SemaDeclCXX.cpp revision f211662199c87461f3b1475a549ab439c63ca83b
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDecl();
424           Older; Older = Older->getPreviousDecl()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
663  if (MD && MD->isInstance()) {
664    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
665    //  In addition, either its function-body shall be = delete or = default or
666    //  it shall satisfy the following constraints:
667    //  - the class shall not have any virtual base classes;
668    //
669    // We apply this to constexpr member functions too: the class cannot be a
670    // literal type, so the members are not permitted to be constexpr.
671    const CXXRecordDecl *RD = MD->getParent();
672    if (RD->getNumVBases()) {
673      // Note, this is still illegal if the body is = default, since the
674      // implicit body does not satisfy the requirements of a constexpr
675      // constructor. We also reject cases where the body is = delete, as
676      // required by N3308.
677      if (CCK != CCK_Instantiation) {
678        Diag(NewFD->getLocation(),
679             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
680                                    : diag::note_constexpr_tmpl_virtual_base)
681          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
682          << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  }
691
692  if (!isa<CXXConstructorDecl>(NewFD)) {
693    // C++11 [dcl.constexpr]p3:
694    //  The definition of a constexpr function shall satisfy the following
695    //  constraints:
696    // - it shall not be virtual;
697    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
698    if (Method && Method->isVirtual()) {
699      if (CCK != CCK_Instantiation) {
700        Diag(NewFD->getLocation(),
701             CCK == CCK_Declaration ? diag::err_constexpr_virtual
702                                    : diag::note_constexpr_tmpl_virtual);
703
704        // If it's not obvious why this function is virtual, find an overridden
705        // function which uses the 'virtual' keyword.
706        const CXXMethodDecl *WrittenVirtual = Method;
707        while (!WrittenVirtual->isVirtualAsWritten())
708          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
709        if (WrittenVirtual != Method)
710          Diag(WrittenVirtual->getLocation(),
711               diag::note_overridden_virtual_function);
712      }
713      return false;
714    }
715
716    // - its return type shall be a literal type;
717    QualType RT = NewFD->getResultType();
718    if (!RT->isDependentType() &&
719        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
720                           PDiag(diag::err_constexpr_non_literal_return) :
721                           PDiag(),
722                           /*AllowIncompleteType*/ true)) {
723      if (CCK == CCK_NoteNonConstexprInstantiation)
724        Diag(NewFD->getLocation(),
725             diag::note_constexpr_tmpl_non_literal_return) << RT;
726      return false;
727    }
728  }
729
730  // - each of its parameter types shall be a literal type;
731  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
732    return false;
733
734  return true;
735}
736
737/// Check the given declaration statement is legal within a constexpr function
738/// body. C++0x [dcl.constexpr]p3,p4.
739///
740/// \return true if the body is OK, false if we have diagnosed a problem.
741static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
742                                   DeclStmt *DS) {
743  // C++0x [dcl.constexpr]p3 and p4:
744  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
745  //  contain only
746  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
747         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
748    switch ((*DclIt)->getKind()) {
749    case Decl::StaticAssert:
750    case Decl::Using:
751    case Decl::UsingShadow:
752    case Decl::UsingDirective:
753    case Decl::UnresolvedUsingTypename:
754      //   - static_assert-declarations
755      //   - using-declarations,
756      //   - using-directives,
757      continue;
758
759    case Decl::Typedef:
760    case Decl::TypeAlias: {
761      //   - typedef declarations and alias-declarations that do not define
762      //     classes or enumerations,
763      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
764      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
765        // Don't allow variably-modified types in constexpr functions.
766        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
767        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
768          << TL.getSourceRange() << TL.getType()
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773    }
774
775    case Decl::Enum:
776    case Decl::CXXRecord:
777      // As an extension, we allow the declaration (but not the definition) of
778      // classes and enumerations in all declarations, not just in typedef and
779      // alias declarations.
780      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
781        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
782          << isa<CXXConstructorDecl>(Dcl);
783        return false;
784      }
785      continue;
786
787    case Decl::Var:
788      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
789        << isa<CXXConstructorDecl>(Dcl);
790      return false;
791
792    default:
793      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
794        << isa<CXXConstructorDecl>(Dcl);
795      return false;
796    }
797  }
798
799  return true;
800}
801
802/// Check that the given field is initialized within a constexpr constructor.
803///
804/// \param Dcl The constexpr constructor being checked.
805/// \param Field The field being checked. This may be a member of an anonymous
806///        struct or union nested within the class being checked.
807/// \param Inits All declarations, including anonymous struct/union members and
808///        indirect members, for which any initialization was provided.
809/// \param Diagnosed Set to true if an error is produced.
810static void CheckConstexprCtorInitializer(Sema &SemaRef,
811                                          const FunctionDecl *Dcl,
812                                          FieldDecl *Field,
813                                          llvm::SmallSet<Decl*, 16> &Inits,
814                                          bool &Diagnosed) {
815  if (Field->isUnnamedBitfield())
816    return;
817
818  if (!Inits.count(Field)) {
819    if (!Diagnosed) {
820      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
821      Diagnosed = true;
822    }
823    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
824  } else if (Field->isAnonymousStructOrUnion()) {
825    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
826    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
827         I != E; ++I)
828      // If an anonymous union contains an anonymous struct of which any member
829      // is initialized, all members must be initialized.
830      if (!RD->isUnion() || Inits.count(*I))
831        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
832  }
833}
834
835/// Check the body for the given constexpr function declaration only contains
836/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
837///
838/// \return true if the body is OK, false if we have diagnosed a problem.
839bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
840  if (isa<CXXTryStmt>(Body)) {
841    // C++0x [dcl.constexpr]p3:
842    //  The definition of a constexpr function shall satisfy the following
843    //  constraints: [...]
844    // - its function-body shall be = delete, = default, or a
845    //   compound-statement
846    //
847    // C++0x [dcl.constexpr]p4:
848    //  In the definition of a constexpr constructor, [...]
849    // - its function-body shall not be a function-try-block;
850    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
851      << isa<CXXConstructorDecl>(Dcl);
852    return false;
853  }
854
855  // - its function-body shall be [...] a compound-statement that contains only
856  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
857
858  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
859  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
860         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
861    switch ((*BodyIt)->getStmtClass()) {
862    case Stmt::NullStmtClass:
863      //   - null statements,
864      continue;
865
866    case Stmt::DeclStmtClass:
867      //   - static_assert-declarations
868      //   - using-declarations,
869      //   - using-directives,
870      //   - typedef declarations and alias-declarations that do not define
871      //     classes or enumerations,
872      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
873        return false;
874      continue;
875
876    case Stmt::ReturnStmtClass:
877      //   - and exactly one return statement;
878      if (isa<CXXConstructorDecl>(Dcl))
879        break;
880
881      ReturnStmts.push_back((*BodyIt)->getLocStart());
882      // FIXME
883      // - every constructor call and implicit conversion used in initializing
884      //   the return value shall be one of those allowed in a constant
885      //   expression.
886      // Deal with this as part of a general check that the function can produce
887      // a constant expression (for [dcl.constexpr]p5).
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // - every non-static data member and base class sub-object shall be
903    //   initialized;
904    if (RD->isUnion()) {
905      // DR1359: Exactly one member of a union shall be initialized.
906      if (Constructor->getNumCtorInitializers() == 0) {
907        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
908        return false;
909      }
910    } else if (!Constructor->isDependentContext() &&
911               !Constructor->isDelegatingConstructor()) {
912      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
913
914      // Skip detailed checking if we have enough initializers, and we would
915      // allow at most one initializer per member.
916      bool AnyAnonStructUnionMembers = false;
917      unsigned Fields = 0;
918      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
919           E = RD->field_end(); I != E; ++I, ++Fields) {
920        if ((*I)->isAnonymousStructOrUnion()) {
921          AnyAnonStructUnionMembers = true;
922          break;
923        }
924      }
925      if (AnyAnonStructUnionMembers ||
926          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
927        // Check initialization of non-static data members. Base classes are
928        // always initialized so do not need to be checked. Dependent bases
929        // might not have initializers in the member initializer list.
930        llvm::SmallSet<Decl*, 16> Inits;
931        for (CXXConstructorDecl::init_const_iterator
932               I = Constructor->init_begin(), E = Constructor->init_end();
933             I != E; ++I) {
934          if (FieldDecl *FD = (*I)->getMember())
935            Inits.insert(FD);
936          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
937            Inits.insert(ID->chain_begin(), ID->chain_end());
938        }
939
940        bool Diagnosed = false;
941        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
942             E = RD->field_end(); I != E; ++I)
943          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
944        if (Diagnosed)
945          return false;
946      }
947    }
948
949    // FIXME
950    // - every constructor involved in initializing non-static data members
951    //   and base class sub-objects shall be a constexpr constructor;
952    // - every assignment-expression that is an initializer-clause appearing
953    //   directly or indirectly within a brace-or-equal-initializer for
954    //   a non-static data member that is not named by a mem-initializer-id
955    //   shall be a constant expression; and
956    // - every implicit conversion used in converting a constructor argument
957    //   to the corresponding parameter type and converting
958    //   a full-expression to the corresponding member type shall be one of
959    //   those allowed in a constant expression.
960    // Deal with these as part of a general check that the function can produce
961    // a constant expression (for [dcl.constexpr]p5).
962  } else {
963    if (ReturnStmts.empty()) {
964      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
965      return false;
966    }
967    if (ReturnStmts.size() > 1) {
968      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
969      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
970        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
971      return false;
972    }
973  }
974
975  return true;
976}
977
978/// isCurrentClassName - Determine whether the identifier II is the
979/// name of the class type currently being defined. In the case of
980/// nested classes, this will only return true if II is the name of
981/// the innermost class.
982bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
983                              const CXXScopeSpec *SS) {
984  assert(getLangOptions().CPlusPlus && "No class names in C!");
985
986  CXXRecordDecl *CurDecl;
987  if (SS && SS->isSet() && !SS->isInvalid()) {
988    DeclContext *DC = computeDeclContext(*SS, true);
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
990  } else
991    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
992
993  if (CurDecl && CurDecl->getIdentifier())
994    return &II == CurDecl->getIdentifier();
995  else
996    return false;
997}
998
999/// \brief Check the validity of a C++ base class specifier.
1000///
1001/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1002/// and returns NULL otherwise.
1003CXXBaseSpecifier *
1004Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1005                         SourceRange SpecifierRange,
1006                         bool Virtual, AccessSpecifier Access,
1007                         TypeSourceInfo *TInfo,
1008                         SourceLocation EllipsisLoc) {
1009  QualType BaseType = TInfo->getType();
1010
1011  // C++ [class.union]p1:
1012  //   A union shall not have base classes.
1013  if (Class->isUnion()) {
1014    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1015      << SpecifierRange;
1016    return 0;
1017  }
1018
1019  if (EllipsisLoc.isValid() &&
1020      !TInfo->getType()->containsUnexpandedParameterPack()) {
1021    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1022      << TInfo->getTypeLoc().getSourceRange();
1023    EllipsisLoc = SourceLocation();
1024  }
1025
1026  if (BaseType->isDependentType())
1027    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1028                                          Class->getTagKind() == TTK_Class,
1029                                          Access, TInfo, EllipsisLoc);
1030
1031  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1032
1033  // Base specifiers must be record types.
1034  if (!BaseType->isRecordType()) {
1035    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1036    return 0;
1037  }
1038
1039  // C++ [class.union]p1:
1040  //   A union shall not be used as a base class.
1041  if (BaseType->isUnionType()) {
1042    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1043    return 0;
1044  }
1045
1046  // C++ [class.derived]p2:
1047  //   The class-name in a base-specifier shall not be an incompletely
1048  //   defined class.
1049  if (RequireCompleteType(BaseLoc, BaseType,
1050                          PDiag(diag::err_incomplete_base_class)
1051                            << SpecifierRange)) {
1052    Class->setInvalidDecl();
1053    return 0;
1054  }
1055
1056  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1057  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1058  assert(BaseDecl && "Record type has no declaration");
1059  BaseDecl = BaseDecl->getDefinition();
1060  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1061  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1062  assert(CXXBaseDecl && "Base type is not a C++ type");
1063
1064  // C++ [class]p3:
1065  //   If a class is marked final and it appears as a base-type-specifier in
1066  //   base-clause, the program is ill-formed.
1067  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1068    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1069      << CXXBaseDecl->getDeclName();
1070    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1071      << CXXBaseDecl->getDeclName();
1072    return 0;
1073  }
1074
1075  if (BaseDecl->isInvalidDecl())
1076    Class->setInvalidDecl();
1077
1078  // Create the base specifier.
1079  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1080                                        Class->getTagKind() == TTK_Class,
1081                                        Access, TInfo, EllipsisLoc);
1082}
1083
1084/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1085/// one entry in the base class list of a class specifier, for
1086/// example:
1087///    class foo : public bar, virtual private baz {
1088/// 'public bar' and 'virtual private baz' are each base-specifiers.
1089BaseResult
1090Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1091                         bool Virtual, AccessSpecifier Access,
1092                         ParsedType basetype, SourceLocation BaseLoc,
1093                         SourceLocation EllipsisLoc) {
1094  if (!classdecl)
1095    return true;
1096
1097  AdjustDeclIfTemplate(classdecl);
1098  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1099  if (!Class)
1100    return true;
1101
1102  TypeSourceInfo *TInfo = 0;
1103  GetTypeFromParser(basetype, &TInfo);
1104
1105  if (EllipsisLoc.isInvalid() &&
1106      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1107                                      UPPC_BaseType))
1108    return true;
1109
1110  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1111                                                      Virtual, Access, TInfo,
1112                                                      EllipsisLoc))
1113    return BaseSpec;
1114
1115  return true;
1116}
1117
1118/// \brief Performs the actual work of attaching the given base class
1119/// specifiers to a C++ class.
1120bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1121                                unsigned NumBases) {
1122 if (NumBases == 0)
1123    return false;
1124
1125  // Used to keep track of which base types we have already seen, so
1126  // that we can properly diagnose redundant direct base types. Note
1127  // that the key is always the unqualified canonical type of the base
1128  // class.
1129  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1130
1131  // Copy non-redundant base specifiers into permanent storage.
1132  unsigned NumGoodBases = 0;
1133  bool Invalid = false;
1134  for (unsigned idx = 0; idx < NumBases; ++idx) {
1135    QualType NewBaseType
1136      = Context.getCanonicalType(Bases[idx]->getType());
1137    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1138    if (KnownBaseTypes[NewBaseType]) {
1139      // C++ [class.mi]p3:
1140      //   A class shall not be specified as a direct base class of a
1141      //   derived class more than once.
1142      Diag(Bases[idx]->getSourceRange().getBegin(),
1143           diag::err_duplicate_base_class)
1144        << KnownBaseTypes[NewBaseType]->getType()
1145        << Bases[idx]->getSourceRange();
1146
1147      // Delete the duplicate base class specifier; we're going to
1148      // overwrite its pointer later.
1149      Context.Deallocate(Bases[idx]);
1150
1151      Invalid = true;
1152    } else {
1153      // Okay, add this new base class.
1154      KnownBaseTypes[NewBaseType] = Bases[idx];
1155      Bases[NumGoodBases++] = Bases[idx];
1156      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1157        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1158          if (RD->hasAttr<WeakAttr>())
1159            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1160    }
1161  }
1162
1163  // Attach the remaining base class specifiers to the derived class.
1164  Class->setBases(Bases, NumGoodBases);
1165
1166  // Delete the remaining (good) base class specifiers, since their
1167  // data has been copied into the CXXRecordDecl.
1168  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1169    Context.Deallocate(Bases[idx]);
1170
1171  return Invalid;
1172}
1173
1174/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1175/// class, after checking whether there are any duplicate base
1176/// classes.
1177void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1178                               unsigned NumBases) {
1179  if (!ClassDecl || !Bases || !NumBases)
1180    return;
1181
1182  AdjustDeclIfTemplate(ClassDecl);
1183  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1184                       (CXXBaseSpecifier**)(Bases), NumBases);
1185}
1186
1187static CXXRecordDecl *GetClassForType(QualType T) {
1188  if (const RecordType *RT = T->getAs<RecordType>())
1189    return cast<CXXRecordDecl>(RT->getDecl());
1190  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1191    return ICT->getDecl();
1192  else
1193    return 0;
1194}
1195
1196/// \brief Determine whether the type \p Derived is a C++ class that is
1197/// derived from the type \p Base.
1198bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1199  if (!getLangOptions().CPlusPlus)
1200    return false;
1201
1202  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1203  if (!DerivedRD)
1204    return false;
1205
1206  CXXRecordDecl *BaseRD = GetClassForType(Base);
1207  if (!BaseRD)
1208    return false;
1209
1210  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1211  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1212}
1213
1214/// \brief Determine whether the type \p Derived is a C++ class that is
1215/// derived from the type \p Base.
1216bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1217  if (!getLangOptions().CPlusPlus)
1218    return false;
1219
1220  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1221  if (!DerivedRD)
1222    return false;
1223
1224  CXXRecordDecl *BaseRD = GetClassForType(Base);
1225  if (!BaseRD)
1226    return false;
1227
1228  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1229}
1230
1231void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1232                              CXXCastPath &BasePathArray) {
1233  assert(BasePathArray.empty() && "Base path array must be empty!");
1234  assert(Paths.isRecordingPaths() && "Must record paths!");
1235
1236  const CXXBasePath &Path = Paths.front();
1237
1238  // We first go backward and check if we have a virtual base.
1239  // FIXME: It would be better if CXXBasePath had the base specifier for
1240  // the nearest virtual base.
1241  unsigned Start = 0;
1242  for (unsigned I = Path.size(); I != 0; --I) {
1243    if (Path[I - 1].Base->isVirtual()) {
1244      Start = I - 1;
1245      break;
1246    }
1247  }
1248
1249  // Now add all bases.
1250  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1251    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1252}
1253
1254/// \brief Determine whether the given base path includes a virtual
1255/// base class.
1256bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1257  for (CXXCastPath::const_iterator B = BasePath.begin(),
1258                                BEnd = BasePath.end();
1259       B != BEnd; ++B)
1260    if ((*B)->isVirtual())
1261      return true;
1262
1263  return false;
1264}
1265
1266/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1267/// conversion (where Derived and Base are class types) is
1268/// well-formed, meaning that the conversion is unambiguous (and
1269/// that all of the base classes are accessible). Returns true
1270/// and emits a diagnostic if the code is ill-formed, returns false
1271/// otherwise. Loc is the location where this routine should point to
1272/// if there is an error, and Range is the source range to highlight
1273/// if there is an error.
1274bool
1275Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1276                                   unsigned InaccessibleBaseID,
1277                                   unsigned AmbigiousBaseConvID,
1278                                   SourceLocation Loc, SourceRange Range,
1279                                   DeclarationName Name,
1280                                   CXXCastPath *BasePath) {
1281  // First, determine whether the path from Derived to Base is
1282  // ambiguous. This is slightly more expensive than checking whether
1283  // the Derived to Base conversion exists, because here we need to
1284  // explore multiple paths to determine if there is an ambiguity.
1285  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1286                     /*DetectVirtual=*/false);
1287  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1288  assert(DerivationOkay &&
1289         "Can only be used with a derived-to-base conversion");
1290  (void)DerivationOkay;
1291
1292  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1293    if (InaccessibleBaseID) {
1294      // Check that the base class can be accessed.
1295      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1296                                   InaccessibleBaseID)) {
1297        case AR_inaccessible:
1298          return true;
1299        case AR_accessible:
1300        case AR_dependent:
1301        case AR_delayed:
1302          break;
1303      }
1304    }
1305
1306    // Build a base path if necessary.
1307    if (BasePath)
1308      BuildBasePathArray(Paths, *BasePath);
1309    return false;
1310  }
1311
1312  // We know that the derived-to-base conversion is ambiguous, and
1313  // we're going to produce a diagnostic. Perform the derived-to-base
1314  // search just one more time to compute all of the possible paths so
1315  // that we can print them out. This is more expensive than any of
1316  // the previous derived-to-base checks we've done, but at this point
1317  // performance isn't as much of an issue.
1318  Paths.clear();
1319  Paths.setRecordingPaths(true);
1320  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1321  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1322  (void)StillOkay;
1323
1324  // Build up a textual representation of the ambiguous paths, e.g.,
1325  // D -> B -> A, that will be used to illustrate the ambiguous
1326  // conversions in the diagnostic. We only print one of the paths
1327  // to each base class subobject.
1328  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1329
1330  Diag(Loc, AmbigiousBaseConvID)
1331  << Derived << Base << PathDisplayStr << Range << Name;
1332  return true;
1333}
1334
1335bool
1336Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1337                                   SourceLocation Loc, SourceRange Range,
1338                                   CXXCastPath *BasePath,
1339                                   bool IgnoreAccess) {
1340  return CheckDerivedToBaseConversion(Derived, Base,
1341                                      IgnoreAccess ? 0
1342                                       : diag::err_upcast_to_inaccessible_base,
1343                                      diag::err_ambiguous_derived_to_base_conv,
1344                                      Loc, Range, DeclarationName(),
1345                                      BasePath);
1346}
1347
1348
1349/// @brief Builds a string representing ambiguous paths from a
1350/// specific derived class to different subobjects of the same base
1351/// class.
1352///
1353/// This function builds a string that can be used in error messages
1354/// to show the different paths that one can take through the
1355/// inheritance hierarchy to go from the derived class to different
1356/// subobjects of a base class. The result looks something like this:
1357/// @code
1358/// struct D -> struct B -> struct A
1359/// struct D -> struct C -> struct A
1360/// @endcode
1361std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1362  std::string PathDisplayStr;
1363  std::set<unsigned> DisplayedPaths;
1364  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1365       Path != Paths.end(); ++Path) {
1366    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1367      // We haven't displayed a path to this particular base
1368      // class subobject yet.
1369      PathDisplayStr += "\n    ";
1370      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1371      for (CXXBasePath::const_iterator Element = Path->begin();
1372           Element != Path->end(); ++Element)
1373        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1374    }
1375  }
1376
1377  return PathDisplayStr;
1378}
1379
1380//===----------------------------------------------------------------------===//
1381// C++ class member Handling
1382//===----------------------------------------------------------------------===//
1383
1384/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1385bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1386                                SourceLocation ASLoc,
1387                                SourceLocation ColonLoc,
1388                                AttributeList *Attrs) {
1389  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1390  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1391                                                  ASLoc, ColonLoc);
1392  CurContext->addHiddenDecl(ASDecl);
1393  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1394}
1395
1396/// CheckOverrideControl - Check C++0x override control semantics.
1397void Sema::CheckOverrideControl(const Decl *D) {
1398  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1399  if (!MD || !MD->isVirtual())
1400    return;
1401
1402  if (MD->isDependentContext())
1403    return;
1404
1405  // C++0x [class.virtual]p3:
1406  //   If a virtual function is marked with the virt-specifier override and does
1407  //   not override a member function of a base class,
1408  //   the program is ill-formed.
1409  bool HasOverriddenMethods =
1410    MD->begin_overridden_methods() != MD->end_overridden_methods();
1411  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1412    Diag(MD->getLocation(),
1413                 diag::err_function_marked_override_not_overriding)
1414      << MD->getDeclName();
1415    return;
1416  }
1417}
1418
1419/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1420/// function overrides a virtual member function marked 'final', according to
1421/// C++0x [class.virtual]p3.
1422bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1423                                                  const CXXMethodDecl *Old) {
1424  if (!Old->hasAttr<FinalAttr>())
1425    return false;
1426
1427  Diag(New->getLocation(), diag::err_final_function_overridden)
1428    << New->getDeclName();
1429  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1430  return true;
1431}
1432
1433/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1434/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1435/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1436/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1437/// present but parsing it has been deferred.
1438Decl *
1439Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1440                               MultiTemplateParamsArg TemplateParameterLists,
1441                               Expr *BW, const VirtSpecifiers &VS,
1442                               bool HasDeferredInit) {
1443  const DeclSpec &DS = D.getDeclSpec();
1444  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1445  DeclarationName Name = NameInfo.getName();
1446  SourceLocation Loc = NameInfo.getLoc();
1447
1448  // For anonymous bitfields, the location should point to the type.
1449  if (Loc.isInvalid())
1450    Loc = D.getSourceRange().getBegin();
1451
1452  Expr *BitWidth = static_cast<Expr*>(BW);
1453
1454  assert(isa<CXXRecordDecl>(CurContext));
1455  assert(!DS.isFriendSpecified());
1456
1457  bool isFunc = D.isDeclarationOfFunction();
1458
1459  // C++ 9.2p6: A member shall not be declared to have automatic storage
1460  // duration (auto, register) or with the extern storage-class-specifier.
1461  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1462  // data members and cannot be applied to names declared const or static,
1463  // and cannot be applied to reference members.
1464  switch (DS.getStorageClassSpec()) {
1465    case DeclSpec::SCS_unspecified:
1466    case DeclSpec::SCS_typedef:
1467    case DeclSpec::SCS_static:
1468      // FALL THROUGH.
1469      break;
1470    case DeclSpec::SCS_mutable:
1471      if (isFunc) {
1472        if (DS.getStorageClassSpecLoc().isValid())
1473          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1474        else
1475          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1476
1477        // FIXME: It would be nicer if the keyword was ignored only for this
1478        // declarator. Otherwise we could get follow-up errors.
1479        D.getMutableDeclSpec().ClearStorageClassSpecs();
1480      }
1481      break;
1482    default:
1483      if (DS.getStorageClassSpecLoc().isValid())
1484        Diag(DS.getStorageClassSpecLoc(),
1485             diag::err_storageclass_invalid_for_member);
1486      else
1487        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1488      D.getMutableDeclSpec().ClearStorageClassSpecs();
1489  }
1490
1491  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1492                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1493                      !isFunc);
1494
1495  Decl *Member;
1496  if (isInstField) {
1497    CXXScopeSpec &SS = D.getCXXScopeSpec();
1498
1499    // Data members must have identifiers for names.
1500    if (Name.getNameKind() != DeclarationName::Identifier) {
1501      Diag(Loc, diag::err_bad_variable_name)
1502        << Name;
1503      return 0;
1504    }
1505
1506    IdentifierInfo *II = Name.getAsIdentifierInfo();
1507
1508    // Member field could not be with "template" keyword.
1509    // So TemplateParameterLists should be empty in this case.
1510    if (TemplateParameterLists.size()) {
1511      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1512      if (TemplateParams->size()) {
1513        // There is no such thing as a member field template.
1514        Diag(D.getIdentifierLoc(), diag::err_template_member)
1515            << II
1516            << SourceRange(TemplateParams->getTemplateLoc(),
1517                TemplateParams->getRAngleLoc());
1518      } else {
1519        // There is an extraneous 'template<>' for this member.
1520        Diag(TemplateParams->getTemplateLoc(),
1521            diag::err_template_member_noparams)
1522            << II
1523            << SourceRange(TemplateParams->getTemplateLoc(),
1524                TemplateParams->getRAngleLoc());
1525      }
1526      return 0;
1527    }
1528
1529    if (SS.isSet() && !SS.isInvalid()) {
1530      // The user provided a superfluous scope specifier inside a class
1531      // definition:
1532      //
1533      // class X {
1534      //   int X::member;
1535      // };
1536      DeclContext *DC = 0;
1537      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1538        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1539          << Name << FixItHint::CreateRemoval(SS.getRange());
1540      else
1541        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1542          << Name << SS.getRange();
1543
1544      SS.clear();
1545    }
1546
1547    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1548                         HasDeferredInit, AS);
1549    assert(Member && "HandleField never returns null");
1550  } else {
1551    assert(!HasDeferredInit);
1552
1553    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1554    if (!Member) {
1555      return 0;
1556    }
1557
1558    // Non-instance-fields can't have a bitfield.
1559    if (BitWidth) {
1560      if (Member->isInvalidDecl()) {
1561        // don't emit another diagnostic.
1562      } else if (isa<VarDecl>(Member)) {
1563        // C++ 9.6p3: A bit-field shall not be a static member.
1564        // "static member 'A' cannot be a bit-field"
1565        Diag(Loc, diag::err_static_not_bitfield)
1566          << Name << BitWidth->getSourceRange();
1567      } else if (isa<TypedefDecl>(Member)) {
1568        // "typedef member 'x' cannot be a bit-field"
1569        Diag(Loc, diag::err_typedef_not_bitfield)
1570          << Name << BitWidth->getSourceRange();
1571      } else {
1572        // A function typedef ("typedef int f(); f a;").
1573        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1574        Diag(Loc, diag::err_not_integral_type_bitfield)
1575          << Name << cast<ValueDecl>(Member)->getType()
1576          << BitWidth->getSourceRange();
1577      }
1578
1579      BitWidth = 0;
1580      Member->setInvalidDecl();
1581    }
1582
1583    Member->setAccess(AS);
1584
1585    // If we have declared a member function template, set the access of the
1586    // templated declaration as well.
1587    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1588      FunTmpl->getTemplatedDecl()->setAccess(AS);
1589  }
1590
1591  if (VS.isOverrideSpecified()) {
1592    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1593    if (!MD || !MD->isVirtual()) {
1594      Diag(Member->getLocStart(),
1595           diag::override_keyword_only_allowed_on_virtual_member_functions)
1596        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1597    } else
1598      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1599  }
1600  if (VS.isFinalSpecified()) {
1601    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1602    if (!MD || !MD->isVirtual()) {
1603      Diag(Member->getLocStart(),
1604           diag::override_keyword_only_allowed_on_virtual_member_functions)
1605      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1606    } else
1607      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1608  }
1609
1610  if (VS.getLastLocation().isValid()) {
1611    // Update the end location of a method that has a virt-specifiers.
1612    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1613      MD->setRangeEnd(VS.getLastLocation());
1614  }
1615
1616  CheckOverrideControl(Member);
1617
1618  assert((Name || isInstField) && "No identifier for non-field ?");
1619
1620  if (isInstField)
1621    FieldCollector->Add(cast<FieldDecl>(Member));
1622  return Member;
1623}
1624
1625/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1626/// in-class initializer for a non-static C++ class member, and after
1627/// instantiating an in-class initializer in a class template. Such actions
1628/// are deferred until the class is complete.
1629void
1630Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1631                                       Expr *InitExpr) {
1632  FieldDecl *FD = cast<FieldDecl>(D);
1633
1634  if (!InitExpr) {
1635    FD->setInvalidDecl();
1636    FD->removeInClassInitializer();
1637    return;
1638  }
1639
1640  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1641    FD->setInvalidDecl();
1642    FD->removeInClassInitializer();
1643    return;
1644  }
1645
1646  ExprResult Init = InitExpr;
1647  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1648    // FIXME: if there is no EqualLoc, this is list-initialization.
1649    Init = PerformCopyInitialization(
1650      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1651    if (Init.isInvalid()) {
1652      FD->setInvalidDecl();
1653      return;
1654    }
1655
1656    CheckImplicitConversions(Init.get(), EqualLoc);
1657  }
1658
1659  // C++0x [class.base.init]p7:
1660  //   The initialization of each base and member constitutes a
1661  //   full-expression.
1662  Init = MaybeCreateExprWithCleanups(Init);
1663  if (Init.isInvalid()) {
1664    FD->setInvalidDecl();
1665    return;
1666  }
1667
1668  InitExpr = Init.release();
1669
1670  FD->setInClassInitializer(InitExpr);
1671}
1672
1673/// \brief Find the direct and/or virtual base specifiers that
1674/// correspond to the given base type, for use in base initialization
1675/// within a constructor.
1676static bool FindBaseInitializer(Sema &SemaRef,
1677                                CXXRecordDecl *ClassDecl,
1678                                QualType BaseType,
1679                                const CXXBaseSpecifier *&DirectBaseSpec,
1680                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1681  // First, check for a direct base class.
1682  DirectBaseSpec = 0;
1683  for (CXXRecordDecl::base_class_const_iterator Base
1684         = ClassDecl->bases_begin();
1685       Base != ClassDecl->bases_end(); ++Base) {
1686    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1687      // We found a direct base of this type. That's what we're
1688      // initializing.
1689      DirectBaseSpec = &*Base;
1690      break;
1691    }
1692  }
1693
1694  // Check for a virtual base class.
1695  // FIXME: We might be able to short-circuit this if we know in advance that
1696  // there are no virtual bases.
1697  VirtualBaseSpec = 0;
1698  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1699    // We haven't found a base yet; search the class hierarchy for a
1700    // virtual base class.
1701    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1702                       /*DetectVirtual=*/false);
1703    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1704                              BaseType, Paths)) {
1705      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1706           Path != Paths.end(); ++Path) {
1707        if (Path->back().Base->isVirtual()) {
1708          VirtualBaseSpec = Path->back().Base;
1709          break;
1710        }
1711      }
1712    }
1713  }
1714
1715  return DirectBaseSpec || VirtualBaseSpec;
1716}
1717
1718/// \brief Handle a C++ member initializer using braced-init-list syntax.
1719MemInitResult
1720Sema::ActOnMemInitializer(Decl *ConstructorD,
1721                          Scope *S,
1722                          CXXScopeSpec &SS,
1723                          IdentifierInfo *MemberOrBase,
1724                          ParsedType TemplateTypeTy,
1725                          const DeclSpec &DS,
1726                          SourceLocation IdLoc,
1727                          Expr *InitList,
1728                          SourceLocation EllipsisLoc) {
1729  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1730                             DS, IdLoc, MultiInitializer(InitList),
1731                             EllipsisLoc);
1732}
1733
1734/// \brief Handle a C++ member initializer using parentheses syntax.
1735MemInitResult
1736Sema::ActOnMemInitializer(Decl *ConstructorD,
1737                          Scope *S,
1738                          CXXScopeSpec &SS,
1739                          IdentifierInfo *MemberOrBase,
1740                          ParsedType TemplateTypeTy,
1741                          const DeclSpec &DS,
1742                          SourceLocation IdLoc,
1743                          SourceLocation LParenLoc,
1744                          Expr **Args, unsigned NumArgs,
1745                          SourceLocation RParenLoc,
1746                          SourceLocation EllipsisLoc) {
1747  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1748                             DS, IdLoc, MultiInitializer(LParenLoc, Args,
1749                                                         NumArgs, RParenLoc),
1750                             EllipsisLoc);
1751}
1752
1753namespace {
1754
1755// Callback to only accept typo corrections that can be a valid C++ member
1756// intializer: either a non-static field member or a base class.
1757class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1758 public:
1759  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1760      : ClassDecl(ClassDecl) {}
1761
1762  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1763    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1764      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1765        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1766      else
1767        return isa<TypeDecl>(ND);
1768    }
1769    return false;
1770  }
1771
1772 private:
1773  CXXRecordDecl *ClassDecl;
1774};
1775
1776}
1777
1778/// \brief Handle a C++ member initializer.
1779MemInitResult
1780Sema::BuildMemInitializer(Decl *ConstructorD,
1781                          Scope *S,
1782                          CXXScopeSpec &SS,
1783                          IdentifierInfo *MemberOrBase,
1784                          ParsedType TemplateTypeTy,
1785                          const DeclSpec &DS,
1786                          SourceLocation IdLoc,
1787                          const MultiInitializer &Args,
1788                          SourceLocation EllipsisLoc) {
1789  if (!ConstructorD)
1790    return true;
1791
1792  AdjustDeclIfTemplate(ConstructorD);
1793
1794  CXXConstructorDecl *Constructor
1795    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1796  if (!Constructor) {
1797    // The user wrote a constructor initializer on a function that is
1798    // not a C++ constructor. Ignore the error for now, because we may
1799    // have more member initializers coming; we'll diagnose it just
1800    // once in ActOnMemInitializers.
1801    return true;
1802  }
1803
1804  CXXRecordDecl *ClassDecl = Constructor->getParent();
1805
1806  // C++ [class.base.init]p2:
1807  //   Names in a mem-initializer-id are looked up in the scope of the
1808  //   constructor's class and, if not found in that scope, are looked
1809  //   up in the scope containing the constructor's definition.
1810  //   [Note: if the constructor's class contains a member with the
1811  //   same name as a direct or virtual base class of the class, a
1812  //   mem-initializer-id naming the member or base class and composed
1813  //   of a single identifier refers to the class member. A
1814  //   mem-initializer-id for the hidden base class may be specified
1815  //   using a qualified name. ]
1816  if (!SS.getScopeRep() && !TemplateTypeTy) {
1817    // Look for a member, first.
1818    DeclContext::lookup_result Result
1819      = ClassDecl->lookup(MemberOrBase);
1820    if (Result.first != Result.second) {
1821      ValueDecl *Member;
1822      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1823          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1824        if (EllipsisLoc.isValid())
1825          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1826            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1827
1828        return BuildMemberInitializer(Member, Args, IdLoc);
1829      }
1830    }
1831  }
1832  // It didn't name a member, so see if it names a class.
1833  QualType BaseType;
1834  TypeSourceInfo *TInfo = 0;
1835
1836  if (TemplateTypeTy) {
1837    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1838  } else if (DS.getTypeSpecType() == TST_decltype) {
1839    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1840  } else {
1841    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1842    LookupParsedName(R, S, &SS);
1843
1844    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1845    if (!TyD) {
1846      if (R.isAmbiguous()) return true;
1847
1848      // We don't want access-control diagnostics here.
1849      R.suppressDiagnostics();
1850
1851      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1852        bool NotUnknownSpecialization = false;
1853        DeclContext *DC = computeDeclContext(SS, false);
1854        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1855          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1856
1857        if (!NotUnknownSpecialization) {
1858          // When the scope specifier can refer to a member of an unknown
1859          // specialization, we take it as a type name.
1860          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1861                                       SS.getWithLocInContext(Context),
1862                                       *MemberOrBase, IdLoc);
1863          if (BaseType.isNull())
1864            return true;
1865
1866          R.clear();
1867          R.setLookupName(MemberOrBase);
1868        }
1869      }
1870
1871      // If no results were found, try to correct typos.
1872      TypoCorrection Corr;
1873      MemInitializerValidatorCCC Validator(ClassDecl);
1874      if (R.empty() && BaseType.isNull() &&
1875          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1876                              &Validator, ClassDecl))) {
1877        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1878        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1879        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1880          // We have found a non-static data member with a similar
1881          // name to what was typed; complain and initialize that
1882          // member.
1883          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1884            << MemberOrBase << true << CorrectedQuotedStr
1885            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1886          Diag(Member->getLocation(), diag::note_previous_decl)
1887            << CorrectedQuotedStr;
1888
1889          return BuildMemberInitializer(Member, Args, IdLoc);
1890        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1891          const CXXBaseSpecifier *DirectBaseSpec;
1892          const CXXBaseSpecifier *VirtualBaseSpec;
1893          if (FindBaseInitializer(*this, ClassDecl,
1894                                  Context.getTypeDeclType(Type),
1895                                  DirectBaseSpec, VirtualBaseSpec)) {
1896            // We have found a direct or virtual base class with a
1897            // similar name to what was typed; complain and initialize
1898            // that base class.
1899            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1900              << MemberOrBase << false << CorrectedQuotedStr
1901              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1902
1903            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1904                                                             : VirtualBaseSpec;
1905            Diag(BaseSpec->getSourceRange().getBegin(),
1906                 diag::note_base_class_specified_here)
1907              << BaseSpec->getType()
1908              << BaseSpec->getSourceRange();
1909
1910            TyD = Type;
1911          }
1912        }
1913      }
1914
1915      if (!TyD && BaseType.isNull()) {
1916        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1917          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1918        return true;
1919      }
1920    }
1921
1922    if (BaseType.isNull()) {
1923      BaseType = Context.getTypeDeclType(TyD);
1924      if (SS.isSet()) {
1925        NestedNameSpecifier *Qualifier =
1926          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1927
1928        // FIXME: preserve source range information
1929        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1930      }
1931    }
1932  }
1933
1934  if (!TInfo)
1935    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1936
1937  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1938}
1939
1940/// Checks a member initializer expression for cases where reference (or
1941/// pointer) members are bound to by-value parameters (or their addresses).
1942static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1943                                               Expr *Init,
1944                                               SourceLocation IdLoc) {
1945  QualType MemberTy = Member->getType();
1946
1947  // We only handle pointers and references currently.
1948  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1949  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1950    return;
1951
1952  const bool IsPointer = MemberTy->isPointerType();
1953  if (IsPointer) {
1954    if (const UnaryOperator *Op
1955          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1956      // The only case we're worried about with pointers requires taking the
1957      // address.
1958      if (Op->getOpcode() != UO_AddrOf)
1959        return;
1960
1961      Init = Op->getSubExpr();
1962    } else {
1963      // We only handle address-of expression initializers for pointers.
1964      return;
1965    }
1966  }
1967
1968  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1969    // Taking the address of a temporary will be diagnosed as a hard error.
1970    if (IsPointer)
1971      return;
1972
1973    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1974      << Member << Init->getSourceRange();
1975  } else if (const DeclRefExpr *DRE
1976               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1977    // We only warn when referring to a non-reference parameter declaration.
1978    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1979    if (!Parameter || Parameter->getType()->isReferenceType())
1980      return;
1981
1982    S.Diag(Init->getExprLoc(),
1983           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1984                     : diag::warn_bind_ref_member_to_parameter)
1985      << Member << Parameter << Init->getSourceRange();
1986  } else {
1987    // Other initializers are fine.
1988    return;
1989  }
1990
1991  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1992    << (unsigned)IsPointer;
1993}
1994
1995/// Checks an initializer expression for use of uninitialized fields, such as
1996/// containing the field that is being initialized. Returns true if there is an
1997/// uninitialized field was used an updates the SourceLocation parameter; false
1998/// otherwise.
1999static bool InitExprContainsUninitializedFields(const Stmt *S,
2000                                                const ValueDecl *LhsField,
2001                                                SourceLocation *L) {
2002  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2003
2004  if (isa<CallExpr>(S)) {
2005    // Do not descend into function calls or constructors, as the use
2006    // of an uninitialized field may be valid. One would have to inspect
2007    // the contents of the function/ctor to determine if it is safe or not.
2008    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2009    // may be safe, depending on what the function/ctor does.
2010    return false;
2011  }
2012  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2013    const NamedDecl *RhsField = ME->getMemberDecl();
2014
2015    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2016      // The member expression points to a static data member.
2017      assert(VD->isStaticDataMember() &&
2018             "Member points to non-static data member!");
2019      (void)VD;
2020      return false;
2021    }
2022
2023    if (isa<EnumConstantDecl>(RhsField)) {
2024      // The member expression points to an enum.
2025      return false;
2026    }
2027
2028    if (RhsField == LhsField) {
2029      // Initializing a field with itself. Throw a warning.
2030      // But wait; there are exceptions!
2031      // Exception #1:  The field may not belong to this record.
2032      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2033      const Expr *base = ME->getBase();
2034      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2035        // Even though the field matches, it does not belong to this record.
2036        return false;
2037      }
2038      // None of the exceptions triggered; return true to indicate an
2039      // uninitialized field was used.
2040      *L = ME->getMemberLoc();
2041      return true;
2042    }
2043  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2044    // sizeof/alignof doesn't reference contents, do not warn.
2045    return false;
2046  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2047    // address-of doesn't reference contents (the pointer may be dereferenced
2048    // in the same expression but it would be rare; and weird).
2049    if (UOE->getOpcode() == UO_AddrOf)
2050      return false;
2051  }
2052  for (Stmt::const_child_range it = S->children(); it; ++it) {
2053    if (!*it) {
2054      // An expression such as 'member(arg ?: "")' may trigger this.
2055      continue;
2056    }
2057    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2058      return true;
2059  }
2060  return false;
2061}
2062
2063MemInitResult
2064Sema::BuildMemberInitializer(ValueDecl *Member,
2065                             const MultiInitializer &Args,
2066                             SourceLocation IdLoc) {
2067  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2068  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2069  assert((DirectMember || IndirectMember) &&
2070         "Member must be a FieldDecl or IndirectFieldDecl");
2071
2072  if (Args.DiagnoseUnexpandedParameterPack(*this))
2073    return true;
2074
2075  if (Member->isInvalidDecl())
2076    return true;
2077
2078  // Diagnose value-uses of fields to initialize themselves, e.g.
2079  //   foo(foo)
2080  // where foo is not also a parameter to the constructor.
2081  // TODO: implement -Wuninitialized and fold this into that framework.
2082  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2083       I != E; ++I) {
2084    SourceLocation L;
2085    Expr *Arg = *I;
2086    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2087      Arg = DIE->getInit();
2088    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2089      // FIXME: Return true in the case when other fields are used before being
2090      // uninitialized. For example, let this field be the i'th field. When
2091      // initializing the i'th field, throw a warning if any of the >= i'th
2092      // fields are used, as they are not yet initialized.
2093      // Right now we are only handling the case where the i'th field uses
2094      // itself in its initializer.
2095      Diag(L, diag::warn_field_is_uninit);
2096    }
2097  }
2098
2099  bool HasDependentArg = Args.isTypeDependent();
2100
2101  Expr *Init;
2102  if (Member->getType()->isDependentType() || HasDependentArg) {
2103    // Can't check initialization for a member of dependent type or when
2104    // any of the arguments are type-dependent expressions.
2105    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2106
2107    DiscardCleanupsInEvaluationContext();
2108  } else {
2109    // Initialize the member.
2110    InitializedEntity MemberEntity =
2111      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2112                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2113    InitializationKind Kind =
2114      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2115                                       Args.getEndLoc());
2116
2117    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2118    if (MemberInit.isInvalid())
2119      return true;
2120
2121    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2122
2123    // C++0x [class.base.init]p7:
2124    //   The initialization of each base and member constitutes a
2125    //   full-expression.
2126    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2127    if (MemberInit.isInvalid())
2128      return true;
2129
2130    // If we are in a dependent context, template instantiation will
2131    // perform this type-checking again. Just save the arguments that we
2132    // received in a ParenListExpr.
2133    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2134    // of the information that we have about the member
2135    // initializer. However, deconstructing the ASTs is a dicey process,
2136    // and this approach is far more likely to get the corner cases right.
2137    if (CurContext->isDependentContext()) {
2138      Init = Args.CreateInitExpr(Context,
2139                                 Member->getType().getNonReferenceType());
2140    } else {
2141      Init = MemberInit.get();
2142      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2143    }
2144  }
2145
2146  if (DirectMember) {
2147    return new (Context) CXXCtorInitializer(Context, DirectMember,
2148                                                    IdLoc, Args.getStartLoc(),
2149                                                    Init, Args.getEndLoc());
2150  } else {
2151    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2152                                                    IdLoc, Args.getStartLoc(),
2153                                                    Init, Args.getEndLoc());
2154  }
2155}
2156
2157MemInitResult
2158Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2159                                 const MultiInitializer &Args,
2160                                 CXXRecordDecl *ClassDecl) {
2161  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2162  if (!LangOpts.CPlusPlus0x)
2163    return Diag(NameLoc, diag::err_delegating_ctor)
2164      << TInfo->getTypeLoc().getLocalSourceRange();
2165  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2166
2167  // Initialize the object.
2168  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2169                                     QualType(ClassDecl->getTypeForDecl(), 0));
2170  InitializationKind Kind =
2171    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2172                                     Args.getEndLoc());
2173
2174  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2175  if (DelegationInit.isInvalid())
2176    return true;
2177
2178  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2179         "Delegating constructor with no target?");
2180
2181  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2182
2183  // C++0x [class.base.init]p7:
2184  //   The initialization of each base and member constitutes a
2185  //   full-expression.
2186  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2187  if (DelegationInit.isInvalid())
2188    return true;
2189
2190  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2191                                          DelegationInit.takeAs<Expr>(),
2192                                          Args.getEndLoc());
2193}
2194
2195MemInitResult
2196Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2197                           const MultiInitializer &Args,
2198                           CXXRecordDecl *ClassDecl,
2199                           SourceLocation EllipsisLoc) {
2200  bool HasDependentArg = Args.isTypeDependent();
2201
2202  SourceLocation BaseLoc
2203    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2204
2205  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2206    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2207             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2208
2209  // C++ [class.base.init]p2:
2210  //   [...] Unless the mem-initializer-id names a nonstatic data
2211  //   member of the constructor's class or a direct or virtual base
2212  //   of that class, the mem-initializer is ill-formed. A
2213  //   mem-initializer-list can initialize a base class using any
2214  //   name that denotes that base class type.
2215  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2216
2217  if (EllipsisLoc.isValid()) {
2218    // This is a pack expansion.
2219    if (!BaseType->containsUnexpandedParameterPack())  {
2220      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2221        << SourceRange(BaseLoc, Args.getEndLoc());
2222
2223      EllipsisLoc = SourceLocation();
2224    }
2225  } else {
2226    // Check for any unexpanded parameter packs.
2227    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2228      return true;
2229
2230    if (Args.DiagnoseUnexpandedParameterPack(*this))
2231      return true;
2232  }
2233
2234  // Check for direct and virtual base classes.
2235  const CXXBaseSpecifier *DirectBaseSpec = 0;
2236  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2237  if (!Dependent) {
2238    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2239                                       BaseType))
2240      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2241
2242    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2243                        VirtualBaseSpec);
2244
2245    // C++ [base.class.init]p2:
2246    // Unless the mem-initializer-id names a nonstatic data member of the
2247    // constructor's class or a direct or virtual base of that class, the
2248    // mem-initializer is ill-formed.
2249    if (!DirectBaseSpec && !VirtualBaseSpec) {
2250      // If the class has any dependent bases, then it's possible that
2251      // one of those types will resolve to the same type as
2252      // BaseType. Therefore, just treat this as a dependent base
2253      // class initialization.  FIXME: Should we try to check the
2254      // initialization anyway? It seems odd.
2255      if (ClassDecl->hasAnyDependentBases())
2256        Dependent = true;
2257      else
2258        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2259          << BaseType << Context.getTypeDeclType(ClassDecl)
2260          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2261    }
2262  }
2263
2264  if (Dependent) {
2265    // Can't check initialization for a base of dependent type or when
2266    // any of the arguments are type-dependent expressions.
2267    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2268
2269    DiscardCleanupsInEvaluationContext();
2270
2271    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2272                                            /*IsVirtual=*/false,
2273                                            Args.getStartLoc(), BaseInit,
2274                                            Args.getEndLoc(), EllipsisLoc);
2275  }
2276
2277  // C++ [base.class.init]p2:
2278  //   If a mem-initializer-id is ambiguous because it designates both
2279  //   a direct non-virtual base class and an inherited virtual base
2280  //   class, the mem-initializer is ill-formed.
2281  if (DirectBaseSpec && VirtualBaseSpec)
2282    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2283      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2284
2285  CXXBaseSpecifier *BaseSpec
2286    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2287  if (!BaseSpec)
2288    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2289
2290  // Initialize the base.
2291  InitializedEntity BaseEntity =
2292    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2293  InitializationKind Kind =
2294    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2295                                     Args.getEndLoc());
2296
2297  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2298  if (BaseInit.isInvalid())
2299    return true;
2300
2301  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2302
2303  // C++0x [class.base.init]p7:
2304  //   The initialization of each base and member constitutes a
2305  //   full-expression.
2306  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2307  if (BaseInit.isInvalid())
2308    return true;
2309
2310  // If we are in a dependent context, template instantiation will
2311  // perform this type-checking again. Just save the arguments that we
2312  // received in a ParenListExpr.
2313  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2314  // of the information that we have about the base
2315  // initializer. However, deconstructing the ASTs is a dicey process,
2316  // and this approach is far more likely to get the corner cases right.
2317  if (CurContext->isDependentContext())
2318    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2319
2320  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2321                                          BaseSpec->isVirtual(),
2322                                          Args.getStartLoc(),
2323                                          BaseInit.takeAs<Expr>(),
2324                                          Args.getEndLoc(), EllipsisLoc);
2325}
2326
2327// Create a static_cast\<T&&>(expr).
2328static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2329  QualType ExprType = E->getType();
2330  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2331  SourceLocation ExprLoc = E->getLocStart();
2332  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2333      TargetType, ExprLoc);
2334
2335  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2336                                   SourceRange(ExprLoc, ExprLoc),
2337                                   E->getSourceRange()).take();
2338}
2339
2340/// ImplicitInitializerKind - How an implicit base or member initializer should
2341/// initialize its base or member.
2342enum ImplicitInitializerKind {
2343  IIK_Default,
2344  IIK_Copy,
2345  IIK_Move
2346};
2347
2348static bool
2349BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2350                             ImplicitInitializerKind ImplicitInitKind,
2351                             CXXBaseSpecifier *BaseSpec,
2352                             bool IsInheritedVirtualBase,
2353                             CXXCtorInitializer *&CXXBaseInit) {
2354  InitializedEntity InitEntity
2355    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2356                                        IsInheritedVirtualBase);
2357
2358  ExprResult BaseInit;
2359
2360  switch (ImplicitInitKind) {
2361  case IIK_Default: {
2362    InitializationKind InitKind
2363      = InitializationKind::CreateDefault(Constructor->getLocation());
2364    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2365    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2366                               MultiExprArg(SemaRef, 0, 0));
2367    break;
2368  }
2369
2370  case IIK_Move:
2371  case IIK_Copy: {
2372    bool Moving = ImplicitInitKind == IIK_Move;
2373    ParmVarDecl *Param = Constructor->getParamDecl(0);
2374    QualType ParamType = Param->getType().getNonReferenceType();
2375
2376    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2377
2378    Expr *CopyCtorArg =
2379      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2380                          Constructor->getLocation(), ParamType,
2381                          VK_LValue, 0);
2382
2383    // Cast to the base class to avoid ambiguities.
2384    QualType ArgTy =
2385      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2386                                       ParamType.getQualifiers());
2387
2388    if (Moving) {
2389      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2390    }
2391
2392    CXXCastPath BasePath;
2393    BasePath.push_back(BaseSpec);
2394    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2395                                            CK_UncheckedDerivedToBase,
2396                                            Moving ? VK_XValue : VK_LValue,
2397                                            &BasePath).take();
2398
2399    InitializationKind InitKind
2400      = InitializationKind::CreateDirect(Constructor->getLocation(),
2401                                         SourceLocation(), SourceLocation());
2402    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2403                                   &CopyCtorArg, 1);
2404    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2405                               MultiExprArg(&CopyCtorArg, 1));
2406    break;
2407  }
2408  }
2409
2410  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2411  if (BaseInit.isInvalid())
2412    return true;
2413
2414  CXXBaseInit =
2415    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2416               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2417                                                        SourceLocation()),
2418                                             BaseSpec->isVirtual(),
2419                                             SourceLocation(),
2420                                             BaseInit.takeAs<Expr>(),
2421                                             SourceLocation(),
2422                                             SourceLocation());
2423
2424  return false;
2425}
2426
2427static bool RefersToRValueRef(Expr *MemRef) {
2428  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2429  return Referenced->getType()->isRValueReferenceType();
2430}
2431
2432static bool
2433BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2434                               ImplicitInitializerKind ImplicitInitKind,
2435                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2436                               CXXCtorInitializer *&CXXMemberInit) {
2437  if (Field->isInvalidDecl())
2438    return true;
2439
2440  SourceLocation Loc = Constructor->getLocation();
2441
2442  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2443    bool Moving = ImplicitInitKind == IIK_Move;
2444    ParmVarDecl *Param = Constructor->getParamDecl(0);
2445    QualType ParamType = Param->getType().getNonReferenceType();
2446
2447    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2448
2449    // Suppress copying zero-width bitfields.
2450    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2451      return false;
2452
2453    Expr *MemberExprBase =
2454      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2455                          Loc, ParamType, VK_LValue, 0);
2456
2457    if (Moving) {
2458      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2459    }
2460
2461    // Build a reference to this field within the parameter.
2462    CXXScopeSpec SS;
2463    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2464                              Sema::LookupMemberName);
2465    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2466                                  : cast<ValueDecl>(Field), AS_public);
2467    MemberLookup.resolveKind();
2468    ExprResult CtorArg
2469      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2470                                         ParamType, Loc,
2471                                         /*IsArrow=*/false,
2472                                         SS,
2473                                         /*FirstQualifierInScope=*/0,
2474                                         MemberLookup,
2475                                         /*TemplateArgs=*/0);
2476    if (CtorArg.isInvalid())
2477      return true;
2478
2479    // C++11 [class.copy]p15:
2480    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2481    //     with static_cast<T&&>(x.m);
2482    if (RefersToRValueRef(CtorArg.get())) {
2483      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2484    }
2485
2486    // When the field we are copying is an array, create index variables for
2487    // each dimension of the array. We use these index variables to subscript
2488    // the source array, and other clients (e.g., CodeGen) will perform the
2489    // necessary iteration with these index variables.
2490    SmallVector<VarDecl *, 4> IndexVariables;
2491    QualType BaseType = Field->getType();
2492    QualType SizeType = SemaRef.Context.getSizeType();
2493    bool InitializingArray = false;
2494    while (const ConstantArrayType *Array
2495                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2496      InitializingArray = true;
2497      // Create the iteration variable for this array index.
2498      IdentifierInfo *IterationVarName = 0;
2499      {
2500        llvm::SmallString<8> Str;
2501        llvm::raw_svector_ostream OS(Str);
2502        OS << "__i" << IndexVariables.size();
2503        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2504      }
2505      VarDecl *IterationVar
2506        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2507                          IterationVarName, SizeType,
2508                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2509                          SC_None, SC_None);
2510      IndexVariables.push_back(IterationVar);
2511
2512      // Create a reference to the iteration variable.
2513      ExprResult IterationVarRef
2514        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2515      assert(!IterationVarRef.isInvalid() &&
2516             "Reference to invented variable cannot fail!");
2517      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2518      assert(!IterationVarRef.isInvalid() &&
2519             "Conversion of invented variable cannot fail!");
2520
2521      // Subscript the array with this iteration variable.
2522      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2523                                                        IterationVarRef.take(),
2524                                                        Loc);
2525      if (CtorArg.isInvalid())
2526        return true;
2527
2528      BaseType = Array->getElementType();
2529    }
2530
2531    // The array subscript expression is an lvalue, which is wrong for moving.
2532    if (Moving && InitializingArray)
2533      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2534
2535    // Construct the entity that we will be initializing. For an array, this
2536    // will be first element in the array, which may require several levels
2537    // of array-subscript entities.
2538    SmallVector<InitializedEntity, 4> Entities;
2539    Entities.reserve(1 + IndexVariables.size());
2540    if (Indirect)
2541      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2542    else
2543      Entities.push_back(InitializedEntity::InitializeMember(Field));
2544    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2545      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2546                                                              0,
2547                                                              Entities.back()));
2548
2549    // Direct-initialize to use the copy constructor.
2550    InitializationKind InitKind =
2551      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2552
2553    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2554    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2555                                   &CtorArgE, 1);
2556
2557    ExprResult MemberInit
2558      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2559                        MultiExprArg(&CtorArgE, 1));
2560    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2561    if (MemberInit.isInvalid())
2562      return true;
2563
2564    if (Indirect) {
2565      assert(IndexVariables.size() == 0 &&
2566             "Indirect field improperly initialized");
2567      CXXMemberInit
2568        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2569                                                   Loc, Loc,
2570                                                   MemberInit.takeAs<Expr>(),
2571                                                   Loc);
2572    } else
2573      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2574                                                 Loc, MemberInit.takeAs<Expr>(),
2575                                                 Loc,
2576                                                 IndexVariables.data(),
2577                                                 IndexVariables.size());
2578    return false;
2579  }
2580
2581  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2582
2583  QualType FieldBaseElementType =
2584    SemaRef.Context.getBaseElementType(Field->getType());
2585
2586  if (FieldBaseElementType->isRecordType()) {
2587    InitializedEntity InitEntity
2588      = Indirect? InitializedEntity::InitializeMember(Indirect)
2589                : InitializedEntity::InitializeMember(Field);
2590    InitializationKind InitKind =
2591      InitializationKind::CreateDefault(Loc);
2592
2593    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2594    ExprResult MemberInit =
2595      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2596
2597    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2598    if (MemberInit.isInvalid())
2599      return true;
2600
2601    if (Indirect)
2602      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2603                                                               Indirect, Loc,
2604                                                               Loc,
2605                                                               MemberInit.get(),
2606                                                               Loc);
2607    else
2608      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2609                                                               Field, Loc, Loc,
2610                                                               MemberInit.get(),
2611                                                               Loc);
2612    return false;
2613  }
2614
2615  if (!Field->getParent()->isUnion()) {
2616    if (FieldBaseElementType->isReferenceType()) {
2617      SemaRef.Diag(Constructor->getLocation(),
2618                   diag::err_uninitialized_member_in_ctor)
2619      << (int)Constructor->isImplicit()
2620      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2621      << 0 << Field->getDeclName();
2622      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2623      return true;
2624    }
2625
2626    if (FieldBaseElementType.isConstQualified()) {
2627      SemaRef.Diag(Constructor->getLocation(),
2628                   diag::err_uninitialized_member_in_ctor)
2629      << (int)Constructor->isImplicit()
2630      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2631      << 1 << Field->getDeclName();
2632      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2633      return true;
2634    }
2635  }
2636
2637  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2638      FieldBaseElementType->isObjCRetainableType() &&
2639      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2640      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2641    // Instant objects:
2642    //   Default-initialize Objective-C pointers to NULL.
2643    CXXMemberInit
2644      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2645                                                 Loc, Loc,
2646                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2647                                                 Loc);
2648    return false;
2649  }
2650
2651  // Nothing to initialize.
2652  CXXMemberInit = 0;
2653  return false;
2654}
2655
2656namespace {
2657struct BaseAndFieldInfo {
2658  Sema &S;
2659  CXXConstructorDecl *Ctor;
2660  bool AnyErrorsInInits;
2661  ImplicitInitializerKind IIK;
2662  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2663  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2664
2665  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2666    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2667    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2668    if (Generated && Ctor->isCopyConstructor())
2669      IIK = IIK_Copy;
2670    else if (Generated && Ctor->isMoveConstructor())
2671      IIK = IIK_Move;
2672    else
2673      IIK = IIK_Default;
2674  }
2675
2676  bool isImplicitCopyOrMove() const {
2677    switch (IIK) {
2678    case IIK_Copy:
2679    case IIK_Move:
2680      return true;
2681
2682    case IIK_Default:
2683      return false;
2684    }
2685
2686    llvm_unreachable("Invalid ImplicitInitializerKind!");
2687  }
2688};
2689}
2690
2691/// \brief Determine whether the given indirect field declaration is somewhere
2692/// within an anonymous union.
2693static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2694  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2695                                      CEnd = F->chain_end();
2696       C != CEnd; ++C)
2697    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2698      if (Record->isUnion())
2699        return true;
2700
2701  return false;
2702}
2703
2704/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2705/// array type.
2706static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2707  if (T->isIncompleteArrayType())
2708    return true;
2709
2710  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2711    if (!ArrayT->getSize())
2712      return true;
2713
2714    T = ArrayT->getElementType();
2715  }
2716
2717  return false;
2718}
2719
2720static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2721                                    FieldDecl *Field,
2722                                    IndirectFieldDecl *Indirect = 0) {
2723
2724  // Overwhelmingly common case: we have a direct initializer for this field.
2725  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2726    Info.AllToInit.push_back(Init);
2727    return false;
2728  }
2729
2730  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2731  // has a brace-or-equal-initializer, the entity is initialized as specified
2732  // in [dcl.init].
2733  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2734    CXXCtorInitializer *Init;
2735    if (Indirect)
2736      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2737                                                      SourceLocation(),
2738                                                      SourceLocation(), 0,
2739                                                      SourceLocation());
2740    else
2741      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2742                                                      SourceLocation(),
2743                                                      SourceLocation(), 0,
2744                                                      SourceLocation());
2745    Info.AllToInit.push_back(Init);
2746    return false;
2747  }
2748
2749  // Don't build an implicit initializer for union members if none was
2750  // explicitly specified.
2751  if (Field->getParent()->isUnion() ||
2752      (Indirect && isWithinAnonymousUnion(Indirect)))
2753    return false;
2754
2755  // Don't initialize incomplete or zero-length arrays.
2756  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2757    return false;
2758
2759  // Don't try to build an implicit initializer if there were semantic
2760  // errors in any of the initializers (and therefore we might be
2761  // missing some that the user actually wrote).
2762  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2763    return false;
2764
2765  CXXCtorInitializer *Init = 0;
2766  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2767                                     Indirect, Init))
2768    return true;
2769
2770  if (Init)
2771    Info.AllToInit.push_back(Init);
2772
2773  return false;
2774}
2775
2776bool
2777Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2778                               CXXCtorInitializer *Initializer) {
2779  assert(Initializer->isDelegatingInitializer());
2780  Constructor->setNumCtorInitializers(1);
2781  CXXCtorInitializer **initializer =
2782    new (Context) CXXCtorInitializer*[1];
2783  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2784  Constructor->setCtorInitializers(initializer);
2785
2786  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2787    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2788    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2789  }
2790
2791  DelegatingCtorDecls.push_back(Constructor);
2792
2793  return false;
2794}
2795
2796bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2797                               CXXCtorInitializer **Initializers,
2798                               unsigned NumInitializers,
2799                               bool AnyErrors) {
2800  if (Constructor->isDependentContext()) {
2801    // Just store the initializers as written, they will be checked during
2802    // instantiation.
2803    if (NumInitializers > 0) {
2804      Constructor->setNumCtorInitializers(NumInitializers);
2805      CXXCtorInitializer **baseOrMemberInitializers =
2806        new (Context) CXXCtorInitializer*[NumInitializers];
2807      memcpy(baseOrMemberInitializers, Initializers,
2808             NumInitializers * sizeof(CXXCtorInitializer*));
2809      Constructor->setCtorInitializers(baseOrMemberInitializers);
2810    }
2811
2812    return false;
2813  }
2814
2815  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2816
2817  // We need to build the initializer AST according to order of construction
2818  // and not what user specified in the Initializers list.
2819  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2820  if (!ClassDecl)
2821    return true;
2822
2823  bool HadError = false;
2824
2825  for (unsigned i = 0; i < NumInitializers; i++) {
2826    CXXCtorInitializer *Member = Initializers[i];
2827
2828    if (Member->isBaseInitializer())
2829      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2830    else
2831      Info.AllBaseFields[Member->getAnyMember()] = Member;
2832  }
2833
2834  // Keep track of the direct virtual bases.
2835  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2836  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2837       E = ClassDecl->bases_end(); I != E; ++I) {
2838    if (I->isVirtual())
2839      DirectVBases.insert(I);
2840  }
2841
2842  // Push virtual bases before others.
2843  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2844       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2845
2846    if (CXXCtorInitializer *Value
2847        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2848      Info.AllToInit.push_back(Value);
2849    } else if (!AnyErrors) {
2850      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2851      CXXCtorInitializer *CXXBaseInit;
2852      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2853                                       VBase, IsInheritedVirtualBase,
2854                                       CXXBaseInit)) {
2855        HadError = true;
2856        continue;
2857      }
2858
2859      Info.AllToInit.push_back(CXXBaseInit);
2860    }
2861  }
2862
2863  // Non-virtual bases.
2864  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2865       E = ClassDecl->bases_end(); Base != E; ++Base) {
2866    // Virtuals are in the virtual base list and already constructed.
2867    if (Base->isVirtual())
2868      continue;
2869
2870    if (CXXCtorInitializer *Value
2871          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2872      Info.AllToInit.push_back(Value);
2873    } else if (!AnyErrors) {
2874      CXXCtorInitializer *CXXBaseInit;
2875      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2876                                       Base, /*IsInheritedVirtualBase=*/false,
2877                                       CXXBaseInit)) {
2878        HadError = true;
2879        continue;
2880      }
2881
2882      Info.AllToInit.push_back(CXXBaseInit);
2883    }
2884  }
2885
2886  // Fields.
2887  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2888                               MemEnd = ClassDecl->decls_end();
2889       Mem != MemEnd; ++Mem) {
2890    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2891      // C++ [class.bit]p2:
2892      //   A declaration for a bit-field that omits the identifier declares an
2893      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2894      //   initialized.
2895      if (F->isUnnamedBitfield())
2896        continue;
2897
2898      // If we're not generating the implicit copy/move constructor, then we'll
2899      // handle anonymous struct/union fields based on their individual
2900      // indirect fields.
2901      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2902        continue;
2903
2904      if (CollectFieldInitializer(*this, Info, F))
2905        HadError = true;
2906      continue;
2907    }
2908
2909    // Beyond this point, we only consider default initialization.
2910    if (Info.IIK != IIK_Default)
2911      continue;
2912
2913    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2914      if (F->getType()->isIncompleteArrayType()) {
2915        assert(ClassDecl->hasFlexibleArrayMember() &&
2916               "Incomplete array type is not valid");
2917        continue;
2918      }
2919
2920      // Initialize each field of an anonymous struct individually.
2921      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2922        HadError = true;
2923
2924      continue;
2925    }
2926  }
2927
2928  NumInitializers = Info.AllToInit.size();
2929  if (NumInitializers > 0) {
2930    Constructor->setNumCtorInitializers(NumInitializers);
2931    CXXCtorInitializer **baseOrMemberInitializers =
2932      new (Context) CXXCtorInitializer*[NumInitializers];
2933    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2934           NumInitializers * sizeof(CXXCtorInitializer*));
2935    Constructor->setCtorInitializers(baseOrMemberInitializers);
2936
2937    // Constructors implicitly reference the base and member
2938    // destructors.
2939    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2940                                           Constructor->getParent());
2941  }
2942
2943  return HadError;
2944}
2945
2946static void *GetKeyForTopLevelField(FieldDecl *Field) {
2947  // For anonymous unions, use the class declaration as the key.
2948  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2949    if (RT->getDecl()->isAnonymousStructOrUnion())
2950      return static_cast<void *>(RT->getDecl());
2951  }
2952  return static_cast<void *>(Field);
2953}
2954
2955static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2956  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2957}
2958
2959static void *GetKeyForMember(ASTContext &Context,
2960                             CXXCtorInitializer *Member) {
2961  if (!Member->isAnyMemberInitializer())
2962    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2963
2964  // For fields injected into the class via declaration of an anonymous union,
2965  // use its anonymous union class declaration as the unique key.
2966  FieldDecl *Field = Member->getAnyMember();
2967
2968  // If the field is a member of an anonymous struct or union, our key
2969  // is the anonymous record decl that's a direct child of the class.
2970  RecordDecl *RD = Field->getParent();
2971  if (RD->isAnonymousStructOrUnion()) {
2972    while (true) {
2973      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2974      if (Parent->isAnonymousStructOrUnion())
2975        RD = Parent;
2976      else
2977        break;
2978    }
2979
2980    return static_cast<void *>(RD);
2981  }
2982
2983  return static_cast<void *>(Field);
2984}
2985
2986static void
2987DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2988                                  const CXXConstructorDecl *Constructor,
2989                                  CXXCtorInitializer **Inits,
2990                                  unsigned NumInits) {
2991  if (Constructor->getDeclContext()->isDependentContext())
2992    return;
2993
2994  // Don't check initializers order unless the warning is enabled at the
2995  // location of at least one initializer.
2996  bool ShouldCheckOrder = false;
2997  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2998    CXXCtorInitializer *Init = Inits[InitIndex];
2999    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3000                                         Init->getSourceLocation())
3001          != DiagnosticsEngine::Ignored) {
3002      ShouldCheckOrder = true;
3003      break;
3004    }
3005  }
3006  if (!ShouldCheckOrder)
3007    return;
3008
3009  // Build the list of bases and members in the order that they'll
3010  // actually be initialized.  The explicit initializers should be in
3011  // this same order but may be missing things.
3012  SmallVector<const void*, 32> IdealInitKeys;
3013
3014  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3015
3016  // 1. Virtual bases.
3017  for (CXXRecordDecl::base_class_const_iterator VBase =
3018       ClassDecl->vbases_begin(),
3019       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3020    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3021
3022  // 2. Non-virtual bases.
3023  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3024       E = ClassDecl->bases_end(); Base != E; ++Base) {
3025    if (Base->isVirtual())
3026      continue;
3027    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3028  }
3029
3030  // 3. Direct fields.
3031  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3032       E = ClassDecl->field_end(); Field != E; ++Field) {
3033    if (Field->isUnnamedBitfield())
3034      continue;
3035
3036    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3037  }
3038
3039  unsigned NumIdealInits = IdealInitKeys.size();
3040  unsigned IdealIndex = 0;
3041
3042  CXXCtorInitializer *PrevInit = 0;
3043  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3044    CXXCtorInitializer *Init = Inits[InitIndex];
3045    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3046
3047    // Scan forward to try to find this initializer in the idealized
3048    // initializers list.
3049    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3050      if (InitKey == IdealInitKeys[IdealIndex])
3051        break;
3052
3053    // If we didn't find this initializer, it must be because we
3054    // scanned past it on a previous iteration.  That can only
3055    // happen if we're out of order;  emit a warning.
3056    if (IdealIndex == NumIdealInits && PrevInit) {
3057      Sema::SemaDiagnosticBuilder D =
3058        SemaRef.Diag(PrevInit->getSourceLocation(),
3059                     diag::warn_initializer_out_of_order);
3060
3061      if (PrevInit->isAnyMemberInitializer())
3062        D << 0 << PrevInit->getAnyMember()->getDeclName();
3063      else
3064        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3065
3066      if (Init->isAnyMemberInitializer())
3067        D << 0 << Init->getAnyMember()->getDeclName();
3068      else
3069        D << 1 << Init->getTypeSourceInfo()->getType();
3070
3071      // Move back to the initializer's location in the ideal list.
3072      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3073        if (InitKey == IdealInitKeys[IdealIndex])
3074          break;
3075
3076      assert(IdealIndex != NumIdealInits &&
3077             "initializer not found in initializer list");
3078    }
3079
3080    PrevInit = Init;
3081  }
3082}
3083
3084namespace {
3085bool CheckRedundantInit(Sema &S,
3086                        CXXCtorInitializer *Init,
3087                        CXXCtorInitializer *&PrevInit) {
3088  if (!PrevInit) {
3089    PrevInit = Init;
3090    return false;
3091  }
3092
3093  if (FieldDecl *Field = Init->getMember())
3094    S.Diag(Init->getSourceLocation(),
3095           diag::err_multiple_mem_initialization)
3096      << Field->getDeclName()
3097      << Init->getSourceRange();
3098  else {
3099    const Type *BaseClass = Init->getBaseClass();
3100    assert(BaseClass && "neither field nor base");
3101    S.Diag(Init->getSourceLocation(),
3102           diag::err_multiple_base_initialization)
3103      << QualType(BaseClass, 0)
3104      << Init->getSourceRange();
3105  }
3106  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3107    << 0 << PrevInit->getSourceRange();
3108
3109  return true;
3110}
3111
3112typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3113typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3114
3115bool CheckRedundantUnionInit(Sema &S,
3116                             CXXCtorInitializer *Init,
3117                             RedundantUnionMap &Unions) {
3118  FieldDecl *Field = Init->getAnyMember();
3119  RecordDecl *Parent = Field->getParent();
3120  NamedDecl *Child = Field;
3121
3122  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3123    if (Parent->isUnion()) {
3124      UnionEntry &En = Unions[Parent];
3125      if (En.first && En.first != Child) {
3126        S.Diag(Init->getSourceLocation(),
3127               diag::err_multiple_mem_union_initialization)
3128          << Field->getDeclName()
3129          << Init->getSourceRange();
3130        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3131          << 0 << En.second->getSourceRange();
3132        return true;
3133      }
3134      if (!En.first) {
3135        En.first = Child;
3136        En.second = Init;
3137      }
3138      if (!Parent->isAnonymousStructOrUnion())
3139        return false;
3140    }
3141
3142    Child = Parent;
3143    Parent = cast<RecordDecl>(Parent->getDeclContext());
3144  }
3145
3146  return false;
3147}
3148}
3149
3150/// ActOnMemInitializers - Handle the member initializers for a constructor.
3151void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3152                                SourceLocation ColonLoc,
3153                                CXXCtorInitializer **meminits,
3154                                unsigned NumMemInits,
3155                                bool AnyErrors) {
3156  if (!ConstructorDecl)
3157    return;
3158
3159  AdjustDeclIfTemplate(ConstructorDecl);
3160
3161  CXXConstructorDecl *Constructor
3162    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3163
3164  if (!Constructor) {
3165    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3166    return;
3167  }
3168
3169  CXXCtorInitializer **MemInits =
3170    reinterpret_cast<CXXCtorInitializer **>(meminits);
3171
3172  // Mapping for the duplicate initializers check.
3173  // For member initializers, this is keyed with a FieldDecl*.
3174  // For base initializers, this is keyed with a Type*.
3175  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3176
3177  // Mapping for the inconsistent anonymous-union initializers check.
3178  RedundantUnionMap MemberUnions;
3179
3180  bool HadError = false;
3181  for (unsigned i = 0; i < NumMemInits; i++) {
3182    CXXCtorInitializer *Init = MemInits[i];
3183
3184    // Set the source order index.
3185    Init->setSourceOrder(i);
3186
3187    if (Init->isAnyMemberInitializer()) {
3188      FieldDecl *Field = Init->getAnyMember();
3189      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3190          CheckRedundantUnionInit(*this, Init, MemberUnions))
3191        HadError = true;
3192    } else if (Init->isBaseInitializer()) {
3193      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3194      if (CheckRedundantInit(*this, Init, Members[Key]))
3195        HadError = true;
3196    } else {
3197      assert(Init->isDelegatingInitializer());
3198      // This must be the only initializer
3199      if (i != 0 || NumMemInits > 1) {
3200        Diag(MemInits[0]->getSourceLocation(),
3201             diag::err_delegating_initializer_alone)
3202          << MemInits[0]->getSourceRange();
3203        HadError = true;
3204        // We will treat this as being the only initializer.
3205      }
3206      SetDelegatingInitializer(Constructor, MemInits[i]);
3207      // Return immediately as the initializer is set.
3208      return;
3209    }
3210  }
3211
3212  if (HadError)
3213    return;
3214
3215  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3216
3217  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3218}
3219
3220void
3221Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3222                                             CXXRecordDecl *ClassDecl) {
3223  // Ignore dependent contexts. Also ignore unions, since their members never
3224  // have destructors implicitly called.
3225  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3226    return;
3227
3228  // FIXME: all the access-control diagnostics are positioned on the
3229  // field/base declaration.  That's probably good; that said, the
3230  // user might reasonably want to know why the destructor is being
3231  // emitted, and we currently don't say.
3232
3233  // Non-static data members.
3234  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3235       E = ClassDecl->field_end(); I != E; ++I) {
3236    FieldDecl *Field = *I;
3237    if (Field->isInvalidDecl())
3238      continue;
3239
3240    // Don't destroy incomplete or zero-length arrays.
3241    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3242      continue;
3243
3244    QualType FieldType = Context.getBaseElementType(Field->getType());
3245
3246    const RecordType* RT = FieldType->getAs<RecordType>();
3247    if (!RT)
3248      continue;
3249
3250    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3251    if (FieldClassDecl->isInvalidDecl())
3252      continue;
3253    if (FieldClassDecl->hasTrivialDestructor())
3254      continue;
3255
3256    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3257    assert(Dtor && "No dtor found for FieldClassDecl!");
3258    CheckDestructorAccess(Field->getLocation(), Dtor,
3259                          PDiag(diag::err_access_dtor_field)
3260                            << Field->getDeclName()
3261                            << FieldType);
3262
3263    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3264  }
3265
3266  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3267
3268  // Bases.
3269  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3270       E = ClassDecl->bases_end(); Base != E; ++Base) {
3271    // Bases are always records in a well-formed non-dependent class.
3272    const RecordType *RT = Base->getType()->getAs<RecordType>();
3273
3274    // Remember direct virtual bases.
3275    if (Base->isVirtual())
3276      DirectVirtualBases.insert(RT);
3277
3278    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3279    // If our base class is invalid, we probably can't get its dtor anyway.
3280    if (BaseClassDecl->isInvalidDecl())
3281      continue;
3282    // Ignore trivial destructors.
3283    if (BaseClassDecl->hasTrivialDestructor())
3284      continue;
3285
3286    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3287    assert(Dtor && "No dtor found for BaseClassDecl!");
3288
3289    // FIXME: caret should be on the start of the class name
3290    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3291                          PDiag(diag::err_access_dtor_base)
3292                            << Base->getType()
3293                            << Base->getSourceRange());
3294
3295    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3296  }
3297
3298  // Virtual bases.
3299  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3300       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3301
3302    // Bases are always records in a well-formed non-dependent class.
3303    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3304
3305    // Ignore direct virtual bases.
3306    if (DirectVirtualBases.count(RT))
3307      continue;
3308
3309    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3310    // If our base class is invalid, we probably can't get its dtor anyway.
3311    if (BaseClassDecl->isInvalidDecl())
3312      continue;
3313    // Ignore trivial destructors.
3314    if (BaseClassDecl->hasTrivialDestructor())
3315      continue;
3316
3317    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3318    assert(Dtor && "No dtor found for BaseClassDecl!");
3319    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3320                          PDiag(diag::err_access_dtor_vbase)
3321                            << VBase->getType());
3322
3323    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3324  }
3325}
3326
3327void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3328  if (!CDtorDecl)
3329    return;
3330
3331  if (CXXConstructorDecl *Constructor
3332      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3333    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3334}
3335
3336bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3337                                  unsigned DiagID, AbstractDiagSelID SelID) {
3338  if (SelID == -1)
3339    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3340  else
3341    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3342}
3343
3344bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3345                                  const PartialDiagnostic &PD) {
3346  if (!getLangOptions().CPlusPlus)
3347    return false;
3348
3349  if (const ArrayType *AT = Context.getAsArrayType(T))
3350    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3351
3352  if (const PointerType *PT = T->getAs<PointerType>()) {
3353    // Find the innermost pointer type.
3354    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3355      PT = T;
3356
3357    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3358      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3359  }
3360
3361  const RecordType *RT = T->getAs<RecordType>();
3362  if (!RT)
3363    return false;
3364
3365  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3366
3367  // We can't answer whether something is abstract until it has a
3368  // definition.  If it's currently being defined, we'll walk back
3369  // over all the declarations when we have a full definition.
3370  const CXXRecordDecl *Def = RD->getDefinition();
3371  if (!Def || Def->isBeingDefined())
3372    return false;
3373
3374  if (!RD->isAbstract())
3375    return false;
3376
3377  Diag(Loc, PD) << RD->getDeclName();
3378  DiagnoseAbstractType(RD);
3379
3380  return true;
3381}
3382
3383void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3384  // Check if we've already emitted the list of pure virtual functions
3385  // for this class.
3386  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3387    return;
3388
3389  CXXFinalOverriderMap FinalOverriders;
3390  RD->getFinalOverriders(FinalOverriders);
3391
3392  // Keep a set of seen pure methods so we won't diagnose the same method
3393  // more than once.
3394  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3395
3396  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3397                                   MEnd = FinalOverriders.end();
3398       M != MEnd;
3399       ++M) {
3400    for (OverridingMethods::iterator SO = M->second.begin(),
3401                                  SOEnd = M->second.end();
3402         SO != SOEnd; ++SO) {
3403      // C++ [class.abstract]p4:
3404      //   A class is abstract if it contains or inherits at least one
3405      //   pure virtual function for which the final overrider is pure
3406      //   virtual.
3407
3408      //
3409      if (SO->second.size() != 1)
3410        continue;
3411
3412      if (!SO->second.front().Method->isPure())
3413        continue;
3414
3415      if (!SeenPureMethods.insert(SO->second.front().Method))
3416        continue;
3417
3418      Diag(SO->second.front().Method->getLocation(),
3419           diag::note_pure_virtual_function)
3420        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3421    }
3422  }
3423
3424  if (!PureVirtualClassDiagSet)
3425    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3426  PureVirtualClassDiagSet->insert(RD);
3427}
3428
3429namespace {
3430struct AbstractUsageInfo {
3431  Sema &S;
3432  CXXRecordDecl *Record;
3433  CanQualType AbstractType;
3434  bool Invalid;
3435
3436  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3437    : S(S), Record(Record),
3438      AbstractType(S.Context.getCanonicalType(
3439                   S.Context.getTypeDeclType(Record))),
3440      Invalid(false) {}
3441
3442  void DiagnoseAbstractType() {
3443    if (Invalid) return;
3444    S.DiagnoseAbstractType(Record);
3445    Invalid = true;
3446  }
3447
3448  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3449};
3450
3451struct CheckAbstractUsage {
3452  AbstractUsageInfo &Info;
3453  const NamedDecl *Ctx;
3454
3455  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3456    : Info(Info), Ctx(Ctx) {}
3457
3458  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3459    switch (TL.getTypeLocClass()) {
3460#define ABSTRACT_TYPELOC(CLASS, PARENT)
3461#define TYPELOC(CLASS, PARENT) \
3462    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3463#include "clang/AST/TypeLocNodes.def"
3464    }
3465  }
3466
3467  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3468    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3469    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3470      if (!TL.getArg(I))
3471        continue;
3472
3473      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3474      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3475    }
3476  }
3477
3478  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3479    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3480  }
3481
3482  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3483    // Visit the type parameters from a permissive context.
3484    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3485      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3486      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3487        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3488          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3489      // TODO: other template argument types?
3490    }
3491  }
3492
3493  // Visit pointee types from a permissive context.
3494#define CheckPolymorphic(Type) \
3495  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3496    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3497  }
3498  CheckPolymorphic(PointerTypeLoc)
3499  CheckPolymorphic(ReferenceTypeLoc)
3500  CheckPolymorphic(MemberPointerTypeLoc)
3501  CheckPolymorphic(BlockPointerTypeLoc)
3502  CheckPolymorphic(AtomicTypeLoc)
3503
3504  /// Handle all the types we haven't given a more specific
3505  /// implementation for above.
3506  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3507    // Every other kind of type that we haven't called out already
3508    // that has an inner type is either (1) sugar or (2) contains that
3509    // inner type in some way as a subobject.
3510    if (TypeLoc Next = TL.getNextTypeLoc())
3511      return Visit(Next, Sel);
3512
3513    // If there's no inner type and we're in a permissive context,
3514    // don't diagnose.
3515    if (Sel == Sema::AbstractNone) return;
3516
3517    // Check whether the type matches the abstract type.
3518    QualType T = TL.getType();
3519    if (T->isArrayType()) {
3520      Sel = Sema::AbstractArrayType;
3521      T = Info.S.Context.getBaseElementType(T);
3522    }
3523    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3524    if (CT != Info.AbstractType) return;
3525
3526    // It matched; do some magic.
3527    if (Sel == Sema::AbstractArrayType) {
3528      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3529        << T << TL.getSourceRange();
3530    } else {
3531      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3532        << Sel << T << TL.getSourceRange();
3533    }
3534    Info.DiagnoseAbstractType();
3535  }
3536};
3537
3538void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3539                                  Sema::AbstractDiagSelID Sel) {
3540  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3541}
3542
3543}
3544
3545/// Check for invalid uses of an abstract type in a method declaration.
3546static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3547                                    CXXMethodDecl *MD) {
3548  // No need to do the check on definitions, which require that
3549  // the return/param types be complete.
3550  if (MD->doesThisDeclarationHaveABody())
3551    return;
3552
3553  // For safety's sake, just ignore it if we don't have type source
3554  // information.  This should never happen for non-implicit methods,
3555  // but...
3556  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3557    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3558}
3559
3560/// Check for invalid uses of an abstract type within a class definition.
3561static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3562                                    CXXRecordDecl *RD) {
3563  for (CXXRecordDecl::decl_iterator
3564         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3565    Decl *D = *I;
3566    if (D->isImplicit()) continue;
3567
3568    // Methods and method templates.
3569    if (isa<CXXMethodDecl>(D)) {
3570      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3571    } else if (isa<FunctionTemplateDecl>(D)) {
3572      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3573      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3574
3575    // Fields and static variables.
3576    } else if (isa<FieldDecl>(D)) {
3577      FieldDecl *FD = cast<FieldDecl>(D);
3578      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3579        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3580    } else if (isa<VarDecl>(D)) {
3581      VarDecl *VD = cast<VarDecl>(D);
3582      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3583        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3584
3585    // Nested classes and class templates.
3586    } else if (isa<CXXRecordDecl>(D)) {
3587      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3588    } else if (isa<ClassTemplateDecl>(D)) {
3589      CheckAbstractClassUsage(Info,
3590                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3591    }
3592  }
3593}
3594
3595/// \brief Perform semantic checks on a class definition that has been
3596/// completing, introducing implicitly-declared members, checking for
3597/// abstract types, etc.
3598void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3599  if (!Record)
3600    return;
3601
3602  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3603    AbstractUsageInfo Info(*this, Record);
3604    CheckAbstractClassUsage(Info, Record);
3605  }
3606
3607  // If this is not an aggregate type and has no user-declared constructor,
3608  // complain about any non-static data members of reference or const scalar
3609  // type, since they will never get initializers.
3610  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3611      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3612    bool Complained = false;
3613    for (RecordDecl::field_iterator F = Record->field_begin(),
3614                                 FEnd = Record->field_end();
3615         F != FEnd; ++F) {
3616      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3617        continue;
3618
3619      if (F->getType()->isReferenceType() ||
3620          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3621        if (!Complained) {
3622          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3623            << Record->getTagKind() << Record;
3624          Complained = true;
3625        }
3626
3627        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3628          << F->getType()->isReferenceType()
3629          << F->getDeclName();
3630      }
3631    }
3632  }
3633
3634  if (Record->isDynamicClass() && !Record->isDependentType())
3635    DynamicClasses.push_back(Record);
3636
3637  if (Record->getIdentifier()) {
3638    // C++ [class.mem]p13:
3639    //   If T is the name of a class, then each of the following shall have a
3640    //   name different from T:
3641    //     - every member of every anonymous union that is a member of class T.
3642    //
3643    // C++ [class.mem]p14:
3644    //   In addition, if class T has a user-declared constructor (12.1), every
3645    //   non-static data member of class T shall have a name different from T.
3646    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3647         R.first != R.second; ++R.first) {
3648      NamedDecl *D = *R.first;
3649      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3650          isa<IndirectFieldDecl>(D)) {
3651        Diag(D->getLocation(), diag::err_member_name_of_class)
3652          << D->getDeclName();
3653        break;
3654      }
3655    }
3656  }
3657
3658  // Warn if the class has virtual methods but non-virtual public destructor.
3659  if (Record->isPolymorphic() && !Record->isDependentType()) {
3660    CXXDestructorDecl *dtor = Record->getDestructor();
3661    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3662      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3663           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3664  }
3665
3666  // See if a method overloads virtual methods in a base
3667  /// class without overriding any.
3668  if (!Record->isDependentType()) {
3669    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3670                                     MEnd = Record->method_end();
3671         M != MEnd; ++M) {
3672      if (!(*M)->isStatic())
3673        DiagnoseHiddenVirtualMethods(Record, *M);
3674    }
3675  }
3676
3677  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3678  // function that is not a constructor declares that member function to be
3679  // const. [...] The class of which that function is a member shall be
3680  // a literal type.
3681  //
3682  // It's fine to diagnose constructors here too: such constructors cannot
3683  // produce a constant expression, so are ill-formed (no diagnostic required).
3684  //
3685  // If the class has virtual bases, any constexpr members will already have
3686  // been diagnosed by the checks performed on the member declaration, so
3687  // suppress this (less useful) diagnostic.
3688  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3689      !Record->isLiteral() && !Record->getNumVBases()) {
3690    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3691                                     MEnd = Record->method_end();
3692         M != MEnd; ++M) {
3693      if (M->isConstexpr() && M->isInstance()) {
3694        switch (Record->getTemplateSpecializationKind()) {
3695        case TSK_ImplicitInstantiation:
3696        case TSK_ExplicitInstantiationDeclaration:
3697        case TSK_ExplicitInstantiationDefinition:
3698          // If a template instantiates to a non-literal type, but its members
3699          // instantiate to constexpr functions, the template is technically
3700          // ill-formed, but we allow it for sanity. Such members are treated as
3701          // non-constexpr.
3702          (*M)->setConstexpr(false);
3703          continue;
3704
3705        case TSK_Undeclared:
3706        case TSK_ExplicitSpecialization:
3707          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3708                             PDiag(diag::err_constexpr_method_non_literal));
3709          break;
3710        }
3711
3712        // Only produce one error per class.
3713        break;
3714      }
3715    }
3716  }
3717
3718  // Declare inherited constructors. We do this eagerly here because:
3719  // - The standard requires an eager diagnostic for conflicting inherited
3720  //   constructors from different classes.
3721  // - The lazy declaration of the other implicit constructors is so as to not
3722  //   waste space and performance on classes that are not meant to be
3723  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3724  //   have inherited constructors.
3725  DeclareInheritedConstructors(Record);
3726
3727  if (!Record->isDependentType())
3728    CheckExplicitlyDefaultedMethods(Record);
3729}
3730
3731void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3732  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3733                                      ME = Record->method_end();
3734       MI != ME; ++MI) {
3735    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3736      switch (getSpecialMember(*MI)) {
3737      case CXXDefaultConstructor:
3738        CheckExplicitlyDefaultedDefaultConstructor(
3739                                                  cast<CXXConstructorDecl>(*MI));
3740        break;
3741
3742      case CXXDestructor:
3743        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3744        break;
3745
3746      case CXXCopyConstructor:
3747        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3748        break;
3749
3750      case CXXCopyAssignment:
3751        CheckExplicitlyDefaultedCopyAssignment(*MI);
3752        break;
3753
3754      case CXXMoveConstructor:
3755        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3756        break;
3757
3758      case CXXMoveAssignment:
3759        CheckExplicitlyDefaultedMoveAssignment(*MI);
3760        break;
3761
3762      case CXXInvalid:
3763        llvm_unreachable("non-special member explicitly defaulted!");
3764      }
3765    }
3766  }
3767
3768}
3769
3770void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3771  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3772
3773  // Whether this was the first-declared instance of the constructor.
3774  // This affects whether we implicitly add an exception spec (and, eventually,
3775  // constexpr). It is also ill-formed to explicitly default a constructor such
3776  // that it would be deleted. (C++0x [decl.fct.def.default])
3777  bool First = CD == CD->getCanonicalDecl();
3778
3779  bool HadError = false;
3780  if (CD->getNumParams() != 0) {
3781    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3782      << CD->getSourceRange();
3783    HadError = true;
3784  }
3785
3786  ImplicitExceptionSpecification Spec
3787    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3788  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3789  if (EPI.ExceptionSpecType == EST_Delayed) {
3790    // Exception specification depends on some deferred part of the class. We'll
3791    // try again when the class's definition has been fully processed.
3792    return;
3793  }
3794  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3795                          *ExceptionType = Context.getFunctionType(
3796                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3797
3798  // C++11 [dcl.fct.def.default]p2:
3799  //   An explicitly-defaulted function may be declared constexpr only if it
3800  //   would have been implicitly declared as constexpr,
3801  if (CD->isConstexpr()) {
3802    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3803      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3804        << CXXDefaultConstructor;
3805      HadError = true;
3806    }
3807  }
3808  //   and may have an explicit exception-specification only if it is compatible
3809  //   with the exception-specification on the implicit declaration.
3810  if (CtorType->hasExceptionSpec()) {
3811    if (CheckEquivalentExceptionSpec(
3812          PDiag(diag::err_incorrect_defaulted_exception_spec)
3813            << CXXDefaultConstructor,
3814          PDiag(),
3815          ExceptionType, SourceLocation(),
3816          CtorType, CD->getLocation())) {
3817      HadError = true;
3818    }
3819  }
3820
3821  //   If a function is explicitly defaulted on its first declaration,
3822  if (First) {
3823    //  -- it is implicitly considered to be constexpr if the implicit
3824    //     definition would be,
3825    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3826
3827    //  -- it is implicitly considered to have the same
3828    //     exception-specification as if it had been implicitly declared
3829    //
3830    // FIXME: a compatible, but different, explicit exception specification
3831    // will be silently overridden. We should issue a warning if this happens.
3832    EPI.ExtInfo = CtorType->getExtInfo();
3833  }
3834
3835  if (HadError) {
3836    CD->setInvalidDecl();
3837    return;
3838  }
3839
3840  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3841    if (First) {
3842      CD->setDeletedAsWritten();
3843    } else {
3844      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3845        << CXXDefaultConstructor;
3846      CD->setInvalidDecl();
3847    }
3848  }
3849}
3850
3851void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3852  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3853
3854  // Whether this was the first-declared instance of the constructor.
3855  bool First = CD == CD->getCanonicalDecl();
3856
3857  bool HadError = false;
3858  if (CD->getNumParams() != 1) {
3859    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3860      << CD->getSourceRange();
3861    HadError = true;
3862  }
3863
3864  ImplicitExceptionSpecification Spec(Context);
3865  bool Const;
3866  llvm::tie(Spec, Const) =
3867    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3868
3869  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3870  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3871                          *ExceptionType = Context.getFunctionType(
3872                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3873
3874  // Check for parameter type matching.
3875  // This is a copy ctor so we know it's a cv-qualified reference to T.
3876  QualType ArgType = CtorType->getArgType(0);
3877  if (ArgType->getPointeeType().isVolatileQualified()) {
3878    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3879    HadError = true;
3880  }
3881  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3882    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3883    HadError = true;
3884  }
3885
3886  // C++11 [dcl.fct.def.default]p2:
3887  //   An explicitly-defaulted function may be declared constexpr only if it
3888  //   would have been implicitly declared as constexpr,
3889  if (CD->isConstexpr()) {
3890    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3891      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3892        << CXXCopyConstructor;
3893      HadError = true;
3894    }
3895  }
3896  //   and may have an explicit exception-specification only if it is compatible
3897  //   with the exception-specification on the implicit declaration.
3898  if (CtorType->hasExceptionSpec()) {
3899    if (CheckEquivalentExceptionSpec(
3900          PDiag(diag::err_incorrect_defaulted_exception_spec)
3901            << CXXCopyConstructor,
3902          PDiag(),
3903          ExceptionType, SourceLocation(),
3904          CtorType, CD->getLocation())) {
3905      HadError = true;
3906    }
3907  }
3908
3909  //   If a function is explicitly defaulted on its first declaration,
3910  if (First) {
3911    //  -- it is implicitly considered to be constexpr if the implicit
3912    //     definition would be,
3913    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3914
3915    //  -- it is implicitly considered to have the same
3916    //     exception-specification as if it had been implicitly declared, and
3917    //
3918    // FIXME: a compatible, but different, explicit exception specification
3919    // will be silently overridden. We should issue a warning if this happens.
3920    EPI.ExtInfo = CtorType->getExtInfo();
3921
3922    //  -- [...] it shall have the same parameter type as if it had been
3923    //     implicitly declared.
3924    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3925  }
3926
3927  if (HadError) {
3928    CD->setInvalidDecl();
3929    return;
3930  }
3931
3932  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3933    if (First) {
3934      CD->setDeletedAsWritten();
3935    } else {
3936      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3937        << CXXCopyConstructor;
3938      CD->setInvalidDecl();
3939    }
3940  }
3941}
3942
3943void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3944  assert(MD->isExplicitlyDefaulted());
3945
3946  // Whether this was the first-declared instance of the operator
3947  bool First = MD == MD->getCanonicalDecl();
3948
3949  bool HadError = false;
3950  if (MD->getNumParams() != 1) {
3951    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3952      << MD->getSourceRange();
3953    HadError = true;
3954  }
3955
3956  QualType ReturnType =
3957    MD->getType()->getAs<FunctionType>()->getResultType();
3958  if (!ReturnType->isLValueReferenceType() ||
3959      !Context.hasSameType(
3960        Context.getCanonicalType(ReturnType->getPointeeType()),
3961        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3962    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3963    HadError = true;
3964  }
3965
3966  ImplicitExceptionSpecification Spec(Context);
3967  bool Const;
3968  llvm::tie(Spec, Const) =
3969    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3970
3971  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3972  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3973                          *ExceptionType = Context.getFunctionType(
3974                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3975
3976  QualType ArgType = OperType->getArgType(0);
3977  if (!ArgType->isLValueReferenceType()) {
3978    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3979    HadError = true;
3980  } else {
3981    if (ArgType->getPointeeType().isVolatileQualified()) {
3982      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3983      HadError = true;
3984    }
3985    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3986      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3987      HadError = true;
3988    }
3989  }
3990
3991  if (OperType->getTypeQuals()) {
3992    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3993    HadError = true;
3994  }
3995
3996  if (OperType->hasExceptionSpec()) {
3997    if (CheckEquivalentExceptionSpec(
3998          PDiag(diag::err_incorrect_defaulted_exception_spec)
3999            << CXXCopyAssignment,
4000          PDiag(),
4001          ExceptionType, SourceLocation(),
4002          OperType, MD->getLocation())) {
4003      HadError = true;
4004    }
4005  }
4006  if (First) {
4007    // We set the declaration to have the computed exception spec here.
4008    // We duplicate the one parameter type.
4009    EPI.RefQualifier = OperType->getRefQualifier();
4010    EPI.ExtInfo = OperType->getExtInfo();
4011    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4012  }
4013
4014  if (HadError) {
4015    MD->setInvalidDecl();
4016    return;
4017  }
4018
4019  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4020    if (First) {
4021      MD->setDeletedAsWritten();
4022    } else {
4023      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4024        << CXXCopyAssignment;
4025      MD->setInvalidDecl();
4026    }
4027  }
4028}
4029
4030void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4031  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4032
4033  // Whether this was the first-declared instance of the constructor.
4034  bool First = CD == CD->getCanonicalDecl();
4035
4036  bool HadError = false;
4037  if (CD->getNumParams() != 1) {
4038    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4039      << CD->getSourceRange();
4040    HadError = true;
4041  }
4042
4043  ImplicitExceptionSpecification Spec(
4044      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4045
4046  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4047  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4048                          *ExceptionType = Context.getFunctionType(
4049                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4050
4051  // Check for parameter type matching.
4052  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4053  QualType ArgType = CtorType->getArgType(0);
4054  if (ArgType->getPointeeType().isVolatileQualified()) {
4055    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4056    HadError = true;
4057  }
4058  if (ArgType->getPointeeType().isConstQualified()) {
4059    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4060    HadError = true;
4061  }
4062
4063  // C++11 [dcl.fct.def.default]p2:
4064  //   An explicitly-defaulted function may be declared constexpr only if it
4065  //   would have been implicitly declared as constexpr,
4066  if (CD->isConstexpr()) {
4067    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4068      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4069        << CXXMoveConstructor;
4070      HadError = true;
4071    }
4072  }
4073  //   and may have an explicit exception-specification only if it is compatible
4074  //   with the exception-specification on the implicit declaration.
4075  if (CtorType->hasExceptionSpec()) {
4076    if (CheckEquivalentExceptionSpec(
4077          PDiag(diag::err_incorrect_defaulted_exception_spec)
4078            << CXXMoveConstructor,
4079          PDiag(),
4080          ExceptionType, SourceLocation(),
4081          CtorType, CD->getLocation())) {
4082      HadError = true;
4083    }
4084  }
4085
4086  //   If a function is explicitly defaulted on its first declaration,
4087  if (First) {
4088    //  -- it is implicitly considered to be constexpr if the implicit
4089    //     definition would be,
4090    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4091
4092    //  -- it is implicitly considered to have the same
4093    //     exception-specification as if it had been implicitly declared, and
4094    //
4095    // FIXME: a compatible, but different, explicit exception specification
4096    // will be silently overridden. We should issue a warning if this happens.
4097    EPI.ExtInfo = CtorType->getExtInfo();
4098
4099    //  -- [...] it shall have the same parameter type as if it had been
4100    //     implicitly declared.
4101    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4102  }
4103
4104  if (HadError) {
4105    CD->setInvalidDecl();
4106    return;
4107  }
4108
4109  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4110    if (First) {
4111      CD->setDeletedAsWritten();
4112    } else {
4113      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4114        << CXXMoveConstructor;
4115      CD->setInvalidDecl();
4116    }
4117  }
4118}
4119
4120void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4121  assert(MD->isExplicitlyDefaulted());
4122
4123  // Whether this was the first-declared instance of the operator
4124  bool First = MD == MD->getCanonicalDecl();
4125
4126  bool HadError = false;
4127  if (MD->getNumParams() != 1) {
4128    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4129      << MD->getSourceRange();
4130    HadError = true;
4131  }
4132
4133  QualType ReturnType =
4134    MD->getType()->getAs<FunctionType>()->getResultType();
4135  if (!ReturnType->isLValueReferenceType() ||
4136      !Context.hasSameType(
4137        Context.getCanonicalType(ReturnType->getPointeeType()),
4138        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4139    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4140    HadError = true;
4141  }
4142
4143  ImplicitExceptionSpecification Spec(
4144      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4145
4146  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4147  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4148                          *ExceptionType = Context.getFunctionType(
4149                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4150
4151  QualType ArgType = OperType->getArgType(0);
4152  if (!ArgType->isRValueReferenceType()) {
4153    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4154    HadError = true;
4155  } else {
4156    if (ArgType->getPointeeType().isVolatileQualified()) {
4157      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4158      HadError = true;
4159    }
4160    if (ArgType->getPointeeType().isConstQualified()) {
4161      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4162      HadError = true;
4163    }
4164  }
4165
4166  if (OperType->getTypeQuals()) {
4167    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4168    HadError = true;
4169  }
4170
4171  if (OperType->hasExceptionSpec()) {
4172    if (CheckEquivalentExceptionSpec(
4173          PDiag(diag::err_incorrect_defaulted_exception_spec)
4174            << CXXMoveAssignment,
4175          PDiag(),
4176          ExceptionType, SourceLocation(),
4177          OperType, MD->getLocation())) {
4178      HadError = true;
4179    }
4180  }
4181  if (First) {
4182    // We set the declaration to have the computed exception spec here.
4183    // We duplicate the one parameter type.
4184    EPI.RefQualifier = OperType->getRefQualifier();
4185    EPI.ExtInfo = OperType->getExtInfo();
4186    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4187  }
4188
4189  if (HadError) {
4190    MD->setInvalidDecl();
4191    return;
4192  }
4193
4194  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4195    if (First) {
4196      MD->setDeletedAsWritten();
4197    } else {
4198      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4199        << CXXMoveAssignment;
4200      MD->setInvalidDecl();
4201    }
4202  }
4203}
4204
4205void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4206  assert(DD->isExplicitlyDefaulted());
4207
4208  // Whether this was the first-declared instance of the destructor.
4209  bool First = DD == DD->getCanonicalDecl();
4210
4211  ImplicitExceptionSpecification Spec
4212    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4213  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4214  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4215                          *ExceptionType = Context.getFunctionType(
4216                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4217
4218  if (DtorType->hasExceptionSpec()) {
4219    if (CheckEquivalentExceptionSpec(
4220          PDiag(diag::err_incorrect_defaulted_exception_spec)
4221            << CXXDestructor,
4222          PDiag(),
4223          ExceptionType, SourceLocation(),
4224          DtorType, DD->getLocation())) {
4225      DD->setInvalidDecl();
4226      return;
4227    }
4228  }
4229  if (First) {
4230    // We set the declaration to have the computed exception spec here.
4231    // There are no parameters.
4232    EPI.ExtInfo = DtorType->getExtInfo();
4233    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4234  }
4235
4236  if (ShouldDeleteDestructor(DD)) {
4237    if (First) {
4238      DD->setDeletedAsWritten();
4239    } else {
4240      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4241        << CXXDestructor;
4242      DD->setInvalidDecl();
4243    }
4244  }
4245}
4246
4247/// This function implements the following C++0x paragraphs:
4248///  - [class.ctor]/5
4249///  - [class.copy]/11
4250bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4251  assert(!MD->isInvalidDecl());
4252  CXXRecordDecl *RD = MD->getParent();
4253  assert(!RD->isDependentType() && "do deletion after instantiation");
4254  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4255    return false;
4256
4257  bool IsUnion = RD->isUnion();
4258  bool IsConstructor = false;
4259  bool IsAssignment = false;
4260  bool IsMove = false;
4261
4262  bool ConstArg = false;
4263
4264  switch (CSM) {
4265  case CXXDefaultConstructor:
4266    IsConstructor = true;
4267    break;
4268  case CXXCopyConstructor:
4269    IsConstructor = true;
4270    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4271    break;
4272  case CXXMoveConstructor:
4273    IsConstructor = true;
4274    IsMove = true;
4275    break;
4276  default:
4277    llvm_unreachable("function only currently implemented for default ctors");
4278  }
4279
4280  SourceLocation Loc = MD->getLocation();
4281
4282  // Do access control from the special member function
4283  ContextRAII MethodContext(*this, MD);
4284
4285  bool AllConst = true;
4286
4287  // We do this because we should never actually use an anonymous
4288  // union's constructor.
4289  if (IsUnion && RD->isAnonymousStructOrUnion())
4290    return false;
4291
4292  // FIXME: We should put some diagnostic logic right into this function.
4293
4294  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4295                                          BE = RD->bases_end();
4296       BI != BE; ++BI) {
4297    // We'll handle this one later
4298    if (BI->isVirtual())
4299      continue;
4300
4301    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4302    assert(BaseDecl && "base isn't a CXXRecordDecl");
4303
4304    // Unless we have an assignment operator, the base's destructor must
4305    // be accessible and not deleted.
4306    if (!IsAssignment) {
4307      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4308      if (BaseDtor->isDeleted())
4309        return true;
4310      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4311          AR_accessible)
4312        return true;
4313    }
4314
4315    // Finding the corresponding member in the base should lead to a
4316    // unique, accessible, non-deleted function. If we are doing
4317    // a destructor, we have already checked this case.
4318    if (CSM != CXXDestructor) {
4319      SpecialMemberOverloadResult *SMOR =
4320        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4321                            false);
4322      if (!SMOR->hasSuccess())
4323        return true;
4324      CXXMethodDecl *BaseMember = SMOR->getMethod();
4325      if (IsConstructor) {
4326        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4327        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4328                                   PDiag()) != AR_accessible)
4329          return true;
4330
4331        // For a move operation, the corresponding operation must actually
4332        // be a move operation (and not a copy selected by overload
4333        // resolution) unless we are working on a trivially copyable class.
4334        if (IsMove && !BaseCtor->isMoveConstructor() &&
4335            !BaseDecl->isTriviallyCopyable())
4336          return true;
4337      }
4338    }
4339  }
4340
4341  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4342                                          BE = RD->vbases_end();
4343       BI != BE; ++BI) {
4344    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4345    assert(BaseDecl && "base isn't a CXXRecordDecl");
4346
4347    // Unless we have an assignment operator, the base's destructor must
4348    // be accessible and not deleted.
4349    if (!IsAssignment) {
4350      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4351      if (BaseDtor->isDeleted())
4352        return true;
4353      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4354          AR_accessible)
4355        return true;
4356    }
4357
4358    // Finding the corresponding member in the base should lead to a
4359    // unique, accessible, non-deleted function.
4360    if (CSM != CXXDestructor) {
4361      SpecialMemberOverloadResult *SMOR =
4362        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4363                            false);
4364      if (!SMOR->hasSuccess())
4365        return true;
4366      CXXMethodDecl *BaseMember = SMOR->getMethod();
4367      if (IsConstructor) {
4368        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4369        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4370                                   PDiag()) != AR_accessible)
4371          return true;
4372
4373        // For a move operation, the corresponding operation must actually
4374        // be a move operation (and not a copy selected by overload
4375        // resolution) unless we are working on a trivially copyable class.
4376        if (IsMove && !BaseCtor->isMoveConstructor() &&
4377            !BaseDecl->isTriviallyCopyable())
4378          return true;
4379      }
4380    }
4381  }
4382
4383  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4384                                     FE = RD->field_end();
4385       FI != FE; ++FI) {
4386    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4387      continue;
4388
4389    QualType FieldType = Context.getBaseElementType(FI->getType());
4390    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4391
4392    // For a default constructor, all references must be initialized in-class
4393    // and, if a union, it must have a non-const member.
4394    if (CSM == CXXDefaultConstructor) {
4395      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4396        return true;
4397
4398      if (IsUnion && !FieldType.isConstQualified())
4399        AllConst = false;
4400    // For a copy constructor, data members must not be of rvalue reference
4401    // type.
4402    } else if (CSM == CXXCopyConstructor) {
4403      if (FieldType->isRValueReferenceType())
4404        return true;
4405    }
4406
4407    if (FieldRecord) {
4408      // For a default constructor, a const member must have a user-provided
4409      // default constructor or else be explicitly initialized.
4410      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4411          !FI->hasInClassInitializer() &&
4412          !FieldRecord->hasUserProvidedDefaultConstructor())
4413        return true;
4414
4415      // Some additional restrictions exist on the variant members.
4416      if (!IsUnion && FieldRecord->isUnion() &&
4417          FieldRecord->isAnonymousStructOrUnion()) {
4418        // We're okay to reuse AllConst here since we only care about the
4419        // value otherwise if we're in a union.
4420        AllConst = true;
4421
4422        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4423                                           UE = FieldRecord->field_end();
4424             UI != UE; ++UI) {
4425          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4426          CXXRecordDecl *UnionFieldRecord =
4427            UnionFieldType->getAsCXXRecordDecl();
4428
4429          if (!UnionFieldType.isConstQualified())
4430            AllConst = false;
4431
4432          if (UnionFieldRecord) {
4433            // FIXME: Checking for accessibility and validity of this
4434            //        destructor is technically going beyond the
4435            //        standard, but this is believed to be a defect.
4436            if (!IsAssignment) {
4437              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4438              if (FieldDtor->isDeleted())
4439                return true;
4440              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4441                  AR_accessible)
4442                return true;
4443              if (!FieldDtor->isTrivial())
4444                return true;
4445            }
4446
4447            if (CSM != CXXDestructor) {
4448              SpecialMemberOverloadResult *SMOR =
4449                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4450                                    false, false, false);
4451              // FIXME: Checking for accessibility and validity of this
4452              //        corresponding member is technically going beyond the
4453              //        standard, but this is believed to be a defect.
4454              if (!SMOR->hasSuccess())
4455                return true;
4456
4457              CXXMethodDecl *FieldMember = SMOR->getMethod();
4458              // A member of a union must have a trivial corresponding
4459              // constructor.
4460              if (!FieldMember->isTrivial())
4461                return true;
4462
4463              if (IsConstructor) {
4464                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4465                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4466                                           PDiag()) != AR_accessible)
4467                return true;
4468              }
4469            }
4470          }
4471        }
4472
4473        // At least one member in each anonymous union must be non-const
4474        if (CSM == CXXDefaultConstructor && AllConst)
4475          return true;
4476
4477        // Don't try to initialize the anonymous union
4478        // This is technically non-conformant, but sanity demands it.
4479        continue;
4480      }
4481
4482      // Unless we're doing assignment, the field's destructor must be
4483      // accessible and not deleted.
4484      if (!IsAssignment) {
4485        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4486        if (FieldDtor->isDeleted())
4487          return true;
4488        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4489            AR_accessible)
4490          return true;
4491      }
4492
4493      // Check that the corresponding member of the field is accessible,
4494      // unique, and non-deleted. We don't do this if it has an explicit
4495      // initialization when default-constructing.
4496      if (CSM != CXXDestructor &&
4497          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4498        SpecialMemberOverloadResult *SMOR =
4499          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4500                              false);
4501        if (!SMOR->hasSuccess())
4502          return true;
4503
4504        CXXMethodDecl *FieldMember = SMOR->getMethod();
4505        if (IsConstructor) {
4506          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4507          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4508                                     PDiag()) != AR_accessible)
4509          return true;
4510
4511          // For a move operation, the corresponding operation must actually
4512          // be a move operation (and not a copy selected by overload
4513          // resolution) unless we are working on a trivially copyable class.
4514          if (IsMove && !FieldCtor->isMoveConstructor() &&
4515              !FieldRecord->isTriviallyCopyable())
4516            return true;
4517        }
4518
4519        // We need the corresponding member of a union to be trivial so that
4520        // we can safely copy them all simultaneously.
4521        // FIXME: Note that performing the check here (where we rely on the lack
4522        // of an in-class initializer) is technically ill-formed. However, this
4523        // seems most obviously to be a bug in the standard.
4524        if (IsUnion && !FieldMember->isTrivial())
4525          return true;
4526      }
4527    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4528               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4529      // We can't initialize a const member of non-class type to any value.
4530      return true;
4531    }
4532  }
4533
4534  // We can't have all const members in a union when default-constructing,
4535  // or else they're all nonsensical garbage values that can't be changed.
4536  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4537    return true;
4538
4539  return false;
4540}
4541
4542bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4543  CXXRecordDecl *RD = MD->getParent();
4544  assert(!RD->isDependentType() && "do deletion after instantiation");
4545  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4546    return false;
4547
4548  SourceLocation Loc = MD->getLocation();
4549
4550  // Do access control from the constructor
4551  ContextRAII MethodContext(*this, MD);
4552
4553  bool Union = RD->isUnion();
4554
4555  unsigned ArgQuals =
4556    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4557      Qualifiers::Const : 0;
4558
4559  // We do this because we should never actually use an anonymous
4560  // union's constructor.
4561  if (Union && RD->isAnonymousStructOrUnion())
4562    return false;
4563
4564  // FIXME: We should put some diagnostic logic right into this function.
4565
4566  // C++0x [class.copy]/20
4567  //    A defaulted [copy] assignment operator for class X is defined as deleted
4568  //    if X has:
4569
4570  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4571                                          BE = RD->bases_end();
4572       BI != BE; ++BI) {
4573    // We'll handle this one later
4574    if (BI->isVirtual())
4575      continue;
4576
4577    QualType BaseType = BI->getType();
4578    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4579    assert(BaseDecl && "base isn't a CXXRecordDecl");
4580
4581    // -- a [direct base class] B that cannot be [copied] because overload
4582    //    resolution, as applied to B's [copy] assignment operator, results in
4583    //    an ambiguity or a function that is deleted or inaccessible from the
4584    //    assignment operator
4585    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4586                                                      0);
4587    if (!CopyOper || CopyOper->isDeleted())
4588      return true;
4589    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4590      return true;
4591  }
4592
4593  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4594                                          BE = RD->vbases_end();
4595       BI != BE; ++BI) {
4596    QualType BaseType = BI->getType();
4597    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4598    assert(BaseDecl && "base isn't a CXXRecordDecl");
4599
4600    // -- a [virtual base class] B that cannot be [copied] because overload
4601    //    resolution, as applied to B's [copy] assignment operator, results in
4602    //    an ambiguity or a function that is deleted or inaccessible from the
4603    //    assignment operator
4604    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4605                                                      0);
4606    if (!CopyOper || CopyOper->isDeleted())
4607      return true;
4608    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4609      return true;
4610  }
4611
4612  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4613                                     FE = RD->field_end();
4614       FI != FE; ++FI) {
4615    if (FI->isUnnamedBitfield())
4616      continue;
4617
4618    QualType FieldType = Context.getBaseElementType(FI->getType());
4619
4620    // -- a non-static data member of reference type
4621    if (FieldType->isReferenceType())
4622      return true;
4623
4624    // -- a non-static data member of const non-class type (or array thereof)
4625    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4626      return true;
4627
4628    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4629
4630    if (FieldRecord) {
4631      // This is an anonymous union
4632      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4633        // Anonymous unions inside unions do not variant members create
4634        if (!Union) {
4635          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4636                                             UE = FieldRecord->field_end();
4637               UI != UE; ++UI) {
4638            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4639            CXXRecordDecl *UnionFieldRecord =
4640              UnionFieldType->getAsCXXRecordDecl();
4641
4642            // -- a variant member with a non-trivial [copy] assignment operator
4643            //    and X is a union-like class
4644            if (UnionFieldRecord &&
4645                !UnionFieldRecord->hasTrivialCopyAssignment())
4646              return true;
4647          }
4648        }
4649
4650        // Don't try to initalize an anonymous union
4651        continue;
4652      // -- a variant member with a non-trivial [copy] assignment operator
4653      //    and X is a union-like class
4654      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4655          return true;
4656      }
4657
4658      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4659                                                        false, 0);
4660      if (!CopyOper || CopyOper->isDeleted())
4661        return true;
4662      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4663        return true;
4664    }
4665  }
4666
4667  return false;
4668}
4669
4670bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4671  CXXRecordDecl *RD = MD->getParent();
4672  assert(!RD->isDependentType() && "do deletion after instantiation");
4673  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4674    return false;
4675
4676  SourceLocation Loc = MD->getLocation();
4677
4678  // Do access control from the constructor
4679  ContextRAII MethodContext(*this, MD);
4680
4681  bool Union = RD->isUnion();
4682
4683  // We do this because we should never actually use an anonymous
4684  // union's constructor.
4685  if (Union && RD->isAnonymousStructOrUnion())
4686    return false;
4687
4688  // C++0x [class.copy]/20
4689  //    A defaulted [move] assignment operator for class X is defined as deleted
4690  //    if X has:
4691
4692  //    -- for the move constructor, [...] any direct or indirect virtual base
4693  //       class.
4694  if (RD->getNumVBases() != 0)
4695    return true;
4696
4697  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4698                                          BE = RD->bases_end();
4699       BI != BE; ++BI) {
4700
4701    QualType BaseType = BI->getType();
4702    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4703    assert(BaseDecl && "base isn't a CXXRecordDecl");
4704
4705    // -- a [direct base class] B that cannot be [moved] because overload
4706    //    resolution, as applied to B's [move] assignment operator, results in
4707    //    an ambiguity or a function that is deleted or inaccessible from the
4708    //    assignment operator
4709    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4710    if (!MoveOper || MoveOper->isDeleted())
4711      return true;
4712    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4713      return true;
4714
4715    // -- for the move assignment operator, a [direct base class] with a type
4716    //    that does not have a move assignment operator and is not trivially
4717    //    copyable.
4718    if (!MoveOper->isMoveAssignmentOperator() &&
4719        !BaseDecl->isTriviallyCopyable())
4720      return true;
4721  }
4722
4723  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4724                                     FE = RD->field_end();
4725       FI != FE; ++FI) {
4726    if (FI->isUnnamedBitfield())
4727      continue;
4728
4729    QualType FieldType = Context.getBaseElementType(FI->getType());
4730
4731    // -- a non-static data member of reference type
4732    if (FieldType->isReferenceType())
4733      return true;
4734
4735    // -- a non-static data member of const non-class type (or array thereof)
4736    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4737      return true;
4738
4739    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4740
4741    if (FieldRecord) {
4742      // This is an anonymous union
4743      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4744        // Anonymous unions inside unions do not variant members create
4745        if (!Union) {
4746          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4747                                             UE = FieldRecord->field_end();
4748               UI != UE; ++UI) {
4749            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4750            CXXRecordDecl *UnionFieldRecord =
4751              UnionFieldType->getAsCXXRecordDecl();
4752
4753            // -- a variant member with a non-trivial [move] assignment operator
4754            //    and X is a union-like class
4755            if (UnionFieldRecord &&
4756                !UnionFieldRecord->hasTrivialMoveAssignment())
4757              return true;
4758          }
4759        }
4760
4761        // Don't try to initalize an anonymous union
4762        continue;
4763      // -- a variant member with a non-trivial [move] assignment operator
4764      //    and X is a union-like class
4765      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4766          return true;
4767      }
4768
4769      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4770      if (!MoveOper || MoveOper->isDeleted())
4771        return true;
4772      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4773        return true;
4774
4775      // -- for the move assignment operator, a [non-static data member] with a
4776      //    type that does not have a move assignment operator and is not
4777      //    trivially copyable.
4778      if (!MoveOper->isMoveAssignmentOperator() &&
4779          !FieldRecord->isTriviallyCopyable())
4780        return true;
4781    }
4782  }
4783
4784  return false;
4785}
4786
4787bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4788  CXXRecordDecl *RD = DD->getParent();
4789  assert(!RD->isDependentType() && "do deletion after instantiation");
4790  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4791    return false;
4792
4793  SourceLocation Loc = DD->getLocation();
4794
4795  // Do access control from the destructor
4796  ContextRAII CtorContext(*this, DD);
4797
4798  bool Union = RD->isUnion();
4799
4800  // We do this because we should never actually use an anonymous
4801  // union's destructor.
4802  if (Union && RD->isAnonymousStructOrUnion())
4803    return false;
4804
4805  // C++0x [class.dtor]p5
4806  //    A defaulted destructor for a class X is defined as deleted if:
4807  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4808                                          BE = RD->bases_end();
4809       BI != BE; ++BI) {
4810    // We'll handle this one later
4811    if (BI->isVirtual())
4812      continue;
4813
4814    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4815    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4816    assert(BaseDtor && "base has no destructor");
4817
4818    // -- any direct or virtual base class has a deleted destructor or
4819    //    a destructor that is inaccessible from the defaulted destructor
4820    if (BaseDtor->isDeleted())
4821      return true;
4822    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4823        AR_accessible)
4824      return true;
4825  }
4826
4827  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4828                                          BE = RD->vbases_end();
4829       BI != BE; ++BI) {
4830    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4831    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4832    assert(BaseDtor && "base has no destructor");
4833
4834    // -- any direct or virtual base class has a deleted destructor or
4835    //    a destructor that is inaccessible from the defaulted destructor
4836    if (BaseDtor->isDeleted())
4837      return true;
4838    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4839        AR_accessible)
4840      return true;
4841  }
4842
4843  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4844                                     FE = RD->field_end();
4845       FI != FE; ++FI) {
4846    QualType FieldType = Context.getBaseElementType(FI->getType());
4847    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4848    if (FieldRecord) {
4849      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4850         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4851                                            UE = FieldRecord->field_end();
4852              UI != UE; ++UI) {
4853           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4854           CXXRecordDecl *UnionFieldRecord =
4855             UnionFieldType->getAsCXXRecordDecl();
4856
4857           // -- X is a union-like class that has a variant member with a non-
4858           //    trivial destructor.
4859           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4860             return true;
4861         }
4862      // Technically we are supposed to do this next check unconditionally.
4863      // But that makes absolutely no sense.
4864      } else {
4865        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4866
4867        // -- any of the non-static data members has class type M (or array
4868        //    thereof) and M has a deleted destructor or a destructor that is
4869        //    inaccessible from the defaulted destructor
4870        if (FieldDtor->isDeleted())
4871          return true;
4872        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4873          AR_accessible)
4874        return true;
4875
4876        // -- X is a union-like class that has a variant member with a non-
4877        //    trivial destructor.
4878        if (Union && !FieldDtor->isTrivial())
4879          return true;
4880      }
4881    }
4882  }
4883
4884  if (DD->isVirtual()) {
4885    FunctionDecl *OperatorDelete = 0;
4886    DeclarationName Name =
4887      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4888    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4889          false))
4890      return true;
4891  }
4892
4893
4894  return false;
4895}
4896
4897/// \brief Data used with FindHiddenVirtualMethod
4898namespace {
4899  struct FindHiddenVirtualMethodData {
4900    Sema *S;
4901    CXXMethodDecl *Method;
4902    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4903    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4904  };
4905}
4906
4907/// \brief Member lookup function that determines whether a given C++
4908/// method overloads virtual methods in a base class without overriding any,
4909/// to be used with CXXRecordDecl::lookupInBases().
4910static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4911                                    CXXBasePath &Path,
4912                                    void *UserData) {
4913  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4914
4915  FindHiddenVirtualMethodData &Data
4916    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4917
4918  DeclarationName Name = Data.Method->getDeclName();
4919  assert(Name.getNameKind() == DeclarationName::Identifier);
4920
4921  bool foundSameNameMethod = false;
4922  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4923  for (Path.Decls = BaseRecord->lookup(Name);
4924       Path.Decls.first != Path.Decls.second;
4925       ++Path.Decls.first) {
4926    NamedDecl *D = *Path.Decls.first;
4927    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4928      MD = MD->getCanonicalDecl();
4929      foundSameNameMethod = true;
4930      // Interested only in hidden virtual methods.
4931      if (!MD->isVirtual())
4932        continue;
4933      // If the method we are checking overrides a method from its base
4934      // don't warn about the other overloaded methods.
4935      if (!Data.S->IsOverload(Data.Method, MD, false))
4936        return true;
4937      // Collect the overload only if its hidden.
4938      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4939        overloadedMethods.push_back(MD);
4940    }
4941  }
4942
4943  if (foundSameNameMethod)
4944    Data.OverloadedMethods.append(overloadedMethods.begin(),
4945                                   overloadedMethods.end());
4946  return foundSameNameMethod;
4947}
4948
4949/// \brief See if a method overloads virtual methods in a base class without
4950/// overriding any.
4951void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4952  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4953                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4954    return;
4955  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4956    return;
4957
4958  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4959                     /*bool RecordPaths=*/false,
4960                     /*bool DetectVirtual=*/false);
4961  FindHiddenVirtualMethodData Data;
4962  Data.Method = MD;
4963  Data.S = this;
4964
4965  // Keep the base methods that were overriden or introduced in the subclass
4966  // by 'using' in a set. A base method not in this set is hidden.
4967  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4968       res.first != res.second; ++res.first) {
4969    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4970      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4971                                          E = MD->end_overridden_methods();
4972           I != E; ++I)
4973        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4974    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4975      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4976        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4977  }
4978
4979  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4980      !Data.OverloadedMethods.empty()) {
4981    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4982      << MD << (Data.OverloadedMethods.size() > 1);
4983
4984    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4985      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4986      Diag(overloadedMD->getLocation(),
4987           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4988    }
4989  }
4990}
4991
4992void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4993                                             Decl *TagDecl,
4994                                             SourceLocation LBrac,
4995                                             SourceLocation RBrac,
4996                                             AttributeList *AttrList) {
4997  if (!TagDecl)
4998    return;
4999
5000  AdjustDeclIfTemplate(TagDecl);
5001
5002  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5003              // strict aliasing violation!
5004              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5005              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5006
5007  CheckCompletedCXXClass(
5008                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5009}
5010
5011/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5012/// special functions, such as the default constructor, copy
5013/// constructor, or destructor, to the given C++ class (C++
5014/// [special]p1).  This routine can only be executed just before the
5015/// definition of the class is complete.
5016void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5017  if (!ClassDecl->hasUserDeclaredConstructor())
5018    ++ASTContext::NumImplicitDefaultConstructors;
5019
5020  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5021    ++ASTContext::NumImplicitCopyConstructors;
5022
5023  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5024    ++ASTContext::NumImplicitMoveConstructors;
5025
5026  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5027    ++ASTContext::NumImplicitCopyAssignmentOperators;
5028
5029    // If we have a dynamic class, then the copy assignment operator may be
5030    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5031    // it shows up in the right place in the vtable and that we diagnose
5032    // problems with the implicit exception specification.
5033    if (ClassDecl->isDynamicClass())
5034      DeclareImplicitCopyAssignment(ClassDecl);
5035  }
5036
5037  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5038    ++ASTContext::NumImplicitMoveAssignmentOperators;
5039
5040    // Likewise for the move assignment operator.
5041    if (ClassDecl->isDynamicClass())
5042      DeclareImplicitMoveAssignment(ClassDecl);
5043  }
5044
5045  if (!ClassDecl->hasUserDeclaredDestructor()) {
5046    ++ASTContext::NumImplicitDestructors;
5047
5048    // If we have a dynamic class, then the destructor may be virtual, so we
5049    // have to declare the destructor immediately. This ensures that, e.g., it
5050    // shows up in the right place in the vtable and that we diagnose problems
5051    // with the implicit exception specification.
5052    if (ClassDecl->isDynamicClass())
5053      DeclareImplicitDestructor(ClassDecl);
5054  }
5055}
5056
5057void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5058  if (!D)
5059    return;
5060
5061  int NumParamList = D->getNumTemplateParameterLists();
5062  for (int i = 0; i < NumParamList; i++) {
5063    TemplateParameterList* Params = D->getTemplateParameterList(i);
5064    for (TemplateParameterList::iterator Param = Params->begin(),
5065                                      ParamEnd = Params->end();
5066          Param != ParamEnd; ++Param) {
5067      NamedDecl *Named = cast<NamedDecl>(*Param);
5068      if (Named->getDeclName()) {
5069        S->AddDecl(Named);
5070        IdResolver.AddDecl(Named);
5071      }
5072    }
5073  }
5074}
5075
5076void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5077  if (!D)
5078    return;
5079
5080  TemplateParameterList *Params = 0;
5081  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5082    Params = Template->getTemplateParameters();
5083  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5084           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5085    Params = PartialSpec->getTemplateParameters();
5086  else
5087    return;
5088
5089  for (TemplateParameterList::iterator Param = Params->begin(),
5090                                    ParamEnd = Params->end();
5091       Param != ParamEnd; ++Param) {
5092    NamedDecl *Named = cast<NamedDecl>(*Param);
5093    if (Named->getDeclName()) {
5094      S->AddDecl(Named);
5095      IdResolver.AddDecl(Named);
5096    }
5097  }
5098}
5099
5100void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5101  if (!RecordD) return;
5102  AdjustDeclIfTemplate(RecordD);
5103  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5104  PushDeclContext(S, Record);
5105}
5106
5107void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5108  if (!RecordD) return;
5109  PopDeclContext();
5110}
5111
5112/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5113/// parsing a top-level (non-nested) C++ class, and we are now
5114/// parsing those parts of the given Method declaration that could
5115/// not be parsed earlier (C++ [class.mem]p2), such as default
5116/// arguments. This action should enter the scope of the given
5117/// Method declaration as if we had just parsed the qualified method
5118/// name. However, it should not bring the parameters into scope;
5119/// that will be performed by ActOnDelayedCXXMethodParameter.
5120void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5121}
5122
5123/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5124/// C++ method declaration. We're (re-)introducing the given
5125/// function parameter into scope for use in parsing later parts of
5126/// the method declaration. For example, we could see an
5127/// ActOnParamDefaultArgument event for this parameter.
5128void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5129  if (!ParamD)
5130    return;
5131
5132  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5133
5134  // If this parameter has an unparsed default argument, clear it out
5135  // to make way for the parsed default argument.
5136  if (Param->hasUnparsedDefaultArg())
5137    Param->setDefaultArg(0);
5138
5139  S->AddDecl(Param);
5140  if (Param->getDeclName())
5141    IdResolver.AddDecl(Param);
5142}
5143
5144/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5145/// processing the delayed method declaration for Method. The method
5146/// declaration is now considered finished. There may be a separate
5147/// ActOnStartOfFunctionDef action later (not necessarily
5148/// immediately!) for this method, if it was also defined inside the
5149/// class body.
5150void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5151  if (!MethodD)
5152    return;
5153
5154  AdjustDeclIfTemplate(MethodD);
5155
5156  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5157
5158  // Now that we have our default arguments, check the constructor
5159  // again. It could produce additional diagnostics or affect whether
5160  // the class has implicitly-declared destructors, among other
5161  // things.
5162  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5163    CheckConstructor(Constructor);
5164
5165  // Check the default arguments, which we may have added.
5166  if (!Method->isInvalidDecl())
5167    CheckCXXDefaultArguments(Method);
5168}
5169
5170/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5171/// the well-formedness of the constructor declarator @p D with type @p
5172/// R. If there are any errors in the declarator, this routine will
5173/// emit diagnostics and set the invalid bit to true.  In any case, the type
5174/// will be updated to reflect a well-formed type for the constructor and
5175/// returned.
5176QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5177                                          StorageClass &SC) {
5178  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5179
5180  // C++ [class.ctor]p3:
5181  //   A constructor shall not be virtual (10.3) or static (9.4). A
5182  //   constructor can be invoked for a const, volatile or const
5183  //   volatile object. A constructor shall not be declared const,
5184  //   volatile, or const volatile (9.3.2).
5185  if (isVirtual) {
5186    if (!D.isInvalidType())
5187      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5188        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5189        << SourceRange(D.getIdentifierLoc());
5190    D.setInvalidType();
5191  }
5192  if (SC == SC_Static) {
5193    if (!D.isInvalidType())
5194      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5195        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5196        << SourceRange(D.getIdentifierLoc());
5197    D.setInvalidType();
5198    SC = SC_None;
5199  }
5200
5201  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5202  if (FTI.TypeQuals != 0) {
5203    if (FTI.TypeQuals & Qualifiers::Const)
5204      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5205        << "const" << SourceRange(D.getIdentifierLoc());
5206    if (FTI.TypeQuals & Qualifiers::Volatile)
5207      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5208        << "volatile" << SourceRange(D.getIdentifierLoc());
5209    if (FTI.TypeQuals & Qualifiers::Restrict)
5210      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5211        << "restrict" << SourceRange(D.getIdentifierLoc());
5212    D.setInvalidType();
5213  }
5214
5215  // C++0x [class.ctor]p4:
5216  //   A constructor shall not be declared with a ref-qualifier.
5217  if (FTI.hasRefQualifier()) {
5218    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5219      << FTI.RefQualifierIsLValueRef
5220      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5221    D.setInvalidType();
5222  }
5223
5224  // Rebuild the function type "R" without any type qualifiers (in
5225  // case any of the errors above fired) and with "void" as the
5226  // return type, since constructors don't have return types.
5227  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5228  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5229    return R;
5230
5231  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5232  EPI.TypeQuals = 0;
5233  EPI.RefQualifier = RQ_None;
5234
5235  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5236                                 Proto->getNumArgs(), EPI);
5237}
5238
5239/// CheckConstructor - Checks a fully-formed constructor for
5240/// well-formedness, issuing any diagnostics required. Returns true if
5241/// the constructor declarator is invalid.
5242void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5243  CXXRecordDecl *ClassDecl
5244    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5245  if (!ClassDecl)
5246    return Constructor->setInvalidDecl();
5247
5248  // C++ [class.copy]p3:
5249  //   A declaration of a constructor for a class X is ill-formed if
5250  //   its first parameter is of type (optionally cv-qualified) X and
5251  //   either there are no other parameters or else all other
5252  //   parameters have default arguments.
5253  if (!Constructor->isInvalidDecl() &&
5254      ((Constructor->getNumParams() == 1) ||
5255       (Constructor->getNumParams() > 1 &&
5256        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5257      Constructor->getTemplateSpecializationKind()
5258                                              != TSK_ImplicitInstantiation) {
5259    QualType ParamType = Constructor->getParamDecl(0)->getType();
5260    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5261    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5262      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5263      const char *ConstRef
5264        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5265                                                        : " const &";
5266      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5267        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5268
5269      // FIXME: Rather that making the constructor invalid, we should endeavor
5270      // to fix the type.
5271      Constructor->setInvalidDecl();
5272    }
5273  }
5274}
5275
5276/// CheckDestructor - Checks a fully-formed destructor definition for
5277/// well-formedness, issuing any diagnostics required.  Returns true
5278/// on error.
5279bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5280  CXXRecordDecl *RD = Destructor->getParent();
5281
5282  if (Destructor->isVirtual()) {
5283    SourceLocation Loc;
5284
5285    if (!Destructor->isImplicit())
5286      Loc = Destructor->getLocation();
5287    else
5288      Loc = RD->getLocation();
5289
5290    // If we have a virtual destructor, look up the deallocation function
5291    FunctionDecl *OperatorDelete = 0;
5292    DeclarationName Name =
5293    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5294    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5295      return true;
5296
5297    MarkDeclarationReferenced(Loc, OperatorDelete);
5298
5299    Destructor->setOperatorDelete(OperatorDelete);
5300  }
5301
5302  return false;
5303}
5304
5305static inline bool
5306FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5307  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5308          FTI.ArgInfo[0].Param &&
5309          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5310}
5311
5312/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5313/// the well-formednes of the destructor declarator @p D with type @p
5314/// R. If there are any errors in the declarator, this routine will
5315/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5316/// will be updated to reflect a well-formed type for the destructor and
5317/// returned.
5318QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5319                                         StorageClass& SC) {
5320  // C++ [class.dtor]p1:
5321  //   [...] A typedef-name that names a class is a class-name
5322  //   (7.1.3); however, a typedef-name that names a class shall not
5323  //   be used as the identifier in the declarator for a destructor
5324  //   declaration.
5325  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5326  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5327    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5328      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5329  else if (const TemplateSpecializationType *TST =
5330             DeclaratorType->getAs<TemplateSpecializationType>())
5331    if (TST->isTypeAlias())
5332      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5333        << DeclaratorType << 1;
5334
5335  // C++ [class.dtor]p2:
5336  //   A destructor is used to destroy objects of its class type. A
5337  //   destructor takes no parameters, and no return type can be
5338  //   specified for it (not even void). The address of a destructor
5339  //   shall not be taken. A destructor shall not be static. A
5340  //   destructor can be invoked for a const, volatile or const
5341  //   volatile object. A destructor shall not be declared const,
5342  //   volatile or const volatile (9.3.2).
5343  if (SC == SC_Static) {
5344    if (!D.isInvalidType())
5345      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5346        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5347        << SourceRange(D.getIdentifierLoc())
5348        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5349
5350    SC = SC_None;
5351  }
5352  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5353    // Destructors don't have return types, but the parser will
5354    // happily parse something like:
5355    //
5356    //   class X {
5357    //     float ~X();
5358    //   };
5359    //
5360    // The return type will be eliminated later.
5361    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5362      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5363      << SourceRange(D.getIdentifierLoc());
5364  }
5365
5366  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5367  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5368    if (FTI.TypeQuals & Qualifiers::Const)
5369      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5370        << "const" << SourceRange(D.getIdentifierLoc());
5371    if (FTI.TypeQuals & Qualifiers::Volatile)
5372      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5373        << "volatile" << SourceRange(D.getIdentifierLoc());
5374    if (FTI.TypeQuals & Qualifiers::Restrict)
5375      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5376        << "restrict" << SourceRange(D.getIdentifierLoc());
5377    D.setInvalidType();
5378  }
5379
5380  // C++0x [class.dtor]p2:
5381  //   A destructor shall not be declared with a ref-qualifier.
5382  if (FTI.hasRefQualifier()) {
5383    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5384      << FTI.RefQualifierIsLValueRef
5385      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5386    D.setInvalidType();
5387  }
5388
5389  // Make sure we don't have any parameters.
5390  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5391    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5392
5393    // Delete the parameters.
5394    FTI.freeArgs();
5395    D.setInvalidType();
5396  }
5397
5398  // Make sure the destructor isn't variadic.
5399  if (FTI.isVariadic) {
5400    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5401    D.setInvalidType();
5402  }
5403
5404  // Rebuild the function type "R" without any type qualifiers or
5405  // parameters (in case any of the errors above fired) and with
5406  // "void" as the return type, since destructors don't have return
5407  // types.
5408  if (!D.isInvalidType())
5409    return R;
5410
5411  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5412  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5413  EPI.Variadic = false;
5414  EPI.TypeQuals = 0;
5415  EPI.RefQualifier = RQ_None;
5416  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5417}
5418
5419/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5420/// well-formednes of the conversion function declarator @p D with
5421/// type @p R. If there are any errors in the declarator, this routine
5422/// will emit diagnostics and return true. Otherwise, it will return
5423/// false. Either way, the type @p R will be updated to reflect a
5424/// well-formed type for the conversion operator.
5425void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5426                                     StorageClass& SC) {
5427  // C++ [class.conv.fct]p1:
5428  //   Neither parameter types nor return type can be specified. The
5429  //   type of a conversion function (8.3.5) is "function taking no
5430  //   parameter returning conversion-type-id."
5431  if (SC == SC_Static) {
5432    if (!D.isInvalidType())
5433      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5434        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5435        << SourceRange(D.getIdentifierLoc());
5436    D.setInvalidType();
5437    SC = SC_None;
5438  }
5439
5440  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5441
5442  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5443    // Conversion functions don't have return types, but the parser will
5444    // happily parse something like:
5445    //
5446    //   class X {
5447    //     float operator bool();
5448    //   };
5449    //
5450    // The return type will be changed later anyway.
5451    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5452      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5453      << SourceRange(D.getIdentifierLoc());
5454    D.setInvalidType();
5455  }
5456
5457  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5458
5459  // Make sure we don't have any parameters.
5460  if (Proto->getNumArgs() > 0) {
5461    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5462
5463    // Delete the parameters.
5464    D.getFunctionTypeInfo().freeArgs();
5465    D.setInvalidType();
5466  } else if (Proto->isVariadic()) {
5467    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5468    D.setInvalidType();
5469  }
5470
5471  // Diagnose "&operator bool()" and other such nonsense.  This
5472  // is actually a gcc extension which we don't support.
5473  if (Proto->getResultType() != ConvType) {
5474    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5475      << Proto->getResultType();
5476    D.setInvalidType();
5477    ConvType = Proto->getResultType();
5478  }
5479
5480  // C++ [class.conv.fct]p4:
5481  //   The conversion-type-id shall not represent a function type nor
5482  //   an array type.
5483  if (ConvType->isArrayType()) {
5484    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5485    ConvType = Context.getPointerType(ConvType);
5486    D.setInvalidType();
5487  } else if (ConvType->isFunctionType()) {
5488    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5489    ConvType = Context.getPointerType(ConvType);
5490    D.setInvalidType();
5491  }
5492
5493  // Rebuild the function type "R" without any parameters (in case any
5494  // of the errors above fired) and with the conversion type as the
5495  // return type.
5496  if (D.isInvalidType())
5497    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5498
5499  // C++0x explicit conversion operators.
5500  if (D.getDeclSpec().isExplicitSpecified())
5501    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5502         getLangOptions().CPlusPlus0x ?
5503           diag::warn_cxx98_compat_explicit_conversion_functions :
5504           diag::ext_explicit_conversion_functions)
5505      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5506}
5507
5508/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5509/// the declaration of the given C++ conversion function. This routine
5510/// is responsible for recording the conversion function in the C++
5511/// class, if possible.
5512Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5513  assert(Conversion && "Expected to receive a conversion function declaration");
5514
5515  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5516
5517  // Make sure we aren't redeclaring the conversion function.
5518  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5519
5520  // C++ [class.conv.fct]p1:
5521  //   [...] A conversion function is never used to convert a
5522  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5523  //   same object type (or a reference to it), to a (possibly
5524  //   cv-qualified) base class of that type (or a reference to it),
5525  //   or to (possibly cv-qualified) void.
5526  // FIXME: Suppress this warning if the conversion function ends up being a
5527  // virtual function that overrides a virtual function in a base class.
5528  QualType ClassType
5529    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5530  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5531    ConvType = ConvTypeRef->getPointeeType();
5532  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5533      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5534    /* Suppress diagnostics for instantiations. */;
5535  else if (ConvType->isRecordType()) {
5536    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5537    if (ConvType == ClassType)
5538      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5539        << ClassType;
5540    else if (IsDerivedFrom(ClassType, ConvType))
5541      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5542        <<  ClassType << ConvType;
5543  } else if (ConvType->isVoidType()) {
5544    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5545      << ClassType << ConvType;
5546  }
5547
5548  if (FunctionTemplateDecl *ConversionTemplate
5549                                = Conversion->getDescribedFunctionTemplate())
5550    return ConversionTemplate;
5551
5552  return Conversion;
5553}
5554
5555//===----------------------------------------------------------------------===//
5556// Namespace Handling
5557//===----------------------------------------------------------------------===//
5558
5559
5560
5561/// ActOnStartNamespaceDef - This is called at the start of a namespace
5562/// definition.
5563Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5564                                   SourceLocation InlineLoc,
5565                                   SourceLocation NamespaceLoc,
5566                                   SourceLocation IdentLoc,
5567                                   IdentifierInfo *II,
5568                                   SourceLocation LBrace,
5569                                   AttributeList *AttrList) {
5570  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5571  // For anonymous namespace, take the location of the left brace.
5572  SourceLocation Loc = II ? IdentLoc : LBrace;
5573  bool IsInline = InlineLoc.isValid();
5574  bool IsInvalid = false;
5575  bool IsStd = false;
5576  bool AddToKnown = false;
5577  Scope *DeclRegionScope = NamespcScope->getParent();
5578
5579  NamespaceDecl *PrevNS = 0;
5580  if (II) {
5581    // C++ [namespace.def]p2:
5582    //   The identifier in an original-namespace-definition shall not
5583    //   have been previously defined in the declarative region in
5584    //   which the original-namespace-definition appears. The
5585    //   identifier in an original-namespace-definition is the name of
5586    //   the namespace. Subsequently in that declarative region, it is
5587    //   treated as an original-namespace-name.
5588    //
5589    // Since namespace names are unique in their scope, and we don't
5590    // look through using directives, just look for any ordinary names.
5591
5592    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5593    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5594    Decl::IDNS_Namespace;
5595    NamedDecl *PrevDecl = 0;
5596    for (DeclContext::lookup_result R
5597         = CurContext->getRedeclContext()->lookup(II);
5598         R.first != R.second; ++R.first) {
5599      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5600        PrevDecl = *R.first;
5601        break;
5602      }
5603    }
5604
5605    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5606
5607    if (PrevNS) {
5608      // This is an extended namespace definition.
5609      if (IsInline != PrevNS->isInline()) {
5610        // inline-ness must match
5611        if (PrevNS->isInline()) {
5612          // The user probably just forgot the 'inline', so suggest that it
5613          // be added back.
5614          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5615            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5616        } else {
5617          Diag(Loc, diag::err_inline_namespace_mismatch)
5618            << IsInline;
5619        }
5620        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5621
5622        IsInline = PrevNS->isInline();
5623      }
5624    } else if (PrevDecl) {
5625      // This is an invalid name redefinition.
5626      Diag(Loc, diag::err_redefinition_different_kind)
5627        << II;
5628      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5629      IsInvalid = true;
5630      // Continue on to push Namespc as current DeclContext and return it.
5631    } else if (II->isStr("std") &&
5632               CurContext->getRedeclContext()->isTranslationUnit()) {
5633      // This is the first "real" definition of the namespace "std", so update
5634      // our cache of the "std" namespace to point at this definition.
5635      PrevNS = getStdNamespace();
5636      IsStd = true;
5637      AddToKnown = !IsInline;
5638    } else {
5639      // We've seen this namespace for the first time.
5640      AddToKnown = !IsInline;
5641    }
5642  } else {
5643    // Anonymous namespaces.
5644
5645    // Determine whether the parent already has an anonymous namespace.
5646    DeclContext *Parent = CurContext->getRedeclContext();
5647    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5648      PrevNS = TU->getAnonymousNamespace();
5649    } else {
5650      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5651      PrevNS = ND->getAnonymousNamespace();
5652    }
5653
5654    if (PrevNS && IsInline != PrevNS->isInline()) {
5655      // inline-ness must match
5656      Diag(Loc, diag::err_inline_namespace_mismatch)
5657        << IsInline;
5658      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5659
5660      // Recover by ignoring the new namespace's inline status.
5661      IsInline = PrevNS->isInline();
5662    }
5663  }
5664
5665  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5666                                                 StartLoc, Loc, II, PrevNS);
5667  if (IsInvalid)
5668    Namespc->setInvalidDecl();
5669
5670  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5671
5672  // FIXME: Should we be merging attributes?
5673  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5674    PushNamespaceVisibilityAttr(Attr);
5675
5676  if (IsStd)
5677    StdNamespace = Namespc;
5678  if (AddToKnown)
5679    KnownNamespaces[Namespc] = false;
5680
5681  if (II) {
5682    PushOnScopeChains(Namespc, DeclRegionScope);
5683  } else {
5684    // Link the anonymous namespace into its parent.
5685    DeclContext *Parent = CurContext->getRedeclContext();
5686    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5687      TU->setAnonymousNamespace(Namespc);
5688    } else {
5689      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5690    }
5691
5692    CurContext->addDecl(Namespc);
5693
5694    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5695    //   behaves as if it were replaced by
5696    //     namespace unique { /* empty body */ }
5697    //     using namespace unique;
5698    //     namespace unique { namespace-body }
5699    //   where all occurrences of 'unique' in a translation unit are
5700    //   replaced by the same identifier and this identifier differs
5701    //   from all other identifiers in the entire program.
5702
5703    // We just create the namespace with an empty name and then add an
5704    // implicit using declaration, just like the standard suggests.
5705    //
5706    // CodeGen enforces the "universally unique" aspect by giving all
5707    // declarations semantically contained within an anonymous
5708    // namespace internal linkage.
5709
5710    if (!PrevNS) {
5711      UsingDirectiveDecl* UD
5712        = UsingDirectiveDecl::Create(Context, CurContext,
5713                                     /* 'using' */ LBrace,
5714                                     /* 'namespace' */ SourceLocation(),
5715                                     /* qualifier */ NestedNameSpecifierLoc(),
5716                                     /* identifier */ SourceLocation(),
5717                                     Namespc,
5718                                     /* Ancestor */ CurContext);
5719      UD->setImplicit();
5720      CurContext->addDecl(UD);
5721    }
5722  }
5723
5724  // Although we could have an invalid decl (i.e. the namespace name is a
5725  // redefinition), push it as current DeclContext and try to continue parsing.
5726  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5727  // for the namespace has the declarations that showed up in that particular
5728  // namespace definition.
5729  PushDeclContext(NamespcScope, Namespc);
5730  return Namespc;
5731}
5732
5733/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5734/// is a namespace alias, returns the namespace it points to.
5735static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5736  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5737    return AD->getNamespace();
5738  return dyn_cast_or_null<NamespaceDecl>(D);
5739}
5740
5741/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5742/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5743void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5744  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5745  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5746  Namespc->setRBraceLoc(RBrace);
5747  PopDeclContext();
5748  if (Namespc->hasAttr<VisibilityAttr>())
5749    PopPragmaVisibility();
5750}
5751
5752CXXRecordDecl *Sema::getStdBadAlloc() const {
5753  return cast_or_null<CXXRecordDecl>(
5754                                  StdBadAlloc.get(Context.getExternalSource()));
5755}
5756
5757NamespaceDecl *Sema::getStdNamespace() const {
5758  return cast_or_null<NamespaceDecl>(
5759                                 StdNamespace.get(Context.getExternalSource()));
5760}
5761
5762/// \brief Retrieve the special "std" namespace, which may require us to
5763/// implicitly define the namespace.
5764NamespaceDecl *Sema::getOrCreateStdNamespace() {
5765  if (!StdNamespace) {
5766    // The "std" namespace has not yet been defined, so build one implicitly.
5767    StdNamespace = NamespaceDecl::Create(Context,
5768                                         Context.getTranslationUnitDecl(),
5769                                         /*Inline=*/false,
5770                                         SourceLocation(), SourceLocation(),
5771                                         &PP.getIdentifierTable().get("std"),
5772                                         /*PrevDecl=*/0);
5773    getStdNamespace()->setImplicit(true);
5774  }
5775
5776  return getStdNamespace();
5777}
5778
5779bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5780  assert(getLangOptions().CPlusPlus &&
5781         "Looking for std::initializer_list outside of C++.");
5782
5783  // We're looking for implicit instantiations of
5784  // template <typename E> class std::initializer_list.
5785
5786  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5787    return false;
5788
5789  ClassTemplateDecl *Template = 0;
5790  const TemplateArgument *Arguments = 0;
5791
5792  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5793
5794    ClassTemplateSpecializationDecl *Specialization =
5795        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5796    if (!Specialization)
5797      return false;
5798
5799    if (Specialization->getSpecializationKind() != TSK_ImplicitInstantiation)
5800      return false;
5801
5802    Template = Specialization->getSpecializedTemplate();
5803    Arguments = Specialization->getTemplateArgs().data();
5804  } else if (const TemplateSpecializationType *TST =
5805                 Ty->getAs<TemplateSpecializationType>()) {
5806    Template = dyn_cast_or_null<ClassTemplateDecl>(
5807        TST->getTemplateName().getAsTemplateDecl());
5808    Arguments = TST->getArgs();
5809  }
5810  if (!Template)
5811    return false;
5812
5813  if (!StdInitializerList) {
5814    // Haven't recognized std::initializer_list yet, maybe this is it.
5815    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5816    if (TemplateClass->getIdentifier() !=
5817            &PP.getIdentifierTable().get("initializer_list") ||
5818        !getStdNamespace()->InEnclosingNamespaceSetOf(
5819            TemplateClass->getDeclContext()))
5820      return false;
5821    // This is a template called std::initializer_list, but is it the right
5822    // template?
5823    TemplateParameterList *Params = Template->getTemplateParameters();
5824    if (Params->getMinRequiredArguments() != 1)
5825      return false;
5826    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5827      return false;
5828
5829    // It's the right template.
5830    StdInitializerList = Template;
5831  }
5832
5833  if (Template != StdInitializerList)
5834    return false;
5835
5836  // This is an instance of std::initializer_list. Find the argument type.
5837  if (Element)
5838    *Element = Arguments[0].getAsType();
5839  return true;
5840}
5841
5842static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5843  NamespaceDecl *Std = S.getStdNamespace();
5844  if (!Std) {
5845    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5846    return 0;
5847  }
5848
5849  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5850                      Loc, Sema::LookupOrdinaryName);
5851  if (!S.LookupQualifiedName(Result, Std)) {
5852    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5853    return 0;
5854  }
5855  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5856  if (!Template) {
5857    Result.suppressDiagnostics();
5858    // We found something weird. Complain about the first thing we found.
5859    NamedDecl *Found = *Result.begin();
5860    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5861    return 0;
5862  }
5863
5864  // We found some template called std::initializer_list. Now verify that it's
5865  // correct.
5866  TemplateParameterList *Params = Template->getTemplateParameters();
5867  if (Params->getMinRequiredArguments() != 1 ||
5868      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5869    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5870    return 0;
5871  }
5872
5873  return Template;
5874}
5875
5876QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5877  if (!StdInitializerList) {
5878    StdInitializerList = LookupStdInitializerList(*this, Loc);
5879    if (!StdInitializerList)
5880      return QualType();
5881  }
5882
5883  TemplateArgumentListInfo Args(Loc, Loc);
5884  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5885                                       Context.getTrivialTypeSourceInfo(Element,
5886                                                                        Loc)));
5887  return Context.getCanonicalType(
5888      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5889}
5890
5891bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5892  // C++ [dcl.init.list]p2:
5893  //   A constructor is an initializer-list constructor if its first parameter
5894  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5895  //   std::initializer_list<E> for some type E, and either there are no other
5896  //   parameters or else all other parameters have default arguments.
5897  if (Ctor->getNumParams() < 1 ||
5898      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5899    return false;
5900
5901  QualType ArgType = Ctor->getParamDecl(0)->getType();
5902  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5903    ArgType = RT->getPointeeType().getUnqualifiedType();
5904
5905  return isStdInitializerList(ArgType, 0);
5906}
5907
5908/// \brief Determine whether a using statement is in a context where it will be
5909/// apply in all contexts.
5910static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5911  switch (CurContext->getDeclKind()) {
5912    case Decl::TranslationUnit:
5913      return true;
5914    case Decl::LinkageSpec:
5915      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5916    default:
5917      return false;
5918  }
5919}
5920
5921namespace {
5922
5923// Callback to only accept typo corrections that are namespaces.
5924class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5925 public:
5926  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5927    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5928      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5929    }
5930    return false;
5931  }
5932};
5933
5934}
5935
5936static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5937                                       CXXScopeSpec &SS,
5938                                       SourceLocation IdentLoc,
5939                                       IdentifierInfo *Ident) {
5940  NamespaceValidatorCCC Validator;
5941  R.clear();
5942  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5943                                               R.getLookupKind(), Sc, &SS,
5944                                               &Validator)) {
5945    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5946    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5947    if (DeclContext *DC = S.computeDeclContext(SS, false))
5948      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5949        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5950        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5951    else
5952      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5953        << Ident << CorrectedQuotedStr
5954        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5955
5956    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5957         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5958
5959    Ident = Corrected.getCorrectionAsIdentifierInfo();
5960    R.addDecl(Corrected.getCorrectionDecl());
5961    return true;
5962  }
5963  return false;
5964}
5965
5966Decl *Sema::ActOnUsingDirective(Scope *S,
5967                                          SourceLocation UsingLoc,
5968                                          SourceLocation NamespcLoc,
5969                                          CXXScopeSpec &SS,
5970                                          SourceLocation IdentLoc,
5971                                          IdentifierInfo *NamespcName,
5972                                          AttributeList *AttrList) {
5973  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5974  assert(NamespcName && "Invalid NamespcName.");
5975  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5976
5977  // This can only happen along a recovery path.
5978  while (S->getFlags() & Scope::TemplateParamScope)
5979    S = S->getParent();
5980  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5981
5982  UsingDirectiveDecl *UDir = 0;
5983  NestedNameSpecifier *Qualifier = 0;
5984  if (SS.isSet())
5985    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5986
5987  // Lookup namespace name.
5988  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5989  LookupParsedName(R, S, &SS);
5990  if (R.isAmbiguous())
5991    return 0;
5992
5993  if (R.empty()) {
5994    R.clear();
5995    // Allow "using namespace std;" or "using namespace ::std;" even if
5996    // "std" hasn't been defined yet, for GCC compatibility.
5997    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5998        NamespcName->isStr("std")) {
5999      Diag(IdentLoc, diag::ext_using_undefined_std);
6000      R.addDecl(getOrCreateStdNamespace());
6001      R.resolveKind();
6002    }
6003    // Otherwise, attempt typo correction.
6004    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6005  }
6006
6007  if (!R.empty()) {
6008    NamedDecl *Named = R.getFoundDecl();
6009    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6010        && "expected namespace decl");
6011    // C++ [namespace.udir]p1:
6012    //   A using-directive specifies that the names in the nominated
6013    //   namespace can be used in the scope in which the
6014    //   using-directive appears after the using-directive. During
6015    //   unqualified name lookup (3.4.1), the names appear as if they
6016    //   were declared in the nearest enclosing namespace which
6017    //   contains both the using-directive and the nominated
6018    //   namespace. [Note: in this context, "contains" means "contains
6019    //   directly or indirectly". ]
6020
6021    // Find enclosing context containing both using-directive and
6022    // nominated namespace.
6023    NamespaceDecl *NS = getNamespaceDecl(Named);
6024    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6025    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6026      CommonAncestor = CommonAncestor->getParent();
6027
6028    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6029                                      SS.getWithLocInContext(Context),
6030                                      IdentLoc, Named, CommonAncestor);
6031
6032    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6033        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6034      Diag(IdentLoc, diag::warn_using_directive_in_header);
6035    }
6036
6037    PushUsingDirective(S, UDir);
6038  } else {
6039    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6040  }
6041
6042  // FIXME: We ignore attributes for now.
6043  return UDir;
6044}
6045
6046void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6047  // If scope has associated entity, then using directive is at namespace
6048  // or translation unit scope. We add UsingDirectiveDecls, into
6049  // it's lookup structure.
6050  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6051    Ctx->addDecl(UDir);
6052  else
6053    // Otherwise it is block-sope. using-directives will affect lookup
6054    // only to the end of scope.
6055    S->PushUsingDirective(UDir);
6056}
6057
6058
6059Decl *Sema::ActOnUsingDeclaration(Scope *S,
6060                                  AccessSpecifier AS,
6061                                  bool HasUsingKeyword,
6062                                  SourceLocation UsingLoc,
6063                                  CXXScopeSpec &SS,
6064                                  UnqualifiedId &Name,
6065                                  AttributeList *AttrList,
6066                                  bool IsTypeName,
6067                                  SourceLocation TypenameLoc) {
6068  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6069
6070  switch (Name.getKind()) {
6071  case UnqualifiedId::IK_ImplicitSelfParam:
6072  case UnqualifiedId::IK_Identifier:
6073  case UnqualifiedId::IK_OperatorFunctionId:
6074  case UnqualifiedId::IK_LiteralOperatorId:
6075  case UnqualifiedId::IK_ConversionFunctionId:
6076    break;
6077
6078  case UnqualifiedId::IK_ConstructorName:
6079  case UnqualifiedId::IK_ConstructorTemplateId:
6080    // C++0x inherited constructors.
6081    Diag(Name.getSourceRange().getBegin(),
6082         getLangOptions().CPlusPlus0x ?
6083           diag::warn_cxx98_compat_using_decl_constructor :
6084           diag::err_using_decl_constructor)
6085      << SS.getRange();
6086
6087    if (getLangOptions().CPlusPlus0x) break;
6088
6089    return 0;
6090
6091  case UnqualifiedId::IK_DestructorName:
6092    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6093      << SS.getRange();
6094    return 0;
6095
6096  case UnqualifiedId::IK_TemplateId:
6097    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6098      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6099    return 0;
6100  }
6101
6102  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6103  DeclarationName TargetName = TargetNameInfo.getName();
6104  if (!TargetName)
6105    return 0;
6106
6107  // Warn about using declarations.
6108  // TODO: store that the declaration was written without 'using' and
6109  // talk about access decls instead of using decls in the
6110  // diagnostics.
6111  if (!HasUsingKeyword) {
6112    UsingLoc = Name.getSourceRange().getBegin();
6113
6114    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6115      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6116  }
6117
6118  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6119      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6120    return 0;
6121
6122  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6123                                        TargetNameInfo, AttrList,
6124                                        /* IsInstantiation */ false,
6125                                        IsTypeName, TypenameLoc);
6126  if (UD)
6127    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6128
6129  return UD;
6130}
6131
6132/// \brief Determine whether a using declaration considers the given
6133/// declarations as "equivalent", e.g., if they are redeclarations of
6134/// the same entity or are both typedefs of the same type.
6135static bool
6136IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6137                         bool &SuppressRedeclaration) {
6138  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6139    SuppressRedeclaration = false;
6140    return true;
6141  }
6142
6143  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6144    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6145      SuppressRedeclaration = true;
6146      return Context.hasSameType(TD1->getUnderlyingType(),
6147                                 TD2->getUnderlyingType());
6148    }
6149
6150  return false;
6151}
6152
6153
6154/// Determines whether to create a using shadow decl for a particular
6155/// decl, given the set of decls existing prior to this using lookup.
6156bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6157                                const LookupResult &Previous) {
6158  // Diagnose finding a decl which is not from a base class of the
6159  // current class.  We do this now because there are cases where this
6160  // function will silently decide not to build a shadow decl, which
6161  // will pre-empt further diagnostics.
6162  //
6163  // We don't need to do this in C++0x because we do the check once on
6164  // the qualifier.
6165  //
6166  // FIXME: diagnose the following if we care enough:
6167  //   struct A { int foo; };
6168  //   struct B : A { using A::foo; };
6169  //   template <class T> struct C : A {};
6170  //   template <class T> struct D : C<T> { using B::foo; } // <---
6171  // This is invalid (during instantiation) in C++03 because B::foo
6172  // resolves to the using decl in B, which is not a base class of D<T>.
6173  // We can't diagnose it immediately because C<T> is an unknown
6174  // specialization.  The UsingShadowDecl in D<T> then points directly
6175  // to A::foo, which will look well-formed when we instantiate.
6176  // The right solution is to not collapse the shadow-decl chain.
6177  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6178    DeclContext *OrigDC = Orig->getDeclContext();
6179
6180    // Handle enums and anonymous structs.
6181    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6182    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6183    while (OrigRec->isAnonymousStructOrUnion())
6184      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6185
6186    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6187      if (OrigDC == CurContext) {
6188        Diag(Using->getLocation(),
6189             diag::err_using_decl_nested_name_specifier_is_current_class)
6190          << Using->getQualifierLoc().getSourceRange();
6191        Diag(Orig->getLocation(), diag::note_using_decl_target);
6192        return true;
6193      }
6194
6195      Diag(Using->getQualifierLoc().getBeginLoc(),
6196           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6197        << Using->getQualifier()
6198        << cast<CXXRecordDecl>(CurContext)
6199        << Using->getQualifierLoc().getSourceRange();
6200      Diag(Orig->getLocation(), diag::note_using_decl_target);
6201      return true;
6202    }
6203  }
6204
6205  if (Previous.empty()) return false;
6206
6207  NamedDecl *Target = Orig;
6208  if (isa<UsingShadowDecl>(Target))
6209    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6210
6211  // If the target happens to be one of the previous declarations, we
6212  // don't have a conflict.
6213  //
6214  // FIXME: but we might be increasing its access, in which case we
6215  // should redeclare it.
6216  NamedDecl *NonTag = 0, *Tag = 0;
6217  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6218         I != E; ++I) {
6219    NamedDecl *D = (*I)->getUnderlyingDecl();
6220    bool Result;
6221    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6222      return Result;
6223
6224    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6225  }
6226
6227  if (Target->isFunctionOrFunctionTemplate()) {
6228    FunctionDecl *FD;
6229    if (isa<FunctionTemplateDecl>(Target))
6230      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6231    else
6232      FD = cast<FunctionDecl>(Target);
6233
6234    NamedDecl *OldDecl = 0;
6235    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6236    case Ovl_Overload:
6237      return false;
6238
6239    case Ovl_NonFunction:
6240      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6241      break;
6242
6243    // We found a decl with the exact signature.
6244    case Ovl_Match:
6245      // If we're in a record, we want to hide the target, so we
6246      // return true (without a diagnostic) to tell the caller not to
6247      // build a shadow decl.
6248      if (CurContext->isRecord())
6249        return true;
6250
6251      // If we're not in a record, this is an error.
6252      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6253      break;
6254    }
6255
6256    Diag(Target->getLocation(), diag::note_using_decl_target);
6257    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6258    return true;
6259  }
6260
6261  // Target is not a function.
6262
6263  if (isa<TagDecl>(Target)) {
6264    // No conflict between a tag and a non-tag.
6265    if (!Tag) return false;
6266
6267    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6268    Diag(Target->getLocation(), diag::note_using_decl_target);
6269    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6270    return true;
6271  }
6272
6273  // No conflict between a tag and a non-tag.
6274  if (!NonTag) return false;
6275
6276  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6277  Diag(Target->getLocation(), diag::note_using_decl_target);
6278  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6279  return true;
6280}
6281
6282/// Builds a shadow declaration corresponding to a 'using' declaration.
6283UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6284                                            UsingDecl *UD,
6285                                            NamedDecl *Orig) {
6286
6287  // If we resolved to another shadow declaration, just coalesce them.
6288  NamedDecl *Target = Orig;
6289  if (isa<UsingShadowDecl>(Target)) {
6290    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6291    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6292  }
6293
6294  UsingShadowDecl *Shadow
6295    = UsingShadowDecl::Create(Context, CurContext,
6296                              UD->getLocation(), UD, Target);
6297  UD->addShadowDecl(Shadow);
6298
6299  Shadow->setAccess(UD->getAccess());
6300  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6301    Shadow->setInvalidDecl();
6302
6303  if (S)
6304    PushOnScopeChains(Shadow, S);
6305  else
6306    CurContext->addDecl(Shadow);
6307
6308
6309  return Shadow;
6310}
6311
6312/// Hides a using shadow declaration.  This is required by the current
6313/// using-decl implementation when a resolvable using declaration in a
6314/// class is followed by a declaration which would hide or override
6315/// one or more of the using decl's targets; for example:
6316///
6317///   struct Base { void foo(int); };
6318///   struct Derived : Base {
6319///     using Base::foo;
6320///     void foo(int);
6321///   };
6322///
6323/// The governing language is C++03 [namespace.udecl]p12:
6324///
6325///   When a using-declaration brings names from a base class into a
6326///   derived class scope, member functions in the derived class
6327///   override and/or hide member functions with the same name and
6328///   parameter types in a base class (rather than conflicting).
6329///
6330/// There are two ways to implement this:
6331///   (1) optimistically create shadow decls when they're not hidden
6332///       by existing declarations, or
6333///   (2) don't create any shadow decls (or at least don't make them
6334///       visible) until we've fully parsed/instantiated the class.
6335/// The problem with (1) is that we might have to retroactively remove
6336/// a shadow decl, which requires several O(n) operations because the
6337/// decl structures are (very reasonably) not designed for removal.
6338/// (2) avoids this but is very fiddly and phase-dependent.
6339void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6340  if (Shadow->getDeclName().getNameKind() ==
6341        DeclarationName::CXXConversionFunctionName)
6342    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6343
6344  // Remove it from the DeclContext...
6345  Shadow->getDeclContext()->removeDecl(Shadow);
6346
6347  // ...and the scope, if applicable...
6348  if (S) {
6349    S->RemoveDecl(Shadow);
6350    IdResolver.RemoveDecl(Shadow);
6351  }
6352
6353  // ...and the using decl.
6354  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6355
6356  // TODO: complain somehow if Shadow was used.  It shouldn't
6357  // be possible for this to happen, because...?
6358}
6359
6360/// Builds a using declaration.
6361///
6362/// \param IsInstantiation - Whether this call arises from an
6363///   instantiation of an unresolved using declaration.  We treat
6364///   the lookup differently for these declarations.
6365NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6366                                       SourceLocation UsingLoc,
6367                                       CXXScopeSpec &SS,
6368                                       const DeclarationNameInfo &NameInfo,
6369                                       AttributeList *AttrList,
6370                                       bool IsInstantiation,
6371                                       bool IsTypeName,
6372                                       SourceLocation TypenameLoc) {
6373  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6374  SourceLocation IdentLoc = NameInfo.getLoc();
6375  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6376
6377  // FIXME: We ignore attributes for now.
6378
6379  if (SS.isEmpty()) {
6380    Diag(IdentLoc, diag::err_using_requires_qualname);
6381    return 0;
6382  }
6383
6384  // Do the redeclaration lookup in the current scope.
6385  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6386                        ForRedeclaration);
6387  Previous.setHideTags(false);
6388  if (S) {
6389    LookupName(Previous, S);
6390
6391    // It is really dumb that we have to do this.
6392    LookupResult::Filter F = Previous.makeFilter();
6393    while (F.hasNext()) {
6394      NamedDecl *D = F.next();
6395      if (!isDeclInScope(D, CurContext, S))
6396        F.erase();
6397    }
6398    F.done();
6399  } else {
6400    assert(IsInstantiation && "no scope in non-instantiation");
6401    assert(CurContext->isRecord() && "scope not record in instantiation");
6402    LookupQualifiedName(Previous, CurContext);
6403  }
6404
6405  // Check for invalid redeclarations.
6406  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6407    return 0;
6408
6409  // Check for bad qualifiers.
6410  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6411    return 0;
6412
6413  DeclContext *LookupContext = computeDeclContext(SS);
6414  NamedDecl *D;
6415  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6416  if (!LookupContext) {
6417    if (IsTypeName) {
6418      // FIXME: not all declaration name kinds are legal here
6419      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6420                                              UsingLoc, TypenameLoc,
6421                                              QualifierLoc,
6422                                              IdentLoc, NameInfo.getName());
6423    } else {
6424      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6425                                           QualifierLoc, NameInfo);
6426    }
6427  } else {
6428    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6429                          NameInfo, IsTypeName);
6430  }
6431  D->setAccess(AS);
6432  CurContext->addDecl(D);
6433
6434  if (!LookupContext) return D;
6435  UsingDecl *UD = cast<UsingDecl>(D);
6436
6437  if (RequireCompleteDeclContext(SS, LookupContext)) {
6438    UD->setInvalidDecl();
6439    return UD;
6440  }
6441
6442  // Constructor inheriting using decls get special treatment.
6443  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6444    if (CheckInheritedConstructorUsingDecl(UD))
6445      UD->setInvalidDecl();
6446    return UD;
6447  }
6448
6449  // Otherwise, look up the target name.
6450
6451  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6452
6453  // Unlike most lookups, we don't always want to hide tag
6454  // declarations: tag names are visible through the using declaration
6455  // even if hidden by ordinary names, *except* in a dependent context
6456  // where it's important for the sanity of two-phase lookup.
6457  if (!IsInstantiation)
6458    R.setHideTags(false);
6459
6460  LookupQualifiedName(R, LookupContext);
6461
6462  if (R.empty()) {
6463    Diag(IdentLoc, diag::err_no_member)
6464      << NameInfo.getName() << LookupContext << SS.getRange();
6465    UD->setInvalidDecl();
6466    return UD;
6467  }
6468
6469  if (R.isAmbiguous()) {
6470    UD->setInvalidDecl();
6471    return UD;
6472  }
6473
6474  if (IsTypeName) {
6475    // If we asked for a typename and got a non-type decl, error out.
6476    if (!R.getAsSingle<TypeDecl>()) {
6477      Diag(IdentLoc, diag::err_using_typename_non_type);
6478      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6479        Diag((*I)->getUnderlyingDecl()->getLocation(),
6480             diag::note_using_decl_target);
6481      UD->setInvalidDecl();
6482      return UD;
6483    }
6484  } else {
6485    // If we asked for a non-typename and we got a type, error out,
6486    // but only if this is an instantiation of an unresolved using
6487    // decl.  Otherwise just silently find the type name.
6488    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6489      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6490      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6491      UD->setInvalidDecl();
6492      return UD;
6493    }
6494  }
6495
6496  // C++0x N2914 [namespace.udecl]p6:
6497  // A using-declaration shall not name a namespace.
6498  if (R.getAsSingle<NamespaceDecl>()) {
6499    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6500      << SS.getRange();
6501    UD->setInvalidDecl();
6502    return UD;
6503  }
6504
6505  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6506    if (!CheckUsingShadowDecl(UD, *I, Previous))
6507      BuildUsingShadowDecl(S, UD, *I);
6508  }
6509
6510  return UD;
6511}
6512
6513/// Additional checks for a using declaration referring to a constructor name.
6514bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6515  if (UD->isTypeName()) {
6516    // FIXME: Cannot specify typename when specifying constructor
6517    return true;
6518  }
6519
6520  const Type *SourceType = UD->getQualifier()->getAsType();
6521  assert(SourceType &&
6522         "Using decl naming constructor doesn't have type in scope spec.");
6523  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6524
6525  // Check whether the named type is a direct base class.
6526  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6527  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6528  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6529       BaseIt != BaseE; ++BaseIt) {
6530    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6531    if (CanonicalSourceType == BaseType)
6532      break;
6533  }
6534
6535  if (BaseIt == BaseE) {
6536    // Did not find SourceType in the bases.
6537    Diag(UD->getUsingLocation(),
6538         diag::err_using_decl_constructor_not_in_direct_base)
6539      << UD->getNameInfo().getSourceRange()
6540      << QualType(SourceType, 0) << TargetClass;
6541    return true;
6542  }
6543
6544  BaseIt->setInheritConstructors();
6545
6546  return false;
6547}
6548
6549/// Checks that the given using declaration is not an invalid
6550/// redeclaration.  Note that this is checking only for the using decl
6551/// itself, not for any ill-formedness among the UsingShadowDecls.
6552bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6553                                       bool isTypeName,
6554                                       const CXXScopeSpec &SS,
6555                                       SourceLocation NameLoc,
6556                                       const LookupResult &Prev) {
6557  // C++03 [namespace.udecl]p8:
6558  // C++0x [namespace.udecl]p10:
6559  //   A using-declaration is a declaration and can therefore be used
6560  //   repeatedly where (and only where) multiple declarations are
6561  //   allowed.
6562  //
6563  // That's in non-member contexts.
6564  if (!CurContext->getRedeclContext()->isRecord())
6565    return false;
6566
6567  NestedNameSpecifier *Qual
6568    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6569
6570  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6571    NamedDecl *D = *I;
6572
6573    bool DTypename;
6574    NestedNameSpecifier *DQual;
6575    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6576      DTypename = UD->isTypeName();
6577      DQual = UD->getQualifier();
6578    } else if (UnresolvedUsingValueDecl *UD
6579                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6580      DTypename = false;
6581      DQual = UD->getQualifier();
6582    } else if (UnresolvedUsingTypenameDecl *UD
6583                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6584      DTypename = true;
6585      DQual = UD->getQualifier();
6586    } else continue;
6587
6588    // using decls differ if one says 'typename' and the other doesn't.
6589    // FIXME: non-dependent using decls?
6590    if (isTypeName != DTypename) continue;
6591
6592    // using decls differ if they name different scopes (but note that
6593    // template instantiation can cause this check to trigger when it
6594    // didn't before instantiation).
6595    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6596        Context.getCanonicalNestedNameSpecifier(DQual))
6597      continue;
6598
6599    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6600    Diag(D->getLocation(), diag::note_using_decl) << 1;
6601    return true;
6602  }
6603
6604  return false;
6605}
6606
6607
6608/// Checks that the given nested-name qualifier used in a using decl
6609/// in the current context is appropriately related to the current
6610/// scope.  If an error is found, diagnoses it and returns true.
6611bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6612                                   const CXXScopeSpec &SS,
6613                                   SourceLocation NameLoc) {
6614  DeclContext *NamedContext = computeDeclContext(SS);
6615
6616  if (!CurContext->isRecord()) {
6617    // C++03 [namespace.udecl]p3:
6618    // C++0x [namespace.udecl]p8:
6619    //   A using-declaration for a class member shall be a member-declaration.
6620
6621    // If we weren't able to compute a valid scope, it must be a
6622    // dependent class scope.
6623    if (!NamedContext || NamedContext->isRecord()) {
6624      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6625        << SS.getRange();
6626      return true;
6627    }
6628
6629    // Otherwise, everything is known to be fine.
6630    return false;
6631  }
6632
6633  // The current scope is a record.
6634
6635  // If the named context is dependent, we can't decide much.
6636  if (!NamedContext) {
6637    // FIXME: in C++0x, we can diagnose if we can prove that the
6638    // nested-name-specifier does not refer to a base class, which is
6639    // still possible in some cases.
6640
6641    // Otherwise we have to conservatively report that things might be
6642    // okay.
6643    return false;
6644  }
6645
6646  if (!NamedContext->isRecord()) {
6647    // Ideally this would point at the last name in the specifier,
6648    // but we don't have that level of source info.
6649    Diag(SS.getRange().getBegin(),
6650         diag::err_using_decl_nested_name_specifier_is_not_class)
6651      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6652    return true;
6653  }
6654
6655  if (!NamedContext->isDependentContext() &&
6656      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6657    return true;
6658
6659  if (getLangOptions().CPlusPlus0x) {
6660    // C++0x [namespace.udecl]p3:
6661    //   In a using-declaration used as a member-declaration, the
6662    //   nested-name-specifier shall name a base class of the class
6663    //   being defined.
6664
6665    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6666                                 cast<CXXRecordDecl>(NamedContext))) {
6667      if (CurContext == NamedContext) {
6668        Diag(NameLoc,
6669             diag::err_using_decl_nested_name_specifier_is_current_class)
6670          << SS.getRange();
6671        return true;
6672      }
6673
6674      Diag(SS.getRange().getBegin(),
6675           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6676        << (NestedNameSpecifier*) SS.getScopeRep()
6677        << cast<CXXRecordDecl>(CurContext)
6678        << SS.getRange();
6679      return true;
6680    }
6681
6682    return false;
6683  }
6684
6685  // C++03 [namespace.udecl]p4:
6686  //   A using-declaration used as a member-declaration shall refer
6687  //   to a member of a base class of the class being defined [etc.].
6688
6689  // Salient point: SS doesn't have to name a base class as long as
6690  // lookup only finds members from base classes.  Therefore we can
6691  // diagnose here only if we can prove that that can't happen,
6692  // i.e. if the class hierarchies provably don't intersect.
6693
6694  // TODO: it would be nice if "definitely valid" results were cached
6695  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6696  // need to be repeated.
6697
6698  struct UserData {
6699    llvm::DenseSet<const CXXRecordDecl*> Bases;
6700
6701    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6702      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6703      Data->Bases.insert(Base);
6704      return true;
6705    }
6706
6707    bool hasDependentBases(const CXXRecordDecl *Class) {
6708      return !Class->forallBases(collect, this);
6709    }
6710
6711    /// Returns true if the base is dependent or is one of the
6712    /// accumulated base classes.
6713    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6714      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6715      return !Data->Bases.count(Base);
6716    }
6717
6718    bool mightShareBases(const CXXRecordDecl *Class) {
6719      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6720    }
6721  };
6722
6723  UserData Data;
6724
6725  // Returns false if we find a dependent base.
6726  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6727    return false;
6728
6729  // Returns false if the class has a dependent base or if it or one
6730  // of its bases is present in the base set of the current context.
6731  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6732    return false;
6733
6734  Diag(SS.getRange().getBegin(),
6735       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6736    << (NestedNameSpecifier*) SS.getScopeRep()
6737    << cast<CXXRecordDecl>(CurContext)
6738    << SS.getRange();
6739
6740  return true;
6741}
6742
6743Decl *Sema::ActOnAliasDeclaration(Scope *S,
6744                                  AccessSpecifier AS,
6745                                  MultiTemplateParamsArg TemplateParamLists,
6746                                  SourceLocation UsingLoc,
6747                                  UnqualifiedId &Name,
6748                                  TypeResult Type) {
6749  // Skip up to the relevant declaration scope.
6750  while (S->getFlags() & Scope::TemplateParamScope)
6751    S = S->getParent();
6752  assert((S->getFlags() & Scope::DeclScope) &&
6753         "got alias-declaration outside of declaration scope");
6754
6755  if (Type.isInvalid())
6756    return 0;
6757
6758  bool Invalid = false;
6759  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6760  TypeSourceInfo *TInfo = 0;
6761  GetTypeFromParser(Type.get(), &TInfo);
6762
6763  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6764    return 0;
6765
6766  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6767                                      UPPC_DeclarationType)) {
6768    Invalid = true;
6769    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6770                                             TInfo->getTypeLoc().getBeginLoc());
6771  }
6772
6773  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6774  LookupName(Previous, S);
6775
6776  // Warn about shadowing the name of a template parameter.
6777  if (Previous.isSingleResult() &&
6778      Previous.getFoundDecl()->isTemplateParameter()) {
6779    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6780    Previous.clear();
6781  }
6782
6783  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6784         "name in alias declaration must be an identifier");
6785  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6786                                               Name.StartLocation,
6787                                               Name.Identifier, TInfo);
6788
6789  NewTD->setAccess(AS);
6790
6791  if (Invalid)
6792    NewTD->setInvalidDecl();
6793
6794  CheckTypedefForVariablyModifiedType(S, NewTD);
6795  Invalid |= NewTD->isInvalidDecl();
6796
6797  bool Redeclaration = false;
6798
6799  NamedDecl *NewND;
6800  if (TemplateParamLists.size()) {
6801    TypeAliasTemplateDecl *OldDecl = 0;
6802    TemplateParameterList *OldTemplateParams = 0;
6803
6804    if (TemplateParamLists.size() != 1) {
6805      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6806        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6807         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6808    }
6809    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6810
6811    // Only consider previous declarations in the same scope.
6812    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6813                         /*ExplicitInstantiationOrSpecialization*/false);
6814    if (!Previous.empty()) {
6815      Redeclaration = true;
6816
6817      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6818      if (!OldDecl && !Invalid) {
6819        Diag(UsingLoc, diag::err_redefinition_different_kind)
6820          << Name.Identifier;
6821
6822        NamedDecl *OldD = Previous.getRepresentativeDecl();
6823        if (OldD->getLocation().isValid())
6824          Diag(OldD->getLocation(), diag::note_previous_definition);
6825
6826        Invalid = true;
6827      }
6828
6829      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6830        if (TemplateParameterListsAreEqual(TemplateParams,
6831                                           OldDecl->getTemplateParameters(),
6832                                           /*Complain=*/true,
6833                                           TPL_TemplateMatch))
6834          OldTemplateParams = OldDecl->getTemplateParameters();
6835        else
6836          Invalid = true;
6837
6838        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6839        if (!Invalid &&
6840            !Context.hasSameType(OldTD->getUnderlyingType(),
6841                                 NewTD->getUnderlyingType())) {
6842          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6843          // but we can't reasonably accept it.
6844          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6845            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6846          if (OldTD->getLocation().isValid())
6847            Diag(OldTD->getLocation(), diag::note_previous_definition);
6848          Invalid = true;
6849        }
6850      }
6851    }
6852
6853    // Merge any previous default template arguments into our parameters,
6854    // and check the parameter list.
6855    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6856                                   TPC_TypeAliasTemplate))
6857      return 0;
6858
6859    TypeAliasTemplateDecl *NewDecl =
6860      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6861                                    Name.Identifier, TemplateParams,
6862                                    NewTD);
6863
6864    NewDecl->setAccess(AS);
6865
6866    if (Invalid)
6867      NewDecl->setInvalidDecl();
6868    else if (OldDecl)
6869      NewDecl->setPreviousDeclaration(OldDecl);
6870
6871    NewND = NewDecl;
6872  } else {
6873    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6874    NewND = NewTD;
6875  }
6876
6877  if (!Redeclaration)
6878    PushOnScopeChains(NewND, S);
6879
6880  return NewND;
6881}
6882
6883Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6884                                             SourceLocation NamespaceLoc,
6885                                             SourceLocation AliasLoc,
6886                                             IdentifierInfo *Alias,
6887                                             CXXScopeSpec &SS,
6888                                             SourceLocation IdentLoc,
6889                                             IdentifierInfo *Ident) {
6890
6891  // Lookup the namespace name.
6892  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6893  LookupParsedName(R, S, &SS);
6894
6895  // Check if we have a previous declaration with the same name.
6896  NamedDecl *PrevDecl
6897    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6898                       ForRedeclaration);
6899  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6900    PrevDecl = 0;
6901
6902  if (PrevDecl) {
6903    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6904      // We already have an alias with the same name that points to the same
6905      // namespace, so don't create a new one.
6906      // FIXME: At some point, we'll want to create the (redundant)
6907      // declaration to maintain better source information.
6908      if (!R.isAmbiguous() && !R.empty() &&
6909          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6910        return 0;
6911    }
6912
6913    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6914      diag::err_redefinition_different_kind;
6915    Diag(AliasLoc, DiagID) << Alias;
6916    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6917    return 0;
6918  }
6919
6920  if (R.isAmbiguous())
6921    return 0;
6922
6923  if (R.empty()) {
6924    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6925      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6926      return 0;
6927    }
6928  }
6929
6930  NamespaceAliasDecl *AliasDecl =
6931    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6932                               Alias, SS.getWithLocInContext(Context),
6933                               IdentLoc, R.getFoundDecl());
6934
6935  PushOnScopeChains(AliasDecl, S);
6936  return AliasDecl;
6937}
6938
6939namespace {
6940  /// \brief Scoped object used to handle the state changes required in Sema
6941  /// to implicitly define the body of a C++ member function;
6942  class ImplicitlyDefinedFunctionScope {
6943    Sema &S;
6944    Sema::ContextRAII SavedContext;
6945
6946  public:
6947    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6948      : S(S), SavedContext(S, Method)
6949    {
6950      S.PushFunctionScope();
6951      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6952    }
6953
6954    ~ImplicitlyDefinedFunctionScope() {
6955      S.PopExpressionEvaluationContext();
6956      S.PopFunctionScopeInfo();
6957    }
6958  };
6959}
6960
6961Sema::ImplicitExceptionSpecification
6962Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6963  // C++ [except.spec]p14:
6964  //   An implicitly declared special member function (Clause 12) shall have an
6965  //   exception-specification. [...]
6966  ImplicitExceptionSpecification ExceptSpec(Context);
6967  if (ClassDecl->isInvalidDecl())
6968    return ExceptSpec;
6969
6970  // Direct base-class constructors.
6971  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6972                                       BEnd = ClassDecl->bases_end();
6973       B != BEnd; ++B) {
6974    if (B->isVirtual()) // Handled below.
6975      continue;
6976
6977    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6978      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6979      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6980      // If this is a deleted function, add it anyway. This might be conformant
6981      // with the standard. This might not. I'm not sure. It might not matter.
6982      if (Constructor)
6983        ExceptSpec.CalledDecl(Constructor);
6984    }
6985  }
6986
6987  // Virtual base-class constructors.
6988  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6989                                       BEnd = ClassDecl->vbases_end();
6990       B != BEnd; ++B) {
6991    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6992      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6993      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6994      // If this is a deleted function, add it anyway. This might be conformant
6995      // with the standard. This might not. I'm not sure. It might not matter.
6996      if (Constructor)
6997        ExceptSpec.CalledDecl(Constructor);
6998    }
6999  }
7000
7001  // Field constructors.
7002  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7003                               FEnd = ClassDecl->field_end();
7004       F != FEnd; ++F) {
7005    if (F->hasInClassInitializer()) {
7006      if (Expr *E = F->getInClassInitializer())
7007        ExceptSpec.CalledExpr(E);
7008      else if (!F->isInvalidDecl())
7009        ExceptSpec.SetDelayed();
7010    } else if (const RecordType *RecordTy
7011              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7012      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7013      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7014      // If this is a deleted function, add it anyway. This might be conformant
7015      // with the standard. This might not. I'm not sure. It might not matter.
7016      // In particular, the problem is that this function never gets called. It
7017      // might just be ill-formed because this function attempts to refer to
7018      // a deleted function here.
7019      if (Constructor)
7020        ExceptSpec.CalledDecl(Constructor);
7021    }
7022  }
7023
7024  return ExceptSpec;
7025}
7026
7027CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7028                                                     CXXRecordDecl *ClassDecl) {
7029  // C++ [class.ctor]p5:
7030  //   A default constructor for a class X is a constructor of class X
7031  //   that can be called without an argument. If there is no
7032  //   user-declared constructor for class X, a default constructor is
7033  //   implicitly declared. An implicitly-declared default constructor
7034  //   is an inline public member of its class.
7035  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7036         "Should not build implicit default constructor!");
7037
7038  ImplicitExceptionSpecification Spec =
7039    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7040  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7041
7042  // Create the actual constructor declaration.
7043  CanQualType ClassType
7044    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7045  SourceLocation ClassLoc = ClassDecl->getLocation();
7046  DeclarationName Name
7047    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7048  DeclarationNameInfo NameInfo(Name, ClassLoc);
7049  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7050      Context, ClassDecl, ClassLoc, NameInfo,
7051      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7052      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7053      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7054        getLangOptions().CPlusPlus0x);
7055  DefaultCon->setAccess(AS_public);
7056  DefaultCon->setDefaulted();
7057  DefaultCon->setImplicit();
7058  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7059
7060  // Note that we have declared this constructor.
7061  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7062
7063  if (Scope *S = getScopeForContext(ClassDecl))
7064    PushOnScopeChains(DefaultCon, S, false);
7065  ClassDecl->addDecl(DefaultCon);
7066
7067  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7068    DefaultCon->setDeletedAsWritten();
7069
7070  return DefaultCon;
7071}
7072
7073void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7074                                            CXXConstructorDecl *Constructor) {
7075  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7076          !Constructor->doesThisDeclarationHaveABody() &&
7077          !Constructor->isDeleted()) &&
7078    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7079
7080  CXXRecordDecl *ClassDecl = Constructor->getParent();
7081  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7082
7083  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7084  DiagnosticErrorTrap Trap(Diags);
7085  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7086      Trap.hasErrorOccurred()) {
7087    Diag(CurrentLocation, diag::note_member_synthesized_at)
7088      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7089    Constructor->setInvalidDecl();
7090    return;
7091  }
7092
7093  SourceLocation Loc = Constructor->getLocation();
7094  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7095
7096  Constructor->setUsed();
7097  MarkVTableUsed(CurrentLocation, ClassDecl);
7098
7099  if (ASTMutationListener *L = getASTMutationListener()) {
7100    L->CompletedImplicitDefinition(Constructor);
7101  }
7102}
7103
7104/// Get any existing defaulted default constructor for the given class. Do not
7105/// implicitly define one if it does not exist.
7106static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7107                                                             CXXRecordDecl *D) {
7108  ASTContext &Context = Self.Context;
7109  QualType ClassType = Context.getTypeDeclType(D);
7110  DeclarationName ConstructorName
7111    = Context.DeclarationNames.getCXXConstructorName(
7112                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7113
7114  DeclContext::lookup_const_iterator Con, ConEnd;
7115  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7116       Con != ConEnd; ++Con) {
7117    // A function template cannot be defaulted.
7118    if (isa<FunctionTemplateDecl>(*Con))
7119      continue;
7120
7121    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7122    if (Constructor->isDefaultConstructor())
7123      return Constructor->isDefaulted() ? Constructor : 0;
7124  }
7125  return 0;
7126}
7127
7128void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7129  if (!D) return;
7130  AdjustDeclIfTemplate(D);
7131
7132  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7133  CXXConstructorDecl *CtorDecl
7134    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7135
7136  if (!CtorDecl) return;
7137
7138  // Compute the exception specification for the default constructor.
7139  const FunctionProtoType *CtorTy =
7140    CtorDecl->getType()->castAs<FunctionProtoType>();
7141  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7142    ImplicitExceptionSpecification Spec =
7143      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7144    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7145    assert(EPI.ExceptionSpecType != EST_Delayed);
7146
7147    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7148  }
7149
7150  // If the default constructor is explicitly defaulted, checking the exception
7151  // specification is deferred until now.
7152  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7153      !ClassDecl->isDependentType())
7154    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7155}
7156
7157void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7158  // We start with an initial pass over the base classes to collect those that
7159  // inherit constructors from. If there are none, we can forgo all further
7160  // processing.
7161  typedef SmallVector<const RecordType *, 4> BasesVector;
7162  BasesVector BasesToInheritFrom;
7163  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7164                                          BaseE = ClassDecl->bases_end();
7165         BaseIt != BaseE; ++BaseIt) {
7166    if (BaseIt->getInheritConstructors()) {
7167      QualType Base = BaseIt->getType();
7168      if (Base->isDependentType()) {
7169        // If we inherit constructors from anything that is dependent, just
7170        // abort processing altogether. We'll get another chance for the
7171        // instantiations.
7172        return;
7173      }
7174      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7175    }
7176  }
7177  if (BasesToInheritFrom.empty())
7178    return;
7179
7180  // Now collect the constructors that we already have in the current class.
7181  // Those take precedence over inherited constructors.
7182  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7183  //   unless there is a user-declared constructor with the same signature in
7184  //   the class where the using-declaration appears.
7185  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7186  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7187                                    CtorE = ClassDecl->ctor_end();
7188       CtorIt != CtorE; ++CtorIt) {
7189    ExistingConstructors.insert(
7190        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7191  }
7192
7193  Scope *S = getScopeForContext(ClassDecl);
7194  DeclarationName CreatedCtorName =
7195      Context.DeclarationNames.getCXXConstructorName(
7196          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7197
7198  // Now comes the true work.
7199  // First, we keep a map from constructor types to the base that introduced
7200  // them. Needed for finding conflicting constructors. We also keep the
7201  // actually inserted declarations in there, for pretty diagnostics.
7202  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7203  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7204  ConstructorToSourceMap InheritedConstructors;
7205  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7206                             BaseE = BasesToInheritFrom.end();
7207       BaseIt != BaseE; ++BaseIt) {
7208    const RecordType *Base = *BaseIt;
7209    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7210    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7211    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7212                                      CtorE = BaseDecl->ctor_end();
7213         CtorIt != CtorE; ++CtorIt) {
7214      // Find the using declaration for inheriting this base's constructors.
7215      DeclarationName Name =
7216          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7217      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7218          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7219      SourceLocation UsingLoc = UD ? UD->getLocation() :
7220                                     ClassDecl->getLocation();
7221
7222      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7223      //   from the class X named in the using-declaration consists of actual
7224      //   constructors and notional constructors that result from the
7225      //   transformation of defaulted parameters as follows:
7226      //   - all non-template default constructors of X, and
7227      //   - for each non-template constructor of X that has at least one
7228      //     parameter with a default argument, the set of constructors that
7229      //     results from omitting any ellipsis parameter specification and
7230      //     successively omitting parameters with a default argument from the
7231      //     end of the parameter-type-list.
7232      CXXConstructorDecl *BaseCtor = *CtorIt;
7233      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7234      const FunctionProtoType *BaseCtorType =
7235          BaseCtor->getType()->getAs<FunctionProtoType>();
7236
7237      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7238                    maxParams = BaseCtor->getNumParams();
7239           params <= maxParams; ++params) {
7240        // Skip default constructors. They're never inherited.
7241        if (params == 0)
7242          continue;
7243        // Skip copy and move constructors for the same reason.
7244        if (CanBeCopyOrMove && params == 1)
7245          continue;
7246
7247        // Build up a function type for this particular constructor.
7248        // FIXME: The working paper does not consider that the exception spec
7249        // for the inheriting constructor might be larger than that of the
7250        // source. This code doesn't yet, either. When it does, this code will
7251        // need to be delayed until after exception specifications and in-class
7252        // member initializers are attached.
7253        const Type *NewCtorType;
7254        if (params == maxParams)
7255          NewCtorType = BaseCtorType;
7256        else {
7257          SmallVector<QualType, 16> Args;
7258          for (unsigned i = 0; i < params; ++i) {
7259            Args.push_back(BaseCtorType->getArgType(i));
7260          }
7261          FunctionProtoType::ExtProtoInfo ExtInfo =
7262              BaseCtorType->getExtProtoInfo();
7263          ExtInfo.Variadic = false;
7264          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7265                                                Args.data(), params, ExtInfo)
7266                       .getTypePtr();
7267        }
7268        const Type *CanonicalNewCtorType =
7269            Context.getCanonicalType(NewCtorType);
7270
7271        // Now that we have the type, first check if the class already has a
7272        // constructor with this signature.
7273        if (ExistingConstructors.count(CanonicalNewCtorType))
7274          continue;
7275
7276        // Then we check if we have already declared an inherited constructor
7277        // with this signature.
7278        std::pair<ConstructorToSourceMap::iterator, bool> result =
7279            InheritedConstructors.insert(std::make_pair(
7280                CanonicalNewCtorType,
7281                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7282        if (!result.second) {
7283          // Already in the map. If it came from a different class, that's an
7284          // error. Not if it's from the same.
7285          CanQualType PreviousBase = result.first->second.first;
7286          if (CanonicalBase != PreviousBase) {
7287            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7288            const CXXConstructorDecl *PrevBaseCtor =
7289                PrevCtor->getInheritedConstructor();
7290            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7291
7292            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7293            Diag(BaseCtor->getLocation(),
7294                 diag::note_using_decl_constructor_conflict_current_ctor);
7295            Diag(PrevBaseCtor->getLocation(),
7296                 diag::note_using_decl_constructor_conflict_previous_ctor);
7297            Diag(PrevCtor->getLocation(),
7298                 diag::note_using_decl_constructor_conflict_previous_using);
7299          }
7300          continue;
7301        }
7302
7303        // OK, we're there, now add the constructor.
7304        // C++0x [class.inhctor]p8: [...] that would be performed by a
7305        //   user-written inline constructor [...]
7306        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7307        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7308            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7309            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7310            /*ImplicitlyDeclared=*/true,
7311            // FIXME: Due to a defect in the standard, we treat inherited
7312            // constructors as constexpr even if that makes them ill-formed.
7313            /*Constexpr=*/BaseCtor->isConstexpr());
7314        NewCtor->setAccess(BaseCtor->getAccess());
7315
7316        // Build up the parameter decls and add them.
7317        SmallVector<ParmVarDecl *, 16> ParamDecls;
7318        for (unsigned i = 0; i < params; ++i) {
7319          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7320                                                   UsingLoc, UsingLoc,
7321                                                   /*IdentifierInfo=*/0,
7322                                                   BaseCtorType->getArgType(i),
7323                                                   /*TInfo=*/0, SC_None,
7324                                                   SC_None, /*DefaultArg=*/0));
7325        }
7326        NewCtor->setParams(ParamDecls);
7327        NewCtor->setInheritedConstructor(BaseCtor);
7328
7329        PushOnScopeChains(NewCtor, S, false);
7330        ClassDecl->addDecl(NewCtor);
7331        result.first->second.second = NewCtor;
7332      }
7333    }
7334  }
7335}
7336
7337Sema::ImplicitExceptionSpecification
7338Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7339  // C++ [except.spec]p14:
7340  //   An implicitly declared special member function (Clause 12) shall have
7341  //   an exception-specification.
7342  ImplicitExceptionSpecification ExceptSpec(Context);
7343  if (ClassDecl->isInvalidDecl())
7344    return ExceptSpec;
7345
7346  // Direct base-class destructors.
7347  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7348                                       BEnd = ClassDecl->bases_end();
7349       B != BEnd; ++B) {
7350    if (B->isVirtual()) // Handled below.
7351      continue;
7352
7353    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7354      ExceptSpec.CalledDecl(
7355                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7356  }
7357
7358  // Virtual base-class destructors.
7359  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7360                                       BEnd = ClassDecl->vbases_end();
7361       B != BEnd; ++B) {
7362    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7363      ExceptSpec.CalledDecl(
7364                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7365  }
7366
7367  // Field destructors.
7368  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7369                               FEnd = ClassDecl->field_end();
7370       F != FEnd; ++F) {
7371    if (const RecordType *RecordTy
7372        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7373      ExceptSpec.CalledDecl(
7374                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7375  }
7376
7377  return ExceptSpec;
7378}
7379
7380CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7381  // C++ [class.dtor]p2:
7382  //   If a class has no user-declared destructor, a destructor is
7383  //   declared implicitly. An implicitly-declared destructor is an
7384  //   inline public member of its class.
7385
7386  ImplicitExceptionSpecification Spec =
7387      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7388  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7389
7390  // Create the actual destructor declaration.
7391  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7392
7393  CanQualType ClassType
7394    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7395  SourceLocation ClassLoc = ClassDecl->getLocation();
7396  DeclarationName Name
7397    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7398  DeclarationNameInfo NameInfo(Name, ClassLoc);
7399  CXXDestructorDecl *Destructor
7400      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7401                                  /*isInline=*/true,
7402                                  /*isImplicitlyDeclared=*/true);
7403  Destructor->setAccess(AS_public);
7404  Destructor->setDefaulted();
7405  Destructor->setImplicit();
7406  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7407
7408  // Note that we have declared this destructor.
7409  ++ASTContext::NumImplicitDestructorsDeclared;
7410
7411  // Introduce this destructor into its scope.
7412  if (Scope *S = getScopeForContext(ClassDecl))
7413    PushOnScopeChains(Destructor, S, false);
7414  ClassDecl->addDecl(Destructor);
7415
7416  // This could be uniqued if it ever proves significant.
7417  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7418
7419  if (ShouldDeleteDestructor(Destructor))
7420    Destructor->setDeletedAsWritten();
7421
7422  AddOverriddenMethods(ClassDecl, Destructor);
7423
7424  return Destructor;
7425}
7426
7427void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7428                                    CXXDestructorDecl *Destructor) {
7429  assert((Destructor->isDefaulted() &&
7430          !Destructor->doesThisDeclarationHaveABody()) &&
7431         "DefineImplicitDestructor - call it for implicit default dtor");
7432  CXXRecordDecl *ClassDecl = Destructor->getParent();
7433  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7434
7435  if (Destructor->isInvalidDecl())
7436    return;
7437
7438  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7439
7440  DiagnosticErrorTrap Trap(Diags);
7441  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7442                                         Destructor->getParent());
7443
7444  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7445    Diag(CurrentLocation, diag::note_member_synthesized_at)
7446      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7447
7448    Destructor->setInvalidDecl();
7449    return;
7450  }
7451
7452  SourceLocation Loc = Destructor->getLocation();
7453  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7454  Destructor->setImplicitlyDefined(true);
7455  Destructor->setUsed();
7456  MarkVTableUsed(CurrentLocation, ClassDecl);
7457
7458  if (ASTMutationListener *L = getASTMutationListener()) {
7459    L->CompletedImplicitDefinition(Destructor);
7460  }
7461}
7462
7463void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7464                                         CXXDestructorDecl *destructor) {
7465  // C++11 [class.dtor]p3:
7466  //   A declaration of a destructor that does not have an exception-
7467  //   specification is implicitly considered to have the same exception-
7468  //   specification as an implicit declaration.
7469  const FunctionProtoType *dtorType = destructor->getType()->
7470                                        getAs<FunctionProtoType>();
7471  if (dtorType->hasExceptionSpec())
7472    return;
7473
7474  ImplicitExceptionSpecification exceptSpec =
7475      ComputeDefaultedDtorExceptionSpec(classDecl);
7476
7477  // Replace the destructor's type, building off the existing one. Fortunately,
7478  // the only thing of interest in the destructor type is its extended info.
7479  // The return and arguments are fixed.
7480  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7481  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7482  epi.NumExceptions = exceptSpec.size();
7483  epi.Exceptions = exceptSpec.data();
7484  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7485
7486  destructor->setType(ty);
7487
7488  // FIXME: If the destructor has a body that could throw, and the newly created
7489  // spec doesn't allow exceptions, we should emit a warning, because this
7490  // change in behavior can break conforming C++03 programs at runtime.
7491  // However, we don't have a body yet, so it needs to be done somewhere else.
7492}
7493
7494/// \brief Builds a statement that copies/moves the given entity from \p From to
7495/// \c To.
7496///
7497/// This routine is used to copy/move the members of a class with an
7498/// implicitly-declared copy/move assignment operator. When the entities being
7499/// copied are arrays, this routine builds for loops to copy them.
7500///
7501/// \param S The Sema object used for type-checking.
7502///
7503/// \param Loc The location where the implicit copy/move is being generated.
7504///
7505/// \param T The type of the expressions being copied/moved. Both expressions
7506/// must have this type.
7507///
7508/// \param To The expression we are copying/moving to.
7509///
7510/// \param From The expression we are copying/moving from.
7511///
7512/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7513/// Otherwise, it's a non-static member subobject.
7514///
7515/// \param Copying Whether we're copying or moving.
7516///
7517/// \param Depth Internal parameter recording the depth of the recursion.
7518///
7519/// \returns A statement or a loop that copies the expressions.
7520static StmtResult
7521BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7522                      Expr *To, Expr *From,
7523                      bool CopyingBaseSubobject, bool Copying,
7524                      unsigned Depth = 0) {
7525  // C++0x [class.copy]p28:
7526  //   Each subobject is assigned in the manner appropriate to its type:
7527  //
7528  //     - if the subobject is of class type, as if by a call to operator= with
7529  //       the subobject as the object expression and the corresponding
7530  //       subobject of x as a single function argument (as if by explicit
7531  //       qualification; that is, ignoring any possible virtual overriding
7532  //       functions in more derived classes);
7533  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7534    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7535
7536    // Look for operator=.
7537    DeclarationName Name
7538      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7539    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7540    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7541
7542    // Filter out any result that isn't a copy/move-assignment operator.
7543    LookupResult::Filter F = OpLookup.makeFilter();
7544    while (F.hasNext()) {
7545      NamedDecl *D = F.next();
7546      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7547        if (Copying ? Method->isCopyAssignmentOperator() :
7548                      Method->isMoveAssignmentOperator())
7549          continue;
7550
7551      F.erase();
7552    }
7553    F.done();
7554
7555    // Suppress the protected check (C++ [class.protected]) for each of the
7556    // assignment operators we found. This strange dance is required when
7557    // we're assigning via a base classes's copy-assignment operator. To
7558    // ensure that we're getting the right base class subobject (without
7559    // ambiguities), we need to cast "this" to that subobject type; to
7560    // ensure that we don't go through the virtual call mechanism, we need
7561    // to qualify the operator= name with the base class (see below). However,
7562    // this means that if the base class has a protected copy assignment
7563    // operator, the protected member access check will fail. So, we
7564    // rewrite "protected" access to "public" access in this case, since we
7565    // know by construction that we're calling from a derived class.
7566    if (CopyingBaseSubobject) {
7567      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7568           L != LEnd; ++L) {
7569        if (L.getAccess() == AS_protected)
7570          L.setAccess(AS_public);
7571      }
7572    }
7573
7574    // Create the nested-name-specifier that will be used to qualify the
7575    // reference to operator=; this is required to suppress the virtual
7576    // call mechanism.
7577    CXXScopeSpec SS;
7578    SS.MakeTrivial(S.Context,
7579                   NestedNameSpecifier::Create(S.Context, 0, false,
7580                                               T.getTypePtr()),
7581                   Loc);
7582
7583    // Create the reference to operator=.
7584    ExprResult OpEqualRef
7585      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7586                                   /*FirstQualifierInScope=*/0, OpLookup,
7587                                   /*TemplateArgs=*/0,
7588                                   /*SuppressQualifierCheck=*/true);
7589    if (OpEqualRef.isInvalid())
7590      return StmtError();
7591
7592    // Build the call to the assignment operator.
7593
7594    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7595                                                  OpEqualRef.takeAs<Expr>(),
7596                                                  Loc, &From, 1, Loc);
7597    if (Call.isInvalid())
7598      return StmtError();
7599
7600    return S.Owned(Call.takeAs<Stmt>());
7601  }
7602
7603  //     - if the subobject is of scalar type, the built-in assignment
7604  //       operator is used.
7605  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7606  if (!ArrayTy) {
7607    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7608    if (Assignment.isInvalid())
7609      return StmtError();
7610
7611    return S.Owned(Assignment.takeAs<Stmt>());
7612  }
7613
7614  //     - if the subobject is an array, each element is assigned, in the
7615  //       manner appropriate to the element type;
7616
7617  // Construct a loop over the array bounds, e.g.,
7618  //
7619  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7620  //
7621  // that will copy each of the array elements.
7622  QualType SizeType = S.Context.getSizeType();
7623
7624  // Create the iteration variable.
7625  IdentifierInfo *IterationVarName = 0;
7626  {
7627    llvm::SmallString<8> Str;
7628    llvm::raw_svector_ostream OS(Str);
7629    OS << "__i" << Depth;
7630    IterationVarName = &S.Context.Idents.get(OS.str());
7631  }
7632  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7633                                          IterationVarName, SizeType,
7634                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7635                                          SC_None, SC_None);
7636
7637  // Initialize the iteration variable to zero.
7638  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7639  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7640
7641  // Create a reference to the iteration variable; we'll use this several
7642  // times throughout.
7643  Expr *IterationVarRef
7644    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7645  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7646  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7647  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7648
7649  // Create the DeclStmt that holds the iteration variable.
7650  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7651
7652  // Create the comparison against the array bound.
7653  llvm::APInt Upper
7654    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7655  Expr *Comparison
7656    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7657                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7658                                     BO_NE, S.Context.BoolTy,
7659                                     VK_RValue, OK_Ordinary, Loc);
7660
7661  // Create the pre-increment of the iteration variable.
7662  Expr *Increment
7663    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7664                                    VK_LValue, OK_Ordinary, Loc);
7665
7666  // Subscript the "from" and "to" expressions with the iteration variable.
7667  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7668                                                         IterationVarRefRVal,
7669                                                         Loc));
7670  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7671                                                       IterationVarRefRVal,
7672                                                       Loc));
7673  if (!Copying) // Cast to rvalue
7674    From = CastForMoving(S, From);
7675
7676  // Build the copy/move for an individual element of the array.
7677  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7678                                          To, From, CopyingBaseSubobject,
7679                                          Copying, Depth + 1);
7680  if (Copy.isInvalid())
7681    return StmtError();
7682
7683  // Construct the loop that copies all elements of this array.
7684  return S.ActOnForStmt(Loc, Loc, InitStmt,
7685                        S.MakeFullExpr(Comparison),
7686                        0, S.MakeFullExpr(Increment),
7687                        Loc, Copy.take());
7688}
7689
7690std::pair<Sema::ImplicitExceptionSpecification, bool>
7691Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7692                                                   CXXRecordDecl *ClassDecl) {
7693  if (ClassDecl->isInvalidDecl())
7694    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7695
7696  // C++ [class.copy]p10:
7697  //   If the class definition does not explicitly declare a copy
7698  //   assignment operator, one is declared implicitly.
7699  //   The implicitly-defined copy assignment operator for a class X
7700  //   will have the form
7701  //
7702  //       X& X::operator=(const X&)
7703  //
7704  //   if
7705  bool HasConstCopyAssignment = true;
7706
7707  //       -- each direct base class B of X has a copy assignment operator
7708  //          whose parameter is of type const B&, const volatile B& or B,
7709  //          and
7710  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7711                                       BaseEnd = ClassDecl->bases_end();
7712       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7713    // We'll handle this below
7714    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7715      continue;
7716
7717    assert(!Base->getType()->isDependentType() &&
7718           "Cannot generate implicit members for class with dependent bases.");
7719    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7720    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7721                            &HasConstCopyAssignment);
7722  }
7723
7724  // In C++11, the above citation has "or virtual" added
7725  if (LangOpts.CPlusPlus0x) {
7726    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7727                                         BaseEnd = ClassDecl->vbases_end();
7728         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7729      assert(!Base->getType()->isDependentType() &&
7730             "Cannot generate implicit members for class with dependent bases.");
7731      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7732      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7733                              &HasConstCopyAssignment);
7734    }
7735  }
7736
7737  //       -- for all the nonstatic data members of X that are of a class
7738  //          type M (or array thereof), each such class type has a copy
7739  //          assignment operator whose parameter is of type const M&,
7740  //          const volatile M& or M.
7741  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7742                                  FieldEnd = ClassDecl->field_end();
7743       HasConstCopyAssignment && Field != FieldEnd;
7744       ++Field) {
7745    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7746    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7747      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7748                              &HasConstCopyAssignment);
7749    }
7750  }
7751
7752  //   Otherwise, the implicitly declared copy assignment operator will
7753  //   have the form
7754  //
7755  //       X& X::operator=(X&)
7756
7757  // C++ [except.spec]p14:
7758  //   An implicitly declared special member function (Clause 12) shall have an
7759  //   exception-specification. [...]
7760
7761  // It is unspecified whether or not an implicit copy assignment operator
7762  // attempts to deduplicate calls to assignment operators of virtual bases are
7763  // made. As such, this exception specification is effectively unspecified.
7764  // Based on a similar decision made for constness in C++0x, we're erring on
7765  // the side of assuming such calls to be made regardless of whether they
7766  // actually happen.
7767  ImplicitExceptionSpecification ExceptSpec(Context);
7768  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7769  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7770                                       BaseEnd = ClassDecl->bases_end();
7771       Base != BaseEnd; ++Base) {
7772    if (Base->isVirtual())
7773      continue;
7774
7775    CXXRecordDecl *BaseClassDecl
7776      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7777    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7778                                                            ArgQuals, false, 0))
7779      ExceptSpec.CalledDecl(CopyAssign);
7780  }
7781
7782  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7783                                       BaseEnd = ClassDecl->vbases_end();
7784       Base != BaseEnd; ++Base) {
7785    CXXRecordDecl *BaseClassDecl
7786      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7787    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7788                                                            ArgQuals, false, 0))
7789      ExceptSpec.CalledDecl(CopyAssign);
7790  }
7791
7792  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7793                                  FieldEnd = ClassDecl->field_end();
7794       Field != FieldEnd;
7795       ++Field) {
7796    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7797    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7798      if (CXXMethodDecl *CopyAssign =
7799          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7800        ExceptSpec.CalledDecl(CopyAssign);
7801    }
7802  }
7803
7804  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7805}
7806
7807CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7808  // Note: The following rules are largely analoguous to the copy
7809  // constructor rules. Note that virtual bases are not taken into account
7810  // for determining the argument type of the operator. Note also that
7811  // operators taking an object instead of a reference are allowed.
7812
7813  ImplicitExceptionSpecification Spec(Context);
7814  bool Const;
7815  llvm::tie(Spec, Const) =
7816    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7817
7818  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7819  QualType RetType = Context.getLValueReferenceType(ArgType);
7820  if (Const)
7821    ArgType = ArgType.withConst();
7822  ArgType = Context.getLValueReferenceType(ArgType);
7823
7824  //   An implicitly-declared copy assignment operator is an inline public
7825  //   member of its class.
7826  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7827  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7828  SourceLocation ClassLoc = ClassDecl->getLocation();
7829  DeclarationNameInfo NameInfo(Name, ClassLoc);
7830  CXXMethodDecl *CopyAssignment
7831    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7832                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7833                            /*TInfo=*/0, /*isStatic=*/false,
7834                            /*StorageClassAsWritten=*/SC_None,
7835                            /*isInline=*/true, /*isConstexpr=*/false,
7836                            SourceLocation());
7837  CopyAssignment->setAccess(AS_public);
7838  CopyAssignment->setDefaulted();
7839  CopyAssignment->setImplicit();
7840  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7841
7842  // Add the parameter to the operator.
7843  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7844                                               ClassLoc, ClassLoc, /*Id=*/0,
7845                                               ArgType, /*TInfo=*/0,
7846                                               SC_None,
7847                                               SC_None, 0);
7848  CopyAssignment->setParams(FromParam);
7849
7850  // Note that we have added this copy-assignment operator.
7851  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7852
7853  if (Scope *S = getScopeForContext(ClassDecl))
7854    PushOnScopeChains(CopyAssignment, S, false);
7855  ClassDecl->addDecl(CopyAssignment);
7856
7857  // C++0x [class.copy]p19:
7858  //   ....  If the class definition does not explicitly declare a copy
7859  //   assignment operator, there is no user-declared move constructor, and
7860  //   there is no user-declared move assignment operator, a copy assignment
7861  //   operator is implicitly declared as defaulted.
7862  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7863          !getLangOptions().MicrosoftMode) ||
7864      ClassDecl->hasUserDeclaredMoveAssignment() ||
7865      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7866    CopyAssignment->setDeletedAsWritten();
7867
7868  AddOverriddenMethods(ClassDecl, CopyAssignment);
7869  return CopyAssignment;
7870}
7871
7872void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7873                                        CXXMethodDecl *CopyAssignOperator) {
7874  assert((CopyAssignOperator->isDefaulted() &&
7875          CopyAssignOperator->isOverloadedOperator() &&
7876          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7877          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7878         "DefineImplicitCopyAssignment called for wrong function");
7879
7880  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7881
7882  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7883    CopyAssignOperator->setInvalidDecl();
7884    return;
7885  }
7886
7887  CopyAssignOperator->setUsed();
7888
7889  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7890  DiagnosticErrorTrap Trap(Diags);
7891
7892  // C++0x [class.copy]p30:
7893  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7894  //   for a non-union class X performs memberwise copy assignment of its
7895  //   subobjects. The direct base classes of X are assigned first, in the
7896  //   order of their declaration in the base-specifier-list, and then the
7897  //   immediate non-static data members of X are assigned, in the order in
7898  //   which they were declared in the class definition.
7899
7900  // The statements that form the synthesized function body.
7901  ASTOwningVector<Stmt*> Statements(*this);
7902
7903  // The parameter for the "other" object, which we are copying from.
7904  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7905  Qualifiers OtherQuals = Other->getType().getQualifiers();
7906  QualType OtherRefType = Other->getType();
7907  if (const LValueReferenceType *OtherRef
7908                                = OtherRefType->getAs<LValueReferenceType>()) {
7909    OtherRefType = OtherRef->getPointeeType();
7910    OtherQuals = OtherRefType.getQualifiers();
7911  }
7912
7913  // Our location for everything implicitly-generated.
7914  SourceLocation Loc = CopyAssignOperator->getLocation();
7915
7916  // Construct a reference to the "other" object. We'll be using this
7917  // throughout the generated ASTs.
7918  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7919  assert(OtherRef && "Reference to parameter cannot fail!");
7920
7921  // Construct the "this" pointer. We'll be using this throughout the generated
7922  // ASTs.
7923  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7924  assert(This && "Reference to this cannot fail!");
7925
7926  // Assign base classes.
7927  bool Invalid = false;
7928  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7929       E = ClassDecl->bases_end(); Base != E; ++Base) {
7930    // Form the assignment:
7931    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7932    QualType BaseType = Base->getType().getUnqualifiedType();
7933    if (!BaseType->isRecordType()) {
7934      Invalid = true;
7935      continue;
7936    }
7937
7938    CXXCastPath BasePath;
7939    BasePath.push_back(Base);
7940
7941    // Construct the "from" expression, which is an implicit cast to the
7942    // appropriately-qualified base type.
7943    Expr *From = OtherRef;
7944    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7945                             CK_UncheckedDerivedToBase,
7946                             VK_LValue, &BasePath).take();
7947
7948    // Dereference "this".
7949    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7950
7951    // Implicitly cast "this" to the appropriately-qualified base type.
7952    To = ImpCastExprToType(To.take(),
7953                           Context.getCVRQualifiedType(BaseType,
7954                                     CopyAssignOperator->getTypeQualifiers()),
7955                           CK_UncheckedDerivedToBase,
7956                           VK_LValue, &BasePath);
7957
7958    // Build the copy.
7959    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7960                                            To.get(), From,
7961                                            /*CopyingBaseSubobject=*/true,
7962                                            /*Copying=*/true);
7963    if (Copy.isInvalid()) {
7964      Diag(CurrentLocation, diag::note_member_synthesized_at)
7965        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7966      CopyAssignOperator->setInvalidDecl();
7967      return;
7968    }
7969
7970    // Success! Record the copy.
7971    Statements.push_back(Copy.takeAs<Expr>());
7972  }
7973
7974  // \brief Reference to the __builtin_memcpy function.
7975  Expr *BuiltinMemCpyRef = 0;
7976  // \brief Reference to the __builtin_objc_memmove_collectable function.
7977  Expr *CollectableMemCpyRef = 0;
7978
7979  // Assign non-static members.
7980  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7981                                  FieldEnd = ClassDecl->field_end();
7982       Field != FieldEnd; ++Field) {
7983    if (Field->isUnnamedBitfield())
7984      continue;
7985
7986    // Check for members of reference type; we can't copy those.
7987    if (Field->getType()->isReferenceType()) {
7988      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7989        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7990      Diag(Field->getLocation(), diag::note_declared_at);
7991      Diag(CurrentLocation, diag::note_member_synthesized_at)
7992        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7993      Invalid = true;
7994      continue;
7995    }
7996
7997    // Check for members of const-qualified, non-class type.
7998    QualType BaseType = Context.getBaseElementType(Field->getType());
7999    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8000      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8001        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8002      Diag(Field->getLocation(), diag::note_declared_at);
8003      Diag(CurrentLocation, diag::note_member_synthesized_at)
8004        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8005      Invalid = true;
8006      continue;
8007    }
8008
8009    // Suppress assigning zero-width bitfields.
8010    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8011      continue;
8012
8013    QualType FieldType = Field->getType().getNonReferenceType();
8014    if (FieldType->isIncompleteArrayType()) {
8015      assert(ClassDecl->hasFlexibleArrayMember() &&
8016             "Incomplete array type is not valid");
8017      continue;
8018    }
8019
8020    // Build references to the field in the object we're copying from and to.
8021    CXXScopeSpec SS; // Intentionally empty
8022    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8023                              LookupMemberName);
8024    MemberLookup.addDecl(*Field);
8025    MemberLookup.resolveKind();
8026    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8027                                               Loc, /*IsArrow=*/false,
8028                                               SS, 0, MemberLookup, 0);
8029    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8030                                             Loc, /*IsArrow=*/true,
8031                                             SS, 0, MemberLookup, 0);
8032    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8033    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8034
8035    // If the field should be copied with __builtin_memcpy rather than via
8036    // explicit assignments, do so. This optimization only applies for arrays
8037    // of scalars and arrays of class type with trivial copy-assignment
8038    // operators.
8039    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8040        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8041      // Compute the size of the memory buffer to be copied.
8042      QualType SizeType = Context.getSizeType();
8043      llvm::APInt Size(Context.getTypeSize(SizeType),
8044                       Context.getTypeSizeInChars(BaseType).getQuantity());
8045      for (const ConstantArrayType *Array
8046              = Context.getAsConstantArrayType(FieldType);
8047           Array;
8048           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8049        llvm::APInt ArraySize
8050          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8051        Size *= ArraySize;
8052      }
8053
8054      // Take the address of the field references for "from" and "to".
8055      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8056      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8057
8058      bool NeedsCollectableMemCpy =
8059          (BaseType->isRecordType() &&
8060           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8061
8062      if (NeedsCollectableMemCpy) {
8063        if (!CollectableMemCpyRef) {
8064          // Create a reference to the __builtin_objc_memmove_collectable function.
8065          LookupResult R(*this,
8066                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8067                         Loc, LookupOrdinaryName);
8068          LookupName(R, TUScope, true);
8069
8070          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8071          if (!CollectableMemCpy) {
8072            // Something went horribly wrong earlier, and we will have
8073            // complained about it.
8074            Invalid = true;
8075            continue;
8076          }
8077
8078          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8079                                                  CollectableMemCpy->getType(),
8080                                                  VK_LValue, Loc, 0).take();
8081          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8082        }
8083      }
8084      // Create a reference to the __builtin_memcpy builtin function.
8085      else if (!BuiltinMemCpyRef) {
8086        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8087                       LookupOrdinaryName);
8088        LookupName(R, TUScope, true);
8089
8090        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8091        if (!BuiltinMemCpy) {
8092          // Something went horribly wrong earlier, and we will have complained
8093          // about it.
8094          Invalid = true;
8095          continue;
8096        }
8097
8098        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8099                                            BuiltinMemCpy->getType(),
8100                                            VK_LValue, Loc, 0).take();
8101        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8102      }
8103
8104      ASTOwningVector<Expr*> CallArgs(*this);
8105      CallArgs.push_back(To.takeAs<Expr>());
8106      CallArgs.push_back(From.takeAs<Expr>());
8107      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8108      ExprResult Call = ExprError();
8109      if (NeedsCollectableMemCpy)
8110        Call = ActOnCallExpr(/*Scope=*/0,
8111                             CollectableMemCpyRef,
8112                             Loc, move_arg(CallArgs),
8113                             Loc);
8114      else
8115        Call = ActOnCallExpr(/*Scope=*/0,
8116                             BuiltinMemCpyRef,
8117                             Loc, move_arg(CallArgs),
8118                             Loc);
8119
8120      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8121      Statements.push_back(Call.takeAs<Expr>());
8122      continue;
8123    }
8124
8125    // Build the copy of this field.
8126    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8127                                            To.get(), From.get(),
8128                                            /*CopyingBaseSubobject=*/false,
8129                                            /*Copying=*/true);
8130    if (Copy.isInvalid()) {
8131      Diag(CurrentLocation, diag::note_member_synthesized_at)
8132        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8133      CopyAssignOperator->setInvalidDecl();
8134      return;
8135    }
8136
8137    // Success! Record the copy.
8138    Statements.push_back(Copy.takeAs<Stmt>());
8139  }
8140
8141  if (!Invalid) {
8142    // Add a "return *this;"
8143    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8144
8145    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8146    if (Return.isInvalid())
8147      Invalid = true;
8148    else {
8149      Statements.push_back(Return.takeAs<Stmt>());
8150
8151      if (Trap.hasErrorOccurred()) {
8152        Diag(CurrentLocation, diag::note_member_synthesized_at)
8153          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8154        Invalid = true;
8155      }
8156    }
8157  }
8158
8159  if (Invalid) {
8160    CopyAssignOperator->setInvalidDecl();
8161    return;
8162  }
8163
8164  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8165                                            /*isStmtExpr=*/false);
8166  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8167  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8168
8169  if (ASTMutationListener *L = getASTMutationListener()) {
8170    L->CompletedImplicitDefinition(CopyAssignOperator);
8171  }
8172}
8173
8174Sema::ImplicitExceptionSpecification
8175Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8176  ImplicitExceptionSpecification ExceptSpec(Context);
8177
8178  if (ClassDecl->isInvalidDecl())
8179    return ExceptSpec;
8180
8181  // C++0x [except.spec]p14:
8182  //   An implicitly declared special member function (Clause 12) shall have an
8183  //   exception-specification. [...]
8184
8185  // It is unspecified whether or not an implicit move assignment operator
8186  // attempts to deduplicate calls to assignment operators of virtual bases are
8187  // made. As such, this exception specification is effectively unspecified.
8188  // Based on a similar decision made for constness in C++0x, we're erring on
8189  // the side of assuming such calls to be made regardless of whether they
8190  // actually happen.
8191  // Note that a move constructor is not implicitly declared when there are
8192  // virtual bases, but it can still be user-declared and explicitly defaulted.
8193  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8194                                       BaseEnd = ClassDecl->bases_end();
8195       Base != BaseEnd; ++Base) {
8196    if (Base->isVirtual())
8197      continue;
8198
8199    CXXRecordDecl *BaseClassDecl
8200      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8201    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8202                                                           false, 0))
8203      ExceptSpec.CalledDecl(MoveAssign);
8204  }
8205
8206  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8207                                       BaseEnd = ClassDecl->vbases_end();
8208       Base != BaseEnd; ++Base) {
8209    CXXRecordDecl *BaseClassDecl
8210      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8211    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8212                                                           false, 0))
8213      ExceptSpec.CalledDecl(MoveAssign);
8214  }
8215
8216  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8217                                  FieldEnd = ClassDecl->field_end();
8218       Field != FieldEnd;
8219       ++Field) {
8220    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8221    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8222      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8223                                                             false, 0))
8224        ExceptSpec.CalledDecl(MoveAssign);
8225    }
8226  }
8227
8228  return ExceptSpec;
8229}
8230
8231CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8232  // Note: The following rules are largely analoguous to the move
8233  // constructor rules.
8234
8235  ImplicitExceptionSpecification Spec(
8236      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8237
8238  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8239  QualType RetType = Context.getLValueReferenceType(ArgType);
8240  ArgType = Context.getRValueReferenceType(ArgType);
8241
8242  //   An implicitly-declared move assignment operator is an inline public
8243  //   member of its class.
8244  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8245  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8246  SourceLocation ClassLoc = ClassDecl->getLocation();
8247  DeclarationNameInfo NameInfo(Name, ClassLoc);
8248  CXXMethodDecl *MoveAssignment
8249    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8250                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8251                            /*TInfo=*/0, /*isStatic=*/false,
8252                            /*StorageClassAsWritten=*/SC_None,
8253                            /*isInline=*/true,
8254                            /*isConstexpr=*/false,
8255                            SourceLocation());
8256  MoveAssignment->setAccess(AS_public);
8257  MoveAssignment->setDefaulted();
8258  MoveAssignment->setImplicit();
8259  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8260
8261  // Add the parameter to the operator.
8262  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8263                                               ClassLoc, ClassLoc, /*Id=*/0,
8264                                               ArgType, /*TInfo=*/0,
8265                                               SC_None,
8266                                               SC_None, 0);
8267  MoveAssignment->setParams(FromParam);
8268
8269  // Note that we have added this copy-assignment operator.
8270  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8271
8272  // C++0x [class.copy]p9:
8273  //   If the definition of a class X does not explicitly declare a move
8274  //   assignment operator, one will be implicitly declared as defaulted if and
8275  //   only if:
8276  //   [...]
8277  //   - the move assignment operator would not be implicitly defined as
8278  //     deleted.
8279  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8280    // Cache this result so that we don't try to generate this over and over
8281    // on every lookup, leaking memory and wasting time.
8282    ClassDecl->setFailedImplicitMoveAssignment();
8283    return 0;
8284  }
8285
8286  if (Scope *S = getScopeForContext(ClassDecl))
8287    PushOnScopeChains(MoveAssignment, S, false);
8288  ClassDecl->addDecl(MoveAssignment);
8289
8290  AddOverriddenMethods(ClassDecl, MoveAssignment);
8291  return MoveAssignment;
8292}
8293
8294void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8295                                        CXXMethodDecl *MoveAssignOperator) {
8296  assert((MoveAssignOperator->isDefaulted() &&
8297          MoveAssignOperator->isOverloadedOperator() &&
8298          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8299          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8300         "DefineImplicitMoveAssignment called for wrong function");
8301
8302  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8303
8304  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8305    MoveAssignOperator->setInvalidDecl();
8306    return;
8307  }
8308
8309  MoveAssignOperator->setUsed();
8310
8311  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8312  DiagnosticErrorTrap Trap(Diags);
8313
8314  // C++0x [class.copy]p28:
8315  //   The implicitly-defined or move assignment operator for a non-union class
8316  //   X performs memberwise move assignment of its subobjects. The direct base
8317  //   classes of X are assigned first, in the order of their declaration in the
8318  //   base-specifier-list, and then the immediate non-static data members of X
8319  //   are assigned, in the order in which they were declared in the class
8320  //   definition.
8321
8322  // The statements that form the synthesized function body.
8323  ASTOwningVector<Stmt*> Statements(*this);
8324
8325  // The parameter for the "other" object, which we are move from.
8326  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8327  QualType OtherRefType = Other->getType()->
8328      getAs<RValueReferenceType>()->getPointeeType();
8329  assert(OtherRefType.getQualifiers() == 0 &&
8330         "Bad argument type of defaulted move assignment");
8331
8332  // Our location for everything implicitly-generated.
8333  SourceLocation Loc = MoveAssignOperator->getLocation();
8334
8335  // Construct a reference to the "other" object. We'll be using this
8336  // throughout the generated ASTs.
8337  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8338  assert(OtherRef && "Reference to parameter cannot fail!");
8339  // Cast to rvalue.
8340  OtherRef = CastForMoving(*this, OtherRef);
8341
8342  // Construct the "this" pointer. We'll be using this throughout the generated
8343  // ASTs.
8344  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8345  assert(This && "Reference to this cannot fail!");
8346
8347  // Assign base classes.
8348  bool Invalid = false;
8349  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8350       E = ClassDecl->bases_end(); Base != E; ++Base) {
8351    // Form the assignment:
8352    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8353    QualType BaseType = Base->getType().getUnqualifiedType();
8354    if (!BaseType->isRecordType()) {
8355      Invalid = true;
8356      continue;
8357    }
8358
8359    CXXCastPath BasePath;
8360    BasePath.push_back(Base);
8361
8362    // Construct the "from" expression, which is an implicit cast to the
8363    // appropriately-qualified base type.
8364    Expr *From = OtherRef;
8365    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8366                             VK_XValue, &BasePath).take();
8367
8368    // Dereference "this".
8369    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8370
8371    // Implicitly cast "this" to the appropriately-qualified base type.
8372    To = ImpCastExprToType(To.take(),
8373                           Context.getCVRQualifiedType(BaseType,
8374                                     MoveAssignOperator->getTypeQualifiers()),
8375                           CK_UncheckedDerivedToBase,
8376                           VK_LValue, &BasePath);
8377
8378    // Build the move.
8379    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8380                                            To.get(), From,
8381                                            /*CopyingBaseSubobject=*/true,
8382                                            /*Copying=*/false);
8383    if (Move.isInvalid()) {
8384      Diag(CurrentLocation, diag::note_member_synthesized_at)
8385        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8386      MoveAssignOperator->setInvalidDecl();
8387      return;
8388    }
8389
8390    // Success! Record the move.
8391    Statements.push_back(Move.takeAs<Expr>());
8392  }
8393
8394  // \brief Reference to the __builtin_memcpy function.
8395  Expr *BuiltinMemCpyRef = 0;
8396  // \brief Reference to the __builtin_objc_memmove_collectable function.
8397  Expr *CollectableMemCpyRef = 0;
8398
8399  // Assign non-static members.
8400  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8401                                  FieldEnd = ClassDecl->field_end();
8402       Field != FieldEnd; ++Field) {
8403    if (Field->isUnnamedBitfield())
8404      continue;
8405
8406    // Check for members of reference type; we can't move those.
8407    if (Field->getType()->isReferenceType()) {
8408      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8409        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8410      Diag(Field->getLocation(), diag::note_declared_at);
8411      Diag(CurrentLocation, diag::note_member_synthesized_at)
8412        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8413      Invalid = true;
8414      continue;
8415    }
8416
8417    // Check for members of const-qualified, non-class type.
8418    QualType BaseType = Context.getBaseElementType(Field->getType());
8419    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8420      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8421        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8422      Diag(Field->getLocation(), diag::note_declared_at);
8423      Diag(CurrentLocation, diag::note_member_synthesized_at)
8424        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8425      Invalid = true;
8426      continue;
8427    }
8428
8429    // Suppress assigning zero-width bitfields.
8430    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8431      continue;
8432
8433    QualType FieldType = Field->getType().getNonReferenceType();
8434    if (FieldType->isIncompleteArrayType()) {
8435      assert(ClassDecl->hasFlexibleArrayMember() &&
8436             "Incomplete array type is not valid");
8437      continue;
8438    }
8439
8440    // Build references to the field in the object we're copying from and to.
8441    CXXScopeSpec SS; // Intentionally empty
8442    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8443                              LookupMemberName);
8444    MemberLookup.addDecl(*Field);
8445    MemberLookup.resolveKind();
8446    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8447                                               Loc, /*IsArrow=*/false,
8448                                               SS, 0, MemberLookup, 0);
8449    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8450                                             Loc, /*IsArrow=*/true,
8451                                             SS, 0, MemberLookup, 0);
8452    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8453    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8454
8455    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8456        "Member reference with rvalue base must be rvalue except for reference "
8457        "members, which aren't allowed for move assignment.");
8458
8459    // If the field should be copied with __builtin_memcpy rather than via
8460    // explicit assignments, do so. This optimization only applies for arrays
8461    // of scalars and arrays of class type with trivial move-assignment
8462    // operators.
8463    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8464        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8465      // Compute the size of the memory buffer to be copied.
8466      QualType SizeType = Context.getSizeType();
8467      llvm::APInt Size(Context.getTypeSize(SizeType),
8468                       Context.getTypeSizeInChars(BaseType).getQuantity());
8469      for (const ConstantArrayType *Array
8470              = Context.getAsConstantArrayType(FieldType);
8471           Array;
8472           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8473        llvm::APInt ArraySize
8474          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8475        Size *= ArraySize;
8476      }
8477
8478      // Take the address of the field references for "from" and "to". We
8479      // directly construct UnaryOperators here because semantic analysis
8480      // does not permit us to take the address of an xvalue.
8481      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8482                             Context.getPointerType(From.get()->getType()),
8483                             VK_RValue, OK_Ordinary, Loc);
8484      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8485                           Context.getPointerType(To.get()->getType()),
8486                           VK_RValue, OK_Ordinary, Loc);
8487
8488      bool NeedsCollectableMemCpy =
8489          (BaseType->isRecordType() &&
8490           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8491
8492      if (NeedsCollectableMemCpy) {
8493        if (!CollectableMemCpyRef) {
8494          // Create a reference to the __builtin_objc_memmove_collectable function.
8495          LookupResult R(*this,
8496                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8497                         Loc, LookupOrdinaryName);
8498          LookupName(R, TUScope, true);
8499
8500          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8501          if (!CollectableMemCpy) {
8502            // Something went horribly wrong earlier, and we will have
8503            // complained about it.
8504            Invalid = true;
8505            continue;
8506          }
8507
8508          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8509                                                  CollectableMemCpy->getType(),
8510                                                  VK_LValue, Loc, 0).take();
8511          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8512        }
8513      }
8514      // Create a reference to the __builtin_memcpy builtin function.
8515      else if (!BuiltinMemCpyRef) {
8516        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8517                       LookupOrdinaryName);
8518        LookupName(R, TUScope, true);
8519
8520        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8521        if (!BuiltinMemCpy) {
8522          // Something went horribly wrong earlier, and we will have complained
8523          // about it.
8524          Invalid = true;
8525          continue;
8526        }
8527
8528        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8529                                            BuiltinMemCpy->getType(),
8530                                            VK_LValue, Loc, 0).take();
8531        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8532      }
8533
8534      ASTOwningVector<Expr*> CallArgs(*this);
8535      CallArgs.push_back(To.takeAs<Expr>());
8536      CallArgs.push_back(From.takeAs<Expr>());
8537      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8538      ExprResult Call = ExprError();
8539      if (NeedsCollectableMemCpy)
8540        Call = ActOnCallExpr(/*Scope=*/0,
8541                             CollectableMemCpyRef,
8542                             Loc, move_arg(CallArgs),
8543                             Loc);
8544      else
8545        Call = ActOnCallExpr(/*Scope=*/0,
8546                             BuiltinMemCpyRef,
8547                             Loc, move_arg(CallArgs),
8548                             Loc);
8549
8550      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8551      Statements.push_back(Call.takeAs<Expr>());
8552      continue;
8553    }
8554
8555    // Build the move of this field.
8556    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8557                                            To.get(), From.get(),
8558                                            /*CopyingBaseSubobject=*/false,
8559                                            /*Copying=*/false);
8560    if (Move.isInvalid()) {
8561      Diag(CurrentLocation, diag::note_member_synthesized_at)
8562        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8563      MoveAssignOperator->setInvalidDecl();
8564      return;
8565    }
8566
8567    // Success! Record the copy.
8568    Statements.push_back(Move.takeAs<Stmt>());
8569  }
8570
8571  if (!Invalid) {
8572    // Add a "return *this;"
8573    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8574
8575    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8576    if (Return.isInvalid())
8577      Invalid = true;
8578    else {
8579      Statements.push_back(Return.takeAs<Stmt>());
8580
8581      if (Trap.hasErrorOccurred()) {
8582        Diag(CurrentLocation, diag::note_member_synthesized_at)
8583          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8584        Invalid = true;
8585      }
8586    }
8587  }
8588
8589  if (Invalid) {
8590    MoveAssignOperator->setInvalidDecl();
8591    return;
8592  }
8593
8594  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8595                                            /*isStmtExpr=*/false);
8596  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8597  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8598
8599  if (ASTMutationListener *L = getASTMutationListener()) {
8600    L->CompletedImplicitDefinition(MoveAssignOperator);
8601  }
8602}
8603
8604std::pair<Sema::ImplicitExceptionSpecification, bool>
8605Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8606  if (ClassDecl->isInvalidDecl())
8607    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8608
8609  // C++ [class.copy]p5:
8610  //   The implicitly-declared copy constructor for a class X will
8611  //   have the form
8612  //
8613  //       X::X(const X&)
8614  //
8615  //   if
8616  // FIXME: It ought to be possible to store this on the record.
8617  bool HasConstCopyConstructor = true;
8618
8619  //     -- each direct or virtual base class B of X has a copy
8620  //        constructor whose first parameter is of type const B& or
8621  //        const volatile B&, and
8622  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8623                                       BaseEnd = ClassDecl->bases_end();
8624       HasConstCopyConstructor && Base != BaseEnd;
8625       ++Base) {
8626    // Virtual bases are handled below.
8627    if (Base->isVirtual())
8628      continue;
8629
8630    CXXRecordDecl *BaseClassDecl
8631      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8632    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8633                             &HasConstCopyConstructor);
8634  }
8635
8636  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8637                                       BaseEnd = ClassDecl->vbases_end();
8638       HasConstCopyConstructor && Base != BaseEnd;
8639       ++Base) {
8640    CXXRecordDecl *BaseClassDecl
8641      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8642    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8643                             &HasConstCopyConstructor);
8644  }
8645
8646  //     -- for all the nonstatic data members of X that are of a
8647  //        class type M (or array thereof), each such class type
8648  //        has a copy constructor whose first parameter is of type
8649  //        const M& or const volatile M&.
8650  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8651                                  FieldEnd = ClassDecl->field_end();
8652       HasConstCopyConstructor && Field != FieldEnd;
8653       ++Field) {
8654    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8655    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8656      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8657                               &HasConstCopyConstructor);
8658    }
8659  }
8660  //   Otherwise, the implicitly declared copy constructor will have
8661  //   the form
8662  //
8663  //       X::X(X&)
8664
8665  // C++ [except.spec]p14:
8666  //   An implicitly declared special member function (Clause 12) shall have an
8667  //   exception-specification. [...]
8668  ImplicitExceptionSpecification ExceptSpec(Context);
8669  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8670  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8671                                       BaseEnd = ClassDecl->bases_end();
8672       Base != BaseEnd;
8673       ++Base) {
8674    // Virtual bases are handled below.
8675    if (Base->isVirtual())
8676      continue;
8677
8678    CXXRecordDecl *BaseClassDecl
8679      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8680    if (CXXConstructorDecl *CopyConstructor =
8681          LookupCopyingConstructor(BaseClassDecl, Quals))
8682      ExceptSpec.CalledDecl(CopyConstructor);
8683  }
8684  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8685                                       BaseEnd = ClassDecl->vbases_end();
8686       Base != BaseEnd;
8687       ++Base) {
8688    CXXRecordDecl *BaseClassDecl
8689      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8690    if (CXXConstructorDecl *CopyConstructor =
8691          LookupCopyingConstructor(BaseClassDecl, Quals))
8692      ExceptSpec.CalledDecl(CopyConstructor);
8693  }
8694  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8695                                  FieldEnd = ClassDecl->field_end();
8696       Field != FieldEnd;
8697       ++Field) {
8698    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8699    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8700      if (CXXConstructorDecl *CopyConstructor =
8701        LookupCopyingConstructor(FieldClassDecl, Quals))
8702      ExceptSpec.CalledDecl(CopyConstructor);
8703    }
8704  }
8705
8706  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8707}
8708
8709CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8710                                                    CXXRecordDecl *ClassDecl) {
8711  // C++ [class.copy]p4:
8712  //   If the class definition does not explicitly declare a copy
8713  //   constructor, one is declared implicitly.
8714
8715  ImplicitExceptionSpecification Spec(Context);
8716  bool Const;
8717  llvm::tie(Spec, Const) =
8718    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8719
8720  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8721  QualType ArgType = ClassType;
8722  if (Const)
8723    ArgType = ArgType.withConst();
8724  ArgType = Context.getLValueReferenceType(ArgType);
8725
8726  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8727
8728  DeclarationName Name
8729    = Context.DeclarationNames.getCXXConstructorName(
8730                                           Context.getCanonicalType(ClassType));
8731  SourceLocation ClassLoc = ClassDecl->getLocation();
8732  DeclarationNameInfo NameInfo(Name, ClassLoc);
8733
8734  //   An implicitly-declared copy constructor is an inline public
8735  //   member of its class.
8736  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8737      Context, ClassDecl, ClassLoc, NameInfo,
8738      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8739      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8740      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8741        getLangOptions().CPlusPlus0x);
8742  CopyConstructor->setAccess(AS_public);
8743  CopyConstructor->setDefaulted();
8744  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8745
8746  // Note that we have declared this constructor.
8747  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8748
8749  // Add the parameter to the constructor.
8750  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8751                                               ClassLoc, ClassLoc,
8752                                               /*IdentifierInfo=*/0,
8753                                               ArgType, /*TInfo=*/0,
8754                                               SC_None,
8755                                               SC_None, 0);
8756  CopyConstructor->setParams(FromParam);
8757
8758  if (Scope *S = getScopeForContext(ClassDecl))
8759    PushOnScopeChains(CopyConstructor, S, false);
8760  ClassDecl->addDecl(CopyConstructor);
8761
8762  // C++11 [class.copy]p8:
8763  //   ... If the class definition does not explicitly declare a copy
8764  //   constructor, there is no user-declared move constructor, and there is no
8765  //   user-declared move assignment operator, a copy constructor is implicitly
8766  //   declared as defaulted.
8767  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8768      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8769          !getLangOptions().MicrosoftMode) ||
8770      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8771    CopyConstructor->setDeletedAsWritten();
8772
8773  return CopyConstructor;
8774}
8775
8776void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8777                                   CXXConstructorDecl *CopyConstructor) {
8778  assert((CopyConstructor->isDefaulted() &&
8779          CopyConstructor->isCopyConstructor() &&
8780          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8781         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8782
8783  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8784  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8785
8786  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8787  DiagnosticErrorTrap Trap(Diags);
8788
8789  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8790      Trap.hasErrorOccurred()) {
8791    Diag(CurrentLocation, diag::note_member_synthesized_at)
8792      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8793    CopyConstructor->setInvalidDecl();
8794  }  else {
8795    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8796                                               CopyConstructor->getLocation(),
8797                                               MultiStmtArg(*this, 0, 0),
8798                                               /*isStmtExpr=*/false)
8799                                                              .takeAs<Stmt>());
8800    CopyConstructor->setImplicitlyDefined(true);
8801  }
8802
8803  CopyConstructor->setUsed();
8804  if (ASTMutationListener *L = getASTMutationListener()) {
8805    L->CompletedImplicitDefinition(CopyConstructor);
8806  }
8807}
8808
8809Sema::ImplicitExceptionSpecification
8810Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8811  // C++ [except.spec]p14:
8812  //   An implicitly declared special member function (Clause 12) shall have an
8813  //   exception-specification. [...]
8814  ImplicitExceptionSpecification ExceptSpec(Context);
8815  if (ClassDecl->isInvalidDecl())
8816    return ExceptSpec;
8817
8818  // Direct base-class constructors.
8819  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8820                                       BEnd = ClassDecl->bases_end();
8821       B != BEnd; ++B) {
8822    if (B->isVirtual()) // Handled below.
8823      continue;
8824
8825    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8826      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8827      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8828      // If this is a deleted function, add it anyway. This might be conformant
8829      // with the standard. This might not. I'm not sure. It might not matter.
8830      if (Constructor)
8831        ExceptSpec.CalledDecl(Constructor);
8832    }
8833  }
8834
8835  // Virtual base-class constructors.
8836  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8837                                       BEnd = ClassDecl->vbases_end();
8838       B != BEnd; ++B) {
8839    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8840      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8841      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8842      // If this is a deleted function, add it anyway. This might be conformant
8843      // with the standard. This might not. I'm not sure. It might not matter.
8844      if (Constructor)
8845        ExceptSpec.CalledDecl(Constructor);
8846    }
8847  }
8848
8849  // Field constructors.
8850  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8851                               FEnd = ClassDecl->field_end();
8852       F != FEnd; ++F) {
8853    if (const RecordType *RecordTy
8854              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8855      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8856      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8857      // If this is a deleted function, add it anyway. This might be conformant
8858      // with the standard. This might not. I'm not sure. It might not matter.
8859      // In particular, the problem is that this function never gets called. It
8860      // might just be ill-formed because this function attempts to refer to
8861      // a deleted function here.
8862      if (Constructor)
8863        ExceptSpec.CalledDecl(Constructor);
8864    }
8865  }
8866
8867  return ExceptSpec;
8868}
8869
8870CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8871                                                    CXXRecordDecl *ClassDecl) {
8872  ImplicitExceptionSpecification Spec(
8873      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8874
8875  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8876  QualType ArgType = Context.getRValueReferenceType(ClassType);
8877
8878  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8879
8880  DeclarationName Name
8881    = Context.DeclarationNames.getCXXConstructorName(
8882                                           Context.getCanonicalType(ClassType));
8883  SourceLocation ClassLoc = ClassDecl->getLocation();
8884  DeclarationNameInfo NameInfo(Name, ClassLoc);
8885
8886  // C++0x [class.copy]p11:
8887  //   An implicitly-declared copy/move constructor is an inline public
8888  //   member of its class.
8889  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8890      Context, ClassDecl, ClassLoc, NameInfo,
8891      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8892      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8893      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8894        getLangOptions().CPlusPlus0x);
8895  MoveConstructor->setAccess(AS_public);
8896  MoveConstructor->setDefaulted();
8897  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8898
8899  // Add the parameter to the constructor.
8900  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8901                                               ClassLoc, ClassLoc,
8902                                               /*IdentifierInfo=*/0,
8903                                               ArgType, /*TInfo=*/0,
8904                                               SC_None,
8905                                               SC_None, 0);
8906  MoveConstructor->setParams(FromParam);
8907
8908  // C++0x [class.copy]p9:
8909  //   If the definition of a class X does not explicitly declare a move
8910  //   constructor, one will be implicitly declared as defaulted if and only if:
8911  //   [...]
8912  //   - the move constructor would not be implicitly defined as deleted.
8913  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8914    // Cache this result so that we don't try to generate this over and over
8915    // on every lookup, leaking memory and wasting time.
8916    ClassDecl->setFailedImplicitMoveConstructor();
8917    return 0;
8918  }
8919
8920  // Note that we have declared this constructor.
8921  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8922
8923  if (Scope *S = getScopeForContext(ClassDecl))
8924    PushOnScopeChains(MoveConstructor, S, false);
8925  ClassDecl->addDecl(MoveConstructor);
8926
8927  return MoveConstructor;
8928}
8929
8930void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8931                                   CXXConstructorDecl *MoveConstructor) {
8932  assert((MoveConstructor->isDefaulted() &&
8933          MoveConstructor->isMoveConstructor() &&
8934          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8935         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8936
8937  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8938  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8939
8940  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8941  DiagnosticErrorTrap Trap(Diags);
8942
8943  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8944      Trap.hasErrorOccurred()) {
8945    Diag(CurrentLocation, diag::note_member_synthesized_at)
8946      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8947    MoveConstructor->setInvalidDecl();
8948  }  else {
8949    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8950                                               MoveConstructor->getLocation(),
8951                                               MultiStmtArg(*this, 0, 0),
8952                                               /*isStmtExpr=*/false)
8953                                                              .takeAs<Stmt>());
8954    MoveConstructor->setImplicitlyDefined(true);
8955  }
8956
8957  MoveConstructor->setUsed();
8958
8959  if (ASTMutationListener *L = getASTMutationListener()) {
8960    L->CompletedImplicitDefinition(MoveConstructor);
8961  }
8962}
8963
8964ExprResult
8965Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8966                            CXXConstructorDecl *Constructor,
8967                            MultiExprArg ExprArgs,
8968                            bool HadMultipleCandidates,
8969                            bool RequiresZeroInit,
8970                            unsigned ConstructKind,
8971                            SourceRange ParenRange) {
8972  bool Elidable = false;
8973
8974  // C++0x [class.copy]p34:
8975  //   When certain criteria are met, an implementation is allowed to
8976  //   omit the copy/move construction of a class object, even if the
8977  //   copy/move constructor and/or destructor for the object have
8978  //   side effects. [...]
8979  //     - when a temporary class object that has not been bound to a
8980  //       reference (12.2) would be copied/moved to a class object
8981  //       with the same cv-unqualified type, the copy/move operation
8982  //       can be omitted by constructing the temporary object
8983  //       directly into the target of the omitted copy/move
8984  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8985      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8986    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8987    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8988  }
8989
8990  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8991                               Elidable, move(ExprArgs), HadMultipleCandidates,
8992                               RequiresZeroInit, ConstructKind, ParenRange);
8993}
8994
8995/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8996/// including handling of its default argument expressions.
8997ExprResult
8998Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8999                            CXXConstructorDecl *Constructor, bool Elidable,
9000                            MultiExprArg ExprArgs,
9001                            bool HadMultipleCandidates,
9002                            bool RequiresZeroInit,
9003                            unsigned ConstructKind,
9004                            SourceRange ParenRange) {
9005  unsigned NumExprs = ExprArgs.size();
9006  Expr **Exprs = (Expr **)ExprArgs.release();
9007
9008  for (specific_attr_iterator<NonNullAttr>
9009           i = Constructor->specific_attr_begin<NonNullAttr>(),
9010           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9011    const NonNullAttr *NonNull = *i;
9012    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9013  }
9014
9015  MarkDeclarationReferenced(ConstructLoc, Constructor);
9016  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9017                                        Constructor, Elidable, Exprs, NumExprs,
9018                                        HadMultipleCandidates, RequiresZeroInit,
9019              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9020                                        ParenRange));
9021}
9022
9023bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9024                                        CXXConstructorDecl *Constructor,
9025                                        MultiExprArg Exprs,
9026                                        bool HadMultipleCandidates) {
9027  // FIXME: Provide the correct paren SourceRange when available.
9028  ExprResult TempResult =
9029    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9030                          move(Exprs), HadMultipleCandidates, false,
9031                          CXXConstructExpr::CK_Complete, SourceRange());
9032  if (TempResult.isInvalid())
9033    return true;
9034
9035  Expr *Temp = TempResult.takeAs<Expr>();
9036  CheckImplicitConversions(Temp, VD->getLocation());
9037  MarkDeclarationReferenced(VD->getLocation(), Constructor);
9038  Temp = MaybeCreateExprWithCleanups(Temp);
9039  VD->setInit(Temp);
9040
9041  return false;
9042}
9043
9044void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9045  if (VD->isInvalidDecl()) return;
9046
9047  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9048  if (ClassDecl->isInvalidDecl()) return;
9049  if (ClassDecl->hasTrivialDestructor()) return;
9050  if (ClassDecl->isDependentContext()) return;
9051
9052  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9053  MarkDeclarationReferenced(VD->getLocation(), Destructor);
9054  CheckDestructorAccess(VD->getLocation(), Destructor,
9055                        PDiag(diag::err_access_dtor_var)
9056                        << VD->getDeclName()
9057                        << VD->getType());
9058
9059  if (!VD->hasGlobalStorage()) return;
9060
9061  // Emit warning for non-trivial dtor in global scope (a real global,
9062  // class-static, function-static).
9063  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9064
9065  // TODO: this should be re-enabled for static locals by !CXAAtExit
9066  if (!VD->isStaticLocal())
9067    Diag(VD->getLocation(), diag::warn_global_destructor);
9068}
9069
9070/// AddCXXDirectInitializerToDecl - This action is called immediately after
9071/// ActOnDeclarator, when a C++ direct initializer is present.
9072/// e.g: "int x(1);"
9073void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9074                                         SourceLocation LParenLoc,
9075                                         MultiExprArg Exprs,
9076                                         SourceLocation RParenLoc,
9077                                         bool TypeMayContainAuto) {
9078  // If there is no declaration, there was an error parsing it.  Just ignore
9079  // the initializer.
9080  if (RealDecl == 0)
9081    return;
9082
9083  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9084  if (!VDecl) {
9085    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9086    RealDecl->setInvalidDecl();
9087    return;
9088  }
9089
9090  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9091  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9092    if (Exprs.size() == 0) {
9093      // It isn't possible to write this directly, but it is possible to
9094      // end up in this situation with "auto x(some_pack...);"
9095      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9096        << VDecl->getDeclName() << VDecl->getType()
9097        << VDecl->getSourceRange();
9098      RealDecl->setInvalidDecl();
9099      return;
9100    }
9101
9102    if (Exprs.size() > 1) {
9103      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9104           diag::err_auto_var_init_multiple_expressions)
9105        << VDecl->getDeclName() << VDecl->getType()
9106        << VDecl->getSourceRange();
9107      RealDecl->setInvalidDecl();
9108      return;
9109    }
9110
9111    Expr *Init = Exprs.get()[0];
9112    TypeSourceInfo *DeducedType = 0;
9113    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9114            DAR_Failed)
9115      DiagnoseAutoDeductionFailure(VDecl, Init);
9116    if (!DeducedType) {
9117      RealDecl->setInvalidDecl();
9118      return;
9119    }
9120    VDecl->setTypeSourceInfo(DeducedType);
9121    VDecl->setType(DeducedType->getType());
9122
9123    // In ARC, infer lifetime.
9124    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9125      VDecl->setInvalidDecl();
9126
9127    // If this is a redeclaration, check that the type we just deduced matches
9128    // the previously declared type.
9129    if (VarDecl *Old = VDecl->getPreviousDecl())
9130      MergeVarDeclTypes(VDecl, Old);
9131  }
9132
9133  // We will represent direct-initialization similarly to copy-initialization:
9134  //    int x(1);  -as-> int x = 1;
9135  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9136  //
9137  // Clients that want to distinguish between the two forms, can check for
9138  // direct initializer using VarDecl::hasCXXDirectInitializer().
9139  // A major benefit is that clients that don't particularly care about which
9140  // exactly form was it (like the CodeGen) can handle both cases without
9141  // special case code.
9142
9143  // C++ 8.5p11:
9144  // The form of initialization (using parentheses or '=') is generally
9145  // insignificant, but does matter when the entity being initialized has a
9146  // class type.
9147
9148  if (!VDecl->getType()->isDependentType() &&
9149      !VDecl->getType()->isIncompleteArrayType() &&
9150      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9151                          diag::err_typecheck_decl_incomplete_type)) {
9152    VDecl->setInvalidDecl();
9153    return;
9154  }
9155
9156  // The variable can not have an abstract class type.
9157  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9158                             diag::err_abstract_type_in_decl,
9159                             AbstractVariableType))
9160    VDecl->setInvalidDecl();
9161
9162  const VarDecl *Def;
9163  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9164    Diag(VDecl->getLocation(), diag::err_redefinition)
9165    << VDecl->getDeclName();
9166    Diag(Def->getLocation(), diag::note_previous_definition);
9167    VDecl->setInvalidDecl();
9168    return;
9169  }
9170
9171  // C++ [class.static.data]p4
9172  //   If a static data member is of const integral or const
9173  //   enumeration type, its declaration in the class definition can
9174  //   specify a constant-initializer which shall be an integral
9175  //   constant expression (5.19). In that case, the member can appear
9176  //   in integral constant expressions. The member shall still be
9177  //   defined in a namespace scope if it is used in the program and the
9178  //   namespace scope definition shall not contain an initializer.
9179  //
9180  // We already performed a redefinition check above, but for static
9181  // data members we also need to check whether there was an in-class
9182  // declaration with an initializer.
9183  const VarDecl* PrevInit = 0;
9184  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9185    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9186    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9187    return;
9188  }
9189
9190  bool IsDependent = false;
9191  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9192    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9193      VDecl->setInvalidDecl();
9194      return;
9195    }
9196
9197    if (Exprs.get()[I]->isTypeDependent())
9198      IsDependent = true;
9199  }
9200
9201  // If either the declaration has a dependent type or if any of the
9202  // expressions is type-dependent, we represent the initialization
9203  // via a ParenListExpr for later use during template instantiation.
9204  if (VDecl->getType()->isDependentType() || IsDependent) {
9205    // Let clients know that initialization was done with a direct initializer.
9206    VDecl->setCXXDirectInitializer(true);
9207
9208    // Store the initialization expressions as a ParenListExpr.
9209    unsigned NumExprs = Exprs.size();
9210    VDecl->setInit(new (Context) ParenListExpr(
9211        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9212        VDecl->getType().getNonReferenceType()));
9213    return;
9214  }
9215
9216  // Capture the variable that is being initialized and the style of
9217  // initialization.
9218  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9219
9220  // FIXME: Poor source location information.
9221  InitializationKind Kind
9222    = InitializationKind::CreateDirect(VDecl->getLocation(),
9223                                       LParenLoc, RParenLoc);
9224
9225  QualType T = VDecl->getType();
9226  InitializationSequence InitSeq(*this, Entity, Kind,
9227                                 Exprs.get(), Exprs.size());
9228  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9229  if (Result.isInvalid()) {
9230    VDecl->setInvalidDecl();
9231    return;
9232  } else if (T != VDecl->getType()) {
9233    VDecl->setType(T);
9234    Result.get()->setType(T);
9235  }
9236
9237
9238  Expr *Init = Result.get();
9239  CheckImplicitConversions(Init, LParenLoc);
9240
9241  Init = MaybeCreateExprWithCleanups(Init);
9242  VDecl->setInit(Init);
9243  VDecl->setCXXDirectInitializer(true);
9244
9245  CheckCompleteVariableDeclaration(VDecl);
9246}
9247
9248/// \brief Given a constructor and the set of arguments provided for the
9249/// constructor, convert the arguments and add any required default arguments
9250/// to form a proper call to this constructor.
9251///
9252/// \returns true if an error occurred, false otherwise.
9253bool
9254Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9255                              MultiExprArg ArgsPtr,
9256                              SourceLocation Loc,
9257                              ASTOwningVector<Expr*> &ConvertedArgs) {
9258  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9259  unsigned NumArgs = ArgsPtr.size();
9260  Expr **Args = (Expr **)ArgsPtr.get();
9261
9262  const FunctionProtoType *Proto
9263    = Constructor->getType()->getAs<FunctionProtoType>();
9264  assert(Proto && "Constructor without a prototype?");
9265  unsigned NumArgsInProto = Proto->getNumArgs();
9266
9267  // If too few arguments are available, we'll fill in the rest with defaults.
9268  if (NumArgs < NumArgsInProto)
9269    ConvertedArgs.reserve(NumArgsInProto);
9270  else
9271    ConvertedArgs.reserve(NumArgs);
9272
9273  VariadicCallType CallType =
9274    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9275  SmallVector<Expr *, 8> AllArgs;
9276  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9277                                        Proto, 0, Args, NumArgs, AllArgs,
9278                                        CallType);
9279  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9280    ConvertedArgs.push_back(AllArgs[i]);
9281  return Invalid;
9282}
9283
9284static inline bool
9285CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9286                                       const FunctionDecl *FnDecl) {
9287  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9288  if (isa<NamespaceDecl>(DC)) {
9289    return SemaRef.Diag(FnDecl->getLocation(),
9290                        diag::err_operator_new_delete_declared_in_namespace)
9291      << FnDecl->getDeclName();
9292  }
9293
9294  if (isa<TranslationUnitDecl>(DC) &&
9295      FnDecl->getStorageClass() == SC_Static) {
9296    return SemaRef.Diag(FnDecl->getLocation(),
9297                        diag::err_operator_new_delete_declared_static)
9298      << FnDecl->getDeclName();
9299  }
9300
9301  return false;
9302}
9303
9304static inline bool
9305CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9306                            CanQualType ExpectedResultType,
9307                            CanQualType ExpectedFirstParamType,
9308                            unsigned DependentParamTypeDiag,
9309                            unsigned InvalidParamTypeDiag) {
9310  QualType ResultType =
9311    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9312
9313  // Check that the result type is not dependent.
9314  if (ResultType->isDependentType())
9315    return SemaRef.Diag(FnDecl->getLocation(),
9316                        diag::err_operator_new_delete_dependent_result_type)
9317    << FnDecl->getDeclName() << ExpectedResultType;
9318
9319  // Check that the result type is what we expect.
9320  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9321    return SemaRef.Diag(FnDecl->getLocation(),
9322                        diag::err_operator_new_delete_invalid_result_type)
9323    << FnDecl->getDeclName() << ExpectedResultType;
9324
9325  // A function template must have at least 2 parameters.
9326  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9327    return SemaRef.Diag(FnDecl->getLocation(),
9328                      diag::err_operator_new_delete_template_too_few_parameters)
9329        << FnDecl->getDeclName();
9330
9331  // The function decl must have at least 1 parameter.
9332  if (FnDecl->getNumParams() == 0)
9333    return SemaRef.Diag(FnDecl->getLocation(),
9334                        diag::err_operator_new_delete_too_few_parameters)
9335      << FnDecl->getDeclName();
9336
9337  // Check the the first parameter type is not dependent.
9338  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9339  if (FirstParamType->isDependentType())
9340    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9341      << FnDecl->getDeclName() << ExpectedFirstParamType;
9342
9343  // Check that the first parameter type is what we expect.
9344  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9345      ExpectedFirstParamType)
9346    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9347    << FnDecl->getDeclName() << ExpectedFirstParamType;
9348
9349  return false;
9350}
9351
9352static bool
9353CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9354  // C++ [basic.stc.dynamic.allocation]p1:
9355  //   A program is ill-formed if an allocation function is declared in a
9356  //   namespace scope other than global scope or declared static in global
9357  //   scope.
9358  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9359    return true;
9360
9361  CanQualType SizeTy =
9362    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9363
9364  // C++ [basic.stc.dynamic.allocation]p1:
9365  //  The return type shall be void*. The first parameter shall have type
9366  //  std::size_t.
9367  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9368                                  SizeTy,
9369                                  diag::err_operator_new_dependent_param_type,
9370                                  diag::err_operator_new_param_type))
9371    return true;
9372
9373  // C++ [basic.stc.dynamic.allocation]p1:
9374  //  The first parameter shall not have an associated default argument.
9375  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9376    return SemaRef.Diag(FnDecl->getLocation(),
9377                        diag::err_operator_new_default_arg)
9378      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9379
9380  return false;
9381}
9382
9383static bool
9384CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9385  // C++ [basic.stc.dynamic.deallocation]p1:
9386  //   A program is ill-formed if deallocation functions are declared in a
9387  //   namespace scope other than global scope or declared static in global
9388  //   scope.
9389  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9390    return true;
9391
9392  // C++ [basic.stc.dynamic.deallocation]p2:
9393  //   Each deallocation function shall return void and its first parameter
9394  //   shall be void*.
9395  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9396                                  SemaRef.Context.VoidPtrTy,
9397                                 diag::err_operator_delete_dependent_param_type,
9398                                 diag::err_operator_delete_param_type))
9399    return true;
9400
9401  return false;
9402}
9403
9404/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9405/// of this overloaded operator is well-formed. If so, returns false;
9406/// otherwise, emits appropriate diagnostics and returns true.
9407bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9408  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9409         "Expected an overloaded operator declaration");
9410
9411  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9412
9413  // C++ [over.oper]p5:
9414  //   The allocation and deallocation functions, operator new,
9415  //   operator new[], operator delete and operator delete[], are
9416  //   described completely in 3.7.3. The attributes and restrictions
9417  //   found in the rest of this subclause do not apply to them unless
9418  //   explicitly stated in 3.7.3.
9419  if (Op == OO_Delete || Op == OO_Array_Delete)
9420    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9421
9422  if (Op == OO_New || Op == OO_Array_New)
9423    return CheckOperatorNewDeclaration(*this, FnDecl);
9424
9425  // C++ [over.oper]p6:
9426  //   An operator function shall either be a non-static member
9427  //   function or be a non-member function and have at least one
9428  //   parameter whose type is a class, a reference to a class, an
9429  //   enumeration, or a reference to an enumeration.
9430  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9431    if (MethodDecl->isStatic())
9432      return Diag(FnDecl->getLocation(),
9433                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9434  } else {
9435    bool ClassOrEnumParam = false;
9436    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9437                                   ParamEnd = FnDecl->param_end();
9438         Param != ParamEnd; ++Param) {
9439      QualType ParamType = (*Param)->getType().getNonReferenceType();
9440      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9441          ParamType->isEnumeralType()) {
9442        ClassOrEnumParam = true;
9443        break;
9444      }
9445    }
9446
9447    if (!ClassOrEnumParam)
9448      return Diag(FnDecl->getLocation(),
9449                  diag::err_operator_overload_needs_class_or_enum)
9450        << FnDecl->getDeclName();
9451  }
9452
9453  // C++ [over.oper]p8:
9454  //   An operator function cannot have default arguments (8.3.6),
9455  //   except where explicitly stated below.
9456  //
9457  // Only the function-call operator allows default arguments
9458  // (C++ [over.call]p1).
9459  if (Op != OO_Call) {
9460    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9461         Param != FnDecl->param_end(); ++Param) {
9462      if ((*Param)->hasDefaultArg())
9463        return Diag((*Param)->getLocation(),
9464                    diag::err_operator_overload_default_arg)
9465          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9466    }
9467  }
9468
9469  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9470    { false, false, false }
9471#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9472    , { Unary, Binary, MemberOnly }
9473#include "clang/Basic/OperatorKinds.def"
9474  };
9475
9476  bool CanBeUnaryOperator = OperatorUses[Op][0];
9477  bool CanBeBinaryOperator = OperatorUses[Op][1];
9478  bool MustBeMemberOperator = OperatorUses[Op][2];
9479
9480  // C++ [over.oper]p8:
9481  //   [...] Operator functions cannot have more or fewer parameters
9482  //   than the number required for the corresponding operator, as
9483  //   described in the rest of this subclause.
9484  unsigned NumParams = FnDecl->getNumParams()
9485                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9486  if (Op != OO_Call &&
9487      ((NumParams == 1 && !CanBeUnaryOperator) ||
9488       (NumParams == 2 && !CanBeBinaryOperator) ||
9489       (NumParams < 1) || (NumParams > 2))) {
9490    // We have the wrong number of parameters.
9491    unsigned ErrorKind;
9492    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9493      ErrorKind = 2;  // 2 -> unary or binary.
9494    } else if (CanBeUnaryOperator) {
9495      ErrorKind = 0;  // 0 -> unary
9496    } else {
9497      assert(CanBeBinaryOperator &&
9498             "All non-call overloaded operators are unary or binary!");
9499      ErrorKind = 1;  // 1 -> binary
9500    }
9501
9502    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9503      << FnDecl->getDeclName() << NumParams << ErrorKind;
9504  }
9505
9506  // Overloaded operators other than operator() cannot be variadic.
9507  if (Op != OO_Call &&
9508      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9509    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9510      << FnDecl->getDeclName();
9511  }
9512
9513  // Some operators must be non-static member functions.
9514  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9515    return Diag(FnDecl->getLocation(),
9516                diag::err_operator_overload_must_be_member)
9517      << FnDecl->getDeclName();
9518  }
9519
9520  // C++ [over.inc]p1:
9521  //   The user-defined function called operator++ implements the
9522  //   prefix and postfix ++ operator. If this function is a member
9523  //   function with no parameters, or a non-member function with one
9524  //   parameter of class or enumeration type, it defines the prefix
9525  //   increment operator ++ for objects of that type. If the function
9526  //   is a member function with one parameter (which shall be of type
9527  //   int) or a non-member function with two parameters (the second
9528  //   of which shall be of type int), it defines the postfix
9529  //   increment operator ++ for objects of that type.
9530  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9531    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9532    bool ParamIsInt = false;
9533    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9534      ParamIsInt = BT->getKind() == BuiltinType::Int;
9535
9536    if (!ParamIsInt)
9537      return Diag(LastParam->getLocation(),
9538                  diag::err_operator_overload_post_incdec_must_be_int)
9539        << LastParam->getType() << (Op == OO_MinusMinus);
9540  }
9541
9542  return false;
9543}
9544
9545/// CheckLiteralOperatorDeclaration - Check whether the declaration
9546/// of this literal operator function is well-formed. If so, returns
9547/// false; otherwise, emits appropriate diagnostics and returns true.
9548bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9549  DeclContext *DC = FnDecl->getDeclContext();
9550  Decl::Kind Kind = DC->getDeclKind();
9551  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9552      Kind != Decl::LinkageSpec) {
9553    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9554      << FnDecl->getDeclName();
9555    return true;
9556  }
9557
9558  bool Valid = false;
9559
9560  // template <char...> type operator "" name() is the only valid template
9561  // signature, and the only valid signature with no parameters.
9562  if (FnDecl->param_size() == 0) {
9563    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9564      // Must have only one template parameter
9565      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9566      if (Params->size() == 1) {
9567        NonTypeTemplateParmDecl *PmDecl =
9568          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9569
9570        // The template parameter must be a char parameter pack.
9571        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9572            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9573          Valid = true;
9574      }
9575    }
9576  } else {
9577    // Check the first parameter
9578    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9579
9580    QualType T = (*Param)->getType();
9581
9582    // unsigned long long int, long double, and any character type are allowed
9583    // as the only parameters.
9584    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9585        Context.hasSameType(T, Context.LongDoubleTy) ||
9586        Context.hasSameType(T, Context.CharTy) ||
9587        Context.hasSameType(T, Context.WCharTy) ||
9588        Context.hasSameType(T, Context.Char16Ty) ||
9589        Context.hasSameType(T, Context.Char32Ty)) {
9590      if (++Param == FnDecl->param_end())
9591        Valid = true;
9592      goto FinishedParams;
9593    }
9594
9595    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9596    const PointerType *PT = T->getAs<PointerType>();
9597    if (!PT)
9598      goto FinishedParams;
9599    T = PT->getPointeeType();
9600    if (!T.isConstQualified())
9601      goto FinishedParams;
9602    T = T.getUnqualifiedType();
9603
9604    // Move on to the second parameter;
9605    ++Param;
9606
9607    // If there is no second parameter, the first must be a const char *
9608    if (Param == FnDecl->param_end()) {
9609      if (Context.hasSameType(T, Context.CharTy))
9610        Valid = true;
9611      goto FinishedParams;
9612    }
9613
9614    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9615    // are allowed as the first parameter to a two-parameter function
9616    if (!(Context.hasSameType(T, Context.CharTy) ||
9617          Context.hasSameType(T, Context.WCharTy) ||
9618          Context.hasSameType(T, Context.Char16Ty) ||
9619          Context.hasSameType(T, Context.Char32Ty)))
9620      goto FinishedParams;
9621
9622    // The second and final parameter must be an std::size_t
9623    T = (*Param)->getType().getUnqualifiedType();
9624    if (Context.hasSameType(T, Context.getSizeType()) &&
9625        ++Param == FnDecl->param_end())
9626      Valid = true;
9627  }
9628
9629  // FIXME: This diagnostic is absolutely terrible.
9630FinishedParams:
9631  if (!Valid) {
9632    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9633      << FnDecl->getDeclName();
9634    return true;
9635  }
9636
9637  StringRef LiteralName
9638    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9639  if (LiteralName[0] != '_') {
9640    // C++0x [usrlit.suffix]p1:
9641    //   Literal suffix identifiers that do not start with an underscore are
9642    //   reserved for future standardization.
9643    bool IsHexFloat = true;
9644    if (LiteralName.size() > 1 &&
9645        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9646      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9647        if (!isdigit(LiteralName[I])) {
9648          IsHexFloat = false;
9649          break;
9650        }
9651      }
9652    }
9653
9654    if (IsHexFloat)
9655      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9656        << LiteralName;
9657    else
9658      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9659  }
9660
9661  return false;
9662}
9663
9664/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9665/// linkage specification, including the language and (if present)
9666/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9667/// the location of the language string literal, which is provided
9668/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9669/// the '{' brace. Otherwise, this linkage specification does not
9670/// have any braces.
9671Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9672                                           SourceLocation LangLoc,
9673                                           StringRef Lang,
9674                                           SourceLocation LBraceLoc) {
9675  LinkageSpecDecl::LanguageIDs Language;
9676  if (Lang == "\"C\"")
9677    Language = LinkageSpecDecl::lang_c;
9678  else if (Lang == "\"C++\"")
9679    Language = LinkageSpecDecl::lang_cxx;
9680  else {
9681    Diag(LangLoc, diag::err_bad_language);
9682    return 0;
9683  }
9684
9685  // FIXME: Add all the various semantics of linkage specifications
9686
9687  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9688                                               ExternLoc, LangLoc, Language);
9689  CurContext->addDecl(D);
9690  PushDeclContext(S, D);
9691  return D;
9692}
9693
9694/// ActOnFinishLinkageSpecification - Complete the definition of
9695/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9696/// valid, it's the position of the closing '}' brace in a linkage
9697/// specification that uses braces.
9698Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9699                                            Decl *LinkageSpec,
9700                                            SourceLocation RBraceLoc) {
9701  if (LinkageSpec) {
9702    if (RBraceLoc.isValid()) {
9703      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9704      LSDecl->setRBraceLoc(RBraceLoc);
9705    }
9706    PopDeclContext();
9707  }
9708  return LinkageSpec;
9709}
9710
9711/// \brief Perform semantic analysis for the variable declaration that
9712/// occurs within a C++ catch clause, returning the newly-created
9713/// variable.
9714VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9715                                         TypeSourceInfo *TInfo,
9716                                         SourceLocation StartLoc,
9717                                         SourceLocation Loc,
9718                                         IdentifierInfo *Name) {
9719  bool Invalid = false;
9720  QualType ExDeclType = TInfo->getType();
9721
9722  // Arrays and functions decay.
9723  if (ExDeclType->isArrayType())
9724    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9725  else if (ExDeclType->isFunctionType())
9726    ExDeclType = Context.getPointerType(ExDeclType);
9727
9728  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9729  // The exception-declaration shall not denote a pointer or reference to an
9730  // incomplete type, other than [cv] void*.
9731  // N2844 forbids rvalue references.
9732  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9733    Diag(Loc, diag::err_catch_rvalue_ref);
9734    Invalid = true;
9735  }
9736
9737  // GCC allows catching pointers and references to incomplete types
9738  // as an extension; so do we, but we warn by default.
9739
9740  QualType BaseType = ExDeclType;
9741  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9742  unsigned DK = diag::err_catch_incomplete;
9743  bool IncompleteCatchIsInvalid = true;
9744  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9745    BaseType = Ptr->getPointeeType();
9746    Mode = 1;
9747    DK = diag::ext_catch_incomplete_ptr;
9748    IncompleteCatchIsInvalid = false;
9749  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9750    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9751    BaseType = Ref->getPointeeType();
9752    Mode = 2;
9753    DK = diag::ext_catch_incomplete_ref;
9754    IncompleteCatchIsInvalid = false;
9755  }
9756  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9757      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9758      IncompleteCatchIsInvalid)
9759    Invalid = true;
9760
9761  if (!Invalid && !ExDeclType->isDependentType() &&
9762      RequireNonAbstractType(Loc, ExDeclType,
9763                             diag::err_abstract_type_in_decl,
9764                             AbstractVariableType))
9765    Invalid = true;
9766
9767  // Only the non-fragile NeXT runtime currently supports C++ catches
9768  // of ObjC types, and no runtime supports catching ObjC types by value.
9769  if (!Invalid && getLangOptions().ObjC1) {
9770    QualType T = ExDeclType;
9771    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9772      T = RT->getPointeeType();
9773
9774    if (T->isObjCObjectType()) {
9775      Diag(Loc, diag::err_objc_object_catch);
9776      Invalid = true;
9777    } else if (T->isObjCObjectPointerType()) {
9778      if (!getLangOptions().ObjCNonFragileABI)
9779        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9780    }
9781  }
9782
9783  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9784                                    ExDeclType, TInfo, SC_None, SC_None);
9785  ExDecl->setExceptionVariable(true);
9786
9787  // In ARC, infer 'retaining' for variables of retainable type.
9788  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9789    Invalid = true;
9790
9791  if (!Invalid && !ExDeclType->isDependentType()) {
9792    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9793      // C++ [except.handle]p16:
9794      //   The object declared in an exception-declaration or, if the
9795      //   exception-declaration does not specify a name, a temporary (12.2) is
9796      //   copy-initialized (8.5) from the exception object. [...]
9797      //   The object is destroyed when the handler exits, after the destruction
9798      //   of any automatic objects initialized within the handler.
9799      //
9800      // We just pretend to initialize the object with itself, then make sure
9801      // it can be destroyed later.
9802      QualType initType = ExDeclType;
9803
9804      InitializedEntity entity =
9805        InitializedEntity::InitializeVariable(ExDecl);
9806      InitializationKind initKind =
9807        InitializationKind::CreateCopy(Loc, SourceLocation());
9808
9809      Expr *opaqueValue =
9810        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9811      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9812      ExprResult result = sequence.Perform(*this, entity, initKind,
9813                                           MultiExprArg(&opaqueValue, 1));
9814      if (result.isInvalid())
9815        Invalid = true;
9816      else {
9817        // If the constructor used was non-trivial, set this as the
9818        // "initializer".
9819        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9820        if (!construct->getConstructor()->isTrivial()) {
9821          Expr *init = MaybeCreateExprWithCleanups(construct);
9822          ExDecl->setInit(init);
9823        }
9824
9825        // And make sure it's destructable.
9826        FinalizeVarWithDestructor(ExDecl, recordType);
9827      }
9828    }
9829  }
9830
9831  if (Invalid)
9832    ExDecl->setInvalidDecl();
9833
9834  return ExDecl;
9835}
9836
9837/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9838/// handler.
9839Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9840  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9841  bool Invalid = D.isInvalidType();
9842
9843  // Check for unexpanded parameter packs.
9844  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9845                                               UPPC_ExceptionType)) {
9846    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9847                                             D.getIdentifierLoc());
9848    Invalid = true;
9849  }
9850
9851  IdentifierInfo *II = D.getIdentifier();
9852  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9853                                             LookupOrdinaryName,
9854                                             ForRedeclaration)) {
9855    // The scope should be freshly made just for us. There is just no way
9856    // it contains any previous declaration.
9857    assert(!S->isDeclScope(PrevDecl));
9858    if (PrevDecl->isTemplateParameter()) {
9859      // Maybe we will complain about the shadowed template parameter.
9860      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9861      PrevDecl = 0;
9862    }
9863  }
9864
9865  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9866    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9867      << D.getCXXScopeSpec().getRange();
9868    Invalid = true;
9869  }
9870
9871  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9872                                              D.getSourceRange().getBegin(),
9873                                              D.getIdentifierLoc(),
9874                                              D.getIdentifier());
9875  if (Invalid)
9876    ExDecl->setInvalidDecl();
9877
9878  // Add the exception declaration into this scope.
9879  if (II)
9880    PushOnScopeChains(ExDecl, S);
9881  else
9882    CurContext->addDecl(ExDecl);
9883
9884  ProcessDeclAttributes(S, ExDecl, D);
9885  return ExDecl;
9886}
9887
9888Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9889                                         Expr *AssertExpr,
9890                                         Expr *AssertMessageExpr_,
9891                                         SourceLocation RParenLoc) {
9892  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9893
9894  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9895    llvm::APSInt Cond;
9896    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9897                             diag::err_static_assert_expression_is_not_constant,
9898                                        /*AllowFold=*/false))
9899      return 0;
9900
9901    if (!Cond)
9902      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9903        << AssertMessage->getString() << AssertExpr->getSourceRange();
9904  }
9905
9906  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9907    return 0;
9908
9909  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9910                                        AssertExpr, AssertMessage, RParenLoc);
9911
9912  CurContext->addDecl(Decl);
9913  return Decl;
9914}
9915
9916/// \brief Perform semantic analysis of the given friend type declaration.
9917///
9918/// \returns A friend declaration that.
9919FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9920                                      SourceLocation FriendLoc,
9921                                      TypeSourceInfo *TSInfo) {
9922  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9923
9924  QualType T = TSInfo->getType();
9925  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9926
9927  // C++03 [class.friend]p2:
9928  //   An elaborated-type-specifier shall be used in a friend declaration
9929  //   for a class.*
9930  //
9931  //   * The class-key of the elaborated-type-specifier is required.
9932  if (!ActiveTemplateInstantiations.empty()) {
9933    // Do not complain about the form of friend template types during
9934    // template instantiation; we will already have complained when the
9935    // template was declared.
9936  } else if (!T->isElaboratedTypeSpecifier()) {
9937    // If we evaluated the type to a record type, suggest putting
9938    // a tag in front.
9939    if (const RecordType *RT = T->getAs<RecordType>()) {
9940      RecordDecl *RD = RT->getDecl();
9941
9942      std::string InsertionText = std::string(" ") + RD->getKindName();
9943
9944      Diag(TypeRange.getBegin(),
9945           getLangOptions().CPlusPlus0x ?
9946             diag::warn_cxx98_compat_unelaborated_friend_type :
9947             diag::ext_unelaborated_friend_type)
9948        << (unsigned) RD->getTagKind()
9949        << T
9950        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9951                                      InsertionText);
9952    } else {
9953      Diag(FriendLoc,
9954           getLangOptions().CPlusPlus0x ?
9955             diag::warn_cxx98_compat_nonclass_type_friend :
9956             diag::ext_nonclass_type_friend)
9957        << T
9958        << SourceRange(FriendLoc, TypeRange.getEnd());
9959    }
9960  } else if (T->getAs<EnumType>()) {
9961    Diag(FriendLoc,
9962         getLangOptions().CPlusPlus0x ?
9963           diag::warn_cxx98_compat_enum_friend :
9964           diag::ext_enum_friend)
9965      << T
9966      << SourceRange(FriendLoc, TypeRange.getEnd());
9967  }
9968
9969  // C++0x [class.friend]p3:
9970  //   If the type specifier in a friend declaration designates a (possibly
9971  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9972  //   the friend declaration is ignored.
9973
9974  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9975  // in [class.friend]p3 that we do not implement.
9976
9977  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9978}
9979
9980/// Handle a friend tag declaration where the scope specifier was
9981/// templated.
9982Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9983                                    unsigned TagSpec, SourceLocation TagLoc,
9984                                    CXXScopeSpec &SS,
9985                                    IdentifierInfo *Name, SourceLocation NameLoc,
9986                                    AttributeList *Attr,
9987                                    MultiTemplateParamsArg TempParamLists) {
9988  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9989
9990  bool isExplicitSpecialization = false;
9991  bool Invalid = false;
9992
9993  if (TemplateParameterList *TemplateParams
9994        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9995                                                  TempParamLists.get(),
9996                                                  TempParamLists.size(),
9997                                                  /*friend*/ true,
9998                                                  isExplicitSpecialization,
9999                                                  Invalid)) {
10000    if (TemplateParams->size() > 0) {
10001      // This is a declaration of a class template.
10002      if (Invalid)
10003        return 0;
10004
10005      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10006                                SS, Name, NameLoc, Attr,
10007                                TemplateParams, AS_public,
10008                                /*ModulePrivateLoc=*/SourceLocation(),
10009                                TempParamLists.size() - 1,
10010                   (TemplateParameterList**) TempParamLists.release()).take();
10011    } else {
10012      // The "template<>" header is extraneous.
10013      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10014        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10015      isExplicitSpecialization = true;
10016    }
10017  }
10018
10019  if (Invalid) return 0;
10020
10021  bool isAllExplicitSpecializations = true;
10022  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10023    if (TempParamLists.get()[I]->size()) {
10024      isAllExplicitSpecializations = false;
10025      break;
10026    }
10027  }
10028
10029  // FIXME: don't ignore attributes.
10030
10031  // If it's explicit specializations all the way down, just forget
10032  // about the template header and build an appropriate non-templated
10033  // friend.  TODO: for source fidelity, remember the headers.
10034  if (isAllExplicitSpecializations) {
10035    if (SS.isEmpty()) {
10036      bool Owned = false;
10037      bool IsDependent = false;
10038      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10039                      Attr, AS_public,
10040                      /*ModulePrivateLoc=*/SourceLocation(),
10041                      MultiTemplateParamsArg(), Owned, IsDependent,
10042                      /*ScopedEnumKWLoc=*/SourceLocation(),
10043                      /*ScopedEnumUsesClassTag=*/false,
10044                      /*UnderlyingType=*/TypeResult());
10045    }
10046
10047    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10048    ElaboratedTypeKeyword Keyword
10049      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10050    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10051                                   *Name, NameLoc);
10052    if (T.isNull())
10053      return 0;
10054
10055    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10056    if (isa<DependentNameType>(T)) {
10057      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10058      TL.setKeywordLoc(TagLoc);
10059      TL.setQualifierLoc(QualifierLoc);
10060      TL.setNameLoc(NameLoc);
10061    } else {
10062      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10063      TL.setKeywordLoc(TagLoc);
10064      TL.setQualifierLoc(QualifierLoc);
10065      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10066    }
10067
10068    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10069                                            TSI, FriendLoc);
10070    Friend->setAccess(AS_public);
10071    CurContext->addDecl(Friend);
10072    return Friend;
10073  }
10074
10075  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10076
10077
10078
10079  // Handle the case of a templated-scope friend class.  e.g.
10080  //   template <class T> class A<T>::B;
10081  // FIXME: we don't support these right now.
10082  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10083  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10084  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10085  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10086  TL.setKeywordLoc(TagLoc);
10087  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10088  TL.setNameLoc(NameLoc);
10089
10090  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10091                                          TSI, FriendLoc);
10092  Friend->setAccess(AS_public);
10093  Friend->setUnsupportedFriend(true);
10094  CurContext->addDecl(Friend);
10095  return Friend;
10096}
10097
10098
10099/// Handle a friend type declaration.  This works in tandem with
10100/// ActOnTag.
10101///
10102/// Notes on friend class templates:
10103///
10104/// We generally treat friend class declarations as if they were
10105/// declaring a class.  So, for example, the elaborated type specifier
10106/// in a friend declaration is required to obey the restrictions of a
10107/// class-head (i.e. no typedefs in the scope chain), template
10108/// parameters are required to match up with simple template-ids, &c.
10109/// However, unlike when declaring a template specialization, it's
10110/// okay to refer to a template specialization without an empty
10111/// template parameter declaration, e.g.
10112///   friend class A<T>::B<unsigned>;
10113/// We permit this as a special case; if there are any template
10114/// parameters present at all, require proper matching, i.e.
10115///   template <> template <class T> friend class A<int>::B;
10116Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10117                                MultiTemplateParamsArg TempParams) {
10118  SourceLocation Loc = DS.getSourceRange().getBegin();
10119
10120  assert(DS.isFriendSpecified());
10121  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10122
10123  // Try to convert the decl specifier to a type.  This works for
10124  // friend templates because ActOnTag never produces a ClassTemplateDecl
10125  // for a TUK_Friend.
10126  Declarator TheDeclarator(DS, Declarator::MemberContext);
10127  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10128  QualType T = TSI->getType();
10129  if (TheDeclarator.isInvalidType())
10130    return 0;
10131
10132  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10133    return 0;
10134
10135  // This is definitely an error in C++98.  It's probably meant to
10136  // be forbidden in C++0x, too, but the specification is just
10137  // poorly written.
10138  //
10139  // The problem is with declarations like the following:
10140  //   template <T> friend A<T>::foo;
10141  // where deciding whether a class C is a friend or not now hinges
10142  // on whether there exists an instantiation of A that causes
10143  // 'foo' to equal C.  There are restrictions on class-heads
10144  // (which we declare (by fiat) elaborated friend declarations to
10145  // be) that makes this tractable.
10146  //
10147  // FIXME: handle "template <> friend class A<T>;", which
10148  // is possibly well-formed?  Who even knows?
10149  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10150    Diag(Loc, diag::err_tagless_friend_type_template)
10151      << DS.getSourceRange();
10152    return 0;
10153  }
10154
10155  // C++98 [class.friend]p1: A friend of a class is a function
10156  //   or class that is not a member of the class . . .
10157  // This is fixed in DR77, which just barely didn't make the C++03
10158  // deadline.  It's also a very silly restriction that seriously
10159  // affects inner classes and which nobody else seems to implement;
10160  // thus we never diagnose it, not even in -pedantic.
10161  //
10162  // But note that we could warn about it: it's always useless to
10163  // friend one of your own members (it's not, however, worthless to
10164  // friend a member of an arbitrary specialization of your template).
10165
10166  Decl *D;
10167  if (unsigned NumTempParamLists = TempParams.size())
10168    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10169                                   NumTempParamLists,
10170                                   TempParams.release(),
10171                                   TSI,
10172                                   DS.getFriendSpecLoc());
10173  else
10174    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10175
10176  if (!D)
10177    return 0;
10178
10179  D->setAccess(AS_public);
10180  CurContext->addDecl(D);
10181
10182  return D;
10183}
10184
10185Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10186                                    MultiTemplateParamsArg TemplateParams) {
10187  const DeclSpec &DS = D.getDeclSpec();
10188
10189  assert(DS.isFriendSpecified());
10190  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10191
10192  SourceLocation Loc = D.getIdentifierLoc();
10193  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10194
10195  // C++ [class.friend]p1
10196  //   A friend of a class is a function or class....
10197  // Note that this sees through typedefs, which is intended.
10198  // It *doesn't* see through dependent types, which is correct
10199  // according to [temp.arg.type]p3:
10200  //   If a declaration acquires a function type through a
10201  //   type dependent on a template-parameter and this causes
10202  //   a declaration that does not use the syntactic form of a
10203  //   function declarator to have a function type, the program
10204  //   is ill-formed.
10205  if (!TInfo->getType()->isFunctionType()) {
10206    Diag(Loc, diag::err_unexpected_friend);
10207
10208    // It might be worthwhile to try to recover by creating an
10209    // appropriate declaration.
10210    return 0;
10211  }
10212
10213  // C++ [namespace.memdef]p3
10214  //  - If a friend declaration in a non-local class first declares a
10215  //    class or function, the friend class or function is a member
10216  //    of the innermost enclosing namespace.
10217  //  - The name of the friend is not found by simple name lookup
10218  //    until a matching declaration is provided in that namespace
10219  //    scope (either before or after the class declaration granting
10220  //    friendship).
10221  //  - If a friend function is called, its name may be found by the
10222  //    name lookup that considers functions from namespaces and
10223  //    classes associated with the types of the function arguments.
10224  //  - When looking for a prior declaration of a class or a function
10225  //    declared as a friend, scopes outside the innermost enclosing
10226  //    namespace scope are not considered.
10227
10228  CXXScopeSpec &SS = D.getCXXScopeSpec();
10229  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10230  DeclarationName Name = NameInfo.getName();
10231  assert(Name);
10232
10233  // Check for unexpanded parameter packs.
10234  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10235      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10236      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10237    return 0;
10238
10239  // The context we found the declaration in, or in which we should
10240  // create the declaration.
10241  DeclContext *DC;
10242  Scope *DCScope = S;
10243  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10244                        ForRedeclaration);
10245
10246  // FIXME: there are different rules in local classes
10247
10248  // There are four cases here.
10249  //   - There's no scope specifier, in which case we just go to the
10250  //     appropriate scope and look for a function or function template
10251  //     there as appropriate.
10252  // Recover from invalid scope qualifiers as if they just weren't there.
10253  if (SS.isInvalid() || !SS.isSet()) {
10254    // C++0x [namespace.memdef]p3:
10255    //   If the name in a friend declaration is neither qualified nor
10256    //   a template-id and the declaration is a function or an
10257    //   elaborated-type-specifier, the lookup to determine whether
10258    //   the entity has been previously declared shall not consider
10259    //   any scopes outside the innermost enclosing namespace.
10260    // C++0x [class.friend]p11:
10261    //   If a friend declaration appears in a local class and the name
10262    //   specified is an unqualified name, a prior declaration is
10263    //   looked up without considering scopes that are outside the
10264    //   innermost enclosing non-class scope. For a friend function
10265    //   declaration, if there is no prior declaration, the program is
10266    //   ill-formed.
10267    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10268    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10269
10270    // Find the appropriate context according to the above.
10271    DC = CurContext;
10272    while (true) {
10273      // Skip class contexts.  If someone can cite chapter and verse
10274      // for this behavior, that would be nice --- it's what GCC and
10275      // EDG do, and it seems like a reasonable intent, but the spec
10276      // really only says that checks for unqualified existing
10277      // declarations should stop at the nearest enclosing namespace,
10278      // not that they should only consider the nearest enclosing
10279      // namespace.
10280      while (DC->isRecord())
10281        DC = DC->getParent();
10282
10283      LookupQualifiedName(Previous, DC);
10284
10285      // TODO: decide what we think about using declarations.
10286      if (isLocal || !Previous.empty())
10287        break;
10288
10289      if (isTemplateId) {
10290        if (isa<TranslationUnitDecl>(DC)) break;
10291      } else {
10292        if (DC->isFileContext()) break;
10293      }
10294      DC = DC->getParent();
10295    }
10296
10297    // C++ [class.friend]p1: A friend of a class is a function or
10298    //   class that is not a member of the class . . .
10299    // C++11 changes this for both friend types and functions.
10300    // Most C++ 98 compilers do seem to give an error here, so
10301    // we do, too.
10302    if (!Previous.empty() && DC->Equals(CurContext))
10303      Diag(DS.getFriendSpecLoc(),
10304           getLangOptions().CPlusPlus0x ?
10305             diag::warn_cxx98_compat_friend_is_member :
10306             diag::err_friend_is_member);
10307
10308    DCScope = getScopeForDeclContext(S, DC);
10309
10310    // C++ [class.friend]p6:
10311    //   A function can be defined in a friend declaration of a class if and
10312    //   only if the class is a non-local class (9.8), the function name is
10313    //   unqualified, and the function has namespace scope.
10314    if (isLocal && D.isFunctionDefinition()) {
10315      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10316    }
10317
10318  //   - There's a non-dependent scope specifier, in which case we
10319  //     compute it and do a previous lookup there for a function
10320  //     or function template.
10321  } else if (!SS.getScopeRep()->isDependent()) {
10322    DC = computeDeclContext(SS);
10323    if (!DC) return 0;
10324
10325    if (RequireCompleteDeclContext(SS, DC)) return 0;
10326
10327    LookupQualifiedName(Previous, DC);
10328
10329    // Ignore things found implicitly in the wrong scope.
10330    // TODO: better diagnostics for this case.  Suggesting the right
10331    // qualified scope would be nice...
10332    LookupResult::Filter F = Previous.makeFilter();
10333    while (F.hasNext()) {
10334      NamedDecl *D = F.next();
10335      if (!DC->InEnclosingNamespaceSetOf(
10336              D->getDeclContext()->getRedeclContext()))
10337        F.erase();
10338    }
10339    F.done();
10340
10341    if (Previous.empty()) {
10342      D.setInvalidType();
10343      Diag(Loc, diag::err_qualified_friend_not_found)
10344          << Name << TInfo->getType();
10345      return 0;
10346    }
10347
10348    // C++ [class.friend]p1: A friend of a class is a function or
10349    //   class that is not a member of the class . . .
10350    if (DC->Equals(CurContext))
10351      Diag(DS.getFriendSpecLoc(),
10352           getLangOptions().CPlusPlus0x ?
10353             diag::warn_cxx98_compat_friend_is_member :
10354             diag::err_friend_is_member);
10355
10356    if (D.isFunctionDefinition()) {
10357      // C++ [class.friend]p6:
10358      //   A function can be defined in a friend declaration of a class if and
10359      //   only if the class is a non-local class (9.8), the function name is
10360      //   unqualified, and the function has namespace scope.
10361      SemaDiagnosticBuilder DB
10362        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10363
10364      DB << SS.getScopeRep();
10365      if (DC->isFileContext())
10366        DB << FixItHint::CreateRemoval(SS.getRange());
10367      SS.clear();
10368    }
10369
10370  //   - There's a scope specifier that does not match any template
10371  //     parameter lists, in which case we use some arbitrary context,
10372  //     create a method or method template, and wait for instantiation.
10373  //   - There's a scope specifier that does match some template
10374  //     parameter lists, which we don't handle right now.
10375  } else {
10376    if (D.isFunctionDefinition()) {
10377      // C++ [class.friend]p6:
10378      //   A function can be defined in a friend declaration of a class if and
10379      //   only if the class is a non-local class (9.8), the function name is
10380      //   unqualified, and the function has namespace scope.
10381      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10382        << SS.getScopeRep();
10383    }
10384
10385    DC = CurContext;
10386    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10387  }
10388
10389  if (!DC->isRecord()) {
10390    // This implies that it has to be an operator or function.
10391    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10392        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10393        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10394      Diag(Loc, diag::err_introducing_special_friend) <<
10395        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10396         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10397      return 0;
10398    }
10399  }
10400
10401  // FIXME: This is an egregious hack to cope with cases where the scope stack
10402  // does not contain the declaration context, i.e., in an out-of-line
10403  // definition of a class.
10404  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10405  if (!DCScope) {
10406    FakeDCScope.setEntity(DC);
10407    DCScope = &FakeDCScope;
10408  }
10409
10410  bool AddToScope = true;
10411  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10412                                          move(TemplateParams), AddToScope);
10413  if (!ND) return 0;
10414
10415  assert(ND->getDeclContext() == DC);
10416  assert(ND->getLexicalDeclContext() == CurContext);
10417
10418  // Add the function declaration to the appropriate lookup tables,
10419  // adjusting the redeclarations list as necessary.  We don't
10420  // want to do this yet if the friending class is dependent.
10421  //
10422  // Also update the scope-based lookup if the target context's
10423  // lookup context is in lexical scope.
10424  if (!CurContext->isDependentContext()) {
10425    DC = DC->getRedeclContext();
10426    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10427    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10428      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10429  }
10430
10431  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10432                                       D.getIdentifierLoc(), ND,
10433                                       DS.getFriendSpecLoc());
10434  FrD->setAccess(AS_public);
10435  CurContext->addDecl(FrD);
10436
10437  if (ND->isInvalidDecl())
10438    FrD->setInvalidDecl();
10439  else {
10440    FunctionDecl *FD;
10441    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10442      FD = FTD->getTemplatedDecl();
10443    else
10444      FD = cast<FunctionDecl>(ND);
10445
10446    // Mark templated-scope function declarations as unsupported.
10447    if (FD->getNumTemplateParameterLists())
10448      FrD->setUnsupportedFriend(true);
10449  }
10450
10451  return ND;
10452}
10453
10454void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10455  AdjustDeclIfTemplate(Dcl);
10456
10457  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10458  if (!Fn) {
10459    Diag(DelLoc, diag::err_deleted_non_function);
10460    return;
10461  }
10462  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10463    Diag(DelLoc, diag::err_deleted_decl_not_first);
10464    Diag(Prev->getLocation(), diag::note_previous_declaration);
10465    // If the declaration wasn't the first, we delete the function anyway for
10466    // recovery.
10467  }
10468  Fn->setDeletedAsWritten();
10469}
10470
10471void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10472  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10473
10474  if (MD) {
10475    if (MD->getParent()->isDependentType()) {
10476      MD->setDefaulted();
10477      MD->setExplicitlyDefaulted();
10478      return;
10479    }
10480
10481    CXXSpecialMember Member = getSpecialMember(MD);
10482    if (Member == CXXInvalid) {
10483      Diag(DefaultLoc, diag::err_default_special_members);
10484      return;
10485    }
10486
10487    MD->setDefaulted();
10488    MD->setExplicitlyDefaulted();
10489
10490    // If this definition appears within the record, do the checking when
10491    // the record is complete.
10492    const FunctionDecl *Primary = MD;
10493    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10494      // Find the uninstantiated declaration that actually had the '= default'
10495      // on it.
10496      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10497
10498    if (Primary == Primary->getCanonicalDecl())
10499      return;
10500
10501    switch (Member) {
10502    case CXXDefaultConstructor: {
10503      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10504      CheckExplicitlyDefaultedDefaultConstructor(CD);
10505      if (!CD->isInvalidDecl())
10506        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10507      break;
10508    }
10509
10510    case CXXCopyConstructor: {
10511      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10512      CheckExplicitlyDefaultedCopyConstructor(CD);
10513      if (!CD->isInvalidDecl())
10514        DefineImplicitCopyConstructor(DefaultLoc, CD);
10515      break;
10516    }
10517
10518    case CXXCopyAssignment: {
10519      CheckExplicitlyDefaultedCopyAssignment(MD);
10520      if (!MD->isInvalidDecl())
10521        DefineImplicitCopyAssignment(DefaultLoc, MD);
10522      break;
10523    }
10524
10525    case CXXDestructor: {
10526      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10527      CheckExplicitlyDefaultedDestructor(DD);
10528      if (!DD->isInvalidDecl())
10529        DefineImplicitDestructor(DefaultLoc, DD);
10530      break;
10531    }
10532
10533    case CXXMoveConstructor: {
10534      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10535      CheckExplicitlyDefaultedMoveConstructor(CD);
10536      if (!CD->isInvalidDecl())
10537        DefineImplicitMoveConstructor(DefaultLoc, CD);
10538      break;
10539    }
10540
10541    case CXXMoveAssignment: {
10542      CheckExplicitlyDefaultedMoveAssignment(MD);
10543      if (!MD->isInvalidDecl())
10544        DefineImplicitMoveAssignment(DefaultLoc, MD);
10545      break;
10546    }
10547
10548    case CXXInvalid:
10549      llvm_unreachable("Invalid special member.");
10550    }
10551  } else {
10552    Diag(DefaultLoc, diag::err_default_special_members);
10553  }
10554}
10555
10556static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10557  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10558    Stmt *SubStmt = *CI;
10559    if (!SubStmt)
10560      continue;
10561    if (isa<ReturnStmt>(SubStmt))
10562      Self.Diag(SubStmt->getSourceRange().getBegin(),
10563           diag::err_return_in_constructor_handler);
10564    if (!isa<Expr>(SubStmt))
10565      SearchForReturnInStmt(Self, SubStmt);
10566  }
10567}
10568
10569void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10570  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10571    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10572    SearchForReturnInStmt(*this, Handler);
10573  }
10574}
10575
10576bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10577                                             const CXXMethodDecl *Old) {
10578  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10579  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10580
10581  if (Context.hasSameType(NewTy, OldTy) ||
10582      NewTy->isDependentType() || OldTy->isDependentType())
10583    return false;
10584
10585  // Check if the return types are covariant
10586  QualType NewClassTy, OldClassTy;
10587
10588  /// Both types must be pointers or references to classes.
10589  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10590    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10591      NewClassTy = NewPT->getPointeeType();
10592      OldClassTy = OldPT->getPointeeType();
10593    }
10594  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10595    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10596      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10597        NewClassTy = NewRT->getPointeeType();
10598        OldClassTy = OldRT->getPointeeType();
10599      }
10600    }
10601  }
10602
10603  // The return types aren't either both pointers or references to a class type.
10604  if (NewClassTy.isNull()) {
10605    Diag(New->getLocation(),
10606         diag::err_different_return_type_for_overriding_virtual_function)
10607      << New->getDeclName() << NewTy << OldTy;
10608    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10609
10610    return true;
10611  }
10612
10613  // C++ [class.virtual]p6:
10614  //   If the return type of D::f differs from the return type of B::f, the
10615  //   class type in the return type of D::f shall be complete at the point of
10616  //   declaration of D::f or shall be the class type D.
10617  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10618    if (!RT->isBeingDefined() &&
10619        RequireCompleteType(New->getLocation(), NewClassTy,
10620                            PDiag(diag::err_covariant_return_incomplete)
10621                              << New->getDeclName()))
10622    return true;
10623  }
10624
10625  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10626    // Check if the new class derives from the old class.
10627    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10628      Diag(New->getLocation(),
10629           diag::err_covariant_return_not_derived)
10630      << New->getDeclName() << NewTy << OldTy;
10631      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10632      return true;
10633    }
10634
10635    // Check if we the conversion from derived to base is valid.
10636    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10637                    diag::err_covariant_return_inaccessible_base,
10638                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10639                    // FIXME: Should this point to the return type?
10640                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10641      // FIXME: this note won't trigger for delayed access control
10642      // diagnostics, and it's impossible to get an undelayed error
10643      // here from access control during the original parse because
10644      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10645      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10646      return true;
10647    }
10648  }
10649
10650  // The qualifiers of the return types must be the same.
10651  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10652    Diag(New->getLocation(),
10653         diag::err_covariant_return_type_different_qualifications)
10654    << New->getDeclName() << NewTy << OldTy;
10655    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10656    return true;
10657  };
10658
10659
10660  // The new class type must have the same or less qualifiers as the old type.
10661  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10662    Diag(New->getLocation(),
10663         diag::err_covariant_return_type_class_type_more_qualified)
10664    << New->getDeclName() << NewTy << OldTy;
10665    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10666    return true;
10667  };
10668
10669  return false;
10670}
10671
10672/// \brief Mark the given method pure.
10673///
10674/// \param Method the method to be marked pure.
10675///
10676/// \param InitRange the source range that covers the "0" initializer.
10677bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10678  SourceLocation EndLoc = InitRange.getEnd();
10679  if (EndLoc.isValid())
10680    Method->setRangeEnd(EndLoc);
10681
10682  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10683    Method->setPure();
10684    return false;
10685  }
10686
10687  if (!Method->isInvalidDecl())
10688    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10689      << Method->getDeclName() << InitRange;
10690  return true;
10691}
10692
10693/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10694/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10695/// is a fresh scope pushed for just this purpose.
10696///
10697/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10698/// static data member of class X, names should be looked up in the scope of
10699/// class X.
10700void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10701  // If there is no declaration, there was an error parsing it.
10702  if (D == 0 || D->isInvalidDecl()) return;
10703
10704  // We should only get called for declarations with scope specifiers, like:
10705  //   int foo::bar;
10706  assert(D->isOutOfLine());
10707  EnterDeclaratorContext(S, D->getDeclContext());
10708}
10709
10710/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10711/// initializer for the out-of-line declaration 'D'.
10712void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10713  // If there is no declaration, there was an error parsing it.
10714  if (D == 0 || D->isInvalidDecl()) return;
10715
10716  assert(D->isOutOfLine());
10717  ExitDeclaratorContext(S);
10718}
10719
10720/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10721/// C++ if/switch/while/for statement.
10722/// e.g: "if (int x = f()) {...}"
10723DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10724  // C++ 6.4p2:
10725  // The declarator shall not specify a function or an array.
10726  // The type-specifier-seq shall not contain typedef and shall not declare a
10727  // new class or enumeration.
10728  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10729         "Parser allowed 'typedef' as storage class of condition decl.");
10730
10731  Decl *Dcl = ActOnDeclarator(S, D);
10732  if (!Dcl)
10733    return true;
10734
10735  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10736    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10737      << D.getSourceRange();
10738    return true;
10739  }
10740
10741  return Dcl;
10742}
10743
10744void Sema::LoadExternalVTableUses() {
10745  if (!ExternalSource)
10746    return;
10747
10748  SmallVector<ExternalVTableUse, 4> VTables;
10749  ExternalSource->ReadUsedVTables(VTables);
10750  SmallVector<VTableUse, 4> NewUses;
10751  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10752    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10753      = VTablesUsed.find(VTables[I].Record);
10754    // Even if a definition wasn't required before, it may be required now.
10755    if (Pos != VTablesUsed.end()) {
10756      if (!Pos->second && VTables[I].DefinitionRequired)
10757        Pos->second = true;
10758      continue;
10759    }
10760
10761    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10762    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10763  }
10764
10765  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10766}
10767
10768void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10769                          bool DefinitionRequired) {
10770  // Ignore any vtable uses in unevaluated operands or for classes that do
10771  // not have a vtable.
10772  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10773      CurContext->isDependentContext() ||
10774      ExprEvalContexts.back().Context == Unevaluated)
10775    return;
10776
10777  // Try to insert this class into the map.
10778  LoadExternalVTableUses();
10779  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10780  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10781    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10782  if (!Pos.second) {
10783    // If we already had an entry, check to see if we are promoting this vtable
10784    // to required a definition. If so, we need to reappend to the VTableUses
10785    // list, since we may have already processed the first entry.
10786    if (DefinitionRequired && !Pos.first->second) {
10787      Pos.first->second = true;
10788    } else {
10789      // Otherwise, we can early exit.
10790      return;
10791    }
10792  }
10793
10794  // Local classes need to have their virtual members marked
10795  // immediately. For all other classes, we mark their virtual members
10796  // at the end of the translation unit.
10797  if (Class->isLocalClass())
10798    MarkVirtualMembersReferenced(Loc, Class);
10799  else
10800    VTableUses.push_back(std::make_pair(Class, Loc));
10801}
10802
10803bool Sema::DefineUsedVTables() {
10804  LoadExternalVTableUses();
10805  if (VTableUses.empty())
10806    return false;
10807
10808  // Note: The VTableUses vector could grow as a result of marking
10809  // the members of a class as "used", so we check the size each
10810  // time through the loop and prefer indices (with are stable) to
10811  // iterators (which are not).
10812  bool DefinedAnything = false;
10813  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10814    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10815    if (!Class)
10816      continue;
10817
10818    SourceLocation Loc = VTableUses[I].second;
10819
10820    // If this class has a key function, but that key function is
10821    // defined in another translation unit, we don't need to emit the
10822    // vtable even though we're using it.
10823    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10824    if (KeyFunction && !KeyFunction->hasBody()) {
10825      switch (KeyFunction->getTemplateSpecializationKind()) {
10826      case TSK_Undeclared:
10827      case TSK_ExplicitSpecialization:
10828      case TSK_ExplicitInstantiationDeclaration:
10829        // The key function is in another translation unit.
10830        continue;
10831
10832      case TSK_ExplicitInstantiationDefinition:
10833      case TSK_ImplicitInstantiation:
10834        // We will be instantiating the key function.
10835        break;
10836      }
10837    } else if (!KeyFunction) {
10838      // If we have a class with no key function that is the subject
10839      // of an explicit instantiation declaration, suppress the
10840      // vtable; it will live with the explicit instantiation
10841      // definition.
10842      bool IsExplicitInstantiationDeclaration
10843        = Class->getTemplateSpecializationKind()
10844                                      == TSK_ExplicitInstantiationDeclaration;
10845      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10846                                 REnd = Class->redecls_end();
10847           R != REnd; ++R) {
10848        TemplateSpecializationKind TSK
10849          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10850        if (TSK == TSK_ExplicitInstantiationDeclaration)
10851          IsExplicitInstantiationDeclaration = true;
10852        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10853          IsExplicitInstantiationDeclaration = false;
10854          break;
10855        }
10856      }
10857
10858      if (IsExplicitInstantiationDeclaration)
10859        continue;
10860    }
10861
10862    // Mark all of the virtual members of this class as referenced, so
10863    // that we can build a vtable. Then, tell the AST consumer that a
10864    // vtable for this class is required.
10865    DefinedAnything = true;
10866    MarkVirtualMembersReferenced(Loc, Class);
10867    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10868    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10869
10870    // Optionally warn if we're emitting a weak vtable.
10871    if (Class->getLinkage() == ExternalLinkage &&
10872        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10873      const FunctionDecl *KeyFunctionDef = 0;
10874      if (!KeyFunction ||
10875          (KeyFunction->hasBody(KeyFunctionDef) &&
10876           KeyFunctionDef->isInlined()))
10877        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10878             TSK_ExplicitInstantiationDefinition
10879             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10880          << Class;
10881    }
10882  }
10883  VTableUses.clear();
10884
10885  return DefinedAnything;
10886}
10887
10888void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10889                                        const CXXRecordDecl *RD) {
10890  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10891       e = RD->method_end(); i != e; ++i) {
10892    CXXMethodDecl *MD = *i;
10893
10894    // C++ [basic.def.odr]p2:
10895    //   [...] A virtual member function is used if it is not pure. [...]
10896    if (MD->isVirtual() && !MD->isPure())
10897      MarkDeclarationReferenced(Loc, MD);
10898  }
10899
10900  // Only classes that have virtual bases need a VTT.
10901  if (RD->getNumVBases() == 0)
10902    return;
10903
10904  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10905           e = RD->bases_end(); i != e; ++i) {
10906    const CXXRecordDecl *Base =
10907        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10908    if (Base->getNumVBases() == 0)
10909      continue;
10910    MarkVirtualMembersReferenced(Loc, Base);
10911  }
10912}
10913
10914/// SetIvarInitializers - This routine builds initialization ASTs for the
10915/// Objective-C implementation whose ivars need be initialized.
10916void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10917  if (!getLangOptions().CPlusPlus)
10918    return;
10919  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10920    SmallVector<ObjCIvarDecl*, 8> ivars;
10921    CollectIvarsToConstructOrDestruct(OID, ivars);
10922    if (ivars.empty())
10923      return;
10924    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10925    for (unsigned i = 0; i < ivars.size(); i++) {
10926      FieldDecl *Field = ivars[i];
10927      if (Field->isInvalidDecl())
10928        continue;
10929
10930      CXXCtorInitializer *Member;
10931      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10932      InitializationKind InitKind =
10933        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10934
10935      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10936      ExprResult MemberInit =
10937        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10938      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10939      // Note, MemberInit could actually come back empty if no initialization
10940      // is required (e.g., because it would call a trivial default constructor)
10941      if (!MemberInit.get() || MemberInit.isInvalid())
10942        continue;
10943
10944      Member =
10945        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10946                                         SourceLocation(),
10947                                         MemberInit.takeAs<Expr>(),
10948                                         SourceLocation());
10949      AllToInit.push_back(Member);
10950
10951      // Be sure that the destructor is accessible and is marked as referenced.
10952      if (const RecordType *RecordTy
10953                  = Context.getBaseElementType(Field->getType())
10954                                                        ->getAs<RecordType>()) {
10955                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10956        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10957          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10958          CheckDestructorAccess(Field->getLocation(), Destructor,
10959                            PDiag(diag::err_access_dtor_ivar)
10960                              << Context.getBaseElementType(Field->getType()));
10961        }
10962      }
10963    }
10964    ObjCImplementation->setIvarInitializers(Context,
10965                                            AllToInit.data(), AllToInit.size());
10966  }
10967}
10968
10969static
10970void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10971                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10972                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10973                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10974                           Sema &S) {
10975  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10976                                                   CE = Current.end();
10977  if (Ctor->isInvalidDecl())
10978    return;
10979
10980  const FunctionDecl *FNTarget = 0;
10981  CXXConstructorDecl *Target;
10982
10983  // We ignore the result here since if we don't have a body, Target will be
10984  // null below.
10985  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10986  Target
10987= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10988
10989  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10990                     // Avoid dereferencing a null pointer here.
10991                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10992
10993  if (!Current.insert(Canonical))
10994    return;
10995
10996  // We know that beyond here, we aren't chaining into a cycle.
10997  if (!Target || !Target->isDelegatingConstructor() ||
10998      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10999    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11000      Valid.insert(*CI);
11001    Current.clear();
11002  // We've hit a cycle.
11003  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11004             Current.count(TCanonical)) {
11005    // If we haven't diagnosed this cycle yet, do so now.
11006    if (!Invalid.count(TCanonical)) {
11007      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11008             diag::warn_delegating_ctor_cycle)
11009        << Ctor;
11010
11011      // Don't add a note for a function delegating directo to itself.
11012      if (TCanonical != Canonical)
11013        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11014
11015      CXXConstructorDecl *C = Target;
11016      while (C->getCanonicalDecl() != Canonical) {
11017        (void)C->getTargetConstructor()->hasBody(FNTarget);
11018        assert(FNTarget && "Ctor cycle through bodiless function");
11019
11020        C
11021       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11022        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11023      }
11024    }
11025
11026    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11027      Invalid.insert(*CI);
11028    Current.clear();
11029  } else {
11030    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11031  }
11032}
11033
11034
11035void Sema::CheckDelegatingCtorCycles() {
11036  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11037
11038  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11039                                                   CE = Current.end();
11040
11041  for (DelegatingCtorDeclsType::iterator
11042         I = DelegatingCtorDecls.begin(ExternalSource),
11043         E = DelegatingCtorDecls.end();
11044       I != E; ++I) {
11045   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11046  }
11047
11048  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11049    (*CI)->setInvalidDecl();
11050}
11051
11052/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11053Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11054  // Implicitly declared functions (e.g. copy constructors) are
11055  // __host__ __device__
11056  if (D->isImplicit())
11057    return CFT_HostDevice;
11058
11059  if (D->hasAttr<CUDAGlobalAttr>())
11060    return CFT_Global;
11061
11062  if (D->hasAttr<CUDADeviceAttr>()) {
11063    if (D->hasAttr<CUDAHostAttr>())
11064      return CFT_HostDevice;
11065    else
11066      return CFT_Device;
11067  }
11068
11069  return CFT_Host;
11070}
11071
11072bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11073                           CUDAFunctionTarget CalleeTarget) {
11074  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11075  // Callable from the device only."
11076  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11077    return true;
11078
11079  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11080  // Callable from the host only."
11081  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11082  // Callable from the host only."
11083  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11084      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11085    return true;
11086
11087  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11088    return true;
11089
11090  return false;
11091}
11092