
948                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
949                      !isFunc);
950
951  Decl *Member;
952  if (isInstField) {
953    // FIXME: Check for template parameters!
954    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
955                         AS);
956    assert(Member && "HandleField never returns null");
957  } else {
958    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
959               .getAs<Decl>();
960    if (!Member) {
961      if (BitWidth) DeleteExpr(BitWidth);
962      return DeclPtrTy();
963    }
964
965    // Non-instance-fields can't have a bitfield.
966    if (BitWidth) {
967      if (Member->isInvalidDecl()) {
968        // don't emit another diagnostic.
969      } else if (isa<VarDecl>(Member)) {
970        // C++ 9.6p3: A bit-field shall not be a static member.
971        // "static member 'A' cannot be a bit-field"
972        Diag(Loc, diag::err_static_not_bitfield)
973          << Name << BitWidth->getSourceRange();
974      } else if (isa<TypedefDecl>(Member)) {
975        // "typedef member 'x' cannot be a bit-field"
976        Diag(Loc, diag::err_typedef_not_bitfield)
977          << Name << BitWidth->getSourceRange();
978      } else {
979        // A function typedef ("typedef int f(); f a;").
980        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
981        Diag(Loc, diag::err_not_integral_type_bitfield)
982          << Name << cast<ValueDecl>(Member)->getType()
983          << BitWidth->getSourceRange();
984      }
985
986      DeleteExpr(BitWidth);
987      BitWidth = 0;
988      Member->setInvalidDecl();
989    }
990
991    Member->setAccess(AS);
992
993    // If we have declared a member function template, set the access of the
994    // templated declaration as well.
995    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
996      FunTmpl->getTemplatedDecl()->setAccess(AS);
997  }
998
999  assert((Name || isInstField) && "No identifier for non-field ?");
1000
1001  if (Init)
1002    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1003  if (Deleted) // FIXME: Source location is not very good.
1004    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1005
1006  if (isInstField) {
1007    FieldCollector->Add(cast<FieldDecl>(Member));
1008    return DeclPtrTy();
1009  }
1010  return DeclPtrTy::make(Member);
1011}
1012
1013/// \brief Find the direct and/or virtual base specifiers that
1014/// correspond to the given base type, for use in base initialization
1015/// within a constructor.
1016static bool FindBaseInitializer(Sema &SemaRef,
1017                                CXXRecordDecl *ClassDecl,
1018                                QualType BaseType,
1019                                const CXXBaseSpecifier *&DirectBaseSpec,
1020                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1021  // First, check for a direct base class.
1022  DirectBaseSpec = 0;
1023  for (CXXRecordDecl::base_class_const_iterator Base
1024         = ClassDecl->bases_begin();
1025       Base != ClassDecl->bases_end(); ++Base) {
1026    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1027      // We found a direct base of this type. That's what we're
1028      // initializing.
1029      DirectBaseSpec = &*Base;
1030      break;
1031    }
1032  }
1033
1034  // Check for a virtual base class.
1035  // FIXME: We might be able to short-circuit this if we know in advance that
1036  // there are no virtual bases.
1037  VirtualBaseSpec = 0;
1038  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1039    // We haven't found a base yet; search the class hierarchy for a
1040    // virtual base class.
1041    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1042                       /*DetectVirtual=*/false);
1043    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1044                              BaseType, Paths)) {
1045      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1046           Path != Paths.end(); ++Path) {
1047        if (Path->back().Base->isVirtual()) {
1048          VirtualBaseSpec = Path->back().Base;
1049          break;
1050        }
1051      }
1052    }
1053  }
1054
1055  return DirectBaseSpec || VirtualBaseSpec;
1056}
1057
1058/// ActOnMemInitializer - Handle a C++ member initializer.
1059Sema::MemInitResult
1060Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1061                          Scope *S,
1062                          CXXScopeSpec &SS,
1063                          IdentifierInfo *MemberOrBase,
1064                          TypeTy *TemplateTypeTy,
1065                          SourceLocation IdLoc,
1066                          SourceLocation LParenLoc,
1067                          ExprTy **Args, unsigned NumArgs,
1068                          SourceLocation *CommaLocs,
1069                          SourceLocation RParenLoc) {
1070  if (!ConstructorD)
1071    return true;
1072
1073  AdjustDeclIfTemplate(ConstructorD);
1074
1075  CXXConstructorDecl *Constructor
1076    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1077  if (!Constructor) {
1078    // The user wrote a constructor initializer on a function that is
1079    // not a C++ constructor. Ignore the error for now, because we may
1080    // have more member initializers coming; we'll diagnose it just
1081    // once in ActOnMemInitializers.
1082    return true;
1083  }
1084
1085  CXXRecordDecl *ClassDecl = Constructor->getParent();
1086
1087  // C++ [class.base.init]p2:
1088  //   Names in a mem-initializer-id are looked up in the scope of the
1089  //   constructor’s class and, if not found in that scope, are looked
1090  //   up in the scope containing the constructor’s
1091  //   definition. [Note: if the constructor’s class contains a member
1092  //   with the same name as a direct or virtual base class of the
1093  //   class, a mem-initializer-id naming the member or base class and
1094  //   composed of a single identifier refers to the class member. A
1095  //   mem-initializer-id for the hidden base class may be specified
1096  //   using a qualified name. ]
1097  if (!SS.getScopeRep() && !TemplateTypeTy) {
1098    // Look for a member, first.
1099    FieldDecl *Member = 0;
1100    DeclContext::lookup_result Result
1101      = ClassDecl->lookup(MemberOrBase);
1102    if (Result.first != Result.second)
1103      Member = dyn_cast<FieldDecl>(*Result.first);
1104
1105    // FIXME: Handle members of an anonymous union.
1106
1107    if (Member)
1108      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1109                                    LParenLoc, RParenLoc);
1110  }
1111  // It didn't name a member, so see if it names a class.
1112  QualType BaseType;
1113  TypeSourceInfo *TInfo = 0;
1114
1115  if (TemplateTypeTy) {
1116    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1117  } else {
1118    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1119    LookupParsedName(R, S, &SS);
1120
1121    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1122    if (!TyD) {
1123      if (R.isAmbiguous()) return true;
1124
1125      // We don't want access-control diagnostics here.
1126      R.suppressDiagnostics();
1127
1128      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1129        bool NotUnknownSpecialization = false;
1130        DeclContext *DC = computeDeclContext(SS, false);
1131        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1132          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1133
1134        if (!NotUnknownSpecialization) {
1135          // When the scope specifier can refer to a member of an unknown
1136          // specialization, we take it as a type name.
1137          BaseType = CheckTypenameType(ETK_None,
1138                                       (NestedNameSpecifier *)SS.getScopeRep(),
1139                                       *MemberOrBase, SourceLocation(),
1140                                       SS.getRange(), IdLoc);
1141          if (BaseType.isNull())
1142            return true;
1143
1144          R.clear();
1145        }
1146      }
1147
1148      // If no results were found, try to correct typos.
1149      if (R.empty() && BaseType.isNull() &&
1150          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1151          R.isSingleResult()) {
1152        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1153          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1154            // We have found a non-static data member with a similar
1155            // name to what was typed; complain and initialize that
1156            // member.
1157            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1158              << MemberOrBase << true << R.getLookupName()
1159              << FixItHint::CreateReplacement(R.getNameLoc(),
1160                                              R.getLookupName().getAsString());
1161            Diag(Member->getLocation(), diag::note_previous_decl)
1162              << Member->getDeclName();
1163
1164            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1165                                          LParenLoc, RParenLoc);
1166          }
1167        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1168          const CXXBaseSpecifier *DirectBaseSpec;
1169          const CXXBaseSpecifier *VirtualBaseSpec;
1170          if (FindBaseInitializer(*this, ClassDecl,
1171                                  Context.getTypeDeclType(Type),
1172                                  DirectBaseSpec, VirtualBaseSpec)) {
1173            // We have found a direct or virtual base class with a
1174            // similar name to what was typed; complain and initialize
1175            // that base class.
1176            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1177              << MemberOrBase << false << R.getLookupName()
1178              << FixItHint::CreateReplacement(R.getNameLoc(),
1179                                              R.getLookupName().getAsString());
1180
1181            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1182                                                             : VirtualBaseSpec;
1183            Diag(BaseSpec->getSourceRange().getBegin(),
1184                 diag::note_base_class_specified_here)
1185              << BaseSpec->getType()
1186              << BaseSpec->getSourceRange();
1187
1188            TyD = Type;
1189          }
1190        }
1191      }
1192
1193      if (!TyD && BaseType.isNull()) {
1194        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1195          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1196        return true;
1197      }
1198    }
1199
1200    if (BaseType.isNull()) {
1201      BaseType = Context.getTypeDeclType(TyD);
1202      if (SS.isSet()) {
1203        NestedNameSpecifier *Qualifier =
1204          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1205
1206        // FIXME: preserve source range information
1207        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1208      }
1209    }
1210  }
1211
1212  if (!TInfo)
1213    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1214
1215  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1216                              LParenLoc, RParenLoc, ClassDecl);
1217}
1218
1219/// Checks an initializer expression for use of uninitialized fields, such as
1220/// containing the field that is being initialized. Returns true if there is an
1221/// uninitialized field was used an updates the SourceLocation parameter; false
1222/// otherwise.
1223static bool InitExprContainsUninitializedFields(const Stmt* S,
1224                                                const FieldDecl* LhsField,
1225                                                SourceLocation* L) {
1226  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1227  if (ME) {
1228    const NamedDecl* RhsField = ME->getMemberDecl();
1229    if (RhsField == LhsField) {
1230      // Initializing a field with itself. Throw a warning.
1231      // But wait; there are exceptions!
1232      // Exception #1:  The field may not belong to this record.
1233      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1234      const Expr* base = ME->getBase();
1235      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1236        // Even though the field matches, it does not belong to this record.
1237        return false;
1238      }
1239      // None of the exceptions triggered; return true to indicate an
1240      // uninitialized field was used.
1241      *L = ME->getMemberLoc();
1242      return true;
1243    }
1244  }
1245  bool found = false;
1246  for (Stmt::const_child_iterator it = S->child_begin();
1247       it != S->child_end() && found == false;
1248       ++it) {
1249    if (isa<CallExpr>(S)) {
1250      // Do not descend into function calls or constructors, as the use
1251      // of an uninitialized field may be valid. One would have to inspect
1252      // the contents of the function/ctor to determine if it is safe or not.
1253      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1254      // may be safe, depending on what the function/ctor does.
1255      continue;
1256    }
1257    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1258  }
1259  return found;
1260}
1261
1262Sema::MemInitResult
1263Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  // Diagnose value-uses of fields to initialize themselves, e.g.
1268  //   foo(foo)
1269  // where foo is not also a parameter to the constructor.
1270  // TODO: implement -Wuninitialized and fold this into that framework.
1271  for (unsigned i = 0; i < NumArgs; ++i) {
1272    SourceLocation L;
1273    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1274      // FIXME: Return true in the case when other fields are used before being
1275      // uninitialized. For example, let this field be the i'th field. When
1276      // initializing the i'th field, throw a warning if any of the >= i'th
1277      // fields are used, as they are not yet initialized.
1278      // Right now we are only handling the case where the i'th field uses
1279      // itself in its initializer.
1280      Diag(L, diag::warn_field_is_uninit);
1281    }
1282  }
1283
1284  bool HasDependentArg = false;
1285  for (unsigned i = 0; i < NumArgs; i++)
1286    HasDependentArg |= Args[i]->isTypeDependent();
1287
1288  QualType FieldType = Member->getType();
1289  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1290    FieldType = Array->getElementType();
1291  if (FieldType->isDependentType() || HasDependentArg) {
1292    // Can't check initialization for a member of dependent type or when
1293    // any of the arguments are type-dependent expressions.
1294    OwningExprResult Init
1295      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1296                                          RParenLoc));
1297
1298    // Erase any temporaries within this evaluation context; we're not
1299    // going to track them in the AST, since we'll be rebuilding the
1300    // ASTs during template instantiation.
1301    ExprTemporaries.erase(
1302              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1303                          ExprTemporaries.end());
1304
1305    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1306                                                    LParenLoc,
1307                                                    Init.takeAs<Expr>(),
1308                                                    RParenLoc);
1309
1310  }
1311
1312  if (Member->isInvalidDecl())
1313    return true;
1314
1315  // Initialize the member.
1316  InitializedEntity MemberEntity =
1317    InitializedEntity::InitializeMember(Member, 0);
1318  InitializationKind Kind =
1319    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1320
1321  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1322
1323  OwningExprResult MemberInit =
1324    InitSeq.Perform(*this, MemberEntity, Kind,
1325                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1326  if (MemberInit.isInvalid())
1327    return true;
1328
1329  // C++0x [class.base.init]p7:
1330  //   The initialization of each base and member constitutes a
1331  //   full-expression.
1332  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1333  if (MemberInit.isInvalid())
1334    return true;
1335
1336  // If we are in a dependent context, template instantiation will
1337  // perform this type-checking again. Just save the arguments that we
1338  // received in a ParenListExpr.
1339  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1340  // of the information that we have about the member
1341  // initializer. However, deconstructing the ASTs is a dicey process,
1342  // and this approach is far more likely to get the corner cases right.
1343  if (CurContext->isDependentContext()) {
1344    // Bump the reference count of all of the arguments.
1345    for (unsigned I = 0; I != NumArgs; ++I)
1346      Args[I]->Retain();
1347
1348    OwningExprResult Init
1349      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1350                                          RParenLoc));
1351    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1352                                                    LParenLoc,
1353                                                    Init.takeAs<Expr>(),
1354                                                    RParenLoc);
1355  }
1356
1357  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1358                                                  LParenLoc,
1359                                                  MemberInit.takeAs<Expr>(),
1360                                                  RParenLoc);
1361}
1362
1363Sema::MemInitResult
1364Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1365                           Expr **Args, unsigned NumArgs,
1366                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1367                           CXXRecordDecl *ClassDecl) {
1368  bool HasDependentArg = false;
1369  for (unsigned i = 0; i < NumArgs; i++)
1370    HasDependentArg |= Args[i]->isTypeDependent();
1371
1372  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1373  if (BaseType->isDependentType() || HasDependentArg) {
1374    // Can't check initialization for a base of dependent type or when
1375    // any of the arguments are type-dependent expressions.
1376    OwningExprResult BaseInit
1377      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1378                                          RParenLoc));
1379
1380    // Erase any temporaries within this evaluation context; we're not
1381    // going to track them in the AST, since we'll be rebuilding the
1382    // ASTs during template instantiation.
1383    ExprTemporaries.erase(
1384              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1385                          ExprTemporaries.end());
1386
1387    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1388                                                    /*IsVirtual=*/false,
1389                                                    LParenLoc,
1390                                                    BaseInit.takeAs<Expr>(),
1391                                                    RParenLoc);
1392  }
1393
1394  if (!BaseType->isRecordType())
1395    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1396             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1397
1398  // C++ [class.base.init]p2:
1399  //   [...] Unless the mem-initializer-id names a nonstatic data
1400  //   member of the constructor’s class or a direct or virtual base
1401  //   of that class, the mem-initializer is ill-formed. A
1402  //   mem-initializer-list can initialize a base class using any
1403  //   name that denotes that base class type.
1404
1405  // Check for direct and virtual base classes.
1406  const CXXBaseSpecifier *DirectBaseSpec = 0;
1407  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1408  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1409                      VirtualBaseSpec);
1410
1411  // C++ [base.class.init]p2:
1412  //   If a mem-initializer-id is ambiguous because it designates both
1413  //   a direct non-virtual base class and an inherited virtual base
1414  //   class, the mem-initializer is ill-formed.
1415  if (DirectBaseSpec && VirtualBaseSpec)
1416    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1417      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1418  // C++ [base.class.init]p2:
1419  // Unless the mem-initializer-id names a nonstatic data membeer of the
1420  // constructor's class ot a direst or virtual base of that class, the
1421  // mem-initializer is ill-formed.
1422  if (!DirectBaseSpec && !VirtualBaseSpec)
1423    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1424      << BaseType << Context.getTypeDeclType(ClassDecl)
1425      << BaseTInfo->getTypeLoc().getLocalSourceRange();
1426
1427  CXXBaseSpecifier *BaseSpec
1428    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1429  if (!BaseSpec)
1430    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1431
1432  // Initialize the base.
1433  InitializedEntity BaseEntity =
1434    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1435  InitializationKind Kind =
1436    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1437
1438  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1439
1440  OwningExprResult BaseInit =
1441    InitSeq.Perform(*this, BaseEntity, Kind,
1442                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1443  if (BaseInit.isInvalid())
1444    return true;
1445
1446  // C++0x [class.base.init]p7:
1447  //   The initialization of each base and member constitutes a
1448  //   full-expression.
1449  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1450  if (BaseInit.isInvalid())
1451    return true;
1452
1453  // If we are in a dependent context, template instantiation will
1454  // perform this type-checking again. Just save the arguments that we
1455  // received in a ParenListExpr.
1456  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1457  // of the information that we have about the base
1458  // initializer. However, deconstructing the ASTs is a dicey process,
1459  // and this approach is far more likely to get the corner cases right.
1460  if (CurContext->isDependentContext()) {
1461    // Bump the reference count of all of the arguments.
1462    for (unsigned I = 0; I != NumArgs; ++I)
1463      Args[I]->Retain();
1464
1465    OwningExprResult Init
1466      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1467                                          RParenLoc));
1468    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1469                                                    BaseSpec->isVirtual(),
1470                                                    LParenLoc,
1471                                                    Init.takeAs<Expr>(),
1472                                                    RParenLoc);
1473  }
1474
1475  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1476                                                  BaseSpec->isVirtual(),
1477                                                  LParenLoc,
1478                                                  BaseInit.takeAs<Expr>(),
1479                                                  RParenLoc);
1480}
1481
1482/// ImplicitInitializerKind - How an implicit base or member initializer should
1483/// initialize its base or member.
1484enum ImplicitInitializerKind {
1485  IIK_Default,
1486  IIK_Copy,
1487  IIK_Move
1488};
1489
1490static bool
1491BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1492                             ImplicitInitializerKind ImplicitInitKind,
1493                             CXXBaseSpecifier *BaseSpec,
1494                             bool IsInheritedVirtualBase,
1495                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1496  InitializedEntity InitEntity
1497    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1498                                        IsInheritedVirtualBase);
1499
1500  Sema::OwningExprResult BaseInit(SemaRef);
1501
1502  switch (ImplicitInitKind) {
1503  case IIK_Default: {
1504    InitializationKind InitKind
1505      = InitializationKind::CreateDefault(Constructor->getLocation());
1506    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1507    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1508                               Sema::MultiExprArg(SemaRef, 0, 0));
1509    break;
1510  }
1511
1512  case IIK_Copy: {
1513    ParmVarDecl *Param = Constructor->getParamDecl(0);
1514    QualType ParamType = Param->getType().getNonReferenceType();
1515
1516    Expr *CopyCtorArg =
1517      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1518                          Constructor->getLocation(), ParamType, 0);
1519
1520    // Cast to the base class to avoid ambiguities.
1521    QualType ArgTy =
1522      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1523                                       ParamType.getQualifiers());
1524    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1525                              CastExpr::CK_UncheckedDerivedToBase,
1526                              /*isLvalue=*/true,
1527                              CXXBaseSpecifierArray(BaseSpec));
1528
1529    InitializationKind InitKind
1530      = InitializationKind::CreateDirect(Constructor->getLocation(),
1531                                         SourceLocation(), SourceLocation());
1532    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1533                                   &CopyCtorArg, 1);
1534    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1535                               Sema::MultiExprArg(SemaRef,
1536                                                  (void**)&CopyCtorArg, 1));
1537    break;
1538  }
1539
1540  case IIK_Move:
1541    assert(false && "Unhandled initializer kind!");
1542  }
1543
1544  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1545  if (BaseInit.isInvalid())
1546    return true;
1547
1548  CXXBaseInit =
1549    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1550               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1551                                                        SourceLocation()),
1552                                             BaseSpec->isVirtual(),
1553                                             SourceLocation(),
1554                                             BaseInit.takeAs<Expr>(),
1555                                             SourceLocation());
1556
1557  return false;
1558}
1559
1560static bool
1561BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1562                               ImplicitInitializerKind ImplicitInitKind,
1563                               FieldDecl *Field,
1564                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1565  if (Field->isInvalidDecl())
1566    return true;
1567
1568  if (ImplicitInitKind == IIK_Copy) {
1569    SourceLocation Loc = Constructor->getLocation();
1570    ParmVarDecl *Param = Constructor->getParamDecl(0);
1571    QualType ParamType = Param->getType().getNonReferenceType();
1572
1573    Expr *MemberExprBase =
1574      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1575                          Loc, ParamType, 0);
1576
1577    // Build a reference to this field within the parameter.
1578    CXXScopeSpec SS;
1579    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1580                              Sema::LookupMemberName);
1581    MemberLookup.addDecl(Field, AS_public);
1582    MemberLookup.resolveKind();
1583    Sema::OwningExprResult CopyCtorArg
1584      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1585                                         ParamType, Loc,
1586                                         /*IsArrow=*/false,
1587                                         SS,
1588                                         /*FirstQualifierInScope=*/0,
1589                                         MemberLookup,
1590                                         /*TemplateArgs=*/0);
1591    if (CopyCtorArg.isInvalid())
1592      return true;
1593
1594    // When the field we are copying is an array, create index variables for
1595    // each dimension of the array. We use these index variables to subscript
1596    // the source array, and other clients (e.g., CodeGen) will perform the
1597    // necessary iteration with these index variables.
1598    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1599    QualType BaseType = Field->getType();
1600    QualType SizeType = SemaRef.Context.getSizeType();
1601    while (const ConstantArrayType *Array
1602                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1603      // Create the iteration variable for this array index.
1604      IdentifierInfo *IterationVarName = 0;
1605      {
1606        llvm::SmallString<8> Str;
1607        llvm::raw_svector_ostream OS(Str);
1608        OS << "__i" << IndexVariables.size();
1609        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1610      }
1611      VarDecl *IterationVar
1612        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1613                          IterationVarName, SizeType,
1614                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1615                          VarDecl::None, VarDecl::None);
1616      IndexVariables.push_back(IterationVar);
1617
1618      // Create a reference to the iteration variable.
1619      Sema::OwningExprResult IterationVarRef
1620        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1621      assert(!IterationVarRef.isInvalid() &&
1622             "Reference to invented variable cannot fail!");
1623
1624      // Subscript the array with this iteration variable.
1625      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1626                                                            Loc,
1627                                                          move(IterationVarRef),
1628                                                            Loc);
1629      if (CopyCtorArg.isInvalid())
1630        return true;
1631
1632      BaseType = Array->getElementType();
1633    }
1634
1635    // Construct the entity that we will be initializing. For an array, this
1636    // will be first element in the array, which may require several levels
1637    // of array-subscript entities.
1638    llvm::SmallVector<InitializedEntity, 4> Entities;
1639    Entities.reserve(1 + IndexVariables.size());
1640    Entities.push_back(InitializedEntity::InitializeMember(Field));
1641    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1642      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1643                                                              0,
1644                                                              Entities.back()));
1645
1646    // Direct-initialize to use the copy constructor.
1647    InitializationKind InitKind =
1648      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1649
1650    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1651    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1652                                   &CopyCtorArgE, 1);
1653
1654    Sema::OwningExprResult MemberInit
1655      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1656                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1657    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1658    if (MemberInit.isInvalid())
1659      return true;
1660
1661    CXXMemberInit
1662      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1663                                           MemberInit.takeAs<Expr>(), Loc,
1664                                           IndexVariables.data(),
1665                                           IndexVariables.size());
1666    return false;
1667  }
1668
1669  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1670
1671  QualType FieldBaseElementType =
1672    SemaRef.Context.getBaseElementType(Field->getType());
1673
1674  if (FieldBaseElementType->isRecordType()) {
1675    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1676    InitializationKind InitKind =
1677      InitializationKind::CreateDefault(Constructor->getLocation());
1678
1679    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1680    Sema::OwningExprResult MemberInit =
1681      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1682                      Sema::MultiExprArg(SemaRef, 0, 0));
1683    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1684    if (MemberInit.isInvalid())
1685      return true;
1686
1687    CXXMemberInit =
1688      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1689                                                       Field, SourceLocation(),
1690                                                       SourceLocation(),
1691                                                      MemberInit.takeAs<Expr>(),
1692                                                       SourceLocation());
1693    return false;
1694  }
1695
1696  if (FieldBaseElementType->isReferenceType()) {
1697    SemaRef.Diag(Constructor->getLocation(),
1698                 diag::err_uninitialized_member_in_ctor)
1699    << (int)Constructor->isImplicit()
1700    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1701    << 0 << Field->getDeclName();
1702    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1703    return true;
1704  }
1705
1706  if (FieldBaseElementType.isConstQualified()) {
1707    SemaRef.Diag(Constructor->getLocation(),
1708                 diag::err_uninitialized_member_in_ctor)
1709    << (int)Constructor->isImplicit()
1710    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1711    << 1 << Field->getDeclName();
1712    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1713    return true;
1714  }
1715
1716  // Nothing to initialize.
1717  CXXMemberInit = 0;
1718  return false;
1719}
1720
1721namespace {
1722struct BaseAndFieldInfo {
1723  Sema &S;
1724  CXXConstructorDecl *Ctor;
1725  bool AnyErrorsInInits;
1726  ImplicitInitializerKind IIK;
1727  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1728  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1729
1730  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1731    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1732    // FIXME: Handle implicit move constructors.
1733    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1734      IIK = IIK_Copy;
1735    else
1736      IIK = IIK_Default;
1737  }
1738};
1739}
1740
1741static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1742                                    FieldDecl *Top, FieldDecl *Field) {
1743
1744  // Overwhelmingly common case:  we have a direct initializer for this field.
1745  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1746    Info.AllToInit.push_back(Init);
1747
1748    if (Field != Top) {
1749      Init->setMember(Top);
1750      Init->setAnonUnionMember(Field);
1751    }
1752    return false;
1753  }
1754
1755  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1756    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1757    assert(FieldClassType && "anonymous struct/union without record type");
1758
1759    // Walk through the members, tying in any initializers for fields
1760    // we find.  The earlier semantic checks should prevent redundant
1761    // initialization of union members, given the requirement that
1762    // union members never have non-trivial default constructors.
1763
1764    // TODO: in C++0x, it might be legal to have union members with
1765    // non-trivial default constructors in unions.  Revise this
1766    // implementation then with the appropriate semantics.
1767    CXXRecordDecl *FieldClassDecl
1768      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1769    for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1770           EA = FieldClassDecl->field_end(); FA != EA; FA++)
1771      if (CollectFieldInitializer(Info, Top, *FA))
1772        return true;
1773  }
1774
1775  // Don't try to build an implicit initializer if there were semantic
1776  // errors in any of the initializers (and therefore we might be
1777  // missing some that the user actually wrote).
1778  if (Info.AnyErrorsInInits)
1779    return false;
1780
1781  CXXBaseOrMemberInitializer *Init = 0;
1782  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1783    return true;
1784
1785  // If the member doesn't need to be initialized, Init will still be null.
1786  if (!Init) return false;
1787
1788  Info.AllToInit.push_back(Init);
1789  if (Top != Field) {
1790    Init->setMember(Top);
1791    Init->setAnonUnionMember(Field);
1792  }
1793  return false;
1794}
1795
1796bool
1797Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1798                                  CXXBaseOrMemberInitializer **Initializers,
1799                                  unsigned NumInitializers,
1800                                  bool AnyErrors) {
1801  if (Constructor->getDeclContext()->isDependentContext()) {
1802    // Just store the initializers as written, they will be checked during
1803    // instantiation.
1804    if (NumInitializers > 0) {
1805      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1806      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1807        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1808      memcpy(baseOrMemberInitializers, Initializers,
1809             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1810      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1811    }
1812
1813    return false;
1814  }
1815
1816  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1817
1818  // We need to build the initializer AST according to order of construction
1819  // and not what user specified in the Initializers list.
1820  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1821  if (!ClassDecl)
1822    return true;
1823
1824  bool HadError = false;
1825
1826  for (unsigned i = 0; i < NumInitializers; i++) {
1827    CXXBaseOrMemberInitializer *Member = Initializers[i];
1828
1829    if (Member->isBaseInitializer())
1830      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1831    else
1832      Info.AllBaseFields[Member->getMember()] = Member;
1833  }
1834
1835  // Keep track of the direct virtual bases.
1836  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1837  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1838       E = ClassDecl->bases_end(); I != E; ++I) {
1839    if (I->isVirtual())
1840      DirectVBases.insert(I);
1841  }
1842
1843  // Push virtual bases before others.
1844  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1845       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1846
1847    if (CXXBaseOrMemberInitializer *Value
1848        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1849      Info.AllToInit.push_back(Value);
1850    } else if (!AnyErrors) {
1851      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1852      CXXBaseOrMemberInitializer *CXXBaseInit;
1853      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1854                                       VBase, IsInheritedVirtualBase,
1855                                       CXXBaseInit)) {
1856        HadError = true;
1857        continue;
1858      }
1859
1860      Info.AllToInit.push_back(CXXBaseInit);
1861    }
1862  }
1863
1864  // Non-virtual bases.
1865  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1866       E = ClassDecl->bases_end(); Base != E; ++Base) {
1867    // Virtuals are in the virtual base list and already constructed.
1868    if (Base->isVirtual())
1869      continue;
1870
1871    if (CXXBaseOrMemberInitializer *Value
1872          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1873      Info.AllToInit.push_back(Value);
1874    } else if (!AnyErrors) {
1875      CXXBaseOrMemberInitializer *CXXBaseInit;
1876      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1877                                       Base, /*IsInheritedVirtualBase=*/false,
1878                                       CXXBaseInit)) {
1879        HadError = true;
1880        continue;
1881      }
1882
1883      Info.AllToInit.push_back(CXXBaseInit);
1884    }
1885  }
1886
1887  // Fields.
1888  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1889       E = ClassDecl->field_end(); Field != E; ++Field)
1890    if (CollectFieldInitializer(Info, *Field, *Field))
1891      HadError = true;
1892
1893  NumInitializers = Info.AllToInit.size();
1894  if (NumInitializers > 0) {
1895    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1896    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1897      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1898    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1899           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1900    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1901
1902    // Constructors implicitly reference the base and member
1903    // destructors.
1904    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1905                                           Constructor->getParent());
1906  }
1907
1908  return HadError;
1909}
1910
1911static void *GetKeyForTopLevelField(FieldDecl *Field) {
1912  // For anonymous unions, use the class declaration as the key.
1913  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1914    if (RT->getDecl()->isAnonymousStructOrUnion())
1915      return static_cast<void *>(RT->getDecl());
1916  }
1917  return static_cast<void *>(Field);
1918}
1919
1920static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1921  return Context.getCanonicalType(BaseType).getTypePtr();
1922}
1923
1924static void *GetKeyForMember(ASTContext &Context,
1925                             CXXBaseOrMemberInitializer *Member,
1926                             bool MemberMaybeAnon = false) {
1927  if (!Member->isMemberInitializer())
1928    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1929
1930  // For fields injected into the class via declaration of an anonymous union,
1931  // use its anonymous union class declaration as the unique key.
1932  FieldDecl *Field = Member->getMember();
1933
1934  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1935  // data member of the class. Data member used in the initializer list is
1936  // in AnonUnionMember field.
1937  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1938    Field = Member->getAnonUnionMember();
1939
1940  // If the field is a member of an anonymous struct or union, our key
1941  // is the anonymous record decl that's a direct child of the class.
1942  RecordDecl *RD = Field->getParent();
1943  if (RD->isAnonymousStructOrUnion()) {
1944    while (true) {
1945      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1946      if (Parent->isAnonymousStructOrUnion())
1947        RD = Parent;
1948      else
1949        break;
1950    }
1951
1952    return static_cast<void *>(RD);
1953  }
1954
1955  return static_cast<void *>(Field);
1956}
1957
1958static void
1959DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1960                                  const CXXConstructorDecl *Constructor,
1961                                  CXXBaseOrMemberInitializer **Inits,
1962                                  unsigned NumInits) {
1963  if (Constructor->getDeclContext()->isDependentContext())
1964    return;
1965
1966  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1967        == Diagnostic::Ignored)
1968    return;
1969
1970  // Build the list of bases and members in the order that they'll
1971  // actually be initialized.  The explicit initializers should be in
1972  // this same order but may be missing things.
1973  llvm::SmallVector<const void*, 32> IdealInitKeys;
1974
1975  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1976
1977  // 1. Virtual bases.
1978  for (CXXRecordDecl::base_class_const_iterator VBase =
1979       ClassDecl->vbases_begin(),
1980       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1981    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1982
1983  // 2. Non-virtual bases.
1984  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1985       E = ClassDecl->bases_end(); Base != E; ++Base) {
1986    if (Base->isVirtual())
1987      continue;
1988    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1989  }
1990
1991  // 3. Direct fields.
1992  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1993       E = ClassDecl->field_end(); Field != E; ++Field)
1994    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1995
1996  unsigned NumIdealInits = IdealInitKeys.size();
1997  unsigned IdealIndex = 0;
1998
1999  CXXBaseOrMemberInitializer *PrevInit = 0;
2000  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2001    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2002    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2003
2004    // Scan forward to try to find this initializer in the idealized
2005    // initializers list.
2006    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2007      if (InitKey == IdealInitKeys[IdealIndex])
2008        break;
2009
2010    // If we didn't find this initializer, it must be because we
2011    // scanned past it on a previous iteration.  That can only
2012    // happen if we're out of order;  emit a warning.
2013    if (IdealIndex == NumIdealInits) {
2014      assert(PrevInit && "initializer not found in initializer list");
2015
2016      Sema::SemaDiagnosticBuilder D =
2017        SemaRef.Diag(PrevInit->getSourceLocation(),
2018                     diag::warn_initializer_out_of_order);
2019
2020      if (PrevInit->isMemberInitializer())
2021        D << 0 << PrevInit->getMember()->getDeclName();
2022      else
2023        D << 1 << PrevInit->getBaseClassInfo()->getType();
2024
2025      if (Init->isMemberInitializer())
2026        D << 0 << Init->getMember()->getDeclName();
2027      else
2028        D << 1 << Init->getBaseClassInfo()->getType();
2029
2030      // Move back to the initializer's location in the ideal list.
2031      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2032        if (InitKey == IdealInitKeys[IdealIndex])
2033          break;
2034
2035      assert(IdealIndex != NumIdealInits &&
2036             "initializer not found in initializer list");
2037    }
2038
2039    PrevInit = Init;
2040  }
2041}
2042
2043namespace {
2044bool CheckRedundantInit(Sema &S,
2045                        CXXBaseOrMemberInitializer *Init,
2046                        CXXBaseOrMemberInitializer *&PrevInit) {
2047  if (!PrevInit) {
2048    PrevInit = Init;
2049    return false;
2050  }
2051
2052  if (FieldDecl *Field = Init->getMember())
2053    S.Diag(Init->getSourceLocation(),
2054           diag::err_multiple_mem_initialization)
2055      << Field->getDeclName()
2056      << Init->getSourceRange();
2057  else {
2058    Type *BaseClass = Init->getBaseClass();
2059    assert(BaseClass && "neither field nor base");
2060    S.Diag(Init->getSourceLocation(),
2061           diag::err_multiple_base_initialization)
2062      << QualType(BaseClass, 0)
2063      << Init->getSourceRange();
2064  }
2065  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2066    << 0 << PrevInit->getSourceRange();
2067
2068  return true;
2069}
2070
2071typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2072typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2073
2074bool CheckRedundantUnionInit(Sema &S,
2075                             CXXBaseOrMemberInitializer *Init,
2076                             RedundantUnionMap &Unions) {
2077  FieldDecl *Field = Init->getMember();
2078  RecordDecl *Parent = Field->getParent();
2079  if (!Parent->isAnonymousStructOrUnion())
2080    return false;
2081
2082  NamedDecl *Child = Field;
2083  do {
2084    if (Parent->isUnion()) {
2085      UnionEntry &En = Unions[Parent];
2086      if (En.first && En.first != Child) {
2087        S.Diag(Init->getSourceLocation(),
2088               diag::err_multiple_mem_union_initialization)
2089          << Field->getDeclName()
2090          << Init->getSourceRange();
2091        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2092          << 0 << En.second->getSourceRange();
2093        return true;
2094      } else if (!En.first) {
2095        En.first = Child;
2096        En.second = Init;
2097      }
2098    }
2099
2100    Child = Parent;
2101    Parent = cast<RecordDecl>(Parent->getDeclContext());
2102  } while (Parent->isAnonymousStructOrUnion());
2103
2104  return false;
2105}
2106}
2107
2108/// ActOnMemInitializers - Handle the member initializers for a constructor.
2109void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2110                                SourceLocation ColonLoc,
2111                                MemInitTy **meminits, unsigned NumMemInits,
2112                                bool AnyErrors) {
2113  if (!ConstructorDecl)
2114    return;
2115
2116  AdjustDeclIfTemplate(ConstructorDecl);
2117
2118  CXXConstructorDecl *Constructor
2119    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2120
2121  if (!Constructor) {
2122    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2123    return;
2124  }
2125
2126  CXXBaseOrMemberInitializer **MemInits =
2127    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2128
2129  // Mapping for the duplicate initializers check.
2130  // For member initializers, this is keyed with a FieldDecl*.
2131  // For base initializers, this is keyed with a Type*.
2132  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2133
2134  // Mapping for the inconsistent anonymous-union initializers check.
2135  RedundantUnionMap MemberUnions;
2136
2137  bool HadError = false;
2138  for (unsigned i = 0; i < NumMemInits; i++) {
2139    CXXBaseOrMemberInitializer *Init = MemInits[i];
2140
2141    if (Init->isMemberInitializer()) {
2142      FieldDecl *Field = Init->getMember();
2143      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2144          CheckRedundantUnionInit(*this, Init, MemberUnions))
2145        HadError = true;
2146    } else {
2147      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2148      if (CheckRedundantInit(*this, Init, Members[Key]))
2149        HadError = true;
2150    }
2151  }
2152
2153  if (HadError)
2154    return;
2155
2156  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2157
2158  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2159}
2160
2161void
2162Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2163                                             CXXRecordDecl *ClassDecl) {
2164  // Ignore dependent contexts.
2165  if (ClassDecl->isDependentContext())
2166    return;
2167
2168  // FIXME: all the access-control diagnostics are positioned on the
2169  // field/base declaration.  That's probably good; that said, the
2170  // user might reasonably want to know why the destructor is being
2171  // emitted, and we currently don't say.
2172
2173  // Non-static data members.
2174  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2175       E = ClassDecl->field_end(); I != E; ++I) {
2176    FieldDecl *Field = *I;
2177    if (Field->isInvalidDecl())
2178      continue;
2179    QualType FieldType = Context.getBaseElementType(Field->getType());
2180
2181    const RecordType* RT = FieldType->getAs<RecordType>();
2182    if (!RT)
2183      continue;
2184
2185    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2186    if (FieldClassDecl->hasTrivialDestructor())
2187      continue;
2188
2189    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2190    CheckDestructorAccess(Field->getLocation(), Dtor,
2191                          PDiag(diag::err_access_dtor_field)
2192                            << Field->getDeclName()
2193                            << FieldType);
2194
2195    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2196  }
2197
2198  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2199
2200  // Bases.
2201  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2202       E = ClassDecl->bases_end(); Base != E; ++Base) {
2203    // Bases are always records in a well-formed non-dependent class.
2204    const RecordType *RT = Base->getType()->getAs<RecordType>();
2205
2206    // Remember direct virtual bases.
2207    if (Base->isVirtual())
2208      DirectVirtualBases.insert(RT);
2209
2210    // Ignore trivial destructors.
2211    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2212    if (BaseClassDecl->hasTrivialDestructor())
2213      continue;
2214
2215    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2216
2217    // FIXME: caret should be on the start of the class name
2218    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2219                          PDiag(diag::err_access_dtor_base)
2220                            << Base->getType()
2221                            << Base->getSourceRange());
2222
2223    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2224  }
2225
2226  // Virtual bases.
2227  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2228       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2229
2230    // Bases are always records in a well-formed non-dependent class.
2231    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2232
2233    // Ignore direct virtual bases.
2234    if (DirectVirtualBases.count(RT))
2235      continue;
2236
2237    // Ignore trivial destructors.
2238    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2239    if (BaseClassDecl->hasTrivialDestructor())
2240      continue;
2241
2242    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2243    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2244                          PDiag(diag::err_access_dtor_vbase)
2245                            << VBase->getType());
2246
2247    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2248  }
2249}
2250
2251void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2252  if (!CDtorDecl)
2253    return;
2254
2255  if (CXXConstructorDecl *Constructor
2256      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2257    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2258}
2259
2260bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2261                                  unsigned DiagID, AbstractDiagSelID SelID,
2262                                  const CXXRecordDecl *CurrentRD) {
2263  if (SelID == -1)
2264    return RequireNonAbstractType(Loc, T,
2265                                  PDiag(DiagID), CurrentRD);
2266  else
2267    return RequireNonAbstractType(Loc, T,
2268                                  PDiag(DiagID) << SelID, CurrentRD);
2269}
2270
2271bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2272                                  const PartialDiagnostic &PD,
2273                                  const CXXRecordDecl *CurrentRD) {
2274  if (!getLangOptions().CPlusPlus)
2275    return false;
2276
2277  if (const ArrayType *AT = Context.getAsArrayType(T))
2278    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2279                                  CurrentRD);
2280
2281  if (const PointerType *PT = T->getAs<PointerType>()) {
2282    // Find the innermost pointer type.
2283    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2284      PT = T;
2285
2286    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2287      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2288  }
2289
2290  const RecordType *RT = T->getAs<RecordType>();
2291  if (!RT)
2292    return false;
2293
2294  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2295
2296  if (CurrentRD && CurrentRD != RD)
2297    return false;
2298
2299  // FIXME: is this reasonable?  It matches current behavior, but....
2300  if (!RD->getDefinition())
2301    return false;
2302
2303  if (!RD->isAbstract())
2304    return false;
2305
2306  Diag(Loc, PD) << RD->getDeclName();
2307
2308  // Check if we've already emitted the list of pure virtual functions for this
2309  // class.
2310  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2311    return true;
2312
2313  CXXFinalOverriderMap FinalOverriders;
2314  RD->getFinalOverriders(FinalOverriders);
2315
2316  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2317                                   MEnd = FinalOverriders.end();
2318       M != MEnd;
2319       ++M) {
2320    for (OverridingMethods::iterator SO = M->second.begin(),
2321                                  SOEnd = M->second.end();
2322         SO != SOEnd; ++SO) {
2323      // C++ [class.abstract]p4:
2324      //   A class is abstract if it contains or inherits at least one
2325      //   pure virtual function for which the final overrider is pure
2326      //   virtual.
2327
2328      //
2329      if (SO->second.size() != 1)
2330        continue;
2331
2332      if (!SO->second.front().Method->isPure())
2333        continue;
2334
2335      Diag(SO->second.front().Method->getLocation(),
2336           diag::note_pure_virtual_function)
2337        << SO->second.front().Method->getDeclName();
2338    }
2339  }
2340
2341  if (!PureVirtualClassDiagSet)
2342    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2343  PureVirtualClassDiagSet->insert(RD);
2344
2345  return true;
2346}
2347
2348namespace {
2349  class AbstractClassUsageDiagnoser
2350    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2351    Sema &SemaRef;
2352    CXXRecordDecl *AbstractClass;
2353
2354    bool VisitDeclContext(const DeclContext *DC) {
2355      bool Invalid = false;
2356
2357      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2358           E = DC->decls_end(); I != E; ++I)
2359        Invalid |= Visit(*I);
2360
2361      return Invalid;
2362    }
2363
2364  public:
2365    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2366      : SemaRef(SemaRef), AbstractClass(ac) {
2367        Visit(SemaRef.Context.getTranslationUnitDecl());
2368    }
2369
2370    bool VisitFunctionDecl(const FunctionDecl *FD) {
2371      if (FD->isThisDeclarationADefinition()) {
2372        // No need to do the check if we're in a definition, because it requires
2373        // that the return/param types are complete.
2374        // because that requires
2375        return VisitDeclContext(FD);
2376      }
2377
2378      // Check the return type.
2379      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2380      bool Invalid =
2381        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2382                                       diag::err_abstract_type_in_decl,
2383                                       Sema::AbstractReturnType,
2384                                       AbstractClass);
2385
2386      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2387           E = FD->param_end(); I != E; ++I) {
2388        const ParmVarDecl *VD = *I;
2389        Invalid |=
2390          SemaRef.RequireNonAbstractType(VD->getLocation(),
2391                                         VD->getOriginalType(),
2392                                         diag::err_abstract_type_in_decl,
2393                                         Sema::AbstractParamType,
2394                                         AbstractClass);
2395      }
2396
2397      return Invalid;
2398    }
2399
2400    bool VisitDecl(const Decl* D) {
2401      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2402        return VisitDeclContext(DC);
2403
2404      return false;
2405    }
2406  };
2407}
2408
2409/// \brief Perform semantic checks on a class definition that has been
2410/// completing, introducing implicitly-declared members, checking for
2411/// abstract types, etc.
2412void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2413  if (!Record || Record->isInvalidDecl())
2414    return;
2415
2416  if (!Record->isDependentType())
2417    AddImplicitlyDeclaredMembersToClass(S, Record);
2418
2419  if (Record->isInvalidDecl())
2420    return;
2421
2422  // Set access bits correctly on the directly-declared conversions.
2423  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2424  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2425    Convs->setAccess(I, (*I)->getAccess());
2426
2427  // Determine whether we need to check for final overriders. We do
2428  // this either when there are virtual base classes (in which case we
2429  // may end up finding multiple final overriders for a given virtual
2430  // function) or any of the base classes is abstract (in which case
2431  // we might detect that this class is abstract).
2432  bool CheckFinalOverriders = false;
2433  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2434      !Record->isDependentType()) {
2435    if (Record->getNumVBases())
2436      CheckFinalOverriders = true;
2437    else if (!Record->isAbstract()) {
2438      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2439                                                 BEnd = Record->bases_end();
2440           B != BEnd; ++B) {
2441        CXXRecordDecl *BaseDecl
2442          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2443        if (BaseDecl->isAbstract()) {
2444          CheckFinalOverriders = true;
2445          break;
2446        }
2447      }
2448    }
2449  }
2450
2451  if (CheckFinalOverriders) {
2452    CXXFinalOverriderMap FinalOverriders;
2453    Record->getFinalOverriders(FinalOverriders);
2454
2455    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2456                                     MEnd = FinalOverriders.end();
2457         M != MEnd; ++M) {
2458      for (OverridingMethods::iterator SO = M->second.begin(),
2459                                    SOEnd = M->second.end();
2460           SO != SOEnd; ++SO) {
2461        assert(SO->second.size() > 0 &&
2462               "All virtual functions have overridding virtual functions");
2463        if (SO->second.size() == 1) {
2464          // C++ [class.abstract]p4:
2465          //   A class is abstract if it contains or inherits at least one
2466          //   pure virtual function for which the final overrider is pure
2467          //   virtual.
2468          if (SO->second.front().Method->isPure())
2469            Record->setAbstract(true);
2470          continue;
2471        }
2472
2473        // C++ [class.virtual]p2:
2474        //   In a derived class, if a virtual member function of a base
2475        //   class subobject has more than one final overrider the
2476        //   program is ill-formed.
2477        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2478          << (NamedDecl *)M->first << Record;
2479        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2480        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2481                                                 OMEnd = SO->second.end();
2482             OM != OMEnd; ++OM)
2483          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2484            << (NamedDecl *)M->first << OM->Method->getParent();
2485
2486        Record->setInvalidDecl();
2487      }
2488    }
2489  }
2490
2491  if (Record->isAbstract() && !Record->isInvalidDecl())
2492    (void)AbstractClassUsageDiagnoser(*this, Record);
2493
2494  // If this is not an aggregate type and has no user-declared constructor,
2495  // complain about any non-static data members of reference or const scalar
2496  // type, since they will never get initializers.
2497  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2498      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2499    bool Complained = false;
2500    for (RecordDecl::field_iterator F = Record->field_begin(),
2501                                 FEnd = Record->field_end();
2502         F != FEnd; ++F) {
2503      if (F->getType()->isReferenceType() ||
2504          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2505        if (!Complained) {
2506          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2507            << Record->getTagKind() << Record;
2508          Complained = true;
2509        }
2510
2511        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2512          << F->getType()->isReferenceType()
2513          << F->getDeclName();
2514      }
2515    }
2516  }
2517
2518  if (Record->isDynamicClass())
2519    DynamicClasses.push_back(Record);
2520}
2521
2522void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2523                                             DeclPtrTy TagDecl,
2524                                             SourceLocation LBrac,
2525                                             SourceLocation RBrac,
2526                                             AttributeList *AttrList) {
2527  if (!TagDecl)
2528    return;
2529
2530  AdjustDeclIfTemplate(TagDecl);
2531
2532  ActOnFields(S, RLoc, TagDecl,
2533              (DeclPtrTy*)FieldCollector->getCurFields(),
2534              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2535
2536  CheckCompletedCXXClass(S,
2537                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2538}
2539
2540/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2541/// special functions, such as the default constructor, copy
2542/// constructor, or destructor, to the given C++ class (C++
2543/// [special]p1).  This routine can only be executed just before the
2544/// definition of the class is complete.
2545///
2546/// The scope, if provided, is the class scope.
2547void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2548                                               CXXRecordDecl *ClassDecl) {
2549  CanQualType ClassType
2550    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2551
2552  // FIXME: Implicit declarations have exception specifications, which are
2553  // the union of the specifications of the implicitly called functions.
2554
2555  if (!ClassDecl->hasUserDeclaredConstructor()) {
2556    // C++ [class.ctor]p5:
2557    //   A default constructor for a class X is a constructor of class X
2558    //   that can be called without an argument. If there is no
2559    //   user-declared constructor for class X, a default constructor is
2560    //   implicitly declared. An implicitly-declared default constructor
2561    //   is an inline public member of its class.
2562    DeclarationName Name
2563      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2564    CXXConstructorDecl *DefaultCon =
2565      CXXConstructorDecl::Create(Context, ClassDecl,
2566                                 ClassDecl->getLocation(), Name,
2567                                 Context.getFunctionType(Context.VoidTy,
2568                                                         0, 0, false, 0,
2569                                                         /*FIXME*/false, false,
2570                                                         0, 0,
2571                                                       FunctionType::ExtInfo()),
2572                                 /*TInfo=*/0,
2573                                 /*isExplicit=*/false,
2574                                 /*isInline=*/true,
2575                                 /*isImplicitlyDeclared=*/true);
2576    DefaultCon->setAccess(AS_public);
2577    DefaultCon->setImplicit();
2578    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2579    if (S)
2580      PushOnScopeChains(DefaultCon, S, true);
2581    else
2582      ClassDecl->addDecl(DefaultCon);
2583  }
2584
2585  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2586    // C++ [class.copy]p4:
2587    //   If the class definition does not explicitly declare a copy
2588    //   constructor, one is declared implicitly.
2589
2590    // C++ [class.copy]p5:
2591    //   The implicitly-declared copy constructor for a class X will
2592    //   have the form
2593    //
2594    //       X::X(const X&)
2595    //
2596    //   if
2597    bool HasConstCopyConstructor = true;
2598
2599    //     -- each direct or virtual base class B of X has a copy
2600    //        constructor whose first parameter is of type const B& or
2601    //        const volatile B&, and
2602    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2603         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2604      const CXXRecordDecl *BaseClassDecl
2605        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2606      HasConstCopyConstructor
2607        = BaseClassDecl->hasConstCopyConstructor(Context);
2608    }
2609
2610    //     -- for all the nonstatic data members of X that are of a
2611    //        class type M (or array thereof), each such class type
2612    //        has a copy constructor whose first parameter is of type
2613    //        const M& or const volatile M&.
2614    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2615         HasConstCopyConstructor && Field != ClassDecl->field_end();
2616         ++Field) {
2617      QualType FieldType = (*Field)->getType();
2618      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2619        FieldType = Array->getElementType();
2620      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2621        const CXXRecordDecl *FieldClassDecl
2622          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2623        HasConstCopyConstructor
2624          = FieldClassDecl->hasConstCopyConstructor(Context);
2625      }
2626    }
2627
2628    //   Otherwise, the implicitly declared copy constructor will have
2629    //   the form
2630    //
2631    //       X::X(X&)
2632    QualType ArgType = ClassType;
2633    if (HasConstCopyConstructor)
2634      ArgType = ArgType.withConst();
2635    ArgType = Context.getLValueReferenceType(ArgType);
2636
2637    //   An implicitly-declared copy constructor is an inline public
2638    //   member of its class.
2639    DeclarationName Name
2640      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2641    CXXConstructorDecl *CopyConstructor
2642      = CXXConstructorDecl::Create(Context, ClassDecl,
2643                                   ClassDecl->getLocation(), Name,
2644                                   Context.getFunctionType(Context.VoidTy,
2645                                                           &ArgType, 1,
2646                                                           false, 0,
2647                                               /*FIXME: hasExceptionSpec*/false,
2648                                                           false, 0, 0,
2649                                                       FunctionType::ExtInfo()),
2650                                   /*TInfo=*/0,
2651                                   /*isExplicit=*/false,
2652                                   /*isInline=*/true,
2653                                   /*isImplicitlyDeclared=*/true);
2654    CopyConstructor->setAccess(AS_public);
2655    CopyConstructor->setImplicit();
2656    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2657
2658    // Add the parameter to the constructor.
2659    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2660                                                 ClassDecl->getLocation(),
2661                                                 /*IdentifierInfo=*/0,
2662                                                 ArgType, /*TInfo=*/0,
2663                                                 VarDecl::None,
2664                                                 VarDecl::None, 0);
2665    CopyConstructor->setParams(&FromParam, 1);
2666    if (S)
2667      PushOnScopeChains(CopyConstructor, S, true);
2668    else
2669      ClassDecl->addDecl(CopyConstructor);
2670  }
2671
2672  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2673    // Note: The following rules are largely analoguous to the copy
2674    // constructor rules. Note that virtual bases are not taken into account
2675    // for determining the argument type of the operator. Note also that
2676    // operators taking an object instead of a reference are allowed.
2677    //
2678    // C++ [class.copy]p10:
2679    //   If the class definition does not explicitly declare a copy
2680    //   assignment operator, one is declared implicitly.
2681    //   The implicitly-defined copy assignment operator for a class X
2682    //   will have the form
2683    //
2684    //       X& X::operator=(const X&)
2685    //
2686    //   if
2687    bool HasConstCopyAssignment = true;
2688
2689    //       -- each direct base class B of X has a copy assignment operator
2690    //          whose parameter is of type const B&, const volatile B& or B,
2691    //          and
2692    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2693         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2694      assert(!Base->getType()->isDependentType() &&
2695            "Cannot generate implicit members for class with dependent bases.");
2696      const CXXRecordDecl *BaseClassDecl
2697        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2698      const CXXMethodDecl *MD = 0;
2699      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2700                                                                     MD);
2701    }
2702
2703    //       -- for all the nonstatic data members of X that are of a class
2704    //          type M (or array thereof), each such class type has a copy
2705    //          assignment operator whose parameter is of type const M&,
2706    //          const volatile M& or M.
2707    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2708         HasConstCopyAssignment && Field != ClassDecl->field_end();
2709         ++Field) {
2710      QualType FieldType = (*Field)->getType();
2711      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2712        FieldType = Array->getElementType();
2713      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2714        const CXXRecordDecl *FieldClassDecl
2715          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2716        const CXXMethodDecl *MD = 0;
2717        HasConstCopyAssignment
2718          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2719      }
2720    }
2721
2722    //   Otherwise, the implicitly declared copy assignment operator will
2723    //   have the form
2724    //
2725    //       X& X::operator=(X&)
2726    QualType ArgType = ClassType;
2727    QualType RetType = Context.getLValueReferenceType(ArgType);
2728    if (HasConstCopyAssignment)
2729      ArgType = ArgType.withConst();
2730    ArgType = Context.getLValueReferenceType(ArgType);
2731
2732    //   An implicitly-declared copy assignment operator is an inline public
2733    //   member of its class.
2734    DeclarationName Name =
2735      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2736    CXXMethodDecl *CopyAssignment =
2737      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2738                            Context.getFunctionType(RetType, &ArgType, 1,
2739                                                    false, 0,
2740                                              /*FIXME: hasExceptionSpec*/false,
2741                                                    false, 0, 0,
2742                                                    FunctionType::ExtInfo()),
2743                            /*TInfo=*/0, /*isStatic=*/false,
2744                            /*StorageClassAsWritten=*/FunctionDecl::None,
2745                            /*isInline=*/true);
2746    CopyAssignment->setAccess(AS_public);
2747    CopyAssignment->setImplicit();
2748    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2749    CopyAssignment->setCopyAssignment(true);
2750
2751    // Add the parameter to the operator.
2752    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2753                                                 ClassDecl->getLocation(),
2754                                                 /*Id=*/0,
2755                                                 ArgType, /*TInfo=*/0,
2756                                                 VarDecl::None,
2757                                                 VarDecl::None, 0);
2758    CopyAssignment->setParams(&FromParam, 1);
2759
2760    // Don't call addedAssignmentOperator. There is no way to distinguish an
2761    // implicit from an explicit assignment operator.
2762    if (S)
2763      PushOnScopeChains(CopyAssignment, S, true);
2764    else
2765      ClassDecl->addDecl(CopyAssignment);
2766    AddOverriddenMethods(ClassDecl, CopyAssignment);
2767  }
2768
2769  if (!ClassDecl->hasUserDeclaredDestructor()) {
2770    // C++ [class.dtor]p2:
2771    //   If a class has no user-declared destructor, a destructor is
2772    //   declared implicitly. An implicitly-declared destructor is an
2773    //   inline public member of its class.
2774    QualType Ty = Context.getFunctionType(Context.VoidTy,
2775                                          0, 0, false, 0,
2776                                          /*FIXME: hasExceptionSpec*/false,
2777                                          false, 0, 0, FunctionType::ExtInfo());
2778
2779    DeclarationName Name
2780      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2781    CXXDestructorDecl *Destructor
2782      = CXXDestructorDecl::Create(Context, ClassDecl,
2783                                  ClassDecl->getLocation(), Name, Ty,
2784                                  /*isInline=*/true,
2785                                  /*isImplicitlyDeclared=*/true);
2786    Destructor->setAccess(AS_public);
2787    Destructor->setImplicit();
2788    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2789    if (S)
2790      PushOnScopeChains(Destructor, S, true);
2791    else
2792      ClassDecl->addDecl(Destructor);
2793
2794    // This could be uniqued if it ever proves significant.
2795    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2796
2797    AddOverriddenMethods(ClassDecl, Destructor);
2798  }
2799}
2800
2801void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2802  Decl *D = TemplateD.getAs<Decl>();
2803  if (!D)
2804    return;
2805
2806  TemplateParameterList *Params = 0;
2807  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2808    Params = Template->getTemplateParameters();
2809  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2810           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2811    Params = PartialSpec->getTemplateParameters();
2812  else
2813    return;
2814
2815  for (TemplateParameterList::iterator Param = Params->begin(),
2816                                    ParamEnd = Params->end();
2817       Param != ParamEnd; ++Param) {
2818    NamedDecl *Named = cast<NamedDecl>(*Param);
2819    if (Named->getDeclName()) {
2820      S->AddDecl(DeclPtrTy::make(Named));
2821      IdResolver.AddDecl(Named);
2822    }
2823  }
2824}
2825
2826void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2827  if (!RecordD) return;
2828  AdjustDeclIfTemplate(RecordD);
2829  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2830  PushDeclContext(S, Record);
2831}
2832
2833void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2834  if (!RecordD) return;
2835  PopDeclContext();
2836}
2837
2838/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2839/// parsing a top-level (non-nested) C++ class, and we are now
2840/// parsing those parts of the given Method declaration that could
2841/// not be parsed earlier (C++ [class.mem]p2), such as default
2842/// arguments. This action should enter the scope of the given
2843/// Method declaration as if we had just parsed the qualified method
2844/// name. However, it should not bring the parameters into scope;
2845/// that will be performed by ActOnDelayedCXXMethodParameter.
2846void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2847}
2848
2849/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2850/// C++ method declaration. We're (re-)introducing the given
2851/// function parameter into scope for use in parsing later parts of
2852/// the method declaration. For example, we could see an
2853/// ActOnParamDefaultArgument event for this parameter.
2854void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2855  if (!ParamD)
2856    return;
2857
2858  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2859
2860  // If this parameter has an unparsed default argument, clear it out
2861  // to make way for the parsed default argument.
2862  if (Param->hasUnparsedDefaultArg())
2863    Param->setDefaultArg(0);
2864
2865  S->AddDecl(DeclPtrTy::make(Param));
2866  if (Param->getDeclName())
2867    IdResolver.AddDecl(Param);
2868}
2869
2870/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2871/// processing the delayed method declaration for Method. The method
2872/// declaration is now considered finished. There may be a separate
2873/// ActOnStartOfFunctionDef action later (not necessarily
2874/// immediately!) for this method, if it was also defined inside the
2875/// class body.
2876void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2877  if (!MethodD)
2878    return;
2879
2880  AdjustDeclIfTemplate(MethodD);
2881
2882  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2883
2884  // Now that we have our default arguments, check the constructor
2885  // again. It could produce additional diagnostics or affect whether
2886  // the class has implicitly-declared destructors, among other
2887  // things.
2888  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2889    CheckConstructor(Constructor);
2890
2891  // Check the default arguments, which we may have added.
2892  if (!Method->isInvalidDecl())
2893    CheckCXXDefaultArguments(Method);
2894}
2895
2896/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2897/// the well-formedness of the constructor declarator @p D with type @p
2898/// R. If there are any errors in the declarator, this routine will
2899/// emit diagnostics and set the invalid bit to true.  In any case, the type
2900/// will be updated to reflect a well-formed type for the constructor and
2901/// returned.
2902QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2903                                          FunctionDecl::StorageClass &SC) {
2904  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2905
2906  // C++ [class.ctor]p3:
2907  //   A constructor shall not be virtual (10.3) or static (9.4). A
2908  //   constructor can be invoked for a const, volatile or const
2909  //   volatile object. A constructor shall not be declared const,
2910  //   volatile, or const volatile (9.3.2).
2911  if (isVirtual) {
2912    if (!D.isInvalidType())
2913      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2914        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2915        << SourceRange(D.getIdentifierLoc());
2916    D.setInvalidType();
2917  }
2918  if (SC == FunctionDecl::Static) {
2919    if (!D.isInvalidType())
2920      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2921        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2922        << SourceRange(D.getIdentifierLoc());
2923    D.setInvalidType();
2924    SC = FunctionDecl::None;
2925  }
2926
2927  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2928  if (FTI.TypeQuals != 0) {
2929    if (FTI.TypeQuals & Qualifiers::Const)
2930      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2931        << "const" << SourceRange(D.getIdentifierLoc());
2932    if (FTI.TypeQuals & Qualifiers::Volatile)
2933      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2934        << "volatile" << SourceRange(D.getIdentifierLoc());
2935    if (FTI.TypeQuals & Qualifiers::Restrict)
2936      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2937        << "restrict" << SourceRange(D.getIdentifierLoc());
2938  }
2939
2940  // Rebuild the function type "R" without any type qualifiers (in
2941  // case any of the errors above fired) and with "void" as the
2942  // return type, since constructors don't have return types. We
2943  // *always* have to do this, because GetTypeForDeclarator will
2944  // put in a result type of "int" when none was specified.
2945  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2946  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2947                                 Proto->getNumArgs(),
2948                                 Proto->isVariadic(), 0,
2949                                 Proto->hasExceptionSpec(),
2950                                 Proto->hasAnyExceptionSpec(),
2951                                 Proto->getNumExceptions(),
2952                                 Proto->exception_begin(),
2953                                 Proto->getExtInfo());
2954}
2955
2956/// CheckConstructor - Checks a fully-formed constructor for
2957/// well-formedness, issuing any diagnostics required. Returns true if
2958/// the constructor declarator is invalid.
2959void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2960  CXXRecordDecl *ClassDecl
2961    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2962  if (!ClassDecl)
2963    return Constructor->setInvalidDecl();
2964
2965  // C++ [class.copy]p3:
2966  //   A declaration of a constructor for a class X is ill-formed if
2967  //   its first parameter is of type (optionally cv-qualified) X and
2968  //   either there are no other parameters or else all other
2969  //   parameters have default arguments.
2970  if (!Constructor->isInvalidDecl() &&
2971      ((Constructor->getNumParams() == 1) ||
2972       (Constructor->getNumParams() > 1 &&
2973        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2974      Constructor->getTemplateSpecializationKind()
2975                                              != TSK_ImplicitInstantiation) {
2976    QualType ParamType = Constructor->getParamDecl(0)->getType();
2977    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2978    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2979      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2980      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2981        << FixItHint::CreateInsertion(ParamLoc, " const &");
2982
2983      // FIXME: Rather that making the constructor invalid, we should endeavor
2984      // to fix the type.
2985      Constructor->setInvalidDecl();
2986    }
2987  }
2988
2989  // Notify the class that we've added a constructor.  In principle we
2990  // don't need to do this for out-of-line declarations; in practice
2991  // we only instantiate the most recent declaration of a method, so
2992  // we have to call this for everything but friends.
2993  if (!Constructor->getFriendObjectKind())
2994    ClassDecl->addedConstructor(Context, Constructor);
2995}
2996
2997/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2998/// issuing any diagnostics required. Returns true on error.
2999bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3000  CXXRecordDecl *RD = Destructor->getParent();
3001
3002  if (Destructor->isVirtual()) {
3003    SourceLocation Loc;
3004
3005    if (!Destructor->isImplicit())
3006      Loc = Destructor->getLocation();
3007    else
3008      Loc = RD->getLocation();
3009
3010    // If we have a virtual destructor, look up the deallocation function
3011    FunctionDecl *OperatorDelete = 0;
3012    DeclarationName Name =
3013    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3014    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3015      return true;
3016
3017    Destructor->setOperatorDelete(OperatorDelete);
3018  }
3019
3020  return false;
3021}
3022
3023static inline bool
3024FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3025  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3026          FTI.ArgInfo[0].Param &&
3027          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3028}
3029
3030/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3031/// the well-formednes of the destructor declarator @p D with type @p
3032/// R. If there are any errors in the declarator, this routine will
3033/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3034/// will be updated to reflect a well-formed type for the destructor and
3035/// returned.
3036QualType Sema::CheckDestructorDeclarator(Declarator &D,
3037                                         FunctionDecl::StorageClass& SC) {
3038  // C++ [class.dtor]p1:
3039  //   [...] A typedef-name that names a class is a class-name
3040  //   (7.1.3); however, a typedef-name that names a class shall not
3041  //   be used as the identifier in the declarator for a destructor
3042  //   declaration.
3043  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3044  if (isa<TypedefType>(DeclaratorType)) {
3045    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3046      << DeclaratorType;
3047    D.setInvalidType();
3048  }
3049
3050  // C++ [class.dtor]p2:
3051  //   A destructor is used to destroy objects of its class type. A
3052  //   destructor takes no parameters, and no return type can be
3053  //   specified for it (not even void). The address of a destructor
3054  //   shall not be taken. A destructor shall not be static. A
3055  //   destructor can be invoked for a const, volatile or const
3056  //   volatile object. A destructor shall not be declared const,
3057  //   volatile or const volatile (9.3.2).
3058  if (SC == FunctionDecl::Static) {
3059    if (!D.isInvalidType())
3060      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3061        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3062        << SourceRange(D.getIdentifierLoc());
3063    SC = FunctionDecl::None;
3064    D.setInvalidType();
3065  }
3066  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3067    // Destructors don't have return types, but the parser will
3068    // happily parse something like:
3069    //
3070    //   class X {
3071    //     float ~X();
3072    //   };
3073    //
3074    // The return type will be eliminated later.
3075    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3076      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3077      << SourceRange(D.getIdentifierLoc());
3078  }
3079
3080  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3081  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3082    if (FTI.TypeQuals & Qualifiers::Const)
3083      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3084        << "const" << SourceRange(D.getIdentifierLoc());
3085    if (FTI.TypeQuals & Qualifiers::Volatile)
3086      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3087        << "volatile" << SourceRange(D.getIdentifierLoc());
3088    if (FTI.TypeQuals & Qualifiers::Restrict)
3089      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3090        << "restrict" << SourceRange(D.getIdentifierLoc());
3091    D.setInvalidType();
3092  }
3093
3094  // Make sure we don't have any parameters.
3095  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3096    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3097
3098    // Delete the parameters.
3099    FTI.freeArgs();
3100    D.setInvalidType();
3101  }
3102
3103  // Make sure the destructor isn't variadic.
3104  if (FTI.isVariadic) {
3105    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3106    D.setInvalidType();
3107  }
3108
3109  // Rebuild the function type "R" without any type qualifiers or
3110  // parameters (in case any of the errors above fired) and with
3111  // "void" as the return type, since destructors don't have return
3112  // types. We *always* have to do this, because GetTypeForDeclarator
3113  // will put in a result type of "int" when none was specified.
3114  // FIXME: Exceptions!
3115  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3116                                 false, false, 0, 0, FunctionType::ExtInfo());
3117}
3118
3119/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3120/// well-formednes of the conversion function declarator @p D with
3121/// type @p R. If there are any errors in the declarator, this routine
3122/// will emit diagnostics and return true. Otherwise, it will return
3123/// false. Either way, the type @p R will be updated to reflect a
3124/// well-formed type for the conversion operator.
3125void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3126                                     FunctionDecl::StorageClass& SC) {
3127  // C++ [class.conv.fct]p1:
3128  //   Neither parameter types nor return type can be specified. The
3129  //   type of a conversion function (8.3.5) is "function taking no
3130  //   parameter returning conversion-type-id."
3131  if (SC == FunctionDecl::Static) {
3132    if (!D.isInvalidType())
3133      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3134        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3135        << SourceRange(D.getIdentifierLoc());
3136    D.setInvalidType();
3137    SC = FunctionDecl::None;
3138  }
3139
3140  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3141
3142  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3143    // Conversion functions don't have return types, but the parser will
3144    // happily parse something like:
3145    //
3146    //   class X {
3147    //     float operator bool();
3148    //   };
3149    //
3150    // The return type will be changed later anyway.
3151    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3152      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3153      << SourceRange(D.getIdentifierLoc());
3154    D.setInvalidType();
3155  }
3156
3157  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3158
3159  // Make sure we don't have any parameters.
3160  if (Proto->getNumArgs() > 0) {
3161    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3162
3163    // Delete the parameters.
3164    D.getTypeObject(0).Fun.freeArgs();
3165    D.setInvalidType();
3166  } else if (Proto->isVariadic()) {
3167    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3168    D.setInvalidType();
3169  }
3170
3171  // Diagnose "&operator bool()" and other such nonsense.  This
3172  // is actually a gcc extension which we don't support.
3173  if (Proto->getResultType() != ConvType) {
3174    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3175      << Proto->getResultType();
3176    D.setInvalidType();
3177    ConvType = Proto->getResultType();
3178  }
3179
3180  // C++ [class.conv.fct]p4:
3181  //   The conversion-type-id shall not represent a function type nor
3182  //   an array type.
3183  if (ConvType->isArrayType()) {
3184    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3185    ConvType = Context.getPointerType(ConvType);
3186    D.setInvalidType();
3187  } else if (ConvType->isFunctionType()) {
3188    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3189    ConvType = Context.getPointerType(ConvType);
3190    D.setInvalidType();
3191  }
3192
3193  // Rebuild the function type "R" without any parameters (in case any
3194  // of the errors above fired) and with the conversion type as the
3195  // return type.
3196  if (D.isInvalidType()) {
3197    R = Context.getFunctionType(ConvType, 0, 0, false,
3198                                Proto->getTypeQuals(),
3199                                Proto->hasExceptionSpec(),
3200                                Proto->hasAnyExceptionSpec(),
3201                                Proto->getNumExceptions(),
3202                                Proto->exception_begin(),
3203                                Proto->getExtInfo());
3204  }
3205
3206  // C++0x explicit conversion operators.
3207  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3208    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3209         diag::warn_explicit_conversion_functions)
3210      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3211}
3212
3213/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3214/// the declaration of the given C++ conversion function. This routine
3215/// is responsible for recording the conversion function in the C++
3216/// class, if possible.
3217Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3218  assert(Conversion && "Expected to receive a conversion function declaration");
3219
3220  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3221
3222  // Make sure we aren't redeclaring the conversion function.
3223  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3224
3225  // C++ [class.conv.fct]p1:
3226  //   [...] A conversion function is never used to convert a
3227  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3228  //   same object type (or a reference to it), to a (possibly
3229  //   cv-qualified) base class of that type (or a reference to it),
3230  //   or to (possibly cv-qualified) void.
3231  // FIXME: Suppress this warning if the conversion function ends up being a
3232  // virtual function that overrides a virtual function in a base class.
3233  QualType ClassType
3234    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3235  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3236    ConvType = ConvTypeRef->getPointeeType();
3237  if (ConvType->isRecordType()) {
3238    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3239    if (ConvType == ClassType)
3240      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3241        << ClassType;
3242    else if (IsDerivedFrom(ClassType, ConvType))
3243      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3244        <<  ClassType << ConvType;
3245  } else if (ConvType->isVoidType()) {
3246    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3247      << ClassType << ConvType;
3248  }
3249
3250  if (Conversion->getPrimaryTemplate()) {
3251    // ignore specializations
3252  } else if (Conversion->getPreviousDeclaration()) {
3253    if (FunctionTemplateDecl *ConversionTemplate
3254                                  = Conversion->getDescribedFunctionTemplate()) {
3255      if (ClassDecl->replaceConversion(
3256                                   ConversionTemplate->getPreviousDeclaration(),
3257                                       ConversionTemplate))
3258        return DeclPtrTy::make(ConversionTemplate);
3259    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3260                                            Conversion))
3261      return DeclPtrTy::make(Conversion);
3262    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3263  } else if (FunctionTemplateDecl *ConversionTemplate
3264               = Conversion->getDescribedFunctionTemplate())
3265    ClassDecl->addConversionFunction(ConversionTemplate);
3266  else
3267    ClassDecl->addConversionFunction(Conversion);
3268
3269  return DeclPtrTy::make(Conversion);
3270}
3271
3272//===----------------------------------------------------------------------===//
3273// Namespace Handling
3274//===----------------------------------------------------------------------===//
3275
3276/// ActOnStartNamespaceDef - This is called at the start of a namespace
3277/// definition.
3278Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3279                                             SourceLocation IdentLoc,
3280                                             IdentifierInfo *II,
3281                                             SourceLocation LBrace,
3282                                             AttributeList *AttrList) {
3283  NamespaceDecl *Namespc =
3284      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3285  Namespc->setLBracLoc(LBrace);
3286
3287  Scope *DeclRegionScope = NamespcScope->getParent();
3288
3289  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3290
3291  if (II) {
3292    // C++ [namespace.def]p2:
3293    // The identifier in an original-namespace-definition shall not have been
3294    // previously defined in the declarative region in which the
3295    // original-namespace-definition appears. The identifier in an
3296    // original-namespace-definition is the name of the namespace. Subsequently
3297    // in that declarative region, it is treated as an original-namespace-name.
3298
3299    NamedDecl *PrevDecl
3300      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3301                         ForRedeclaration);
3302
3303    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3304      // This is an extended namespace definition.
3305      // Attach this namespace decl to the chain of extended namespace
3306      // definitions.
3307      OrigNS->setNextNamespace(Namespc);
3308      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3309
3310      // Remove the previous declaration from the scope.
3311      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3312        IdResolver.RemoveDecl(OrigNS);
3313        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3314      }
3315    } else if (PrevDecl) {
3316      // This is an invalid name redefinition.
3317      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3318       << Namespc->getDeclName();
3319      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3320      Namespc->setInvalidDecl();
3321      // Continue on to push Namespc as current DeclContext and return it.
3322    } else if (II->isStr("std") &&
3323               CurContext->getLookupContext()->isTranslationUnit()) {
3324      // This is the first "real" definition of the namespace "std", so update
3325      // our cache of the "std" namespace to point at this definition.
3326      if (StdNamespace) {
3327        // We had already defined a dummy namespace "std". Link this new
3328        // namespace definition to the dummy namespace "std".
3329        StdNamespace->setNextNamespace(Namespc);
3330        StdNamespace->setLocation(IdentLoc);
3331        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3332      }
3333
3334      // Make our StdNamespace cache point at the first real definition of the
3335      // "std" namespace.
3336      StdNamespace = Namespc;
3337    }
3338
3339    PushOnScopeChains(Namespc, DeclRegionScope);
3340  } else {
3341    // Anonymous namespaces.
3342    assert(Namespc->isAnonymousNamespace());
3343
3344    // Link the anonymous namespace into its parent.
3345    NamespaceDecl *PrevDecl;
3346    DeclContext *Parent = CurContext->getLookupContext();
3347    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3348      PrevDecl = TU->getAnonymousNamespace();
3349      TU->setAnonymousNamespace(Namespc);
3350    } else {
3351      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3352      PrevDecl = ND->getAnonymousNamespace();
3353      ND->setAnonymousNamespace(Namespc);
3354    }
3355
3356    // Link the anonymous namespace with its previous declaration.
3357    if (PrevDecl) {
3358      assert(PrevDecl->isAnonymousNamespace());
3359      assert(!PrevDecl->getNextNamespace());
3360      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3361      PrevDecl->setNextNamespace(Namespc);
3362    }
3363
3364    CurContext->addDecl(Namespc);
3365
3366    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3367    //   behaves as if it were replaced by
3368    //     namespace unique { /* empty body */ }
3369    //     using namespace unique;
3370    //     namespace unique { namespace-body }
3371    //   where all occurrences of 'unique' in a translation unit are
3372    //   replaced by the same identifier and this identifier differs
3373    //   from all other identifiers in the entire program.
3374
3375    // We just create the namespace with an empty name and then add an
3376    // implicit using declaration, just like the standard suggests.
3377    //
3378    // CodeGen enforces the "universally unique" aspect by giving all
3379    // declarations semantically contained within an anonymous
3380    // namespace internal linkage.
3381
3382    if (!PrevDecl) {
3383      UsingDirectiveDecl* UD
3384        = UsingDirectiveDecl::Create(Context, CurContext,
3385                                     /* 'using' */ LBrace,
3386                                     /* 'namespace' */ SourceLocation(),
3387                                     /* qualifier */ SourceRange(),
3388                                     /* NNS */ NULL,
3389                                     /* identifier */ SourceLocation(),
3390                                     Namespc,
3391                                     /* Ancestor */ CurContext);
3392      UD->setImplicit();
3393      CurContext->addDecl(UD);
3394    }
3395  }
3396
3397  // Although we could have an invalid decl (i.e. the namespace name is a
3398  // redefinition), push it as current DeclContext and try to continue parsing.
3399  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3400  // for the namespace has the declarations that showed up in that particular
3401  // namespace definition.
3402  PushDeclContext(NamespcScope, Namespc);
3403  return DeclPtrTy::make(Namespc);
3404}
3405
3406/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3407/// is a namespace alias, returns the namespace it points to.
3408static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3409  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3410    return AD->getNamespace();
3411  return dyn_cast_or_null<NamespaceDecl>(D);
3412}
3413
3414/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3415/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3416void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3417  Decl *Dcl = D.getAs<Decl>();
3418  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3419  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3420  Namespc->setRBracLoc(RBrace);
3421  PopDeclContext();
3422}
3423
3424Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3425                                          SourceLocation UsingLoc,
3426                                          SourceLocation NamespcLoc,
3427                                          CXXScopeSpec &SS,
3428                                          SourceLocation IdentLoc,
3429                                          IdentifierInfo *NamespcName,
3430                                          AttributeList *AttrList) {
3431  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3432  assert(NamespcName && "Invalid NamespcName.");
3433  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3434  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3435
3436  UsingDirectiveDecl *UDir = 0;
3437
3438  // Lookup namespace name.
3439  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3440  LookupParsedName(R, S, &SS);
3441  if (R.isAmbiguous())
3442    return DeclPtrTy();
3443
3444  if (!R.empty()) {
3445    NamedDecl *Named = R.getFoundDecl();
3446    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3447        && "expected namespace decl");
3448    // C++ [namespace.udir]p1:
3449    //   A using-directive specifies that the names in the nominated
3450    //   namespace can be used in the scope in which the
3451    //   using-directive appears after the using-directive. During
3452    //   unqualified name lookup (3.4.1), the names appear as if they
3453    //   were declared in the nearest enclosing namespace which
3454    //   contains both the using-directive and the nominated
3455    //   namespace. [Note: in this context, "contains" means "contains
3456    //   directly or indirectly". ]
3457
3458    // Find enclosing context containing both using-directive and
3459    // nominated namespace.
3460    NamespaceDecl *NS = getNamespaceDecl(Named);
3461    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3462    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3463      CommonAncestor = CommonAncestor->getParent();
3464
3465    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3466                                      SS.getRange(),
3467                                      (NestedNameSpecifier *)SS.getScopeRep(),
3468                                      IdentLoc, Named, CommonAncestor);
3469    PushUsingDirective(S, UDir);
3470  } else {
3471    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3472  }
3473
3474  // FIXME: We ignore attributes for now.
3475  delete AttrList;
3476  return DeclPtrTy::make(UDir);
3477}
3478
3479void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3480  // If scope has associated entity, then using directive is at namespace
3481  // or translation unit scope. We add UsingDirectiveDecls, into
3482  // it's lookup structure.
3483  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3484    Ctx->addDecl(UDir);
3485  else
3486    // Otherwise it is block-sope. using-directives will affect lookup
3487    // only to the end of scope.
3488    S->PushUsingDirective(DeclPtrTy::make(UDir));
3489}
3490
3491
3492Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3493                                            AccessSpecifier AS,
3494                                            bool HasUsingKeyword,
3495                                            SourceLocation UsingLoc,
3496                                            CXXScopeSpec &SS,
3497                                            UnqualifiedId &Name,
3498                                            AttributeList *AttrList,
3499                                            bool IsTypeName,
3500                                            SourceLocation TypenameLoc) {
3501  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3502
3503  switch (Name.getKind()) {
3504  case UnqualifiedId::IK_Identifier:
3505  case UnqualifiedId::IK_OperatorFunctionId:
3506  case UnqualifiedId::IK_LiteralOperatorId:
3507  case UnqualifiedId::IK_ConversionFunctionId:
3508    break;
3509
3510  case UnqualifiedId::IK_ConstructorName:
3511  case UnqualifiedId::IK_ConstructorTemplateId:
3512    // C++0x inherited constructors.
3513    if (getLangOptions().CPlusPlus0x) break;
3514
3515    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3516      << SS.getRange();
3517    return DeclPtrTy();
3518
3519  case UnqualifiedId::IK_DestructorName:
3520    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3521      << SS.getRange();
3522    return DeclPtrTy();
3523
3524  case UnqualifiedId::IK_TemplateId:
3525    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3526      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3527    return DeclPtrTy();
3528  }
3529
3530  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3531  if (!TargetName)
3532    return DeclPtrTy();
3533
3534  // Warn about using declarations.
3535  // TODO: store that the declaration was written without 'using' and
3536  // talk about access decls instead of using decls in the
3537  // diagnostics.
3538  if (!HasUsingKeyword) {
3539    UsingLoc = Name.getSourceRange().getBegin();
3540
3541    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3542      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3543  }
3544
3545  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3546                                        Name.getSourceRange().getBegin(),
3547                                        TargetName, AttrList,
3548                                        /* IsInstantiation */ false,
3549                                        IsTypeName, TypenameLoc);
3550  if (UD)
3551    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3552
3553  return DeclPtrTy::make(UD);
3554}
3555
3556/// Determines whether to create a using shadow decl for a particular
3557/// decl, given the set of decls existing prior to this using lookup.
3558bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3559                                const LookupResult &Previous) {
3560  // Diagnose finding a decl which is not from a base class of the
3561  // current class.  We do this now because there are cases where this
3562  // function will silently decide not to build a shadow decl, which
3563  // will pre-empt further diagnostics.
3564  //
3565  // We don't need to do this in C++0x because we do the check once on
3566  // the qualifier.
3567  //
3568  // FIXME: diagnose the following if we care enough:
3569  //   struct A { int foo; };
3570  //   struct B : A { using A::foo; };
3571  //   template <class T> struct C : A {};
3572  //   template <class T> struct D : C<T> { using B::foo; } // <---
3573  // This is invalid (during instantiation) in C++03 because B::foo
3574  // resolves to the using decl in B, which is not a base class of D<T>.
3575  // We can't diagnose it immediately because C<T> is an unknown
3576  // specialization.  The UsingShadowDecl in D<T> then points directly
3577  // to A::foo, which will look well-formed when we instantiate.
3578  // The right solution is to not collapse the shadow-decl chain.
3579  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3580    DeclContext *OrigDC = Orig->getDeclContext();
3581
3582    // Handle enums and anonymous structs.
3583    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3584    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3585    while (OrigRec->isAnonymousStructOrUnion())
3586      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3587
3588    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3589      if (OrigDC == CurContext) {
3590        Diag(Using->getLocation(),
3591             diag::err_using_decl_nested_name_specifier_is_current_class)
3592          << Using->getNestedNameRange();
3593        Diag(Orig->getLocation(), diag::note_using_decl_target);
3594        return true;
3595      }
3596
3597      Diag(Using->getNestedNameRange().getBegin(),
3598           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3599        << Using->getTargetNestedNameDecl()
3600        << cast<CXXRecordDecl>(CurContext)
3601        << Using->getNestedNameRange();
3602      Diag(Orig->getLocation(), diag::note_using_decl_target);
3603      return true;
3604    }
3605  }
3606
3607  if (Previous.empty()) return false;
3608
3609  NamedDecl *Target = Orig;
3610  if (isa<UsingShadowDecl>(Target))
3611    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3612
3613  // If the target happens to be one of the previous declarations, we
3614  // don't have a conflict.
3615  //
3616  // FIXME: but we might be increasing its access, in which case we
3617  // should redeclare it.
3618  NamedDecl *NonTag = 0, *Tag = 0;
3619  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3620         I != E; ++I) {
3621    NamedDecl *D = (*I)->getUnderlyingDecl();
3622    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3623      return false;
3624
3625    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3626  }
3627
3628  if (Target->isFunctionOrFunctionTemplate()) {
3629    FunctionDecl *FD;
3630    if (isa<FunctionTemplateDecl>(Target))
3631      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3632    else
3633      FD = cast<FunctionDecl>(Target);
3634
3635    NamedDecl *OldDecl = 0;
3636    switch (CheckOverload(FD, Previous, OldDecl)) {
3637    case Ovl_Overload:
3638      return false;
3639
3640    case Ovl_NonFunction:
3641      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3642      break;
3643
3644    // We found a decl with the exact signature.
3645    case Ovl_Match:
3646      if (isa<UsingShadowDecl>(OldDecl)) {
3647        // Silently ignore the possible conflict.
3648        return false;
3649      }
3650
3651      // If we're in a record, we want to hide the target, so we
3652      // return true (without a diagnostic) to tell the caller not to
3653      // build a shadow decl.
3654      if (CurContext->isRecord())
3655        return true;
3656
3657      // If we're not in a record, this is an error.
3658      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3659      break;
3660    }
3661
3662    Diag(Target->getLocation(), diag::note_using_decl_target);
3663    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3664    return true;
3665  }
3666
3667  // Target is not a function.
3668
3669  if (isa<TagDecl>(Target)) {
3670    // No conflict between a tag and a non-tag.
3671    if (!Tag) return false;
3672
3673    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3674    Diag(Target->getLocation(), diag::note_using_decl_target);
3675    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3676    return true;
3677  }
3678
3679  // No conflict between a tag and a non-tag.
3680  if (!NonTag) return false;
3681
3682  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3683  Diag(Target->getLocation(), diag::note_using_decl_target);
3684  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3685  return true;
3686}
3687
3688/// Builds a shadow declaration corresponding to a 'using' declaration.
3689UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3690                                            UsingDecl *UD,
3691                                            NamedDecl *Orig) {
3692
3693  // If we resolved to another shadow declaration, just coalesce them.
3694  NamedDecl *Target = Orig;
3695  if (isa<UsingShadowDecl>(Target)) {
3696    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3697    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3698  }
3699
3700  UsingShadowDecl *Shadow
3701    = UsingShadowDecl::Create(Context, CurContext,
3702                              UD->getLocation(), UD, Target);
3703  UD->addShadowDecl(Shadow);
3704
3705  if (S)
3706    PushOnScopeChains(Shadow, S);
3707  else
3708    CurContext->addDecl(Shadow);
3709  Shadow->setAccess(UD->getAccess());
3710
3711  // Register it as a conversion if appropriate.
3712  if (Shadow->getDeclName().getNameKind()
3713        == DeclarationName::CXXConversionFunctionName)
3714    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3715
3716  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3717    Shadow->setInvalidDecl();
3718
3719  return Shadow;
3720}
3721
3722/// Hides a using shadow declaration.  This is required by the current
3723/// using-decl implementation when a resolvable using declaration in a
3724/// class is followed by a declaration which would hide or override
3725/// one or more of the using decl's targets; for example:
3726///
3727///   struct Base { void foo(int); };
3728///   struct Derived : Base {
3729///     using Base::foo;
3730///     void foo(int);
3731///   };
3732///
3733/// The governing language is C++03 [namespace.udecl]p12:
3734///
3735///   When a using-declaration brings names from a base class into a
3736///   derived class scope, member functions in the derived class
3737///   override and/or hide member functions with the same name and
3738///   parameter types in a base class (rather than conflicting).
3739///
3740/// There are two ways to implement this:
3741///   (1) optimistically create shadow decls when they're not hidden
3742///       by existing declarations, or
3743///   (2) don't create any shadow decls (or at least don't make them
3744///       visible) until we've fully parsed/instantiated the class.
3745/// The problem with (1) is that we might have to retroactively remove
3746/// a shadow decl, which requires several O(n) operations because the
3747/// decl structures are (very reasonably) not designed for removal.
3748/// (2) avoids this but is very fiddly and phase-dependent.
3749void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3750  if (Shadow->getDeclName().getNameKind() ==
3751        DeclarationName::CXXConversionFunctionName)
3752    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3753
3754  // Remove it from the DeclContext...
3755  Shadow->getDeclContext()->removeDecl(Shadow);
3756
3757  // ...and the scope, if applicable...
3758  if (S) {
3759    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3760    IdResolver.RemoveDecl(Shadow);
3761  }
3762
3763  // ...and the using decl.
3764  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3765
3766  // TODO: complain somehow if Shadow was used.  It shouldn't
3767  // be possible for this to happen, because...?
3768}
3769
3770/// Builds a using declaration.
3771///
3772/// \param IsInstantiation - Whether this call arises from an
3773///   instantiation of an unresolved using declaration.  We treat
3774///   the lookup differently for these declarations.
3775NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3776                                       SourceLocation UsingLoc,
3777                                       CXXScopeSpec &SS,
3778                                       SourceLocation IdentLoc,
3779                                       DeclarationName Name,
3780                                       AttributeList *AttrList,
3781                                       bool IsInstantiation,
3782                                       bool IsTypeName,
3783                                       SourceLocation TypenameLoc) {
3784  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3785  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3786
3787  // FIXME: We ignore attributes for now.
3788  delete AttrList;
3789
3790  if (SS.isEmpty()) {
3791    Diag(IdentLoc, diag::err_using_requires_qualname);
3792    return 0;
3793  }
3794
3795  // Do the redeclaration lookup in the current scope.
3796  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3797                        ForRedeclaration);
3798  Previous.setHideTags(false);
3799  if (S) {
3800    LookupName(Previous, S);
3801
3802    // It is really dumb that we have to do this.
3803    LookupResult::Filter F = Previous.makeFilter();
3804    while (F.hasNext()) {
3805      NamedDecl *D = F.next();
3806      if (!isDeclInScope(D, CurContext, S))
3807        F.erase();
3808    }
3809    F.done();
3810  } else {
3811    assert(IsInstantiation && "no scope in non-instantiation");
3812    assert(CurContext->isRecord() && "scope not record in instantiation");
3813    LookupQualifiedName(Previous, CurContext);
3814  }
3815
3816  NestedNameSpecifier *NNS =
3817    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3818
3819  // Check for invalid redeclarations.
3820  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3821    return 0;
3822
3823  // Check for bad qualifiers.
3824  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3825    return 0;
3826
3827  DeclContext *LookupContext = computeDeclContext(SS);
3828  NamedDecl *D;
3829  if (!LookupContext) {
3830    if (IsTypeName) {
3831      // FIXME: not all declaration name kinds are legal here
3832      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3833                                              UsingLoc, TypenameLoc,
3834                                              SS.getRange(), NNS,
3835                                              IdentLoc, Name);
3836    } else {
3837      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3838                                           UsingLoc, SS.getRange(), NNS,
3839                                           IdentLoc, Name);
3840    }
3841  } else {
3842    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3843                          SS.getRange(), UsingLoc, NNS, Name,
3844                          IsTypeName);
3845  }
3846  D->setAccess(AS);
3847  CurContext->addDecl(D);
3848
3849  if (!LookupContext) return D;
3850  UsingDecl *UD = cast<UsingDecl>(D);
3851
3852  if (RequireCompleteDeclContext(SS, LookupContext)) {
3853    UD->setInvalidDecl();
3854    return UD;
3855  }
3856
3857  // Look up the target name.
3858
3859  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3860
3861  // Unlike most lookups, we don't always want to hide tag
3862  // declarations: tag names are visible through the using declaration
3863  // even if hidden by ordinary names, *except* in a dependent context
3864  // where it's important for the sanity of two-phase lookup.
3865  if (!IsInstantiation)
3866    R.setHideTags(false);
3867
3868  LookupQualifiedName(R, LookupContext);
3869
3870  if (R.empty()) {
3871    Diag(IdentLoc, diag::err_no_member)
3872      << Name << LookupContext << SS.getRange();
3873    UD->setInvalidDecl();
3874    return UD;
3875  }
3876
3877  if (R.isAmbiguous()) {
3878    UD->setInvalidDecl();
3879    return UD;
3880  }
3881
3882  if (IsTypeName) {
3883    // If we asked for a typename and got a non-type decl, error out.
3884    if (!R.getAsSingle<TypeDecl>()) {
3885      Diag(IdentLoc, diag::err_using_typename_non_type);
3886      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3887        Diag((*I)->getUnderlyingDecl()->getLocation(),
3888             diag::note_using_decl_target);
3889      UD->setInvalidDecl();
3890      return UD;
3891    }
3892  } else {
3893    // If we asked for a non-typename and we got a type, error out,
3894    // but only if this is an instantiation of an unresolved using
3895    // decl.  Otherwise just silently find the type name.
3896    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3897      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3898      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3899      UD->setInvalidDecl();
3900      return UD;
3901    }
3902  }
3903
3904  // C++0x N2914 [namespace.udecl]p6:
3905  // A using-declaration shall not name a namespace.
3906  if (R.getAsSingle<NamespaceDecl>()) {
3907    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3908      << SS.getRange();
3909    UD->setInvalidDecl();
3910    return UD;
3911  }
3912
3913  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3914    if (!CheckUsingShadowDecl(UD, *I, Previous))
3915      BuildUsingShadowDecl(S, UD, *I);
3916  }
3917
3918  return UD;
3919}
3920
3921/// Checks that the given using declaration is not an invalid
3922/// redeclaration.  Note that this is checking only for the using decl
3923/// itself, not for any ill-formedness among the UsingShadowDecls.
3924bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3925                                       bool isTypeName,
3926                                       const CXXScopeSpec &SS,
3927                                       SourceLocation NameLoc,
3928                                       const LookupResult &Prev) {
3929  // C++03 [namespace.udecl]p8:
3930  // C++0x [namespace.udecl]p10:
3931  //   A using-declaration is a declaration and can therefore be used
3932  //   repeatedly where (and only where) multiple declarations are
3933  //   allowed.
3934  //
3935  // That's in non-member contexts.
3936  if (!CurContext->getLookupContext()->isRecord())
3937    return false;
3938
3939  NestedNameSpecifier *Qual
3940    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3941
3942  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3943    NamedDecl *D = *I;
3944
3945    bool DTypename;
3946    NestedNameSpecifier *DQual;
3947    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3948      DTypename = UD->isTypeName();
3949      DQual = UD->getTargetNestedNameDecl();
3950    } else if (UnresolvedUsingValueDecl *UD
3951                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3952      DTypename = false;
3953      DQual = UD->getTargetNestedNameSpecifier();
3954    } else if (UnresolvedUsingTypenameDecl *UD
3955                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3956      DTypename = true;
3957      DQual = UD->getTargetNestedNameSpecifier();
3958    } else continue;
3959
3960    // using decls differ if one says 'typename' and the other doesn't.
3961    // FIXME: non-dependent using decls?
3962    if (isTypeName != DTypename) continue;
3963
3964    // using decls differ if they name different scopes (but note that
3965    // template instantiation can cause this check to trigger when it
3966    // didn't before instantiation).
3967    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3968        Context.getCanonicalNestedNameSpecifier(DQual))
3969      continue;
3970
3971    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3972    Diag(D->getLocation(), diag::note_using_decl) << 1;
3973    return true;
3974  }
3975
3976  return false;
3977}
3978
3979
3980/// Checks that the given nested-name qualifier used in a using decl
3981/// in the current context is appropriately related to the current
3982/// scope.  If an error is found, diagnoses it and returns true.
3983bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3984                                   const CXXScopeSpec &SS,
3985                                   SourceLocation NameLoc) {
3986  DeclContext *NamedContext = computeDeclContext(SS);
3987
3988  if (!CurContext->isRecord()) {
3989    // C++03 [namespace.udecl]p3:
3990    // C++0x [namespace.udecl]p8:
3991    //   A using-declaration for a class member shall be a member-declaration.
3992
3993    // If we weren't able to compute a valid scope, it must be a
3994    // dependent class scope.
3995    if (!NamedContext || NamedContext->isRecord()) {
3996      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3997        << SS.getRange();
3998      return true;
3999    }
4000
4001    // Otherwise, everything is known to be fine.
4002    return false;
4003  }
4004
4005  // The current scope is a record.
4006
4007  // If the named context is dependent, we can't decide much.
4008  if (!NamedContext) {
4009    // FIXME: in C++0x, we can diagnose if we can prove that the
4010    // nested-name-specifier does not refer to a base class, which is
4011    // still possible in some cases.
4012
4013    // Otherwise we have to conservatively report that things might be
4014    // okay.
4015    return false;
4016  }
4017
4018  if (!NamedContext->isRecord()) {
4019    // Ideally this would point at the last name in the specifier,
4020    // but we don't have that level of source info.
4021    Diag(SS.getRange().getBegin(),
4022         diag::err_using_decl_nested_name_specifier_is_not_class)
4023      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4024    return true;
4025  }
4026
4027  if (getLangOptions().CPlusPlus0x) {
4028    // C++0x [namespace.udecl]p3:
4029    //   In a using-declaration used as a member-declaration, the
4030    //   nested-name-specifier shall name a base class of the class
4031    //   being defined.
4032
4033    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4034                                 cast<CXXRecordDecl>(NamedContext))) {
4035      if (CurContext == NamedContext) {
4036        Diag(NameLoc,
4037             diag::err_using_decl_nested_name_specifier_is_current_class)
4038          << SS.getRange();
4039        return true;
4040      }
4041
4042      Diag(SS.getRange().getBegin(),
4043           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4044        << (NestedNameSpecifier*) SS.getScopeRep()
4045        << cast<CXXRecordDecl>(CurContext)
4046        << SS.getRange();
4047      return true;
4048    }
4049
4050    return false;
4051  }
4052
4053  // C++03 [namespace.udecl]p4:
4054  //   A using-declaration used as a member-declaration shall refer
4055  //   to a member of a base class of the class being defined [etc.].
4056
4057  // Salient point: SS doesn't have to name a base class as long as
4058  // lookup only finds members from base classes.  Therefore we can
4059  // diagnose here only if we can prove that that can't happen,
4060  // i.e. if the class hierarchies provably don't intersect.
4061
4062  // TODO: it would be nice if "definitely valid" results were cached
4063  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4064  // need to be repeated.
4065
4066  struct UserData {
4067    llvm::DenseSet<const CXXRecordDecl*> Bases;
4068
4069    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4070      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4071      Data->Bases.insert(Base);
4072      return true;
4073    }
4074
4075    bool hasDependentBases(const CXXRecordDecl *Class) {
4076      return !Class->forallBases(collect, this);
4077    }
4078
4079    /// Returns true if the base is dependent or is one of the
4080    /// accumulated base classes.
4081    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4082      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4083      return !Data->Bases.count(Base);
4084    }
4085
4086    bool mightShareBases(const CXXRecordDecl *Class) {
4087      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4088    }
4089  };
4090
4091  UserData Data;
4092
4093  // Returns false if we find a dependent base.
4094  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4095    return false;
4096
4097  // Returns false if the class has a dependent base or if it or one
4098  // of its bases is present in the base set of the current context.
4099  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4100    return false;
4101
4102  Diag(SS.getRange().getBegin(),
4103       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4104    << (NestedNameSpecifier*) SS.getScopeRep()
4105    << cast<CXXRecordDecl>(CurContext)
4106    << SS.getRange();
4107
4108  return true;
4109}
4110
4111Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4112                                             SourceLocation NamespaceLoc,
4113                                             SourceLocation AliasLoc,
4114                                             IdentifierInfo *Alias,
4115                                             CXXScopeSpec &SS,
4116                                             SourceLocation IdentLoc,
4117                                             IdentifierInfo *Ident) {
4118
4119  // Lookup the namespace name.
4120  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4121  LookupParsedName(R, S, &SS);
4122
4123  // Check if we have a previous declaration with the same name.
4124  NamedDecl *PrevDecl
4125    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4126                       ForRedeclaration);
4127  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4128    PrevDecl = 0;
4129
4130  if (PrevDecl) {
4131    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4132      // We already have an alias with the same name that points to the same
4133      // namespace, so don't create a new one.
4134      // FIXME: At some point, we'll want to create the (redundant)
4135      // declaration to maintain better source information.
4136      if (!R.isAmbiguous() && !R.empty() &&
4137          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4138        return DeclPtrTy();
4139    }
4140
4141    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4142      diag::err_redefinition_different_kind;
4143    Diag(AliasLoc, DiagID) << Alias;
4144    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4145    return DeclPtrTy();
4146  }
4147
4148  if (R.isAmbiguous())
4149    return DeclPtrTy();
4150
4151  if (R.empty()) {
4152    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4153    return DeclPtrTy();
4154  }
4155
4156  NamespaceAliasDecl *AliasDecl =
4157    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4158                               Alias, SS.getRange(),
4159                               (NestedNameSpecifier *)SS.getScopeRep(),
4160                               IdentLoc, R.getFoundDecl());
4161
4162  PushOnScopeChains(AliasDecl, S);
4163  return DeclPtrTy::make(AliasDecl);
4164}
4165
4166namespace {
4167  /// \brief Scoped object used to handle the state changes required in Sema
4168  /// to implicitly define the body of a C++ member function;
4169  class ImplicitlyDefinedFunctionScope {
4170    Sema &S;
4171    DeclContext *PreviousContext;
4172
4173  public:
4174    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4175      : S(S), PreviousContext(S.CurContext)
4176    {
4177      S.CurContext = Method;
4178      S.PushFunctionScope();
4179      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4180    }
4181
4182    ~ImplicitlyDefinedFunctionScope() {
4183      S.PopExpressionEvaluationContext();
4184      S.PopFunctionOrBlockScope();
4185      S.CurContext = PreviousContext;
4186    }
4187  };
4188}
4189
4190void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4191                                            CXXConstructorDecl *Constructor) {
4192  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4193          !Constructor->isUsed()) &&
4194    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4195
4196  CXXRecordDecl *ClassDecl = Constructor->getParent();
4197  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4198
4199  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4200  ErrorTrap Trap(*this);
4201  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4202      Trap.hasErrorOccurred()) {
4203    Diag(CurrentLocation, diag::note_member_synthesized_at)
4204      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4205    Constructor->setInvalidDecl();
4206  } else {
4207    Constructor->setUsed();
4208    MarkVTableUsed(CurrentLocation, ClassDecl);
4209  }
4210}
4211
4212void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4213                                    CXXDestructorDecl *Destructor) {
4214  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4215         "DefineImplicitDestructor - call it for implicit default dtor");
4216  CXXRecordDecl *ClassDecl = Destructor->getParent();
4217  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4218
4219  if (Destructor->isInvalidDecl())
4220    return;
4221
4222  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4223
4224  ErrorTrap Trap(*this);
4225  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4226                                         Destructor->getParent());
4227
4228  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4229    Diag(CurrentLocation, diag::note_member_synthesized_at)
4230      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4231
4232    Destructor->setInvalidDecl();
4233    return;
4234  }
4235
4236  Destructor->setUsed();
4237  MarkVTableUsed(CurrentLocation, ClassDecl);
4238}
4239
4240/// \brief Builds a statement that copies the given entity from \p From to
4241/// \c To.
4242///
4243/// This routine is used to copy the members of a class with an
4244/// implicitly-declared copy assignment operator. When the entities being
4245/// copied are arrays, this routine builds for loops to copy them.
4246///
4247/// \param S The Sema object used for type-checking.
4248///
4249/// \param Loc The location where the implicit copy is being generated.
4250///
4251/// \param T The type of the expressions being copied. Both expressions must
4252/// have this type.
4253///
4254/// \param To The expression we are copying to.
4255///
4256/// \param From The expression we are copying from.
4257///
4258/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4259/// Otherwise, it's a non-static member subobject.
4260///
4261/// \param Depth Internal parameter recording the depth of the recursion.
4262///
4263/// \returns A statement or a loop that copies the expressions.
4264static Sema::OwningStmtResult
4265BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4266                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4267                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4268  typedef Sema::OwningStmtResult OwningStmtResult;
4269  typedef Sema::OwningExprResult OwningExprResult;
4270
4271  // C++0x [class.copy]p30:
4272  //   Each subobject is assigned in the manner appropriate to its type:
4273  //
4274  //     - if the subobject is of class type, the copy assignment operator
4275  //       for the class is used (as if by explicit qualification; that is,
4276  //       ignoring any possible virtual overriding functions in more derived
4277  //       classes);
4278  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4279    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4280
4281    // Look for operator=.
4282    DeclarationName Name
4283      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4284    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4285    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4286
4287    // Filter out any result that isn't a copy-assignment operator.
4288    LookupResult::Filter F = OpLookup.makeFilter();
4289    while (F.hasNext()) {
4290      NamedDecl *D = F.next();
4291      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4292        if (Method->isCopyAssignmentOperator())
4293          continue;
4294
4295      F.erase();
4296    }
4297    F.done();
4298
4299    // Suppress the protected check (C++ [class.protected]) for each of the
4300    // assignment operators we found. This strange dance is required when
4301    // we're assigning via a base classes's copy-assignment operator. To
4302    // ensure that we're getting the right base class subobject (without
4303    // ambiguities), we need to cast "this" to that subobject type; to
4304    // ensure that we don't go through the virtual call mechanism, we need
4305    // to qualify the operator= name with the base class (see below). However,
4306    // this means that if the base class has a protected copy assignment
4307    // operator, the protected member access check will fail. So, we
4308    // rewrite "protected" access to "public" access in this case, since we
4309    // know by construction that we're calling from a derived class.
4310    if (CopyingBaseSubobject) {
4311      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4312           L != LEnd; ++L) {
4313        if (L.getAccess() == AS_protected)
4314          L.setAccess(AS_public);
4315      }
4316    }
4317
4318    // Create the nested-name-specifier that will be used to qualify the
4319    // reference to operator=; this is required to suppress the virtual
4320    // call mechanism.
4321    CXXScopeSpec SS;
4322    SS.setRange(Loc);
4323    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4324                                               T.getTypePtr()));
4325
4326    // Create the reference to operator=.
4327    OwningExprResult OpEqualRef
4328      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4329                                   /*FirstQualifierInScope=*/0, OpLookup,
4330                                   /*TemplateArgs=*/0,
4331                                   /*SuppressQualifierCheck=*/true);
4332    if (OpEqualRef.isInvalid())
4333      return S.StmtError();
4334
4335    // Build the call to the assignment operator.
4336    Expr *FromE = From.takeAs<Expr>();
4337    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4338                                                      OpEqualRef.takeAs<Expr>(),
4339                                                        Loc, &FromE, 1, 0, Loc);
4340    if (Call.isInvalid())
4341      return S.StmtError();
4342
4343    return S.Owned(Call.takeAs<Stmt>());
4344  }
4345
4346  //     - if the subobject is of scalar type, the built-in assignment
4347  //       operator is used.
4348  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4349  if (!ArrayTy) {
4350    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4351                                                       BinaryOperator::Assign,
4352                                                       To.takeAs<Expr>(),
4353                                                       From.takeAs<Expr>());
4354    if (Assignment.isInvalid())
4355      return S.StmtError();
4356
4357    return S.Owned(Assignment.takeAs<Stmt>());
4358  }
4359
4360  //     - if the subobject is an array, each element is assigned, in the
4361  //       manner appropriate to the element type;
4362
4363  // Construct a loop over the array bounds, e.g.,
4364  //
4365  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4366  //
4367  // that will copy each of the array elements.
4368  QualType SizeType = S.Context.getSizeType();
4369
4370  // Create the iteration variable.
4371  IdentifierInfo *IterationVarName = 0;
4372  {
4373    llvm::SmallString<8> Str;
4374    llvm::raw_svector_ostream OS(Str);
4375    OS << "__i" << Depth;
4376    IterationVarName = &S.Context.Idents.get(OS.str());
4377  }
4378  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4379                                          IterationVarName, SizeType,
4380                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4381                                          VarDecl::None, VarDecl::None);
4382
4383  // Initialize the iteration variable to zero.
4384  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4385  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4386
4387  // Create a reference to the iteration variable; we'll use this several
4388  // times throughout.
4389  Expr *IterationVarRef
4390    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4391  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4392
4393  // Create the DeclStmt that holds the iteration variable.
4394  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4395
4396  // Create the comparison against the array bound.
4397  llvm::APInt Upper = ArrayTy->getSize();
4398  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4399  OwningExprResult Comparison
4400    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4401                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4402                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4403
4404  // Create the pre-increment of the iteration variable.
4405  OwningExprResult Increment
4406    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4407                                            UnaryOperator::PreInc,
4408                                            SizeType, Loc));
4409
4410  // Subscript the "from" and "to" expressions with the iteration variable.
4411  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4412                                           S.Owned(IterationVarRef->Retain()),
4413                                           Loc);
4414  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4415                                         S.Owned(IterationVarRef->Retain()),
4416                                         Loc);
4417  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4418  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4419
4420  // Build the copy for an individual element of the array.
4421  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4422                                                ArrayTy->getElementType(),
4423                                                move(To), move(From),
4424                                                CopyingBaseSubobject, Depth+1);
4425  if (Copy.isInvalid()) {
4426    InitStmt->Destroy(S.Context);
4427    return S.StmtError();
4428  }
4429
4430  // Construct the loop that copies all elements of this array.
4431  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4432                        S.MakeFullExpr(Comparison),
4433                        Sema::DeclPtrTy(),
4434                        S.MakeFullExpr(Increment),
4435                        Loc, move(Copy));
4436}
4437
4438void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4439                                        CXXMethodDecl *CopyAssignOperator) {
4440  assert((CopyAssignOperator->isImplicit() &&
4441          CopyAssignOperator->isOverloadedOperator() &&
4442          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4443          !CopyAssignOperator->isUsed()) &&
4444         "DefineImplicitCopyAssignment called for wrong function");
4445
4446  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4447
4448  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4449    CopyAssignOperator->setInvalidDecl();
4450    return;
4451  }
4452
4453  CopyAssignOperator->setUsed();
4454
4455  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4456  ErrorTrap Trap(*this);
4457
4458  // C++0x [class.copy]p30:
4459  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4460  //   for a non-union class X performs memberwise copy assignment of its
4461  //   subobjects. The direct base classes of X are assigned first, in the
4462  //   order of their declaration in the base-specifier-list, and then the
4463  //   immediate non-static data members of X are assigned, in the order in
4464  //   which they were declared in the class definition.
4465
4466  // The statements that form the synthesized function body.
4467  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4468
4469  // The parameter for the "other" object, which we are copying from.
4470  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4471  Qualifiers OtherQuals = Other->getType().getQualifiers();
4472  QualType OtherRefType = Other->getType();
4473  if (const LValueReferenceType *OtherRef
4474                                = OtherRefType->getAs<LValueReferenceType>()) {
4475    OtherRefType = OtherRef->getPointeeType();
4476    OtherQuals = OtherRefType.getQualifiers();
4477  }
4478
4479  // Our location for everything implicitly-generated.
4480  SourceLocation Loc = CopyAssignOperator->getLocation();
4481
4482  // Construct a reference to the "other" object. We'll be using this
4483  // throughout the generated ASTs.
4484  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4485  assert(OtherRef && "Reference to parameter cannot fail!");
4486
4487  // Construct the "this" pointer. We'll be using this throughout the generated
4488  // ASTs.
4489  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4490  assert(This && "Reference to this cannot fail!");
4491
4492  // Assign base classes.
4493  bool Invalid = false;
4494  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4495       E = ClassDecl->bases_end(); Base != E; ++Base) {
4496    // Form the assignment:
4497    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4498    QualType BaseType = Base->getType().getUnqualifiedType();
4499    CXXRecordDecl *BaseClassDecl = 0;
4500    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4501      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4502    else {
4503      Invalid = true;
4504      continue;
4505    }
4506
4507    // Construct the "from" expression, which is an implicit cast to the
4508    // appropriately-qualified base type.
4509    Expr *From = OtherRef->Retain();
4510    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4511                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4512                      CXXBaseSpecifierArray(Base));
4513
4514    // Dereference "this".
4515    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4516                                               Owned(This->Retain()));
4517
4518    // Implicitly cast "this" to the appropriately-qualified base type.
4519    Expr *ToE = To.takeAs<Expr>();
4520    ImpCastExprToType(ToE,
4521                      Context.getCVRQualifiedType(BaseType,
4522                                      CopyAssignOperator->getTypeQualifiers()),
4523                      CastExpr::CK_UncheckedDerivedToBase,
4524                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4525    To = Owned(ToE);
4526
4527    // Build the copy.
4528    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4529                                                  move(To), Owned(From),
4530                                                /*CopyingBaseSubobject=*/true);
4531    if (Copy.isInvalid()) {
4532      Diag(CurrentLocation, diag::note_member_synthesized_at)
4533        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4534      CopyAssignOperator->setInvalidDecl();
4535      return;
4536    }
4537
4538    // Success! Record the copy.
4539    Statements.push_back(Copy.takeAs<Expr>());
4540  }
4541
4542  // \brief Reference to the __builtin_memcpy function.
4543  Expr *BuiltinMemCpyRef = 0;
4544
4545  // Assign non-static members.
4546  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4547                                  FieldEnd = ClassDecl->field_end();
4548       Field != FieldEnd; ++Field) {
4549    // Check for members of reference type; we can't copy those.
4550    if (Field->getType()->isReferenceType()) {
4551      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4552        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4553      Diag(Field->getLocation(), diag::note_declared_at);
4554      Diag(CurrentLocation, diag::note_member_synthesized_at)
4555        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4556      Invalid = true;
4557      continue;
4558    }
4559
4560    // Check for members of const-qualified, non-class type.
4561    QualType BaseType = Context.getBaseElementType(Field->getType());
4562    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4563      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4564        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4565      Diag(Field->getLocation(), diag::note_declared_at);
4566      Diag(CurrentLocation, diag::note_member_synthesized_at)
4567        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4568      Invalid = true;
4569      continue;
4570    }
4571
4572    QualType FieldType = Field->getType().getNonReferenceType();
4573
4574    // Build references to the field in the object we're copying from and to.
4575    CXXScopeSpec SS; // Intentionally empty
4576    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4577                              LookupMemberName);
4578    MemberLookup.addDecl(*Field);
4579    MemberLookup.resolveKind();
4580    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4581                                                     OtherRefType,
4582                                                     Loc, /*IsArrow=*/false,
4583                                                     SS, 0, MemberLookup, 0);
4584    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4585                                                   This->getType(),
4586                                                   Loc, /*IsArrow=*/true,
4587                                                   SS, 0, MemberLookup, 0);
4588    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4589    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4590
4591    // If the field should be copied with __builtin_memcpy rather than via
4592    // explicit assignments, do so. This optimization only applies for arrays
4593    // of scalars and arrays of class type with trivial copy-assignment
4594    // operators.
4595    if (FieldType->isArrayType() &&
4596        (!BaseType->isRecordType() ||
4597         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4598           ->hasTrivialCopyAssignment())) {
4599      // Compute the size of the memory buffer to be copied.
4600      QualType SizeType = Context.getSizeType();
4601      llvm::APInt Size(Context.getTypeSize(SizeType),
4602                       Context.getTypeSizeInChars(BaseType).getQuantity());
4603      for (const ConstantArrayType *Array
4604              = Context.getAsConstantArrayType(FieldType);
4605           Array;
4606           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4607        llvm::APInt ArraySize = Array->getSize();
4608        ArraySize.zextOrTrunc(Size.getBitWidth());
4609        Size *= ArraySize;
4610      }
4611
4612      // Take the address of the field references for "from" and "to".
4613      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4614      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4615
4616      // Create a reference to the __builtin_memcpy builtin function.
4617      if (!BuiltinMemCpyRef) {
4618        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4619                       LookupOrdinaryName);
4620        LookupName(R, TUScope, true);
4621
4622        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4623        if (!BuiltinMemCpy) {
4624          // Something went horribly wrong earlier, and we will have complained
4625          // about it.
4626          Invalid = true;
4627          continue;
4628        }
4629
4630        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4631                                            BuiltinMemCpy->getType(),
4632                                            Loc, 0).takeAs<Expr>();
4633        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4634      }
4635
4636      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4637      CallArgs.push_back(To.takeAs<Expr>());
4638      CallArgs.push_back(From.takeAs<Expr>());
4639      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4640      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4641      Commas.push_back(Loc);
4642      Commas.push_back(Loc);
4643      OwningExprResult Call = ActOnCallExpr(/*Scope=*/0,
4644                                            Owned(BuiltinMemCpyRef->Retain()),
4645                                            Loc, move_arg(CallArgs),
4646                                            Commas.data(), Loc);
4647      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4648      Statements.push_back(Call.takeAs<Expr>());
4649      continue;
4650    }
4651
4652    // Build the copy of this field.
4653    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4654                                                  move(To), move(From),
4655                                              /*CopyingBaseSubobject=*/false);
4656    if (Copy.isInvalid()) {
4657      Diag(CurrentLocation, diag::note_member_synthesized_at)
4658        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4659      CopyAssignOperator->setInvalidDecl();
4660      return;
4661    }
4662
4663    // Success! Record the copy.
4664    Statements.push_back(Copy.takeAs<Stmt>());
4665  }
4666
4667  if (!Invalid) {
4668    // Add a "return *this;"
4669    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4670                                                    Owned(This->Retain()));
4671
4672    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4673    if (Return.isInvalid())
4674      Invalid = true;
4675    else {
4676      Statements.push_back(Return.takeAs<Stmt>());
4677
4678      if (Trap.hasErrorOccurred()) {
4679        Diag(CurrentLocation, diag::note_member_synthesized_at)
4680          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4681        Invalid = true;
4682      }
4683    }
4684  }
4685
4686  if (Invalid) {
4687    CopyAssignOperator->setInvalidDecl();
4688    return;
4689  }
4690
4691  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4692                                            /*isStmtExpr=*/false);
4693  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4694  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4695}
4696
4697void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4698                                   CXXConstructorDecl *CopyConstructor,
4699                                   unsigned TypeQuals) {
4700  assert((CopyConstructor->isImplicit() &&
4701          CopyConstructor->isCopyConstructor(TypeQuals) &&
4702          !CopyConstructor->isUsed()) &&
4703         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4704
4705  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4706  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4707
4708  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4709  ErrorTrap Trap(*this);
4710
4711  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4712      Trap.hasErrorOccurred()) {
4713    Diag(CurrentLocation, diag::note_member_synthesized_at)
4714      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4715    CopyConstructor->setInvalidDecl();
4716  }  else {
4717    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4718                                               CopyConstructor->getLocation(),
4719                                               MultiStmtArg(*this, 0, 0),
4720                                               /*isStmtExpr=*/false)
4721                                                              .takeAs<Stmt>());
4722  }
4723
4724  CopyConstructor->setUsed();
4725}
4726
4727Sema::OwningExprResult
4728Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4729                            CXXConstructorDecl *Constructor,
4730                            MultiExprArg ExprArgs,
4731                            bool RequiresZeroInit,
4732                            CXXConstructExpr::ConstructionKind ConstructKind) {
4733  bool Elidable = false;
4734
4735  // C++0x [class.copy]p34:
4736  //   When certain criteria are met, an implementation is allowed to
4737  //   omit the copy/move construction of a class object, even if the
4738  //   copy/move constructor and/or destructor for the object have
4739  //   side effects. [...]
4740  //     - when a temporary class object that has not been bound to a
4741  //       reference (12.2) would be copied/moved to a class object
4742  //       with the same cv-unqualified type, the copy/move operation
4743  //       can be omitted by constructing the temporary object
4744  //       directly into the target of the omitted copy/move
4745  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4746    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4747    Elidable = SubExpr->isTemporaryObject() &&
4748      Context.hasSameUnqualifiedType(SubExpr->getType(),
4749                           Context.getTypeDeclType(Constructor->getParent()));
4750  }
4751
4752  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4753                               Elidable, move(ExprArgs), RequiresZeroInit,
4754                               ConstructKind);
4755}
4756
4757/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4758/// including handling of its default argument expressions.
4759Sema::OwningExprResult
4760Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4761                            CXXConstructorDecl *Constructor, bool Elidable,
4762                            MultiExprArg ExprArgs,
4763                            bool RequiresZeroInit,
4764                            CXXConstructExpr::ConstructionKind ConstructKind) {
4765  unsigned NumExprs = ExprArgs.size();
4766  Expr **Exprs = (Expr **)ExprArgs.release();
4767
4768  MarkDeclarationReferenced(ConstructLoc, Constructor);
4769  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4770                                        Constructor, Elidable, Exprs, NumExprs,
4771                                        RequiresZeroInit, ConstructKind));
4772}
4773
4774bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4775                                        CXXConstructorDecl *Constructor,
4776                                        MultiExprArg Exprs) {
4777  OwningExprResult TempResult =
4778    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4779                          move(Exprs));
4780  if (TempResult.isInvalid())
4781    return true;
4782
4783  Expr *Temp = TempResult.takeAs<Expr>();
4784  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4785  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4786  VD->setInit(Temp);
4787
4788  return false;
4789}
4790
4791void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4792  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4793  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4794      !ClassDecl->hasTrivialDestructor()) {
4795    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4796    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4797    CheckDestructorAccess(VD->getLocation(), Destructor,
4798                          PDiag(diag::err_access_dtor_var)
4799                            << VD->getDeclName()
4800                            << VD->getType());
4801  }
4802}
4803
4804/// AddCXXDirectInitializerToDecl - This action is called immediately after
4805/// ActOnDeclarator, when a C++ direct initializer is present.
4806/// e.g: "int x(1);"
4807void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4808                                         SourceLocation LParenLoc,
4809                                         MultiExprArg Exprs,
4810                                         SourceLocation *CommaLocs,
4811                                         SourceLocation RParenLoc) {
4812  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4813  Decl *RealDecl = Dcl.getAs<Decl>();
4814
4815  // If there is no declaration, there was an error parsing it.  Just ignore
4816  // the initializer.
4817  if (RealDecl == 0)
4818    return;
4819
4820  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4821  if (!VDecl) {
4822    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4823    RealDecl->setInvalidDecl();
4824    return;
4825  }
4826
4827  // We will represent direct-initialization similarly to copy-initialization:
4828  //    int x(1);  -as-> int x = 1;
4829  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4830  //
4831  // Clients that want to distinguish between the two forms, can check for
4832  // direct initializer using VarDecl::hasCXXDirectInitializer().
4833  // A major benefit is that clients that don't particularly care about which
4834  // exactly form was it (like the CodeGen) can handle both cases without
4835  // special case code.
4836
4837  // C++ 8.5p11:
4838  // The form of initialization (using parentheses or '=') is generally
4839  // insignificant, but does matter when the entity being initialized has a
4840  // class type.
4841  QualType DeclInitType = VDecl->getType();
4842  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4843    DeclInitType = Context.getBaseElementType(Array);
4844
4845  if (!VDecl->getType()->isDependentType() &&
4846      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4847                          diag::err_typecheck_decl_incomplete_type)) {
4848    VDecl->setInvalidDecl();
4849    return;
4850  }
4851
4852  // The variable can not have an abstract class type.
4853  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4854                             diag::err_abstract_type_in_decl,
4855                             AbstractVariableType))
4856    VDecl->setInvalidDecl();
4857
4858  const VarDecl *Def;
4859  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4860    Diag(VDecl->getLocation(), diag::err_redefinition)
4861    << VDecl->getDeclName();
4862    Diag(Def->getLocation(), diag::note_previous_definition);
4863    VDecl->setInvalidDecl();
4864    return;
4865  }
4866
4867  // If either the declaration has a dependent type or if any of the
4868  // expressions is type-dependent, we represent the initialization
4869  // via a ParenListExpr for later use during template instantiation.
4870  if (VDecl->getType()->isDependentType() ||
4871      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4872    // Let clients know that initialization was done with a direct initializer.
4873    VDecl->setCXXDirectInitializer(true);
4874
4875    // Store the initialization expressions as a ParenListExpr.
4876    unsigned NumExprs = Exprs.size();
4877    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4878                                               (Expr **)Exprs.release(),
4879                                               NumExprs, RParenLoc));
4880    return;
4881  }
4882
4883  // Capture the variable that is being initialized and the style of
4884  // initialization.
4885  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4886
4887  // FIXME: Poor source location information.
4888  InitializationKind Kind
4889    = InitializationKind::CreateDirect(VDecl->getLocation(),
4890                                       LParenLoc, RParenLoc);
4891
4892  InitializationSequence InitSeq(*this, Entity, Kind,
4893                                 (Expr**)Exprs.get(), Exprs.size());
4894  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4895  if (Result.isInvalid()) {
4896    VDecl->setInvalidDecl();
4897    return;
4898  }
4899
4900  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4901  VDecl->setInit(Result.takeAs<Expr>());
4902  VDecl->setCXXDirectInitializer(true);
4903
4904  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4905    FinalizeVarWithDestructor(VDecl, Record);
4906}
4907
4908/// \brief Given a constructor and the set of arguments provided for the
4909/// constructor, convert the arguments and add any required default arguments
4910/// to form a proper call to this constructor.
4911///
4912/// \returns true if an error occurred, false otherwise.
4913bool
4914Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4915                              MultiExprArg ArgsPtr,
4916                              SourceLocation Loc,
4917                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4918  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4919  unsigned NumArgs = ArgsPtr.size();
4920  Expr **Args = (Expr **)ArgsPtr.get();
4921
4922  const FunctionProtoType *Proto
4923    = Constructor->getType()->getAs<FunctionProtoType>();
4924  assert(Proto && "Constructor without a prototype?");
4925  unsigned NumArgsInProto = Proto->getNumArgs();
4926
4927  // If too few arguments are available, we'll fill in the rest with defaults.
4928  if (NumArgs < NumArgsInProto)
4929    ConvertedArgs.reserve(NumArgsInProto);
4930  else
4931    ConvertedArgs.reserve(NumArgs);
4932
4933  VariadicCallType CallType =
4934    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4935  llvm::SmallVector<Expr *, 8> AllArgs;
4936  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4937                                        Proto, 0, Args, NumArgs, AllArgs,
4938                                        CallType);
4939  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4940    ConvertedArgs.push_back(AllArgs[i]);
4941  return Invalid;
4942}
4943
4944static inline bool
4945CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4946                                       const FunctionDecl *FnDecl) {
4947  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4948  if (isa<NamespaceDecl>(DC)) {
4949    return SemaRef.Diag(FnDecl->getLocation(),
4950                        diag::err_operator_new_delete_declared_in_namespace)
4951      << FnDecl->getDeclName();
4952  }
4953
4954  if (isa<TranslationUnitDecl>(DC) &&
4955      FnDecl->getStorageClass() == FunctionDecl::Static) {
4956    return SemaRef.Diag(FnDecl->getLocation(),
4957                        diag::err_operator_new_delete_declared_static)
4958      << FnDecl->getDeclName();
4959  }
4960
4961  return false;
4962}
4963
4964static inline bool
4965CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4966                            CanQualType ExpectedResultType,
4967                            CanQualType ExpectedFirstParamType,
4968                            unsigned DependentParamTypeDiag,
4969                            unsigned InvalidParamTypeDiag) {
4970  QualType ResultType =
4971    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4972
4973  // Check that the result type is not dependent.
4974  if (ResultType->isDependentType())
4975    return SemaRef.Diag(FnDecl->getLocation(),
4976                        diag::err_operator_new_delete_dependent_result_type)
4977    << FnDecl->getDeclName() << ExpectedResultType;
4978
4979  // Check that the result type is what we expect.
4980  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4981    return SemaRef.Diag(FnDecl->getLocation(),
4982                        diag::err_operator_new_delete_invalid_result_type)
4983    << FnDecl->getDeclName() << ExpectedResultType;
4984
4985  // A function template must have at least 2 parameters.
4986  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4987    return SemaRef.Diag(FnDecl->getLocation(),
4988                      diag::err_operator_new_delete_template_too_few_parameters)
4989        << FnDecl->getDeclName();
4990
4991  // The function decl must have at least 1 parameter.
4992  if (FnDecl->getNumParams() == 0)
4993    return SemaRef.Diag(FnDecl->getLocation(),
4994                        diag::err_operator_new_delete_too_few_parameters)
4995      << FnDecl->getDeclName();
4996
4997  // Check the the first parameter type is not dependent.
4998  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4999  if (FirstParamType->isDependentType())
5000    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5001      << FnDecl->getDeclName() << ExpectedFirstParamType;
5002
5003  // Check that the first parameter type is what we expect.
5004  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5005      ExpectedFirstParamType)
5006    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5007    << FnDecl->getDeclName() << ExpectedFirstParamType;
5008
5009  return false;
5010}
5011
5012static bool
5013CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5014  // C++ [basic.stc.dynamic.allocation]p1:
5015  //   A program is ill-formed if an allocation function is declared in a
5016  //   namespace scope other than global scope or declared static in global
5017  //   scope.
5018  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5019    return true;
5020
5021  CanQualType SizeTy =
5022    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5023
5024  // C++ [basic.stc.dynamic.allocation]p1:
5025  //  The return type shall be void*. The first parameter shall have type
5026  //  std::size_t.
5027  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5028                                  SizeTy,
5029                                  diag::err_operator_new_dependent_param_type,
5030                                  diag::err_operator_new_param_type))
5031    return true;
5032
5033  // C++ [basic.stc.dynamic.allocation]p1:
5034  //  The first parameter shall not have an associated default argument.
5035  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5036    return SemaRef.Diag(FnDecl->getLocation(),
5037                        diag::err_operator_new_default_arg)
5038      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5039
5040  return false;
5041}
5042
5043static bool
5044CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5045  // C++ [basic.stc.dynamic.deallocation]p1:
5046  //   A program is ill-formed if deallocation functions are declared in a
5047  //   namespace scope other than global scope or declared static in global
5048  //   scope.
5049  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5050    return true;
5051
5052  // C++ [basic.stc.dynamic.deallocation]p2:
5053  //   Each deallocation function shall return void and its first parameter
5054  //   shall be void*.
5055  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5056                                  SemaRef.Context.VoidPtrTy,
5057                                 diag::err_operator_delete_dependent_param_type,
5058                                 diag::err_operator_delete_param_type))
5059    return true;
5060
5061  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5062  if (FirstParamType->isDependentType())
5063    return SemaRef.Diag(FnDecl->getLocation(),
5064                        diag::err_operator_delete_dependent_param_type)
5065    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5066
5067  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5068      SemaRef.Context.VoidPtrTy)
5069    return SemaRef.Diag(FnDecl->getLocation(),
5070                        diag::err_operator_delete_param_type)
5071      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5072
5073  return false;
5074}
5075
5076/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5077/// of this overloaded operator is well-formed. If so, returns false;
5078/// otherwise, emits appropriate diagnostics and returns true.
5079bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5080  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5081         "Expected an overloaded operator declaration");
5082
5083  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5084
5085  // C++ [over.oper]p5:
5086  //   The allocation and deallocation functions, operator new,
5087  //   operator new[], operator delete and operator delete[], are
5088  //   described completely in 3.7.3. The attributes and restrictions
5089  //   found in the rest of this subclause do not apply to them unless
5090  //   explicitly stated in 3.7.3.
5091  if (Op == OO_Delete || Op == OO_Array_Delete)
5092    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5093
5094  if (Op == OO_New || Op == OO_Array_New)
5095    return CheckOperatorNewDeclaration(*this, FnDecl);
5096
5097  // C++ [over.oper]p6:
5098  //   An operator function shall either be a non-static member
5099  //   function or be a non-member function and have at least one
5100  //   parameter whose type is a class, a reference to a class, an
5101  //   enumeration, or a reference to an enumeration.
5102  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5103    if (MethodDecl->isStatic())
5104      return Diag(FnDecl->getLocation(),
5105                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5106  } else {
5107    bool ClassOrEnumParam = false;
5108    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5109                                   ParamEnd = FnDecl->param_end();
5110         Param != ParamEnd; ++Param) {
5111      QualType ParamType = (*Param)->getType().getNonReferenceType();
5112      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5113          ParamType->isEnumeralType()) {
5114        ClassOrEnumParam = true;
5115        break;
5116      }
5117    }
5118
5119    if (!ClassOrEnumParam)
5120      return Diag(FnDecl->getLocation(),
5121                  diag::err_operator_overload_needs_class_or_enum)
5122        << FnDecl->getDeclName();
5123  }
5124
5125  // C++ [over.oper]p8:
5126  //   An operator function cannot have default arguments (8.3.6),
5127  //   except where explicitly stated below.
5128  //
5129  // Only the function-call operator allows default arguments
5130  // (C++ [over.call]p1).
5131  if (Op != OO_Call) {
5132    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5133         Param != FnDecl->param_end(); ++Param) {
5134      if ((*Param)->hasDefaultArg())
5135        return Diag((*Param)->getLocation(),
5136                    diag::err_operator_overload_default_arg)
5137          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5138    }
5139  }
5140
5141  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5142    { false, false, false }
5143#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5144    , { Unary, Binary, MemberOnly }
5145#include "clang/Basic/OperatorKinds.def"
5146  };
5147
5148  bool CanBeUnaryOperator = OperatorUses[Op][0];
5149  bool CanBeBinaryOperator = OperatorUses[Op][1];
5150  bool MustBeMemberOperator = OperatorUses[Op][2];
5151
5152  // C++ [over.oper]p8:
5153  //   [...] Operator functions cannot have more or fewer parameters
5154  //   than the number required for the corresponding operator, as
5155  //   described in the rest of this subclause.
5156  unsigned NumParams = FnDecl->getNumParams()
5157                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5158  if (Op != OO_Call &&
5159      ((NumParams == 1 && !CanBeUnaryOperator) ||
5160       (NumParams == 2 && !CanBeBinaryOperator) ||
5161       (NumParams < 1) || (NumParams > 2))) {
5162    // We have the wrong number of parameters.
5163    unsigned ErrorKind;
5164    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5165      ErrorKind = 2;  // 2 -> unary or binary.
5166    } else if (CanBeUnaryOperator) {
5167      ErrorKind = 0;  // 0 -> unary
5168    } else {
5169      assert(CanBeBinaryOperator &&
5170             "All non-call overloaded operators are unary or binary!");
5171      ErrorKind = 1;  // 1 -> binary
5172    }
5173
5174    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5175      << FnDecl->getDeclName() << NumParams << ErrorKind;
5176  }
5177
5178  // Overloaded operators other than operator() cannot be variadic.
5179  if (Op != OO_Call &&
5180      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5181    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5182      << FnDecl->getDeclName();
5183  }
5184
5185  // Some operators must be non-static member functions.
5186  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5187    return Diag(FnDecl->getLocation(),
5188                diag::err_operator_overload_must_be_member)
5189      << FnDecl->getDeclName();
5190  }
5191
5192  // C++ [over.inc]p1:
5193  //   The user-defined function called operator++ implements the
5194  //   prefix and postfix ++ operator. If this function is a member
5195  //   function with no parameters, or a non-member function with one
5196  //   parameter of class or enumeration type, it defines the prefix
5197  //   increment operator ++ for objects of that type. If the function
5198  //   is a member function with one parameter (which shall be of type
5199  //   int) or a non-member function with two parameters (the second
5200  //   of which shall be of type int), it defines the postfix
5201  //   increment operator ++ for objects of that type.
5202  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5203    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5204    bool ParamIsInt = false;
5205    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5206      ParamIsInt = BT->getKind() == BuiltinType::Int;
5207
5208    if (!ParamIsInt)
5209      return Diag(LastParam->getLocation(),
5210                  diag::err_operator_overload_post_incdec_must_be_int)
5211        << LastParam->getType() << (Op == OO_MinusMinus);
5212  }
5213
5214  // Notify the class if it got an assignment operator.
5215  if (Op == OO_Equal) {
5216    // Would have returned earlier otherwise.
5217    assert(isa<CXXMethodDecl>(FnDecl) &&
5218      "Overloaded = not member, but not filtered.");
5219    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5220    Method->getParent()->addedAssignmentOperator(Context, Method);
5221  }
5222
5223  return false;
5224}
5225
5226/// CheckLiteralOperatorDeclaration - Check whether the declaration
5227/// of this literal operator function is well-formed. If so, returns
5228/// false; otherwise, emits appropriate diagnostics and returns true.
5229bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5230  DeclContext *DC = FnDecl->getDeclContext();
5231  Decl::Kind Kind = DC->getDeclKind();
5232  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5233      Kind != Decl::LinkageSpec) {
5234    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5235      << FnDecl->getDeclName();
5236    return true;
5237  }
5238
5239  bool Valid = false;
5240
5241  // template <char...> type operator "" name() is the only valid template
5242  // signature, and the only valid signature with no parameters.
5243  if (FnDecl->param_size() == 0) {
5244    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5245      // Must have only one template parameter
5246      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5247      if (Params->size() == 1) {
5248        NonTypeTemplateParmDecl *PmDecl =
5249          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5250
5251        // The template parameter must be a char parameter pack.
5252        // FIXME: This test will always fail because non-type parameter packs
5253        //   have not been implemented.
5254        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5255            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5256          Valid = true;
5257      }
5258    }
5259  } else {
5260    // Check the first parameter
5261    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5262
5263    QualType T = (*Param)->getType();
5264
5265    // unsigned long long int, long double, and any character type are allowed
5266    // as the only parameters.
5267    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5268        Context.hasSameType(T, Context.LongDoubleTy) ||
5269        Context.hasSameType(T, Context.CharTy) ||
5270        Context.hasSameType(T, Context.WCharTy) ||
5271        Context.hasSameType(T, Context.Char16Ty) ||
5272        Context.hasSameType(T, Context.Char32Ty)) {
5273      if (++Param == FnDecl->param_end())
5274        Valid = true;
5275      goto FinishedParams;
5276    }
5277
5278    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5279    const PointerType *PT = T->getAs<PointerType>();
5280    if (!PT)
5281      goto FinishedParams;
5282    T = PT->getPointeeType();
5283    if (!T.isConstQualified())
5284      goto FinishedParams;
5285    T = T.getUnqualifiedType();
5286
5287    // Move on to the second parameter;
5288    ++Param;
5289
5290    // If there is no second parameter, the first must be a const char *
5291    if (Param == FnDecl->param_end()) {
5292      if (Context.hasSameType(T, Context.CharTy))
5293        Valid = true;
5294      goto FinishedParams;
5295    }
5296
5297    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5298    // are allowed as the first parameter to a two-parameter function
5299    if (!(Context.hasSameType(T, Context.CharTy) ||
5300          Context.hasSameType(T, Context.WCharTy) ||
5301          Context.hasSameType(T, Context.Char16Ty) ||
5302          Context.hasSameType(T, Context.Char32Ty)))
5303      goto FinishedParams;
5304
5305    // The second and final parameter must be an std::size_t
5306    T = (*Param)->getType().getUnqualifiedType();
5307    if (Context.hasSameType(T, Context.getSizeType()) &&
5308        ++Param == FnDecl->param_end())
5309      Valid = true;
5310  }
5311
5312  // FIXME: This diagnostic is absolutely terrible.
5313FinishedParams:
5314  if (!Valid) {
5315    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5316      << FnDecl->getDeclName();
5317    return true;
5318  }
5319
5320  return false;
5321}
5322
5323/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5324/// linkage specification, including the language and (if present)
5325/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5326/// the location of the language string literal, which is provided
5327/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5328/// the '{' brace. Otherwise, this linkage specification does not
5329/// have any braces.
5330Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5331                                                     SourceLocation ExternLoc,
5332                                                     SourceLocation LangLoc,
5333                                                     llvm::StringRef Lang,
5334                                                     SourceLocation LBraceLoc) {
5335  LinkageSpecDecl::LanguageIDs Language;
5336  if (Lang == "\"C\"")
5337    Language = LinkageSpecDecl::lang_c;
5338  else if (Lang == "\"C++\"")
5339    Language = LinkageSpecDecl::lang_cxx;
5340  else {
5341    Diag(LangLoc, diag::err_bad_language);
5342    return DeclPtrTy();
5343  }
5344
5345  // FIXME: Add all the various semantics of linkage specifications
5346
5347  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5348                                               LangLoc, Language,
5349                                               LBraceLoc.isValid());
5350  CurContext->addDecl(D);
5351  PushDeclContext(S, D);
5352  return DeclPtrTy::make(D);
5353}
5354
5355/// ActOnFinishLinkageSpecification - Completely the definition of
5356/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5357/// valid, it's the position of the closing '}' brace in a linkage
5358/// specification that uses braces.
5359Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5360                                                      DeclPtrTy LinkageSpec,
5361                                                      SourceLocation RBraceLoc) {
5362  if (LinkageSpec)
5363    PopDeclContext();
5364  return LinkageSpec;
5365}
5366
5367/// \brief Perform semantic analysis for the variable declaration that
5368/// occurs within a C++ catch clause, returning the newly-created
5369/// variable.
5370VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5371                                         TypeSourceInfo *TInfo,
5372                                         IdentifierInfo *Name,
5373                                         SourceLocation Loc,
5374                                         SourceRange Range) {
5375  bool Invalid = false;
5376
5377  // Arrays and functions decay.
5378  if (ExDeclType->isArrayType())
5379    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5380  else if (ExDeclType->isFunctionType())
5381    ExDeclType = Context.getPointerType(ExDeclType);
5382
5383  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5384  // The exception-declaration shall not denote a pointer or reference to an
5385  // incomplete type, other than [cv] void*.
5386  // N2844 forbids rvalue references.
5387  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5388    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5389    Invalid = true;
5390  }
5391
5392  // GCC allows catching pointers and references to incomplete types
5393  // as an extension; so do we, but we warn by default.
5394
5395  QualType BaseType = ExDeclType;
5396  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5397  unsigned DK = diag::err_catch_incomplete;
5398  bool IncompleteCatchIsInvalid = true;
5399  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5400    BaseType = Ptr->getPointeeType();
5401    Mode = 1;
5402    DK = diag::ext_catch_incomplete_ptr;
5403    IncompleteCatchIsInvalid = false;
5404  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5405    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5406    BaseType = Ref->getPointeeType();
5407    Mode = 2;
5408    DK = diag::ext_catch_incomplete_ref;
5409    IncompleteCatchIsInvalid = false;
5410  }
5411  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5412      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5413      IncompleteCatchIsInvalid)
5414    Invalid = true;
5415
5416  if (!Invalid && !ExDeclType->isDependentType() &&
5417      RequireNonAbstractType(Loc, ExDeclType,
5418                             diag::err_abstract_type_in_decl,
5419                             AbstractVariableType))
5420    Invalid = true;
5421
5422  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5423                                    Name, ExDeclType, TInfo, VarDecl::None,
5424                                    VarDecl::None);
5425  ExDecl->setExceptionVariable(true);
5426
5427  if (!Invalid) {
5428    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5429      // C++ [except.handle]p16:
5430      //   The object declared in an exception-declaration or, if the
5431      //   exception-declaration does not specify a name, a temporary (12.2) is
5432      //   copy-initialized (8.5) from the exception object. [...]
5433      //   The object is destroyed when the handler exits, after the destruction
5434      //   of any automatic objects initialized within the handler.
5435      //
5436      // We just pretend to initialize the object with itself, then make sure
5437      // it can be destroyed later.
5438      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5439      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5440                                            Loc, ExDeclType, 0);
5441      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5442                                                               SourceLocation());
5443      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5444      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5445                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5446      if (Result.isInvalid())
5447        Invalid = true;
5448      else
5449        FinalizeVarWithDestructor(ExDecl, RecordTy);
5450    }
5451  }
5452
5453  if (Invalid)
5454    ExDecl->setInvalidDecl();
5455
5456  return ExDecl;
5457}
5458
5459/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5460/// handler.
5461Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5462  TypeSourceInfo *TInfo = 0;
5463  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5464
5465  bool Invalid = D.isInvalidType();
5466  IdentifierInfo *II = D.getIdentifier();
5467  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5468                                             LookupOrdinaryName,
5469                                             ForRedeclaration)) {
5470    // The scope should be freshly made just for us. There is just no way
5471    // it contains any previous declaration.
5472    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5473    if (PrevDecl->isTemplateParameter()) {
5474      // Maybe we will complain about the shadowed template parameter.
5475      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5476    }
5477  }
5478
5479  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5480    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5481      << D.getCXXScopeSpec().getRange();
5482    Invalid = true;
5483  }
5484
5485  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5486                                              D.getIdentifier(),
5487                                              D.getIdentifierLoc(),
5488                                            D.getDeclSpec().getSourceRange());
5489
5490  if (Invalid)
5491    ExDecl->setInvalidDecl();
5492
5493  // Add the exception declaration into this scope.
5494  if (II)
5495    PushOnScopeChains(ExDecl, S);
5496  else
5497    CurContext->addDecl(ExDecl);
5498
5499  ProcessDeclAttributes(S, ExDecl, D);
5500  return DeclPtrTy::make(ExDecl);
5501}
5502
5503Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5504                                                   ExprArg assertexpr,
5505                                                   ExprArg assertmessageexpr) {
5506  Expr *AssertExpr = (Expr *)assertexpr.get();
5507  StringLiteral *AssertMessage =
5508    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5509
5510  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5511    llvm::APSInt Value(32);
5512    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5513      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5514        AssertExpr->getSourceRange();
5515      return DeclPtrTy();
5516    }
5517
5518    if (Value == 0) {
5519      Diag(AssertLoc, diag::err_static_assert_failed)
5520        << AssertMessage->getString() << AssertExpr->getSourceRange();
5521    }
5522  }
5523
5524  assertexpr.release();
5525  assertmessageexpr.release();
5526  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5527                                        AssertExpr, AssertMessage);
5528
5529  CurContext->addDecl(Decl);
5530  return DeclPtrTy::make(Decl);
5531}
5532
5533/// \brief Perform semantic analysis of the given friend type declaration.
5534///
5535/// \returns A friend declaration that.
5536FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5537                                      TypeSourceInfo *TSInfo) {
5538  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5539
5540  QualType T = TSInfo->getType();
5541  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5542
5543  if (!getLangOptions().CPlusPlus0x) {
5544    // C++03 [class.friend]p2:
5545    //   An elaborated-type-specifier shall be used in a friend declaration
5546    //   for a class.*
5547    //
5548    //   * The class-key of the elaborated-type-specifier is required.
5549    if (!ActiveTemplateInstantiations.empty()) {
5550      // Do not complain about the form of friend template types during
5551      // template instantiation; we will already have complained when the
5552      // template was declared.
5553    } else if (!T->isElaboratedTypeSpecifier()) {
5554      // If we evaluated the type to a record type, suggest putting
5555      // a tag in front.
5556      if (const RecordType *RT = T->getAs<RecordType>()) {
5557        RecordDecl *RD = RT->getDecl();
5558
5559        std::string InsertionText = std::string(" ") + RD->getKindName();
5560
5561        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5562          << (unsigned) RD->getTagKind()
5563          << T
5564          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5565                                        InsertionText);
5566      } else {
5567        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5568          << T
5569          << SourceRange(FriendLoc, TypeRange.getEnd());
5570      }
5571    } else if (T->getAs<EnumType>()) {
5572      Diag(FriendLoc, diag::ext_enum_friend)
5573        << T
5574        << SourceRange(FriendLoc, TypeRange.getEnd());
5575    }
5576  }
5577
5578  // C++0x [class.friend]p3:
5579  //   If the type specifier in a friend declaration designates a (possibly
5580  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5581  //   the friend declaration is ignored.
5582
5583  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5584  // in [class.friend]p3 that we do not implement.
5585
5586  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5587}
5588
5589/// Handle a friend type declaration.  This works in tandem with
5590/// ActOnTag.
5591///
5592/// Notes on friend class templates:
5593///
5594/// We generally treat friend class declarations as if they were
5595/// declaring a class.  So, for example, the elaborated type specifier
5596/// in a friend declaration is required to obey the restrictions of a
5597/// class-head (i.e. no typedefs in the scope chain), template
5598/// parameters are required to match up with simple template-ids, &c.
5599/// However, unlike when declaring a template specialization, it's
5600/// okay to refer to a template specialization without an empty
5601/// template parameter declaration, e.g.
5602///   friend class A<T>::B<unsigned>;
5603/// We permit this as a special case; if there are any template
5604/// parameters present at all, require proper matching, i.e.
5605///   template <> template <class T> friend class A<int>::B;
5606Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5607                                          MultiTemplateParamsArg TempParams) {
5608  SourceLocation Loc = DS.getSourceRange().getBegin();
5609
5610  assert(DS.isFriendSpecified());
5611  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5612
5613  // Try to convert the decl specifier to a type.  This works for
5614  // friend templates because ActOnTag never produces a ClassTemplateDecl
5615  // for a TUK_Friend.
5616  Declarator TheDeclarator(DS, Declarator::MemberContext);
5617  TypeSourceInfo *TSI;
5618  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5619  if (TheDeclarator.isInvalidType())
5620    return DeclPtrTy();
5621
5622  if (!TSI)
5623    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5624
5625  // This is definitely an error in C++98.  It's probably meant to
5626  // be forbidden in C++0x, too, but the specification is just
5627  // poorly written.
5628  //
5629  // The problem is with declarations like the following:
5630  //   template <T> friend A<T>::foo;
5631  // where deciding whether a class C is a friend or not now hinges
5632  // on whether there exists an instantiation of A that causes
5633  // 'foo' to equal C.  There are restrictions on class-heads
5634  // (which we declare (by fiat) elaborated friend declarations to
5635  // be) that makes this tractable.
5636  //
5637  // FIXME: handle "template <> friend class A<T>;", which
5638  // is possibly well-formed?  Who even knows?
5639  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5640    Diag(Loc, diag::err_tagless_friend_type_template)
5641      << DS.getSourceRange();
5642    return DeclPtrTy();
5643  }
5644
5645  // C++98 [class.friend]p1: A friend of a class is a function
5646  //   or class that is not a member of the class . . .
5647  // This is fixed in DR77, which just barely didn't make the C++03
5648  // deadline.  It's also a very silly restriction that seriously
5649  // affects inner classes and which nobody else seems to implement;
5650  // thus we never diagnose it, not even in -pedantic.
5651  //
5652  // But note that we could warn about it: it's always useless to
5653  // friend one of your own members (it's not, however, worthless to
5654  // friend a member of an arbitrary specialization of your template).
5655
5656  Decl *D;
5657  if (unsigned NumTempParamLists = TempParams.size())
5658    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5659                                   NumTempParamLists,
5660                                 (TemplateParameterList**) TempParams.release(),
5661                                   TSI,
5662                                   DS.getFriendSpecLoc());
5663  else
5664    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5665
5666  if (!D)
5667    return DeclPtrTy();
5668
5669  D->setAccess(AS_public);
5670  CurContext->addDecl(D);
5671
5672  return DeclPtrTy::make(D);
5673}
5674
5675Sema::DeclPtrTy
5676Sema::ActOnFriendFunctionDecl(Scope *S,
5677                              Declarator &D,
5678                              bool IsDefinition,
5679                              MultiTemplateParamsArg TemplateParams) {
5680  const DeclSpec &DS = D.getDeclSpec();
5681
5682  assert(DS.isFriendSpecified());
5683  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5684
5685  SourceLocation Loc = D.getIdentifierLoc();
5686  TypeSourceInfo *TInfo = 0;
5687  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5688
5689  // C++ [class.friend]p1
5690  //   A friend of a class is a function or class....
5691  // Note that this sees through typedefs, which is intended.
5692  // It *doesn't* see through dependent types, which is correct
5693  // according to [temp.arg.type]p3:
5694  //   If a declaration acquires a function type through a
5695  //   type dependent on a template-parameter and this causes
5696  //   a declaration that does not use the syntactic form of a
5697  //   function declarator to have a function type, the program
5698  //   is ill-formed.
5699  if (!T->isFunctionType()) {
5700    Diag(Loc, diag::err_unexpected_friend);
5701
5702    // It might be worthwhile to try to recover by creating an
5703    // appropriate declaration.
5704    return DeclPtrTy();
5705  }
5706
5707  // C++ [namespace.memdef]p3
5708  //  - If a friend declaration in a non-local class first declares a
5709  //    class or function, the friend class or function is a member
5710  //    of the innermost enclosing namespace.
5711  //  - The name of the friend is not found by simple name lookup
5712  //    until a matching declaration is provided in that namespace
5713  //    scope (either before or after the class declaration granting
5714  //    friendship).
5715  //  - If a friend function is called, its name may be found by the
5716  //    name lookup that considers functions from namespaces and
5717  //    classes associated with the types of the function arguments.
5718  //  - When looking for a prior declaration of a class or a function
5719  //    declared as a friend, scopes outside the innermost enclosing
5720  //    namespace scope are not considered.
5721
5722  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5723  DeclarationName Name = GetNameForDeclarator(D);
5724  assert(Name);
5725
5726  // The context we found the declaration in, or in which we should
5727  // create the declaration.
5728  DeclContext *DC;
5729
5730  // FIXME: handle local classes
5731
5732  // Recover from invalid scope qualifiers as if they just weren't there.
5733  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5734                        ForRedeclaration);
5735  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5736    DC = computeDeclContext(ScopeQual);
5737
5738    // FIXME: handle dependent contexts
5739    if (!DC) return DeclPtrTy();
5740    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5741
5742    LookupQualifiedName(Previous, DC);
5743
5744    // If searching in that context implicitly found a declaration in
5745    // a different context, treat it like it wasn't found at all.
5746    // TODO: better diagnostics for this case.  Suggesting the right
5747    // qualified scope would be nice...
5748    // FIXME: getRepresentativeDecl() is not right here at all
5749    if (Previous.empty() ||
5750        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5751      D.setInvalidType();
5752      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5753      return DeclPtrTy();
5754    }
5755
5756    // C++ [class.friend]p1: A friend of a class is a function or
5757    //   class that is not a member of the class . . .
5758    if (DC->Equals(CurContext))
5759      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5760
5761  // Otherwise walk out to the nearest namespace scope looking for matches.
5762  } else {
5763    // TODO: handle local class contexts.
5764
5765    DC = CurContext;
5766    while (true) {
5767      // Skip class contexts.  If someone can cite chapter and verse
5768      // for this behavior, that would be nice --- it's what GCC and
5769      // EDG do, and it seems like a reasonable intent, but the spec
5770      // really only says that checks for unqualified existing
5771      // declarations should stop at the nearest enclosing namespace,
5772      // not that they should only consider the nearest enclosing
5773      // namespace.
5774      while (DC->isRecord())
5775        DC = DC->getParent();
5776
5777      LookupQualifiedName(Previous, DC);
5778
5779      // TODO: decide what we think about using declarations.
5780      if (!Previous.empty())
5781        break;
5782
5783      if (DC->isFileContext()) break;
5784      DC = DC->getParent();
5785    }
5786
5787    // C++ [class.friend]p1: A friend of a class is a function or
5788    //   class that is not a member of the class . . .
5789    // C++0x changes this for both friend types and functions.
5790    // Most C++ 98 compilers do seem to give an error here, so
5791    // we do, too.
5792    if (!Previous.empty() && DC->Equals(CurContext)
5793        && !getLangOptions().CPlusPlus0x)
5794      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5795  }
5796
5797  if (DC->isFileContext()) {
5798    // This implies that it has to be an operator or function.
5799    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5800        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5801        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5802      Diag(Loc, diag::err_introducing_special_friend) <<
5803        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5804         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5805      return DeclPtrTy();
5806    }
5807  }
5808
5809  bool Redeclaration = false;
5810  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5811                                          move(TemplateParams),
5812                                          IsDefinition,
5813                                          Redeclaration);
5814  if (!ND) return DeclPtrTy();
5815
5816  assert(ND->getDeclContext() == DC);
5817  assert(ND->getLexicalDeclContext() == CurContext);
5818
5819  // Add the function declaration to the appropriate lookup tables,
5820  // adjusting the redeclarations list as necessary.  We don't
5821  // want to do this yet if the friending class is dependent.
5822  //
5823  // Also update the scope-based lookup if the target context's
5824  // lookup context is in lexical scope.
5825  if (!CurContext->isDependentContext()) {
5826    DC = DC->getLookupContext();
5827    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5828    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5829      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5830  }
5831
5832  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5833                                       D.getIdentifierLoc(), ND,
5834                                       DS.getFriendSpecLoc());
5835  FrD->setAccess(AS_public);
5836  CurContext->addDecl(FrD);
5837
5838  return DeclPtrTy::make(ND);
5839}
5840
5841void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5842  AdjustDeclIfTemplate(dcl);
5843
5844  Decl *Dcl = dcl.getAs<Decl>();
5845  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5846  if (!Fn) {
5847    Diag(DelLoc, diag::err_deleted_non_function);
5848    return;
5849  }
5850  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5851    Diag(DelLoc, diag::err_deleted_decl_not_first);
5852    Diag(Prev->getLocation(), diag::note_previous_declaration);
5853    // If the declaration wasn't the first, we delete the function anyway for
5854    // recovery.
5855  }
5856  Fn->setDeleted();
5857}
5858
5859static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5860  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5861       ++CI) {
5862    Stmt *SubStmt = *CI;
5863    if (!SubStmt)
5864      continue;
5865    if (isa<ReturnStmt>(SubStmt))
5866      Self.Diag(SubStmt->getSourceRange().getBegin(),
5867           diag::err_return_in_constructor_handler);
5868    if (!isa<Expr>(SubStmt))
5869      SearchForReturnInStmt(Self, SubStmt);
5870  }
5871}
5872
5873void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5874  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5875    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5876    SearchForReturnInStmt(*this, Handler);
5877  }
5878}
5879
5880bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5881                                             const CXXMethodDecl *Old) {
5882  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5883  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5884
5885  if (Context.hasSameType(NewTy, OldTy) ||
5886      NewTy->isDependentType() || OldTy->isDependentType())
5887    return false;
5888
5889  // Check if the return types are covariant
5890  QualType NewClassTy, OldClassTy;
5891
5892  /// Both types must be pointers or references to classes.
5893  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5894    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5895      NewClassTy = NewPT->getPointeeType();
5896      OldClassTy = OldPT->getPointeeType();
5897    }
5898  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5899    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5900      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5901        NewClassTy = NewRT->getPointeeType();
5902        OldClassTy = OldRT->getPointeeType();
5903      }
5904    }
5905  }
5906
5907  // The return types aren't either both pointers or references to a class type.
5908  if (NewClassTy.isNull()) {
5909    Diag(New->getLocation(),
5910         diag::err_different_return_type_for_overriding_virtual_function)
5911      << New->getDeclName() << NewTy << OldTy;
5912    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5913
5914    return true;
5915  }
5916
5917  // C++ [class.virtual]p6:
5918  //   If the return type of D::f differs from the return type of B::f, the
5919  //   class type in the return type of D::f shall be complete at the point of
5920  //   declaration of D::f or shall be the class type D.
5921  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5922    if (!RT->isBeingDefined() &&
5923        RequireCompleteType(New->getLocation(), NewClassTy,
5924                            PDiag(diag::err_covariant_return_incomplete)
5925                              << New->getDeclName()))
5926    return true;
5927  }
5928
5929  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5930    // Check if the new class derives from the old class.
5931    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5932      Diag(New->getLocation(),
5933           diag::err_covariant_return_not_derived)
5934      << New->getDeclName() << NewTy << OldTy;
5935      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5936      return true;
5937    }
5938
5939    // Check if we the conversion from derived to base is valid.
5940    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5941                    diag::err_covariant_return_inaccessible_base,
5942                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5943                    // FIXME: Should this point to the return type?
5944                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5945      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5946      return true;
5947    }
5948  }
5949
5950  // The qualifiers of the return types must be the same.
5951  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5952    Diag(New->getLocation(),
5953         diag::err_covariant_return_type_different_qualifications)
5954    << New->getDeclName() << NewTy << OldTy;
5955    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5956    return true;
5957  };
5958
5959
5960  // The new class type must have the same or less qualifiers as the old type.
5961  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5962    Diag(New->getLocation(),
5963         diag::err_covariant_return_type_class_type_more_qualified)
5964    << New->getDeclName() << NewTy << OldTy;
5965    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5966    return true;
5967  };
5968
5969  return false;
5970}
5971
5972bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5973                                             const CXXMethodDecl *Old)
5974{
5975  if (Old->hasAttr<FinalAttr>()) {
5976    Diag(New->getLocation(), diag::err_final_function_overridden)
5977      << New->getDeclName();
5978    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5979    return true;
5980  }
5981
5982  return false;
5983}
5984
5985/// \brief Mark the given method pure.
5986///
5987/// \param Method the method to be marked pure.
5988///
5989/// \param InitRange the source range that covers the "0" initializer.
5990bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5991  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5992    Method->setPure();
5993
5994    // A class is abstract if at least one function is pure virtual.
5995    Method->getParent()->setAbstract(true);
5996    return false;
5997  }
5998
5999  if (!Method->isInvalidDecl())
6000    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6001      << Method->getDeclName() << InitRange;
6002  return true;
6003}
6004
6005/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6006/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6007/// is a fresh scope pushed for just this purpose.
6008///
6009/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6010/// static data member of class X, names should be looked up in the scope of
6011/// class X.
6012void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6013  // If there is no declaration, there was an error parsing it.
6014  Decl *D = Dcl.getAs<Decl>();
6015  if (D == 0) return;
6016
6017  // We should only get called for declarations with scope specifiers, like:
6018  //   int foo::bar;
6019  assert(D->isOutOfLine());
6020  EnterDeclaratorContext(S, D->getDeclContext());
6021}
6022
6023/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6024/// initializer for the out-of-line declaration 'Dcl'.
6025void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6026  // If there is no declaration, there was an error parsing it.
6027  Decl *D = Dcl.getAs<Decl>();
6028  if (D == 0) return;
6029
6030  assert(D->isOutOfLine());
6031  ExitDeclaratorContext(S);
6032}
6033
6034/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6035/// C++ if/switch/while/for statement.
6036/// e.g: "if (int x = f()) {...}"
6037Action::DeclResult
6038Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6039  // C++ 6.4p2:
6040  // The declarator shall not specify a function or an array.
6041  // The type-specifier-seq shall not contain typedef and shall not declare a
6042  // new class or enumeration.
6043  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6044         "Parser allowed 'typedef' as storage class of condition decl.");
6045
6046  TypeSourceInfo *TInfo = 0;
6047  TagDecl *OwnedTag = 0;
6048  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
6049
6050  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6051                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6052                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6053    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6054      << D.getSourceRange();
6055    return DeclResult();
6056  } else if (OwnedTag && OwnedTag->isDefinition()) {
6057    // The type-specifier-seq shall not declare a new class or enumeration.
6058    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6059  }
6060
6061  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6062  if (!Dcl)
6063    return DeclResult();
6064
6065  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6066  VD->setDeclaredInCondition(true);
6067  return Dcl;
6068}
6069
6070void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6071                          bool DefinitionRequired) {
6072  // Ignore any vtable uses in unevaluated operands or for classes that do
6073  // not have a vtable.
6074  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6075      CurContext->isDependentContext() ||
6076      ExprEvalContexts.back().Context == Unevaluated)
6077    return;
6078
6079  // Try to insert this class into the map.
6080  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6081  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6082    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6083  if (!Pos.second) {
6084    Pos.first->second = Pos.first->second || DefinitionRequired;
6085    return;
6086  }
6087
6088  // Local classes need to have their virtual members marked
6089  // immediately. For all other classes, we mark their virtual members
6090  // at the end of the translation unit.
6091  if (Class->isLocalClass())
6092    MarkVirtualMembersReferenced(Loc, Class);
6093  else
6094    VTableUses.push_back(std::make_pair(Class, Loc));
6095}
6096
6097bool Sema::DefineUsedVTables() {
6098  // If any dynamic classes have their key function defined within
6099  // this translation unit, then those vtables are considered "used" and must
6100  // be emitted.
6101  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6102    if (const CXXMethodDecl *KeyFunction
6103                             = Context.getKeyFunction(DynamicClasses[I])) {
6104      const FunctionDecl *Definition = 0;
6105      if (KeyFunction->getBody(Definition))
6106        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6107    }
6108  }
6109
6110  if (VTableUses.empty())
6111    return false;
6112
6113  // Note: The VTableUses vector could grow as a result of marking
6114  // the members of a class as "used", so we check the size each
6115  // time through the loop and prefer indices (with are stable) to
6116  // iterators (which are not).
6117  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6118    CXXRecordDecl *Class
6119      = cast_or_null<CXXRecordDecl>(VTableUses[I].first)->getDefinition();
6120    if (!Class)
6121      continue;
6122
6123    SourceLocation Loc = VTableUses[I].second;
6124
6125    // If this class has a key function, but that key function is
6126    // defined in another translation unit, we don't need to emit the
6127    // vtable even though we're using it.
6128    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6129    if (KeyFunction && !KeyFunction->getBody()) {
6130      switch (KeyFunction->getTemplateSpecializationKind()) {
6131      case TSK_Undeclared:
6132      case TSK_ExplicitSpecialization:
6133      case TSK_ExplicitInstantiationDeclaration:
6134        // The key function is in another translation unit.
6135        continue;
6136
6137      case TSK_ExplicitInstantiationDefinition:
6138      case TSK_ImplicitInstantiation:
6139        // We will be instantiating the key function.
6140        break;
6141      }
6142    } else if (!KeyFunction) {
6143      // If we have a class with no key function that is the subject
6144      // of an explicit instantiation declaration, suppress the
6145      // vtable; it will live with the explicit instantiation
6146      // definition.
6147      bool IsExplicitInstantiationDeclaration
6148        = Class->getTemplateSpecializationKind()
6149                                      == TSK_ExplicitInstantiationDeclaration;
6150      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6151                                 REnd = Class->redecls_end();
6152           R != REnd; ++R) {
6153        TemplateSpecializationKind TSK
6154          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6155        if (TSK == TSK_ExplicitInstantiationDeclaration)
6156          IsExplicitInstantiationDeclaration = true;
6157        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6158          IsExplicitInstantiationDeclaration = false;
6159          break;
6160        }
6161      }
6162
6163      if (IsExplicitInstantiationDeclaration)
6164        continue;
6165    }
6166
6167    // Mark all of the virtual members of this class as referenced, so
6168    // that we can build a vtable. Then, tell the AST consumer that a
6169    // vtable for this class is required.
6170    MarkVirtualMembersReferenced(Loc, Class);
6171    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6172    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6173
6174    // Optionally warn if we're emitting a weak vtable.
6175    if (Class->getLinkage() == ExternalLinkage &&
6176        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6177      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6178        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6179    }
6180  }
6181  VTableUses.clear();
6182
6183  return true;
6184}
6185
6186void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6187                                        const CXXRecordDecl *RD) {
6188  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6189       e = RD->method_end(); i != e; ++i) {
6190    CXXMethodDecl *MD = *i;
6191
6192    // C++ [basic.def.odr]p2:
6193    //   [...] A virtual member function is used if it is not pure. [...]
6194    if (MD->isVirtual() && !MD->isPure())
6195      MarkDeclarationReferenced(Loc, MD);
6196  }
6197
6198  // Only classes that have virtual bases need a VTT.
6199  if (RD->getNumVBases() == 0)
6200    return;
6201
6202  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6203           e = RD->bases_end(); i != e; ++i) {
6204    const CXXRecordDecl *Base =
6205        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6206    if (i->isVirtual())
6207      continue;
6208    if (Base->getNumVBases() == 0)
6209      continue;
6210    MarkVirtualMembersReferenced(Loc, Base);
6211  }
6212}
6213
6214/// SetIvarInitializers - This routine builds initialization ASTs for the
6215/// Objective-C implementation whose ivars need be initialized.
6216void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6217  if (!getLangOptions().CPlusPlus)
6218    return;
6219  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6220    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6221    CollectIvarsToConstructOrDestruct(OID, ivars);
6222    if (ivars.empty())
6223      return;
6224    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6225    for (unsigned i = 0; i < ivars.size(); i++) {
6226      FieldDecl *Field = ivars[i];
6227      if (Field->isInvalidDecl())
6228        continue;
6229
6230      CXXBaseOrMemberInitializer *Member;
6231      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6232      InitializationKind InitKind =
6233        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6234
6235      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6236      Sema::OwningExprResult MemberInit =
6237        InitSeq.Perform(*this, InitEntity, InitKind,
6238                        Sema::MultiExprArg(*this, 0, 0));
6239      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6240      // Note, MemberInit could actually come back empty if no initialization
6241      // is required (e.g., because it would call a trivial default constructor)
6242      if (!MemberInit.get() || MemberInit.isInvalid())
6243        continue;
6244
6245      Member =
6246        new (Context) CXXBaseOrMemberInitializer(Context,
6247                                                 Field, SourceLocation(),
6248                                                 SourceLocation(),
6249                                                 MemberInit.takeAs<Expr>(),
6250                                                 SourceLocation());
6251      AllToInit.push_back(Member);
6252
6253      // Be sure that the destructor is accessible and is marked as referenced.
6254      if (const RecordType *RecordTy
6255                  = Context.getBaseElementType(Field->getType())
6256                                                        ->getAs<RecordType>()) {
6257                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6258        if (CXXDestructorDecl *Destructor
6259              = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
6260          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6261          CheckDestructorAccess(Field->getLocation(), Destructor,
6262                            PDiag(diag::err_access_dtor_ivar)
6263                              << Context.getBaseElementType(Field->getType()));
6264        }
6265      }
6266    }
6267    ObjCImplementation->setIvarInitializers(Context,
6268                                            AllToInit.data(), AllToInit.size());
6269  }
6270}
6271