SemaDeclCXX.cpp revision f502d8ec9b43b259db9e37e9622279df46070fed
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/AST/TypeOrdering.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Lex/Preprocessor.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getLocStart(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getLocStart(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getLocStart(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
129                                                      CXXMethodDecl *Method) {
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
137  if (!Proto)
138    return;
139
140  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
141
142  // If this function can throw any exceptions, make a note of that.
143  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
144    ClearExceptions();
145    ComputedEST = EST;
146    return;
147  }
148
149  // FIXME: If the call to this decl is using any of its default arguments, we
150  // need to search them for potentially-throwing calls.
151
152  // If this function has a basic noexcept, it doesn't affect the outcome.
153  if (EST == EST_BasicNoexcept)
154    return;
155
156  // If we have a throw-all spec at this point, ignore the function.
157  if (ComputedEST == EST_None)
158    return;
159
160  // If we're still at noexcept(true) and there's a nothrow() callee,
161  // change to that specification.
162  if (EST == EST_DynamicNone) {
163    if (ComputedEST == EST_BasicNoexcept)
164      ComputedEST = EST_DynamicNone;
165    return;
166  }
167
168  // Check out noexcept specs.
169  if (EST == EST_ComputedNoexcept) {
170    FunctionProtoType::NoexceptResult NR =
171        Proto->getNoexceptSpec(Self->Context);
172    assert(NR != FunctionProtoType::NR_NoNoexcept &&
173           "Must have noexcept result for EST_ComputedNoexcept.");
174    assert(NR != FunctionProtoType::NR_Dependent &&
175           "Should not generate implicit declarations for dependent cases, "
176           "and don't know how to handle them anyway.");
177
178    // noexcept(false) -> no spec on the new function
179    if (NR == FunctionProtoType::NR_Throw) {
180      ClearExceptions();
181      ComputedEST = EST_None;
182    }
183    // noexcept(true) won't change anything either.
184    return;
185  }
186
187  assert(EST == EST_Dynamic && "EST case not considered earlier.");
188  assert(ComputedEST != EST_None &&
189         "Shouldn't collect exceptions when throw-all is guaranteed.");
190  ComputedEST = EST_Dynamic;
191  // Record the exceptions in this function's exception specification.
192  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
193                                          EEnd = Proto->exception_end();
194       E != EEnd; ++E)
195    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
196      Exceptions.push_back(*E);
197}
198
199void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
200  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
201    return;
202
203  // FIXME:
204  //
205  // C++0x [except.spec]p14:
206  //   [An] implicit exception-specification specifies the type-id T if and
207  // only if T is allowed by the exception-specification of a function directly
208  // invoked by f's implicit definition; f shall allow all exceptions if any
209  // function it directly invokes allows all exceptions, and f shall allow no
210  // exceptions if every function it directly invokes allows no exceptions.
211  //
212  // Note in particular that if an implicit exception-specification is generated
213  // for a function containing a throw-expression, that specification can still
214  // be noexcept(true).
215  //
216  // Note also that 'directly invoked' is not defined in the standard, and there
217  // is no indication that we should only consider potentially-evaluated calls.
218  //
219  // Ultimately we should implement the intent of the standard: the exception
220  // specification should be the set of exceptions which can be thrown by the
221  // implicit definition. For now, we assume that any non-nothrow expression can
222  // throw any exception.
223
224  if (Self->canThrow(E))
225    ComputedEST = EST_None;
226}
227
228bool
229Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
230                              SourceLocation EqualLoc) {
231  if (RequireCompleteType(Param->getLocation(), Param->getType(),
232                          diag::err_typecheck_decl_incomplete_type)) {
233    Param->setInvalidDecl();
234    return true;
235  }
236
237  // C++ [dcl.fct.default]p5
238  //   A default argument expression is implicitly converted (clause
239  //   4) to the parameter type. The default argument expression has
240  //   the same semantic constraints as the initializer expression in
241  //   a declaration of a variable of the parameter type, using the
242  //   copy-initialization semantics (8.5).
243  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
244                                                                    Param);
245  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
246                                                           EqualLoc);
247  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
248  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
249                                      MultiExprArg(*this, &Arg, 1));
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376// MergeCXXFunctionDecl - Merge two declarations of the same C++
377// function, once we already know that they have the same
378// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
679// the requirements of a constexpr function definition or a constexpr
680// constructor definition. If so, return true. If not, produce appropriate
681// diagnostics and return false.
682//
683// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
684bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
685  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
686  if (MD && MD->isInstance()) {
687    // C++11 [dcl.constexpr]p4:
688    //  The definition of a constexpr constructor shall satisfy the following
689    //  constraints:
690    //  - the class shall not have any virtual base classes;
691    const CXXRecordDecl *RD = MD->getParent();
692    if (RD->getNumVBases()) {
693      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
694        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
695        << RD->getNumVBases();
696      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
697             E = RD->vbases_end(); I != E; ++I)
698        Diag(I->getLocStart(),
699             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
700      return false;
701    }
702  }
703
704  if (!isa<CXXConstructorDecl>(NewFD)) {
705    // C++11 [dcl.constexpr]p3:
706    //  The definition of a constexpr function shall satisfy the following
707    //  constraints:
708    // - it shall not be virtual;
709    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
710    if (Method && Method->isVirtual()) {
711      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
712
713      // If it's not obvious why this function is virtual, find an overridden
714      // function which uses the 'virtual' keyword.
715      const CXXMethodDecl *WrittenVirtual = Method;
716      while (!WrittenVirtual->isVirtualAsWritten())
717        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
718      if (WrittenVirtual != Method)
719        Diag(WrittenVirtual->getLocation(),
720             diag::note_overridden_virtual_function);
721      return false;
722    }
723
724    // - its return type shall be a literal type;
725    QualType RT = NewFD->getResultType();
726    if (!RT->isDependentType() &&
727        RequireLiteralType(NewFD->getLocation(), RT,
728                           diag::err_constexpr_non_literal_return))
729      return false;
730  }
731
732  // - each of its parameter types shall be a literal type;
733  if (!CheckConstexprParameterTypes(*this, NewFD))
734    return false;
735
736  return true;
737}
738
739/// Check the given declaration statement is legal within a constexpr function
740/// body. C++0x [dcl.constexpr]p3,p4.
741///
742/// \return true if the body is OK, false if we have diagnosed a problem.
743static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
744                                   DeclStmt *DS) {
745  // C++0x [dcl.constexpr]p3 and p4:
746  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
747  //  contain only
748  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
749         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
750    switch ((*DclIt)->getKind()) {
751    case Decl::StaticAssert:
752    case Decl::Using:
753    case Decl::UsingShadow:
754    case Decl::UsingDirective:
755    case Decl::UnresolvedUsingTypename:
756      //   - static_assert-declarations
757      //   - using-declarations,
758      //   - using-directives,
759      continue;
760
761    case Decl::Typedef:
762    case Decl::TypeAlias: {
763      //   - typedef declarations and alias-declarations that do not define
764      //     classes or enumerations,
765      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
766      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
767        // Don't allow variably-modified types in constexpr functions.
768        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
769        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
770          << TL.getSourceRange() << TL.getType()
771          << isa<CXXConstructorDecl>(Dcl);
772        return false;
773      }
774      continue;
775    }
776
777    case Decl::Enum:
778    case Decl::CXXRecord:
779      // As an extension, we allow the declaration (but not the definition) of
780      // classes and enumerations in all declarations, not just in typedef and
781      // alias declarations.
782      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
783        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
784          << isa<CXXConstructorDecl>(Dcl);
785        return false;
786      }
787      continue;
788
789    case Decl::Var:
790      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
791        << isa<CXXConstructorDecl>(Dcl);
792      return false;
793
794    default:
795      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
796        << isa<CXXConstructorDecl>(Dcl);
797      return false;
798    }
799  }
800
801  return true;
802}
803
804/// Check that the given field is initialized within a constexpr constructor.
805///
806/// \param Dcl The constexpr constructor being checked.
807/// \param Field The field being checked. This may be a member of an anonymous
808///        struct or union nested within the class being checked.
809/// \param Inits All declarations, including anonymous struct/union members and
810///        indirect members, for which any initialization was provided.
811/// \param Diagnosed Set to true if an error is produced.
812static void CheckConstexprCtorInitializer(Sema &SemaRef,
813                                          const FunctionDecl *Dcl,
814                                          FieldDecl *Field,
815                                          llvm::SmallSet<Decl*, 16> &Inits,
816                                          bool &Diagnosed) {
817  if (Field->isUnnamedBitfield())
818    return;
819
820  if (Field->isAnonymousStructOrUnion() &&
821      Field->getType()->getAsCXXRecordDecl()->isEmpty())
822    return;
823
824  if (!Inits.count(Field)) {
825    if (!Diagnosed) {
826      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
827      Diagnosed = true;
828    }
829    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
830  } else if (Field->isAnonymousStructOrUnion()) {
831    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
832    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
833         I != E; ++I)
834      // If an anonymous union contains an anonymous struct of which any member
835      // is initialized, all members must be initialized.
836      if (!RD->isUnion() || Inits.count(&*I))
837        CheckConstexprCtorInitializer(SemaRef, Dcl, &*I, Inits, Diagnosed);
838  }
839}
840
841/// Check the body for the given constexpr function declaration only contains
842/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
843///
844/// \return true if the body is OK, false if we have diagnosed a problem.
845bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
846  if (isa<CXXTryStmt>(Body)) {
847    // C++11 [dcl.constexpr]p3:
848    //  The definition of a constexpr function shall satisfy the following
849    //  constraints: [...]
850    // - its function-body shall be = delete, = default, or a
851    //   compound-statement
852    //
853    // C++11 [dcl.constexpr]p4:
854    //  In the definition of a constexpr constructor, [...]
855    // - its function-body shall not be a function-try-block;
856    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
857      << isa<CXXConstructorDecl>(Dcl);
858    return false;
859  }
860
861  // - its function-body shall be [...] a compound-statement that contains only
862  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
863
864  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
865  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
866         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
867    switch ((*BodyIt)->getStmtClass()) {
868    case Stmt::NullStmtClass:
869      //   - null statements,
870      continue;
871
872    case Stmt::DeclStmtClass:
873      //   - static_assert-declarations
874      //   - using-declarations,
875      //   - using-directives,
876      //   - typedef declarations and alias-declarations that do not define
877      //     classes or enumerations,
878      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
879        return false;
880      continue;
881
882    case Stmt::ReturnStmtClass:
883      //   - and exactly one return statement;
884      if (isa<CXXConstructorDecl>(Dcl))
885        break;
886
887      ReturnStmts.push_back((*BodyIt)->getLocStart());
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // DR1359:
903    // - every non-variant non-static data member and base class sub-object
904    //   shall be initialized;
905    // - if the class is a non-empty union, or for each non-empty anonymous
906    //   union member of a non-union class, exactly one non-static data member
907    //   shall be initialized;
908    if (RD->isUnion()) {
909      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
910        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
911        return false;
912      }
913    } else if (!Constructor->isDependentContext() &&
914               !Constructor->isDelegatingConstructor()) {
915      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
916
917      // Skip detailed checking if we have enough initializers, and we would
918      // allow at most one initializer per member.
919      bool AnyAnonStructUnionMembers = false;
920      unsigned Fields = 0;
921      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
922           E = RD->field_end(); I != E; ++I, ++Fields) {
923        if (I->isAnonymousStructOrUnion()) {
924          AnyAnonStructUnionMembers = true;
925          break;
926        }
927      }
928      if (AnyAnonStructUnionMembers ||
929          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
930        // Check initialization of non-static data members. Base classes are
931        // always initialized so do not need to be checked. Dependent bases
932        // might not have initializers in the member initializer list.
933        llvm::SmallSet<Decl*, 16> Inits;
934        for (CXXConstructorDecl::init_const_iterator
935               I = Constructor->init_begin(), E = Constructor->init_end();
936             I != E; ++I) {
937          if (FieldDecl *FD = (*I)->getMember())
938            Inits.insert(FD);
939          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
940            Inits.insert(ID->chain_begin(), ID->chain_end());
941        }
942
943        bool Diagnosed = false;
944        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
945             E = RD->field_end(); I != E; ++I)
946          CheckConstexprCtorInitializer(*this, Dcl, &*I, Inits, Diagnosed);
947        if (Diagnosed)
948          return false;
949      }
950    }
951  } else {
952    if (ReturnStmts.empty()) {
953      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
954      return false;
955    }
956    if (ReturnStmts.size() > 1) {
957      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
958      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
959        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
960      return false;
961    }
962  }
963
964  // C++11 [dcl.constexpr]p5:
965  //   if no function argument values exist such that the function invocation
966  //   substitution would produce a constant expression, the program is
967  //   ill-formed; no diagnostic required.
968  // C++11 [dcl.constexpr]p3:
969  //   - every constructor call and implicit conversion used in initializing the
970  //     return value shall be one of those allowed in a constant expression.
971  // C++11 [dcl.constexpr]p4:
972  //   - every constructor involved in initializing non-static data members and
973  //     base class sub-objects shall be a constexpr constructor.
974  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
975  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
976    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
977      << isa<CXXConstructorDecl>(Dcl);
978    for (size_t I = 0, N = Diags.size(); I != N; ++I)
979      Diag(Diags[I].first, Diags[I].second);
980    return false;
981  }
982
983  return true;
984}
985
986/// isCurrentClassName - Determine whether the identifier II is the
987/// name of the class type currently being defined. In the case of
988/// nested classes, this will only return true if II is the name of
989/// the innermost class.
990bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
991                              const CXXScopeSpec *SS) {
992  assert(getLangOpts().CPlusPlus && "No class names in C!");
993
994  CXXRecordDecl *CurDecl;
995  if (SS && SS->isSet() && !SS->isInvalid()) {
996    DeclContext *DC = computeDeclContext(*SS, true);
997    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
998  } else
999    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1000
1001  if (CurDecl && CurDecl->getIdentifier())
1002    return &II == CurDecl->getIdentifier();
1003  else
1004    return false;
1005}
1006
1007/// \brief Check the validity of a C++ base class specifier.
1008///
1009/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1010/// and returns NULL otherwise.
1011CXXBaseSpecifier *
1012Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1013                         SourceRange SpecifierRange,
1014                         bool Virtual, AccessSpecifier Access,
1015                         TypeSourceInfo *TInfo,
1016                         SourceLocation EllipsisLoc) {
1017  QualType BaseType = TInfo->getType();
1018
1019  // C++ [class.union]p1:
1020  //   A union shall not have base classes.
1021  if (Class->isUnion()) {
1022    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1023      << SpecifierRange;
1024    return 0;
1025  }
1026
1027  if (EllipsisLoc.isValid() &&
1028      !TInfo->getType()->containsUnexpandedParameterPack()) {
1029    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1030      << TInfo->getTypeLoc().getSourceRange();
1031    EllipsisLoc = SourceLocation();
1032  }
1033
1034  if (BaseType->isDependentType())
1035    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1036                                          Class->getTagKind() == TTK_Class,
1037                                          Access, TInfo, EllipsisLoc);
1038
1039  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1040
1041  // Base specifiers must be record types.
1042  if (!BaseType->isRecordType()) {
1043    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1044    return 0;
1045  }
1046
1047  // C++ [class.union]p1:
1048  //   A union shall not be used as a base class.
1049  if (BaseType->isUnionType()) {
1050    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1051    return 0;
1052  }
1053
1054  // C++ [class.derived]p2:
1055  //   The class-name in a base-specifier shall not be an incompletely
1056  //   defined class.
1057  if (RequireCompleteType(BaseLoc, BaseType,
1058                          diag::err_incomplete_base_class, SpecifierRange)) {
1059    Class->setInvalidDecl();
1060    return 0;
1061  }
1062
1063  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1064  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1065  assert(BaseDecl && "Record type has no declaration");
1066  BaseDecl = BaseDecl->getDefinition();
1067  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1068  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1069  assert(CXXBaseDecl && "Base type is not a C++ type");
1070
1071  // C++ [class]p3:
1072  //   If a class is marked final and it appears as a base-type-specifier in
1073  //   base-clause, the program is ill-formed.
1074  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1075    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1076      << CXXBaseDecl->getDeclName();
1077    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1078      << CXXBaseDecl->getDeclName();
1079    return 0;
1080  }
1081
1082  if (BaseDecl->isInvalidDecl())
1083    Class->setInvalidDecl();
1084
1085  // Create the base specifier.
1086  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1087                                        Class->getTagKind() == TTK_Class,
1088                                        Access, TInfo, EllipsisLoc);
1089}
1090
1091/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1092/// one entry in the base class list of a class specifier, for
1093/// example:
1094///    class foo : public bar, virtual private baz {
1095/// 'public bar' and 'virtual private baz' are each base-specifiers.
1096BaseResult
1097Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1098                         bool Virtual, AccessSpecifier Access,
1099                         ParsedType basetype, SourceLocation BaseLoc,
1100                         SourceLocation EllipsisLoc) {
1101  if (!classdecl)
1102    return true;
1103
1104  AdjustDeclIfTemplate(classdecl);
1105  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1106  if (!Class)
1107    return true;
1108
1109  TypeSourceInfo *TInfo = 0;
1110  GetTypeFromParser(basetype, &TInfo);
1111
1112  if (EllipsisLoc.isInvalid() &&
1113      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1114                                      UPPC_BaseType))
1115    return true;
1116
1117  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1118                                                      Virtual, Access, TInfo,
1119                                                      EllipsisLoc))
1120    return BaseSpec;
1121
1122  return true;
1123}
1124
1125/// \brief Performs the actual work of attaching the given base class
1126/// specifiers to a C++ class.
1127bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1128                                unsigned NumBases) {
1129 if (NumBases == 0)
1130    return false;
1131
1132  // Used to keep track of which base types we have already seen, so
1133  // that we can properly diagnose redundant direct base types. Note
1134  // that the key is always the unqualified canonical type of the base
1135  // class.
1136  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1137
1138  // Copy non-redundant base specifiers into permanent storage.
1139  unsigned NumGoodBases = 0;
1140  bool Invalid = false;
1141  for (unsigned idx = 0; idx < NumBases; ++idx) {
1142    QualType NewBaseType
1143      = Context.getCanonicalType(Bases[idx]->getType());
1144    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1145
1146    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1147    if (KnownBase) {
1148      // C++ [class.mi]p3:
1149      //   A class shall not be specified as a direct base class of a
1150      //   derived class more than once.
1151      Diag(Bases[idx]->getLocStart(),
1152           diag::err_duplicate_base_class)
1153        << KnownBase->getType()
1154        << Bases[idx]->getSourceRange();
1155
1156      // Delete the duplicate base class specifier; we're going to
1157      // overwrite its pointer later.
1158      Context.Deallocate(Bases[idx]);
1159
1160      Invalid = true;
1161    } else {
1162      // Okay, add this new base class.
1163      KnownBase = Bases[idx];
1164      Bases[NumGoodBases++] = Bases[idx];
1165      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1166        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1167          if (RD->hasAttr<WeakAttr>())
1168            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1169    }
1170  }
1171
1172  // Attach the remaining base class specifiers to the derived class.
1173  Class->setBases(Bases, NumGoodBases);
1174
1175  // Delete the remaining (good) base class specifiers, since their
1176  // data has been copied into the CXXRecordDecl.
1177  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1178    Context.Deallocate(Bases[idx]);
1179
1180  return Invalid;
1181}
1182
1183/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1184/// class, after checking whether there are any duplicate base
1185/// classes.
1186void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1187                               unsigned NumBases) {
1188  if (!ClassDecl || !Bases || !NumBases)
1189    return;
1190
1191  AdjustDeclIfTemplate(ClassDecl);
1192  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1193                       (CXXBaseSpecifier**)(Bases), NumBases);
1194}
1195
1196static CXXRecordDecl *GetClassForType(QualType T) {
1197  if (const RecordType *RT = T->getAs<RecordType>())
1198    return cast<CXXRecordDecl>(RT->getDecl());
1199  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1200    return ICT->getDecl();
1201  else
1202    return 0;
1203}
1204
1205/// \brief Determine whether the type \p Derived is a C++ class that is
1206/// derived from the type \p Base.
1207bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1208  if (!getLangOpts().CPlusPlus)
1209    return false;
1210
1211  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1212  if (!DerivedRD)
1213    return false;
1214
1215  CXXRecordDecl *BaseRD = GetClassForType(Base);
1216  if (!BaseRD)
1217    return false;
1218
1219  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1220  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1221}
1222
1223/// \brief Determine whether the type \p Derived is a C++ class that is
1224/// derived from the type \p Base.
1225bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1226  if (!getLangOpts().CPlusPlus)
1227    return false;
1228
1229  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1230  if (!DerivedRD)
1231    return false;
1232
1233  CXXRecordDecl *BaseRD = GetClassForType(Base);
1234  if (!BaseRD)
1235    return false;
1236
1237  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1238}
1239
1240void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1241                              CXXCastPath &BasePathArray) {
1242  assert(BasePathArray.empty() && "Base path array must be empty!");
1243  assert(Paths.isRecordingPaths() && "Must record paths!");
1244
1245  const CXXBasePath &Path = Paths.front();
1246
1247  // We first go backward and check if we have a virtual base.
1248  // FIXME: It would be better if CXXBasePath had the base specifier for
1249  // the nearest virtual base.
1250  unsigned Start = 0;
1251  for (unsigned I = Path.size(); I != 0; --I) {
1252    if (Path[I - 1].Base->isVirtual()) {
1253      Start = I - 1;
1254      break;
1255    }
1256  }
1257
1258  // Now add all bases.
1259  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1260    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1261}
1262
1263/// \brief Determine whether the given base path includes a virtual
1264/// base class.
1265bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1266  for (CXXCastPath::const_iterator B = BasePath.begin(),
1267                                BEnd = BasePath.end();
1268       B != BEnd; ++B)
1269    if ((*B)->isVirtual())
1270      return true;
1271
1272  return false;
1273}
1274
1275/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1276/// conversion (where Derived and Base are class types) is
1277/// well-formed, meaning that the conversion is unambiguous (and
1278/// that all of the base classes are accessible). Returns true
1279/// and emits a diagnostic if the code is ill-formed, returns false
1280/// otherwise. Loc is the location where this routine should point to
1281/// if there is an error, and Range is the source range to highlight
1282/// if there is an error.
1283bool
1284Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1285                                   unsigned InaccessibleBaseID,
1286                                   unsigned AmbigiousBaseConvID,
1287                                   SourceLocation Loc, SourceRange Range,
1288                                   DeclarationName Name,
1289                                   CXXCastPath *BasePath) {
1290  // First, determine whether the path from Derived to Base is
1291  // ambiguous. This is slightly more expensive than checking whether
1292  // the Derived to Base conversion exists, because here we need to
1293  // explore multiple paths to determine if there is an ambiguity.
1294  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1295                     /*DetectVirtual=*/false);
1296  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1297  assert(DerivationOkay &&
1298         "Can only be used with a derived-to-base conversion");
1299  (void)DerivationOkay;
1300
1301  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1302    if (InaccessibleBaseID) {
1303      // Check that the base class can be accessed.
1304      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1305                                   InaccessibleBaseID)) {
1306        case AR_inaccessible:
1307          return true;
1308        case AR_accessible:
1309        case AR_dependent:
1310        case AR_delayed:
1311          break;
1312      }
1313    }
1314
1315    // Build a base path if necessary.
1316    if (BasePath)
1317      BuildBasePathArray(Paths, *BasePath);
1318    return false;
1319  }
1320
1321  // We know that the derived-to-base conversion is ambiguous, and
1322  // we're going to produce a diagnostic. Perform the derived-to-base
1323  // search just one more time to compute all of the possible paths so
1324  // that we can print them out. This is more expensive than any of
1325  // the previous derived-to-base checks we've done, but at this point
1326  // performance isn't as much of an issue.
1327  Paths.clear();
1328  Paths.setRecordingPaths(true);
1329  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1330  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1331  (void)StillOkay;
1332
1333  // Build up a textual representation of the ambiguous paths, e.g.,
1334  // D -> B -> A, that will be used to illustrate the ambiguous
1335  // conversions in the diagnostic. We only print one of the paths
1336  // to each base class subobject.
1337  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1338
1339  Diag(Loc, AmbigiousBaseConvID)
1340  << Derived << Base << PathDisplayStr << Range << Name;
1341  return true;
1342}
1343
1344bool
1345Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1346                                   SourceLocation Loc, SourceRange Range,
1347                                   CXXCastPath *BasePath,
1348                                   bool IgnoreAccess) {
1349  return CheckDerivedToBaseConversion(Derived, Base,
1350                                      IgnoreAccess ? 0
1351                                       : diag::err_upcast_to_inaccessible_base,
1352                                      diag::err_ambiguous_derived_to_base_conv,
1353                                      Loc, Range, DeclarationName(),
1354                                      BasePath);
1355}
1356
1357
1358/// @brief Builds a string representing ambiguous paths from a
1359/// specific derived class to different subobjects of the same base
1360/// class.
1361///
1362/// This function builds a string that can be used in error messages
1363/// to show the different paths that one can take through the
1364/// inheritance hierarchy to go from the derived class to different
1365/// subobjects of a base class. The result looks something like this:
1366/// @code
1367/// struct D -> struct B -> struct A
1368/// struct D -> struct C -> struct A
1369/// @endcode
1370std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1371  std::string PathDisplayStr;
1372  std::set<unsigned> DisplayedPaths;
1373  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1374       Path != Paths.end(); ++Path) {
1375    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1376      // We haven't displayed a path to this particular base
1377      // class subobject yet.
1378      PathDisplayStr += "\n    ";
1379      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1380      for (CXXBasePath::const_iterator Element = Path->begin();
1381           Element != Path->end(); ++Element)
1382        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1383    }
1384  }
1385
1386  return PathDisplayStr;
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// C++ class member Handling
1391//===----------------------------------------------------------------------===//
1392
1393/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1394bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1395                                SourceLocation ASLoc,
1396                                SourceLocation ColonLoc,
1397                                AttributeList *Attrs) {
1398  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1399  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1400                                                  ASLoc, ColonLoc);
1401  CurContext->addHiddenDecl(ASDecl);
1402  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1403}
1404
1405/// CheckOverrideControl - Check C++0x override control semantics.
1406void Sema::CheckOverrideControl(const Decl *D) {
1407  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1408  if (!MD || !MD->isVirtual())
1409    return;
1410
1411  if (MD->isDependentContext())
1412    return;
1413
1414  // C++0x [class.virtual]p3:
1415  //   If a virtual function is marked with the virt-specifier override and does
1416  //   not override a member function of a base class,
1417  //   the program is ill-formed.
1418  bool HasOverriddenMethods =
1419    MD->begin_overridden_methods() != MD->end_overridden_methods();
1420  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1421    Diag(MD->getLocation(),
1422                 diag::err_function_marked_override_not_overriding)
1423      << MD->getDeclName();
1424    return;
1425  }
1426}
1427
1428/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1429/// function overrides a virtual member function marked 'final', according to
1430/// C++0x [class.virtual]p3.
1431bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1432                                                  const CXXMethodDecl *Old) {
1433  if (!Old->hasAttr<FinalAttr>())
1434    return false;
1435
1436  Diag(New->getLocation(), diag::err_final_function_overridden)
1437    << New->getDeclName();
1438  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1439  return true;
1440}
1441
1442/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1443/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1444/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1445/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1446/// present but parsing it has been deferred.
1447Decl *
1448Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1449                               MultiTemplateParamsArg TemplateParameterLists,
1450                               Expr *BW, const VirtSpecifiers &VS,
1451                               bool HasDeferredInit) {
1452  const DeclSpec &DS = D.getDeclSpec();
1453  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1454  DeclarationName Name = NameInfo.getName();
1455  SourceLocation Loc = NameInfo.getLoc();
1456
1457  // For anonymous bitfields, the location should point to the type.
1458  if (Loc.isInvalid())
1459    Loc = D.getLocStart();
1460
1461  Expr *BitWidth = static_cast<Expr*>(BW);
1462
1463  assert(isa<CXXRecordDecl>(CurContext));
1464  assert(!DS.isFriendSpecified());
1465
1466  bool isFunc = D.isDeclarationOfFunction();
1467
1468  // C++ 9.2p6: A member shall not be declared to have automatic storage
1469  // duration (auto, register) or with the extern storage-class-specifier.
1470  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1471  // data members and cannot be applied to names declared const or static,
1472  // and cannot be applied to reference members.
1473  switch (DS.getStorageClassSpec()) {
1474    case DeclSpec::SCS_unspecified:
1475    case DeclSpec::SCS_typedef:
1476    case DeclSpec::SCS_static:
1477      // FALL THROUGH.
1478      break;
1479    case DeclSpec::SCS_mutable:
1480      if (isFunc) {
1481        if (DS.getStorageClassSpecLoc().isValid())
1482          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1483        else
1484          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1485
1486        // FIXME: It would be nicer if the keyword was ignored only for this
1487        // declarator. Otherwise we could get follow-up errors.
1488        D.getMutableDeclSpec().ClearStorageClassSpecs();
1489      }
1490      break;
1491    default:
1492      if (DS.getStorageClassSpecLoc().isValid())
1493        Diag(DS.getStorageClassSpecLoc(),
1494             diag::err_storageclass_invalid_for_member);
1495      else
1496        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1497      D.getMutableDeclSpec().ClearStorageClassSpecs();
1498  }
1499
1500  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1501                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1502                      !isFunc);
1503
1504  Decl *Member;
1505  if (isInstField) {
1506    CXXScopeSpec &SS = D.getCXXScopeSpec();
1507
1508    // Data members must have identifiers for names.
1509    if (Name.getNameKind() != DeclarationName::Identifier) {
1510      Diag(Loc, diag::err_bad_variable_name)
1511        << Name;
1512      return 0;
1513    }
1514
1515    IdentifierInfo *II = Name.getAsIdentifierInfo();
1516
1517    // Member field could not be with "template" keyword.
1518    // So TemplateParameterLists should be empty in this case.
1519    if (TemplateParameterLists.size()) {
1520      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1521      if (TemplateParams->size()) {
1522        // There is no such thing as a member field template.
1523        Diag(D.getIdentifierLoc(), diag::err_template_member)
1524            << II
1525            << SourceRange(TemplateParams->getTemplateLoc(),
1526                TemplateParams->getRAngleLoc());
1527      } else {
1528        // There is an extraneous 'template<>' for this member.
1529        Diag(TemplateParams->getTemplateLoc(),
1530            diag::err_template_member_noparams)
1531            << II
1532            << SourceRange(TemplateParams->getTemplateLoc(),
1533                TemplateParams->getRAngleLoc());
1534      }
1535      return 0;
1536    }
1537
1538    if (SS.isSet() && !SS.isInvalid()) {
1539      // The user provided a superfluous scope specifier inside a class
1540      // definition:
1541      //
1542      // class X {
1543      //   int X::member;
1544      // };
1545      if (DeclContext *DC = computeDeclContext(SS, false))
1546        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1547      else
1548        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1549          << Name << SS.getRange();
1550
1551      SS.clear();
1552    }
1553
1554    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1555                         HasDeferredInit, AS);
1556    assert(Member && "HandleField never returns null");
1557  } else {
1558    assert(!HasDeferredInit);
1559
1560    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1561    if (!Member) {
1562      return 0;
1563    }
1564
1565    // Non-instance-fields can't have a bitfield.
1566    if (BitWidth) {
1567      if (Member->isInvalidDecl()) {
1568        // don't emit another diagnostic.
1569      } else if (isa<VarDecl>(Member)) {
1570        // C++ 9.6p3: A bit-field shall not be a static member.
1571        // "static member 'A' cannot be a bit-field"
1572        Diag(Loc, diag::err_static_not_bitfield)
1573          << Name << BitWidth->getSourceRange();
1574      } else if (isa<TypedefDecl>(Member)) {
1575        // "typedef member 'x' cannot be a bit-field"
1576        Diag(Loc, diag::err_typedef_not_bitfield)
1577          << Name << BitWidth->getSourceRange();
1578      } else {
1579        // A function typedef ("typedef int f(); f a;").
1580        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1581        Diag(Loc, diag::err_not_integral_type_bitfield)
1582          << Name << cast<ValueDecl>(Member)->getType()
1583          << BitWidth->getSourceRange();
1584      }
1585
1586      BitWidth = 0;
1587      Member->setInvalidDecl();
1588    }
1589
1590    Member->setAccess(AS);
1591
1592    // If we have declared a member function template, set the access of the
1593    // templated declaration as well.
1594    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1595      FunTmpl->getTemplatedDecl()->setAccess(AS);
1596  }
1597
1598  if (VS.isOverrideSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1604    } else
1605      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1606  }
1607  if (VS.isFinalSpecified()) {
1608    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1609    if (!MD || !MD->isVirtual()) {
1610      Diag(Member->getLocStart(),
1611           diag::override_keyword_only_allowed_on_virtual_member_functions)
1612      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1613    } else
1614      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1615  }
1616
1617  if (VS.getLastLocation().isValid()) {
1618    // Update the end location of a method that has a virt-specifiers.
1619    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1620      MD->setRangeEnd(VS.getLastLocation());
1621  }
1622
1623  CheckOverrideControl(Member);
1624
1625  assert((Name || isInstField) && "No identifier for non-field ?");
1626
1627  if (isInstField)
1628    FieldCollector->Add(cast<FieldDecl>(Member));
1629  return Member;
1630}
1631
1632/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1633/// in-class initializer for a non-static C++ class member, and after
1634/// instantiating an in-class initializer in a class template. Such actions
1635/// are deferred until the class is complete.
1636void
1637Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1638                                       Expr *InitExpr) {
1639  FieldDecl *FD = cast<FieldDecl>(D);
1640
1641  if (!InitExpr) {
1642    FD->setInvalidDecl();
1643    FD->removeInClassInitializer();
1644    return;
1645  }
1646
1647  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1648    FD->setInvalidDecl();
1649    FD->removeInClassInitializer();
1650    return;
1651  }
1652
1653  ExprResult Init = InitExpr;
1654  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1655    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1656      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1657        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1658    }
1659    Expr **Inits = &InitExpr;
1660    unsigned NumInits = 1;
1661    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1662    InitializationKind Kind = EqualLoc.isInvalid()
1663        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1664        : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1665    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1666    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1667    if (Init.isInvalid()) {
1668      FD->setInvalidDecl();
1669      return;
1670    }
1671
1672    CheckImplicitConversions(Init.get(), EqualLoc);
1673  }
1674
1675  // C++0x [class.base.init]p7:
1676  //   The initialization of each base and member constitutes a
1677  //   full-expression.
1678  Init = MaybeCreateExprWithCleanups(Init);
1679  if (Init.isInvalid()) {
1680    FD->setInvalidDecl();
1681    return;
1682  }
1683
1684  InitExpr = Init.release();
1685
1686  FD->setInClassInitializer(InitExpr);
1687}
1688
1689/// \brief Find the direct and/or virtual base specifiers that
1690/// correspond to the given base type, for use in base initialization
1691/// within a constructor.
1692static bool FindBaseInitializer(Sema &SemaRef,
1693                                CXXRecordDecl *ClassDecl,
1694                                QualType BaseType,
1695                                const CXXBaseSpecifier *&DirectBaseSpec,
1696                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1697  // First, check for a direct base class.
1698  DirectBaseSpec = 0;
1699  for (CXXRecordDecl::base_class_const_iterator Base
1700         = ClassDecl->bases_begin();
1701       Base != ClassDecl->bases_end(); ++Base) {
1702    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1703      // We found a direct base of this type. That's what we're
1704      // initializing.
1705      DirectBaseSpec = &*Base;
1706      break;
1707    }
1708  }
1709
1710  // Check for a virtual base class.
1711  // FIXME: We might be able to short-circuit this if we know in advance that
1712  // there are no virtual bases.
1713  VirtualBaseSpec = 0;
1714  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1715    // We haven't found a base yet; search the class hierarchy for a
1716    // virtual base class.
1717    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1718                       /*DetectVirtual=*/false);
1719    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1720                              BaseType, Paths)) {
1721      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1722           Path != Paths.end(); ++Path) {
1723        if (Path->back().Base->isVirtual()) {
1724          VirtualBaseSpec = Path->back().Base;
1725          break;
1726        }
1727      }
1728    }
1729  }
1730
1731  return DirectBaseSpec || VirtualBaseSpec;
1732}
1733
1734/// \brief Handle a C++ member initializer using braced-init-list syntax.
1735MemInitResult
1736Sema::ActOnMemInitializer(Decl *ConstructorD,
1737                          Scope *S,
1738                          CXXScopeSpec &SS,
1739                          IdentifierInfo *MemberOrBase,
1740                          ParsedType TemplateTypeTy,
1741                          const DeclSpec &DS,
1742                          SourceLocation IdLoc,
1743                          Expr *InitList,
1744                          SourceLocation EllipsisLoc) {
1745  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1746                             DS, IdLoc, InitList,
1747                             EllipsisLoc);
1748}
1749
1750/// \brief Handle a C++ member initializer using parentheses syntax.
1751MemInitResult
1752Sema::ActOnMemInitializer(Decl *ConstructorD,
1753                          Scope *S,
1754                          CXXScopeSpec &SS,
1755                          IdentifierInfo *MemberOrBase,
1756                          ParsedType TemplateTypeTy,
1757                          const DeclSpec &DS,
1758                          SourceLocation IdLoc,
1759                          SourceLocation LParenLoc,
1760                          Expr **Args, unsigned NumArgs,
1761                          SourceLocation RParenLoc,
1762                          SourceLocation EllipsisLoc) {
1763  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1764                                           RParenLoc);
1765  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1766                             DS, IdLoc, List, EllipsisLoc);
1767}
1768
1769namespace {
1770
1771// Callback to only accept typo corrections that can be a valid C++ member
1772// intializer: either a non-static field member or a base class.
1773class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1774 public:
1775  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1776      : ClassDecl(ClassDecl) {}
1777
1778  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1779    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1780      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1781        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1782      else
1783        return isa<TypeDecl>(ND);
1784    }
1785    return false;
1786  }
1787
1788 private:
1789  CXXRecordDecl *ClassDecl;
1790};
1791
1792}
1793
1794/// \brief Handle a C++ member initializer.
1795MemInitResult
1796Sema::BuildMemInitializer(Decl *ConstructorD,
1797                          Scope *S,
1798                          CXXScopeSpec &SS,
1799                          IdentifierInfo *MemberOrBase,
1800                          ParsedType TemplateTypeTy,
1801                          const DeclSpec &DS,
1802                          SourceLocation IdLoc,
1803                          Expr *Init,
1804                          SourceLocation EllipsisLoc) {
1805  if (!ConstructorD)
1806    return true;
1807
1808  AdjustDeclIfTemplate(ConstructorD);
1809
1810  CXXConstructorDecl *Constructor
1811    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1812  if (!Constructor) {
1813    // The user wrote a constructor initializer on a function that is
1814    // not a C++ constructor. Ignore the error for now, because we may
1815    // have more member initializers coming; we'll diagnose it just
1816    // once in ActOnMemInitializers.
1817    return true;
1818  }
1819
1820  CXXRecordDecl *ClassDecl = Constructor->getParent();
1821
1822  // C++ [class.base.init]p2:
1823  //   Names in a mem-initializer-id are looked up in the scope of the
1824  //   constructor's class and, if not found in that scope, are looked
1825  //   up in the scope containing the constructor's definition.
1826  //   [Note: if the constructor's class contains a member with the
1827  //   same name as a direct or virtual base class of the class, a
1828  //   mem-initializer-id naming the member or base class and composed
1829  //   of a single identifier refers to the class member. A
1830  //   mem-initializer-id for the hidden base class may be specified
1831  //   using a qualified name. ]
1832  if (!SS.getScopeRep() && !TemplateTypeTy) {
1833    // Look for a member, first.
1834    DeclContext::lookup_result Result
1835      = ClassDecl->lookup(MemberOrBase);
1836    if (Result.first != Result.second) {
1837      ValueDecl *Member;
1838      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1839          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1840        if (EllipsisLoc.isValid())
1841          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1842            << MemberOrBase
1843            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1844
1845        return BuildMemberInitializer(Member, Init, IdLoc);
1846      }
1847    }
1848  }
1849  // It didn't name a member, so see if it names a class.
1850  QualType BaseType;
1851  TypeSourceInfo *TInfo = 0;
1852
1853  if (TemplateTypeTy) {
1854    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1855  } else if (DS.getTypeSpecType() == TST_decltype) {
1856    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1857  } else {
1858    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1859    LookupParsedName(R, S, &SS);
1860
1861    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1862    if (!TyD) {
1863      if (R.isAmbiguous()) return true;
1864
1865      // We don't want access-control diagnostics here.
1866      R.suppressDiagnostics();
1867
1868      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1869        bool NotUnknownSpecialization = false;
1870        DeclContext *DC = computeDeclContext(SS, false);
1871        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1872          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1873
1874        if (!NotUnknownSpecialization) {
1875          // When the scope specifier can refer to a member of an unknown
1876          // specialization, we take it as a type name.
1877          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1878                                       SS.getWithLocInContext(Context),
1879                                       *MemberOrBase, IdLoc);
1880          if (BaseType.isNull())
1881            return true;
1882
1883          R.clear();
1884          R.setLookupName(MemberOrBase);
1885        }
1886      }
1887
1888      // If no results were found, try to correct typos.
1889      TypoCorrection Corr;
1890      MemInitializerValidatorCCC Validator(ClassDecl);
1891      if (R.empty() && BaseType.isNull() &&
1892          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1893                              Validator, ClassDecl))) {
1894        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1895        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1896        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1897          // We have found a non-static data member with a similar
1898          // name to what was typed; complain and initialize that
1899          // member.
1900          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1901            << MemberOrBase << true << CorrectedQuotedStr
1902            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1903          Diag(Member->getLocation(), diag::note_previous_decl)
1904            << CorrectedQuotedStr;
1905
1906          return BuildMemberInitializer(Member, Init, IdLoc);
1907        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1908          const CXXBaseSpecifier *DirectBaseSpec;
1909          const CXXBaseSpecifier *VirtualBaseSpec;
1910          if (FindBaseInitializer(*this, ClassDecl,
1911                                  Context.getTypeDeclType(Type),
1912                                  DirectBaseSpec, VirtualBaseSpec)) {
1913            // We have found a direct or virtual base class with a
1914            // similar name to what was typed; complain and initialize
1915            // that base class.
1916            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1917              << MemberOrBase << false << CorrectedQuotedStr
1918              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1919
1920            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1921                                                             : VirtualBaseSpec;
1922            Diag(BaseSpec->getLocStart(),
1923                 diag::note_base_class_specified_here)
1924              << BaseSpec->getType()
1925              << BaseSpec->getSourceRange();
1926
1927            TyD = Type;
1928          }
1929        }
1930      }
1931
1932      if (!TyD && BaseType.isNull()) {
1933        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1934          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1935        return true;
1936      }
1937    }
1938
1939    if (BaseType.isNull()) {
1940      BaseType = Context.getTypeDeclType(TyD);
1941      if (SS.isSet()) {
1942        NestedNameSpecifier *Qualifier =
1943          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1944
1945        // FIXME: preserve source range information
1946        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1947      }
1948    }
1949  }
1950
1951  if (!TInfo)
1952    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1953
1954  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1955}
1956
1957/// Checks a member initializer expression for cases where reference (or
1958/// pointer) members are bound to by-value parameters (or their addresses).
1959static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1960                                               Expr *Init,
1961                                               SourceLocation IdLoc) {
1962  QualType MemberTy = Member->getType();
1963
1964  // We only handle pointers and references currently.
1965  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1966  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1967    return;
1968
1969  const bool IsPointer = MemberTy->isPointerType();
1970  if (IsPointer) {
1971    if (const UnaryOperator *Op
1972          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1973      // The only case we're worried about with pointers requires taking the
1974      // address.
1975      if (Op->getOpcode() != UO_AddrOf)
1976        return;
1977
1978      Init = Op->getSubExpr();
1979    } else {
1980      // We only handle address-of expression initializers for pointers.
1981      return;
1982    }
1983  }
1984
1985  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1986    // Taking the address of a temporary will be diagnosed as a hard error.
1987    if (IsPointer)
1988      return;
1989
1990    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1991      << Member << Init->getSourceRange();
1992  } else if (const DeclRefExpr *DRE
1993               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1994    // We only warn when referring to a non-reference parameter declaration.
1995    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1996    if (!Parameter || Parameter->getType()->isReferenceType())
1997      return;
1998
1999    S.Diag(Init->getExprLoc(),
2000           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2001                     : diag::warn_bind_ref_member_to_parameter)
2002      << Member << Parameter << Init->getSourceRange();
2003  } else {
2004    // Other initializers are fine.
2005    return;
2006  }
2007
2008  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2009    << (unsigned)IsPointer;
2010}
2011
2012/// Checks an initializer expression for use of uninitialized fields, such as
2013/// containing the field that is being initialized. Returns true if there is an
2014/// uninitialized field was used an updates the SourceLocation parameter; false
2015/// otherwise.
2016static bool InitExprContainsUninitializedFields(const Stmt *S,
2017                                                const ValueDecl *LhsField,
2018                                                SourceLocation *L) {
2019  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2020
2021  if (isa<CallExpr>(S)) {
2022    // Do not descend into function calls or constructors, as the use
2023    // of an uninitialized field may be valid. One would have to inspect
2024    // the contents of the function/ctor to determine if it is safe or not.
2025    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2026    // may be safe, depending on what the function/ctor does.
2027    return false;
2028  }
2029  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2030    const NamedDecl *RhsField = ME->getMemberDecl();
2031
2032    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2033      // The member expression points to a static data member.
2034      assert(VD->isStaticDataMember() &&
2035             "Member points to non-static data member!");
2036      (void)VD;
2037      return false;
2038    }
2039
2040    if (isa<EnumConstantDecl>(RhsField)) {
2041      // The member expression points to an enum.
2042      return false;
2043    }
2044
2045    if (RhsField == LhsField) {
2046      // Initializing a field with itself. Throw a warning.
2047      // But wait; there are exceptions!
2048      // Exception #1:  The field may not belong to this record.
2049      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2050      const Expr *base = ME->getBase();
2051      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2052        // Even though the field matches, it does not belong to this record.
2053        return false;
2054      }
2055      // None of the exceptions triggered; return true to indicate an
2056      // uninitialized field was used.
2057      *L = ME->getMemberLoc();
2058      return true;
2059    }
2060  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2061    // sizeof/alignof doesn't reference contents, do not warn.
2062    return false;
2063  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2064    // address-of doesn't reference contents (the pointer may be dereferenced
2065    // in the same expression but it would be rare; and weird).
2066    if (UOE->getOpcode() == UO_AddrOf)
2067      return false;
2068  }
2069  for (Stmt::const_child_range it = S->children(); it; ++it) {
2070    if (!*it) {
2071      // An expression such as 'member(arg ?: "")' may trigger this.
2072      continue;
2073    }
2074    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2075      return true;
2076  }
2077  return false;
2078}
2079
2080MemInitResult
2081Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2082                             SourceLocation IdLoc) {
2083  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2084  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2085  assert((DirectMember || IndirectMember) &&
2086         "Member must be a FieldDecl or IndirectFieldDecl");
2087
2088  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2089    return true;
2090
2091  if (Member->isInvalidDecl())
2092    return true;
2093
2094  // Diagnose value-uses of fields to initialize themselves, e.g.
2095  //   foo(foo)
2096  // where foo is not also a parameter to the constructor.
2097  // TODO: implement -Wuninitialized and fold this into that framework.
2098  Expr **Args;
2099  unsigned NumArgs;
2100  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2101    Args = ParenList->getExprs();
2102    NumArgs = ParenList->getNumExprs();
2103  } else {
2104    InitListExpr *InitList = cast<InitListExpr>(Init);
2105    Args = InitList->getInits();
2106    NumArgs = InitList->getNumInits();
2107  }
2108  for (unsigned i = 0; i < NumArgs; ++i) {
2109    SourceLocation L;
2110    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2111      // FIXME: Return true in the case when other fields are used before being
2112      // uninitialized. For example, let this field be the i'th field. When
2113      // initializing the i'th field, throw a warning if any of the >= i'th
2114      // fields are used, as they are not yet initialized.
2115      // Right now we are only handling the case where the i'th field uses
2116      // itself in its initializer.
2117      Diag(L, diag::warn_field_is_uninit);
2118    }
2119  }
2120
2121  SourceRange InitRange = Init->getSourceRange();
2122
2123  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2124    // Can't check initialization for a member of dependent type or when
2125    // any of the arguments are type-dependent expressions.
2126    DiscardCleanupsInEvaluationContext();
2127  } else {
2128    bool InitList = false;
2129    if (isa<InitListExpr>(Init)) {
2130      InitList = true;
2131      Args = &Init;
2132      NumArgs = 1;
2133
2134      if (isStdInitializerList(Member->getType(), 0)) {
2135        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2136            << /*at end of ctor*/1 << InitRange;
2137      }
2138    }
2139
2140    // Initialize the member.
2141    InitializedEntity MemberEntity =
2142      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2143                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2144    InitializationKind Kind =
2145      InitList ? InitializationKind::CreateDirectList(IdLoc)
2146               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2147                                                  InitRange.getEnd());
2148
2149    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2150    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2151                                            MultiExprArg(*this, Args, NumArgs),
2152                                            0);
2153    if (MemberInit.isInvalid())
2154      return true;
2155
2156    CheckImplicitConversions(MemberInit.get(),
2157                             InitRange.getBegin());
2158
2159    // C++0x [class.base.init]p7:
2160    //   The initialization of each base and member constitutes a
2161    //   full-expression.
2162    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2163    if (MemberInit.isInvalid())
2164      return true;
2165
2166    // If we are in a dependent context, template instantiation will
2167    // perform this type-checking again. Just save the arguments that we
2168    // received.
2169    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2170    // of the information that we have about the member
2171    // initializer. However, deconstructing the ASTs is a dicey process,
2172    // and this approach is far more likely to get the corner cases right.
2173    if (CurContext->isDependentContext()) {
2174      // The existing Init will do fine.
2175    } else {
2176      Init = MemberInit.get();
2177      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2178    }
2179  }
2180
2181  if (DirectMember) {
2182    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2183                                            InitRange.getBegin(), Init,
2184                                            InitRange.getEnd());
2185  } else {
2186    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2187                                            InitRange.getBegin(), Init,
2188                                            InitRange.getEnd());
2189  }
2190}
2191
2192MemInitResult
2193Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2194                                 CXXRecordDecl *ClassDecl) {
2195  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2196  if (!LangOpts.CPlusPlus0x)
2197    return Diag(NameLoc, diag::err_delegating_ctor)
2198      << TInfo->getTypeLoc().getLocalSourceRange();
2199  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2200
2201  bool InitList = true;
2202  Expr **Args = &Init;
2203  unsigned NumArgs = 1;
2204  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2205    InitList = false;
2206    Args = ParenList->getExprs();
2207    NumArgs = ParenList->getNumExprs();
2208  }
2209
2210  SourceRange InitRange = Init->getSourceRange();
2211  // Initialize the object.
2212  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2213                                     QualType(ClassDecl->getTypeForDecl(), 0));
2214  InitializationKind Kind =
2215    InitList ? InitializationKind::CreateDirectList(NameLoc)
2216             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2217                                                InitRange.getEnd());
2218  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2219  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2220                                              MultiExprArg(*this, Args,NumArgs),
2221                                              0);
2222  if (DelegationInit.isInvalid())
2223    return true;
2224
2225  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2226         "Delegating constructor with no target?");
2227
2228  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2229
2230  // C++0x [class.base.init]p7:
2231  //   The initialization of each base and member constitutes a
2232  //   full-expression.
2233  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2234  if (DelegationInit.isInvalid())
2235    return true;
2236
2237  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2238                                          DelegationInit.takeAs<Expr>(),
2239                                          InitRange.getEnd());
2240}
2241
2242MemInitResult
2243Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2244                           Expr *Init, CXXRecordDecl *ClassDecl,
2245                           SourceLocation EllipsisLoc) {
2246  SourceLocation BaseLoc
2247    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2248
2249  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2250    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2251             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2252
2253  // C++ [class.base.init]p2:
2254  //   [...] Unless the mem-initializer-id names a nonstatic data
2255  //   member of the constructor's class or a direct or virtual base
2256  //   of that class, the mem-initializer is ill-formed. A
2257  //   mem-initializer-list can initialize a base class using any
2258  //   name that denotes that base class type.
2259  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2260
2261  SourceRange InitRange = Init->getSourceRange();
2262  if (EllipsisLoc.isValid()) {
2263    // This is a pack expansion.
2264    if (!BaseType->containsUnexpandedParameterPack())  {
2265      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2266        << SourceRange(BaseLoc, InitRange.getEnd());
2267
2268      EllipsisLoc = SourceLocation();
2269    }
2270  } else {
2271    // Check for any unexpanded parameter packs.
2272    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2273      return true;
2274
2275    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2276      return true;
2277  }
2278
2279  // Check for direct and virtual base classes.
2280  const CXXBaseSpecifier *DirectBaseSpec = 0;
2281  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2282  if (!Dependent) {
2283    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2284                                       BaseType))
2285      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2286
2287    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2288                        VirtualBaseSpec);
2289
2290    // C++ [base.class.init]p2:
2291    // Unless the mem-initializer-id names a nonstatic data member of the
2292    // constructor's class or a direct or virtual base of that class, the
2293    // mem-initializer is ill-formed.
2294    if (!DirectBaseSpec && !VirtualBaseSpec) {
2295      // If the class has any dependent bases, then it's possible that
2296      // one of those types will resolve to the same type as
2297      // BaseType. Therefore, just treat this as a dependent base
2298      // class initialization.  FIXME: Should we try to check the
2299      // initialization anyway? It seems odd.
2300      if (ClassDecl->hasAnyDependentBases())
2301        Dependent = true;
2302      else
2303        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2304          << BaseType << Context.getTypeDeclType(ClassDecl)
2305          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2306    }
2307  }
2308
2309  if (Dependent) {
2310    DiscardCleanupsInEvaluationContext();
2311
2312    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2313                                            /*IsVirtual=*/false,
2314                                            InitRange.getBegin(), Init,
2315                                            InitRange.getEnd(), EllipsisLoc);
2316  }
2317
2318  // C++ [base.class.init]p2:
2319  //   If a mem-initializer-id is ambiguous because it designates both
2320  //   a direct non-virtual base class and an inherited virtual base
2321  //   class, the mem-initializer is ill-formed.
2322  if (DirectBaseSpec && VirtualBaseSpec)
2323    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2324      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2325
2326  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2327  if (!BaseSpec)
2328    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2329
2330  // Initialize the base.
2331  bool InitList = true;
2332  Expr **Args = &Init;
2333  unsigned NumArgs = 1;
2334  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2335    InitList = false;
2336    Args = ParenList->getExprs();
2337    NumArgs = ParenList->getNumExprs();
2338  }
2339
2340  InitializedEntity BaseEntity =
2341    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2342  InitializationKind Kind =
2343    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2344             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2345                                                InitRange.getEnd());
2346  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2347  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2348                                          MultiExprArg(*this, Args, NumArgs),
2349                                          0);
2350  if (BaseInit.isInvalid())
2351    return true;
2352
2353  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2354
2355  // C++0x [class.base.init]p7:
2356  //   The initialization of each base and member constitutes a
2357  //   full-expression.
2358  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2359  if (BaseInit.isInvalid())
2360    return true;
2361
2362  // If we are in a dependent context, template instantiation will
2363  // perform this type-checking again. Just save the arguments that we
2364  // received in a ParenListExpr.
2365  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2366  // of the information that we have about the base
2367  // initializer. However, deconstructing the ASTs is a dicey process,
2368  // and this approach is far more likely to get the corner cases right.
2369  if (CurContext->isDependentContext())
2370    BaseInit = Owned(Init);
2371
2372  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2373                                          BaseSpec->isVirtual(),
2374                                          InitRange.getBegin(),
2375                                          BaseInit.takeAs<Expr>(),
2376                                          InitRange.getEnd(), EllipsisLoc);
2377}
2378
2379// Create a static_cast\<T&&>(expr).
2380static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2381  QualType ExprType = E->getType();
2382  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2383  SourceLocation ExprLoc = E->getLocStart();
2384  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2385      TargetType, ExprLoc);
2386
2387  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2388                                   SourceRange(ExprLoc, ExprLoc),
2389                                   E->getSourceRange()).take();
2390}
2391
2392/// ImplicitInitializerKind - How an implicit base or member initializer should
2393/// initialize its base or member.
2394enum ImplicitInitializerKind {
2395  IIK_Default,
2396  IIK_Copy,
2397  IIK_Move
2398};
2399
2400static bool
2401BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2402                             ImplicitInitializerKind ImplicitInitKind,
2403                             CXXBaseSpecifier *BaseSpec,
2404                             bool IsInheritedVirtualBase,
2405                             CXXCtorInitializer *&CXXBaseInit) {
2406  InitializedEntity InitEntity
2407    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2408                                        IsInheritedVirtualBase);
2409
2410  ExprResult BaseInit;
2411
2412  switch (ImplicitInitKind) {
2413  case IIK_Default: {
2414    InitializationKind InitKind
2415      = InitializationKind::CreateDefault(Constructor->getLocation());
2416    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2417    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2418                               MultiExprArg(SemaRef, 0, 0));
2419    break;
2420  }
2421
2422  case IIK_Move:
2423  case IIK_Copy: {
2424    bool Moving = ImplicitInitKind == IIK_Move;
2425    ParmVarDecl *Param = Constructor->getParamDecl(0);
2426    QualType ParamType = Param->getType().getNonReferenceType();
2427
2428    Expr *CopyCtorArg =
2429      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2430                          SourceLocation(), Param, false,
2431                          Constructor->getLocation(), ParamType,
2432                          VK_LValue, 0);
2433
2434    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2435
2436    // Cast to the base class to avoid ambiguities.
2437    QualType ArgTy =
2438      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2439                                       ParamType.getQualifiers());
2440
2441    if (Moving) {
2442      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2443    }
2444
2445    CXXCastPath BasePath;
2446    BasePath.push_back(BaseSpec);
2447    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2448                                            CK_UncheckedDerivedToBase,
2449                                            Moving ? VK_XValue : VK_LValue,
2450                                            &BasePath).take();
2451
2452    InitializationKind InitKind
2453      = InitializationKind::CreateDirect(Constructor->getLocation(),
2454                                         SourceLocation(), SourceLocation());
2455    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2456                                   &CopyCtorArg, 1);
2457    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2458                               MultiExprArg(&CopyCtorArg, 1));
2459    break;
2460  }
2461  }
2462
2463  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2464  if (BaseInit.isInvalid())
2465    return true;
2466
2467  CXXBaseInit =
2468    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2469               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2470                                                        SourceLocation()),
2471                                             BaseSpec->isVirtual(),
2472                                             SourceLocation(),
2473                                             BaseInit.takeAs<Expr>(),
2474                                             SourceLocation(),
2475                                             SourceLocation());
2476
2477  return false;
2478}
2479
2480static bool RefersToRValueRef(Expr *MemRef) {
2481  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2482  return Referenced->getType()->isRValueReferenceType();
2483}
2484
2485static bool
2486BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2487                               ImplicitInitializerKind ImplicitInitKind,
2488                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2489                               CXXCtorInitializer *&CXXMemberInit) {
2490  if (Field->isInvalidDecl())
2491    return true;
2492
2493  SourceLocation Loc = Constructor->getLocation();
2494
2495  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2496    bool Moving = ImplicitInitKind == IIK_Move;
2497    ParmVarDecl *Param = Constructor->getParamDecl(0);
2498    QualType ParamType = Param->getType().getNonReferenceType();
2499
2500    // Suppress copying zero-width bitfields.
2501    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2502      return false;
2503
2504    Expr *MemberExprBase =
2505      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2506                          SourceLocation(), Param, false,
2507                          Loc, ParamType, VK_LValue, 0);
2508
2509    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2510
2511    if (Moving) {
2512      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2513    }
2514
2515    // Build a reference to this field within the parameter.
2516    CXXScopeSpec SS;
2517    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2518                              Sema::LookupMemberName);
2519    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2520                                  : cast<ValueDecl>(Field), AS_public);
2521    MemberLookup.resolveKind();
2522    ExprResult CtorArg
2523      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2524                                         ParamType, Loc,
2525                                         /*IsArrow=*/false,
2526                                         SS,
2527                                         /*TemplateKWLoc=*/SourceLocation(),
2528                                         /*FirstQualifierInScope=*/0,
2529                                         MemberLookup,
2530                                         /*TemplateArgs=*/0);
2531    if (CtorArg.isInvalid())
2532      return true;
2533
2534    // C++11 [class.copy]p15:
2535    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2536    //     with static_cast<T&&>(x.m);
2537    if (RefersToRValueRef(CtorArg.get())) {
2538      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2539    }
2540
2541    // When the field we are copying is an array, create index variables for
2542    // each dimension of the array. We use these index variables to subscript
2543    // the source array, and other clients (e.g., CodeGen) will perform the
2544    // necessary iteration with these index variables.
2545    SmallVector<VarDecl *, 4> IndexVariables;
2546    QualType BaseType = Field->getType();
2547    QualType SizeType = SemaRef.Context.getSizeType();
2548    bool InitializingArray = false;
2549    while (const ConstantArrayType *Array
2550                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2551      InitializingArray = true;
2552      // Create the iteration variable for this array index.
2553      IdentifierInfo *IterationVarName = 0;
2554      {
2555        SmallString<8> Str;
2556        llvm::raw_svector_ostream OS(Str);
2557        OS << "__i" << IndexVariables.size();
2558        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2559      }
2560      VarDecl *IterationVar
2561        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2562                          IterationVarName, SizeType,
2563                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2564                          SC_None, SC_None);
2565      IndexVariables.push_back(IterationVar);
2566
2567      // Create a reference to the iteration variable.
2568      ExprResult IterationVarRef
2569        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2570      assert(!IterationVarRef.isInvalid() &&
2571             "Reference to invented variable cannot fail!");
2572      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2573      assert(!IterationVarRef.isInvalid() &&
2574             "Conversion of invented variable cannot fail!");
2575
2576      // Subscript the array with this iteration variable.
2577      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2578                                                        IterationVarRef.take(),
2579                                                        Loc);
2580      if (CtorArg.isInvalid())
2581        return true;
2582
2583      BaseType = Array->getElementType();
2584    }
2585
2586    // The array subscript expression is an lvalue, which is wrong for moving.
2587    if (Moving && InitializingArray)
2588      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2589
2590    // Construct the entity that we will be initializing. For an array, this
2591    // will be first element in the array, which may require several levels
2592    // of array-subscript entities.
2593    SmallVector<InitializedEntity, 4> Entities;
2594    Entities.reserve(1 + IndexVariables.size());
2595    if (Indirect)
2596      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2597    else
2598      Entities.push_back(InitializedEntity::InitializeMember(Field));
2599    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2600      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2601                                                              0,
2602                                                              Entities.back()));
2603
2604    // Direct-initialize to use the copy constructor.
2605    InitializationKind InitKind =
2606      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2607
2608    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2609    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2610                                   &CtorArgE, 1);
2611
2612    ExprResult MemberInit
2613      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2614                        MultiExprArg(&CtorArgE, 1));
2615    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2616    if (MemberInit.isInvalid())
2617      return true;
2618
2619    if (Indirect) {
2620      assert(IndexVariables.size() == 0 &&
2621             "Indirect field improperly initialized");
2622      CXXMemberInit
2623        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2624                                                   Loc, Loc,
2625                                                   MemberInit.takeAs<Expr>(),
2626                                                   Loc);
2627    } else
2628      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2629                                                 Loc, MemberInit.takeAs<Expr>(),
2630                                                 Loc,
2631                                                 IndexVariables.data(),
2632                                                 IndexVariables.size());
2633    return false;
2634  }
2635
2636  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2637
2638  QualType FieldBaseElementType =
2639    SemaRef.Context.getBaseElementType(Field->getType());
2640
2641  if (FieldBaseElementType->isRecordType()) {
2642    InitializedEntity InitEntity
2643      = Indirect? InitializedEntity::InitializeMember(Indirect)
2644                : InitializedEntity::InitializeMember(Field);
2645    InitializationKind InitKind =
2646      InitializationKind::CreateDefault(Loc);
2647
2648    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2649    ExprResult MemberInit =
2650      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2651
2652    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2653    if (MemberInit.isInvalid())
2654      return true;
2655
2656    if (Indirect)
2657      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2658                                                               Indirect, Loc,
2659                                                               Loc,
2660                                                               MemberInit.get(),
2661                                                               Loc);
2662    else
2663      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2664                                                               Field, Loc, Loc,
2665                                                               MemberInit.get(),
2666                                                               Loc);
2667    return false;
2668  }
2669
2670  if (!Field->getParent()->isUnion()) {
2671    if (FieldBaseElementType->isReferenceType()) {
2672      SemaRef.Diag(Constructor->getLocation(),
2673                   diag::err_uninitialized_member_in_ctor)
2674      << (int)Constructor->isImplicit()
2675      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2676      << 0 << Field->getDeclName();
2677      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2678      return true;
2679    }
2680
2681    if (FieldBaseElementType.isConstQualified()) {
2682      SemaRef.Diag(Constructor->getLocation(),
2683                   diag::err_uninitialized_member_in_ctor)
2684      << (int)Constructor->isImplicit()
2685      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2686      << 1 << Field->getDeclName();
2687      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2688      return true;
2689    }
2690  }
2691
2692  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2693      FieldBaseElementType->isObjCRetainableType() &&
2694      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2695      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2696    // Instant objects:
2697    //   Default-initialize Objective-C pointers to NULL.
2698    CXXMemberInit
2699      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2700                                                 Loc, Loc,
2701                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2702                                                 Loc);
2703    return false;
2704  }
2705
2706  // Nothing to initialize.
2707  CXXMemberInit = 0;
2708  return false;
2709}
2710
2711namespace {
2712struct BaseAndFieldInfo {
2713  Sema &S;
2714  CXXConstructorDecl *Ctor;
2715  bool AnyErrorsInInits;
2716  ImplicitInitializerKind IIK;
2717  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2718  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2719
2720  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2721    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2722    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2723    if (Generated && Ctor->isCopyConstructor())
2724      IIK = IIK_Copy;
2725    else if (Generated && Ctor->isMoveConstructor())
2726      IIK = IIK_Move;
2727    else
2728      IIK = IIK_Default;
2729  }
2730
2731  bool isImplicitCopyOrMove() const {
2732    switch (IIK) {
2733    case IIK_Copy:
2734    case IIK_Move:
2735      return true;
2736
2737    case IIK_Default:
2738      return false;
2739    }
2740
2741    llvm_unreachable("Invalid ImplicitInitializerKind!");
2742  }
2743};
2744}
2745
2746/// \brief Determine whether the given indirect field declaration is somewhere
2747/// within an anonymous union.
2748static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2749  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2750                                      CEnd = F->chain_end();
2751       C != CEnd; ++C)
2752    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2753      if (Record->isUnion())
2754        return true;
2755
2756  return false;
2757}
2758
2759/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2760/// array type.
2761static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2762  if (T->isIncompleteArrayType())
2763    return true;
2764
2765  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2766    if (!ArrayT->getSize())
2767      return true;
2768
2769    T = ArrayT->getElementType();
2770  }
2771
2772  return false;
2773}
2774
2775static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2776                                    FieldDecl *Field,
2777                                    IndirectFieldDecl *Indirect = 0) {
2778
2779  // Overwhelmingly common case: we have a direct initializer for this field.
2780  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2781    Info.AllToInit.push_back(Init);
2782    return false;
2783  }
2784
2785  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2786  // has a brace-or-equal-initializer, the entity is initialized as specified
2787  // in [dcl.init].
2788  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2789    CXXCtorInitializer *Init;
2790    if (Indirect)
2791      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2792                                                      SourceLocation(),
2793                                                      SourceLocation(), 0,
2794                                                      SourceLocation());
2795    else
2796      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2797                                                      SourceLocation(),
2798                                                      SourceLocation(), 0,
2799                                                      SourceLocation());
2800    Info.AllToInit.push_back(Init);
2801    return false;
2802  }
2803
2804  // Don't build an implicit initializer for union members if none was
2805  // explicitly specified.
2806  if (Field->getParent()->isUnion() ||
2807      (Indirect && isWithinAnonymousUnion(Indirect)))
2808    return false;
2809
2810  // Don't initialize incomplete or zero-length arrays.
2811  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2812    return false;
2813
2814  // Don't try to build an implicit initializer if there were semantic
2815  // errors in any of the initializers (and therefore we might be
2816  // missing some that the user actually wrote).
2817  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2818    return false;
2819
2820  CXXCtorInitializer *Init = 0;
2821  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2822                                     Indirect, Init))
2823    return true;
2824
2825  if (Init)
2826    Info.AllToInit.push_back(Init);
2827
2828  return false;
2829}
2830
2831bool
2832Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2833                               CXXCtorInitializer *Initializer) {
2834  assert(Initializer->isDelegatingInitializer());
2835  Constructor->setNumCtorInitializers(1);
2836  CXXCtorInitializer **initializer =
2837    new (Context) CXXCtorInitializer*[1];
2838  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2839  Constructor->setCtorInitializers(initializer);
2840
2841  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2842    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2843    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2844  }
2845
2846  DelegatingCtorDecls.push_back(Constructor);
2847
2848  return false;
2849}
2850
2851bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2852                               CXXCtorInitializer **Initializers,
2853                               unsigned NumInitializers,
2854                               bool AnyErrors) {
2855  if (Constructor->isDependentContext()) {
2856    // Just store the initializers as written, they will be checked during
2857    // instantiation.
2858    if (NumInitializers > 0) {
2859      Constructor->setNumCtorInitializers(NumInitializers);
2860      CXXCtorInitializer **baseOrMemberInitializers =
2861        new (Context) CXXCtorInitializer*[NumInitializers];
2862      memcpy(baseOrMemberInitializers, Initializers,
2863             NumInitializers * sizeof(CXXCtorInitializer*));
2864      Constructor->setCtorInitializers(baseOrMemberInitializers);
2865    }
2866
2867    return false;
2868  }
2869
2870  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2871
2872  // We need to build the initializer AST according to order of construction
2873  // and not what user specified in the Initializers list.
2874  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2875  if (!ClassDecl)
2876    return true;
2877
2878  bool HadError = false;
2879
2880  for (unsigned i = 0; i < NumInitializers; i++) {
2881    CXXCtorInitializer *Member = Initializers[i];
2882
2883    if (Member->isBaseInitializer())
2884      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2885    else
2886      Info.AllBaseFields[Member->getAnyMember()] = Member;
2887  }
2888
2889  // Keep track of the direct virtual bases.
2890  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2891  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2892       E = ClassDecl->bases_end(); I != E; ++I) {
2893    if (I->isVirtual())
2894      DirectVBases.insert(I);
2895  }
2896
2897  // Push virtual bases before others.
2898  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2899       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2900
2901    if (CXXCtorInitializer *Value
2902        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2903      Info.AllToInit.push_back(Value);
2904    } else if (!AnyErrors) {
2905      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2906      CXXCtorInitializer *CXXBaseInit;
2907      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2908                                       VBase, IsInheritedVirtualBase,
2909                                       CXXBaseInit)) {
2910        HadError = true;
2911        continue;
2912      }
2913
2914      Info.AllToInit.push_back(CXXBaseInit);
2915    }
2916  }
2917
2918  // Non-virtual bases.
2919  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2920       E = ClassDecl->bases_end(); Base != E; ++Base) {
2921    // Virtuals are in the virtual base list and already constructed.
2922    if (Base->isVirtual())
2923      continue;
2924
2925    if (CXXCtorInitializer *Value
2926          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2927      Info.AllToInit.push_back(Value);
2928    } else if (!AnyErrors) {
2929      CXXCtorInitializer *CXXBaseInit;
2930      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2931                                       Base, /*IsInheritedVirtualBase=*/false,
2932                                       CXXBaseInit)) {
2933        HadError = true;
2934        continue;
2935      }
2936
2937      Info.AllToInit.push_back(CXXBaseInit);
2938    }
2939  }
2940
2941  // Fields.
2942  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2943                               MemEnd = ClassDecl->decls_end();
2944       Mem != MemEnd; ++Mem) {
2945    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2946      // C++ [class.bit]p2:
2947      //   A declaration for a bit-field that omits the identifier declares an
2948      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2949      //   initialized.
2950      if (F->isUnnamedBitfield())
2951        continue;
2952
2953      // If we're not generating the implicit copy/move constructor, then we'll
2954      // handle anonymous struct/union fields based on their individual
2955      // indirect fields.
2956      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2957        continue;
2958
2959      if (CollectFieldInitializer(*this, Info, F))
2960        HadError = true;
2961      continue;
2962    }
2963
2964    // Beyond this point, we only consider default initialization.
2965    if (Info.IIK != IIK_Default)
2966      continue;
2967
2968    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2969      if (F->getType()->isIncompleteArrayType()) {
2970        assert(ClassDecl->hasFlexibleArrayMember() &&
2971               "Incomplete array type is not valid");
2972        continue;
2973      }
2974
2975      // Initialize each field of an anonymous struct individually.
2976      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2977        HadError = true;
2978
2979      continue;
2980    }
2981  }
2982
2983  NumInitializers = Info.AllToInit.size();
2984  if (NumInitializers > 0) {
2985    Constructor->setNumCtorInitializers(NumInitializers);
2986    CXXCtorInitializer **baseOrMemberInitializers =
2987      new (Context) CXXCtorInitializer*[NumInitializers];
2988    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2989           NumInitializers * sizeof(CXXCtorInitializer*));
2990    Constructor->setCtorInitializers(baseOrMemberInitializers);
2991
2992    // Constructors implicitly reference the base and member
2993    // destructors.
2994    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2995                                           Constructor->getParent());
2996  }
2997
2998  return HadError;
2999}
3000
3001static void *GetKeyForTopLevelField(FieldDecl *Field) {
3002  // For anonymous unions, use the class declaration as the key.
3003  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3004    if (RT->getDecl()->isAnonymousStructOrUnion())
3005      return static_cast<void *>(RT->getDecl());
3006  }
3007  return static_cast<void *>(Field);
3008}
3009
3010static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3011  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3012}
3013
3014static void *GetKeyForMember(ASTContext &Context,
3015                             CXXCtorInitializer *Member) {
3016  if (!Member->isAnyMemberInitializer())
3017    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3018
3019  // For fields injected into the class via declaration of an anonymous union,
3020  // use its anonymous union class declaration as the unique key.
3021  FieldDecl *Field = Member->getAnyMember();
3022
3023  // If the field is a member of an anonymous struct or union, our key
3024  // is the anonymous record decl that's a direct child of the class.
3025  RecordDecl *RD = Field->getParent();
3026  if (RD->isAnonymousStructOrUnion()) {
3027    while (true) {
3028      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3029      if (Parent->isAnonymousStructOrUnion())
3030        RD = Parent;
3031      else
3032        break;
3033    }
3034
3035    return static_cast<void *>(RD);
3036  }
3037
3038  return static_cast<void *>(Field);
3039}
3040
3041static void
3042DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3043                                  const CXXConstructorDecl *Constructor,
3044                                  CXXCtorInitializer **Inits,
3045                                  unsigned NumInits) {
3046  if (Constructor->getDeclContext()->isDependentContext())
3047    return;
3048
3049  // Don't check initializers order unless the warning is enabled at the
3050  // location of at least one initializer.
3051  bool ShouldCheckOrder = false;
3052  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3053    CXXCtorInitializer *Init = Inits[InitIndex];
3054    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3055                                         Init->getSourceLocation())
3056          != DiagnosticsEngine::Ignored) {
3057      ShouldCheckOrder = true;
3058      break;
3059    }
3060  }
3061  if (!ShouldCheckOrder)
3062    return;
3063
3064  // Build the list of bases and members in the order that they'll
3065  // actually be initialized.  The explicit initializers should be in
3066  // this same order but may be missing things.
3067  SmallVector<const void*, 32> IdealInitKeys;
3068
3069  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3070
3071  // 1. Virtual bases.
3072  for (CXXRecordDecl::base_class_const_iterator VBase =
3073       ClassDecl->vbases_begin(),
3074       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3075    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3076
3077  // 2. Non-virtual bases.
3078  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3079       E = ClassDecl->bases_end(); Base != E; ++Base) {
3080    if (Base->isVirtual())
3081      continue;
3082    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3083  }
3084
3085  // 3. Direct fields.
3086  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3087       E = ClassDecl->field_end(); Field != E; ++Field) {
3088    if (Field->isUnnamedBitfield())
3089      continue;
3090
3091    IdealInitKeys.push_back(GetKeyForTopLevelField(&*Field));
3092  }
3093
3094  unsigned NumIdealInits = IdealInitKeys.size();
3095  unsigned IdealIndex = 0;
3096
3097  CXXCtorInitializer *PrevInit = 0;
3098  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3099    CXXCtorInitializer *Init = Inits[InitIndex];
3100    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3101
3102    // Scan forward to try to find this initializer in the idealized
3103    // initializers list.
3104    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3105      if (InitKey == IdealInitKeys[IdealIndex])
3106        break;
3107
3108    // If we didn't find this initializer, it must be because we
3109    // scanned past it on a previous iteration.  That can only
3110    // happen if we're out of order;  emit a warning.
3111    if (IdealIndex == NumIdealInits && PrevInit) {
3112      Sema::SemaDiagnosticBuilder D =
3113        SemaRef.Diag(PrevInit->getSourceLocation(),
3114                     diag::warn_initializer_out_of_order);
3115
3116      if (PrevInit->isAnyMemberInitializer())
3117        D << 0 << PrevInit->getAnyMember()->getDeclName();
3118      else
3119        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3120
3121      if (Init->isAnyMemberInitializer())
3122        D << 0 << Init->getAnyMember()->getDeclName();
3123      else
3124        D << 1 << Init->getTypeSourceInfo()->getType();
3125
3126      // Move back to the initializer's location in the ideal list.
3127      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3128        if (InitKey == IdealInitKeys[IdealIndex])
3129          break;
3130
3131      assert(IdealIndex != NumIdealInits &&
3132             "initializer not found in initializer list");
3133    }
3134
3135    PrevInit = Init;
3136  }
3137}
3138
3139namespace {
3140bool CheckRedundantInit(Sema &S,
3141                        CXXCtorInitializer *Init,
3142                        CXXCtorInitializer *&PrevInit) {
3143  if (!PrevInit) {
3144    PrevInit = Init;
3145    return false;
3146  }
3147
3148  if (FieldDecl *Field = Init->getMember())
3149    S.Diag(Init->getSourceLocation(),
3150           diag::err_multiple_mem_initialization)
3151      << Field->getDeclName()
3152      << Init->getSourceRange();
3153  else {
3154    const Type *BaseClass = Init->getBaseClass();
3155    assert(BaseClass && "neither field nor base");
3156    S.Diag(Init->getSourceLocation(),
3157           diag::err_multiple_base_initialization)
3158      << QualType(BaseClass, 0)
3159      << Init->getSourceRange();
3160  }
3161  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3162    << 0 << PrevInit->getSourceRange();
3163
3164  return true;
3165}
3166
3167typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3168typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3169
3170bool CheckRedundantUnionInit(Sema &S,
3171                             CXXCtorInitializer *Init,
3172                             RedundantUnionMap &Unions) {
3173  FieldDecl *Field = Init->getAnyMember();
3174  RecordDecl *Parent = Field->getParent();
3175  NamedDecl *Child = Field;
3176
3177  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3178    if (Parent->isUnion()) {
3179      UnionEntry &En = Unions[Parent];
3180      if (En.first && En.first != Child) {
3181        S.Diag(Init->getSourceLocation(),
3182               diag::err_multiple_mem_union_initialization)
3183          << Field->getDeclName()
3184          << Init->getSourceRange();
3185        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3186          << 0 << En.second->getSourceRange();
3187        return true;
3188      }
3189      if (!En.first) {
3190        En.first = Child;
3191        En.second = Init;
3192      }
3193      if (!Parent->isAnonymousStructOrUnion())
3194        return false;
3195    }
3196
3197    Child = Parent;
3198    Parent = cast<RecordDecl>(Parent->getDeclContext());
3199  }
3200
3201  return false;
3202}
3203}
3204
3205/// ActOnMemInitializers - Handle the member initializers for a constructor.
3206void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3207                                SourceLocation ColonLoc,
3208                                CXXCtorInitializer **meminits,
3209                                unsigned NumMemInits,
3210                                bool AnyErrors) {
3211  if (!ConstructorDecl)
3212    return;
3213
3214  AdjustDeclIfTemplate(ConstructorDecl);
3215
3216  CXXConstructorDecl *Constructor
3217    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3218
3219  if (!Constructor) {
3220    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3221    return;
3222  }
3223
3224  CXXCtorInitializer **MemInits =
3225    reinterpret_cast<CXXCtorInitializer **>(meminits);
3226
3227  // Mapping for the duplicate initializers check.
3228  // For member initializers, this is keyed with a FieldDecl*.
3229  // For base initializers, this is keyed with a Type*.
3230  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3231
3232  // Mapping for the inconsistent anonymous-union initializers check.
3233  RedundantUnionMap MemberUnions;
3234
3235  bool HadError = false;
3236  for (unsigned i = 0; i < NumMemInits; i++) {
3237    CXXCtorInitializer *Init = MemInits[i];
3238
3239    // Set the source order index.
3240    Init->setSourceOrder(i);
3241
3242    if (Init->isAnyMemberInitializer()) {
3243      FieldDecl *Field = Init->getAnyMember();
3244      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3245          CheckRedundantUnionInit(*this, Init, MemberUnions))
3246        HadError = true;
3247    } else if (Init->isBaseInitializer()) {
3248      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3249      if (CheckRedundantInit(*this, Init, Members[Key]))
3250        HadError = true;
3251    } else {
3252      assert(Init->isDelegatingInitializer());
3253      // This must be the only initializer
3254      if (i != 0 || NumMemInits > 1) {
3255        Diag(MemInits[0]->getSourceLocation(),
3256             diag::err_delegating_initializer_alone)
3257          << MemInits[0]->getSourceRange();
3258        HadError = true;
3259        // We will treat this as being the only initializer.
3260      }
3261      SetDelegatingInitializer(Constructor, MemInits[i]);
3262      // Return immediately as the initializer is set.
3263      return;
3264    }
3265  }
3266
3267  if (HadError)
3268    return;
3269
3270  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3271
3272  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3273}
3274
3275void
3276Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3277                                             CXXRecordDecl *ClassDecl) {
3278  // Ignore dependent contexts. Also ignore unions, since their members never
3279  // have destructors implicitly called.
3280  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3281    return;
3282
3283  // FIXME: all the access-control diagnostics are positioned on the
3284  // field/base declaration.  That's probably good; that said, the
3285  // user might reasonably want to know why the destructor is being
3286  // emitted, and we currently don't say.
3287
3288  // Non-static data members.
3289  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3290       E = ClassDecl->field_end(); I != E; ++I) {
3291    FieldDecl *Field = &*I;
3292    if (Field->isInvalidDecl())
3293      continue;
3294
3295    // Don't destroy incomplete or zero-length arrays.
3296    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3297      continue;
3298
3299    QualType FieldType = Context.getBaseElementType(Field->getType());
3300
3301    const RecordType* RT = FieldType->getAs<RecordType>();
3302    if (!RT)
3303      continue;
3304
3305    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3306    if (FieldClassDecl->isInvalidDecl())
3307      continue;
3308    if (FieldClassDecl->hasIrrelevantDestructor())
3309      continue;
3310    // The destructor for an implicit anonymous union member is never invoked.
3311    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3312      continue;
3313
3314    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3315    assert(Dtor && "No dtor found for FieldClassDecl!");
3316    CheckDestructorAccess(Field->getLocation(), Dtor,
3317                          PDiag(diag::err_access_dtor_field)
3318                            << Field->getDeclName()
3319                            << FieldType);
3320
3321    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3322    DiagnoseUseOfDecl(Dtor, Location);
3323  }
3324
3325  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3326
3327  // Bases.
3328  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3329       E = ClassDecl->bases_end(); Base != E; ++Base) {
3330    // Bases are always records in a well-formed non-dependent class.
3331    const RecordType *RT = Base->getType()->getAs<RecordType>();
3332
3333    // Remember direct virtual bases.
3334    if (Base->isVirtual())
3335      DirectVirtualBases.insert(RT);
3336
3337    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3338    // If our base class is invalid, we probably can't get its dtor anyway.
3339    if (BaseClassDecl->isInvalidDecl())
3340      continue;
3341    if (BaseClassDecl->hasIrrelevantDestructor())
3342      continue;
3343
3344    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3345    assert(Dtor && "No dtor found for BaseClassDecl!");
3346
3347    // FIXME: caret should be on the start of the class name
3348    CheckDestructorAccess(Base->getLocStart(), Dtor,
3349                          PDiag(diag::err_access_dtor_base)
3350                            << Base->getType()
3351                            << Base->getSourceRange(),
3352                          Context.getTypeDeclType(ClassDecl));
3353
3354    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3355    DiagnoseUseOfDecl(Dtor, Location);
3356  }
3357
3358  // Virtual bases.
3359  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3360       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3361
3362    // Bases are always records in a well-formed non-dependent class.
3363    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3364
3365    // Ignore direct virtual bases.
3366    if (DirectVirtualBases.count(RT))
3367      continue;
3368
3369    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3370    // If our base class is invalid, we probably can't get its dtor anyway.
3371    if (BaseClassDecl->isInvalidDecl())
3372      continue;
3373    if (BaseClassDecl->hasIrrelevantDestructor())
3374      continue;
3375
3376    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3377    assert(Dtor && "No dtor found for BaseClassDecl!");
3378    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3379                          PDiag(diag::err_access_dtor_vbase)
3380                            << VBase->getType(),
3381                          Context.getTypeDeclType(ClassDecl));
3382
3383    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3384    DiagnoseUseOfDecl(Dtor, Location);
3385  }
3386}
3387
3388void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3389  if (!CDtorDecl)
3390    return;
3391
3392  if (CXXConstructorDecl *Constructor
3393      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3394    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3395}
3396
3397bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3398                                  unsigned DiagID, AbstractDiagSelID SelID) {
3399  if (SelID == -1)
3400    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3401  else
3402    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3403}
3404
3405bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3406                                  const PartialDiagnostic &PD) {
3407  if (!getLangOpts().CPlusPlus)
3408    return false;
3409
3410  if (const ArrayType *AT = Context.getAsArrayType(T))
3411    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3412
3413  if (const PointerType *PT = T->getAs<PointerType>()) {
3414    // Find the innermost pointer type.
3415    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3416      PT = T;
3417
3418    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3419      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3420  }
3421
3422  const RecordType *RT = T->getAs<RecordType>();
3423  if (!RT)
3424    return false;
3425
3426  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3427
3428  // We can't answer whether something is abstract until it has a
3429  // definition.  If it's currently being defined, we'll walk back
3430  // over all the declarations when we have a full definition.
3431  const CXXRecordDecl *Def = RD->getDefinition();
3432  if (!Def || Def->isBeingDefined())
3433    return false;
3434
3435  if (!RD->isAbstract())
3436    return false;
3437
3438  Diag(Loc, PD) << RD->getDeclName();
3439  DiagnoseAbstractType(RD);
3440
3441  return true;
3442}
3443
3444void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3445  // Check if we've already emitted the list of pure virtual functions
3446  // for this class.
3447  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3448    return;
3449
3450  CXXFinalOverriderMap FinalOverriders;
3451  RD->getFinalOverriders(FinalOverriders);
3452
3453  // Keep a set of seen pure methods so we won't diagnose the same method
3454  // more than once.
3455  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3456
3457  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3458                                   MEnd = FinalOverriders.end();
3459       M != MEnd;
3460       ++M) {
3461    for (OverridingMethods::iterator SO = M->second.begin(),
3462                                  SOEnd = M->second.end();
3463         SO != SOEnd; ++SO) {
3464      // C++ [class.abstract]p4:
3465      //   A class is abstract if it contains or inherits at least one
3466      //   pure virtual function for which the final overrider is pure
3467      //   virtual.
3468
3469      //
3470      if (SO->second.size() != 1)
3471        continue;
3472
3473      if (!SO->second.front().Method->isPure())
3474        continue;
3475
3476      if (!SeenPureMethods.insert(SO->second.front().Method))
3477        continue;
3478
3479      Diag(SO->second.front().Method->getLocation(),
3480           diag::note_pure_virtual_function)
3481        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3482    }
3483  }
3484
3485  if (!PureVirtualClassDiagSet)
3486    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3487  PureVirtualClassDiagSet->insert(RD);
3488}
3489
3490namespace {
3491struct AbstractUsageInfo {
3492  Sema &S;
3493  CXXRecordDecl *Record;
3494  CanQualType AbstractType;
3495  bool Invalid;
3496
3497  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3498    : S(S), Record(Record),
3499      AbstractType(S.Context.getCanonicalType(
3500                   S.Context.getTypeDeclType(Record))),
3501      Invalid(false) {}
3502
3503  void DiagnoseAbstractType() {
3504    if (Invalid) return;
3505    S.DiagnoseAbstractType(Record);
3506    Invalid = true;
3507  }
3508
3509  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3510};
3511
3512struct CheckAbstractUsage {
3513  AbstractUsageInfo &Info;
3514  const NamedDecl *Ctx;
3515
3516  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3517    : Info(Info), Ctx(Ctx) {}
3518
3519  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3520    switch (TL.getTypeLocClass()) {
3521#define ABSTRACT_TYPELOC(CLASS, PARENT)
3522#define TYPELOC(CLASS, PARENT) \
3523    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3524#include "clang/AST/TypeLocNodes.def"
3525    }
3526  }
3527
3528  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3529    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3530    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3531      if (!TL.getArg(I))
3532        continue;
3533
3534      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3535      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3536    }
3537  }
3538
3539  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3540    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3541  }
3542
3543  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3544    // Visit the type parameters from a permissive context.
3545    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3546      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3547      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3548        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3549          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3550      // TODO: other template argument types?
3551    }
3552  }
3553
3554  // Visit pointee types from a permissive context.
3555#define CheckPolymorphic(Type) \
3556  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3557    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3558  }
3559  CheckPolymorphic(PointerTypeLoc)
3560  CheckPolymorphic(ReferenceTypeLoc)
3561  CheckPolymorphic(MemberPointerTypeLoc)
3562  CheckPolymorphic(BlockPointerTypeLoc)
3563  CheckPolymorphic(AtomicTypeLoc)
3564
3565  /// Handle all the types we haven't given a more specific
3566  /// implementation for above.
3567  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3568    // Every other kind of type that we haven't called out already
3569    // that has an inner type is either (1) sugar or (2) contains that
3570    // inner type in some way as a subobject.
3571    if (TypeLoc Next = TL.getNextTypeLoc())
3572      return Visit(Next, Sel);
3573
3574    // If there's no inner type and we're in a permissive context,
3575    // don't diagnose.
3576    if (Sel == Sema::AbstractNone) return;
3577
3578    // Check whether the type matches the abstract type.
3579    QualType T = TL.getType();
3580    if (T->isArrayType()) {
3581      Sel = Sema::AbstractArrayType;
3582      T = Info.S.Context.getBaseElementType(T);
3583    }
3584    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3585    if (CT != Info.AbstractType) return;
3586
3587    // It matched; do some magic.
3588    if (Sel == Sema::AbstractArrayType) {
3589      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3590        << T << TL.getSourceRange();
3591    } else {
3592      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3593        << Sel << T << TL.getSourceRange();
3594    }
3595    Info.DiagnoseAbstractType();
3596  }
3597};
3598
3599void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3600                                  Sema::AbstractDiagSelID Sel) {
3601  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3602}
3603
3604}
3605
3606/// Check for invalid uses of an abstract type in a method declaration.
3607static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3608                                    CXXMethodDecl *MD) {
3609  // No need to do the check on definitions, which require that
3610  // the return/param types be complete.
3611  if (MD->doesThisDeclarationHaveABody())
3612    return;
3613
3614  // For safety's sake, just ignore it if we don't have type source
3615  // information.  This should never happen for non-implicit methods,
3616  // but...
3617  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3618    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3619}
3620
3621/// Check for invalid uses of an abstract type within a class definition.
3622static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3623                                    CXXRecordDecl *RD) {
3624  for (CXXRecordDecl::decl_iterator
3625         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3626    Decl *D = *I;
3627    if (D->isImplicit()) continue;
3628
3629    // Methods and method templates.
3630    if (isa<CXXMethodDecl>(D)) {
3631      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3632    } else if (isa<FunctionTemplateDecl>(D)) {
3633      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3634      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3635
3636    // Fields and static variables.
3637    } else if (isa<FieldDecl>(D)) {
3638      FieldDecl *FD = cast<FieldDecl>(D);
3639      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3640        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3641    } else if (isa<VarDecl>(D)) {
3642      VarDecl *VD = cast<VarDecl>(D);
3643      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3644        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3645
3646    // Nested classes and class templates.
3647    } else if (isa<CXXRecordDecl>(D)) {
3648      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3649    } else if (isa<ClassTemplateDecl>(D)) {
3650      CheckAbstractClassUsage(Info,
3651                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3652    }
3653  }
3654}
3655
3656/// \brief Perform semantic checks on a class definition that has been
3657/// completing, introducing implicitly-declared members, checking for
3658/// abstract types, etc.
3659void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3660  if (!Record)
3661    return;
3662
3663  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3664    AbstractUsageInfo Info(*this, Record);
3665    CheckAbstractClassUsage(Info, Record);
3666  }
3667
3668  // If this is not an aggregate type and has no user-declared constructor,
3669  // complain about any non-static data members of reference or const scalar
3670  // type, since they will never get initializers.
3671  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3672      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3673      !Record->isLambda()) {
3674    bool Complained = false;
3675    for (RecordDecl::field_iterator F = Record->field_begin(),
3676                                 FEnd = Record->field_end();
3677         F != FEnd; ++F) {
3678      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3679        continue;
3680
3681      if (F->getType()->isReferenceType() ||
3682          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3683        if (!Complained) {
3684          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3685            << Record->getTagKind() << Record;
3686          Complained = true;
3687        }
3688
3689        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3690          << F->getType()->isReferenceType()
3691          << F->getDeclName();
3692      }
3693    }
3694  }
3695
3696  if (Record->isDynamicClass() && !Record->isDependentType())
3697    DynamicClasses.push_back(Record);
3698
3699  if (Record->getIdentifier()) {
3700    // C++ [class.mem]p13:
3701    //   If T is the name of a class, then each of the following shall have a
3702    //   name different from T:
3703    //     - every member of every anonymous union that is a member of class T.
3704    //
3705    // C++ [class.mem]p14:
3706    //   In addition, if class T has a user-declared constructor (12.1), every
3707    //   non-static data member of class T shall have a name different from T.
3708    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3709         R.first != R.second; ++R.first) {
3710      NamedDecl *D = *R.first;
3711      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3712          isa<IndirectFieldDecl>(D)) {
3713        Diag(D->getLocation(), diag::err_member_name_of_class)
3714          << D->getDeclName();
3715        break;
3716      }
3717    }
3718  }
3719
3720  // Warn if the class has virtual methods but non-virtual public destructor.
3721  if (Record->isPolymorphic() && !Record->isDependentType()) {
3722    CXXDestructorDecl *dtor = Record->getDestructor();
3723    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3724      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3725           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3726  }
3727
3728  // See if a method overloads virtual methods in a base
3729  /// class without overriding any.
3730  if (!Record->isDependentType()) {
3731    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3732                                     MEnd = Record->method_end();
3733         M != MEnd; ++M) {
3734      if (!M->isStatic())
3735        DiagnoseHiddenVirtualMethods(Record, &*M);
3736    }
3737  }
3738
3739  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3740  // function that is not a constructor declares that member function to be
3741  // const. [...] The class of which that function is a member shall be
3742  // a literal type.
3743  //
3744  // If the class has virtual bases, any constexpr members will already have
3745  // been diagnosed by the checks performed on the member declaration, so
3746  // suppress this (less useful) diagnostic.
3747  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3748      !Record->isLiteral() && !Record->getNumVBases()) {
3749    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3750                                     MEnd = Record->method_end();
3751         M != MEnd; ++M) {
3752      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3753        switch (Record->getTemplateSpecializationKind()) {
3754        case TSK_ImplicitInstantiation:
3755        case TSK_ExplicitInstantiationDeclaration:
3756        case TSK_ExplicitInstantiationDefinition:
3757          // If a template instantiates to a non-literal type, but its members
3758          // instantiate to constexpr functions, the template is technically
3759          // ill-formed, but we allow it for sanity.
3760          continue;
3761
3762        case TSK_Undeclared:
3763        case TSK_ExplicitSpecialization:
3764          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3765                             diag::err_constexpr_method_non_literal);
3766          break;
3767        }
3768
3769        // Only produce one error per class.
3770        break;
3771      }
3772    }
3773  }
3774
3775  // Declare inherited constructors. We do this eagerly here because:
3776  // - The standard requires an eager diagnostic for conflicting inherited
3777  //   constructors from different classes.
3778  // - The lazy declaration of the other implicit constructors is so as to not
3779  //   waste space and performance on classes that are not meant to be
3780  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3781  //   have inherited constructors.
3782  DeclareInheritedConstructors(Record);
3783
3784  if (!Record->isDependentType())
3785    CheckExplicitlyDefaultedMethods(Record);
3786}
3787
3788void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3789  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3790                                      ME = Record->method_end();
3791       MI != ME; ++MI) {
3792    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3793      switch (getSpecialMember(&*MI)) {
3794      case CXXDefaultConstructor:
3795        CheckExplicitlyDefaultedDefaultConstructor(
3796                                                cast<CXXConstructorDecl>(&*MI));
3797        break;
3798
3799      case CXXDestructor:
3800        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(&*MI));
3801        break;
3802
3803      case CXXCopyConstructor:
3804        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(&*MI));
3805        break;
3806
3807      case CXXCopyAssignment:
3808        CheckExplicitlyDefaultedCopyAssignment(&*MI);
3809        break;
3810
3811      case CXXMoveConstructor:
3812        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(&*MI));
3813        break;
3814
3815      case CXXMoveAssignment:
3816        CheckExplicitlyDefaultedMoveAssignment(&*MI);
3817        break;
3818
3819      case CXXInvalid:
3820        llvm_unreachable("non-special member explicitly defaulted!");
3821      }
3822    }
3823  }
3824
3825}
3826
3827void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3828  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3829
3830  // Whether this was the first-declared instance of the constructor.
3831  // This affects whether we implicitly add an exception spec (and, eventually,
3832  // constexpr). It is also ill-formed to explicitly default a constructor such
3833  // that it would be deleted. (C++0x [decl.fct.def.default])
3834  bool First = CD == CD->getCanonicalDecl();
3835
3836  bool HadError = false;
3837  if (CD->getNumParams() != 0) {
3838    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3839      << CD->getSourceRange();
3840    HadError = true;
3841  }
3842
3843  ImplicitExceptionSpecification Spec
3844    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3845  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3846  if (EPI.ExceptionSpecType == EST_Delayed) {
3847    // Exception specification depends on some deferred part of the class. We'll
3848    // try again when the class's definition has been fully processed.
3849    return;
3850  }
3851  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3852                          *ExceptionType = Context.getFunctionType(
3853                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3854
3855  // C++11 [dcl.fct.def.default]p2:
3856  //   An explicitly-defaulted function may be declared constexpr only if it
3857  //   would have been implicitly declared as constexpr,
3858  // Do not apply this rule to templates, since core issue 1358 makes such
3859  // functions always instantiate to constexpr functions.
3860  if (CD->isConstexpr() &&
3861      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3862    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3863      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3864        << CXXDefaultConstructor;
3865      HadError = true;
3866    }
3867  }
3868  //   and may have an explicit exception-specification only if it is compatible
3869  //   with the exception-specification on the implicit declaration.
3870  if (CtorType->hasExceptionSpec()) {
3871    if (CheckEquivalentExceptionSpec(
3872          PDiag(diag::err_incorrect_defaulted_exception_spec)
3873            << CXXDefaultConstructor,
3874          PDiag(),
3875          ExceptionType, SourceLocation(),
3876          CtorType, CD->getLocation())) {
3877      HadError = true;
3878    }
3879  }
3880
3881  //   If a function is explicitly defaulted on its first declaration,
3882  if (First) {
3883    //  -- it is implicitly considered to be constexpr if the implicit
3884    //     definition would be,
3885    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3886
3887    //  -- it is implicitly considered to have the same
3888    //     exception-specification as if it had been implicitly declared
3889    //
3890    // FIXME: a compatible, but different, explicit exception specification
3891    // will be silently overridden. We should issue a warning if this happens.
3892    EPI.ExtInfo = CtorType->getExtInfo();
3893
3894    // Such a function is also trivial if the implicitly-declared function
3895    // would have been.
3896    CD->setTrivial(CD->getParent()->hasTrivialDefaultConstructor());
3897  }
3898
3899  if (HadError) {
3900    CD->setInvalidDecl();
3901    return;
3902  }
3903
3904  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3905    if (First) {
3906      CD->setDeletedAsWritten();
3907    } else {
3908      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3909        << CXXDefaultConstructor;
3910      CD->setInvalidDecl();
3911    }
3912  }
3913}
3914
3915void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3916  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3917
3918  // Whether this was the first-declared instance of the constructor.
3919  bool First = CD == CD->getCanonicalDecl();
3920
3921  bool HadError = false;
3922  if (CD->getNumParams() != 1) {
3923    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3924      << CD->getSourceRange();
3925    HadError = true;
3926  }
3927
3928  ImplicitExceptionSpecification Spec(*this);
3929  bool Const;
3930  llvm::tie(Spec, Const) =
3931    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3932
3933  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3934  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3935                          *ExceptionType = Context.getFunctionType(
3936                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3937
3938  // Check for parameter type matching.
3939  // This is a copy ctor so we know it's a cv-qualified reference to T.
3940  QualType ArgType = CtorType->getArgType(0);
3941  if (ArgType->getPointeeType().isVolatileQualified()) {
3942    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3943    HadError = true;
3944  }
3945  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3946    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3947    HadError = true;
3948  }
3949
3950  // C++11 [dcl.fct.def.default]p2:
3951  //   An explicitly-defaulted function may be declared constexpr only if it
3952  //   would have been implicitly declared as constexpr,
3953  // Do not apply this rule to templates, since core issue 1358 makes such
3954  // functions always instantiate to constexpr functions.
3955  if (CD->isConstexpr() &&
3956      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3957    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3958      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3959        << CXXCopyConstructor;
3960      HadError = true;
3961    }
3962  }
3963  //   and may have an explicit exception-specification only if it is compatible
3964  //   with the exception-specification on the implicit declaration.
3965  if (CtorType->hasExceptionSpec()) {
3966    if (CheckEquivalentExceptionSpec(
3967          PDiag(diag::err_incorrect_defaulted_exception_spec)
3968            << CXXCopyConstructor,
3969          PDiag(),
3970          ExceptionType, SourceLocation(),
3971          CtorType, CD->getLocation())) {
3972      HadError = true;
3973    }
3974  }
3975
3976  //   If a function is explicitly defaulted on its first declaration,
3977  if (First) {
3978    //  -- it is implicitly considered to be constexpr if the implicit
3979    //     definition would be,
3980    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3981
3982    //  -- it is implicitly considered to have the same
3983    //     exception-specification as if it had been implicitly declared, and
3984    //
3985    // FIXME: a compatible, but different, explicit exception specification
3986    // will be silently overridden. We should issue a warning if this happens.
3987    EPI.ExtInfo = CtorType->getExtInfo();
3988
3989    //  -- [...] it shall have the same parameter type as if it had been
3990    //     implicitly declared.
3991    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3992
3993    // Such a function is also trivial if the implicitly-declared function
3994    // would have been.
3995    CD->setTrivial(CD->getParent()->hasTrivialCopyConstructor());
3996  }
3997
3998  if (HadError) {
3999    CD->setInvalidDecl();
4000    return;
4001  }
4002
4003  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
4004    if (First) {
4005      CD->setDeletedAsWritten();
4006    } else {
4007      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4008        << CXXCopyConstructor;
4009      CD->setInvalidDecl();
4010    }
4011  }
4012}
4013
4014void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
4015  assert(MD->isExplicitlyDefaulted());
4016
4017  // Whether this was the first-declared instance of the operator
4018  bool First = MD == MD->getCanonicalDecl();
4019
4020  bool HadError = false;
4021  if (MD->getNumParams() != 1) {
4022    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4023      << MD->getSourceRange();
4024    HadError = true;
4025  }
4026
4027  QualType ReturnType =
4028    MD->getType()->getAs<FunctionType>()->getResultType();
4029  if (!ReturnType->isLValueReferenceType() ||
4030      !Context.hasSameType(
4031        Context.getCanonicalType(ReturnType->getPointeeType()),
4032        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4033    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4034    HadError = true;
4035  }
4036
4037  ImplicitExceptionSpecification Spec(*this);
4038  bool Const;
4039  llvm::tie(Spec, Const) =
4040    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4041
4042  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4043  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4044                          *ExceptionType = Context.getFunctionType(
4045                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4046
4047  QualType ArgType = OperType->getArgType(0);
4048  if (!ArgType->isLValueReferenceType()) {
4049    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4050    HadError = true;
4051  } else {
4052    if (ArgType->getPointeeType().isVolatileQualified()) {
4053      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4054      HadError = true;
4055    }
4056    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4057      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4058      HadError = true;
4059    }
4060  }
4061
4062  if (OperType->getTypeQuals()) {
4063    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4064    HadError = true;
4065  }
4066
4067  if (OperType->hasExceptionSpec()) {
4068    if (CheckEquivalentExceptionSpec(
4069          PDiag(diag::err_incorrect_defaulted_exception_spec)
4070            << CXXCopyAssignment,
4071          PDiag(),
4072          ExceptionType, SourceLocation(),
4073          OperType, MD->getLocation())) {
4074      HadError = true;
4075    }
4076  }
4077  if (First) {
4078    // We set the declaration to have the computed exception spec here.
4079    // We duplicate the one parameter type.
4080    EPI.RefQualifier = OperType->getRefQualifier();
4081    EPI.ExtInfo = OperType->getExtInfo();
4082    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4083
4084    // Such a function is also trivial if the implicitly-declared function
4085    // would have been.
4086    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
4087  }
4088
4089  if (HadError) {
4090    MD->setInvalidDecl();
4091    return;
4092  }
4093
4094  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4095    if (First) {
4096      MD->setDeletedAsWritten();
4097    } else {
4098      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4099        << CXXCopyAssignment;
4100      MD->setInvalidDecl();
4101    }
4102  }
4103}
4104
4105void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4106  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4107
4108  // Whether this was the first-declared instance of the constructor.
4109  bool First = CD == CD->getCanonicalDecl();
4110
4111  bool HadError = false;
4112  if (CD->getNumParams() != 1) {
4113    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4114      << CD->getSourceRange();
4115    HadError = true;
4116  }
4117
4118  ImplicitExceptionSpecification Spec(
4119      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4120
4121  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4122  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4123                          *ExceptionType = Context.getFunctionType(
4124                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4125
4126  // Check for parameter type matching.
4127  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4128  QualType ArgType = CtorType->getArgType(0);
4129  if (ArgType->getPointeeType().isVolatileQualified()) {
4130    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4131    HadError = true;
4132  }
4133  if (ArgType->getPointeeType().isConstQualified()) {
4134    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4135    HadError = true;
4136  }
4137
4138  // C++11 [dcl.fct.def.default]p2:
4139  //   An explicitly-defaulted function may be declared constexpr only if it
4140  //   would have been implicitly declared as constexpr,
4141  // Do not apply this rule to templates, since core issue 1358 makes such
4142  // functions always instantiate to constexpr functions.
4143  if (CD->isConstexpr() &&
4144      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4145    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4146      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4147        << CXXMoveConstructor;
4148      HadError = true;
4149    }
4150  }
4151  //   and may have an explicit exception-specification only if it is compatible
4152  //   with the exception-specification on the implicit declaration.
4153  if (CtorType->hasExceptionSpec()) {
4154    if (CheckEquivalentExceptionSpec(
4155          PDiag(diag::err_incorrect_defaulted_exception_spec)
4156            << CXXMoveConstructor,
4157          PDiag(),
4158          ExceptionType, SourceLocation(),
4159          CtorType, CD->getLocation())) {
4160      HadError = true;
4161    }
4162  }
4163
4164  //   If a function is explicitly defaulted on its first declaration,
4165  if (First) {
4166    //  -- it is implicitly considered to be constexpr if the implicit
4167    //     definition would be,
4168    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4169
4170    //  -- it is implicitly considered to have the same
4171    //     exception-specification as if it had been implicitly declared, and
4172    //
4173    // FIXME: a compatible, but different, explicit exception specification
4174    // will be silently overridden. We should issue a warning if this happens.
4175    EPI.ExtInfo = CtorType->getExtInfo();
4176
4177    //  -- [...] it shall have the same parameter type as if it had been
4178    //     implicitly declared.
4179    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4180
4181    // Such a function is also trivial if the implicitly-declared function
4182    // would have been.
4183    CD->setTrivial(CD->getParent()->hasTrivialMoveConstructor());
4184  }
4185
4186  if (HadError) {
4187    CD->setInvalidDecl();
4188    return;
4189  }
4190
4191  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4192    if (First) {
4193      CD->setDeletedAsWritten();
4194    } else {
4195      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4196        << CXXMoveConstructor;
4197      CD->setInvalidDecl();
4198    }
4199  }
4200}
4201
4202void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4203  assert(MD->isExplicitlyDefaulted());
4204
4205  // Whether this was the first-declared instance of the operator
4206  bool First = MD == MD->getCanonicalDecl();
4207
4208  bool HadError = false;
4209  if (MD->getNumParams() != 1) {
4210    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4211      << MD->getSourceRange();
4212    HadError = true;
4213  }
4214
4215  QualType ReturnType =
4216    MD->getType()->getAs<FunctionType>()->getResultType();
4217  if (!ReturnType->isLValueReferenceType() ||
4218      !Context.hasSameType(
4219        Context.getCanonicalType(ReturnType->getPointeeType()),
4220        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4221    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4222    HadError = true;
4223  }
4224
4225  ImplicitExceptionSpecification Spec(
4226      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4227
4228  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4229  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4230                          *ExceptionType = Context.getFunctionType(
4231                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4232
4233  QualType ArgType = OperType->getArgType(0);
4234  if (!ArgType->isRValueReferenceType()) {
4235    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4236    HadError = true;
4237  } else {
4238    if (ArgType->getPointeeType().isVolatileQualified()) {
4239      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4240      HadError = true;
4241    }
4242    if (ArgType->getPointeeType().isConstQualified()) {
4243      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4244      HadError = true;
4245    }
4246  }
4247
4248  if (OperType->getTypeQuals()) {
4249    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4250    HadError = true;
4251  }
4252
4253  if (OperType->hasExceptionSpec()) {
4254    if (CheckEquivalentExceptionSpec(
4255          PDiag(diag::err_incorrect_defaulted_exception_spec)
4256            << CXXMoveAssignment,
4257          PDiag(),
4258          ExceptionType, SourceLocation(),
4259          OperType, MD->getLocation())) {
4260      HadError = true;
4261    }
4262  }
4263  if (First) {
4264    // We set the declaration to have the computed exception spec here.
4265    // We duplicate the one parameter type.
4266    EPI.RefQualifier = OperType->getRefQualifier();
4267    EPI.ExtInfo = OperType->getExtInfo();
4268    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4269
4270    // Such a function is also trivial if the implicitly-declared function
4271    // would have been.
4272    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
4273  }
4274
4275  if (HadError) {
4276    MD->setInvalidDecl();
4277    return;
4278  }
4279
4280  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4281    if (First) {
4282      MD->setDeletedAsWritten();
4283    } else {
4284      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4285        << CXXMoveAssignment;
4286      MD->setInvalidDecl();
4287    }
4288  }
4289}
4290
4291void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4292  assert(DD->isExplicitlyDefaulted());
4293
4294  // Whether this was the first-declared instance of the destructor.
4295  bool First = DD == DD->getCanonicalDecl();
4296
4297  ImplicitExceptionSpecification Spec
4298    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4299  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4300  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4301                          *ExceptionType = Context.getFunctionType(
4302                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4303
4304  if (DtorType->hasExceptionSpec()) {
4305    if (CheckEquivalentExceptionSpec(
4306          PDiag(diag::err_incorrect_defaulted_exception_spec)
4307            << CXXDestructor,
4308          PDiag(),
4309          ExceptionType, SourceLocation(),
4310          DtorType, DD->getLocation())) {
4311      DD->setInvalidDecl();
4312      return;
4313    }
4314  }
4315  if (First) {
4316    // We set the declaration to have the computed exception spec here.
4317    // There are no parameters.
4318    EPI.ExtInfo = DtorType->getExtInfo();
4319    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4320
4321    // Such a function is also trivial if the implicitly-declared function
4322    // would have been.
4323    DD->setTrivial(DD->getParent()->hasTrivialDestructor());
4324  }
4325
4326  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4327    if (First) {
4328      DD->setDeletedAsWritten();
4329    } else {
4330      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4331        << CXXDestructor;
4332      DD->setInvalidDecl();
4333    }
4334  }
4335}
4336
4337namespace {
4338struct SpecialMemberDeletionInfo {
4339  Sema &S;
4340  CXXMethodDecl *MD;
4341  Sema::CXXSpecialMember CSM;
4342  bool Diagnose;
4343
4344  // Properties of the special member, computed for convenience.
4345  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4346  SourceLocation Loc;
4347
4348  bool AllFieldsAreConst;
4349
4350  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4351                            Sema::CXXSpecialMember CSM, bool Diagnose)
4352    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4353      IsConstructor(false), IsAssignment(false), IsMove(false),
4354      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4355      AllFieldsAreConst(true) {
4356    switch (CSM) {
4357      case Sema::CXXDefaultConstructor:
4358      case Sema::CXXCopyConstructor:
4359        IsConstructor = true;
4360        break;
4361      case Sema::CXXMoveConstructor:
4362        IsConstructor = true;
4363        IsMove = true;
4364        break;
4365      case Sema::CXXCopyAssignment:
4366        IsAssignment = true;
4367        break;
4368      case Sema::CXXMoveAssignment:
4369        IsAssignment = true;
4370        IsMove = true;
4371        break;
4372      case Sema::CXXDestructor:
4373        break;
4374      case Sema::CXXInvalid:
4375        llvm_unreachable("invalid special member kind");
4376    }
4377
4378    if (MD->getNumParams()) {
4379      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4380      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4381    }
4382  }
4383
4384  bool inUnion() const { return MD->getParent()->isUnion(); }
4385
4386  /// Look up the corresponding special member in the given class.
4387  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4388    unsigned TQ = MD->getTypeQualifiers();
4389    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4390                                 MD->getRefQualifier() == RQ_RValue,
4391                                 TQ & Qualifiers::Const,
4392                                 TQ & Qualifiers::Volatile);
4393  }
4394
4395  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4396
4397  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4398  bool shouldDeleteForField(FieldDecl *FD);
4399  bool shouldDeleteForAllConstMembers();
4400
4401  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4402  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4403                                    Sema::SpecialMemberOverloadResult *SMOR,
4404                                    bool IsDtorCallInCtor);
4405
4406  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4407};
4408}
4409
4410/// Is the given special member inaccessible when used on the given
4411/// sub-object.
4412bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4413                                             CXXMethodDecl *target) {
4414  /// If we're operating on a base class, the object type is the
4415  /// type of this special member.
4416  QualType objectTy;
4417  AccessSpecifier access = target->getAccess();;
4418  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4419    objectTy = S.Context.getTypeDeclType(MD->getParent());
4420    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4421
4422  // If we're operating on a field, the object type is the type of the field.
4423  } else {
4424    objectTy = S.Context.getTypeDeclType(target->getParent());
4425  }
4426
4427  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4428}
4429
4430/// Check whether we should delete a special member due to the implicit
4431/// definition containing a call to a special member of a subobject.
4432bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4433    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4434    bool IsDtorCallInCtor) {
4435  CXXMethodDecl *Decl = SMOR->getMethod();
4436  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4437
4438  int DiagKind = -1;
4439
4440  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4441    DiagKind = !Decl ? 0 : 1;
4442  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4443    DiagKind = 2;
4444  else if (!isAccessible(Subobj, Decl))
4445    DiagKind = 3;
4446  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4447           !Decl->isTrivial()) {
4448    // A member of a union must have a trivial corresponding special member.
4449    // As a weird special case, a destructor call from a union's constructor
4450    // must be accessible and non-deleted, but need not be trivial. Such a
4451    // destructor is never actually called, but is semantically checked as
4452    // if it were.
4453    DiagKind = 4;
4454  }
4455
4456  if (DiagKind == -1)
4457    return false;
4458
4459  if (Diagnose) {
4460    if (Field) {
4461      S.Diag(Field->getLocation(),
4462             diag::note_deleted_special_member_class_subobject)
4463        << CSM << MD->getParent() << /*IsField*/true
4464        << Field << DiagKind << IsDtorCallInCtor;
4465    } else {
4466      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4467      S.Diag(Base->getLocStart(),
4468             diag::note_deleted_special_member_class_subobject)
4469        << CSM << MD->getParent() << /*IsField*/false
4470        << Base->getType() << DiagKind << IsDtorCallInCtor;
4471    }
4472
4473    if (DiagKind == 1)
4474      S.NoteDeletedFunction(Decl);
4475    // FIXME: Explain inaccessibility if DiagKind == 3.
4476  }
4477
4478  return true;
4479}
4480
4481/// Check whether we should delete a special member function due to having a
4482/// direct or virtual base class or static data member of class type M.
4483bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4484    CXXRecordDecl *Class, Subobject Subobj) {
4485  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4486
4487  // C++11 [class.ctor]p5:
4488  // -- any direct or virtual base class, or non-static data member with no
4489  //    brace-or-equal-initializer, has class type M (or array thereof) and
4490  //    either M has no default constructor or overload resolution as applied
4491  //    to M's default constructor results in an ambiguity or in a function
4492  //    that is deleted or inaccessible
4493  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4494  // -- a direct or virtual base class B that cannot be copied/moved because
4495  //    overload resolution, as applied to B's corresponding special member,
4496  //    results in an ambiguity or a function that is deleted or inaccessible
4497  //    from the defaulted special member
4498  // C++11 [class.dtor]p5:
4499  // -- any direct or virtual base class [...] has a type with a destructor
4500  //    that is deleted or inaccessible
4501  if (!(CSM == Sema::CXXDefaultConstructor &&
4502        Field && Field->hasInClassInitializer()) &&
4503      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4504    return true;
4505
4506  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4507  // -- any direct or virtual base class or non-static data member has a
4508  //    type with a destructor that is deleted or inaccessible
4509  if (IsConstructor) {
4510    Sema::SpecialMemberOverloadResult *SMOR =
4511        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4512                              false, false, false, false, false);
4513    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4514      return true;
4515  }
4516
4517  return false;
4518}
4519
4520/// Check whether we should delete a special member function due to the class
4521/// having a particular direct or virtual base class.
4522bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4523  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4524  return shouldDeleteForClassSubobject(BaseClass, Base);
4525}
4526
4527/// Check whether we should delete a special member function due to the class
4528/// having a particular non-static data member.
4529bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4530  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4531  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4532
4533  if (CSM == Sema::CXXDefaultConstructor) {
4534    // For a default constructor, all references must be initialized in-class
4535    // and, if a union, it must have a non-const member.
4536    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4537      if (Diagnose)
4538        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4539          << MD->getParent() << FD << FieldType << /*Reference*/0;
4540      return true;
4541    }
4542    // C++11 [class.ctor]p5: any non-variant non-static data member of
4543    // const-qualified type (or array thereof) with no
4544    // brace-or-equal-initializer does not have a user-provided default
4545    // constructor.
4546    if (!inUnion() && FieldType.isConstQualified() &&
4547        !FD->hasInClassInitializer() &&
4548        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4549      if (Diagnose)
4550        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4551          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4552      return true;
4553    }
4554
4555    if (inUnion() && !FieldType.isConstQualified())
4556      AllFieldsAreConst = false;
4557  } else if (CSM == Sema::CXXCopyConstructor) {
4558    // For a copy constructor, data members must not be of rvalue reference
4559    // type.
4560    if (FieldType->isRValueReferenceType()) {
4561      if (Diagnose)
4562        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4563          << MD->getParent() << FD << FieldType;
4564      return true;
4565    }
4566  } else if (IsAssignment) {
4567    // For an assignment operator, data members must not be of reference type.
4568    if (FieldType->isReferenceType()) {
4569      if (Diagnose)
4570        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4571          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4572      return true;
4573    }
4574    if (!FieldRecord && FieldType.isConstQualified()) {
4575      // C++11 [class.copy]p23:
4576      // -- a non-static data member of const non-class type (or array thereof)
4577      if (Diagnose)
4578        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4579          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4580      return true;
4581    }
4582  }
4583
4584  if (FieldRecord) {
4585    // Some additional restrictions exist on the variant members.
4586    if (!inUnion() && FieldRecord->isUnion() &&
4587        FieldRecord->isAnonymousStructOrUnion()) {
4588      bool AllVariantFieldsAreConst = true;
4589
4590      // FIXME: Handle anonymous unions declared within anonymous unions.
4591      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4592                                         UE = FieldRecord->field_end();
4593           UI != UE; ++UI) {
4594        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4595
4596        if (!UnionFieldType.isConstQualified())
4597          AllVariantFieldsAreConst = false;
4598
4599        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4600        if (UnionFieldRecord &&
4601            shouldDeleteForClassSubobject(UnionFieldRecord, &*UI))
4602          return true;
4603      }
4604
4605      // At least one member in each anonymous union must be non-const
4606      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4607          FieldRecord->field_begin() != FieldRecord->field_end()) {
4608        if (Diagnose)
4609          S.Diag(FieldRecord->getLocation(),
4610                 diag::note_deleted_default_ctor_all_const)
4611            << MD->getParent() << /*anonymous union*/1;
4612        return true;
4613      }
4614
4615      // Don't check the implicit member of the anonymous union type.
4616      // This is technically non-conformant, but sanity demands it.
4617      return false;
4618    }
4619
4620    if (shouldDeleteForClassSubobject(FieldRecord, FD))
4621      return true;
4622  }
4623
4624  return false;
4625}
4626
4627/// C++11 [class.ctor] p5:
4628///   A defaulted default constructor for a class X is defined as deleted if
4629/// X is a union and all of its variant members are of const-qualified type.
4630bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4631  // This is a silly definition, because it gives an empty union a deleted
4632  // default constructor. Don't do that.
4633  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4634      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4635    if (Diagnose)
4636      S.Diag(MD->getParent()->getLocation(),
4637             diag::note_deleted_default_ctor_all_const)
4638        << MD->getParent() << /*not anonymous union*/0;
4639    return true;
4640  }
4641  return false;
4642}
4643
4644/// Determine whether a defaulted special member function should be defined as
4645/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4646/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4647bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4648                                     bool Diagnose) {
4649  assert(!MD->isInvalidDecl());
4650  CXXRecordDecl *RD = MD->getParent();
4651  assert(!RD->isDependentType() && "do deletion after instantiation");
4652  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4653    return false;
4654
4655  // C++11 [expr.lambda.prim]p19:
4656  //   The closure type associated with a lambda-expression has a
4657  //   deleted (8.4.3) default constructor and a deleted copy
4658  //   assignment operator.
4659  if (RD->isLambda() &&
4660      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4661    if (Diagnose)
4662      Diag(RD->getLocation(), diag::note_lambda_decl);
4663    return true;
4664  }
4665
4666  // For an anonymous struct or union, the copy and assignment special members
4667  // will never be used, so skip the check. For an anonymous union declared at
4668  // namespace scope, the constructor and destructor are used.
4669  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4670      RD->isAnonymousStructOrUnion())
4671    return false;
4672
4673  // C++11 [class.copy]p7, p18:
4674  //   If the class definition declares a move constructor or move assignment
4675  //   operator, an implicitly declared copy constructor or copy assignment
4676  //   operator is defined as deleted.
4677  if (MD->isImplicit() &&
4678      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4679    CXXMethodDecl *UserDeclaredMove = 0;
4680
4681    // In Microsoft mode, a user-declared move only causes the deletion of the
4682    // corresponding copy operation, not both copy operations.
4683    if (RD->hasUserDeclaredMoveConstructor() &&
4684        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4685      if (!Diagnose) return true;
4686      UserDeclaredMove = RD->getMoveConstructor();
4687      assert(UserDeclaredMove);
4688    } else if (RD->hasUserDeclaredMoveAssignment() &&
4689               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4690      if (!Diagnose) return true;
4691      UserDeclaredMove = RD->getMoveAssignmentOperator();
4692      assert(UserDeclaredMove);
4693    }
4694
4695    if (UserDeclaredMove) {
4696      Diag(UserDeclaredMove->getLocation(),
4697           diag::note_deleted_copy_user_declared_move)
4698        << (CSM == CXXCopyAssignment) << RD
4699        << UserDeclaredMove->isMoveAssignmentOperator();
4700      return true;
4701    }
4702  }
4703
4704  // Do access control from the special member function
4705  ContextRAII MethodContext(*this, MD);
4706
4707  // C++11 [class.dtor]p5:
4708  // -- for a virtual destructor, lookup of the non-array deallocation function
4709  //    results in an ambiguity or in a function that is deleted or inaccessible
4710  if (CSM == CXXDestructor && MD->isVirtual()) {
4711    FunctionDecl *OperatorDelete = 0;
4712    DeclarationName Name =
4713      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4714    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4715                                 OperatorDelete, false)) {
4716      if (Diagnose)
4717        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4718      return true;
4719    }
4720  }
4721
4722  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4723
4724  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4725                                          BE = RD->bases_end(); BI != BE; ++BI)
4726    if (!BI->isVirtual() &&
4727        SMI.shouldDeleteForBase(BI))
4728      return true;
4729
4730  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4731                                          BE = RD->vbases_end(); BI != BE; ++BI)
4732    if (SMI.shouldDeleteForBase(BI))
4733      return true;
4734
4735  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4736                                     FE = RD->field_end(); FI != FE; ++FI)
4737    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4738        SMI.shouldDeleteForField(&*FI))
4739      return true;
4740
4741  if (SMI.shouldDeleteForAllConstMembers())
4742    return true;
4743
4744  return false;
4745}
4746
4747/// \brief Data used with FindHiddenVirtualMethod
4748namespace {
4749  struct FindHiddenVirtualMethodData {
4750    Sema *S;
4751    CXXMethodDecl *Method;
4752    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4753    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4754  };
4755}
4756
4757/// \brief Member lookup function that determines whether a given C++
4758/// method overloads virtual methods in a base class without overriding any,
4759/// to be used with CXXRecordDecl::lookupInBases().
4760static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4761                                    CXXBasePath &Path,
4762                                    void *UserData) {
4763  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4764
4765  FindHiddenVirtualMethodData &Data
4766    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4767
4768  DeclarationName Name = Data.Method->getDeclName();
4769  assert(Name.getNameKind() == DeclarationName::Identifier);
4770
4771  bool foundSameNameMethod = false;
4772  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4773  for (Path.Decls = BaseRecord->lookup(Name);
4774       Path.Decls.first != Path.Decls.second;
4775       ++Path.Decls.first) {
4776    NamedDecl *D = *Path.Decls.first;
4777    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4778      MD = MD->getCanonicalDecl();
4779      foundSameNameMethod = true;
4780      // Interested only in hidden virtual methods.
4781      if (!MD->isVirtual())
4782        continue;
4783      // If the method we are checking overrides a method from its base
4784      // don't warn about the other overloaded methods.
4785      if (!Data.S->IsOverload(Data.Method, MD, false))
4786        return true;
4787      // Collect the overload only if its hidden.
4788      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4789        overloadedMethods.push_back(MD);
4790    }
4791  }
4792
4793  if (foundSameNameMethod)
4794    Data.OverloadedMethods.append(overloadedMethods.begin(),
4795                                   overloadedMethods.end());
4796  return foundSameNameMethod;
4797}
4798
4799/// \brief See if a method overloads virtual methods in a base class without
4800/// overriding any.
4801void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4802  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4803                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4804    return;
4805  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4806    return;
4807
4808  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4809                     /*bool RecordPaths=*/false,
4810                     /*bool DetectVirtual=*/false);
4811  FindHiddenVirtualMethodData Data;
4812  Data.Method = MD;
4813  Data.S = this;
4814
4815  // Keep the base methods that were overriden or introduced in the subclass
4816  // by 'using' in a set. A base method not in this set is hidden.
4817  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4818       res.first != res.second; ++res.first) {
4819    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4820      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4821                                          E = MD->end_overridden_methods();
4822           I != E; ++I)
4823        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4824    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4825      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4826        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4827  }
4828
4829  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4830      !Data.OverloadedMethods.empty()) {
4831    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4832      << MD << (Data.OverloadedMethods.size() > 1);
4833
4834    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4835      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4836      Diag(overloadedMD->getLocation(),
4837           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4838    }
4839  }
4840}
4841
4842void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4843                                             Decl *TagDecl,
4844                                             SourceLocation LBrac,
4845                                             SourceLocation RBrac,
4846                                             AttributeList *AttrList) {
4847  if (!TagDecl)
4848    return;
4849
4850  AdjustDeclIfTemplate(TagDecl);
4851
4852  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4853              // strict aliasing violation!
4854              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4855              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4856
4857  CheckCompletedCXXClass(
4858                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4859}
4860
4861/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4862/// special functions, such as the default constructor, copy
4863/// constructor, or destructor, to the given C++ class (C++
4864/// [special]p1).  This routine can only be executed just before the
4865/// definition of the class is complete.
4866void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4867  if (!ClassDecl->hasUserDeclaredConstructor())
4868    ++ASTContext::NumImplicitDefaultConstructors;
4869
4870  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4871    ++ASTContext::NumImplicitCopyConstructors;
4872
4873  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4874    ++ASTContext::NumImplicitMoveConstructors;
4875
4876  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4877    ++ASTContext::NumImplicitCopyAssignmentOperators;
4878
4879    // If we have a dynamic class, then the copy assignment operator may be
4880    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4881    // it shows up in the right place in the vtable and that we diagnose
4882    // problems with the implicit exception specification.
4883    if (ClassDecl->isDynamicClass())
4884      DeclareImplicitCopyAssignment(ClassDecl);
4885  }
4886
4887  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4888    ++ASTContext::NumImplicitMoveAssignmentOperators;
4889
4890    // Likewise for the move assignment operator.
4891    if (ClassDecl->isDynamicClass())
4892      DeclareImplicitMoveAssignment(ClassDecl);
4893  }
4894
4895  if (!ClassDecl->hasUserDeclaredDestructor()) {
4896    ++ASTContext::NumImplicitDestructors;
4897
4898    // If we have a dynamic class, then the destructor may be virtual, so we
4899    // have to declare the destructor immediately. This ensures that, e.g., it
4900    // shows up in the right place in the vtable and that we diagnose problems
4901    // with the implicit exception specification.
4902    if (ClassDecl->isDynamicClass())
4903      DeclareImplicitDestructor(ClassDecl);
4904  }
4905}
4906
4907void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4908  if (!D)
4909    return;
4910
4911  int NumParamList = D->getNumTemplateParameterLists();
4912  for (int i = 0; i < NumParamList; i++) {
4913    TemplateParameterList* Params = D->getTemplateParameterList(i);
4914    for (TemplateParameterList::iterator Param = Params->begin(),
4915                                      ParamEnd = Params->end();
4916          Param != ParamEnd; ++Param) {
4917      NamedDecl *Named = cast<NamedDecl>(*Param);
4918      if (Named->getDeclName()) {
4919        S->AddDecl(Named);
4920        IdResolver.AddDecl(Named);
4921      }
4922    }
4923  }
4924}
4925
4926void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4927  if (!D)
4928    return;
4929
4930  TemplateParameterList *Params = 0;
4931  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4932    Params = Template->getTemplateParameters();
4933  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4934           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4935    Params = PartialSpec->getTemplateParameters();
4936  else
4937    return;
4938
4939  for (TemplateParameterList::iterator Param = Params->begin(),
4940                                    ParamEnd = Params->end();
4941       Param != ParamEnd; ++Param) {
4942    NamedDecl *Named = cast<NamedDecl>(*Param);
4943    if (Named->getDeclName()) {
4944      S->AddDecl(Named);
4945      IdResolver.AddDecl(Named);
4946    }
4947  }
4948}
4949
4950void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4951  if (!RecordD) return;
4952  AdjustDeclIfTemplate(RecordD);
4953  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4954  PushDeclContext(S, Record);
4955}
4956
4957void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4958  if (!RecordD) return;
4959  PopDeclContext();
4960}
4961
4962/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4963/// parsing a top-level (non-nested) C++ class, and we are now
4964/// parsing those parts of the given Method declaration that could
4965/// not be parsed earlier (C++ [class.mem]p2), such as default
4966/// arguments. This action should enter the scope of the given
4967/// Method declaration as if we had just parsed the qualified method
4968/// name. However, it should not bring the parameters into scope;
4969/// that will be performed by ActOnDelayedCXXMethodParameter.
4970void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4971}
4972
4973/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4974/// C++ method declaration. We're (re-)introducing the given
4975/// function parameter into scope for use in parsing later parts of
4976/// the method declaration. For example, we could see an
4977/// ActOnParamDefaultArgument event for this parameter.
4978void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4979  if (!ParamD)
4980    return;
4981
4982  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4983
4984  // If this parameter has an unparsed default argument, clear it out
4985  // to make way for the parsed default argument.
4986  if (Param->hasUnparsedDefaultArg())
4987    Param->setDefaultArg(0);
4988
4989  S->AddDecl(Param);
4990  if (Param->getDeclName())
4991    IdResolver.AddDecl(Param);
4992}
4993
4994/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4995/// processing the delayed method declaration for Method. The method
4996/// declaration is now considered finished. There may be a separate
4997/// ActOnStartOfFunctionDef action later (not necessarily
4998/// immediately!) for this method, if it was also defined inside the
4999/// class body.
5000void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5001  if (!MethodD)
5002    return;
5003
5004  AdjustDeclIfTemplate(MethodD);
5005
5006  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5007
5008  // Now that we have our default arguments, check the constructor
5009  // again. It could produce additional diagnostics or affect whether
5010  // the class has implicitly-declared destructors, among other
5011  // things.
5012  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5013    CheckConstructor(Constructor);
5014
5015  // Check the default arguments, which we may have added.
5016  if (!Method->isInvalidDecl())
5017    CheckCXXDefaultArguments(Method);
5018}
5019
5020/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5021/// the well-formedness of the constructor declarator @p D with type @p
5022/// R. If there are any errors in the declarator, this routine will
5023/// emit diagnostics and set the invalid bit to true.  In any case, the type
5024/// will be updated to reflect a well-formed type for the constructor and
5025/// returned.
5026QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5027                                          StorageClass &SC) {
5028  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5029
5030  // C++ [class.ctor]p3:
5031  //   A constructor shall not be virtual (10.3) or static (9.4). A
5032  //   constructor can be invoked for a const, volatile or const
5033  //   volatile object. A constructor shall not be declared const,
5034  //   volatile, or const volatile (9.3.2).
5035  if (isVirtual) {
5036    if (!D.isInvalidType())
5037      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5038        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5039        << SourceRange(D.getIdentifierLoc());
5040    D.setInvalidType();
5041  }
5042  if (SC == SC_Static) {
5043    if (!D.isInvalidType())
5044      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5045        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5046        << SourceRange(D.getIdentifierLoc());
5047    D.setInvalidType();
5048    SC = SC_None;
5049  }
5050
5051  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5052  if (FTI.TypeQuals != 0) {
5053    if (FTI.TypeQuals & Qualifiers::Const)
5054      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5055        << "const" << SourceRange(D.getIdentifierLoc());
5056    if (FTI.TypeQuals & Qualifiers::Volatile)
5057      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5058        << "volatile" << SourceRange(D.getIdentifierLoc());
5059    if (FTI.TypeQuals & Qualifiers::Restrict)
5060      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5061        << "restrict" << SourceRange(D.getIdentifierLoc());
5062    D.setInvalidType();
5063  }
5064
5065  // C++0x [class.ctor]p4:
5066  //   A constructor shall not be declared with a ref-qualifier.
5067  if (FTI.hasRefQualifier()) {
5068    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5069      << FTI.RefQualifierIsLValueRef
5070      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5071    D.setInvalidType();
5072  }
5073
5074  // Rebuild the function type "R" without any type qualifiers (in
5075  // case any of the errors above fired) and with "void" as the
5076  // return type, since constructors don't have return types.
5077  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5078  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5079    return R;
5080
5081  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5082  EPI.TypeQuals = 0;
5083  EPI.RefQualifier = RQ_None;
5084
5085  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5086                                 Proto->getNumArgs(), EPI);
5087}
5088
5089/// CheckConstructor - Checks a fully-formed constructor for
5090/// well-formedness, issuing any diagnostics required. Returns true if
5091/// the constructor declarator is invalid.
5092void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5093  CXXRecordDecl *ClassDecl
5094    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5095  if (!ClassDecl)
5096    return Constructor->setInvalidDecl();
5097
5098  // C++ [class.copy]p3:
5099  //   A declaration of a constructor for a class X is ill-formed if
5100  //   its first parameter is of type (optionally cv-qualified) X and
5101  //   either there are no other parameters or else all other
5102  //   parameters have default arguments.
5103  if (!Constructor->isInvalidDecl() &&
5104      ((Constructor->getNumParams() == 1) ||
5105       (Constructor->getNumParams() > 1 &&
5106        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5107      Constructor->getTemplateSpecializationKind()
5108                                              != TSK_ImplicitInstantiation) {
5109    QualType ParamType = Constructor->getParamDecl(0)->getType();
5110    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5111    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5112      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5113      const char *ConstRef
5114        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5115                                                        : " const &";
5116      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5117        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5118
5119      // FIXME: Rather that making the constructor invalid, we should endeavor
5120      // to fix the type.
5121      Constructor->setInvalidDecl();
5122    }
5123  }
5124}
5125
5126/// CheckDestructor - Checks a fully-formed destructor definition for
5127/// well-formedness, issuing any diagnostics required.  Returns true
5128/// on error.
5129bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5130  CXXRecordDecl *RD = Destructor->getParent();
5131
5132  if (Destructor->isVirtual()) {
5133    SourceLocation Loc;
5134
5135    if (!Destructor->isImplicit())
5136      Loc = Destructor->getLocation();
5137    else
5138      Loc = RD->getLocation();
5139
5140    // If we have a virtual destructor, look up the deallocation function
5141    FunctionDecl *OperatorDelete = 0;
5142    DeclarationName Name =
5143    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5144    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5145      return true;
5146
5147    MarkFunctionReferenced(Loc, OperatorDelete);
5148
5149    Destructor->setOperatorDelete(OperatorDelete);
5150  }
5151
5152  return false;
5153}
5154
5155static inline bool
5156FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5157  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5158          FTI.ArgInfo[0].Param &&
5159          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5160}
5161
5162/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5163/// the well-formednes of the destructor declarator @p D with type @p
5164/// R. If there are any errors in the declarator, this routine will
5165/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5166/// will be updated to reflect a well-formed type for the destructor and
5167/// returned.
5168QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5169                                         StorageClass& SC) {
5170  // C++ [class.dtor]p1:
5171  //   [...] A typedef-name that names a class is a class-name
5172  //   (7.1.3); however, a typedef-name that names a class shall not
5173  //   be used as the identifier in the declarator for a destructor
5174  //   declaration.
5175  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5176  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5177    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5178      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5179  else if (const TemplateSpecializationType *TST =
5180             DeclaratorType->getAs<TemplateSpecializationType>())
5181    if (TST->isTypeAlias())
5182      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5183        << DeclaratorType << 1;
5184
5185  // C++ [class.dtor]p2:
5186  //   A destructor is used to destroy objects of its class type. A
5187  //   destructor takes no parameters, and no return type can be
5188  //   specified for it (not even void). The address of a destructor
5189  //   shall not be taken. A destructor shall not be static. A
5190  //   destructor can be invoked for a const, volatile or const
5191  //   volatile object. A destructor shall not be declared const,
5192  //   volatile or const volatile (9.3.2).
5193  if (SC == SC_Static) {
5194    if (!D.isInvalidType())
5195      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5196        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5197        << SourceRange(D.getIdentifierLoc())
5198        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5199
5200    SC = SC_None;
5201  }
5202  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5203    // Destructors don't have return types, but the parser will
5204    // happily parse something like:
5205    //
5206    //   class X {
5207    //     float ~X();
5208    //   };
5209    //
5210    // The return type will be eliminated later.
5211    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5212      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5213      << SourceRange(D.getIdentifierLoc());
5214  }
5215
5216  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5217  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5218    if (FTI.TypeQuals & Qualifiers::Const)
5219      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5220        << "const" << SourceRange(D.getIdentifierLoc());
5221    if (FTI.TypeQuals & Qualifiers::Volatile)
5222      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5223        << "volatile" << SourceRange(D.getIdentifierLoc());
5224    if (FTI.TypeQuals & Qualifiers::Restrict)
5225      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5226        << "restrict" << SourceRange(D.getIdentifierLoc());
5227    D.setInvalidType();
5228  }
5229
5230  // C++0x [class.dtor]p2:
5231  //   A destructor shall not be declared with a ref-qualifier.
5232  if (FTI.hasRefQualifier()) {
5233    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5234      << FTI.RefQualifierIsLValueRef
5235      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5236    D.setInvalidType();
5237  }
5238
5239  // Make sure we don't have any parameters.
5240  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5241    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5242
5243    // Delete the parameters.
5244    FTI.freeArgs();
5245    D.setInvalidType();
5246  }
5247
5248  // Make sure the destructor isn't variadic.
5249  if (FTI.isVariadic) {
5250    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5251    D.setInvalidType();
5252  }
5253
5254  // Rebuild the function type "R" without any type qualifiers or
5255  // parameters (in case any of the errors above fired) and with
5256  // "void" as the return type, since destructors don't have return
5257  // types.
5258  if (!D.isInvalidType())
5259    return R;
5260
5261  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5262  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5263  EPI.Variadic = false;
5264  EPI.TypeQuals = 0;
5265  EPI.RefQualifier = RQ_None;
5266  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5267}
5268
5269/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5270/// well-formednes of the conversion function declarator @p D with
5271/// type @p R. If there are any errors in the declarator, this routine
5272/// will emit diagnostics and return true. Otherwise, it will return
5273/// false. Either way, the type @p R will be updated to reflect a
5274/// well-formed type for the conversion operator.
5275void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5276                                     StorageClass& SC) {
5277  // C++ [class.conv.fct]p1:
5278  //   Neither parameter types nor return type can be specified. The
5279  //   type of a conversion function (8.3.5) is "function taking no
5280  //   parameter returning conversion-type-id."
5281  if (SC == SC_Static) {
5282    if (!D.isInvalidType())
5283      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5284        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5285        << SourceRange(D.getIdentifierLoc());
5286    D.setInvalidType();
5287    SC = SC_None;
5288  }
5289
5290  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5291
5292  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5293    // Conversion functions don't have return types, but the parser will
5294    // happily parse something like:
5295    //
5296    //   class X {
5297    //     float operator bool();
5298    //   };
5299    //
5300    // The return type will be changed later anyway.
5301    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5302      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5303      << SourceRange(D.getIdentifierLoc());
5304    D.setInvalidType();
5305  }
5306
5307  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5308
5309  // Make sure we don't have any parameters.
5310  if (Proto->getNumArgs() > 0) {
5311    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5312
5313    // Delete the parameters.
5314    D.getFunctionTypeInfo().freeArgs();
5315    D.setInvalidType();
5316  } else if (Proto->isVariadic()) {
5317    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5318    D.setInvalidType();
5319  }
5320
5321  // Diagnose "&operator bool()" and other such nonsense.  This
5322  // is actually a gcc extension which we don't support.
5323  if (Proto->getResultType() != ConvType) {
5324    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5325      << Proto->getResultType();
5326    D.setInvalidType();
5327    ConvType = Proto->getResultType();
5328  }
5329
5330  // C++ [class.conv.fct]p4:
5331  //   The conversion-type-id shall not represent a function type nor
5332  //   an array type.
5333  if (ConvType->isArrayType()) {
5334    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5335    ConvType = Context.getPointerType(ConvType);
5336    D.setInvalidType();
5337  } else if (ConvType->isFunctionType()) {
5338    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5339    ConvType = Context.getPointerType(ConvType);
5340    D.setInvalidType();
5341  }
5342
5343  // Rebuild the function type "R" without any parameters (in case any
5344  // of the errors above fired) and with the conversion type as the
5345  // return type.
5346  if (D.isInvalidType())
5347    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5348
5349  // C++0x explicit conversion operators.
5350  if (D.getDeclSpec().isExplicitSpecified())
5351    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5352         getLangOpts().CPlusPlus0x ?
5353           diag::warn_cxx98_compat_explicit_conversion_functions :
5354           diag::ext_explicit_conversion_functions)
5355      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5356}
5357
5358/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5359/// the declaration of the given C++ conversion function. This routine
5360/// is responsible for recording the conversion function in the C++
5361/// class, if possible.
5362Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5363  assert(Conversion && "Expected to receive a conversion function declaration");
5364
5365  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5366
5367  // Make sure we aren't redeclaring the conversion function.
5368  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5369
5370  // C++ [class.conv.fct]p1:
5371  //   [...] A conversion function is never used to convert a
5372  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5373  //   same object type (or a reference to it), to a (possibly
5374  //   cv-qualified) base class of that type (or a reference to it),
5375  //   or to (possibly cv-qualified) void.
5376  // FIXME: Suppress this warning if the conversion function ends up being a
5377  // virtual function that overrides a virtual function in a base class.
5378  QualType ClassType
5379    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5380  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5381    ConvType = ConvTypeRef->getPointeeType();
5382  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5383      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5384    /* Suppress diagnostics for instantiations. */;
5385  else if (ConvType->isRecordType()) {
5386    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5387    if (ConvType == ClassType)
5388      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5389        << ClassType;
5390    else if (IsDerivedFrom(ClassType, ConvType))
5391      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5392        <<  ClassType << ConvType;
5393  } else if (ConvType->isVoidType()) {
5394    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5395      << ClassType << ConvType;
5396  }
5397
5398  if (FunctionTemplateDecl *ConversionTemplate
5399                                = Conversion->getDescribedFunctionTemplate())
5400    return ConversionTemplate;
5401
5402  return Conversion;
5403}
5404
5405//===----------------------------------------------------------------------===//
5406// Namespace Handling
5407//===----------------------------------------------------------------------===//
5408
5409
5410
5411/// ActOnStartNamespaceDef - This is called at the start of a namespace
5412/// definition.
5413Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5414                                   SourceLocation InlineLoc,
5415                                   SourceLocation NamespaceLoc,
5416                                   SourceLocation IdentLoc,
5417                                   IdentifierInfo *II,
5418                                   SourceLocation LBrace,
5419                                   AttributeList *AttrList) {
5420  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5421  // For anonymous namespace, take the location of the left brace.
5422  SourceLocation Loc = II ? IdentLoc : LBrace;
5423  bool IsInline = InlineLoc.isValid();
5424  bool IsInvalid = false;
5425  bool IsStd = false;
5426  bool AddToKnown = false;
5427  Scope *DeclRegionScope = NamespcScope->getParent();
5428
5429  NamespaceDecl *PrevNS = 0;
5430  if (II) {
5431    // C++ [namespace.def]p2:
5432    //   The identifier in an original-namespace-definition shall not
5433    //   have been previously defined in the declarative region in
5434    //   which the original-namespace-definition appears. The
5435    //   identifier in an original-namespace-definition is the name of
5436    //   the namespace. Subsequently in that declarative region, it is
5437    //   treated as an original-namespace-name.
5438    //
5439    // Since namespace names are unique in their scope, and we don't
5440    // look through using directives, just look for any ordinary names.
5441
5442    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5443    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5444    Decl::IDNS_Namespace;
5445    NamedDecl *PrevDecl = 0;
5446    for (DeclContext::lookup_result R
5447         = CurContext->getRedeclContext()->lookup(II);
5448         R.first != R.second; ++R.first) {
5449      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5450        PrevDecl = *R.first;
5451        break;
5452      }
5453    }
5454
5455    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5456
5457    if (PrevNS) {
5458      // This is an extended namespace definition.
5459      if (IsInline != PrevNS->isInline()) {
5460        // inline-ness must match
5461        if (PrevNS->isInline()) {
5462          // The user probably just forgot the 'inline', so suggest that it
5463          // be added back.
5464          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5465            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5466        } else {
5467          Diag(Loc, diag::err_inline_namespace_mismatch)
5468            << IsInline;
5469        }
5470        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5471
5472        IsInline = PrevNS->isInline();
5473      }
5474    } else if (PrevDecl) {
5475      // This is an invalid name redefinition.
5476      Diag(Loc, diag::err_redefinition_different_kind)
5477        << II;
5478      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5479      IsInvalid = true;
5480      // Continue on to push Namespc as current DeclContext and return it.
5481    } else if (II->isStr("std") &&
5482               CurContext->getRedeclContext()->isTranslationUnit()) {
5483      // This is the first "real" definition of the namespace "std", so update
5484      // our cache of the "std" namespace to point at this definition.
5485      PrevNS = getStdNamespace();
5486      IsStd = true;
5487      AddToKnown = !IsInline;
5488    } else {
5489      // We've seen this namespace for the first time.
5490      AddToKnown = !IsInline;
5491    }
5492  } else {
5493    // Anonymous namespaces.
5494
5495    // Determine whether the parent already has an anonymous namespace.
5496    DeclContext *Parent = CurContext->getRedeclContext();
5497    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5498      PrevNS = TU->getAnonymousNamespace();
5499    } else {
5500      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5501      PrevNS = ND->getAnonymousNamespace();
5502    }
5503
5504    if (PrevNS && IsInline != PrevNS->isInline()) {
5505      // inline-ness must match
5506      Diag(Loc, diag::err_inline_namespace_mismatch)
5507        << IsInline;
5508      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5509
5510      // Recover by ignoring the new namespace's inline status.
5511      IsInline = PrevNS->isInline();
5512    }
5513  }
5514
5515  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5516                                                 StartLoc, Loc, II, PrevNS);
5517  if (IsInvalid)
5518    Namespc->setInvalidDecl();
5519
5520  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5521
5522  // FIXME: Should we be merging attributes?
5523  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5524    PushNamespaceVisibilityAttr(Attr, Loc);
5525
5526  if (IsStd)
5527    StdNamespace = Namespc;
5528  if (AddToKnown)
5529    KnownNamespaces[Namespc] = false;
5530
5531  if (II) {
5532    PushOnScopeChains(Namespc, DeclRegionScope);
5533  } else {
5534    // Link the anonymous namespace into its parent.
5535    DeclContext *Parent = CurContext->getRedeclContext();
5536    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5537      TU->setAnonymousNamespace(Namespc);
5538    } else {
5539      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5540    }
5541
5542    CurContext->addDecl(Namespc);
5543
5544    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5545    //   behaves as if it were replaced by
5546    //     namespace unique { /* empty body */ }
5547    //     using namespace unique;
5548    //     namespace unique { namespace-body }
5549    //   where all occurrences of 'unique' in a translation unit are
5550    //   replaced by the same identifier and this identifier differs
5551    //   from all other identifiers in the entire program.
5552
5553    // We just create the namespace with an empty name and then add an
5554    // implicit using declaration, just like the standard suggests.
5555    //
5556    // CodeGen enforces the "universally unique" aspect by giving all
5557    // declarations semantically contained within an anonymous
5558    // namespace internal linkage.
5559
5560    if (!PrevNS) {
5561      UsingDirectiveDecl* UD
5562        = UsingDirectiveDecl::Create(Context, CurContext,
5563                                     /* 'using' */ LBrace,
5564                                     /* 'namespace' */ SourceLocation(),
5565                                     /* qualifier */ NestedNameSpecifierLoc(),
5566                                     /* identifier */ SourceLocation(),
5567                                     Namespc,
5568                                     /* Ancestor */ CurContext);
5569      UD->setImplicit();
5570      CurContext->addDecl(UD);
5571    }
5572  }
5573
5574  // Although we could have an invalid decl (i.e. the namespace name is a
5575  // redefinition), push it as current DeclContext and try to continue parsing.
5576  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5577  // for the namespace has the declarations that showed up in that particular
5578  // namespace definition.
5579  PushDeclContext(NamespcScope, Namespc);
5580  return Namespc;
5581}
5582
5583/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5584/// is a namespace alias, returns the namespace it points to.
5585static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5586  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5587    return AD->getNamespace();
5588  return dyn_cast_or_null<NamespaceDecl>(D);
5589}
5590
5591/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5592/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5593void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5594  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5595  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5596  Namespc->setRBraceLoc(RBrace);
5597  PopDeclContext();
5598  if (Namespc->hasAttr<VisibilityAttr>())
5599    PopPragmaVisibility(true, RBrace);
5600}
5601
5602CXXRecordDecl *Sema::getStdBadAlloc() const {
5603  return cast_or_null<CXXRecordDecl>(
5604                                  StdBadAlloc.get(Context.getExternalSource()));
5605}
5606
5607NamespaceDecl *Sema::getStdNamespace() const {
5608  return cast_or_null<NamespaceDecl>(
5609                                 StdNamespace.get(Context.getExternalSource()));
5610}
5611
5612/// \brief Retrieve the special "std" namespace, which may require us to
5613/// implicitly define the namespace.
5614NamespaceDecl *Sema::getOrCreateStdNamespace() {
5615  if (!StdNamespace) {
5616    // The "std" namespace has not yet been defined, so build one implicitly.
5617    StdNamespace = NamespaceDecl::Create(Context,
5618                                         Context.getTranslationUnitDecl(),
5619                                         /*Inline=*/false,
5620                                         SourceLocation(), SourceLocation(),
5621                                         &PP.getIdentifierTable().get("std"),
5622                                         /*PrevDecl=*/0);
5623    getStdNamespace()->setImplicit(true);
5624  }
5625
5626  return getStdNamespace();
5627}
5628
5629bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5630  assert(getLangOpts().CPlusPlus &&
5631         "Looking for std::initializer_list outside of C++.");
5632
5633  // We're looking for implicit instantiations of
5634  // template <typename E> class std::initializer_list.
5635
5636  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5637    return false;
5638
5639  ClassTemplateDecl *Template = 0;
5640  const TemplateArgument *Arguments = 0;
5641
5642  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5643
5644    ClassTemplateSpecializationDecl *Specialization =
5645        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5646    if (!Specialization)
5647      return false;
5648
5649    Template = Specialization->getSpecializedTemplate();
5650    Arguments = Specialization->getTemplateArgs().data();
5651  } else if (const TemplateSpecializationType *TST =
5652                 Ty->getAs<TemplateSpecializationType>()) {
5653    Template = dyn_cast_or_null<ClassTemplateDecl>(
5654        TST->getTemplateName().getAsTemplateDecl());
5655    Arguments = TST->getArgs();
5656  }
5657  if (!Template)
5658    return false;
5659
5660  if (!StdInitializerList) {
5661    // Haven't recognized std::initializer_list yet, maybe this is it.
5662    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5663    if (TemplateClass->getIdentifier() !=
5664            &PP.getIdentifierTable().get("initializer_list") ||
5665        !getStdNamespace()->InEnclosingNamespaceSetOf(
5666            TemplateClass->getDeclContext()))
5667      return false;
5668    // This is a template called std::initializer_list, but is it the right
5669    // template?
5670    TemplateParameterList *Params = Template->getTemplateParameters();
5671    if (Params->getMinRequiredArguments() != 1)
5672      return false;
5673    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5674      return false;
5675
5676    // It's the right template.
5677    StdInitializerList = Template;
5678  }
5679
5680  if (Template != StdInitializerList)
5681    return false;
5682
5683  // This is an instance of std::initializer_list. Find the argument type.
5684  if (Element)
5685    *Element = Arguments[0].getAsType();
5686  return true;
5687}
5688
5689static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5690  NamespaceDecl *Std = S.getStdNamespace();
5691  if (!Std) {
5692    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5693    return 0;
5694  }
5695
5696  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5697                      Loc, Sema::LookupOrdinaryName);
5698  if (!S.LookupQualifiedName(Result, Std)) {
5699    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5700    return 0;
5701  }
5702  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5703  if (!Template) {
5704    Result.suppressDiagnostics();
5705    // We found something weird. Complain about the first thing we found.
5706    NamedDecl *Found = *Result.begin();
5707    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5708    return 0;
5709  }
5710
5711  // We found some template called std::initializer_list. Now verify that it's
5712  // correct.
5713  TemplateParameterList *Params = Template->getTemplateParameters();
5714  if (Params->getMinRequiredArguments() != 1 ||
5715      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5716    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5717    return 0;
5718  }
5719
5720  return Template;
5721}
5722
5723QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5724  if (!StdInitializerList) {
5725    StdInitializerList = LookupStdInitializerList(*this, Loc);
5726    if (!StdInitializerList)
5727      return QualType();
5728  }
5729
5730  TemplateArgumentListInfo Args(Loc, Loc);
5731  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5732                                       Context.getTrivialTypeSourceInfo(Element,
5733                                                                        Loc)));
5734  return Context.getCanonicalType(
5735      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5736}
5737
5738bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5739  // C++ [dcl.init.list]p2:
5740  //   A constructor is an initializer-list constructor if its first parameter
5741  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5742  //   std::initializer_list<E> for some type E, and either there are no other
5743  //   parameters or else all other parameters have default arguments.
5744  if (Ctor->getNumParams() < 1 ||
5745      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5746    return false;
5747
5748  QualType ArgType = Ctor->getParamDecl(0)->getType();
5749  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5750    ArgType = RT->getPointeeType().getUnqualifiedType();
5751
5752  return isStdInitializerList(ArgType, 0);
5753}
5754
5755/// \brief Determine whether a using statement is in a context where it will be
5756/// apply in all contexts.
5757static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5758  switch (CurContext->getDeclKind()) {
5759    case Decl::TranslationUnit:
5760      return true;
5761    case Decl::LinkageSpec:
5762      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5763    default:
5764      return false;
5765  }
5766}
5767
5768namespace {
5769
5770// Callback to only accept typo corrections that are namespaces.
5771class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5772 public:
5773  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5774    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5775      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5776    }
5777    return false;
5778  }
5779};
5780
5781}
5782
5783static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5784                                       CXXScopeSpec &SS,
5785                                       SourceLocation IdentLoc,
5786                                       IdentifierInfo *Ident) {
5787  NamespaceValidatorCCC Validator;
5788  R.clear();
5789  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5790                                               R.getLookupKind(), Sc, &SS,
5791                                               Validator)) {
5792    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5793    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5794    if (DeclContext *DC = S.computeDeclContext(SS, false))
5795      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5796        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5797        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5798    else
5799      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5800        << Ident << CorrectedQuotedStr
5801        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5802
5803    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5804         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5805
5806    R.addDecl(Corrected.getCorrectionDecl());
5807    return true;
5808  }
5809  return false;
5810}
5811
5812Decl *Sema::ActOnUsingDirective(Scope *S,
5813                                          SourceLocation UsingLoc,
5814                                          SourceLocation NamespcLoc,
5815                                          CXXScopeSpec &SS,
5816                                          SourceLocation IdentLoc,
5817                                          IdentifierInfo *NamespcName,
5818                                          AttributeList *AttrList) {
5819  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5820  assert(NamespcName && "Invalid NamespcName.");
5821  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5822
5823  // This can only happen along a recovery path.
5824  while (S->getFlags() & Scope::TemplateParamScope)
5825    S = S->getParent();
5826  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5827
5828  UsingDirectiveDecl *UDir = 0;
5829  NestedNameSpecifier *Qualifier = 0;
5830  if (SS.isSet())
5831    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5832
5833  // Lookup namespace name.
5834  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5835  LookupParsedName(R, S, &SS);
5836  if (R.isAmbiguous())
5837    return 0;
5838
5839  if (R.empty()) {
5840    R.clear();
5841    // Allow "using namespace std;" or "using namespace ::std;" even if
5842    // "std" hasn't been defined yet, for GCC compatibility.
5843    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5844        NamespcName->isStr("std")) {
5845      Diag(IdentLoc, diag::ext_using_undefined_std);
5846      R.addDecl(getOrCreateStdNamespace());
5847      R.resolveKind();
5848    }
5849    // Otherwise, attempt typo correction.
5850    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5851  }
5852
5853  if (!R.empty()) {
5854    NamedDecl *Named = R.getFoundDecl();
5855    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5856        && "expected namespace decl");
5857    // C++ [namespace.udir]p1:
5858    //   A using-directive specifies that the names in the nominated
5859    //   namespace can be used in the scope in which the
5860    //   using-directive appears after the using-directive. During
5861    //   unqualified name lookup (3.4.1), the names appear as if they
5862    //   were declared in the nearest enclosing namespace which
5863    //   contains both the using-directive and the nominated
5864    //   namespace. [Note: in this context, "contains" means "contains
5865    //   directly or indirectly". ]
5866
5867    // Find enclosing context containing both using-directive and
5868    // nominated namespace.
5869    NamespaceDecl *NS = getNamespaceDecl(Named);
5870    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5871    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5872      CommonAncestor = CommonAncestor->getParent();
5873
5874    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5875                                      SS.getWithLocInContext(Context),
5876                                      IdentLoc, Named, CommonAncestor);
5877
5878    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5879        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5880      Diag(IdentLoc, diag::warn_using_directive_in_header);
5881    }
5882
5883    PushUsingDirective(S, UDir);
5884  } else {
5885    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5886  }
5887
5888  // FIXME: We ignore attributes for now.
5889  return UDir;
5890}
5891
5892void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5893  // If the scope has an associated entity and the using directive is at
5894  // namespace or translation unit scope, add the UsingDirectiveDecl into
5895  // its lookup structure so qualified name lookup can find it.
5896  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5897  if (Ctx && !Ctx->isFunctionOrMethod())
5898    Ctx->addDecl(UDir);
5899  else
5900    // Otherwise, it is at block sope. The using-directives will affect lookup
5901    // only to the end of the scope.
5902    S->PushUsingDirective(UDir);
5903}
5904
5905
5906Decl *Sema::ActOnUsingDeclaration(Scope *S,
5907                                  AccessSpecifier AS,
5908                                  bool HasUsingKeyword,
5909                                  SourceLocation UsingLoc,
5910                                  CXXScopeSpec &SS,
5911                                  UnqualifiedId &Name,
5912                                  AttributeList *AttrList,
5913                                  bool IsTypeName,
5914                                  SourceLocation TypenameLoc) {
5915  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5916
5917  switch (Name.getKind()) {
5918  case UnqualifiedId::IK_ImplicitSelfParam:
5919  case UnqualifiedId::IK_Identifier:
5920  case UnqualifiedId::IK_OperatorFunctionId:
5921  case UnqualifiedId::IK_LiteralOperatorId:
5922  case UnqualifiedId::IK_ConversionFunctionId:
5923    break;
5924
5925  case UnqualifiedId::IK_ConstructorName:
5926  case UnqualifiedId::IK_ConstructorTemplateId:
5927    // C++11 inheriting constructors.
5928    Diag(Name.getLocStart(),
5929         getLangOpts().CPlusPlus0x ?
5930           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5931           //        instead once inheriting constructors work.
5932           diag::err_using_decl_constructor_unsupported :
5933           diag::err_using_decl_constructor)
5934      << SS.getRange();
5935
5936    if (getLangOpts().CPlusPlus0x) break;
5937
5938    return 0;
5939
5940  case UnqualifiedId::IK_DestructorName:
5941    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5942      << SS.getRange();
5943    return 0;
5944
5945  case UnqualifiedId::IK_TemplateId:
5946    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5947      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5948    return 0;
5949  }
5950
5951  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5952  DeclarationName TargetName = TargetNameInfo.getName();
5953  if (!TargetName)
5954    return 0;
5955
5956  // Warn about using declarations.
5957  // TODO: store that the declaration was written without 'using' and
5958  // talk about access decls instead of using decls in the
5959  // diagnostics.
5960  if (!HasUsingKeyword) {
5961    UsingLoc = Name.getLocStart();
5962
5963    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5964      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5965  }
5966
5967  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5968      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5969    return 0;
5970
5971  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5972                                        TargetNameInfo, AttrList,
5973                                        /* IsInstantiation */ false,
5974                                        IsTypeName, TypenameLoc);
5975  if (UD)
5976    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5977
5978  return UD;
5979}
5980
5981/// \brief Determine whether a using declaration considers the given
5982/// declarations as "equivalent", e.g., if they are redeclarations of
5983/// the same entity or are both typedefs of the same type.
5984static bool
5985IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5986                         bool &SuppressRedeclaration) {
5987  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5988    SuppressRedeclaration = false;
5989    return true;
5990  }
5991
5992  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5993    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5994      SuppressRedeclaration = true;
5995      return Context.hasSameType(TD1->getUnderlyingType(),
5996                                 TD2->getUnderlyingType());
5997    }
5998
5999  return false;
6000}
6001
6002
6003/// Determines whether to create a using shadow decl for a particular
6004/// decl, given the set of decls existing prior to this using lookup.
6005bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6006                                const LookupResult &Previous) {
6007  // Diagnose finding a decl which is not from a base class of the
6008  // current class.  We do this now because there are cases where this
6009  // function will silently decide not to build a shadow decl, which
6010  // will pre-empt further diagnostics.
6011  //
6012  // We don't need to do this in C++0x because we do the check once on
6013  // the qualifier.
6014  //
6015  // FIXME: diagnose the following if we care enough:
6016  //   struct A { int foo; };
6017  //   struct B : A { using A::foo; };
6018  //   template <class T> struct C : A {};
6019  //   template <class T> struct D : C<T> { using B::foo; } // <---
6020  // This is invalid (during instantiation) in C++03 because B::foo
6021  // resolves to the using decl in B, which is not a base class of D<T>.
6022  // We can't diagnose it immediately because C<T> is an unknown
6023  // specialization.  The UsingShadowDecl in D<T> then points directly
6024  // to A::foo, which will look well-formed when we instantiate.
6025  // The right solution is to not collapse the shadow-decl chain.
6026  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
6027    DeclContext *OrigDC = Orig->getDeclContext();
6028
6029    // Handle enums and anonymous structs.
6030    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6031    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6032    while (OrigRec->isAnonymousStructOrUnion())
6033      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6034
6035    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6036      if (OrigDC == CurContext) {
6037        Diag(Using->getLocation(),
6038             diag::err_using_decl_nested_name_specifier_is_current_class)
6039          << Using->getQualifierLoc().getSourceRange();
6040        Diag(Orig->getLocation(), diag::note_using_decl_target);
6041        return true;
6042      }
6043
6044      Diag(Using->getQualifierLoc().getBeginLoc(),
6045           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6046        << Using->getQualifier()
6047        << cast<CXXRecordDecl>(CurContext)
6048        << Using->getQualifierLoc().getSourceRange();
6049      Diag(Orig->getLocation(), diag::note_using_decl_target);
6050      return true;
6051    }
6052  }
6053
6054  if (Previous.empty()) return false;
6055
6056  NamedDecl *Target = Orig;
6057  if (isa<UsingShadowDecl>(Target))
6058    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6059
6060  // If the target happens to be one of the previous declarations, we
6061  // don't have a conflict.
6062  //
6063  // FIXME: but we might be increasing its access, in which case we
6064  // should redeclare it.
6065  NamedDecl *NonTag = 0, *Tag = 0;
6066  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6067         I != E; ++I) {
6068    NamedDecl *D = (*I)->getUnderlyingDecl();
6069    bool Result;
6070    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6071      return Result;
6072
6073    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6074  }
6075
6076  if (Target->isFunctionOrFunctionTemplate()) {
6077    FunctionDecl *FD;
6078    if (isa<FunctionTemplateDecl>(Target))
6079      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6080    else
6081      FD = cast<FunctionDecl>(Target);
6082
6083    NamedDecl *OldDecl = 0;
6084    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6085    case Ovl_Overload:
6086      return false;
6087
6088    case Ovl_NonFunction:
6089      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6090      break;
6091
6092    // We found a decl with the exact signature.
6093    case Ovl_Match:
6094      // If we're in a record, we want to hide the target, so we
6095      // return true (without a diagnostic) to tell the caller not to
6096      // build a shadow decl.
6097      if (CurContext->isRecord())
6098        return true;
6099
6100      // If we're not in a record, this is an error.
6101      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6102      break;
6103    }
6104
6105    Diag(Target->getLocation(), diag::note_using_decl_target);
6106    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6107    return true;
6108  }
6109
6110  // Target is not a function.
6111
6112  if (isa<TagDecl>(Target)) {
6113    // No conflict between a tag and a non-tag.
6114    if (!Tag) return false;
6115
6116    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6117    Diag(Target->getLocation(), diag::note_using_decl_target);
6118    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6119    return true;
6120  }
6121
6122  // No conflict between a tag and a non-tag.
6123  if (!NonTag) return false;
6124
6125  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6126  Diag(Target->getLocation(), diag::note_using_decl_target);
6127  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6128  return true;
6129}
6130
6131/// Builds a shadow declaration corresponding to a 'using' declaration.
6132UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6133                                            UsingDecl *UD,
6134                                            NamedDecl *Orig) {
6135
6136  // If we resolved to another shadow declaration, just coalesce them.
6137  NamedDecl *Target = Orig;
6138  if (isa<UsingShadowDecl>(Target)) {
6139    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6140    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6141  }
6142
6143  UsingShadowDecl *Shadow
6144    = UsingShadowDecl::Create(Context, CurContext,
6145                              UD->getLocation(), UD, Target);
6146  UD->addShadowDecl(Shadow);
6147
6148  Shadow->setAccess(UD->getAccess());
6149  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6150    Shadow->setInvalidDecl();
6151
6152  if (S)
6153    PushOnScopeChains(Shadow, S);
6154  else
6155    CurContext->addDecl(Shadow);
6156
6157
6158  return Shadow;
6159}
6160
6161/// Hides a using shadow declaration.  This is required by the current
6162/// using-decl implementation when a resolvable using declaration in a
6163/// class is followed by a declaration which would hide or override
6164/// one or more of the using decl's targets; for example:
6165///
6166///   struct Base { void foo(int); };
6167///   struct Derived : Base {
6168///     using Base::foo;
6169///     void foo(int);
6170///   };
6171///
6172/// The governing language is C++03 [namespace.udecl]p12:
6173///
6174///   When a using-declaration brings names from a base class into a
6175///   derived class scope, member functions in the derived class
6176///   override and/or hide member functions with the same name and
6177///   parameter types in a base class (rather than conflicting).
6178///
6179/// There are two ways to implement this:
6180///   (1) optimistically create shadow decls when they're not hidden
6181///       by existing declarations, or
6182///   (2) don't create any shadow decls (or at least don't make them
6183///       visible) until we've fully parsed/instantiated the class.
6184/// The problem with (1) is that we might have to retroactively remove
6185/// a shadow decl, which requires several O(n) operations because the
6186/// decl structures are (very reasonably) not designed for removal.
6187/// (2) avoids this but is very fiddly and phase-dependent.
6188void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6189  if (Shadow->getDeclName().getNameKind() ==
6190        DeclarationName::CXXConversionFunctionName)
6191    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6192
6193  // Remove it from the DeclContext...
6194  Shadow->getDeclContext()->removeDecl(Shadow);
6195
6196  // ...and the scope, if applicable...
6197  if (S) {
6198    S->RemoveDecl(Shadow);
6199    IdResolver.RemoveDecl(Shadow);
6200  }
6201
6202  // ...and the using decl.
6203  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6204
6205  // TODO: complain somehow if Shadow was used.  It shouldn't
6206  // be possible for this to happen, because...?
6207}
6208
6209/// Builds a using declaration.
6210///
6211/// \param IsInstantiation - Whether this call arises from an
6212///   instantiation of an unresolved using declaration.  We treat
6213///   the lookup differently for these declarations.
6214NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6215                                       SourceLocation UsingLoc,
6216                                       CXXScopeSpec &SS,
6217                                       const DeclarationNameInfo &NameInfo,
6218                                       AttributeList *AttrList,
6219                                       bool IsInstantiation,
6220                                       bool IsTypeName,
6221                                       SourceLocation TypenameLoc) {
6222  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6223  SourceLocation IdentLoc = NameInfo.getLoc();
6224  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6225
6226  // FIXME: We ignore attributes for now.
6227
6228  if (SS.isEmpty()) {
6229    Diag(IdentLoc, diag::err_using_requires_qualname);
6230    return 0;
6231  }
6232
6233  // Do the redeclaration lookup in the current scope.
6234  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6235                        ForRedeclaration);
6236  Previous.setHideTags(false);
6237  if (S) {
6238    LookupName(Previous, S);
6239
6240    // It is really dumb that we have to do this.
6241    LookupResult::Filter F = Previous.makeFilter();
6242    while (F.hasNext()) {
6243      NamedDecl *D = F.next();
6244      if (!isDeclInScope(D, CurContext, S))
6245        F.erase();
6246    }
6247    F.done();
6248  } else {
6249    assert(IsInstantiation && "no scope in non-instantiation");
6250    assert(CurContext->isRecord() && "scope not record in instantiation");
6251    LookupQualifiedName(Previous, CurContext);
6252  }
6253
6254  // Check for invalid redeclarations.
6255  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6256    return 0;
6257
6258  // Check for bad qualifiers.
6259  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6260    return 0;
6261
6262  DeclContext *LookupContext = computeDeclContext(SS);
6263  NamedDecl *D;
6264  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6265  if (!LookupContext) {
6266    if (IsTypeName) {
6267      // FIXME: not all declaration name kinds are legal here
6268      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6269                                              UsingLoc, TypenameLoc,
6270                                              QualifierLoc,
6271                                              IdentLoc, NameInfo.getName());
6272    } else {
6273      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6274                                           QualifierLoc, NameInfo);
6275    }
6276  } else {
6277    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6278                          NameInfo, IsTypeName);
6279  }
6280  D->setAccess(AS);
6281  CurContext->addDecl(D);
6282
6283  if (!LookupContext) return D;
6284  UsingDecl *UD = cast<UsingDecl>(D);
6285
6286  if (RequireCompleteDeclContext(SS, LookupContext)) {
6287    UD->setInvalidDecl();
6288    return UD;
6289  }
6290
6291  // The normal rules do not apply to inheriting constructor declarations.
6292  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6293    if (CheckInheritingConstructorUsingDecl(UD))
6294      UD->setInvalidDecl();
6295    return UD;
6296  }
6297
6298  // Otherwise, look up the target name.
6299
6300  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6301
6302  // Unlike most lookups, we don't always want to hide tag
6303  // declarations: tag names are visible through the using declaration
6304  // even if hidden by ordinary names, *except* in a dependent context
6305  // where it's important for the sanity of two-phase lookup.
6306  if (!IsInstantiation)
6307    R.setHideTags(false);
6308
6309  // For the purposes of this lookup, we have a base object type
6310  // equal to that of the current context.
6311  if (CurContext->isRecord()) {
6312    R.setBaseObjectType(
6313                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6314  }
6315
6316  LookupQualifiedName(R, LookupContext);
6317
6318  if (R.empty()) {
6319    Diag(IdentLoc, diag::err_no_member)
6320      << NameInfo.getName() << LookupContext << SS.getRange();
6321    UD->setInvalidDecl();
6322    return UD;
6323  }
6324
6325  if (R.isAmbiguous()) {
6326    UD->setInvalidDecl();
6327    return UD;
6328  }
6329
6330  if (IsTypeName) {
6331    // If we asked for a typename and got a non-type decl, error out.
6332    if (!R.getAsSingle<TypeDecl>()) {
6333      Diag(IdentLoc, diag::err_using_typename_non_type);
6334      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6335        Diag((*I)->getUnderlyingDecl()->getLocation(),
6336             diag::note_using_decl_target);
6337      UD->setInvalidDecl();
6338      return UD;
6339    }
6340  } else {
6341    // If we asked for a non-typename and we got a type, error out,
6342    // but only if this is an instantiation of an unresolved using
6343    // decl.  Otherwise just silently find the type name.
6344    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6345      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6346      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6347      UD->setInvalidDecl();
6348      return UD;
6349    }
6350  }
6351
6352  // C++0x N2914 [namespace.udecl]p6:
6353  // A using-declaration shall not name a namespace.
6354  if (R.getAsSingle<NamespaceDecl>()) {
6355    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6356      << SS.getRange();
6357    UD->setInvalidDecl();
6358    return UD;
6359  }
6360
6361  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6362    if (!CheckUsingShadowDecl(UD, *I, Previous))
6363      BuildUsingShadowDecl(S, UD, *I);
6364  }
6365
6366  return UD;
6367}
6368
6369/// Additional checks for a using declaration referring to a constructor name.
6370bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6371  assert(!UD->isTypeName() && "expecting a constructor name");
6372
6373  const Type *SourceType = UD->getQualifier()->getAsType();
6374  assert(SourceType &&
6375         "Using decl naming constructor doesn't have type in scope spec.");
6376  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6377
6378  // Check whether the named type is a direct base class.
6379  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6380  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6381  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6382       BaseIt != BaseE; ++BaseIt) {
6383    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6384    if (CanonicalSourceType == BaseType)
6385      break;
6386    if (BaseIt->getType()->isDependentType())
6387      break;
6388  }
6389
6390  if (BaseIt == BaseE) {
6391    // Did not find SourceType in the bases.
6392    Diag(UD->getUsingLocation(),
6393         diag::err_using_decl_constructor_not_in_direct_base)
6394      << UD->getNameInfo().getSourceRange()
6395      << QualType(SourceType, 0) << TargetClass;
6396    return true;
6397  }
6398
6399  if (!CurContext->isDependentContext())
6400    BaseIt->setInheritConstructors();
6401
6402  return false;
6403}
6404
6405/// Checks that the given using declaration is not an invalid
6406/// redeclaration.  Note that this is checking only for the using decl
6407/// itself, not for any ill-formedness among the UsingShadowDecls.
6408bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6409                                       bool isTypeName,
6410                                       const CXXScopeSpec &SS,
6411                                       SourceLocation NameLoc,
6412                                       const LookupResult &Prev) {
6413  // C++03 [namespace.udecl]p8:
6414  // C++0x [namespace.udecl]p10:
6415  //   A using-declaration is a declaration and can therefore be used
6416  //   repeatedly where (and only where) multiple declarations are
6417  //   allowed.
6418  //
6419  // That's in non-member contexts.
6420  if (!CurContext->getRedeclContext()->isRecord())
6421    return false;
6422
6423  NestedNameSpecifier *Qual
6424    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6425
6426  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6427    NamedDecl *D = *I;
6428
6429    bool DTypename;
6430    NestedNameSpecifier *DQual;
6431    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6432      DTypename = UD->isTypeName();
6433      DQual = UD->getQualifier();
6434    } else if (UnresolvedUsingValueDecl *UD
6435                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6436      DTypename = false;
6437      DQual = UD->getQualifier();
6438    } else if (UnresolvedUsingTypenameDecl *UD
6439                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6440      DTypename = true;
6441      DQual = UD->getQualifier();
6442    } else continue;
6443
6444    // using decls differ if one says 'typename' and the other doesn't.
6445    // FIXME: non-dependent using decls?
6446    if (isTypeName != DTypename) continue;
6447
6448    // using decls differ if they name different scopes (but note that
6449    // template instantiation can cause this check to trigger when it
6450    // didn't before instantiation).
6451    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6452        Context.getCanonicalNestedNameSpecifier(DQual))
6453      continue;
6454
6455    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6456    Diag(D->getLocation(), diag::note_using_decl) << 1;
6457    return true;
6458  }
6459
6460  return false;
6461}
6462
6463
6464/// Checks that the given nested-name qualifier used in a using decl
6465/// in the current context is appropriately related to the current
6466/// scope.  If an error is found, diagnoses it and returns true.
6467bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6468                                   const CXXScopeSpec &SS,
6469                                   SourceLocation NameLoc) {
6470  DeclContext *NamedContext = computeDeclContext(SS);
6471
6472  if (!CurContext->isRecord()) {
6473    // C++03 [namespace.udecl]p3:
6474    // C++0x [namespace.udecl]p8:
6475    //   A using-declaration for a class member shall be a member-declaration.
6476
6477    // If we weren't able to compute a valid scope, it must be a
6478    // dependent class scope.
6479    if (!NamedContext || NamedContext->isRecord()) {
6480      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6481        << SS.getRange();
6482      return true;
6483    }
6484
6485    // Otherwise, everything is known to be fine.
6486    return false;
6487  }
6488
6489  // The current scope is a record.
6490
6491  // If the named context is dependent, we can't decide much.
6492  if (!NamedContext) {
6493    // FIXME: in C++0x, we can diagnose if we can prove that the
6494    // nested-name-specifier does not refer to a base class, which is
6495    // still possible in some cases.
6496
6497    // Otherwise we have to conservatively report that things might be
6498    // okay.
6499    return false;
6500  }
6501
6502  if (!NamedContext->isRecord()) {
6503    // Ideally this would point at the last name in the specifier,
6504    // but we don't have that level of source info.
6505    Diag(SS.getRange().getBegin(),
6506         diag::err_using_decl_nested_name_specifier_is_not_class)
6507      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6508    return true;
6509  }
6510
6511  if (!NamedContext->isDependentContext() &&
6512      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6513    return true;
6514
6515  if (getLangOpts().CPlusPlus0x) {
6516    // C++0x [namespace.udecl]p3:
6517    //   In a using-declaration used as a member-declaration, the
6518    //   nested-name-specifier shall name a base class of the class
6519    //   being defined.
6520
6521    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6522                                 cast<CXXRecordDecl>(NamedContext))) {
6523      if (CurContext == NamedContext) {
6524        Diag(NameLoc,
6525             diag::err_using_decl_nested_name_specifier_is_current_class)
6526          << SS.getRange();
6527        return true;
6528      }
6529
6530      Diag(SS.getRange().getBegin(),
6531           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6532        << (NestedNameSpecifier*) SS.getScopeRep()
6533        << cast<CXXRecordDecl>(CurContext)
6534        << SS.getRange();
6535      return true;
6536    }
6537
6538    return false;
6539  }
6540
6541  // C++03 [namespace.udecl]p4:
6542  //   A using-declaration used as a member-declaration shall refer
6543  //   to a member of a base class of the class being defined [etc.].
6544
6545  // Salient point: SS doesn't have to name a base class as long as
6546  // lookup only finds members from base classes.  Therefore we can
6547  // diagnose here only if we can prove that that can't happen,
6548  // i.e. if the class hierarchies provably don't intersect.
6549
6550  // TODO: it would be nice if "definitely valid" results were cached
6551  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6552  // need to be repeated.
6553
6554  struct UserData {
6555    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6556
6557    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6558      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6559      Data->Bases.insert(Base);
6560      return true;
6561    }
6562
6563    bool hasDependentBases(const CXXRecordDecl *Class) {
6564      return !Class->forallBases(collect, this);
6565    }
6566
6567    /// Returns true if the base is dependent or is one of the
6568    /// accumulated base classes.
6569    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6570      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6571      return !Data->Bases.count(Base);
6572    }
6573
6574    bool mightShareBases(const CXXRecordDecl *Class) {
6575      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6576    }
6577  };
6578
6579  UserData Data;
6580
6581  // Returns false if we find a dependent base.
6582  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6583    return false;
6584
6585  // Returns false if the class has a dependent base or if it or one
6586  // of its bases is present in the base set of the current context.
6587  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6588    return false;
6589
6590  Diag(SS.getRange().getBegin(),
6591       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6592    << (NestedNameSpecifier*) SS.getScopeRep()
6593    << cast<CXXRecordDecl>(CurContext)
6594    << SS.getRange();
6595
6596  return true;
6597}
6598
6599Decl *Sema::ActOnAliasDeclaration(Scope *S,
6600                                  AccessSpecifier AS,
6601                                  MultiTemplateParamsArg TemplateParamLists,
6602                                  SourceLocation UsingLoc,
6603                                  UnqualifiedId &Name,
6604                                  TypeResult Type) {
6605  // Skip up to the relevant declaration scope.
6606  while (S->getFlags() & Scope::TemplateParamScope)
6607    S = S->getParent();
6608  assert((S->getFlags() & Scope::DeclScope) &&
6609         "got alias-declaration outside of declaration scope");
6610
6611  if (Type.isInvalid())
6612    return 0;
6613
6614  bool Invalid = false;
6615  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6616  TypeSourceInfo *TInfo = 0;
6617  GetTypeFromParser(Type.get(), &TInfo);
6618
6619  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6620    return 0;
6621
6622  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6623                                      UPPC_DeclarationType)) {
6624    Invalid = true;
6625    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6626                                             TInfo->getTypeLoc().getBeginLoc());
6627  }
6628
6629  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6630  LookupName(Previous, S);
6631
6632  // Warn about shadowing the name of a template parameter.
6633  if (Previous.isSingleResult() &&
6634      Previous.getFoundDecl()->isTemplateParameter()) {
6635    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6636    Previous.clear();
6637  }
6638
6639  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6640         "name in alias declaration must be an identifier");
6641  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6642                                               Name.StartLocation,
6643                                               Name.Identifier, TInfo);
6644
6645  NewTD->setAccess(AS);
6646
6647  if (Invalid)
6648    NewTD->setInvalidDecl();
6649
6650  CheckTypedefForVariablyModifiedType(S, NewTD);
6651  Invalid |= NewTD->isInvalidDecl();
6652
6653  bool Redeclaration = false;
6654
6655  NamedDecl *NewND;
6656  if (TemplateParamLists.size()) {
6657    TypeAliasTemplateDecl *OldDecl = 0;
6658    TemplateParameterList *OldTemplateParams = 0;
6659
6660    if (TemplateParamLists.size() != 1) {
6661      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6662        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6663         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6664    }
6665    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6666
6667    // Only consider previous declarations in the same scope.
6668    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6669                         /*ExplicitInstantiationOrSpecialization*/false);
6670    if (!Previous.empty()) {
6671      Redeclaration = true;
6672
6673      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6674      if (!OldDecl && !Invalid) {
6675        Diag(UsingLoc, diag::err_redefinition_different_kind)
6676          << Name.Identifier;
6677
6678        NamedDecl *OldD = Previous.getRepresentativeDecl();
6679        if (OldD->getLocation().isValid())
6680          Diag(OldD->getLocation(), diag::note_previous_definition);
6681
6682        Invalid = true;
6683      }
6684
6685      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6686        if (TemplateParameterListsAreEqual(TemplateParams,
6687                                           OldDecl->getTemplateParameters(),
6688                                           /*Complain=*/true,
6689                                           TPL_TemplateMatch))
6690          OldTemplateParams = OldDecl->getTemplateParameters();
6691        else
6692          Invalid = true;
6693
6694        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6695        if (!Invalid &&
6696            !Context.hasSameType(OldTD->getUnderlyingType(),
6697                                 NewTD->getUnderlyingType())) {
6698          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6699          // but we can't reasonably accept it.
6700          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6701            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6702          if (OldTD->getLocation().isValid())
6703            Diag(OldTD->getLocation(), diag::note_previous_definition);
6704          Invalid = true;
6705        }
6706      }
6707    }
6708
6709    // Merge any previous default template arguments into our parameters,
6710    // and check the parameter list.
6711    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6712                                   TPC_TypeAliasTemplate))
6713      return 0;
6714
6715    TypeAliasTemplateDecl *NewDecl =
6716      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6717                                    Name.Identifier, TemplateParams,
6718                                    NewTD);
6719
6720    NewDecl->setAccess(AS);
6721
6722    if (Invalid)
6723      NewDecl->setInvalidDecl();
6724    else if (OldDecl)
6725      NewDecl->setPreviousDeclaration(OldDecl);
6726
6727    NewND = NewDecl;
6728  } else {
6729    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6730    NewND = NewTD;
6731  }
6732
6733  if (!Redeclaration)
6734    PushOnScopeChains(NewND, S);
6735
6736  return NewND;
6737}
6738
6739Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6740                                             SourceLocation NamespaceLoc,
6741                                             SourceLocation AliasLoc,
6742                                             IdentifierInfo *Alias,
6743                                             CXXScopeSpec &SS,
6744                                             SourceLocation IdentLoc,
6745                                             IdentifierInfo *Ident) {
6746
6747  // Lookup the namespace name.
6748  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6749  LookupParsedName(R, S, &SS);
6750
6751  // Check if we have a previous declaration with the same name.
6752  NamedDecl *PrevDecl
6753    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6754                       ForRedeclaration);
6755  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6756    PrevDecl = 0;
6757
6758  if (PrevDecl) {
6759    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6760      // We already have an alias with the same name that points to the same
6761      // namespace, so don't create a new one.
6762      // FIXME: At some point, we'll want to create the (redundant)
6763      // declaration to maintain better source information.
6764      if (!R.isAmbiguous() && !R.empty() &&
6765          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6766        return 0;
6767    }
6768
6769    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6770      diag::err_redefinition_different_kind;
6771    Diag(AliasLoc, DiagID) << Alias;
6772    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6773    return 0;
6774  }
6775
6776  if (R.isAmbiguous())
6777    return 0;
6778
6779  if (R.empty()) {
6780    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6781      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6782      return 0;
6783    }
6784  }
6785
6786  NamespaceAliasDecl *AliasDecl =
6787    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6788                               Alias, SS.getWithLocInContext(Context),
6789                               IdentLoc, R.getFoundDecl());
6790
6791  PushOnScopeChains(AliasDecl, S);
6792  return AliasDecl;
6793}
6794
6795namespace {
6796  /// \brief Scoped object used to handle the state changes required in Sema
6797  /// to implicitly define the body of a C++ member function;
6798  class ImplicitlyDefinedFunctionScope {
6799    Sema &S;
6800    Sema::ContextRAII SavedContext;
6801
6802  public:
6803    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6804      : S(S), SavedContext(S, Method)
6805    {
6806      S.PushFunctionScope();
6807      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6808    }
6809
6810    ~ImplicitlyDefinedFunctionScope() {
6811      S.PopExpressionEvaluationContext();
6812      S.PopFunctionScopeInfo();
6813    }
6814  };
6815}
6816
6817Sema::ImplicitExceptionSpecification
6818Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6819  // C++ [except.spec]p14:
6820  //   An implicitly declared special member function (Clause 12) shall have an
6821  //   exception-specification. [...]
6822  ImplicitExceptionSpecification ExceptSpec(*this);
6823  if (ClassDecl->isInvalidDecl())
6824    return ExceptSpec;
6825
6826  // Direct base-class constructors.
6827  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6828                                       BEnd = ClassDecl->bases_end();
6829       B != BEnd; ++B) {
6830    if (B->isVirtual()) // Handled below.
6831      continue;
6832
6833    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6834      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6835      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6836      // If this is a deleted function, add it anyway. This might be conformant
6837      // with the standard. This might not. I'm not sure. It might not matter.
6838      if (Constructor)
6839        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6840    }
6841  }
6842
6843  // Virtual base-class constructors.
6844  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6845                                       BEnd = ClassDecl->vbases_end();
6846       B != BEnd; ++B) {
6847    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6848      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6849      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6850      // If this is a deleted function, add it anyway. This might be conformant
6851      // with the standard. This might not. I'm not sure. It might not matter.
6852      if (Constructor)
6853        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6854    }
6855  }
6856
6857  // Field constructors.
6858  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6859                               FEnd = ClassDecl->field_end();
6860       F != FEnd; ++F) {
6861    if (F->hasInClassInitializer()) {
6862      if (Expr *E = F->getInClassInitializer())
6863        ExceptSpec.CalledExpr(E);
6864      else if (!F->isInvalidDecl())
6865        ExceptSpec.SetDelayed();
6866    } else if (const RecordType *RecordTy
6867              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6868      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6869      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6870      // If this is a deleted function, add it anyway. This might be conformant
6871      // with the standard. This might not. I'm not sure. It might not matter.
6872      // In particular, the problem is that this function never gets called. It
6873      // might just be ill-formed because this function attempts to refer to
6874      // a deleted function here.
6875      if (Constructor)
6876        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6877    }
6878  }
6879
6880  return ExceptSpec;
6881}
6882
6883CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6884                                                     CXXRecordDecl *ClassDecl) {
6885  // C++ [class.ctor]p5:
6886  //   A default constructor for a class X is a constructor of class X
6887  //   that can be called without an argument. If there is no
6888  //   user-declared constructor for class X, a default constructor is
6889  //   implicitly declared. An implicitly-declared default constructor
6890  //   is an inline public member of its class.
6891  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6892         "Should not build implicit default constructor!");
6893
6894  ImplicitExceptionSpecification Spec =
6895    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6896  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6897
6898  // Create the actual constructor declaration.
6899  CanQualType ClassType
6900    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6901  SourceLocation ClassLoc = ClassDecl->getLocation();
6902  DeclarationName Name
6903    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6904  DeclarationNameInfo NameInfo(Name, ClassLoc);
6905  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6906      Context, ClassDecl, ClassLoc, NameInfo,
6907      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6908      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6909      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6910        getLangOpts().CPlusPlus0x);
6911  DefaultCon->setAccess(AS_public);
6912  DefaultCon->setDefaulted();
6913  DefaultCon->setImplicit();
6914  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6915
6916  // Note that we have declared this constructor.
6917  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6918
6919  if (Scope *S = getScopeForContext(ClassDecl))
6920    PushOnScopeChains(DefaultCon, S, false);
6921  ClassDecl->addDecl(DefaultCon);
6922
6923  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6924    DefaultCon->setDeletedAsWritten();
6925
6926  return DefaultCon;
6927}
6928
6929void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6930                                            CXXConstructorDecl *Constructor) {
6931  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6932          !Constructor->doesThisDeclarationHaveABody() &&
6933          !Constructor->isDeleted()) &&
6934    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6935
6936  CXXRecordDecl *ClassDecl = Constructor->getParent();
6937  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6938
6939  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6940  DiagnosticErrorTrap Trap(Diags);
6941  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6942      Trap.hasErrorOccurred()) {
6943    Diag(CurrentLocation, diag::note_member_synthesized_at)
6944      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6945    Constructor->setInvalidDecl();
6946    return;
6947  }
6948
6949  SourceLocation Loc = Constructor->getLocation();
6950  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6951
6952  Constructor->setUsed();
6953  MarkVTableUsed(CurrentLocation, ClassDecl);
6954
6955  if (ASTMutationListener *L = getASTMutationListener()) {
6956    L->CompletedImplicitDefinition(Constructor);
6957  }
6958}
6959
6960/// Get any existing defaulted default constructor for the given class. Do not
6961/// implicitly define one if it does not exist.
6962static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6963                                                             CXXRecordDecl *D) {
6964  ASTContext &Context = Self.Context;
6965  QualType ClassType = Context.getTypeDeclType(D);
6966  DeclarationName ConstructorName
6967    = Context.DeclarationNames.getCXXConstructorName(
6968                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6969
6970  DeclContext::lookup_const_iterator Con, ConEnd;
6971  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6972       Con != ConEnd; ++Con) {
6973    // A function template cannot be defaulted.
6974    if (isa<FunctionTemplateDecl>(*Con))
6975      continue;
6976
6977    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6978    if (Constructor->isDefaultConstructor())
6979      return Constructor->isDefaulted() ? Constructor : 0;
6980  }
6981  return 0;
6982}
6983
6984void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6985  if (!D) return;
6986  AdjustDeclIfTemplate(D);
6987
6988  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6989  CXXConstructorDecl *CtorDecl
6990    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6991
6992  if (!CtorDecl) return;
6993
6994  // Compute the exception specification for the default constructor.
6995  const FunctionProtoType *CtorTy =
6996    CtorDecl->getType()->castAs<FunctionProtoType>();
6997  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6998    // FIXME: Don't do this unless the exception spec is needed.
6999    ImplicitExceptionSpecification Spec =
7000      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7001    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7002    assert(EPI.ExceptionSpecType != EST_Delayed);
7003
7004    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7005  }
7006
7007  // If the default constructor is explicitly defaulted, checking the exception
7008  // specification is deferred until now.
7009  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7010      !ClassDecl->isDependentType())
7011    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7012}
7013
7014void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7015  // We start with an initial pass over the base classes to collect those that
7016  // inherit constructors from. If there are none, we can forgo all further
7017  // processing.
7018  typedef SmallVector<const RecordType *, 4> BasesVector;
7019  BasesVector BasesToInheritFrom;
7020  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7021                                          BaseE = ClassDecl->bases_end();
7022         BaseIt != BaseE; ++BaseIt) {
7023    if (BaseIt->getInheritConstructors()) {
7024      QualType Base = BaseIt->getType();
7025      if (Base->isDependentType()) {
7026        // If we inherit constructors from anything that is dependent, just
7027        // abort processing altogether. We'll get another chance for the
7028        // instantiations.
7029        return;
7030      }
7031      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7032    }
7033  }
7034  if (BasesToInheritFrom.empty())
7035    return;
7036
7037  // Now collect the constructors that we already have in the current class.
7038  // Those take precedence over inherited constructors.
7039  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7040  //   unless there is a user-declared constructor with the same signature in
7041  //   the class where the using-declaration appears.
7042  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7043  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7044                                    CtorE = ClassDecl->ctor_end();
7045       CtorIt != CtorE; ++CtorIt) {
7046    ExistingConstructors.insert(
7047        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7048  }
7049
7050  DeclarationName CreatedCtorName =
7051      Context.DeclarationNames.getCXXConstructorName(
7052          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7053
7054  // Now comes the true work.
7055  // First, we keep a map from constructor types to the base that introduced
7056  // them. Needed for finding conflicting constructors. We also keep the
7057  // actually inserted declarations in there, for pretty diagnostics.
7058  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7059  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7060  ConstructorToSourceMap InheritedConstructors;
7061  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7062                             BaseE = BasesToInheritFrom.end();
7063       BaseIt != BaseE; ++BaseIt) {
7064    const RecordType *Base = *BaseIt;
7065    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7066    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7067    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7068                                      CtorE = BaseDecl->ctor_end();
7069         CtorIt != CtorE; ++CtorIt) {
7070      // Find the using declaration for inheriting this base's constructors.
7071      // FIXME: Don't perform name lookup just to obtain a source location!
7072      DeclarationName Name =
7073          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7074      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7075      LookupQualifiedName(Result, CurContext);
7076      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7077      SourceLocation UsingLoc = UD ? UD->getLocation() :
7078                                     ClassDecl->getLocation();
7079
7080      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7081      //   from the class X named in the using-declaration consists of actual
7082      //   constructors and notional constructors that result from the
7083      //   transformation of defaulted parameters as follows:
7084      //   - all non-template default constructors of X, and
7085      //   - for each non-template constructor of X that has at least one
7086      //     parameter with a default argument, the set of constructors that
7087      //     results from omitting any ellipsis parameter specification and
7088      //     successively omitting parameters with a default argument from the
7089      //     end of the parameter-type-list.
7090      CXXConstructorDecl *BaseCtor = &*CtorIt;
7091      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7092      const FunctionProtoType *BaseCtorType =
7093          BaseCtor->getType()->getAs<FunctionProtoType>();
7094
7095      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7096                    maxParams = BaseCtor->getNumParams();
7097           params <= maxParams; ++params) {
7098        // Skip default constructors. They're never inherited.
7099        if (params == 0)
7100          continue;
7101        // Skip copy and move constructors for the same reason.
7102        if (CanBeCopyOrMove && params == 1)
7103          continue;
7104
7105        // Build up a function type for this particular constructor.
7106        // FIXME: The working paper does not consider that the exception spec
7107        // for the inheriting constructor might be larger than that of the
7108        // source. This code doesn't yet, either. When it does, this code will
7109        // need to be delayed until after exception specifications and in-class
7110        // member initializers are attached.
7111        const Type *NewCtorType;
7112        if (params == maxParams)
7113          NewCtorType = BaseCtorType;
7114        else {
7115          SmallVector<QualType, 16> Args;
7116          for (unsigned i = 0; i < params; ++i) {
7117            Args.push_back(BaseCtorType->getArgType(i));
7118          }
7119          FunctionProtoType::ExtProtoInfo ExtInfo =
7120              BaseCtorType->getExtProtoInfo();
7121          ExtInfo.Variadic = false;
7122          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7123                                                Args.data(), params, ExtInfo)
7124                       .getTypePtr();
7125        }
7126        const Type *CanonicalNewCtorType =
7127            Context.getCanonicalType(NewCtorType);
7128
7129        // Now that we have the type, first check if the class already has a
7130        // constructor with this signature.
7131        if (ExistingConstructors.count(CanonicalNewCtorType))
7132          continue;
7133
7134        // Then we check if we have already declared an inherited constructor
7135        // with this signature.
7136        std::pair<ConstructorToSourceMap::iterator, bool> result =
7137            InheritedConstructors.insert(std::make_pair(
7138                CanonicalNewCtorType,
7139                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7140        if (!result.second) {
7141          // Already in the map. If it came from a different class, that's an
7142          // error. Not if it's from the same.
7143          CanQualType PreviousBase = result.first->second.first;
7144          if (CanonicalBase != PreviousBase) {
7145            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7146            const CXXConstructorDecl *PrevBaseCtor =
7147                PrevCtor->getInheritedConstructor();
7148            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7149
7150            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7151            Diag(BaseCtor->getLocation(),
7152                 diag::note_using_decl_constructor_conflict_current_ctor);
7153            Diag(PrevBaseCtor->getLocation(),
7154                 diag::note_using_decl_constructor_conflict_previous_ctor);
7155            Diag(PrevCtor->getLocation(),
7156                 diag::note_using_decl_constructor_conflict_previous_using);
7157          }
7158          continue;
7159        }
7160
7161        // OK, we're there, now add the constructor.
7162        // C++0x [class.inhctor]p8: [...] that would be performed by a
7163        //   user-written inline constructor [...]
7164        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7165        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7166            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7167            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7168            /*ImplicitlyDeclared=*/true,
7169            // FIXME: Due to a defect in the standard, we treat inherited
7170            // constructors as constexpr even if that makes them ill-formed.
7171            /*Constexpr=*/BaseCtor->isConstexpr());
7172        NewCtor->setAccess(BaseCtor->getAccess());
7173
7174        // Build up the parameter decls and add them.
7175        SmallVector<ParmVarDecl *, 16> ParamDecls;
7176        for (unsigned i = 0; i < params; ++i) {
7177          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7178                                                   UsingLoc, UsingLoc,
7179                                                   /*IdentifierInfo=*/0,
7180                                                   BaseCtorType->getArgType(i),
7181                                                   /*TInfo=*/0, SC_None,
7182                                                   SC_None, /*DefaultArg=*/0));
7183        }
7184        NewCtor->setParams(ParamDecls);
7185        NewCtor->setInheritedConstructor(BaseCtor);
7186
7187        ClassDecl->addDecl(NewCtor);
7188        result.first->second.second = NewCtor;
7189      }
7190    }
7191  }
7192}
7193
7194Sema::ImplicitExceptionSpecification
7195Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7196  // C++ [except.spec]p14:
7197  //   An implicitly declared special member function (Clause 12) shall have
7198  //   an exception-specification.
7199  ImplicitExceptionSpecification ExceptSpec(*this);
7200  if (ClassDecl->isInvalidDecl())
7201    return ExceptSpec;
7202
7203  // Direct base-class destructors.
7204  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7205                                       BEnd = ClassDecl->bases_end();
7206       B != BEnd; ++B) {
7207    if (B->isVirtual()) // Handled below.
7208      continue;
7209
7210    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7211      ExceptSpec.CalledDecl(B->getLocStart(),
7212                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7213  }
7214
7215  // Virtual base-class destructors.
7216  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7217                                       BEnd = ClassDecl->vbases_end();
7218       B != BEnd; ++B) {
7219    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7220      ExceptSpec.CalledDecl(B->getLocStart(),
7221                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7222  }
7223
7224  // Field destructors.
7225  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7226                               FEnd = ClassDecl->field_end();
7227       F != FEnd; ++F) {
7228    if (const RecordType *RecordTy
7229        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7230      ExceptSpec.CalledDecl(F->getLocation(),
7231                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7232  }
7233
7234  return ExceptSpec;
7235}
7236
7237CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7238  // C++ [class.dtor]p2:
7239  //   If a class has no user-declared destructor, a destructor is
7240  //   declared implicitly. An implicitly-declared destructor is an
7241  //   inline public member of its class.
7242
7243  ImplicitExceptionSpecification Spec =
7244      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7245  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7246
7247  // Create the actual destructor declaration.
7248  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7249
7250  CanQualType ClassType
7251    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7252  SourceLocation ClassLoc = ClassDecl->getLocation();
7253  DeclarationName Name
7254    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7255  DeclarationNameInfo NameInfo(Name, ClassLoc);
7256  CXXDestructorDecl *Destructor
7257      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7258                                  /*isInline=*/true,
7259                                  /*isImplicitlyDeclared=*/true);
7260  Destructor->setAccess(AS_public);
7261  Destructor->setDefaulted();
7262  Destructor->setImplicit();
7263  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7264
7265  // Note that we have declared this destructor.
7266  ++ASTContext::NumImplicitDestructorsDeclared;
7267
7268  // Introduce this destructor into its scope.
7269  if (Scope *S = getScopeForContext(ClassDecl))
7270    PushOnScopeChains(Destructor, S, false);
7271  ClassDecl->addDecl(Destructor);
7272
7273  // This could be uniqued if it ever proves significant.
7274  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7275
7276  AddOverriddenMethods(ClassDecl, Destructor);
7277
7278  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7279    Destructor->setDeletedAsWritten();
7280
7281  return Destructor;
7282}
7283
7284void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7285                                    CXXDestructorDecl *Destructor) {
7286  assert((Destructor->isDefaulted() &&
7287          !Destructor->doesThisDeclarationHaveABody() &&
7288          !Destructor->isDeleted()) &&
7289         "DefineImplicitDestructor - call it for implicit default dtor");
7290  CXXRecordDecl *ClassDecl = Destructor->getParent();
7291  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7292
7293  if (Destructor->isInvalidDecl())
7294    return;
7295
7296  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7297
7298  DiagnosticErrorTrap Trap(Diags);
7299  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7300                                         Destructor->getParent());
7301
7302  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7303    Diag(CurrentLocation, diag::note_member_synthesized_at)
7304      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7305
7306    Destructor->setInvalidDecl();
7307    return;
7308  }
7309
7310  SourceLocation Loc = Destructor->getLocation();
7311  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7312  Destructor->setImplicitlyDefined(true);
7313  Destructor->setUsed();
7314  MarkVTableUsed(CurrentLocation, ClassDecl);
7315
7316  if (ASTMutationListener *L = getASTMutationListener()) {
7317    L->CompletedImplicitDefinition(Destructor);
7318  }
7319}
7320
7321/// \brief Perform any semantic analysis which needs to be delayed until all
7322/// pending class member declarations have been parsed.
7323void Sema::ActOnFinishCXXMemberDecls() {
7324  // Now we have parsed all exception specifications, determine the implicit
7325  // exception specifications for destructors.
7326  for (unsigned i = 0, e = DelayedDestructorExceptionSpecs.size();
7327       i != e; ++i) {
7328    CXXDestructorDecl *Dtor = DelayedDestructorExceptionSpecs[i];
7329    AdjustDestructorExceptionSpec(Dtor->getParent(), Dtor, true);
7330  }
7331  DelayedDestructorExceptionSpecs.clear();
7332
7333  // Perform any deferred checking of exception specifications for virtual
7334  // destructors.
7335  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7336       i != e; ++i) {
7337    const CXXDestructorDecl *Dtor =
7338        DelayedDestructorExceptionSpecChecks[i].first;
7339    assert(!Dtor->getParent()->isDependentType() &&
7340           "Should not ever add destructors of templates into the list.");
7341    CheckOverridingFunctionExceptionSpec(Dtor,
7342        DelayedDestructorExceptionSpecChecks[i].second);
7343  }
7344  DelayedDestructorExceptionSpecChecks.clear();
7345}
7346
7347void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7348                                         CXXDestructorDecl *destructor,
7349                                         bool WasDelayed) {
7350  // C++11 [class.dtor]p3:
7351  //   A declaration of a destructor that does not have an exception-
7352  //   specification is implicitly considered to have the same exception-
7353  //   specification as an implicit declaration.
7354  const FunctionProtoType *dtorType = destructor->getType()->
7355                                        getAs<FunctionProtoType>();
7356  if (!WasDelayed && dtorType->hasExceptionSpec())
7357    return;
7358
7359  ImplicitExceptionSpecification exceptSpec =
7360      ComputeDefaultedDtorExceptionSpec(classDecl);
7361
7362  // Replace the destructor's type, building off the existing one. Fortunately,
7363  // the only thing of interest in the destructor type is its extended info.
7364  // The return and arguments are fixed.
7365  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7366  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7367  epi.NumExceptions = exceptSpec.size();
7368  epi.Exceptions = exceptSpec.data();
7369  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7370
7371  destructor->setType(ty);
7372
7373  // If we can't compute the exception specification for this destructor yet
7374  // (because it depends on an exception specification which we have not parsed
7375  // yet), make a note that we need to try again when the class is complete.
7376  if (epi.ExceptionSpecType == EST_Delayed) {
7377    assert(!WasDelayed && "couldn't compute destructor exception spec");
7378    DelayedDestructorExceptionSpecs.push_back(destructor);
7379  }
7380
7381  // FIXME: If the destructor has a body that could throw, and the newly created
7382  // spec doesn't allow exceptions, we should emit a warning, because this
7383  // change in behavior can break conforming C++03 programs at runtime.
7384  // However, we don't have a body yet, so it needs to be done somewhere else.
7385}
7386
7387/// \brief Builds a statement that copies/moves the given entity from \p From to
7388/// \c To.
7389///
7390/// This routine is used to copy/move the members of a class with an
7391/// implicitly-declared copy/move assignment operator. When the entities being
7392/// copied are arrays, this routine builds for loops to copy them.
7393///
7394/// \param S The Sema object used for type-checking.
7395///
7396/// \param Loc The location where the implicit copy/move is being generated.
7397///
7398/// \param T The type of the expressions being copied/moved. Both expressions
7399/// must have this type.
7400///
7401/// \param To The expression we are copying/moving to.
7402///
7403/// \param From The expression we are copying/moving from.
7404///
7405/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7406/// Otherwise, it's a non-static member subobject.
7407///
7408/// \param Copying Whether we're copying or moving.
7409///
7410/// \param Depth Internal parameter recording the depth of the recursion.
7411///
7412/// \returns A statement or a loop that copies the expressions.
7413static StmtResult
7414BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7415                      Expr *To, Expr *From,
7416                      bool CopyingBaseSubobject, bool Copying,
7417                      unsigned Depth = 0) {
7418  // C++0x [class.copy]p28:
7419  //   Each subobject is assigned in the manner appropriate to its type:
7420  //
7421  //     - if the subobject is of class type, as if by a call to operator= with
7422  //       the subobject as the object expression and the corresponding
7423  //       subobject of x as a single function argument (as if by explicit
7424  //       qualification; that is, ignoring any possible virtual overriding
7425  //       functions in more derived classes);
7426  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7427    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7428
7429    // Look for operator=.
7430    DeclarationName Name
7431      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7432    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7433    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7434
7435    // Filter out any result that isn't a copy/move-assignment operator.
7436    LookupResult::Filter F = OpLookup.makeFilter();
7437    while (F.hasNext()) {
7438      NamedDecl *D = F.next();
7439      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7440        if (Method->isCopyAssignmentOperator() ||
7441            (!Copying && Method->isMoveAssignmentOperator()))
7442          continue;
7443
7444      F.erase();
7445    }
7446    F.done();
7447
7448    // Suppress the protected check (C++ [class.protected]) for each of the
7449    // assignment operators we found. This strange dance is required when
7450    // we're assigning via a base classes's copy-assignment operator. To
7451    // ensure that we're getting the right base class subobject (without
7452    // ambiguities), we need to cast "this" to that subobject type; to
7453    // ensure that we don't go through the virtual call mechanism, we need
7454    // to qualify the operator= name with the base class (see below). However,
7455    // this means that if the base class has a protected copy assignment
7456    // operator, the protected member access check will fail. So, we
7457    // rewrite "protected" access to "public" access in this case, since we
7458    // know by construction that we're calling from a derived class.
7459    if (CopyingBaseSubobject) {
7460      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7461           L != LEnd; ++L) {
7462        if (L.getAccess() == AS_protected)
7463          L.setAccess(AS_public);
7464      }
7465    }
7466
7467    // Create the nested-name-specifier that will be used to qualify the
7468    // reference to operator=; this is required to suppress the virtual
7469    // call mechanism.
7470    CXXScopeSpec SS;
7471    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7472    SS.MakeTrivial(S.Context,
7473                   NestedNameSpecifier::Create(S.Context, 0, false,
7474                                               CanonicalT),
7475                   Loc);
7476
7477    // Create the reference to operator=.
7478    ExprResult OpEqualRef
7479      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7480                                   /*TemplateKWLoc=*/SourceLocation(),
7481                                   /*FirstQualifierInScope=*/0,
7482                                   OpLookup,
7483                                   /*TemplateArgs=*/0,
7484                                   /*SuppressQualifierCheck=*/true);
7485    if (OpEqualRef.isInvalid())
7486      return StmtError();
7487
7488    // Build the call to the assignment operator.
7489
7490    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7491                                                  OpEqualRef.takeAs<Expr>(),
7492                                                  Loc, &From, 1, Loc);
7493    if (Call.isInvalid())
7494      return StmtError();
7495
7496    return S.Owned(Call.takeAs<Stmt>());
7497  }
7498
7499  //     - if the subobject is of scalar type, the built-in assignment
7500  //       operator is used.
7501  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7502  if (!ArrayTy) {
7503    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7504    if (Assignment.isInvalid())
7505      return StmtError();
7506
7507    return S.Owned(Assignment.takeAs<Stmt>());
7508  }
7509
7510  //     - if the subobject is an array, each element is assigned, in the
7511  //       manner appropriate to the element type;
7512
7513  // Construct a loop over the array bounds, e.g.,
7514  //
7515  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7516  //
7517  // that will copy each of the array elements.
7518  QualType SizeType = S.Context.getSizeType();
7519
7520  // Create the iteration variable.
7521  IdentifierInfo *IterationVarName = 0;
7522  {
7523    SmallString<8> Str;
7524    llvm::raw_svector_ostream OS(Str);
7525    OS << "__i" << Depth;
7526    IterationVarName = &S.Context.Idents.get(OS.str());
7527  }
7528  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7529                                          IterationVarName, SizeType,
7530                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7531                                          SC_None, SC_None);
7532
7533  // Initialize the iteration variable to zero.
7534  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7535  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7536
7537  // Create a reference to the iteration variable; we'll use this several
7538  // times throughout.
7539  Expr *IterationVarRef
7540    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7541  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7542  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7543  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7544
7545  // Create the DeclStmt that holds the iteration variable.
7546  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7547
7548  // Create the comparison against the array bound.
7549  llvm::APInt Upper
7550    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7551  Expr *Comparison
7552    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7553                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7554                                     BO_NE, S.Context.BoolTy,
7555                                     VK_RValue, OK_Ordinary, Loc);
7556
7557  // Create the pre-increment of the iteration variable.
7558  Expr *Increment
7559    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7560                                    VK_LValue, OK_Ordinary, Loc);
7561
7562  // Subscript the "from" and "to" expressions with the iteration variable.
7563  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7564                                                         IterationVarRefRVal,
7565                                                         Loc));
7566  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7567                                                       IterationVarRefRVal,
7568                                                       Loc));
7569  if (!Copying) // Cast to rvalue
7570    From = CastForMoving(S, From);
7571
7572  // Build the copy/move for an individual element of the array.
7573  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7574                                          To, From, CopyingBaseSubobject,
7575                                          Copying, Depth + 1);
7576  if (Copy.isInvalid())
7577    return StmtError();
7578
7579  // Construct the loop that copies all elements of this array.
7580  return S.ActOnForStmt(Loc, Loc, InitStmt,
7581                        S.MakeFullExpr(Comparison),
7582                        0, S.MakeFullExpr(Increment),
7583                        Loc, Copy.take());
7584}
7585
7586std::pair<Sema::ImplicitExceptionSpecification, bool>
7587Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7588                                                   CXXRecordDecl *ClassDecl) {
7589  if (ClassDecl->isInvalidDecl())
7590    return std::make_pair(ImplicitExceptionSpecification(*this), false);
7591
7592  // C++ [class.copy]p10:
7593  //   If the class definition does not explicitly declare a copy
7594  //   assignment operator, one is declared implicitly.
7595  //   The implicitly-defined copy assignment operator for a class X
7596  //   will have the form
7597  //
7598  //       X& X::operator=(const X&)
7599  //
7600  //   if
7601  bool HasConstCopyAssignment = true;
7602
7603  //       -- each direct base class B of X has a copy assignment operator
7604  //          whose parameter is of type const B&, const volatile B& or B,
7605  //          and
7606  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7607                                       BaseEnd = ClassDecl->bases_end();
7608       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7609    // We'll handle this below
7610    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7611      continue;
7612
7613    assert(!Base->getType()->isDependentType() &&
7614           "Cannot generate implicit members for class with dependent bases.");
7615    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7616    HasConstCopyAssignment &=
7617      (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7618                                    false, 0);
7619  }
7620
7621  // In C++11, the above citation has "or virtual" added
7622  if (LangOpts.CPlusPlus0x) {
7623    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7624                                         BaseEnd = ClassDecl->vbases_end();
7625         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7626      assert(!Base->getType()->isDependentType() &&
7627             "Cannot generate implicit members for class with dependent bases.");
7628      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7629      HasConstCopyAssignment &=
7630        (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7631                                      false, 0);
7632    }
7633  }
7634
7635  //       -- for all the nonstatic data members of X that are of a class
7636  //          type M (or array thereof), each such class type has a copy
7637  //          assignment operator whose parameter is of type const M&,
7638  //          const volatile M& or M.
7639  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7640                                  FieldEnd = ClassDecl->field_end();
7641       HasConstCopyAssignment && Field != FieldEnd;
7642       ++Field) {
7643    QualType FieldType = Context.getBaseElementType(Field->getType());
7644    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7645      HasConstCopyAssignment &=
7646        (bool)LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7647                                      false, 0);
7648    }
7649  }
7650
7651  //   Otherwise, the implicitly declared copy assignment operator will
7652  //   have the form
7653  //
7654  //       X& X::operator=(X&)
7655
7656  // C++ [except.spec]p14:
7657  //   An implicitly declared special member function (Clause 12) shall have an
7658  //   exception-specification. [...]
7659
7660  // It is unspecified whether or not an implicit copy assignment operator
7661  // attempts to deduplicate calls to assignment operators of virtual bases are
7662  // made. As such, this exception specification is effectively unspecified.
7663  // Based on a similar decision made for constness in C++0x, we're erring on
7664  // the side of assuming such calls to be made regardless of whether they
7665  // actually happen.
7666  ImplicitExceptionSpecification ExceptSpec(*this);
7667  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7668  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7669                                       BaseEnd = ClassDecl->bases_end();
7670       Base != BaseEnd; ++Base) {
7671    if (Base->isVirtual())
7672      continue;
7673
7674    CXXRecordDecl *BaseClassDecl
7675      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7676    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7677                                                            ArgQuals, false, 0))
7678      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7679  }
7680
7681  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7682                                       BaseEnd = ClassDecl->vbases_end();
7683       Base != BaseEnd; ++Base) {
7684    CXXRecordDecl *BaseClassDecl
7685      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7686    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7687                                                            ArgQuals, false, 0))
7688      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7689  }
7690
7691  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7692                                  FieldEnd = ClassDecl->field_end();
7693       Field != FieldEnd;
7694       ++Field) {
7695    QualType FieldType = Context.getBaseElementType(Field->getType());
7696    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7697      if (CXXMethodDecl *CopyAssign =
7698          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7699        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7700    }
7701  }
7702
7703  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7704}
7705
7706CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7707  // Note: The following rules are largely analoguous to the copy
7708  // constructor rules. Note that virtual bases are not taken into account
7709  // for determining the argument type of the operator. Note also that
7710  // operators taking an object instead of a reference are allowed.
7711
7712  ImplicitExceptionSpecification Spec(*this);
7713  bool Const;
7714  llvm::tie(Spec, Const) =
7715    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7716
7717  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7718  QualType RetType = Context.getLValueReferenceType(ArgType);
7719  if (Const)
7720    ArgType = ArgType.withConst();
7721  ArgType = Context.getLValueReferenceType(ArgType);
7722
7723  //   An implicitly-declared copy assignment operator is an inline public
7724  //   member of its class.
7725  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7726  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7727  SourceLocation ClassLoc = ClassDecl->getLocation();
7728  DeclarationNameInfo NameInfo(Name, ClassLoc);
7729  CXXMethodDecl *CopyAssignment
7730    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7731                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7732                            /*TInfo=*/0, /*isStatic=*/false,
7733                            /*StorageClassAsWritten=*/SC_None,
7734                            /*isInline=*/true, /*isConstexpr=*/false,
7735                            SourceLocation());
7736  CopyAssignment->setAccess(AS_public);
7737  CopyAssignment->setDefaulted();
7738  CopyAssignment->setImplicit();
7739  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7740
7741  // Add the parameter to the operator.
7742  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7743                                               ClassLoc, ClassLoc, /*Id=*/0,
7744                                               ArgType, /*TInfo=*/0,
7745                                               SC_None,
7746                                               SC_None, 0);
7747  CopyAssignment->setParams(FromParam);
7748
7749  // Note that we have added this copy-assignment operator.
7750  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7751
7752  if (Scope *S = getScopeForContext(ClassDecl))
7753    PushOnScopeChains(CopyAssignment, S, false);
7754  ClassDecl->addDecl(CopyAssignment);
7755
7756  // C++0x [class.copy]p19:
7757  //   ....  If the class definition does not explicitly declare a copy
7758  //   assignment operator, there is no user-declared move constructor, and
7759  //   there is no user-declared move assignment operator, a copy assignment
7760  //   operator is implicitly declared as defaulted.
7761  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7762    CopyAssignment->setDeletedAsWritten();
7763
7764  AddOverriddenMethods(ClassDecl, CopyAssignment);
7765  return CopyAssignment;
7766}
7767
7768void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7769                                        CXXMethodDecl *CopyAssignOperator) {
7770  assert((CopyAssignOperator->isDefaulted() &&
7771          CopyAssignOperator->isOverloadedOperator() &&
7772          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7773          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7774          !CopyAssignOperator->isDeleted()) &&
7775         "DefineImplicitCopyAssignment called for wrong function");
7776
7777  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7778
7779  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7780    CopyAssignOperator->setInvalidDecl();
7781    return;
7782  }
7783
7784  CopyAssignOperator->setUsed();
7785
7786  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7787  DiagnosticErrorTrap Trap(Diags);
7788
7789  // C++0x [class.copy]p30:
7790  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7791  //   for a non-union class X performs memberwise copy assignment of its
7792  //   subobjects. The direct base classes of X are assigned first, in the
7793  //   order of their declaration in the base-specifier-list, and then the
7794  //   immediate non-static data members of X are assigned, in the order in
7795  //   which they were declared in the class definition.
7796
7797  // The statements that form the synthesized function body.
7798  ASTOwningVector<Stmt*> Statements(*this);
7799
7800  // The parameter for the "other" object, which we are copying from.
7801  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7802  Qualifiers OtherQuals = Other->getType().getQualifiers();
7803  QualType OtherRefType = Other->getType();
7804  if (const LValueReferenceType *OtherRef
7805                                = OtherRefType->getAs<LValueReferenceType>()) {
7806    OtherRefType = OtherRef->getPointeeType();
7807    OtherQuals = OtherRefType.getQualifiers();
7808  }
7809
7810  // Our location for everything implicitly-generated.
7811  SourceLocation Loc = CopyAssignOperator->getLocation();
7812
7813  // Construct a reference to the "other" object. We'll be using this
7814  // throughout the generated ASTs.
7815  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7816  assert(OtherRef && "Reference to parameter cannot fail!");
7817
7818  // Construct the "this" pointer. We'll be using this throughout the generated
7819  // ASTs.
7820  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7821  assert(This && "Reference to this cannot fail!");
7822
7823  // Assign base classes.
7824  bool Invalid = false;
7825  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7826       E = ClassDecl->bases_end(); Base != E; ++Base) {
7827    // Form the assignment:
7828    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7829    QualType BaseType = Base->getType().getUnqualifiedType();
7830    if (!BaseType->isRecordType()) {
7831      Invalid = true;
7832      continue;
7833    }
7834
7835    CXXCastPath BasePath;
7836    BasePath.push_back(Base);
7837
7838    // Construct the "from" expression, which is an implicit cast to the
7839    // appropriately-qualified base type.
7840    Expr *From = OtherRef;
7841    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7842                             CK_UncheckedDerivedToBase,
7843                             VK_LValue, &BasePath).take();
7844
7845    // Dereference "this".
7846    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7847
7848    // Implicitly cast "this" to the appropriately-qualified base type.
7849    To = ImpCastExprToType(To.take(),
7850                           Context.getCVRQualifiedType(BaseType,
7851                                     CopyAssignOperator->getTypeQualifiers()),
7852                           CK_UncheckedDerivedToBase,
7853                           VK_LValue, &BasePath);
7854
7855    // Build the copy.
7856    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7857                                            To.get(), From,
7858                                            /*CopyingBaseSubobject=*/true,
7859                                            /*Copying=*/true);
7860    if (Copy.isInvalid()) {
7861      Diag(CurrentLocation, diag::note_member_synthesized_at)
7862        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7863      CopyAssignOperator->setInvalidDecl();
7864      return;
7865    }
7866
7867    // Success! Record the copy.
7868    Statements.push_back(Copy.takeAs<Expr>());
7869  }
7870
7871  // \brief Reference to the __builtin_memcpy function.
7872  Expr *BuiltinMemCpyRef = 0;
7873  // \brief Reference to the __builtin_objc_memmove_collectable function.
7874  Expr *CollectableMemCpyRef = 0;
7875
7876  // Assign non-static members.
7877  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7878                                  FieldEnd = ClassDecl->field_end();
7879       Field != FieldEnd; ++Field) {
7880    if (Field->isUnnamedBitfield())
7881      continue;
7882
7883    // Check for members of reference type; we can't copy those.
7884    if (Field->getType()->isReferenceType()) {
7885      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7886        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7887      Diag(Field->getLocation(), diag::note_declared_at);
7888      Diag(CurrentLocation, diag::note_member_synthesized_at)
7889        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7890      Invalid = true;
7891      continue;
7892    }
7893
7894    // Check for members of const-qualified, non-class type.
7895    QualType BaseType = Context.getBaseElementType(Field->getType());
7896    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7897      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7898        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7899      Diag(Field->getLocation(), diag::note_declared_at);
7900      Diag(CurrentLocation, diag::note_member_synthesized_at)
7901        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7902      Invalid = true;
7903      continue;
7904    }
7905
7906    // Suppress assigning zero-width bitfields.
7907    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7908      continue;
7909
7910    QualType FieldType = Field->getType().getNonReferenceType();
7911    if (FieldType->isIncompleteArrayType()) {
7912      assert(ClassDecl->hasFlexibleArrayMember() &&
7913             "Incomplete array type is not valid");
7914      continue;
7915    }
7916
7917    // Build references to the field in the object we're copying from and to.
7918    CXXScopeSpec SS; // Intentionally empty
7919    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7920                              LookupMemberName);
7921    MemberLookup.addDecl(&*Field);
7922    MemberLookup.resolveKind();
7923    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7924                                               Loc, /*IsArrow=*/false,
7925                                               SS, SourceLocation(), 0,
7926                                               MemberLookup, 0);
7927    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7928                                             Loc, /*IsArrow=*/true,
7929                                             SS, SourceLocation(), 0,
7930                                             MemberLookup, 0);
7931    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7932    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7933
7934    // If the field should be copied with __builtin_memcpy rather than via
7935    // explicit assignments, do so. This optimization only applies for arrays
7936    // of scalars and arrays of class type with trivial copy-assignment
7937    // operators.
7938    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7939        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7940      // Compute the size of the memory buffer to be copied.
7941      QualType SizeType = Context.getSizeType();
7942      llvm::APInt Size(Context.getTypeSize(SizeType),
7943                       Context.getTypeSizeInChars(BaseType).getQuantity());
7944      for (const ConstantArrayType *Array
7945              = Context.getAsConstantArrayType(FieldType);
7946           Array;
7947           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7948        llvm::APInt ArraySize
7949          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7950        Size *= ArraySize;
7951      }
7952
7953      // Take the address of the field references for "from" and "to".
7954      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7955      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7956
7957      bool NeedsCollectableMemCpy =
7958          (BaseType->isRecordType() &&
7959           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7960
7961      if (NeedsCollectableMemCpy) {
7962        if (!CollectableMemCpyRef) {
7963          // Create a reference to the __builtin_objc_memmove_collectable function.
7964          LookupResult R(*this,
7965                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7966                         Loc, LookupOrdinaryName);
7967          LookupName(R, TUScope, true);
7968
7969          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7970          if (!CollectableMemCpy) {
7971            // Something went horribly wrong earlier, and we will have
7972            // complained about it.
7973            Invalid = true;
7974            continue;
7975          }
7976
7977          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7978                                                  CollectableMemCpy->getType(),
7979                                                  VK_LValue, Loc, 0).take();
7980          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7981        }
7982      }
7983      // Create a reference to the __builtin_memcpy builtin function.
7984      else if (!BuiltinMemCpyRef) {
7985        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7986                       LookupOrdinaryName);
7987        LookupName(R, TUScope, true);
7988
7989        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7990        if (!BuiltinMemCpy) {
7991          // Something went horribly wrong earlier, and we will have complained
7992          // about it.
7993          Invalid = true;
7994          continue;
7995        }
7996
7997        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7998                                            BuiltinMemCpy->getType(),
7999                                            VK_LValue, Loc, 0).take();
8000        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8001      }
8002
8003      ASTOwningVector<Expr*> CallArgs(*this);
8004      CallArgs.push_back(To.takeAs<Expr>());
8005      CallArgs.push_back(From.takeAs<Expr>());
8006      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8007      ExprResult Call = ExprError();
8008      if (NeedsCollectableMemCpy)
8009        Call = ActOnCallExpr(/*Scope=*/0,
8010                             CollectableMemCpyRef,
8011                             Loc, move_arg(CallArgs),
8012                             Loc);
8013      else
8014        Call = ActOnCallExpr(/*Scope=*/0,
8015                             BuiltinMemCpyRef,
8016                             Loc, move_arg(CallArgs),
8017                             Loc);
8018
8019      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8020      Statements.push_back(Call.takeAs<Expr>());
8021      continue;
8022    }
8023
8024    // Build the copy of this field.
8025    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8026                                            To.get(), From.get(),
8027                                            /*CopyingBaseSubobject=*/false,
8028                                            /*Copying=*/true);
8029    if (Copy.isInvalid()) {
8030      Diag(CurrentLocation, diag::note_member_synthesized_at)
8031        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8032      CopyAssignOperator->setInvalidDecl();
8033      return;
8034    }
8035
8036    // Success! Record the copy.
8037    Statements.push_back(Copy.takeAs<Stmt>());
8038  }
8039
8040  if (!Invalid) {
8041    // Add a "return *this;"
8042    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8043
8044    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8045    if (Return.isInvalid())
8046      Invalid = true;
8047    else {
8048      Statements.push_back(Return.takeAs<Stmt>());
8049
8050      if (Trap.hasErrorOccurred()) {
8051        Diag(CurrentLocation, diag::note_member_synthesized_at)
8052          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8053        Invalid = true;
8054      }
8055    }
8056  }
8057
8058  if (Invalid) {
8059    CopyAssignOperator->setInvalidDecl();
8060    return;
8061  }
8062
8063  StmtResult Body;
8064  {
8065    CompoundScopeRAII CompoundScope(*this);
8066    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8067                             /*isStmtExpr=*/false);
8068    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8069  }
8070  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8071
8072  if (ASTMutationListener *L = getASTMutationListener()) {
8073    L->CompletedImplicitDefinition(CopyAssignOperator);
8074  }
8075}
8076
8077Sema::ImplicitExceptionSpecification
8078Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8079  ImplicitExceptionSpecification ExceptSpec(*this);
8080
8081  if (ClassDecl->isInvalidDecl())
8082    return ExceptSpec;
8083
8084  // C++0x [except.spec]p14:
8085  //   An implicitly declared special member function (Clause 12) shall have an
8086  //   exception-specification. [...]
8087
8088  // It is unspecified whether or not an implicit move assignment operator
8089  // attempts to deduplicate calls to assignment operators of virtual bases are
8090  // made. As such, this exception specification is effectively unspecified.
8091  // Based on a similar decision made for constness in C++0x, we're erring on
8092  // the side of assuming such calls to be made regardless of whether they
8093  // actually happen.
8094  // Note that a move constructor is not implicitly declared when there are
8095  // virtual bases, but it can still be user-declared and explicitly defaulted.
8096  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8097                                       BaseEnd = ClassDecl->bases_end();
8098       Base != BaseEnd; ++Base) {
8099    if (Base->isVirtual())
8100      continue;
8101
8102    CXXRecordDecl *BaseClassDecl
8103      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8104    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8105                                                           false, 0))
8106      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8107  }
8108
8109  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8110                                       BaseEnd = ClassDecl->vbases_end();
8111       Base != BaseEnd; ++Base) {
8112    CXXRecordDecl *BaseClassDecl
8113      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8114    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8115                                                           false, 0))
8116      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8117  }
8118
8119  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8120                                  FieldEnd = ClassDecl->field_end();
8121       Field != FieldEnd;
8122       ++Field) {
8123    QualType FieldType = Context.getBaseElementType(Field->getType());
8124    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8125      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8126                                                             false, 0))
8127        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8128    }
8129  }
8130
8131  return ExceptSpec;
8132}
8133
8134/// Determine whether the class type has any direct or indirect virtual base
8135/// classes which have a non-trivial move assignment operator.
8136static bool
8137hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8138  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8139                                          BaseEnd = ClassDecl->vbases_end();
8140       Base != BaseEnd; ++Base) {
8141    CXXRecordDecl *BaseClass =
8142        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8143
8144    // Try to declare the move assignment. If it would be deleted, then the
8145    // class does not have a non-trivial move assignment.
8146    if (BaseClass->needsImplicitMoveAssignment())
8147      S.DeclareImplicitMoveAssignment(BaseClass);
8148
8149    // If the class has both a trivial move assignment and a non-trivial move
8150    // assignment, hasTrivialMoveAssignment() is false.
8151    if (BaseClass->hasDeclaredMoveAssignment() &&
8152        !BaseClass->hasTrivialMoveAssignment())
8153      return true;
8154  }
8155
8156  return false;
8157}
8158
8159/// Determine whether the given type either has a move constructor or is
8160/// trivially copyable.
8161static bool
8162hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8163  Type = S.Context.getBaseElementType(Type);
8164
8165  // FIXME: Technically, non-trivially-copyable non-class types, such as
8166  // reference types, are supposed to return false here, but that appears
8167  // to be a standard defect.
8168  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8169  if (!ClassDecl || !ClassDecl->getDefinition())
8170    return true;
8171
8172  if (Type.isTriviallyCopyableType(S.Context))
8173    return true;
8174
8175  if (IsConstructor) {
8176    if (ClassDecl->needsImplicitMoveConstructor())
8177      S.DeclareImplicitMoveConstructor(ClassDecl);
8178    return ClassDecl->hasDeclaredMoveConstructor();
8179  }
8180
8181  if (ClassDecl->needsImplicitMoveAssignment())
8182    S.DeclareImplicitMoveAssignment(ClassDecl);
8183  return ClassDecl->hasDeclaredMoveAssignment();
8184}
8185
8186/// Determine whether all non-static data members and direct or virtual bases
8187/// of class \p ClassDecl have either a move operation, or are trivially
8188/// copyable.
8189static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8190                                            bool IsConstructor) {
8191  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8192                                          BaseEnd = ClassDecl->bases_end();
8193       Base != BaseEnd; ++Base) {
8194    if (Base->isVirtual())
8195      continue;
8196
8197    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8198      return false;
8199  }
8200
8201  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8202                                          BaseEnd = ClassDecl->vbases_end();
8203       Base != BaseEnd; ++Base) {
8204    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8205      return false;
8206  }
8207
8208  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8209                                     FieldEnd = ClassDecl->field_end();
8210       Field != FieldEnd; ++Field) {
8211    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8212      return false;
8213  }
8214
8215  return true;
8216}
8217
8218CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8219  // C++11 [class.copy]p20:
8220  //   If the definition of a class X does not explicitly declare a move
8221  //   assignment operator, one will be implicitly declared as defaulted
8222  //   if and only if:
8223  //
8224  //   - [first 4 bullets]
8225  assert(ClassDecl->needsImplicitMoveAssignment());
8226
8227  // [Checked after we build the declaration]
8228  //   - the move assignment operator would not be implicitly defined as
8229  //     deleted,
8230
8231  // [DR1402]:
8232  //   - X has no direct or indirect virtual base class with a non-trivial
8233  //     move assignment operator, and
8234  //   - each of X's non-static data members and direct or virtual base classes
8235  //     has a type that either has a move assignment operator or is trivially
8236  //     copyable.
8237  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8238      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8239    ClassDecl->setFailedImplicitMoveAssignment();
8240    return 0;
8241  }
8242
8243  // Note: The following rules are largely analoguous to the move
8244  // constructor rules.
8245
8246  ImplicitExceptionSpecification Spec(
8247      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8248
8249  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8250  QualType RetType = Context.getLValueReferenceType(ArgType);
8251  ArgType = Context.getRValueReferenceType(ArgType);
8252
8253  //   An implicitly-declared move assignment operator is an inline public
8254  //   member of its class.
8255  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8256  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8257  SourceLocation ClassLoc = ClassDecl->getLocation();
8258  DeclarationNameInfo NameInfo(Name, ClassLoc);
8259  CXXMethodDecl *MoveAssignment
8260    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8261                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8262                            /*TInfo=*/0, /*isStatic=*/false,
8263                            /*StorageClassAsWritten=*/SC_None,
8264                            /*isInline=*/true,
8265                            /*isConstexpr=*/false,
8266                            SourceLocation());
8267  MoveAssignment->setAccess(AS_public);
8268  MoveAssignment->setDefaulted();
8269  MoveAssignment->setImplicit();
8270  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8271
8272  // Add the parameter to the operator.
8273  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8274                                               ClassLoc, ClassLoc, /*Id=*/0,
8275                                               ArgType, /*TInfo=*/0,
8276                                               SC_None,
8277                                               SC_None, 0);
8278  MoveAssignment->setParams(FromParam);
8279
8280  // Note that we have added this copy-assignment operator.
8281  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8282
8283  // C++0x [class.copy]p9:
8284  //   If the definition of a class X does not explicitly declare a move
8285  //   assignment operator, one will be implicitly declared as defaulted if and
8286  //   only if:
8287  //   [...]
8288  //   - the move assignment operator would not be implicitly defined as
8289  //     deleted.
8290  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8291    // Cache this result so that we don't try to generate this over and over
8292    // on every lookup, leaking memory and wasting time.
8293    ClassDecl->setFailedImplicitMoveAssignment();
8294    return 0;
8295  }
8296
8297  if (Scope *S = getScopeForContext(ClassDecl))
8298    PushOnScopeChains(MoveAssignment, S, false);
8299  ClassDecl->addDecl(MoveAssignment);
8300
8301  AddOverriddenMethods(ClassDecl, MoveAssignment);
8302  return MoveAssignment;
8303}
8304
8305void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8306                                        CXXMethodDecl *MoveAssignOperator) {
8307  assert((MoveAssignOperator->isDefaulted() &&
8308          MoveAssignOperator->isOverloadedOperator() &&
8309          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8310          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8311          !MoveAssignOperator->isDeleted()) &&
8312         "DefineImplicitMoveAssignment called for wrong function");
8313
8314  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8315
8316  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8317    MoveAssignOperator->setInvalidDecl();
8318    return;
8319  }
8320
8321  MoveAssignOperator->setUsed();
8322
8323  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8324  DiagnosticErrorTrap Trap(Diags);
8325
8326  // C++0x [class.copy]p28:
8327  //   The implicitly-defined or move assignment operator for a non-union class
8328  //   X performs memberwise move assignment of its subobjects. The direct base
8329  //   classes of X are assigned first, in the order of their declaration in the
8330  //   base-specifier-list, and then the immediate non-static data members of X
8331  //   are assigned, in the order in which they were declared in the class
8332  //   definition.
8333
8334  // The statements that form the synthesized function body.
8335  ASTOwningVector<Stmt*> Statements(*this);
8336
8337  // The parameter for the "other" object, which we are move from.
8338  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8339  QualType OtherRefType = Other->getType()->
8340      getAs<RValueReferenceType>()->getPointeeType();
8341  assert(OtherRefType.getQualifiers() == 0 &&
8342         "Bad argument type of defaulted move assignment");
8343
8344  // Our location for everything implicitly-generated.
8345  SourceLocation Loc = MoveAssignOperator->getLocation();
8346
8347  // Construct a reference to the "other" object. We'll be using this
8348  // throughout the generated ASTs.
8349  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8350  assert(OtherRef && "Reference to parameter cannot fail!");
8351  // Cast to rvalue.
8352  OtherRef = CastForMoving(*this, OtherRef);
8353
8354  // Construct the "this" pointer. We'll be using this throughout the generated
8355  // ASTs.
8356  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8357  assert(This && "Reference to this cannot fail!");
8358
8359  // Assign base classes.
8360  bool Invalid = false;
8361  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8362       E = ClassDecl->bases_end(); Base != E; ++Base) {
8363    // Form the assignment:
8364    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8365    QualType BaseType = Base->getType().getUnqualifiedType();
8366    if (!BaseType->isRecordType()) {
8367      Invalid = true;
8368      continue;
8369    }
8370
8371    CXXCastPath BasePath;
8372    BasePath.push_back(Base);
8373
8374    // Construct the "from" expression, which is an implicit cast to the
8375    // appropriately-qualified base type.
8376    Expr *From = OtherRef;
8377    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8378                             VK_XValue, &BasePath).take();
8379
8380    // Dereference "this".
8381    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8382
8383    // Implicitly cast "this" to the appropriately-qualified base type.
8384    To = ImpCastExprToType(To.take(),
8385                           Context.getCVRQualifiedType(BaseType,
8386                                     MoveAssignOperator->getTypeQualifiers()),
8387                           CK_UncheckedDerivedToBase,
8388                           VK_LValue, &BasePath);
8389
8390    // Build the move.
8391    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8392                                            To.get(), From,
8393                                            /*CopyingBaseSubobject=*/true,
8394                                            /*Copying=*/false);
8395    if (Move.isInvalid()) {
8396      Diag(CurrentLocation, diag::note_member_synthesized_at)
8397        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8398      MoveAssignOperator->setInvalidDecl();
8399      return;
8400    }
8401
8402    // Success! Record the move.
8403    Statements.push_back(Move.takeAs<Expr>());
8404  }
8405
8406  // \brief Reference to the __builtin_memcpy function.
8407  Expr *BuiltinMemCpyRef = 0;
8408  // \brief Reference to the __builtin_objc_memmove_collectable function.
8409  Expr *CollectableMemCpyRef = 0;
8410
8411  // Assign non-static members.
8412  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8413                                  FieldEnd = ClassDecl->field_end();
8414       Field != FieldEnd; ++Field) {
8415    if (Field->isUnnamedBitfield())
8416      continue;
8417
8418    // Check for members of reference type; we can't move those.
8419    if (Field->getType()->isReferenceType()) {
8420      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8421        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8422      Diag(Field->getLocation(), diag::note_declared_at);
8423      Diag(CurrentLocation, diag::note_member_synthesized_at)
8424        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8425      Invalid = true;
8426      continue;
8427    }
8428
8429    // Check for members of const-qualified, non-class type.
8430    QualType BaseType = Context.getBaseElementType(Field->getType());
8431    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8432      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8433        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8434      Diag(Field->getLocation(), diag::note_declared_at);
8435      Diag(CurrentLocation, diag::note_member_synthesized_at)
8436        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8437      Invalid = true;
8438      continue;
8439    }
8440
8441    // Suppress assigning zero-width bitfields.
8442    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8443      continue;
8444
8445    QualType FieldType = Field->getType().getNonReferenceType();
8446    if (FieldType->isIncompleteArrayType()) {
8447      assert(ClassDecl->hasFlexibleArrayMember() &&
8448             "Incomplete array type is not valid");
8449      continue;
8450    }
8451
8452    // Build references to the field in the object we're copying from and to.
8453    CXXScopeSpec SS; // Intentionally empty
8454    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8455                              LookupMemberName);
8456    MemberLookup.addDecl(&*Field);
8457    MemberLookup.resolveKind();
8458    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8459                                               Loc, /*IsArrow=*/false,
8460                                               SS, SourceLocation(), 0,
8461                                               MemberLookup, 0);
8462    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8463                                             Loc, /*IsArrow=*/true,
8464                                             SS, SourceLocation(), 0,
8465                                             MemberLookup, 0);
8466    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8467    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8468
8469    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8470        "Member reference with rvalue base must be rvalue except for reference "
8471        "members, which aren't allowed for move assignment.");
8472
8473    // If the field should be copied with __builtin_memcpy rather than via
8474    // explicit assignments, do so. This optimization only applies for arrays
8475    // of scalars and arrays of class type with trivial move-assignment
8476    // operators.
8477    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8478        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8479      // Compute the size of the memory buffer to be copied.
8480      QualType SizeType = Context.getSizeType();
8481      llvm::APInt Size(Context.getTypeSize(SizeType),
8482                       Context.getTypeSizeInChars(BaseType).getQuantity());
8483      for (const ConstantArrayType *Array
8484              = Context.getAsConstantArrayType(FieldType);
8485           Array;
8486           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8487        llvm::APInt ArraySize
8488          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8489        Size *= ArraySize;
8490      }
8491
8492      // Take the address of the field references for "from" and "to". We
8493      // directly construct UnaryOperators here because semantic analysis
8494      // does not permit us to take the address of an xvalue.
8495      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8496                             Context.getPointerType(From.get()->getType()),
8497                             VK_RValue, OK_Ordinary, Loc);
8498      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8499                           Context.getPointerType(To.get()->getType()),
8500                           VK_RValue, OK_Ordinary, Loc);
8501
8502      bool NeedsCollectableMemCpy =
8503          (BaseType->isRecordType() &&
8504           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8505
8506      if (NeedsCollectableMemCpy) {
8507        if (!CollectableMemCpyRef) {
8508          // Create a reference to the __builtin_objc_memmove_collectable function.
8509          LookupResult R(*this,
8510                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8511                         Loc, LookupOrdinaryName);
8512          LookupName(R, TUScope, true);
8513
8514          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8515          if (!CollectableMemCpy) {
8516            // Something went horribly wrong earlier, and we will have
8517            // complained about it.
8518            Invalid = true;
8519            continue;
8520          }
8521
8522          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8523                                                  CollectableMemCpy->getType(),
8524                                                  VK_LValue, Loc, 0).take();
8525          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8526        }
8527      }
8528      // Create a reference to the __builtin_memcpy builtin function.
8529      else if (!BuiltinMemCpyRef) {
8530        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8531                       LookupOrdinaryName);
8532        LookupName(R, TUScope, true);
8533
8534        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8535        if (!BuiltinMemCpy) {
8536          // Something went horribly wrong earlier, and we will have complained
8537          // about it.
8538          Invalid = true;
8539          continue;
8540        }
8541
8542        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8543                                            BuiltinMemCpy->getType(),
8544                                            VK_LValue, Loc, 0).take();
8545        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8546      }
8547
8548      ASTOwningVector<Expr*> CallArgs(*this);
8549      CallArgs.push_back(To.takeAs<Expr>());
8550      CallArgs.push_back(From.takeAs<Expr>());
8551      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8552      ExprResult Call = ExprError();
8553      if (NeedsCollectableMemCpy)
8554        Call = ActOnCallExpr(/*Scope=*/0,
8555                             CollectableMemCpyRef,
8556                             Loc, move_arg(CallArgs),
8557                             Loc);
8558      else
8559        Call = ActOnCallExpr(/*Scope=*/0,
8560                             BuiltinMemCpyRef,
8561                             Loc, move_arg(CallArgs),
8562                             Loc);
8563
8564      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8565      Statements.push_back(Call.takeAs<Expr>());
8566      continue;
8567    }
8568
8569    // Build the move of this field.
8570    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8571                                            To.get(), From.get(),
8572                                            /*CopyingBaseSubobject=*/false,
8573                                            /*Copying=*/false);
8574    if (Move.isInvalid()) {
8575      Diag(CurrentLocation, diag::note_member_synthesized_at)
8576        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8577      MoveAssignOperator->setInvalidDecl();
8578      return;
8579    }
8580
8581    // Success! Record the copy.
8582    Statements.push_back(Move.takeAs<Stmt>());
8583  }
8584
8585  if (!Invalid) {
8586    // Add a "return *this;"
8587    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8588
8589    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8590    if (Return.isInvalid())
8591      Invalid = true;
8592    else {
8593      Statements.push_back(Return.takeAs<Stmt>());
8594
8595      if (Trap.hasErrorOccurred()) {
8596        Diag(CurrentLocation, diag::note_member_synthesized_at)
8597          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8598        Invalid = true;
8599      }
8600    }
8601  }
8602
8603  if (Invalid) {
8604    MoveAssignOperator->setInvalidDecl();
8605    return;
8606  }
8607
8608  StmtResult Body;
8609  {
8610    CompoundScopeRAII CompoundScope(*this);
8611    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8612                             /*isStmtExpr=*/false);
8613    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8614  }
8615  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8616
8617  if (ASTMutationListener *L = getASTMutationListener()) {
8618    L->CompletedImplicitDefinition(MoveAssignOperator);
8619  }
8620}
8621
8622std::pair<Sema::ImplicitExceptionSpecification, bool>
8623Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8624  if (ClassDecl->isInvalidDecl())
8625    return std::make_pair(ImplicitExceptionSpecification(*this), false);
8626
8627  // C++ [class.copy]p5:
8628  //   The implicitly-declared copy constructor for a class X will
8629  //   have the form
8630  //
8631  //       X::X(const X&)
8632  //
8633  //   if
8634  // FIXME: It ought to be possible to store this on the record.
8635  bool HasConstCopyConstructor = true;
8636
8637  //     -- each direct or virtual base class B of X has a copy
8638  //        constructor whose first parameter is of type const B& or
8639  //        const volatile B&, and
8640  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8641                                       BaseEnd = ClassDecl->bases_end();
8642       HasConstCopyConstructor && Base != BaseEnd;
8643       ++Base) {
8644    // Virtual bases are handled below.
8645    if (Base->isVirtual())
8646      continue;
8647
8648    CXXRecordDecl *BaseClassDecl
8649      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8650    HasConstCopyConstructor &=
8651      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8652  }
8653
8654  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8655                                       BaseEnd = ClassDecl->vbases_end();
8656       HasConstCopyConstructor && Base != BaseEnd;
8657       ++Base) {
8658    CXXRecordDecl *BaseClassDecl
8659      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8660    HasConstCopyConstructor &=
8661      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8662  }
8663
8664  //     -- for all the nonstatic data members of X that are of a
8665  //        class type M (or array thereof), each such class type
8666  //        has a copy constructor whose first parameter is of type
8667  //        const M& or const volatile M&.
8668  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8669                                  FieldEnd = ClassDecl->field_end();
8670       HasConstCopyConstructor && Field != FieldEnd;
8671       ++Field) {
8672    QualType FieldType = Context.getBaseElementType(Field->getType());
8673    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8674      HasConstCopyConstructor &=
8675        (bool)LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const);
8676    }
8677  }
8678  //   Otherwise, the implicitly declared copy constructor will have
8679  //   the form
8680  //
8681  //       X::X(X&)
8682
8683  // C++ [except.spec]p14:
8684  //   An implicitly declared special member function (Clause 12) shall have an
8685  //   exception-specification. [...]
8686  ImplicitExceptionSpecification ExceptSpec(*this);
8687  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8688  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8689                                       BaseEnd = ClassDecl->bases_end();
8690       Base != BaseEnd;
8691       ++Base) {
8692    // Virtual bases are handled below.
8693    if (Base->isVirtual())
8694      continue;
8695
8696    CXXRecordDecl *BaseClassDecl
8697      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8698    if (CXXConstructorDecl *CopyConstructor =
8699          LookupCopyingConstructor(BaseClassDecl, Quals))
8700      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8701  }
8702  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8703                                       BaseEnd = ClassDecl->vbases_end();
8704       Base != BaseEnd;
8705       ++Base) {
8706    CXXRecordDecl *BaseClassDecl
8707      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8708    if (CXXConstructorDecl *CopyConstructor =
8709          LookupCopyingConstructor(BaseClassDecl, Quals))
8710      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8711  }
8712  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8713                                  FieldEnd = ClassDecl->field_end();
8714       Field != FieldEnd;
8715       ++Field) {
8716    QualType FieldType = Context.getBaseElementType(Field->getType());
8717    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8718      if (CXXConstructorDecl *CopyConstructor =
8719        LookupCopyingConstructor(FieldClassDecl, Quals))
8720      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8721    }
8722  }
8723
8724  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8725}
8726
8727CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8728                                                    CXXRecordDecl *ClassDecl) {
8729  // C++ [class.copy]p4:
8730  //   If the class definition does not explicitly declare a copy
8731  //   constructor, one is declared implicitly.
8732
8733  ImplicitExceptionSpecification Spec(*this);
8734  bool Const;
8735  llvm::tie(Spec, Const) =
8736    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8737
8738  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8739  QualType ArgType = ClassType;
8740  if (Const)
8741    ArgType = ArgType.withConst();
8742  ArgType = Context.getLValueReferenceType(ArgType);
8743
8744  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8745
8746  DeclarationName Name
8747    = Context.DeclarationNames.getCXXConstructorName(
8748                                           Context.getCanonicalType(ClassType));
8749  SourceLocation ClassLoc = ClassDecl->getLocation();
8750  DeclarationNameInfo NameInfo(Name, ClassLoc);
8751
8752  //   An implicitly-declared copy constructor is an inline public
8753  //   member of its class.
8754  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8755      Context, ClassDecl, ClassLoc, NameInfo,
8756      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8757      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8758      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8759        getLangOpts().CPlusPlus0x);
8760  CopyConstructor->setAccess(AS_public);
8761  CopyConstructor->setDefaulted();
8762  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8763
8764  // Note that we have declared this constructor.
8765  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8766
8767  // Add the parameter to the constructor.
8768  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8769                                               ClassLoc, ClassLoc,
8770                                               /*IdentifierInfo=*/0,
8771                                               ArgType, /*TInfo=*/0,
8772                                               SC_None,
8773                                               SC_None, 0);
8774  CopyConstructor->setParams(FromParam);
8775
8776  if (Scope *S = getScopeForContext(ClassDecl))
8777    PushOnScopeChains(CopyConstructor, S, false);
8778  ClassDecl->addDecl(CopyConstructor);
8779
8780  // C++11 [class.copy]p8:
8781  //   ... If the class definition does not explicitly declare a copy
8782  //   constructor, there is no user-declared move constructor, and there is no
8783  //   user-declared move assignment operator, a copy constructor is implicitly
8784  //   declared as defaulted.
8785  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8786    CopyConstructor->setDeletedAsWritten();
8787
8788  return CopyConstructor;
8789}
8790
8791void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8792                                   CXXConstructorDecl *CopyConstructor) {
8793  assert((CopyConstructor->isDefaulted() &&
8794          CopyConstructor->isCopyConstructor() &&
8795          !CopyConstructor->doesThisDeclarationHaveABody() &&
8796          !CopyConstructor->isDeleted()) &&
8797         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8798
8799  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8800  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8801
8802  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8803  DiagnosticErrorTrap Trap(Diags);
8804
8805  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8806      Trap.hasErrorOccurred()) {
8807    Diag(CurrentLocation, diag::note_member_synthesized_at)
8808      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8809    CopyConstructor->setInvalidDecl();
8810  }  else {
8811    Sema::CompoundScopeRAII CompoundScope(*this);
8812    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8813                                               CopyConstructor->getLocation(),
8814                                               MultiStmtArg(*this, 0, 0),
8815                                               /*isStmtExpr=*/false)
8816                                                              .takeAs<Stmt>());
8817    CopyConstructor->setImplicitlyDefined(true);
8818  }
8819
8820  CopyConstructor->setUsed();
8821  if (ASTMutationListener *L = getASTMutationListener()) {
8822    L->CompletedImplicitDefinition(CopyConstructor);
8823  }
8824}
8825
8826Sema::ImplicitExceptionSpecification
8827Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8828  // C++ [except.spec]p14:
8829  //   An implicitly declared special member function (Clause 12) shall have an
8830  //   exception-specification. [...]
8831  ImplicitExceptionSpecification ExceptSpec(*this);
8832  if (ClassDecl->isInvalidDecl())
8833    return ExceptSpec;
8834
8835  // Direct base-class constructors.
8836  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8837                                       BEnd = ClassDecl->bases_end();
8838       B != BEnd; ++B) {
8839    if (B->isVirtual()) // Handled below.
8840      continue;
8841
8842    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8843      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8844      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8845      // If this is a deleted function, add it anyway. This might be conformant
8846      // with the standard. This might not. I'm not sure. It might not matter.
8847      if (Constructor)
8848        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8849    }
8850  }
8851
8852  // Virtual base-class constructors.
8853  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8854                                       BEnd = ClassDecl->vbases_end();
8855       B != BEnd; ++B) {
8856    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8857      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8858      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8859      // If this is a deleted function, add it anyway. This might be conformant
8860      // with the standard. This might not. I'm not sure. It might not matter.
8861      if (Constructor)
8862        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8863    }
8864  }
8865
8866  // Field constructors.
8867  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8868                               FEnd = ClassDecl->field_end();
8869       F != FEnd; ++F) {
8870    if (const RecordType *RecordTy
8871              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8872      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8873      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8874      // If this is a deleted function, add it anyway. This might be conformant
8875      // with the standard. This might not. I'm not sure. It might not matter.
8876      // In particular, the problem is that this function never gets called. It
8877      // might just be ill-formed because this function attempts to refer to
8878      // a deleted function here.
8879      if (Constructor)
8880        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8881    }
8882  }
8883
8884  return ExceptSpec;
8885}
8886
8887CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8888                                                    CXXRecordDecl *ClassDecl) {
8889  // C++11 [class.copy]p9:
8890  //   If the definition of a class X does not explicitly declare a move
8891  //   constructor, one will be implicitly declared as defaulted if and only if:
8892  //
8893  //   - [first 4 bullets]
8894  assert(ClassDecl->needsImplicitMoveConstructor());
8895
8896  // [Checked after we build the declaration]
8897  //   - the move assignment operator would not be implicitly defined as
8898  //     deleted,
8899
8900  // [DR1402]:
8901  //   - each of X's non-static data members and direct or virtual base classes
8902  //     has a type that either has a move constructor or is trivially copyable.
8903  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8904    ClassDecl->setFailedImplicitMoveConstructor();
8905    return 0;
8906  }
8907
8908  ImplicitExceptionSpecification Spec(
8909      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8910
8911  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8912  QualType ArgType = Context.getRValueReferenceType(ClassType);
8913
8914  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8915
8916  DeclarationName Name
8917    = Context.DeclarationNames.getCXXConstructorName(
8918                                           Context.getCanonicalType(ClassType));
8919  SourceLocation ClassLoc = ClassDecl->getLocation();
8920  DeclarationNameInfo NameInfo(Name, ClassLoc);
8921
8922  // C++0x [class.copy]p11:
8923  //   An implicitly-declared copy/move constructor is an inline public
8924  //   member of its class.
8925  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8926      Context, ClassDecl, ClassLoc, NameInfo,
8927      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8928      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8929      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8930        getLangOpts().CPlusPlus0x);
8931  MoveConstructor->setAccess(AS_public);
8932  MoveConstructor->setDefaulted();
8933  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8934
8935  // Add the parameter to the constructor.
8936  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8937                                               ClassLoc, ClassLoc,
8938                                               /*IdentifierInfo=*/0,
8939                                               ArgType, /*TInfo=*/0,
8940                                               SC_None,
8941                                               SC_None, 0);
8942  MoveConstructor->setParams(FromParam);
8943
8944  // C++0x [class.copy]p9:
8945  //   If the definition of a class X does not explicitly declare a move
8946  //   constructor, one will be implicitly declared as defaulted if and only if:
8947  //   [...]
8948  //   - the move constructor would not be implicitly defined as deleted.
8949  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8950    // Cache this result so that we don't try to generate this over and over
8951    // on every lookup, leaking memory and wasting time.
8952    ClassDecl->setFailedImplicitMoveConstructor();
8953    return 0;
8954  }
8955
8956  // Note that we have declared this constructor.
8957  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8958
8959  if (Scope *S = getScopeForContext(ClassDecl))
8960    PushOnScopeChains(MoveConstructor, S, false);
8961  ClassDecl->addDecl(MoveConstructor);
8962
8963  return MoveConstructor;
8964}
8965
8966void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8967                                   CXXConstructorDecl *MoveConstructor) {
8968  assert((MoveConstructor->isDefaulted() &&
8969          MoveConstructor->isMoveConstructor() &&
8970          !MoveConstructor->doesThisDeclarationHaveABody() &&
8971          !MoveConstructor->isDeleted()) &&
8972         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8973
8974  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8975  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8976
8977  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8978  DiagnosticErrorTrap Trap(Diags);
8979
8980  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8981      Trap.hasErrorOccurred()) {
8982    Diag(CurrentLocation, diag::note_member_synthesized_at)
8983      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8984    MoveConstructor->setInvalidDecl();
8985  }  else {
8986    Sema::CompoundScopeRAII CompoundScope(*this);
8987    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8988                                               MoveConstructor->getLocation(),
8989                                               MultiStmtArg(*this, 0, 0),
8990                                               /*isStmtExpr=*/false)
8991                                                              .takeAs<Stmt>());
8992    MoveConstructor->setImplicitlyDefined(true);
8993  }
8994
8995  MoveConstructor->setUsed();
8996
8997  if (ASTMutationListener *L = getASTMutationListener()) {
8998    L->CompletedImplicitDefinition(MoveConstructor);
8999  }
9000}
9001
9002bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9003  return FD->isDeleted() &&
9004         (FD->isDefaulted() || FD->isImplicit()) &&
9005         isa<CXXMethodDecl>(FD);
9006}
9007
9008/// \brief Mark the call operator of the given lambda closure type as "used".
9009static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9010  CXXMethodDecl *CallOperator
9011    = cast<CXXMethodDecl>(
9012        *Lambda->lookup(
9013          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
9014  CallOperator->setReferenced();
9015  CallOperator->setUsed();
9016}
9017
9018void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9019       SourceLocation CurrentLocation,
9020       CXXConversionDecl *Conv)
9021{
9022  CXXRecordDecl *Lambda = Conv->getParent();
9023
9024  // Make sure that the lambda call operator is marked used.
9025  markLambdaCallOperatorUsed(*this, Lambda);
9026
9027  Conv->setUsed();
9028
9029  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
9030  DiagnosticErrorTrap Trap(Diags);
9031
9032  // Return the address of the __invoke function.
9033  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9034  CXXMethodDecl *Invoke
9035    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
9036  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9037                                       VK_LValue, Conv->getLocation()).take();
9038  assert(FunctionRef && "Can't refer to __invoke function?");
9039  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9040  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
9041                                           Conv->getLocation(),
9042                                           Conv->getLocation()));
9043
9044  // Fill in the __invoke function with a dummy implementation. IR generation
9045  // will fill in the actual details.
9046  Invoke->setUsed();
9047  Invoke->setReferenced();
9048  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
9049                                             Conv->getLocation()));
9050
9051  if (ASTMutationListener *L = getASTMutationListener()) {
9052    L->CompletedImplicitDefinition(Conv);
9053    L->CompletedImplicitDefinition(Invoke);
9054  }
9055}
9056
9057void Sema::DefineImplicitLambdaToBlockPointerConversion(
9058       SourceLocation CurrentLocation,
9059       CXXConversionDecl *Conv)
9060{
9061  Conv->setUsed();
9062
9063  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
9064  DiagnosticErrorTrap Trap(Diags);
9065
9066  // Copy-initialize the lambda object as needed to capture it.
9067  Expr *This = ActOnCXXThis(CurrentLocation).take();
9068  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9069
9070  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9071                                                        Conv->getLocation(),
9072                                                        Conv, DerefThis);
9073
9074  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9075  // behavior.  Note that only the general conversion function does this
9076  // (since it's unusable otherwise); in the case where we inline the
9077  // block literal, it has block literal lifetime semantics.
9078  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9079    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9080                                          CK_CopyAndAutoreleaseBlockObject,
9081                                          BuildBlock.get(), 0, VK_RValue);
9082
9083  if (BuildBlock.isInvalid()) {
9084    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9085    Conv->setInvalidDecl();
9086    return;
9087  }
9088
9089  // Create the return statement that returns the block from the conversion
9090  // function.
9091  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9092  if (Return.isInvalid()) {
9093    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9094    Conv->setInvalidDecl();
9095    return;
9096  }
9097
9098  // Set the body of the conversion function.
9099  Stmt *ReturnS = Return.take();
9100  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9101                                           Conv->getLocation(),
9102                                           Conv->getLocation()));
9103
9104  // We're done; notify the mutation listener, if any.
9105  if (ASTMutationListener *L = getASTMutationListener()) {
9106    L->CompletedImplicitDefinition(Conv);
9107  }
9108}
9109
9110/// \brief Determine whether the given list arguments contains exactly one
9111/// "real" (non-default) argument.
9112static bool hasOneRealArgument(MultiExprArg Args) {
9113  switch (Args.size()) {
9114  case 0:
9115    return false;
9116
9117  default:
9118    if (!Args.get()[1]->isDefaultArgument())
9119      return false;
9120
9121    // fall through
9122  case 1:
9123    return !Args.get()[0]->isDefaultArgument();
9124  }
9125
9126  return false;
9127}
9128
9129ExprResult
9130Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9131                            CXXConstructorDecl *Constructor,
9132                            MultiExprArg ExprArgs,
9133                            bool HadMultipleCandidates,
9134                            bool RequiresZeroInit,
9135                            unsigned ConstructKind,
9136                            SourceRange ParenRange) {
9137  bool Elidable = false;
9138
9139  // C++0x [class.copy]p34:
9140  //   When certain criteria are met, an implementation is allowed to
9141  //   omit the copy/move construction of a class object, even if the
9142  //   copy/move constructor and/or destructor for the object have
9143  //   side effects. [...]
9144  //     - when a temporary class object that has not been bound to a
9145  //       reference (12.2) would be copied/moved to a class object
9146  //       with the same cv-unqualified type, the copy/move operation
9147  //       can be omitted by constructing the temporary object
9148  //       directly into the target of the omitted copy/move
9149  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9150      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9151    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9152    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9153  }
9154
9155  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9156                               Elidable, move(ExprArgs), HadMultipleCandidates,
9157                               RequiresZeroInit, ConstructKind, ParenRange);
9158}
9159
9160/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9161/// including handling of its default argument expressions.
9162ExprResult
9163Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9164                            CXXConstructorDecl *Constructor, bool Elidable,
9165                            MultiExprArg ExprArgs,
9166                            bool HadMultipleCandidates,
9167                            bool RequiresZeroInit,
9168                            unsigned ConstructKind,
9169                            SourceRange ParenRange) {
9170  unsigned NumExprs = ExprArgs.size();
9171  Expr **Exprs = (Expr **)ExprArgs.release();
9172
9173  for (specific_attr_iterator<NonNullAttr>
9174           i = Constructor->specific_attr_begin<NonNullAttr>(),
9175           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9176    const NonNullAttr *NonNull = *i;
9177    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9178  }
9179
9180  MarkFunctionReferenced(ConstructLoc, Constructor);
9181  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9182                                        Constructor, Elidable, Exprs, NumExprs,
9183                                        HadMultipleCandidates, /*FIXME*/false,
9184                                        RequiresZeroInit,
9185              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9186                                        ParenRange));
9187}
9188
9189bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9190                                        CXXConstructorDecl *Constructor,
9191                                        MultiExprArg Exprs,
9192                                        bool HadMultipleCandidates) {
9193  // FIXME: Provide the correct paren SourceRange when available.
9194  ExprResult TempResult =
9195    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9196                          move(Exprs), HadMultipleCandidates, false,
9197                          CXXConstructExpr::CK_Complete, SourceRange());
9198  if (TempResult.isInvalid())
9199    return true;
9200
9201  Expr *Temp = TempResult.takeAs<Expr>();
9202  CheckImplicitConversions(Temp, VD->getLocation());
9203  MarkFunctionReferenced(VD->getLocation(), Constructor);
9204  Temp = MaybeCreateExprWithCleanups(Temp);
9205  VD->setInit(Temp);
9206
9207  return false;
9208}
9209
9210void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9211  if (VD->isInvalidDecl()) return;
9212
9213  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9214  if (ClassDecl->isInvalidDecl()) return;
9215  if (ClassDecl->hasIrrelevantDestructor()) return;
9216  if (ClassDecl->isDependentContext()) return;
9217
9218  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9219  MarkFunctionReferenced(VD->getLocation(), Destructor);
9220  CheckDestructorAccess(VD->getLocation(), Destructor,
9221                        PDiag(diag::err_access_dtor_var)
9222                        << VD->getDeclName()
9223                        << VD->getType());
9224  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9225
9226  if (!VD->hasGlobalStorage()) return;
9227
9228  // Emit warning for non-trivial dtor in global scope (a real global,
9229  // class-static, function-static).
9230  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9231
9232  // TODO: this should be re-enabled for static locals by !CXAAtExit
9233  if (!VD->isStaticLocal())
9234    Diag(VD->getLocation(), diag::warn_global_destructor);
9235}
9236
9237/// \brief Given a constructor and the set of arguments provided for the
9238/// constructor, convert the arguments and add any required default arguments
9239/// to form a proper call to this constructor.
9240///
9241/// \returns true if an error occurred, false otherwise.
9242bool
9243Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9244                              MultiExprArg ArgsPtr,
9245                              SourceLocation Loc,
9246                              ASTOwningVector<Expr*> &ConvertedArgs,
9247                              bool AllowExplicit) {
9248  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9249  unsigned NumArgs = ArgsPtr.size();
9250  Expr **Args = (Expr **)ArgsPtr.get();
9251
9252  const FunctionProtoType *Proto
9253    = Constructor->getType()->getAs<FunctionProtoType>();
9254  assert(Proto && "Constructor without a prototype?");
9255  unsigned NumArgsInProto = Proto->getNumArgs();
9256
9257  // If too few arguments are available, we'll fill in the rest with defaults.
9258  if (NumArgs < NumArgsInProto)
9259    ConvertedArgs.reserve(NumArgsInProto);
9260  else
9261    ConvertedArgs.reserve(NumArgs);
9262
9263  VariadicCallType CallType =
9264    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9265  SmallVector<Expr *, 8> AllArgs;
9266  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9267                                        Proto, 0, Args, NumArgs, AllArgs,
9268                                        CallType, AllowExplicit);
9269  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9270
9271  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9272
9273  // FIXME: Missing call to CheckFunctionCall or equivalent
9274
9275  return Invalid;
9276}
9277
9278static inline bool
9279CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9280                                       const FunctionDecl *FnDecl) {
9281  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9282  if (isa<NamespaceDecl>(DC)) {
9283    return SemaRef.Diag(FnDecl->getLocation(),
9284                        diag::err_operator_new_delete_declared_in_namespace)
9285      << FnDecl->getDeclName();
9286  }
9287
9288  if (isa<TranslationUnitDecl>(DC) &&
9289      FnDecl->getStorageClass() == SC_Static) {
9290    return SemaRef.Diag(FnDecl->getLocation(),
9291                        diag::err_operator_new_delete_declared_static)
9292      << FnDecl->getDeclName();
9293  }
9294
9295  return false;
9296}
9297
9298static inline bool
9299CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9300                            CanQualType ExpectedResultType,
9301                            CanQualType ExpectedFirstParamType,
9302                            unsigned DependentParamTypeDiag,
9303                            unsigned InvalidParamTypeDiag) {
9304  QualType ResultType =
9305    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9306
9307  // Check that the result type is not dependent.
9308  if (ResultType->isDependentType())
9309    return SemaRef.Diag(FnDecl->getLocation(),
9310                        diag::err_operator_new_delete_dependent_result_type)
9311    << FnDecl->getDeclName() << ExpectedResultType;
9312
9313  // Check that the result type is what we expect.
9314  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9315    return SemaRef.Diag(FnDecl->getLocation(),
9316                        diag::err_operator_new_delete_invalid_result_type)
9317    << FnDecl->getDeclName() << ExpectedResultType;
9318
9319  // A function template must have at least 2 parameters.
9320  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9321    return SemaRef.Diag(FnDecl->getLocation(),
9322                      diag::err_operator_new_delete_template_too_few_parameters)
9323        << FnDecl->getDeclName();
9324
9325  // The function decl must have at least 1 parameter.
9326  if (FnDecl->getNumParams() == 0)
9327    return SemaRef.Diag(FnDecl->getLocation(),
9328                        diag::err_operator_new_delete_too_few_parameters)
9329      << FnDecl->getDeclName();
9330
9331  // Check the the first parameter type is not dependent.
9332  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9333  if (FirstParamType->isDependentType())
9334    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9335      << FnDecl->getDeclName() << ExpectedFirstParamType;
9336
9337  // Check that the first parameter type is what we expect.
9338  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9339      ExpectedFirstParamType)
9340    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9341    << FnDecl->getDeclName() << ExpectedFirstParamType;
9342
9343  return false;
9344}
9345
9346static bool
9347CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9348  // C++ [basic.stc.dynamic.allocation]p1:
9349  //   A program is ill-formed if an allocation function is declared in a
9350  //   namespace scope other than global scope or declared static in global
9351  //   scope.
9352  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9353    return true;
9354
9355  CanQualType SizeTy =
9356    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9357
9358  // C++ [basic.stc.dynamic.allocation]p1:
9359  //  The return type shall be void*. The first parameter shall have type
9360  //  std::size_t.
9361  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9362                                  SizeTy,
9363                                  diag::err_operator_new_dependent_param_type,
9364                                  diag::err_operator_new_param_type))
9365    return true;
9366
9367  // C++ [basic.stc.dynamic.allocation]p1:
9368  //  The first parameter shall not have an associated default argument.
9369  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9370    return SemaRef.Diag(FnDecl->getLocation(),
9371                        diag::err_operator_new_default_arg)
9372      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9373
9374  return false;
9375}
9376
9377static bool
9378CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9379  // C++ [basic.stc.dynamic.deallocation]p1:
9380  //   A program is ill-formed if deallocation functions are declared in a
9381  //   namespace scope other than global scope or declared static in global
9382  //   scope.
9383  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9384    return true;
9385
9386  // C++ [basic.stc.dynamic.deallocation]p2:
9387  //   Each deallocation function shall return void and its first parameter
9388  //   shall be void*.
9389  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9390                                  SemaRef.Context.VoidPtrTy,
9391                                 diag::err_operator_delete_dependent_param_type,
9392                                 diag::err_operator_delete_param_type))
9393    return true;
9394
9395  return false;
9396}
9397
9398/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9399/// of this overloaded operator is well-formed. If so, returns false;
9400/// otherwise, emits appropriate diagnostics and returns true.
9401bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9402  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9403         "Expected an overloaded operator declaration");
9404
9405  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9406
9407  // C++ [over.oper]p5:
9408  //   The allocation and deallocation functions, operator new,
9409  //   operator new[], operator delete and operator delete[], are
9410  //   described completely in 3.7.3. The attributes and restrictions
9411  //   found in the rest of this subclause do not apply to them unless
9412  //   explicitly stated in 3.7.3.
9413  if (Op == OO_Delete || Op == OO_Array_Delete)
9414    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9415
9416  if (Op == OO_New || Op == OO_Array_New)
9417    return CheckOperatorNewDeclaration(*this, FnDecl);
9418
9419  // C++ [over.oper]p6:
9420  //   An operator function shall either be a non-static member
9421  //   function or be a non-member function and have at least one
9422  //   parameter whose type is a class, a reference to a class, an
9423  //   enumeration, or a reference to an enumeration.
9424  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9425    if (MethodDecl->isStatic())
9426      return Diag(FnDecl->getLocation(),
9427                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9428  } else {
9429    bool ClassOrEnumParam = false;
9430    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9431                                   ParamEnd = FnDecl->param_end();
9432         Param != ParamEnd; ++Param) {
9433      QualType ParamType = (*Param)->getType().getNonReferenceType();
9434      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9435          ParamType->isEnumeralType()) {
9436        ClassOrEnumParam = true;
9437        break;
9438      }
9439    }
9440
9441    if (!ClassOrEnumParam)
9442      return Diag(FnDecl->getLocation(),
9443                  diag::err_operator_overload_needs_class_or_enum)
9444        << FnDecl->getDeclName();
9445  }
9446
9447  // C++ [over.oper]p8:
9448  //   An operator function cannot have default arguments (8.3.6),
9449  //   except where explicitly stated below.
9450  //
9451  // Only the function-call operator allows default arguments
9452  // (C++ [over.call]p1).
9453  if (Op != OO_Call) {
9454    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9455         Param != FnDecl->param_end(); ++Param) {
9456      if ((*Param)->hasDefaultArg())
9457        return Diag((*Param)->getLocation(),
9458                    diag::err_operator_overload_default_arg)
9459          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9460    }
9461  }
9462
9463  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9464    { false, false, false }
9465#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9466    , { Unary, Binary, MemberOnly }
9467#include "clang/Basic/OperatorKinds.def"
9468  };
9469
9470  bool CanBeUnaryOperator = OperatorUses[Op][0];
9471  bool CanBeBinaryOperator = OperatorUses[Op][1];
9472  bool MustBeMemberOperator = OperatorUses[Op][2];
9473
9474  // C++ [over.oper]p8:
9475  //   [...] Operator functions cannot have more or fewer parameters
9476  //   than the number required for the corresponding operator, as
9477  //   described in the rest of this subclause.
9478  unsigned NumParams = FnDecl->getNumParams()
9479                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9480  if (Op != OO_Call &&
9481      ((NumParams == 1 && !CanBeUnaryOperator) ||
9482       (NumParams == 2 && !CanBeBinaryOperator) ||
9483       (NumParams < 1) || (NumParams > 2))) {
9484    // We have the wrong number of parameters.
9485    unsigned ErrorKind;
9486    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9487      ErrorKind = 2;  // 2 -> unary or binary.
9488    } else if (CanBeUnaryOperator) {
9489      ErrorKind = 0;  // 0 -> unary
9490    } else {
9491      assert(CanBeBinaryOperator &&
9492             "All non-call overloaded operators are unary or binary!");
9493      ErrorKind = 1;  // 1 -> binary
9494    }
9495
9496    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9497      << FnDecl->getDeclName() << NumParams << ErrorKind;
9498  }
9499
9500  // Overloaded operators other than operator() cannot be variadic.
9501  if (Op != OO_Call &&
9502      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9503    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9504      << FnDecl->getDeclName();
9505  }
9506
9507  // Some operators must be non-static member functions.
9508  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9509    return Diag(FnDecl->getLocation(),
9510                diag::err_operator_overload_must_be_member)
9511      << FnDecl->getDeclName();
9512  }
9513
9514  // C++ [over.inc]p1:
9515  //   The user-defined function called operator++ implements the
9516  //   prefix and postfix ++ operator. If this function is a member
9517  //   function with no parameters, or a non-member function with one
9518  //   parameter of class or enumeration type, it defines the prefix
9519  //   increment operator ++ for objects of that type. If the function
9520  //   is a member function with one parameter (which shall be of type
9521  //   int) or a non-member function with two parameters (the second
9522  //   of which shall be of type int), it defines the postfix
9523  //   increment operator ++ for objects of that type.
9524  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9525    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9526    bool ParamIsInt = false;
9527    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9528      ParamIsInt = BT->getKind() == BuiltinType::Int;
9529
9530    if (!ParamIsInt)
9531      return Diag(LastParam->getLocation(),
9532                  diag::err_operator_overload_post_incdec_must_be_int)
9533        << LastParam->getType() << (Op == OO_MinusMinus);
9534  }
9535
9536  return false;
9537}
9538
9539/// CheckLiteralOperatorDeclaration - Check whether the declaration
9540/// of this literal operator function is well-formed. If so, returns
9541/// false; otherwise, emits appropriate diagnostics and returns true.
9542bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9543  if (isa<CXXMethodDecl>(FnDecl)) {
9544    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9545      << FnDecl->getDeclName();
9546    return true;
9547  }
9548
9549  if (FnDecl->isExternC()) {
9550    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9551    return true;
9552  }
9553
9554  bool Valid = false;
9555
9556  // This might be the definition of a literal operator template.
9557  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9558  // This might be a specialization of a literal operator template.
9559  if (!TpDecl)
9560    TpDecl = FnDecl->getPrimaryTemplate();
9561
9562  // template <char...> type operator "" name() is the only valid template
9563  // signature, and the only valid signature with no parameters.
9564  if (TpDecl) {
9565    if (FnDecl->param_size() == 0) {
9566      // Must have only one template parameter
9567      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9568      if (Params->size() == 1) {
9569        NonTypeTemplateParmDecl *PmDecl =
9570          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9571
9572        // The template parameter must be a char parameter pack.
9573        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9574            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9575          Valid = true;
9576      }
9577    }
9578  } else if (FnDecl->param_size()) {
9579    // Check the first parameter
9580    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9581
9582    QualType T = (*Param)->getType().getUnqualifiedType();
9583
9584    // unsigned long long int, long double, and any character type are allowed
9585    // as the only parameters.
9586    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9587        Context.hasSameType(T, Context.LongDoubleTy) ||
9588        Context.hasSameType(T, Context.CharTy) ||
9589        Context.hasSameType(T, Context.WCharTy) ||
9590        Context.hasSameType(T, Context.Char16Ty) ||
9591        Context.hasSameType(T, Context.Char32Ty)) {
9592      if (++Param == FnDecl->param_end())
9593        Valid = true;
9594      goto FinishedParams;
9595    }
9596
9597    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9598    const PointerType *PT = T->getAs<PointerType>();
9599    if (!PT)
9600      goto FinishedParams;
9601    T = PT->getPointeeType();
9602    if (!T.isConstQualified() || T.isVolatileQualified())
9603      goto FinishedParams;
9604    T = T.getUnqualifiedType();
9605
9606    // Move on to the second parameter;
9607    ++Param;
9608
9609    // If there is no second parameter, the first must be a const char *
9610    if (Param == FnDecl->param_end()) {
9611      if (Context.hasSameType(T, Context.CharTy))
9612        Valid = true;
9613      goto FinishedParams;
9614    }
9615
9616    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9617    // are allowed as the first parameter to a two-parameter function
9618    if (!(Context.hasSameType(T, Context.CharTy) ||
9619          Context.hasSameType(T, Context.WCharTy) ||
9620          Context.hasSameType(T, Context.Char16Ty) ||
9621          Context.hasSameType(T, Context.Char32Ty)))
9622      goto FinishedParams;
9623
9624    // The second and final parameter must be an std::size_t
9625    T = (*Param)->getType().getUnqualifiedType();
9626    if (Context.hasSameType(T, Context.getSizeType()) &&
9627        ++Param == FnDecl->param_end())
9628      Valid = true;
9629  }
9630
9631  // FIXME: This diagnostic is absolutely terrible.
9632FinishedParams:
9633  if (!Valid) {
9634    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9635      << FnDecl->getDeclName();
9636    return true;
9637  }
9638
9639  // A parameter-declaration-clause containing a default argument is not
9640  // equivalent to any of the permitted forms.
9641  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9642                                    ParamEnd = FnDecl->param_end();
9643       Param != ParamEnd; ++Param) {
9644    if ((*Param)->hasDefaultArg()) {
9645      Diag((*Param)->getDefaultArgRange().getBegin(),
9646           diag::err_literal_operator_default_argument)
9647        << (*Param)->getDefaultArgRange();
9648      break;
9649    }
9650  }
9651
9652  StringRef LiteralName
9653    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9654  if (LiteralName[0] != '_') {
9655    // C++11 [usrlit.suffix]p1:
9656    //   Literal suffix identifiers that do not start with an underscore
9657    //   are reserved for future standardization.
9658    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9659  }
9660
9661  return false;
9662}
9663
9664/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9665/// linkage specification, including the language and (if present)
9666/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9667/// the location of the language string literal, which is provided
9668/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9669/// the '{' brace. Otherwise, this linkage specification does not
9670/// have any braces.
9671Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9672                                           SourceLocation LangLoc,
9673                                           StringRef Lang,
9674                                           SourceLocation LBraceLoc) {
9675  LinkageSpecDecl::LanguageIDs Language;
9676  if (Lang == "\"C\"")
9677    Language = LinkageSpecDecl::lang_c;
9678  else if (Lang == "\"C++\"")
9679    Language = LinkageSpecDecl::lang_cxx;
9680  else {
9681    Diag(LangLoc, diag::err_bad_language);
9682    return 0;
9683  }
9684
9685  // FIXME: Add all the various semantics of linkage specifications
9686
9687  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9688                                               ExternLoc, LangLoc, Language);
9689  CurContext->addDecl(D);
9690  PushDeclContext(S, D);
9691  return D;
9692}
9693
9694/// ActOnFinishLinkageSpecification - Complete the definition of
9695/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9696/// valid, it's the position of the closing '}' brace in a linkage
9697/// specification that uses braces.
9698Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9699                                            Decl *LinkageSpec,
9700                                            SourceLocation RBraceLoc) {
9701  if (LinkageSpec) {
9702    if (RBraceLoc.isValid()) {
9703      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9704      LSDecl->setRBraceLoc(RBraceLoc);
9705    }
9706    PopDeclContext();
9707  }
9708  return LinkageSpec;
9709}
9710
9711/// \brief Perform semantic analysis for the variable declaration that
9712/// occurs within a C++ catch clause, returning the newly-created
9713/// variable.
9714VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9715                                         TypeSourceInfo *TInfo,
9716                                         SourceLocation StartLoc,
9717                                         SourceLocation Loc,
9718                                         IdentifierInfo *Name) {
9719  bool Invalid = false;
9720  QualType ExDeclType = TInfo->getType();
9721
9722  // Arrays and functions decay.
9723  if (ExDeclType->isArrayType())
9724    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9725  else if (ExDeclType->isFunctionType())
9726    ExDeclType = Context.getPointerType(ExDeclType);
9727
9728  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9729  // The exception-declaration shall not denote a pointer or reference to an
9730  // incomplete type, other than [cv] void*.
9731  // N2844 forbids rvalue references.
9732  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9733    Diag(Loc, diag::err_catch_rvalue_ref);
9734    Invalid = true;
9735  }
9736
9737  QualType BaseType = ExDeclType;
9738  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9739  unsigned DK = diag::err_catch_incomplete;
9740  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9741    BaseType = Ptr->getPointeeType();
9742    Mode = 1;
9743    DK = diag::err_catch_incomplete_ptr;
9744  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9745    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9746    BaseType = Ref->getPointeeType();
9747    Mode = 2;
9748    DK = diag::err_catch_incomplete_ref;
9749  }
9750  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9751      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9752    Invalid = true;
9753
9754  if (!Invalid && !ExDeclType->isDependentType() &&
9755      RequireNonAbstractType(Loc, ExDeclType,
9756                             diag::err_abstract_type_in_decl,
9757                             AbstractVariableType))
9758    Invalid = true;
9759
9760  // Only the non-fragile NeXT runtime currently supports C++ catches
9761  // of ObjC types, and no runtime supports catching ObjC types by value.
9762  if (!Invalid && getLangOpts().ObjC1) {
9763    QualType T = ExDeclType;
9764    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9765      T = RT->getPointeeType();
9766
9767    if (T->isObjCObjectType()) {
9768      Diag(Loc, diag::err_objc_object_catch);
9769      Invalid = true;
9770    } else if (T->isObjCObjectPointerType()) {
9771      if (!getLangOpts().ObjCNonFragileABI)
9772        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9773    }
9774  }
9775
9776  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9777                                    ExDeclType, TInfo, SC_None, SC_None);
9778  ExDecl->setExceptionVariable(true);
9779
9780  // In ARC, infer 'retaining' for variables of retainable type.
9781  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9782    Invalid = true;
9783
9784  if (!Invalid && !ExDeclType->isDependentType()) {
9785    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9786      // C++ [except.handle]p16:
9787      //   The object declared in an exception-declaration or, if the
9788      //   exception-declaration does not specify a name, a temporary (12.2) is
9789      //   copy-initialized (8.5) from the exception object. [...]
9790      //   The object is destroyed when the handler exits, after the destruction
9791      //   of any automatic objects initialized within the handler.
9792      //
9793      // We just pretend to initialize the object with itself, then make sure
9794      // it can be destroyed later.
9795      QualType initType = ExDeclType;
9796
9797      InitializedEntity entity =
9798        InitializedEntity::InitializeVariable(ExDecl);
9799      InitializationKind initKind =
9800        InitializationKind::CreateCopy(Loc, SourceLocation());
9801
9802      Expr *opaqueValue =
9803        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9804      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9805      ExprResult result = sequence.Perform(*this, entity, initKind,
9806                                           MultiExprArg(&opaqueValue, 1));
9807      if (result.isInvalid())
9808        Invalid = true;
9809      else {
9810        // If the constructor used was non-trivial, set this as the
9811        // "initializer".
9812        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9813        if (!construct->getConstructor()->isTrivial()) {
9814          Expr *init = MaybeCreateExprWithCleanups(construct);
9815          ExDecl->setInit(init);
9816        }
9817
9818        // And make sure it's destructable.
9819        FinalizeVarWithDestructor(ExDecl, recordType);
9820      }
9821    }
9822  }
9823
9824  if (Invalid)
9825    ExDecl->setInvalidDecl();
9826
9827  return ExDecl;
9828}
9829
9830/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9831/// handler.
9832Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9833  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9834  bool Invalid = D.isInvalidType();
9835
9836  // Check for unexpanded parameter packs.
9837  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9838                                               UPPC_ExceptionType)) {
9839    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9840                                             D.getIdentifierLoc());
9841    Invalid = true;
9842  }
9843
9844  IdentifierInfo *II = D.getIdentifier();
9845  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9846                                             LookupOrdinaryName,
9847                                             ForRedeclaration)) {
9848    // The scope should be freshly made just for us. There is just no way
9849    // it contains any previous declaration.
9850    assert(!S->isDeclScope(PrevDecl));
9851    if (PrevDecl->isTemplateParameter()) {
9852      // Maybe we will complain about the shadowed template parameter.
9853      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9854      PrevDecl = 0;
9855    }
9856  }
9857
9858  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9859    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9860      << D.getCXXScopeSpec().getRange();
9861    Invalid = true;
9862  }
9863
9864  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9865                                              D.getLocStart(),
9866                                              D.getIdentifierLoc(),
9867                                              D.getIdentifier());
9868  if (Invalid)
9869    ExDecl->setInvalidDecl();
9870
9871  // Add the exception declaration into this scope.
9872  if (II)
9873    PushOnScopeChains(ExDecl, S);
9874  else
9875    CurContext->addDecl(ExDecl);
9876
9877  ProcessDeclAttributes(S, ExDecl, D);
9878  return ExDecl;
9879}
9880
9881Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9882                                         Expr *AssertExpr,
9883                                         Expr *AssertMessageExpr_,
9884                                         SourceLocation RParenLoc) {
9885  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9886
9887  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9888    // In a static_assert-declaration, the constant-expression shall be a
9889    // constant expression that can be contextually converted to bool.
9890    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9891    if (Converted.isInvalid())
9892      return 0;
9893
9894    llvm::APSInt Cond;
9895    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9896          PDiag(diag::err_static_assert_expression_is_not_constant),
9897          /*AllowFold=*/false).isInvalid())
9898      return 0;
9899
9900    if (!Cond) {
9901      llvm::SmallString<256> MsgBuffer;
9902      llvm::raw_svector_ostream Msg(MsgBuffer);
9903      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9904      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9905        << Msg.str() << AssertExpr->getSourceRange();
9906    }
9907  }
9908
9909  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9910    return 0;
9911
9912  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9913                                        AssertExpr, AssertMessage, RParenLoc);
9914
9915  CurContext->addDecl(Decl);
9916  return Decl;
9917}
9918
9919/// \brief Perform semantic analysis of the given friend type declaration.
9920///
9921/// \returns A friend declaration that.
9922FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9923                                      SourceLocation FriendLoc,
9924                                      TypeSourceInfo *TSInfo) {
9925  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9926
9927  QualType T = TSInfo->getType();
9928  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9929
9930  // C++03 [class.friend]p2:
9931  //   An elaborated-type-specifier shall be used in a friend declaration
9932  //   for a class.*
9933  //
9934  //   * The class-key of the elaborated-type-specifier is required.
9935  if (!ActiveTemplateInstantiations.empty()) {
9936    // Do not complain about the form of friend template types during
9937    // template instantiation; we will already have complained when the
9938    // template was declared.
9939  } else if (!T->isElaboratedTypeSpecifier()) {
9940    // If we evaluated the type to a record type, suggest putting
9941    // a tag in front.
9942    if (const RecordType *RT = T->getAs<RecordType>()) {
9943      RecordDecl *RD = RT->getDecl();
9944
9945      std::string InsertionText = std::string(" ") + RD->getKindName();
9946
9947      Diag(TypeRange.getBegin(),
9948           getLangOpts().CPlusPlus0x ?
9949             diag::warn_cxx98_compat_unelaborated_friend_type :
9950             diag::ext_unelaborated_friend_type)
9951        << (unsigned) RD->getTagKind()
9952        << T
9953        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9954                                      InsertionText);
9955    } else {
9956      Diag(FriendLoc,
9957           getLangOpts().CPlusPlus0x ?
9958             diag::warn_cxx98_compat_nonclass_type_friend :
9959             diag::ext_nonclass_type_friend)
9960        << T
9961        << SourceRange(FriendLoc, TypeRange.getEnd());
9962    }
9963  } else if (T->getAs<EnumType>()) {
9964    Diag(FriendLoc,
9965         getLangOpts().CPlusPlus0x ?
9966           diag::warn_cxx98_compat_enum_friend :
9967           diag::ext_enum_friend)
9968      << T
9969      << SourceRange(FriendLoc, TypeRange.getEnd());
9970  }
9971
9972  // C++0x [class.friend]p3:
9973  //   If the type specifier in a friend declaration designates a (possibly
9974  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9975  //   the friend declaration is ignored.
9976
9977  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9978  // in [class.friend]p3 that we do not implement.
9979
9980  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9981}
9982
9983/// Handle a friend tag declaration where the scope specifier was
9984/// templated.
9985Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9986                                    unsigned TagSpec, SourceLocation TagLoc,
9987                                    CXXScopeSpec &SS,
9988                                    IdentifierInfo *Name, SourceLocation NameLoc,
9989                                    AttributeList *Attr,
9990                                    MultiTemplateParamsArg TempParamLists) {
9991  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9992
9993  bool isExplicitSpecialization = false;
9994  bool Invalid = false;
9995
9996  if (TemplateParameterList *TemplateParams
9997        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9998                                                  TempParamLists.get(),
9999                                                  TempParamLists.size(),
10000                                                  /*friend*/ true,
10001                                                  isExplicitSpecialization,
10002                                                  Invalid)) {
10003    if (TemplateParams->size() > 0) {
10004      // This is a declaration of a class template.
10005      if (Invalid)
10006        return 0;
10007
10008      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10009                                SS, Name, NameLoc, Attr,
10010                                TemplateParams, AS_public,
10011                                /*ModulePrivateLoc=*/SourceLocation(),
10012                                TempParamLists.size() - 1,
10013                   (TemplateParameterList**) TempParamLists.release()).take();
10014    } else {
10015      // The "template<>" header is extraneous.
10016      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10017        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10018      isExplicitSpecialization = true;
10019    }
10020  }
10021
10022  if (Invalid) return 0;
10023
10024  bool isAllExplicitSpecializations = true;
10025  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10026    if (TempParamLists.get()[I]->size()) {
10027      isAllExplicitSpecializations = false;
10028      break;
10029    }
10030  }
10031
10032  // FIXME: don't ignore attributes.
10033
10034  // If it's explicit specializations all the way down, just forget
10035  // about the template header and build an appropriate non-templated
10036  // friend.  TODO: for source fidelity, remember the headers.
10037  if (isAllExplicitSpecializations) {
10038    if (SS.isEmpty()) {
10039      bool Owned = false;
10040      bool IsDependent = false;
10041      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10042                      Attr, AS_public,
10043                      /*ModulePrivateLoc=*/SourceLocation(),
10044                      MultiTemplateParamsArg(), Owned, IsDependent,
10045                      /*ScopedEnumKWLoc=*/SourceLocation(),
10046                      /*ScopedEnumUsesClassTag=*/false,
10047                      /*UnderlyingType=*/TypeResult());
10048    }
10049
10050    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10051    ElaboratedTypeKeyword Keyword
10052      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10053    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10054                                   *Name, NameLoc);
10055    if (T.isNull())
10056      return 0;
10057
10058    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10059    if (isa<DependentNameType>(T)) {
10060      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10061      TL.setElaboratedKeywordLoc(TagLoc);
10062      TL.setQualifierLoc(QualifierLoc);
10063      TL.setNameLoc(NameLoc);
10064    } else {
10065      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10066      TL.setElaboratedKeywordLoc(TagLoc);
10067      TL.setQualifierLoc(QualifierLoc);
10068      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10069    }
10070
10071    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10072                                            TSI, FriendLoc);
10073    Friend->setAccess(AS_public);
10074    CurContext->addDecl(Friend);
10075    return Friend;
10076  }
10077
10078  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10079
10080
10081
10082  // Handle the case of a templated-scope friend class.  e.g.
10083  //   template <class T> class A<T>::B;
10084  // FIXME: we don't support these right now.
10085  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10086  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10087  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10088  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10089  TL.setElaboratedKeywordLoc(TagLoc);
10090  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10091  TL.setNameLoc(NameLoc);
10092
10093  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10094                                          TSI, FriendLoc);
10095  Friend->setAccess(AS_public);
10096  Friend->setUnsupportedFriend(true);
10097  CurContext->addDecl(Friend);
10098  return Friend;
10099}
10100
10101
10102/// Handle a friend type declaration.  This works in tandem with
10103/// ActOnTag.
10104///
10105/// Notes on friend class templates:
10106///
10107/// We generally treat friend class declarations as if they were
10108/// declaring a class.  So, for example, the elaborated type specifier
10109/// in a friend declaration is required to obey the restrictions of a
10110/// class-head (i.e. no typedefs in the scope chain), template
10111/// parameters are required to match up with simple template-ids, &c.
10112/// However, unlike when declaring a template specialization, it's
10113/// okay to refer to a template specialization without an empty
10114/// template parameter declaration, e.g.
10115///   friend class A<T>::B<unsigned>;
10116/// We permit this as a special case; if there are any template
10117/// parameters present at all, require proper matching, i.e.
10118///   template <> template <class T> friend class A<int>::B;
10119Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10120                                MultiTemplateParamsArg TempParams) {
10121  SourceLocation Loc = DS.getLocStart();
10122
10123  assert(DS.isFriendSpecified());
10124  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10125
10126  // Try to convert the decl specifier to a type.  This works for
10127  // friend templates because ActOnTag never produces a ClassTemplateDecl
10128  // for a TUK_Friend.
10129  Declarator TheDeclarator(DS, Declarator::MemberContext);
10130  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10131  QualType T = TSI->getType();
10132  if (TheDeclarator.isInvalidType())
10133    return 0;
10134
10135  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10136    return 0;
10137
10138  // This is definitely an error in C++98.  It's probably meant to
10139  // be forbidden in C++0x, too, but the specification is just
10140  // poorly written.
10141  //
10142  // The problem is with declarations like the following:
10143  //   template <T> friend A<T>::foo;
10144  // where deciding whether a class C is a friend or not now hinges
10145  // on whether there exists an instantiation of A that causes
10146  // 'foo' to equal C.  There are restrictions on class-heads
10147  // (which we declare (by fiat) elaborated friend declarations to
10148  // be) that makes this tractable.
10149  //
10150  // FIXME: handle "template <> friend class A<T>;", which
10151  // is possibly well-formed?  Who even knows?
10152  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10153    Diag(Loc, diag::err_tagless_friend_type_template)
10154      << DS.getSourceRange();
10155    return 0;
10156  }
10157
10158  // C++98 [class.friend]p1: A friend of a class is a function
10159  //   or class that is not a member of the class . . .
10160  // This is fixed in DR77, which just barely didn't make the C++03
10161  // deadline.  It's also a very silly restriction that seriously
10162  // affects inner classes and which nobody else seems to implement;
10163  // thus we never diagnose it, not even in -pedantic.
10164  //
10165  // But note that we could warn about it: it's always useless to
10166  // friend one of your own members (it's not, however, worthless to
10167  // friend a member of an arbitrary specialization of your template).
10168
10169  Decl *D;
10170  if (unsigned NumTempParamLists = TempParams.size())
10171    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10172                                   NumTempParamLists,
10173                                   TempParams.release(),
10174                                   TSI,
10175                                   DS.getFriendSpecLoc());
10176  else
10177    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10178
10179  if (!D)
10180    return 0;
10181
10182  D->setAccess(AS_public);
10183  CurContext->addDecl(D);
10184
10185  return D;
10186}
10187
10188Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10189                                    MultiTemplateParamsArg TemplateParams) {
10190  const DeclSpec &DS = D.getDeclSpec();
10191
10192  assert(DS.isFriendSpecified());
10193  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10194
10195  SourceLocation Loc = D.getIdentifierLoc();
10196  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10197
10198  // C++ [class.friend]p1
10199  //   A friend of a class is a function or class....
10200  // Note that this sees through typedefs, which is intended.
10201  // It *doesn't* see through dependent types, which is correct
10202  // according to [temp.arg.type]p3:
10203  //   If a declaration acquires a function type through a
10204  //   type dependent on a template-parameter and this causes
10205  //   a declaration that does not use the syntactic form of a
10206  //   function declarator to have a function type, the program
10207  //   is ill-formed.
10208  if (!TInfo->getType()->isFunctionType()) {
10209    Diag(Loc, diag::err_unexpected_friend);
10210
10211    // It might be worthwhile to try to recover by creating an
10212    // appropriate declaration.
10213    return 0;
10214  }
10215
10216  // C++ [namespace.memdef]p3
10217  //  - If a friend declaration in a non-local class first declares a
10218  //    class or function, the friend class or function is a member
10219  //    of the innermost enclosing namespace.
10220  //  - The name of the friend is not found by simple name lookup
10221  //    until a matching declaration is provided in that namespace
10222  //    scope (either before or after the class declaration granting
10223  //    friendship).
10224  //  - If a friend function is called, its name may be found by the
10225  //    name lookup that considers functions from namespaces and
10226  //    classes associated with the types of the function arguments.
10227  //  - When looking for a prior declaration of a class or a function
10228  //    declared as a friend, scopes outside the innermost enclosing
10229  //    namespace scope are not considered.
10230
10231  CXXScopeSpec &SS = D.getCXXScopeSpec();
10232  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10233  DeclarationName Name = NameInfo.getName();
10234  assert(Name);
10235
10236  // Check for unexpanded parameter packs.
10237  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10238      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10239      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10240    return 0;
10241
10242  // The context we found the declaration in, or in which we should
10243  // create the declaration.
10244  DeclContext *DC;
10245  Scope *DCScope = S;
10246  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10247                        ForRedeclaration);
10248
10249  // FIXME: there are different rules in local classes
10250
10251  // There are four cases here.
10252  //   - There's no scope specifier, in which case we just go to the
10253  //     appropriate scope and look for a function or function template
10254  //     there as appropriate.
10255  // Recover from invalid scope qualifiers as if they just weren't there.
10256  if (SS.isInvalid() || !SS.isSet()) {
10257    // C++0x [namespace.memdef]p3:
10258    //   If the name in a friend declaration is neither qualified nor
10259    //   a template-id and the declaration is a function or an
10260    //   elaborated-type-specifier, the lookup to determine whether
10261    //   the entity has been previously declared shall not consider
10262    //   any scopes outside the innermost enclosing namespace.
10263    // C++0x [class.friend]p11:
10264    //   If a friend declaration appears in a local class and the name
10265    //   specified is an unqualified name, a prior declaration is
10266    //   looked up without considering scopes that are outside the
10267    //   innermost enclosing non-class scope. For a friend function
10268    //   declaration, if there is no prior declaration, the program is
10269    //   ill-formed.
10270    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10271    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10272
10273    // Find the appropriate context according to the above.
10274    DC = CurContext;
10275    while (true) {
10276      // Skip class contexts.  If someone can cite chapter and verse
10277      // for this behavior, that would be nice --- it's what GCC and
10278      // EDG do, and it seems like a reasonable intent, but the spec
10279      // really only says that checks for unqualified existing
10280      // declarations should stop at the nearest enclosing namespace,
10281      // not that they should only consider the nearest enclosing
10282      // namespace.
10283      while (DC->isRecord() || DC->isTransparentContext())
10284        DC = DC->getParent();
10285
10286      LookupQualifiedName(Previous, DC);
10287
10288      // TODO: decide what we think about using declarations.
10289      if (isLocal || !Previous.empty())
10290        break;
10291
10292      if (isTemplateId) {
10293        if (isa<TranslationUnitDecl>(DC)) break;
10294      } else {
10295        if (DC->isFileContext()) break;
10296      }
10297      DC = DC->getParent();
10298    }
10299
10300    // C++ [class.friend]p1: A friend of a class is a function or
10301    //   class that is not a member of the class . . .
10302    // C++11 changes this for both friend types and functions.
10303    // Most C++ 98 compilers do seem to give an error here, so
10304    // we do, too.
10305    if (!Previous.empty() && DC->Equals(CurContext))
10306      Diag(DS.getFriendSpecLoc(),
10307           getLangOpts().CPlusPlus0x ?
10308             diag::warn_cxx98_compat_friend_is_member :
10309             diag::err_friend_is_member);
10310
10311    DCScope = getScopeForDeclContext(S, DC);
10312
10313    // C++ [class.friend]p6:
10314    //   A function can be defined in a friend declaration of a class if and
10315    //   only if the class is a non-local class (9.8), the function name is
10316    //   unqualified, and the function has namespace scope.
10317    if (isLocal && D.isFunctionDefinition()) {
10318      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10319    }
10320
10321  //   - There's a non-dependent scope specifier, in which case we
10322  //     compute it and do a previous lookup there for a function
10323  //     or function template.
10324  } else if (!SS.getScopeRep()->isDependent()) {
10325    DC = computeDeclContext(SS);
10326    if (!DC) return 0;
10327
10328    if (RequireCompleteDeclContext(SS, DC)) return 0;
10329
10330    LookupQualifiedName(Previous, DC);
10331
10332    // Ignore things found implicitly in the wrong scope.
10333    // TODO: better diagnostics for this case.  Suggesting the right
10334    // qualified scope would be nice...
10335    LookupResult::Filter F = Previous.makeFilter();
10336    while (F.hasNext()) {
10337      NamedDecl *D = F.next();
10338      if (!DC->InEnclosingNamespaceSetOf(
10339              D->getDeclContext()->getRedeclContext()))
10340        F.erase();
10341    }
10342    F.done();
10343
10344    if (Previous.empty()) {
10345      D.setInvalidType();
10346      Diag(Loc, diag::err_qualified_friend_not_found)
10347          << Name << TInfo->getType();
10348      return 0;
10349    }
10350
10351    // C++ [class.friend]p1: A friend of a class is a function or
10352    //   class that is not a member of the class . . .
10353    if (DC->Equals(CurContext))
10354      Diag(DS.getFriendSpecLoc(),
10355           getLangOpts().CPlusPlus0x ?
10356             diag::warn_cxx98_compat_friend_is_member :
10357             diag::err_friend_is_member);
10358
10359    if (D.isFunctionDefinition()) {
10360      // C++ [class.friend]p6:
10361      //   A function can be defined in a friend declaration of a class if and
10362      //   only if the class is a non-local class (9.8), the function name is
10363      //   unqualified, and the function has namespace scope.
10364      SemaDiagnosticBuilder DB
10365        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10366
10367      DB << SS.getScopeRep();
10368      if (DC->isFileContext())
10369        DB << FixItHint::CreateRemoval(SS.getRange());
10370      SS.clear();
10371    }
10372
10373  //   - There's a scope specifier that does not match any template
10374  //     parameter lists, in which case we use some arbitrary context,
10375  //     create a method or method template, and wait for instantiation.
10376  //   - There's a scope specifier that does match some template
10377  //     parameter lists, which we don't handle right now.
10378  } else {
10379    if (D.isFunctionDefinition()) {
10380      // C++ [class.friend]p6:
10381      //   A function can be defined in a friend declaration of a class if and
10382      //   only if the class is a non-local class (9.8), the function name is
10383      //   unqualified, and the function has namespace scope.
10384      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10385        << SS.getScopeRep();
10386    }
10387
10388    DC = CurContext;
10389    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10390  }
10391
10392  if (!DC->isRecord()) {
10393    // This implies that it has to be an operator or function.
10394    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10395        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10396        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10397      Diag(Loc, diag::err_introducing_special_friend) <<
10398        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10399         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10400      return 0;
10401    }
10402  }
10403
10404  // FIXME: This is an egregious hack to cope with cases where the scope stack
10405  // does not contain the declaration context, i.e., in an out-of-line
10406  // definition of a class.
10407  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10408  if (!DCScope) {
10409    FakeDCScope.setEntity(DC);
10410    DCScope = &FakeDCScope;
10411  }
10412
10413  bool AddToScope = true;
10414  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10415                                          move(TemplateParams), AddToScope);
10416  if (!ND) return 0;
10417
10418  assert(ND->getDeclContext() == DC);
10419  assert(ND->getLexicalDeclContext() == CurContext);
10420
10421  // Add the function declaration to the appropriate lookup tables,
10422  // adjusting the redeclarations list as necessary.  We don't
10423  // want to do this yet if the friending class is dependent.
10424  //
10425  // Also update the scope-based lookup if the target context's
10426  // lookup context is in lexical scope.
10427  if (!CurContext->isDependentContext()) {
10428    DC = DC->getRedeclContext();
10429    DC->makeDeclVisibleInContext(ND);
10430    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10431      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10432  }
10433
10434  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10435                                       D.getIdentifierLoc(), ND,
10436                                       DS.getFriendSpecLoc());
10437  FrD->setAccess(AS_public);
10438  CurContext->addDecl(FrD);
10439
10440  if (ND->isInvalidDecl())
10441    FrD->setInvalidDecl();
10442  else {
10443    FunctionDecl *FD;
10444    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10445      FD = FTD->getTemplatedDecl();
10446    else
10447      FD = cast<FunctionDecl>(ND);
10448
10449    // Mark templated-scope function declarations as unsupported.
10450    if (FD->getNumTemplateParameterLists())
10451      FrD->setUnsupportedFriend(true);
10452  }
10453
10454  return ND;
10455}
10456
10457void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10458  AdjustDeclIfTemplate(Dcl);
10459
10460  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10461  if (!Fn) {
10462    Diag(DelLoc, diag::err_deleted_non_function);
10463    return;
10464  }
10465  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10466    Diag(DelLoc, diag::err_deleted_decl_not_first);
10467    Diag(Prev->getLocation(), diag::note_previous_declaration);
10468    // If the declaration wasn't the first, we delete the function anyway for
10469    // recovery.
10470  }
10471  Fn->setDeletedAsWritten();
10472
10473  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10474  if (!MD)
10475    return;
10476
10477  // A deleted special member function is trivial if the corresponding
10478  // implicitly-declared function would have been.
10479  switch (getSpecialMember(MD)) {
10480  case CXXInvalid:
10481    break;
10482  case CXXDefaultConstructor:
10483    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10484    break;
10485  case CXXCopyConstructor:
10486    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10487    break;
10488  case CXXMoveConstructor:
10489    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10490    break;
10491  case CXXCopyAssignment:
10492    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10493    break;
10494  case CXXMoveAssignment:
10495    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10496    break;
10497  case CXXDestructor:
10498    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10499    break;
10500  }
10501}
10502
10503void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10504  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10505
10506  if (MD) {
10507    if (MD->getParent()->isDependentType()) {
10508      MD->setDefaulted();
10509      MD->setExplicitlyDefaulted();
10510      return;
10511    }
10512
10513    CXXSpecialMember Member = getSpecialMember(MD);
10514    if (Member == CXXInvalid) {
10515      Diag(DefaultLoc, diag::err_default_special_members);
10516      return;
10517    }
10518
10519    MD->setDefaulted();
10520    MD->setExplicitlyDefaulted();
10521
10522    // If this definition appears within the record, do the checking when
10523    // the record is complete.
10524    const FunctionDecl *Primary = MD;
10525    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10526      // Find the uninstantiated declaration that actually had the '= default'
10527      // on it.
10528      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10529
10530    if (Primary == Primary->getCanonicalDecl())
10531      return;
10532
10533    switch (Member) {
10534    case CXXDefaultConstructor: {
10535      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10536      CheckExplicitlyDefaultedDefaultConstructor(CD);
10537      if (!CD->isInvalidDecl())
10538        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10539      break;
10540    }
10541
10542    case CXXCopyConstructor: {
10543      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10544      CheckExplicitlyDefaultedCopyConstructor(CD);
10545      if (!CD->isInvalidDecl())
10546        DefineImplicitCopyConstructor(DefaultLoc, CD);
10547      break;
10548    }
10549
10550    case CXXCopyAssignment: {
10551      CheckExplicitlyDefaultedCopyAssignment(MD);
10552      if (!MD->isInvalidDecl())
10553        DefineImplicitCopyAssignment(DefaultLoc, MD);
10554      break;
10555    }
10556
10557    case CXXDestructor: {
10558      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10559      CheckExplicitlyDefaultedDestructor(DD);
10560      if (!DD->isInvalidDecl())
10561        DefineImplicitDestructor(DefaultLoc, DD);
10562      break;
10563    }
10564
10565    case CXXMoveConstructor: {
10566      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10567      CheckExplicitlyDefaultedMoveConstructor(CD);
10568      if (!CD->isInvalidDecl())
10569        DefineImplicitMoveConstructor(DefaultLoc, CD);
10570      break;
10571    }
10572
10573    case CXXMoveAssignment: {
10574      CheckExplicitlyDefaultedMoveAssignment(MD);
10575      if (!MD->isInvalidDecl())
10576        DefineImplicitMoveAssignment(DefaultLoc, MD);
10577      break;
10578    }
10579
10580    case CXXInvalid:
10581      llvm_unreachable("Invalid special member.");
10582    }
10583  } else {
10584    Diag(DefaultLoc, diag::err_default_special_members);
10585  }
10586}
10587
10588static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10589  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10590    Stmt *SubStmt = *CI;
10591    if (!SubStmt)
10592      continue;
10593    if (isa<ReturnStmt>(SubStmt))
10594      Self.Diag(SubStmt->getLocStart(),
10595           diag::err_return_in_constructor_handler);
10596    if (!isa<Expr>(SubStmt))
10597      SearchForReturnInStmt(Self, SubStmt);
10598  }
10599}
10600
10601void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10602  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10603    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10604    SearchForReturnInStmt(*this, Handler);
10605  }
10606}
10607
10608bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10609                                             const CXXMethodDecl *Old) {
10610  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10611  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10612
10613  if (Context.hasSameType(NewTy, OldTy) ||
10614      NewTy->isDependentType() || OldTy->isDependentType())
10615    return false;
10616
10617  // Check if the return types are covariant
10618  QualType NewClassTy, OldClassTy;
10619
10620  /// Both types must be pointers or references to classes.
10621  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10622    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10623      NewClassTy = NewPT->getPointeeType();
10624      OldClassTy = OldPT->getPointeeType();
10625    }
10626  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10627    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10628      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10629        NewClassTy = NewRT->getPointeeType();
10630        OldClassTy = OldRT->getPointeeType();
10631      }
10632    }
10633  }
10634
10635  // The return types aren't either both pointers or references to a class type.
10636  if (NewClassTy.isNull()) {
10637    Diag(New->getLocation(),
10638         diag::err_different_return_type_for_overriding_virtual_function)
10639      << New->getDeclName() << NewTy << OldTy;
10640    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10641
10642    return true;
10643  }
10644
10645  // C++ [class.virtual]p6:
10646  //   If the return type of D::f differs from the return type of B::f, the
10647  //   class type in the return type of D::f shall be complete at the point of
10648  //   declaration of D::f or shall be the class type D.
10649  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10650    if (!RT->isBeingDefined() &&
10651        RequireCompleteType(New->getLocation(), NewClassTy,
10652                            diag::err_covariant_return_incomplete,
10653                            New->getDeclName()))
10654    return true;
10655  }
10656
10657  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10658    // Check if the new class derives from the old class.
10659    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10660      Diag(New->getLocation(),
10661           diag::err_covariant_return_not_derived)
10662      << New->getDeclName() << NewTy << OldTy;
10663      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10664      return true;
10665    }
10666
10667    // Check if we the conversion from derived to base is valid.
10668    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10669                    diag::err_covariant_return_inaccessible_base,
10670                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10671                    // FIXME: Should this point to the return type?
10672                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10673      // FIXME: this note won't trigger for delayed access control
10674      // diagnostics, and it's impossible to get an undelayed error
10675      // here from access control during the original parse because
10676      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10677      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10678      return true;
10679    }
10680  }
10681
10682  // The qualifiers of the return types must be the same.
10683  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10684    Diag(New->getLocation(),
10685         diag::err_covariant_return_type_different_qualifications)
10686    << New->getDeclName() << NewTy << OldTy;
10687    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10688    return true;
10689  };
10690
10691
10692  // The new class type must have the same or less qualifiers as the old type.
10693  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10694    Diag(New->getLocation(),
10695         diag::err_covariant_return_type_class_type_more_qualified)
10696    << New->getDeclName() << NewTy << OldTy;
10697    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10698    return true;
10699  };
10700
10701  return false;
10702}
10703
10704/// \brief Mark the given method pure.
10705///
10706/// \param Method the method to be marked pure.
10707///
10708/// \param InitRange the source range that covers the "0" initializer.
10709bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10710  SourceLocation EndLoc = InitRange.getEnd();
10711  if (EndLoc.isValid())
10712    Method->setRangeEnd(EndLoc);
10713
10714  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10715    Method->setPure();
10716    return false;
10717  }
10718
10719  if (!Method->isInvalidDecl())
10720    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10721      << Method->getDeclName() << InitRange;
10722  return true;
10723}
10724
10725/// \brief Determine whether the given declaration is a static data member.
10726static bool isStaticDataMember(Decl *D) {
10727  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10728  if (!Var)
10729    return false;
10730
10731  return Var->isStaticDataMember();
10732}
10733/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10734/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10735/// is a fresh scope pushed for just this purpose.
10736///
10737/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10738/// static data member of class X, names should be looked up in the scope of
10739/// class X.
10740void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10741  // If there is no declaration, there was an error parsing it.
10742  if (D == 0 || D->isInvalidDecl()) return;
10743
10744  // We should only get called for declarations with scope specifiers, like:
10745  //   int foo::bar;
10746  assert(D->isOutOfLine());
10747  EnterDeclaratorContext(S, D->getDeclContext());
10748
10749  // If we are parsing the initializer for a static data member, push a
10750  // new expression evaluation context that is associated with this static
10751  // data member.
10752  if (isStaticDataMember(D))
10753    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10754}
10755
10756/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10757/// initializer for the out-of-line declaration 'D'.
10758void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10759  // If there is no declaration, there was an error parsing it.
10760  if (D == 0 || D->isInvalidDecl()) return;
10761
10762  if (isStaticDataMember(D))
10763    PopExpressionEvaluationContext();
10764
10765  assert(D->isOutOfLine());
10766  ExitDeclaratorContext(S);
10767}
10768
10769/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10770/// C++ if/switch/while/for statement.
10771/// e.g: "if (int x = f()) {...}"
10772DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10773  // C++ 6.4p2:
10774  // The declarator shall not specify a function or an array.
10775  // The type-specifier-seq shall not contain typedef and shall not declare a
10776  // new class or enumeration.
10777  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10778         "Parser allowed 'typedef' as storage class of condition decl.");
10779
10780  Decl *Dcl = ActOnDeclarator(S, D);
10781  if (!Dcl)
10782    return true;
10783
10784  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10785    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10786      << D.getSourceRange();
10787    return true;
10788  }
10789
10790  return Dcl;
10791}
10792
10793void Sema::LoadExternalVTableUses() {
10794  if (!ExternalSource)
10795    return;
10796
10797  SmallVector<ExternalVTableUse, 4> VTables;
10798  ExternalSource->ReadUsedVTables(VTables);
10799  SmallVector<VTableUse, 4> NewUses;
10800  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10801    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10802      = VTablesUsed.find(VTables[I].Record);
10803    // Even if a definition wasn't required before, it may be required now.
10804    if (Pos != VTablesUsed.end()) {
10805      if (!Pos->second && VTables[I].DefinitionRequired)
10806        Pos->second = true;
10807      continue;
10808    }
10809
10810    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10811    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10812  }
10813
10814  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10815}
10816
10817void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10818                          bool DefinitionRequired) {
10819  // Ignore any vtable uses in unevaluated operands or for classes that do
10820  // not have a vtable.
10821  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10822      CurContext->isDependentContext() ||
10823      ExprEvalContexts.back().Context == Unevaluated)
10824    return;
10825
10826  // Try to insert this class into the map.
10827  LoadExternalVTableUses();
10828  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10829  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10830    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10831  if (!Pos.second) {
10832    // If we already had an entry, check to see if we are promoting this vtable
10833    // to required a definition. If so, we need to reappend to the VTableUses
10834    // list, since we may have already processed the first entry.
10835    if (DefinitionRequired && !Pos.first->second) {
10836      Pos.first->second = true;
10837    } else {
10838      // Otherwise, we can early exit.
10839      return;
10840    }
10841  }
10842
10843  // Local classes need to have their virtual members marked
10844  // immediately. For all other classes, we mark their virtual members
10845  // at the end of the translation unit.
10846  if (Class->isLocalClass())
10847    MarkVirtualMembersReferenced(Loc, Class);
10848  else
10849    VTableUses.push_back(std::make_pair(Class, Loc));
10850}
10851
10852bool Sema::DefineUsedVTables() {
10853  LoadExternalVTableUses();
10854  if (VTableUses.empty())
10855    return false;
10856
10857  // Note: The VTableUses vector could grow as a result of marking
10858  // the members of a class as "used", so we check the size each
10859  // time through the loop and prefer indices (with are stable) to
10860  // iterators (which are not).
10861  bool DefinedAnything = false;
10862  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10863    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10864    if (!Class)
10865      continue;
10866
10867    SourceLocation Loc = VTableUses[I].second;
10868
10869    // If this class has a key function, but that key function is
10870    // defined in another translation unit, we don't need to emit the
10871    // vtable even though we're using it.
10872    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10873    if (KeyFunction && !KeyFunction->hasBody()) {
10874      switch (KeyFunction->getTemplateSpecializationKind()) {
10875      case TSK_Undeclared:
10876      case TSK_ExplicitSpecialization:
10877      case TSK_ExplicitInstantiationDeclaration:
10878        // The key function is in another translation unit.
10879        continue;
10880
10881      case TSK_ExplicitInstantiationDefinition:
10882      case TSK_ImplicitInstantiation:
10883        // We will be instantiating the key function.
10884        break;
10885      }
10886    } else if (!KeyFunction) {
10887      // If we have a class with no key function that is the subject
10888      // of an explicit instantiation declaration, suppress the
10889      // vtable; it will live with the explicit instantiation
10890      // definition.
10891      bool IsExplicitInstantiationDeclaration
10892        = Class->getTemplateSpecializationKind()
10893                                      == TSK_ExplicitInstantiationDeclaration;
10894      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10895                                 REnd = Class->redecls_end();
10896           R != REnd; ++R) {
10897        TemplateSpecializationKind TSK
10898          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10899        if (TSK == TSK_ExplicitInstantiationDeclaration)
10900          IsExplicitInstantiationDeclaration = true;
10901        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10902          IsExplicitInstantiationDeclaration = false;
10903          break;
10904        }
10905      }
10906
10907      if (IsExplicitInstantiationDeclaration)
10908        continue;
10909    }
10910
10911    // Mark all of the virtual members of this class as referenced, so
10912    // that we can build a vtable. Then, tell the AST consumer that a
10913    // vtable for this class is required.
10914    DefinedAnything = true;
10915    MarkVirtualMembersReferenced(Loc, Class);
10916    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10917    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10918
10919    // Optionally warn if we're emitting a weak vtable.
10920    if (Class->getLinkage() == ExternalLinkage &&
10921        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10922      const FunctionDecl *KeyFunctionDef = 0;
10923      if (!KeyFunction ||
10924          (KeyFunction->hasBody(KeyFunctionDef) &&
10925           KeyFunctionDef->isInlined()))
10926        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10927             TSK_ExplicitInstantiationDefinition
10928             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10929          << Class;
10930    }
10931  }
10932  VTableUses.clear();
10933
10934  return DefinedAnything;
10935}
10936
10937void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10938                                        const CXXRecordDecl *RD) {
10939  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10940       e = RD->method_end(); i != e; ++i) {
10941    CXXMethodDecl *MD = &*i;
10942
10943    // C++ [basic.def.odr]p2:
10944    //   [...] A virtual member function is used if it is not pure. [...]
10945    if (MD->isVirtual() && !MD->isPure())
10946      MarkFunctionReferenced(Loc, MD);
10947  }
10948
10949  // Only classes that have virtual bases need a VTT.
10950  if (RD->getNumVBases() == 0)
10951    return;
10952
10953  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10954           e = RD->bases_end(); i != e; ++i) {
10955    const CXXRecordDecl *Base =
10956        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10957    if (Base->getNumVBases() == 0)
10958      continue;
10959    MarkVirtualMembersReferenced(Loc, Base);
10960  }
10961}
10962
10963/// SetIvarInitializers - This routine builds initialization ASTs for the
10964/// Objective-C implementation whose ivars need be initialized.
10965void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10966  if (!getLangOpts().CPlusPlus)
10967    return;
10968  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10969    SmallVector<ObjCIvarDecl*, 8> ivars;
10970    CollectIvarsToConstructOrDestruct(OID, ivars);
10971    if (ivars.empty())
10972      return;
10973    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10974    for (unsigned i = 0; i < ivars.size(); i++) {
10975      FieldDecl *Field = ivars[i];
10976      if (Field->isInvalidDecl())
10977        continue;
10978
10979      CXXCtorInitializer *Member;
10980      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10981      InitializationKind InitKind =
10982        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10983
10984      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10985      ExprResult MemberInit =
10986        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10987      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10988      // Note, MemberInit could actually come back empty if no initialization
10989      // is required (e.g., because it would call a trivial default constructor)
10990      if (!MemberInit.get() || MemberInit.isInvalid())
10991        continue;
10992
10993      Member =
10994        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10995                                         SourceLocation(),
10996                                         MemberInit.takeAs<Expr>(),
10997                                         SourceLocation());
10998      AllToInit.push_back(Member);
10999
11000      // Be sure that the destructor is accessible and is marked as referenced.
11001      if (const RecordType *RecordTy
11002                  = Context.getBaseElementType(Field->getType())
11003                                                        ->getAs<RecordType>()) {
11004                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11005        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11006          MarkFunctionReferenced(Field->getLocation(), Destructor);
11007          CheckDestructorAccess(Field->getLocation(), Destructor,
11008                            PDiag(diag::err_access_dtor_ivar)
11009                              << Context.getBaseElementType(Field->getType()));
11010        }
11011      }
11012    }
11013    ObjCImplementation->setIvarInitializers(Context,
11014                                            AllToInit.data(), AllToInit.size());
11015  }
11016}
11017
11018static
11019void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11020                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11021                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11022                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11023                           Sema &S) {
11024  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11025                                                   CE = Current.end();
11026  if (Ctor->isInvalidDecl())
11027    return;
11028
11029  const FunctionDecl *FNTarget = 0;
11030  CXXConstructorDecl *Target;
11031
11032  // We ignore the result here since if we don't have a body, Target will be
11033  // null below.
11034  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
11035  Target
11036= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
11037
11038  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11039                     // Avoid dereferencing a null pointer here.
11040                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11041
11042  if (!Current.insert(Canonical))
11043    return;
11044
11045  // We know that beyond here, we aren't chaining into a cycle.
11046  if (!Target || !Target->isDelegatingConstructor() ||
11047      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11048    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11049      Valid.insert(*CI);
11050    Current.clear();
11051  // We've hit a cycle.
11052  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11053             Current.count(TCanonical)) {
11054    // If we haven't diagnosed this cycle yet, do so now.
11055    if (!Invalid.count(TCanonical)) {
11056      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11057             diag::warn_delegating_ctor_cycle)
11058        << Ctor;
11059
11060      // Don't add a note for a function delegating directo to itself.
11061      if (TCanonical != Canonical)
11062        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11063
11064      CXXConstructorDecl *C = Target;
11065      while (C->getCanonicalDecl() != Canonical) {
11066        (void)C->getTargetConstructor()->hasBody(FNTarget);
11067        assert(FNTarget && "Ctor cycle through bodiless function");
11068
11069        C
11070       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11071        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11072      }
11073    }
11074
11075    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11076      Invalid.insert(*CI);
11077    Current.clear();
11078  } else {
11079    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11080  }
11081}
11082
11083
11084void Sema::CheckDelegatingCtorCycles() {
11085  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11086
11087  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11088                                                   CE = Current.end();
11089
11090  for (DelegatingCtorDeclsType::iterator
11091         I = DelegatingCtorDecls.begin(ExternalSource),
11092         E = DelegatingCtorDecls.end();
11093       I != E; ++I) {
11094   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11095  }
11096
11097  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11098    (*CI)->setInvalidDecl();
11099}
11100
11101namespace {
11102  /// \brief AST visitor that finds references to the 'this' expression.
11103  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11104    Sema &S;
11105
11106  public:
11107    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11108
11109    bool VisitCXXThisExpr(CXXThisExpr *E) {
11110      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11111        << E->isImplicit();
11112      return false;
11113    }
11114  };
11115}
11116
11117bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11118  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11119  if (!TSInfo)
11120    return false;
11121
11122  TypeLoc TL = TSInfo->getTypeLoc();
11123  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11124  if (!ProtoTL)
11125    return false;
11126
11127  // C++11 [expr.prim.general]p3:
11128  //   [The expression this] shall not appear before the optional
11129  //   cv-qualifier-seq and it shall not appear within the declaration of a
11130  //   static member function (although its type and value category are defined
11131  //   within a static member function as they are within a non-static member
11132  //   function). [ Note: this is because declaration matching does not occur
11133  //  until the complete declarator is known. - end note ]
11134  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11135  FindCXXThisExpr Finder(*this);
11136
11137  // If the return type came after the cv-qualifier-seq, check it now.
11138  if (Proto->hasTrailingReturn() &&
11139      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11140    return true;
11141
11142  // Check the exception specification.
11143  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11144    return true;
11145
11146  return checkThisInStaticMemberFunctionAttributes(Method);
11147}
11148
11149bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11150  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11151  if (!TSInfo)
11152    return false;
11153
11154  TypeLoc TL = TSInfo->getTypeLoc();
11155  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11156  if (!ProtoTL)
11157    return false;
11158
11159  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11160  FindCXXThisExpr Finder(*this);
11161
11162  switch (Proto->getExceptionSpecType()) {
11163  case EST_Uninstantiated:
11164  case EST_BasicNoexcept:
11165  case EST_Delayed:
11166  case EST_DynamicNone:
11167  case EST_MSAny:
11168  case EST_None:
11169    break;
11170
11171  case EST_ComputedNoexcept:
11172    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11173      return true;
11174
11175  case EST_Dynamic:
11176    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11177         EEnd = Proto->exception_end();
11178         E != EEnd; ++E) {
11179      if (!Finder.TraverseType(*E))
11180        return true;
11181    }
11182    break;
11183  }
11184
11185  return false;
11186}
11187
11188bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11189  FindCXXThisExpr Finder(*this);
11190
11191  // Check attributes.
11192  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11193       A != AEnd; ++A) {
11194    // FIXME: This should be emitted by tblgen.
11195    Expr *Arg = 0;
11196    ArrayRef<Expr *> Args;
11197    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11198      Arg = G->getArg();
11199    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11200      Arg = G->getArg();
11201    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11202      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11203    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11204      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11205    else if (ExclusiveLockFunctionAttr *ELF
11206               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11207      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11208    else if (SharedLockFunctionAttr *SLF
11209               = dyn_cast<SharedLockFunctionAttr>(*A))
11210      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11211    else if (ExclusiveTrylockFunctionAttr *ETLF
11212               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11213      Arg = ETLF->getSuccessValue();
11214      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11215    } else if (SharedTrylockFunctionAttr *STLF
11216                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11217      Arg = STLF->getSuccessValue();
11218      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11219    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11220      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11221    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11222      Arg = LR->getArg();
11223    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11224      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11225    else if (ExclusiveLocksRequiredAttr *ELR
11226               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11227      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11228    else if (SharedLocksRequiredAttr *SLR
11229               = dyn_cast<SharedLocksRequiredAttr>(*A))
11230      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11231
11232    if (Arg && !Finder.TraverseStmt(Arg))
11233      return true;
11234
11235    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11236      if (!Finder.TraverseStmt(Args[I]))
11237        return true;
11238    }
11239  }
11240
11241  return false;
11242}
11243
11244void
11245Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11246                                  ArrayRef<ParsedType> DynamicExceptions,
11247                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11248                                  Expr *NoexceptExpr,
11249                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11250                                  FunctionProtoType::ExtProtoInfo &EPI) {
11251  Exceptions.clear();
11252  EPI.ExceptionSpecType = EST;
11253  if (EST == EST_Dynamic) {
11254    Exceptions.reserve(DynamicExceptions.size());
11255    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11256      // FIXME: Preserve type source info.
11257      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11258
11259      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11260      collectUnexpandedParameterPacks(ET, Unexpanded);
11261      if (!Unexpanded.empty()) {
11262        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11263                                         UPPC_ExceptionType,
11264                                         Unexpanded);
11265        continue;
11266      }
11267
11268      // Check that the type is valid for an exception spec, and
11269      // drop it if not.
11270      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11271        Exceptions.push_back(ET);
11272    }
11273    EPI.NumExceptions = Exceptions.size();
11274    EPI.Exceptions = Exceptions.data();
11275    return;
11276  }
11277
11278  if (EST == EST_ComputedNoexcept) {
11279    // If an error occurred, there's no expression here.
11280    if (NoexceptExpr) {
11281      assert((NoexceptExpr->isTypeDependent() ||
11282              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11283              Context.BoolTy) &&
11284             "Parser should have made sure that the expression is boolean");
11285      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11286        EPI.ExceptionSpecType = EST_BasicNoexcept;
11287        return;
11288      }
11289
11290      if (!NoexceptExpr->isValueDependent())
11291        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11292                         PDiag(diag::err_noexcept_needs_constant_expression),
11293                         /*AllowFold*/ false).take();
11294      EPI.NoexceptExpr = NoexceptExpr;
11295    }
11296    return;
11297  }
11298}
11299
11300/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11301Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11302  // Implicitly declared functions (e.g. copy constructors) are
11303  // __host__ __device__
11304  if (D->isImplicit())
11305    return CFT_HostDevice;
11306
11307  if (D->hasAttr<CUDAGlobalAttr>())
11308    return CFT_Global;
11309
11310  if (D->hasAttr<CUDADeviceAttr>()) {
11311    if (D->hasAttr<CUDAHostAttr>())
11312      return CFT_HostDevice;
11313    else
11314      return CFT_Device;
11315  }
11316
11317  return CFT_Host;
11318}
11319
11320bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11321                           CUDAFunctionTarget CalleeTarget) {
11322  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11323  // Callable from the device only."
11324  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11325    return true;
11326
11327  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11328  // Callable from the host only."
11329  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11330  // Callable from the host only."
11331  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11332      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11333    return true;
11334
11335  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11336    return true;
11337
11338  return false;
11339}
11340