SemaDeclCXX.cpp revision f6e2e0291b8964ed41b4325e21dd90b86e791f10
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getSourceRange().getBegin(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getSourceRange().getBegin(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getSourceRange().getBegin(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
129  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136
137  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
138
139  // If this function can throw any exceptions, make a note of that.
140  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
141    ClearExceptions();
142    ComputedEST = EST;
143    return;
144  }
145
146  // FIXME: If the call to this decl is using any of its default arguments, we
147  // need to search them for potentially-throwing calls.
148
149  // If this function has a basic noexcept, it doesn't affect the outcome.
150  if (EST == EST_BasicNoexcept)
151    return;
152
153  // If we have a throw-all spec at this point, ignore the function.
154  if (ComputedEST == EST_None)
155    return;
156
157  // If we're still at noexcept(true) and there's a nothrow() callee,
158  // change to that specification.
159  if (EST == EST_DynamicNone) {
160    if (ComputedEST == EST_BasicNoexcept)
161      ComputedEST = EST_DynamicNone;
162    return;
163  }
164
165  // Check out noexcept specs.
166  if (EST == EST_ComputedNoexcept) {
167    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
168    assert(NR != FunctionProtoType::NR_NoNoexcept &&
169           "Must have noexcept result for EST_ComputedNoexcept.");
170    assert(NR != FunctionProtoType::NR_Dependent &&
171           "Should not generate implicit declarations for dependent cases, "
172           "and don't know how to handle them anyway.");
173
174    // noexcept(false) -> no spec on the new function
175    if (NR == FunctionProtoType::NR_Throw) {
176      ClearExceptions();
177      ComputedEST = EST_None;
178    }
179    // noexcept(true) won't change anything either.
180    return;
181  }
182
183  assert(EST == EST_Dynamic && "EST case not considered earlier.");
184  assert(ComputedEST != EST_None &&
185         "Shouldn't collect exceptions when throw-all is guaranteed.");
186  ComputedEST = EST_Dynamic;
187  // Record the exceptions in this function's exception specification.
188  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
189                                          EEnd = Proto->exception_end();
190       E != EEnd; ++E)
191    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
192      Exceptions.push_back(*E);
193}
194
195void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
196  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
197    return;
198
199  // FIXME:
200  //
201  // C++0x [except.spec]p14:
202  //   [An] implicit exception-specification specifies the type-id T if and
203  // only if T is allowed by the exception-specification of a function directly
204  // invoked by f's implicit definition; f shall allow all exceptions if any
205  // function it directly invokes allows all exceptions, and f shall allow no
206  // exceptions if every function it directly invokes allows no exceptions.
207  //
208  // Note in particular that if an implicit exception-specification is generated
209  // for a function containing a throw-expression, that specification can still
210  // be noexcept(true).
211  //
212  // Note also that 'directly invoked' is not defined in the standard, and there
213  // is no indication that we should only consider potentially-evaluated calls.
214  //
215  // Ultimately we should implement the intent of the standard: the exception
216  // specification should be the set of exceptions which can be thrown by the
217  // implicit definition. For now, we assume that any non-nothrow expression can
218  // throw any exception.
219
220  if (E->CanThrow(*Context))
221    ComputedEST = EST_None;
222}
223
224bool
225Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
226                              SourceLocation EqualLoc) {
227  if (RequireCompleteType(Param->getLocation(), Param->getType(),
228                          diag::err_typecheck_decl_incomplete_type)) {
229    Param->setInvalidDecl();
230    return true;
231  }
232
233  // C++ [dcl.fct.default]p5
234  //   A default argument expression is implicitly converted (clause
235  //   4) to the parameter type. The default argument expression has
236  //   the same semantic constraints as the initializer expression in
237  //   a declaration of a variable of the parameter type, using the
238  //   copy-initialization semantics (8.5).
239  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
240                                                                    Param);
241  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
242                                                           EqualLoc);
243  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
244  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
245                                      MultiExprArg(*this, &Arg, 1));
246  if (Result.isInvalid())
247    return true;
248  Arg = Result.takeAs<Expr>();
249
250  CheckImplicitConversions(Arg, EqualLoc);
251  Arg = MaybeCreateExprWithCleanups(Arg);
252
253  // Okay: add the default argument to the parameter
254  Param->setDefaultArg(Arg);
255
256  // We have already instantiated this parameter; provide each of the
257  // instantiations with the uninstantiated default argument.
258  UnparsedDefaultArgInstantiationsMap::iterator InstPos
259    = UnparsedDefaultArgInstantiations.find(Param);
260  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
261    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
262      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
263
264    // We're done tracking this parameter's instantiations.
265    UnparsedDefaultArgInstantiations.erase(InstPos);
266  }
267
268  return false;
269}
270
271/// ActOnParamDefaultArgument - Check whether the default argument
272/// provided for a function parameter is well-formed. If so, attach it
273/// to the parameter declaration.
274void
275Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
276                                Expr *DefaultArg) {
277  if (!param || !DefaultArg)
278    return;
279
280  ParmVarDecl *Param = cast<ParmVarDecl>(param);
281  UnparsedDefaultArgLocs.erase(Param);
282
283  // Default arguments are only permitted in C++
284  if (!getLangOptions().CPlusPlus) {
285    Diag(EqualLoc, diag::err_param_default_argument)
286      << DefaultArg->getSourceRange();
287    Param->setInvalidDecl();
288    return;
289  }
290
291  // Check for unexpanded parameter packs.
292  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
293    Param->setInvalidDecl();
294    return;
295  }
296
297  // Check that the default argument is well-formed
298  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
299  if (DefaultArgChecker.Visit(DefaultArg)) {
300    Param->setInvalidDecl();
301    return;
302  }
303
304  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
305}
306
307/// ActOnParamUnparsedDefaultArgument - We've seen a default
308/// argument for a function parameter, but we can't parse it yet
309/// because we're inside a class definition. Note that this default
310/// argument will be parsed later.
311void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
312                                             SourceLocation EqualLoc,
313                                             SourceLocation ArgLoc) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318  if (Param)
319    Param->setUnparsedDefaultArg();
320
321  UnparsedDefaultArgLocs[Param] = ArgLoc;
322}
323
324/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
325/// the default argument for the parameter param failed.
326void Sema::ActOnParamDefaultArgumentError(Decl *param) {
327  if (!param)
328    return;
329
330  ParmVarDecl *Param = cast<ParmVarDecl>(param);
331
332  Param->setInvalidDecl();
333
334  UnparsedDefaultArgLocs.erase(Param);
335}
336
337/// CheckExtraCXXDefaultArguments - Check for any extra default
338/// arguments in the declarator, which is not a function declaration
339/// or definition and therefore is not permitted to have default
340/// arguments. This routine should be invoked for every declarator
341/// that is not a function declaration or definition.
342void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
343  // C++ [dcl.fct.default]p3
344  //   A default argument expression shall be specified only in the
345  //   parameter-declaration-clause of a function declaration or in a
346  //   template-parameter (14.1). It shall not be specified for a
347  //   parameter pack. If it is specified in a
348  //   parameter-declaration-clause, it shall not occur within a
349  //   declarator or abstract-declarator of a parameter-declaration.
350  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
351    DeclaratorChunk &chunk = D.getTypeObject(i);
352    if (chunk.Kind == DeclaratorChunk::Function) {
353      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
354        ParmVarDecl *Param =
355          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
356        if (Param->hasUnparsedDefaultArg()) {
357          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
358          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
359            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
360          delete Toks;
361          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
362        } else if (Param->getDefaultArg()) {
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << Param->getDefaultArg()->getSourceRange();
365          Param->setDefaultArg(0);
366        }
367      }
368    }
369  }
370}
371
372// MergeCXXFunctionDecl - Merge two declarations of the same C++
373// function, once we already know that they have the same
374// type. Subroutine of MergeFunctionDecl. Returns true if there was an
375// error, false otherwise.
376bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
402
403      unsigned DiagDefaultParamID =
404        diag::err_param_default_argument_redefinition;
405
406      // MSVC accepts that default parameters be redefined for member functions
407      // of template class. The new default parameter's value is ignored.
408      Invalid = true;
409      if (getLangOptions().MicrosoftExt) {
410        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
411        if (MD && MD->getParent()->getDescribedClassTemplate()) {
412          // Merge the old default argument into the new parameter.
413          NewParam->setHasInheritedDefaultArg();
414          if (OldParam->hasUninstantiatedDefaultArg())
415            NewParam->setUninstantiatedDefaultArg(
416                                      OldParam->getUninstantiatedDefaultArg());
417          else
418            NewParam->setDefaultArg(OldParam->getInit());
419          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
420          Invalid = false;
421        }
422      }
423
424      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
425      // hint here. Alternatively, we could walk the type-source information
426      // for NewParam to find the last source location in the type... but it
427      // isn't worth the effort right now. This is the kind of test case that
428      // is hard to get right:
429      //   int f(int);
430      //   void g(int (*fp)(int) = f);
431      //   void g(int (*fp)(int) = &f);
432      Diag(NewParam->getLocation(), DiagDefaultParamID)
433        << NewParam->getDefaultArgRange();
434
435      // Look for the function declaration where the default argument was
436      // actually written, which may be a declaration prior to Old.
437      for (FunctionDecl *Older = Old->getPreviousDecl();
438           Older; Older = Older->getPreviousDecl()) {
439        if (!Older->getParamDecl(p)->hasDefaultArg())
440          break;
441
442        OldParam = Older->getParamDecl(p);
443      }
444
445      Diag(OldParam->getLocation(), diag::note_previous_definition)
446        << OldParam->getDefaultArgRange();
447    } else if (OldParam->hasDefaultArg()) {
448      // Merge the old default argument into the new parameter.
449      // It's important to use getInit() here;  getDefaultArg()
450      // strips off any top-level ExprWithCleanups.
451      NewParam->setHasInheritedDefaultArg();
452      if (OldParam->hasUninstantiatedDefaultArg())
453        NewParam->setUninstantiatedDefaultArg(
454                                      OldParam->getUninstantiatedDefaultArg());
455      else
456        NewParam->setDefaultArg(OldParam->getInit());
457    } else if (NewParam->hasDefaultArg()) {
458      if (New->getDescribedFunctionTemplate()) {
459        // Paragraph 4, quoted above, only applies to non-template functions.
460        Diag(NewParam->getLocation(),
461             diag::err_param_default_argument_template_redecl)
462          << NewParam->getDefaultArgRange();
463        Diag(Old->getLocation(), diag::note_template_prev_declaration)
464          << false;
465      } else if (New->getTemplateSpecializationKind()
466                   != TSK_ImplicitInstantiation &&
467                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
468        // C++ [temp.expr.spec]p21:
469        //   Default function arguments shall not be specified in a declaration
470        //   or a definition for one of the following explicit specializations:
471        //     - the explicit specialization of a function template;
472        //     - the explicit specialization of a member function template;
473        //     - the explicit specialization of a member function of a class
474        //       template where the class template specialization to which the
475        //       member function specialization belongs is implicitly
476        //       instantiated.
477        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
478          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
479          << New->getDeclName()
480          << NewParam->getDefaultArgRange();
481      } else if (New->getDeclContext()->isDependentContext()) {
482        // C++ [dcl.fct.default]p6 (DR217):
483        //   Default arguments for a member function of a class template shall
484        //   be specified on the initial declaration of the member function
485        //   within the class template.
486        //
487        // Reading the tea leaves a bit in DR217 and its reference to DR205
488        // leads me to the conclusion that one cannot add default function
489        // arguments for an out-of-line definition of a member function of a
490        // dependent type.
491        int WhichKind = 2;
492        if (CXXRecordDecl *Record
493              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
494          if (Record->getDescribedClassTemplate())
495            WhichKind = 0;
496          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
497            WhichKind = 1;
498          else
499            WhichKind = 2;
500        }
501
502        Diag(NewParam->getLocation(),
503             diag::err_param_default_argument_member_template_redecl)
504          << WhichKind
505          << NewParam->getDefaultArgRange();
506      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
507        CXXSpecialMember NewSM = getSpecialMember(Ctor),
508                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
509        if (NewSM != OldSM) {
510          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
511            << NewParam->getDefaultArgRange() << NewSM;
512          Diag(Old->getLocation(), diag::note_previous_declaration_special)
513            << OldSM;
514        }
515      }
516    }
517  }
518
519  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
520  // template has a constexpr specifier then all its declarations shall
521  // contain the constexpr specifier. [Note: An explicit specialization can
522  // differ from the template declaration with respect to the constexpr
523  // specifier. -- end note]
524  //
525  // FIXME: Don't reject changes in constexpr in explicit specializations.
526  if (New->isConstexpr() != Old->isConstexpr()) {
527    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
528      << New << New->isConstexpr();
529    Diag(Old->getLocation(), diag::note_previous_declaration);
530    Invalid = true;
531  }
532
533  if (CheckEquivalentExceptionSpec(Old, New))
534    Invalid = true;
535
536  return Invalid;
537}
538
539/// \brief Merge the exception specifications of two variable declarations.
540///
541/// This is called when there's a redeclaration of a VarDecl. The function
542/// checks if the redeclaration might have an exception specification and
543/// validates compatibility and merges the specs if necessary.
544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
545  // Shortcut if exceptions are disabled.
546  if (!getLangOptions().CXXExceptions)
547    return;
548
549  assert(Context.hasSameType(New->getType(), Old->getType()) &&
550         "Should only be called if types are otherwise the same.");
551
552  QualType NewType = New->getType();
553  QualType OldType = Old->getType();
554
555  // We're only interested in pointers and references to functions, as well
556  // as pointers to member functions.
557  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
558    NewType = R->getPointeeType();
559    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
560  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
561    NewType = P->getPointeeType();
562    OldType = OldType->getAs<PointerType>()->getPointeeType();
563  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
564    NewType = M->getPointeeType();
565    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
566  }
567
568  if (!NewType->isFunctionProtoType())
569    return;
570
571  // There's lots of special cases for functions. For function pointers, system
572  // libraries are hopefully not as broken so that we don't need these
573  // workarounds.
574  if (CheckEquivalentExceptionSpec(
575        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
576        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
577    New->setInvalidDecl();
578  }
579}
580
581/// CheckCXXDefaultArguments - Verify that the default arguments for a
582/// function declaration are well-formed according to C++
583/// [dcl.fct.default].
584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
585  unsigned NumParams = FD->getNumParams();
586  unsigned p;
587
588  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
589                  isa<CXXMethodDecl>(FD) &&
590                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
591
592  // Find first parameter with a default argument
593  for (p = 0; p < NumParams; ++p) {
594    ParmVarDecl *Param = FD->getParamDecl(p);
595    if (Param->hasDefaultArg()) {
596      // C++11 [expr.prim.lambda]p5:
597      //   [...] Default arguments (8.3.6) shall not be specified in the
598      //   parameter-declaration-clause of a lambda-declarator.
599      //
600      // FIXME: Core issue 974 strikes this sentence, we only provide an
601      // extension warning.
602      if (IsLambda)
603        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
604          << Param->getDefaultArgRange();
605      break;
606    }
607  }
608
609  // C++ [dcl.fct.default]p4:
610  //   In a given function declaration, all parameters
611  //   subsequent to a parameter with a default argument shall
612  //   have default arguments supplied in this or previous
613  //   declarations. A default argument shall not be redefined
614  //   by a later declaration (not even to the same value).
615  unsigned LastMissingDefaultArg = 0;
616  for (; p < NumParams; ++p) {
617    ParmVarDecl *Param = FD->getParamDecl(p);
618    if (!Param->hasDefaultArg()) {
619      if (Param->isInvalidDecl())
620        /* We already complained about this parameter. */;
621      else if (Param->getIdentifier())
622        Diag(Param->getLocation(),
623             diag::err_param_default_argument_missing_name)
624          << Param->getIdentifier();
625      else
626        Diag(Param->getLocation(),
627             diag::err_param_default_argument_missing);
628
629      LastMissingDefaultArg = p;
630    }
631  }
632
633  if (LastMissingDefaultArg > 0) {
634    // Some default arguments were missing. Clear out all of the
635    // default arguments up to (and including) the last missing
636    // default argument, so that we leave the function parameters
637    // in a semantically valid state.
638    for (p = 0; p <= LastMissingDefaultArg; ++p) {
639      ParmVarDecl *Param = FD->getParamDecl(p);
640      if (Param->hasDefaultArg()) {
641        Param->setDefaultArg(0);
642      }
643    }
644  }
645}
646
647// CheckConstexprParameterTypes - Check whether a function's parameter types
648// are all literal types. If so, return true. If not, produce a suitable
649// diagnostic and return false.
650static bool CheckConstexprParameterTypes(Sema &SemaRef,
651                                         const FunctionDecl *FD) {
652  unsigned ArgIndex = 0;
653  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
654  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
655       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
656    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
657    SourceLocation ParamLoc = PD->getLocation();
658    if (!(*i)->isDependentType() &&
659        SemaRef.RequireLiteralType(ParamLoc, *i,
660                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
661                                     << ArgIndex+1 << PD->getSourceRange()
662                                     << isa<CXXConstructorDecl>(FD)))
663      return false;
664  }
665  return true;
666}
667
668// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
669// the requirements of a constexpr function definition or a constexpr
670// constructor definition. If so, return true. If not, produce appropriate
671// diagnostics and return false.
672//
673// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
674bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
675  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
676  if (MD && MD->isInstance()) {
677    // C++11 [dcl.constexpr]p4:
678    //  The definition of a constexpr constructor shall satisfy the following
679    //  constraints:
680    //  - the class shall not have any virtual base classes;
681    const CXXRecordDecl *RD = MD->getParent();
682    if (RD->getNumVBases()) {
683      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
684        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
685        << RD->getNumVBases();
686      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
687             E = RD->vbases_end(); I != E; ++I)
688        Diag(I->getSourceRange().getBegin(),
689             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
690      return false;
691    }
692  }
693
694  if (!isa<CXXConstructorDecl>(NewFD)) {
695    // C++11 [dcl.constexpr]p3:
696    //  The definition of a constexpr function shall satisfy the following
697    //  constraints:
698    // - it shall not be virtual;
699    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
700    if (Method && Method->isVirtual()) {
701      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
702
703      // If it's not obvious why this function is virtual, find an overridden
704      // function which uses the 'virtual' keyword.
705      const CXXMethodDecl *WrittenVirtual = Method;
706      while (!WrittenVirtual->isVirtualAsWritten())
707        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
708      if (WrittenVirtual != Method)
709        Diag(WrittenVirtual->getLocation(),
710             diag::note_overridden_virtual_function);
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT,
718                           PDiag(diag::err_constexpr_non_literal_return)))
719      return false;
720  }
721
722  // - each of its parameter types shall be a literal type;
723  if (!CheckConstexprParameterTypes(*this, NewFD))
724    return false;
725
726  return true;
727}
728
729/// Check the given declaration statement is legal within a constexpr function
730/// body. C++0x [dcl.constexpr]p3,p4.
731///
732/// \return true if the body is OK, false if we have diagnosed a problem.
733static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
734                                   DeclStmt *DS) {
735  // C++0x [dcl.constexpr]p3 and p4:
736  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
737  //  contain only
738  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
739         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
740    switch ((*DclIt)->getKind()) {
741    case Decl::StaticAssert:
742    case Decl::Using:
743    case Decl::UsingShadow:
744    case Decl::UsingDirective:
745    case Decl::UnresolvedUsingTypename:
746      //   - static_assert-declarations
747      //   - using-declarations,
748      //   - using-directives,
749      continue;
750
751    case Decl::Typedef:
752    case Decl::TypeAlias: {
753      //   - typedef declarations and alias-declarations that do not define
754      //     classes or enumerations,
755      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
756      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
757        // Don't allow variably-modified types in constexpr functions.
758        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
759        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
760          << TL.getSourceRange() << TL.getType()
761          << isa<CXXConstructorDecl>(Dcl);
762        return false;
763      }
764      continue;
765    }
766
767    case Decl::Enum:
768    case Decl::CXXRecord:
769      // As an extension, we allow the declaration (but not the definition) of
770      // classes and enumerations in all declarations, not just in typedef and
771      // alias declarations.
772      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
773        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
774          << isa<CXXConstructorDecl>(Dcl);
775        return false;
776      }
777      continue;
778
779    case Decl::Var:
780      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
781        << isa<CXXConstructorDecl>(Dcl);
782      return false;
783
784    default:
785      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
786        << isa<CXXConstructorDecl>(Dcl);
787      return false;
788    }
789  }
790
791  return true;
792}
793
794/// Check that the given field is initialized within a constexpr constructor.
795///
796/// \param Dcl The constexpr constructor being checked.
797/// \param Field The field being checked. This may be a member of an anonymous
798///        struct or union nested within the class being checked.
799/// \param Inits All declarations, including anonymous struct/union members and
800///        indirect members, for which any initialization was provided.
801/// \param Diagnosed Set to true if an error is produced.
802static void CheckConstexprCtorInitializer(Sema &SemaRef,
803                                          const FunctionDecl *Dcl,
804                                          FieldDecl *Field,
805                                          llvm::SmallSet<Decl*, 16> &Inits,
806                                          bool &Diagnosed) {
807  if (Field->isUnnamedBitfield())
808    return;
809
810  if (Field->isAnonymousStructOrUnion() &&
811      Field->getType()->getAsCXXRecordDecl()->isEmpty())
812    return;
813
814  if (!Inits.count(Field)) {
815    if (!Diagnosed) {
816      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
817      Diagnosed = true;
818    }
819    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
820  } else if (Field->isAnonymousStructOrUnion()) {
821    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
822    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
823         I != E; ++I)
824      // If an anonymous union contains an anonymous struct of which any member
825      // is initialized, all members must be initialized.
826      if (!RD->isUnion() || Inits.count(*I))
827        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
828  }
829}
830
831/// Check the body for the given constexpr function declaration only contains
832/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
833///
834/// \return true if the body is OK, false if we have diagnosed a problem.
835bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
836  if (isa<CXXTryStmt>(Body)) {
837    // C++11 [dcl.constexpr]p3:
838    //  The definition of a constexpr function shall satisfy the following
839    //  constraints: [...]
840    // - its function-body shall be = delete, = default, or a
841    //   compound-statement
842    //
843    // C++11 [dcl.constexpr]p4:
844    //  In the definition of a constexpr constructor, [...]
845    // - its function-body shall not be a function-try-block;
846    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
847      << isa<CXXConstructorDecl>(Dcl);
848    return false;
849  }
850
851  // - its function-body shall be [...] a compound-statement that contains only
852  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
853
854  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
855  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
856         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
857    switch ((*BodyIt)->getStmtClass()) {
858    case Stmt::NullStmtClass:
859      //   - null statements,
860      continue;
861
862    case Stmt::DeclStmtClass:
863      //   - static_assert-declarations
864      //   - using-declarations,
865      //   - using-directives,
866      //   - typedef declarations and alias-declarations that do not define
867      //     classes or enumerations,
868      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
869        return false;
870      continue;
871
872    case Stmt::ReturnStmtClass:
873      //   - and exactly one return statement;
874      if (isa<CXXConstructorDecl>(Dcl))
875        break;
876
877      ReturnStmts.push_back((*BodyIt)->getLocStart());
878      // FIXME
879      // - every constructor call and implicit conversion used in initializing
880      //   the return value shall be one of those allowed in a constant
881      //   expression.
882      // Deal with this as part of a general check that the function can produce
883      // a constant expression (for [dcl.constexpr]p5).
884      continue;
885
886    default:
887      break;
888    }
889
890    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
891      << isa<CXXConstructorDecl>(Dcl);
892    return false;
893  }
894
895  if (const CXXConstructorDecl *Constructor
896        = dyn_cast<CXXConstructorDecl>(Dcl)) {
897    const CXXRecordDecl *RD = Constructor->getParent();
898    // DR1359:
899    // - every non-variant non-static data member and base class sub-object
900    //   shall be initialized;
901    // - if the class is a non-empty union, or for each non-empty anonymous
902    //   union member of a non-union class, exactly one non-static data member
903    //   shall be initialized;
904    if (RD->isUnion()) {
905      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
906        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
907        return false;
908      }
909    } else if (!Constructor->isDependentContext() &&
910               !Constructor->isDelegatingConstructor()) {
911      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
912
913      // Skip detailed checking if we have enough initializers, and we would
914      // allow at most one initializer per member.
915      bool AnyAnonStructUnionMembers = false;
916      unsigned Fields = 0;
917      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
918           E = RD->field_end(); I != E; ++I, ++Fields) {
919        if ((*I)->isAnonymousStructOrUnion()) {
920          AnyAnonStructUnionMembers = true;
921          break;
922        }
923      }
924      if (AnyAnonStructUnionMembers ||
925          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
926        // Check initialization of non-static data members. Base classes are
927        // always initialized so do not need to be checked. Dependent bases
928        // might not have initializers in the member initializer list.
929        llvm::SmallSet<Decl*, 16> Inits;
930        for (CXXConstructorDecl::init_const_iterator
931               I = Constructor->init_begin(), E = Constructor->init_end();
932             I != E; ++I) {
933          if (FieldDecl *FD = (*I)->getMember())
934            Inits.insert(FD);
935          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
936            Inits.insert(ID->chain_begin(), ID->chain_end());
937        }
938
939        bool Diagnosed = false;
940        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
941             E = RD->field_end(); I != E; ++I)
942          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
943        if (Diagnosed)
944          return false;
945      }
946    }
947
948    // FIXME
949    // - every constructor involved in initializing non-static data members
950    //   and base class sub-objects shall be a constexpr constructor;
951    // - every assignment-expression that is an initializer-clause appearing
952    //   directly or indirectly within a brace-or-equal-initializer for
953    //   a non-static data member that is not named by a mem-initializer-id
954    //   shall be a constant expression; and
955    // - every implicit conversion used in converting a constructor argument
956    //   to the corresponding parameter type and converting
957    //   a full-expression to the corresponding member type shall be one of
958    //   those allowed in a constant expression.
959    // Deal with these as part of a general check that the function can produce
960    // a constant expression (for [dcl.constexpr]p5).
961  } else {
962    if (ReturnStmts.empty()) {
963      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
964      return false;
965    }
966    if (ReturnStmts.size() > 1) {
967      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
968      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
969        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
970      return false;
971    }
972  }
973
974  // C++11 [dcl.constexpr]p5:
975  //   if no function argument values exist such that the function invocation
976  //   substitution would produce a constant expression, the program is
977  //   ill-formed; no diagnostic required.
978  // C++11 [dcl.constexpr]p3:
979  //   - every constructor call and implicit conversion used in initializing the
980  //     return value shall be one of those allowed in a constant expression.
981  // C++11 [dcl.constexpr]p4:
982  //   - every constructor involved in initializing non-static data members and
983  //     base class sub-objects shall be a constexpr constructor.
984  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
985  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
986    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
987      << isa<CXXConstructorDecl>(Dcl);
988    for (size_t I = 0, N = Diags.size(); I != N; ++I)
989      Diag(Diags[I].first, Diags[I].second);
990    return false;
991  }
992
993  return true;
994}
995
996/// isCurrentClassName - Determine whether the identifier II is the
997/// name of the class type currently being defined. In the case of
998/// nested classes, this will only return true if II is the name of
999/// the innermost class.
1000bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1001                              const CXXScopeSpec *SS) {
1002  assert(getLangOptions().CPlusPlus && "No class names in C!");
1003
1004  CXXRecordDecl *CurDecl;
1005  if (SS && SS->isSet() && !SS->isInvalid()) {
1006    DeclContext *DC = computeDeclContext(*SS, true);
1007    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1008  } else
1009    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1010
1011  if (CurDecl && CurDecl->getIdentifier())
1012    return &II == CurDecl->getIdentifier();
1013  else
1014    return false;
1015}
1016
1017/// \brief Check the validity of a C++ base class specifier.
1018///
1019/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1020/// and returns NULL otherwise.
1021CXXBaseSpecifier *
1022Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1023                         SourceRange SpecifierRange,
1024                         bool Virtual, AccessSpecifier Access,
1025                         TypeSourceInfo *TInfo,
1026                         SourceLocation EllipsisLoc) {
1027  QualType BaseType = TInfo->getType();
1028
1029  // C++ [class.union]p1:
1030  //   A union shall not have base classes.
1031  if (Class->isUnion()) {
1032    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1033      << SpecifierRange;
1034    return 0;
1035  }
1036
1037  if (EllipsisLoc.isValid() &&
1038      !TInfo->getType()->containsUnexpandedParameterPack()) {
1039    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1040      << TInfo->getTypeLoc().getSourceRange();
1041    EllipsisLoc = SourceLocation();
1042  }
1043
1044  if (BaseType->isDependentType())
1045    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1046                                          Class->getTagKind() == TTK_Class,
1047                                          Access, TInfo, EllipsisLoc);
1048
1049  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1050
1051  // Base specifiers must be record types.
1052  if (!BaseType->isRecordType()) {
1053    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1054    return 0;
1055  }
1056
1057  // C++ [class.union]p1:
1058  //   A union shall not be used as a base class.
1059  if (BaseType->isUnionType()) {
1060    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1061    return 0;
1062  }
1063
1064  // C++ [class.derived]p2:
1065  //   The class-name in a base-specifier shall not be an incompletely
1066  //   defined class.
1067  if (RequireCompleteType(BaseLoc, BaseType,
1068                          PDiag(diag::err_incomplete_base_class)
1069                            << SpecifierRange)) {
1070    Class->setInvalidDecl();
1071    return 0;
1072  }
1073
1074  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1075  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1076  assert(BaseDecl && "Record type has no declaration");
1077  BaseDecl = BaseDecl->getDefinition();
1078  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1079  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1080  assert(CXXBaseDecl && "Base type is not a C++ type");
1081
1082  // C++ [class]p3:
1083  //   If a class is marked final and it appears as a base-type-specifier in
1084  //   base-clause, the program is ill-formed.
1085  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1086    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1087      << CXXBaseDecl->getDeclName();
1088    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1089      << CXXBaseDecl->getDeclName();
1090    return 0;
1091  }
1092
1093  if (BaseDecl->isInvalidDecl())
1094    Class->setInvalidDecl();
1095
1096  // Create the base specifier.
1097  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1098                                        Class->getTagKind() == TTK_Class,
1099                                        Access, TInfo, EllipsisLoc);
1100}
1101
1102/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1103/// one entry in the base class list of a class specifier, for
1104/// example:
1105///    class foo : public bar, virtual private baz {
1106/// 'public bar' and 'virtual private baz' are each base-specifiers.
1107BaseResult
1108Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1109                         bool Virtual, AccessSpecifier Access,
1110                         ParsedType basetype, SourceLocation BaseLoc,
1111                         SourceLocation EllipsisLoc) {
1112  if (!classdecl)
1113    return true;
1114
1115  AdjustDeclIfTemplate(classdecl);
1116  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1117  if (!Class)
1118    return true;
1119
1120  TypeSourceInfo *TInfo = 0;
1121  GetTypeFromParser(basetype, &TInfo);
1122
1123  if (EllipsisLoc.isInvalid() &&
1124      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1125                                      UPPC_BaseType))
1126    return true;
1127
1128  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1129                                                      Virtual, Access, TInfo,
1130                                                      EllipsisLoc))
1131    return BaseSpec;
1132
1133  return true;
1134}
1135
1136/// \brief Performs the actual work of attaching the given base class
1137/// specifiers to a C++ class.
1138bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1139                                unsigned NumBases) {
1140 if (NumBases == 0)
1141    return false;
1142
1143  // Used to keep track of which base types we have already seen, so
1144  // that we can properly diagnose redundant direct base types. Note
1145  // that the key is always the unqualified canonical type of the base
1146  // class.
1147  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1148
1149  // Copy non-redundant base specifiers into permanent storage.
1150  unsigned NumGoodBases = 0;
1151  bool Invalid = false;
1152  for (unsigned idx = 0; idx < NumBases; ++idx) {
1153    QualType NewBaseType
1154      = Context.getCanonicalType(Bases[idx]->getType());
1155    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1156    if (KnownBaseTypes[NewBaseType]) {
1157      // C++ [class.mi]p3:
1158      //   A class shall not be specified as a direct base class of a
1159      //   derived class more than once.
1160      Diag(Bases[idx]->getSourceRange().getBegin(),
1161           diag::err_duplicate_base_class)
1162        << KnownBaseTypes[NewBaseType]->getType()
1163        << Bases[idx]->getSourceRange();
1164
1165      // Delete the duplicate base class specifier; we're going to
1166      // overwrite its pointer later.
1167      Context.Deallocate(Bases[idx]);
1168
1169      Invalid = true;
1170    } else {
1171      // Okay, add this new base class.
1172      KnownBaseTypes[NewBaseType] = Bases[idx];
1173      Bases[NumGoodBases++] = Bases[idx];
1174      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1175        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1176          if (RD->hasAttr<WeakAttr>())
1177            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1178    }
1179  }
1180
1181  // Attach the remaining base class specifiers to the derived class.
1182  Class->setBases(Bases, NumGoodBases);
1183
1184  // Delete the remaining (good) base class specifiers, since their
1185  // data has been copied into the CXXRecordDecl.
1186  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1187    Context.Deallocate(Bases[idx]);
1188
1189  return Invalid;
1190}
1191
1192/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1193/// class, after checking whether there are any duplicate base
1194/// classes.
1195void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1196                               unsigned NumBases) {
1197  if (!ClassDecl || !Bases || !NumBases)
1198    return;
1199
1200  AdjustDeclIfTemplate(ClassDecl);
1201  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1202                       (CXXBaseSpecifier**)(Bases), NumBases);
1203}
1204
1205static CXXRecordDecl *GetClassForType(QualType T) {
1206  if (const RecordType *RT = T->getAs<RecordType>())
1207    return cast<CXXRecordDecl>(RT->getDecl());
1208  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1209    return ICT->getDecl();
1210  else
1211    return 0;
1212}
1213
1214/// \brief Determine whether the type \p Derived is a C++ class that is
1215/// derived from the type \p Base.
1216bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1217  if (!getLangOptions().CPlusPlus)
1218    return false;
1219
1220  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1221  if (!DerivedRD)
1222    return false;
1223
1224  CXXRecordDecl *BaseRD = GetClassForType(Base);
1225  if (!BaseRD)
1226    return false;
1227
1228  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1229  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1230}
1231
1232/// \brief Determine whether the type \p Derived is a C++ class that is
1233/// derived from the type \p Base.
1234bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1235  if (!getLangOptions().CPlusPlus)
1236    return false;
1237
1238  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1239  if (!DerivedRD)
1240    return false;
1241
1242  CXXRecordDecl *BaseRD = GetClassForType(Base);
1243  if (!BaseRD)
1244    return false;
1245
1246  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1247}
1248
1249void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1250                              CXXCastPath &BasePathArray) {
1251  assert(BasePathArray.empty() && "Base path array must be empty!");
1252  assert(Paths.isRecordingPaths() && "Must record paths!");
1253
1254  const CXXBasePath &Path = Paths.front();
1255
1256  // We first go backward and check if we have a virtual base.
1257  // FIXME: It would be better if CXXBasePath had the base specifier for
1258  // the nearest virtual base.
1259  unsigned Start = 0;
1260  for (unsigned I = Path.size(); I != 0; --I) {
1261    if (Path[I - 1].Base->isVirtual()) {
1262      Start = I - 1;
1263      break;
1264    }
1265  }
1266
1267  // Now add all bases.
1268  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1269    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1270}
1271
1272/// \brief Determine whether the given base path includes a virtual
1273/// base class.
1274bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1275  for (CXXCastPath::const_iterator B = BasePath.begin(),
1276                                BEnd = BasePath.end();
1277       B != BEnd; ++B)
1278    if ((*B)->isVirtual())
1279      return true;
1280
1281  return false;
1282}
1283
1284/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1285/// conversion (where Derived and Base are class types) is
1286/// well-formed, meaning that the conversion is unambiguous (and
1287/// that all of the base classes are accessible). Returns true
1288/// and emits a diagnostic if the code is ill-formed, returns false
1289/// otherwise. Loc is the location where this routine should point to
1290/// if there is an error, and Range is the source range to highlight
1291/// if there is an error.
1292bool
1293Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1294                                   unsigned InaccessibleBaseID,
1295                                   unsigned AmbigiousBaseConvID,
1296                                   SourceLocation Loc, SourceRange Range,
1297                                   DeclarationName Name,
1298                                   CXXCastPath *BasePath) {
1299  // First, determine whether the path from Derived to Base is
1300  // ambiguous. This is slightly more expensive than checking whether
1301  // the Derived to Base conversion exists, because here we need to
1302  // explore multiple paths to determine if there is an ambiguity.
1303  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1304                     /*DetectVirtual=*/false);
1305  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1306  assert(DerivationOkay &&
1307         "Can only be used with a derived-to-base conversion");
1308  (void)DerivationOkay;
1309
1310  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1311    if (InaccessibleBaseID) {
1312      // Check that the base class can be accessed.
1313      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1314                                   InaccessibleBaseID)) {
1315        case AR_inaccessible:
1316          return true;
1317        case AR_accessible:
1318        case AR_dependent:
1319        case AR_delayed:
1320          break;
1321      }
1322    }
1323
1324    // Build a base path if necessary.
1325    if (BasePath)
1326      BuildBasePathArray(Paths, *BasePath);
1327    return false;
1328  }
1329
1330  // We know that the derived-to-base conversion is ambiguous, and
1331  // we're going to produce a diagnostic. Perform the derived-to-base
1332  // search just one more time to compute all of the possible paths so
1333  // that we can print them out. This is more expensive than any of
1334  // the previous derived-to-base checks we've done, but at this point
1335  // performance isn't as much of an issue.
1336  Paths.clear();
1337  Paths.setRecordingPaths(true);
1338  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1339  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1340  (void)StillOkay;
1341
1342  // Build up a textual representation of the ambiguous paths, e.g.,
1343  // D -> B -> A, that will be used to illustrate the ambiguous
1344  // conversions in the diagnostic. We only print one of the paths
1345  // to each base class subobject.
1346  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1347
1348  Diag(Loc, AmbigiousBaseConvID)
1349  << Derived << Base << PathDisplayStr << Range << Name;
1350  return true;
1351}
1352
1353bool
1354Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1355                                   SourceLocation Loc, SourceRange Range,
1356                                   CXXCastPath *BasePath,
1357                                   bool IgnoreAccess) {
1358  return CheckDerivedToBaseConversion(Derived, Base,
1359                                      IgnoreAccess ? 0
1360                                       : diag::err_upcast_to_inaccessible_base,
1361                                      diag::err_ambiguous_derived_to_base_conv,
1362                                      Loc, Range, DeclarationName(),
1363                                      BasePath);
1364}
1365
1366
1367/// @brief Builds a string representing ambiguous paths from a
1368/// specific derived class to different subobjects of the same base
1369/// class.
1370///
1371/// This function builds a string that can be used in error messages
1372/// to show the different paths that one can take through the
1373/// inheritance hierarchy to go from the derived class to different
1374/// subobjects of a base class. The result looks something like this:
1375/// @code
1376/// struct D -> struct B -> struct A
1377/// struct D -> struct C -> struct A
1378/// @endcode
1379std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1380  std::string PathDisplayStr;
1381  std::set<unsigned> DisplayedPaths;
1382  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1383       Path != Paths.end(); ++Path) {
1384    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1385      // We haven't displayed a path to this particular base
1386      // class subobject yet.
1387      PathDisplayStr += "\n    ";
1388      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1389      for (CXXBasePath::const_iterator Element = Path->begin();
1390           Element != Path->end(); ++Element)
1391        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1392    }
1393  }
1394
1395  return PathDisplayStr;
1396}
1397
1398//===----------------------------------------------------------------------===//
1399// C++ class member Handling
1400//===----------------------------------------------------------------------===//
1401
1402/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1403bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1404                                SourceLocation ASLoc,
1405                                SourceLocation ColonLoc,
1406                                AttributeList *Attrs) {
1407  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1408  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1409                                                  ASLoc, ColonLoc);
1410  CurContext->addHiddenDecl(ASDecl);
1411  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1412}
1413
1414/// CheckOverrideControl - Check C++0x override control semantics.
1415void Sema::CheckOverrideControl(const Decl *D) {
1416  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1417  if (!MD || !MD->isVirtual())
1418    return;
1419
1420  if (MD->isDependentContext())
1421    return;
1422
1423  // C++0x [class.virtual]p3:
1424  //   If a virtual function is marked with the virt-specifier override and does
1425  //   not override a member function of a base class,
1426  //   the program is ill-formed.
1427  bool HasOverriddenMethods =
1428    MD->begin_overridden_methods() != MD->end_overridden_methods();
1429  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1430    Diag(MD->getLocation(),
1431                 diag::err_function_marked_override_not_overriding)
1432      << MD->getDeclName();
1433    return;
1434  }
1435}
1436
1437/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1438/// function overrides a virtual member function marked 'final', according to
1439/// C++0x [class.virtual]p3.
1440bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1441                                                  const CXXMethodDecl *Old) {
1442  if (!Old->hasAttr<FinalAttr>())
1443    return false;
1444
1445  Diag(New->getLocation(), diag::err_final_function_overridden)
1446    << New->getDeclName();
1447  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1448  return true;
1449}
1450
1451/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1452/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1453/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1454/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1455/// present but parsing it has been deferred.
1456Decl *
1457Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1458                               MultiTemplateParamsArg TemplateParameterLists,
1459                               Expr *BW, const VirtSpecifiers &VS,
1460                               bool HasDeferredInit) {
1461  const DeclSpec &DS = D.getDeclSpec();
1462  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1463  DeclarationName Name = NameInfo.getName();
1464  SourceLocation Loc = NameInfo.getLoc();
1465
1466  // For anonymous bitfields, the location should point to the type.
1467  if (Loc.isInvalid())
1468    Loc = D.getSourceRange().getBegin();
1469
1470  Expr *BitWidth = static_cast<Expr*>(BW);
1471
1472  assert(isa<CXXRecordDecl>(CurContext));
1473  assert(!DS.isFriendSpecified());
1474
1475  bool isFunc = D.isDeclarationOfFunction();
1476
1477  // C++ 9.2p6: A member shall not be declared to have automatic storage
1478  // duration (auto, register) or with the extern storage-class-specifier.
1479  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1480  // data members and cannot be applied to names declared const or static,
1481  // and cannot be applied to reference members.
1482  switch (DS.getStorageClassSpec()) {
1483    case DeclSpec::SCS_unspecified:
1484    case DeclSpec::SCS_typedef:
1485    case DeclSpec::SCS_static:
1486      // FALL THROUGH.
1487      break;
1488    case DeclSpec::SCS_mutable:
1489      if (isFunc) {
1490        if (DS.getStorageClassSpecLoc().isValid())
1491          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1492        else
1493          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1494
1495        // FIXME: It would be nicer if the keyword was ignored only for this
1496        // declarator. Otherwise we could get follow-up errors.
1497        D.getMutableDeclSpec().ClearStorageClassSpecs();
1498      }
1499      break;
1500    default:
1501      if (DS.getStorageClassSpecLoc().isValid())
1502        Diag(DS.getStorageClassSpecLoc(),
1503             diag::err_storageclass_invalid_for_member);
1504      else
1505        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1506      D.getMutableDeclSpec().ClearStorageClassSpecs();
1507  }
1508
1509  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1510                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1511                      !isFunc);
1512
1513  Decl *Member;
1514  if (isInstField) {
1515    CXXScopeSpec &SS = D.getCXXScopeSpec();
1516
1517    // Data members must have identifiers for names.
1518    if (Name.getNameKind() != DeclarationName::Identifier) {
1519      Diag(Loc, diag::err_bad_variable_name)
1520        << Name;
1521      return 0;
1522    }
1523
1524    IdentifierInfo *II = Name.getAsIdentifierInfo();
1525
1526    // Member field could not be with "template" keyword.
1527    // So TemplateParameterLists should be empty in this case.
1528    if (TemplateParameterLists.size()) {
1529      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1530      if (TemplateParams->size()) {
1531        // There is no such thing as a member field template.
1532        Diag(D.getIdentifierLoc(), diag::err_template_member)
1533            << II
1534            << SourceRange(TemplateParams->getTemplateLoc(),
1535                TemplateParams->getRAngleLoc());
1536      } else {
1537        // There is an extraneous 'template<>' for this member.
1538        Diag(TemplateParams->getTemplateLoc(),
1539            diag::err_template_member_noparams)
1540            << II
1541            << SourceRange(TemplateParams->getTemplateLoc(),
1542                TemplateParams->getRAngleLoc());
1543      }
1544      return 0;
1545    }
1546
1547    if (SS.isSet() && !SS.isInvalid()) {
1548      // The user provided a superfluous scope specifier inside a class
1549      // definition:
1550      //
1551      // class X {
1552      //   int X::member;
1553      // };
1554      DeclContext *DC = 0;
1555      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1556        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1557          << Name << FixItHint::CreateRemoval(SS.getRange());
1558      else
1559        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1560          << Name << SS.getRange();
1561
1562      SS.clear();
1563    }
1564
1565    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1566                         HasDeferredInit, AS);
1567    assert(Member && "HandleField never returns null");
1568  } else {
1569    assert(!HasDeferredInit);
1570
1571    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1572    if (!Member) {
1573      return 0;
1574    }
1575
1576    // Non-instance-fields can't have a bitfield.
1577    if (BitWidth) {
1578      if (Member->isInvalidDecl()) {
1579        // don't emit another diagnostic.
1580      } else if (isa<VarDecl>(Member)) {
1581        // C++ 9.6p3: A bit-field shall not be a static member.
1582        // "static member 'A' cannot be a bit-field"
1583        Diag(Loc, diag::err_static_not_bitfield)
1584          << Name << BitWidth->getSourceRange();
1585      } else if (isa<TypedefDecl>(Member)) {
1586        // "typedef member 'x' cannot be a bit-field"
1587        Diag(Loc, diag::err_typedef_not_bitfield)
1588          << Name << BitWidth->getSourceRange();
1589      } else {
1590        // A function typedef ("typedef int f(); f a;").
1591        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1592        Diag(Loc, diag::err_not_integral_type_bitfield)
1593          << Name << cast<ValueDecl>(Member)->getType()
1594          << BitWidth->getSourceRange();
1595      }
1596
1597      BitWidth = 0;
1598      Member->setInvalidDecl();
1599    }
1600
1601    Member->setAccess(AS);
1602
1603    // If we have declared a member function template, set the access of the
1604    // templated declaration as well.
1605    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1606      FunTmpl->getTemplatedDecl()->setAccess(AS);
1607  }
1608
1609  if (VS.isOverrideSpecified()) {
1610    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1611    if (!MD || !MD->isVirtual()) {
1612      Diag(Member->getLocStart(),
1613           diag::override_keyword_only_allowed_on_virtual_member_functions)
1614        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1615    } else
1616      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1617  }
1618  if (VS.isFinalSpecified()) {
1619    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1620    if (!MD || !MD->isVirtual()) {
1621      Diag(Member->getLocStart(),
1622           diag::override_keyword_only_allowed_on_virtual_member_functions)
1623      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1624    } else
1625      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1626  }
1627
1628  if (VS.getLastLocation().isValid()) {
1629    // Update the end location of a method that has a virt-specifiers.
1630    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1631      MD->setRangeEnd(VS.getLastLocation());
1632  }
1633
1634  CheckOverrideControl(Member);
1635
1636  assert((Name || isInstField) && "No identifier for non-field ?");
1637
1638  if (isInstField)
1639    FieldCollector->Add(cast<FieldDecl>(Member));
1640  return Member;
1641}
1642
1643/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1644/// in-class initializer for a non-static C++ class member, and after
1645/// instantiating an in-class initializer in a class template. Such actions
1646/// are deferred until the class is complete.
1647void
1648Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1649                                       Expr *InitExpr) {
1650  FieldDecl *FD = cast<FieldDecl>(D);
1651
1652  if (!InitExpr) {
1653    FD->setInvalidDecl();
1654    FD->removeInClassInitializer();
1655    return;
1656  }
1657
1658  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1659    FD->setInvalidDecl();
1660    FD->removeInClassInitializer();
1661    return;
1662  }
1663
1664  ExprResult Init = InitExpr;
1665  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1666    // FIXME: if there is no EqualLoc, this is list-initialization.
1667    Init = PerformCopyInitialization(
1668      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1669    if (Init.isInvalid()) {
1670      FD->setInvalidDecl();
1671      return;
1672    }
1673
1674    CheckImplicitConversions(Init.get(), EqualLoc);
1675  }
1676
1677  // C++0x [class.base.init]p7:
1678  //   The initialization of each base and member constitutes a
1679  //   full-expression.
1680  Init = MaybeCreateExprWithCleanups(Init);
1681  if (Init.isInvalid()) {
1682    FD->setInvalidDecl();
1683    return;
1684  }
1685
1686  InitExpr = Init.release();
1687
1688  FD->setInClassInitializer(InitExpr);
1689}
1690
1691/// \brief Find the direct and/or virtual base specifiers that
1692/// correspond to the given base type, for use in base initialization
1693/// within a constructor.
1694static bool FindBaseInitializer(Sema &SemaRef,
1695                                CXXRecordDecl *ClassDecl,
1696                                QualType BaseType,
1697                                const CXXBaseSpecifier *&DirectBaseSpec,
1698                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1699  // First, check for a direct base class.
1700  DirectBaseSpec = 0;
1701  for (CXXRecordDecl::base_class_const_iterator Base
1702         = ClassDecl->bases_begin();
1703       Base != ClassDecl->bases_end(); ++Base) {
1704    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1705      // We found a direct base of this type. That's what we're
1706      // initializing.
1707      DirectBaseSpec = &*Base;
1708      break;
1709    }
1710  }
1711
1712  // Check for a virtual base class.
1713  // FIXME: We might be able to short-circuit this if we know in advance that
1714  // there are no virtual bases.
1715  VirtualBaseSpec = 0;
1716  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1717    // We haven't found a base yet; search the class hierarchy for a
1718    // virtual base class.
1719    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1720                       /*DetectVirtual=*/false);
1721    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1722                              BaseType, Paths)) {
1723      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1724           Path != Paths.end(); ++Path) {
1725        if (Path->back().Base->isVirtual()) {
1726          VirtualBaseSpec = Path->back().Base;
1727          break;
1728        }
1729      }
1730    }
1731  }
1732
1733  return DirectBaseSpec || VirtualBaseSpec;
1734}
1735
1736/// \brief Handle a C++ member initializer using braced-init-list syntax.
1737MemInitResult
1738Sema::ActOnMemInitializer(Decl *ConstructorD,
1739                          Scope *S,
1740                          CXXScopeSpec &SS,
1741                          IdentifierInfo *MemberOrBase,
1742                          ParsedType TemplateTypeTy,
1743                          const DeclSpec &DS,
1744                          SourceLocation IdLoc,
1745                          Expr *InitList,
1746                          SourceLocation EllipsisLoc) {
1747  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1748                             DS, IdLoc, InitList,
1749                             EllipsisLoc);
1750}
1751
1752/// \brief Handle a C++ member initializer using parentheses syntax.
1753MemInitResult
1754Sema::ActOnMemInitializer(Decl *ConstructorD,
1755                          Scope *S,
1756                          CXXScopeSpec &SS,
1757                          IdentifierInfo *MemberOrBase,
1758                          ParsedType TemplateTypeTy,
1759                          const DeclSpec &DS,
1760                          SourceLocation IdLoc,
1761                          SourceLocation LParenLoc,
1762                          Expr **Args, unsigned NumArgs,
1763                          SourceLocation RParenLoc,
1764                          SourceLocation EllipsisLoc) {
1765  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1766                                           RParenLoc);
1767  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1768                             DS, IdLoc, List, EllipsisLoc);
1769}
1770
1771namespace {
1772
1773// Callback to only accept typo corrections that can be a valid C++ member
1774// intializer: either a non-static field member or a base class.
1775class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1776 public:
1777  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1778      : ClassDecl(ClassDecl) {}
1779
1780  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1781    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1782      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1783        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1784      else
1785        return isa<TypeDecl>(ND);
1786    }
1787    return false;
1788  }
1789
1790 private:
1791  CXXRecordDecl *ClassDecl;
1792};
1793
1794}
1795
1796/// \brief Handle a C++ member initializer.
1797MemInitResult
1798Sema::BuildMemInitializer(Decl *ConstructorD,
1799                          Scope *S,
1800                          CXXScopeSpec &SS,
1801                          IdentifierInfo *MemberOrBase,
1802                          ParsedType TemplateTypeTy,
1803                          const DeclSpec &DS,
1804                          SourceLocation IdLoc,
1805                          Expr *Init,
1806                          SourceLocation EllipsisLoc) {
1807  if (!ConstructorD)
1808    return true;
1809
1810  AdjustDeclIfTemplate(ConstructorD);
1811
1812  CXXConstructorDecl *Constructor
1813    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1814  if (!Constructor) {
1815    // The user wrote a constructor initializer on a function that is
1816    // not a C++ constructor. Ignore the error for now, because we may
1817    // have more member initializers coming; we'll diagnose it just
1818    // once in ActOnMemInitializers.
1819    return true;
1820  }
1821
1822  CXXRecordDecl *ClassDecl = Constructor->getParent();
1823
1824  // C++ [class.base.init]p2:
1825  //   Names in a mem-initializer-id are looked up in the scope of the
1826  //   constructor's class and, if not found in that scope, are looked
1827  //   up in the scope containing the constructor's definition.
1828  //   [Note: if the constructor's class contains a member with the
1829  //   same name as a direct or virtual base class of the class, a
1830  //   mem-initializer-id naming the member or base class and composed
1831  //   of a single identifier refers to the class member. A
1832  //   mem-initializer-id for the hidden base class may be specified
1833  //   using a qualified name. ]
1834  if (!SS.getScopeRep() && !TemplateTypeTy) {
1835    // Look for a member, first.
1836    DeclContext::lookup_result Result
1837      = ClassDecl->lookup(MemberOrBase);
1838    if (Result.first != Result.second) {
1839      ValueDecl *Member;
1840      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1841          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1842        if (EllipsisLoc.isValid())
1843          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1844            << MemberOrBase
1845            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1846
1847        return BuildMemberInitializer(Member, Init, IdLoc);
1848      }
1849    }
1850  }
1851  // It didn't name a member, so see if it names a class.
1852  QualType BaseType;
1853  TypeSourceInfo *TInfo = 0;
1854
1855  if (TemplateTypeTy) {
1856    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1857  } else if (DS.getTypeSpecType() == TST_decltype) {
1858    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1859  } else {
1860    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1861    LookupParsedName(R, S, &SS);
1862
1863    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1864    if (!TyD) {
1865      if (R.isAmbiguous()) return true;
1866
1867      // We don't want access-control diagnostics here.
1868      R.suppressDiagnostics();
1869
1870      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1871        bool NotUnknownSpecialization = false;
1872        DeclContext *DC = computeDeclContext(SS, false);
1873        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1874          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1875
1876        if (!NotUnknownSpecialization) {
1877          // When the scope specifier can refer to a member of an unknown
1878          // specialization, we take it as a type name.
1879          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1880                                       SS.getWithLocInContext(Context),
1881                                       *MemberOrBase, IdLoc);
1882          if (BaseType.isNull())
1883            return true;
1884
1885          R.clear();
1886          R.setLookupName(MemberOrBase);
1887        }
1888      }
1889
1890      // If no results were found, try to correct typos.
1891      TypoCorrection Corr;
1892      MemInitializerValidatorCCC Validator(ClassDecl);
1893      if (R.empty() && BaseType.isNull() &&
1894          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1895                              Validator, ClassDecl))) {
1896        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1897        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1898        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1899          // We have found a non-static data member with a similar
1900          // name to what was typed; complain and initialize that
1901          // member.
1902          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1903            << MemberOrBase << true << CorrectedQuotedStr
1904            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1905          Diag(Member->getLocation(), diag::note_previous_decl)
1906            << CorrectedQuotedStr;
1907
1908          return BuildMemberInitializer(Member, Init, IdLoc);
1909        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1910          const CXXBaseSpecifier *DirectBaseSpec;
1911          const CXXBaseSpecifier *VirtualBaseSpec;
1912          if (FindBaseInitializer(*this, ClassDecl,
1913                                  Context.getTypeDeclType(Type),
1914                                  DirectBaseSpec, VirtualBaseSpec)) {
1915            // We have found a direct or virtual base class with a
1916            // similar name to what was typed; complain and initialize
1917            // that base class.
1918            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1919              << MemberOrBase << false << CorrectedQuotedStr
1920              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1921
1922            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1923                                                             : VirtualBaseSpec;
1924            Diag(BaseSpec->getSourceRange().getBegin(),
1925                 diag::note_base_class_specified_here)
1926              << BaseSpec->getType()
1927              << BaseSpec->getSourceRange();
1928
1929            TyD = Type;
1930          }
1931        }
1932      }
1933
1934      if (!TyD && BaseType.isNull()) {
1935        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1936          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1937        return true;
1938      }
1939    }
1940
1941    if (BaseType.isNull()) {
1942      BaseType = Context.getTypeDeclType(TyD);
1943      if (SS.isSet()) {
1944        NestedNameSpecifier *Qualifier =
1945          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1946
1947        // FIXME: preserve source range information
1948        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1949      }
1950    }
1951  }
1952
1953  if (!TInfo)
1954    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1955
1956  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1957}
1958
1959/// Checks a member initializer expression for cases where reference (or
1960/// pointer) members are bound to by-value parameters (or their addresses).
1961static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1962                                               Expr *Init,
1963                                               SourceLocation IdLoc) {
1964  QualType MemberTy = Member->getType();
1965
1966  // We only handle pointers and references currently.
1967  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1968  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1969    return;
1970
1971  const bool IsPointer = MemberTy->isPointerType();
1972  if (IsPointer) {
1973    if (const UnaryOperator *Op
1974          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1975      // The only case we're worried about with pointers requires taking the
1976      // address.
1977      if (Op->getOpcode() != UO_AddrOf)
1978        return;
1979
1980      Init = Op->getSubExpr();
1981    } else {
1982      // We only handle address-of expression initializers for pointers.
1983      return;
1984    }
1985  }
1986
1987  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1988    // Taking the address of a temporary will be diagnosed as a hard error.
1989    if (IsPointer)
1990      return;
1991
1992    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1993      << Member << Init->getSourceRange();
1994  } else if (const DeclRefExpr *DRE
1995               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1996    // We only warn when referring to a non-reference parameter declaration.
1997    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1998    if (!Parameter || Parameter->getType()->isReferenceType())
1999      return;
2000
2001    S.Diag(Init->getExprLoc(),
2002           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2003                     : diag::warn_bind_ref_member_to_parameter)
2004      << Member << Parameter << Init->getSourceRange();
2005  } else {
2006    // Other initializers are fine.
2007    return;
2008  }
2009
2010  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2011    << (unsigned)IsPointer;
2012}
2013
2014/// Checks an initializer expression for use of uninitialized fields, such as
2015/// containing the field that is being initialized. Returns true if there is an
2016/// uninitialized field was used an updates the SourceLocation parameter; false
2017/// otherwise.
2018static bool InitExprContainsUninitializedFields(const Stmt *S,
2019                                                const ValueDecl *LhsField,
2020                                                SourceLocation *L) {
2021  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2022
2023  if (isa<CallExpr>(S)) {
2024    // Do not descend into function calls or constructors, as the use
2025    // of an uninitialized field may be valid. One would have to inspect
2026    // the contents of the function/ctor to determine if it is safe or not.
2027    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2028    // may be safe, depending on what the function/ctor does.
2029    return false;
2030  }
2031  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2032    const NamedDecl *RhsField = ME->getMemberDecl();
2033
2034    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2035      // The member expression points to a static data member.
2036      assert(VD->isStaticDataMember() &&
2037             "Member points to non-static data member!");
2038      (void)VD;
2039      return false;
2040    }
2041
2042    if (isa<EnumConstantDecl>(RhsField)) {
2043      // The member expression points to an enum.
2044      return false;
2045    }
2046
2047    if (RhsField == LhsField) {
2048      // Initializing a field with itself. Throw a warning.
2049      // But wait; there are exceptions!
2050      // Exception #1:  The field may not belong to this record.
2051      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2052      const Expr *base = ME->getBase();
2053      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2054        // Even though the field matches, it does not belong to this record.
2055        return false;
2056      }
2057      // None of the exceptions triggered; return true to indicate an
2058      // uninitialized field was used.
2059      *L = ME->getMemberLoc();
2060      return true;
2061    }
2062  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2063    // sizeof/alignof doesn't reference contents, do not warn.
2064    return false;
2065  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2066    // address-of doesn't reference contents (the pointer may be dereferenced
2067    // in the same expression but it would be rare; and weird).
2068    if (UOE->getOpcode() == UO_AddrOf)
2069      return false;
2070  }
2071  for (Stmt::const_child_range it = S->children(); it; ++it) {
2072    if (!*it) {
2073      // An expression such as 'member(arg ?: "")' may trigger this.
2074      continue;
2075    }
2076    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2077      return true;
2078  }
2079  return false;
2080}
2081
2082MemInitResult
2083Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2084                             SourceLocation IdLoc) {
2085  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2086  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2087  assert((DirectMember || IndirectMember) &&
2088         "Member must be a FieldDecl or IndirectFieldDecl");
2089
2090  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2091    return true;
2092
2093  if (Member->isInvalidDecl())
2094    return true;
2095
2096  // Diagnose value-uses of fields to initialize themselves, e.g.
2097  //   foo(foo)
2098  // where foo is not also a parameter to the constructor.
2099  // TODO: implement -Wuninitialized and fold this into that framework.
2100  Expr **Args;
2101  unsigned NumArgs;
2102  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2103    Args = ParenList->getExprs();
2104    NumArgs = ParenList->getNumExprs();
2105  } else {
2106    InitListExpr *InitList = cast<InitListExpr>(Init);
2107    Args = InitList->getInits();
2108    NumArgs = InitList->getNumInits();
2109  }
2110  for (unsigned i = 0; i < NumArgs; ++i) {
2111    SourceLocation L;
2112    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2113      // FIXME: Return true in the case when other fields are used before being
2114      // uninitialized. For example, let this field be the i'th field. When
2115      // initializing the i'th field, throw a warning if any of the >= i'th
2116      // fields are used, as they are not yet initialized.
2117      // Right now we are only handling the case where the i'th field uses
2118      // itself in its initializer.
2119      Diag(L, diag::warn_field_is_uninit);
2120    }
2121  }
2122
2123  SourceRange InitRange = Init->getSourceRange();
2124
2125  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2126    // Can't check initialization for a member of dependent type or when
2127    // any of the arguments are type-dependent expressions.
2128    DiscardCleanupsInEvaluationContext();
2129  } else {
2130    bool InitList = false;
2131    if (isa<InitListExpr>(Init)) {
2132      InitList = true;
2133      Args = &Init;
2134      NumArgs = 1;
2135    }
2136
2137    // Initialize the member.
2138    InitializedEntity MemberEntity =
2139      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2140                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2141    InitializationKind Kind =
2142      InitList ? InitializationKind::CreateDirectList(IdLoc)
2143               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2144                                                  InitRange.getEnd());
2145
2146    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2147    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2148                                            MultiExprArg(*this, Args, NumArgs),
2149                                            0);
2150    if (MemberInit.isInvalid())
2151      return true;
2152
2153    CheckImplicitConversions(MemberInit.get(),
2154                             InitRange.getBegin());
2155
2156    // C++0x [class.base.init]p7:
2157    //   The initialization of each base and member constitutes a
2158    //   full-expression.
2159    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2160    if (MemberInit.isInvalid())
2161      return true;
2162
2163    // If we are in a dependent context, template instantiation will
2164    // perform this type-checking again. Just save the arguments that we
2165    // received.
2166    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2167    // of the information that we have about the member
2168    // initializer. However, deconstructing the ASTs is a dicey process,
2169    // and this approach is far more likely to get the corner cases right.
2170    if (CurContext->isDependentContext()) {
2171      // The existing Init will do fine.
2172    } else {
2173      Init = MemberInit.get();
2174      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2175    }
2176  }
2177
2178  if (DirectMember) {
2179    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2180                                            InitRange.getBegin(), Init,
2181                                            InitRange.getEnd());
2182  } else {
2183    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2184                                            InitRange.getBegin(), Init,
2185                                            InitRange.getEnd());
2186  }
2187}
2188
2189MemInitResult
2190Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2191                                 CXXRecordDecl *ClassDecl) {
2192  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2193  if (!LangOpts.CPlusPlus0x)
2194    return Diag(NameLoc, diag::err_delegating_ctor)
2195      << TInfo->getTypeLoc().getLocalSourceRange();
2196  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2197
2198  bool InitList = true;
2199  Expr **Args = &Init;
2200  unsigned NumArgs = 1;
2201  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2202    InitList = false;
2203    Args = ParenList->getExprs();
2204    NumArgs = ParenList->getNumExprs();
2205  }
2206
2207  SourceRange InitRange = Init->getSourceRange();
2208  // Initialize the object.
2209  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2210                                     QualType(ClassDecl->getTypeForDecl(), 0));
2211  InitializationKind Kind =
2212    InitList ? InitializationKind::CreateDirectList(NameLoc)
2213             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2214                                                InitRange.getEnd());
2215  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2216  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2217                                              MultiExprArg(*this, Args,NumArgs),
2218                                              0);
2219  if (DelegationInit.isInvalid())
2220    return true;
2221
2222  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2223         "Delegating constructor with no target?");
2224
2225  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2226
2227  // C++0x [class.base.init]p7:
2228  //   The initialization of each base and member constitutes a
2229  //   full-expression.
2230  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2231  if (DelegationInit.isInvalid())
2232    return true;
2233
2234  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2235                                          DelegationInit.takeAs<Expr>(),
2236                                          InitRange.getEnd());
2237}
2238
2239MemInitResult
2240Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2241                           Expr *Init, CXXRecordDecl *ClassDecl,
2242                           SourceLocation EllipsisLoc) {
2243  SourceLocation BaseLoc
2244    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2245
2246  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2247    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2248             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2249
2250  // C++ [class.base.init]p2:
2251  //   [...] Unless the mem-initializer-id names a nonstatic data
2252  //   member of the constructor's class or a direct or virtual base
2253  //   of that class, the mem-initializer is ill-formed. A
2254  //   mem-initializer-list can initialize a base class using any
2255  //   name that denotes that base class type.
2256  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2257
2258  SourceRange InitRange = Init->getSourceRange();
2259  if (EllipsisLoc.isValid()) {
2260    // This is a pack expansion.
2261    if (!BaseType->containsUnexpandedParameterPack())  {
2262      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2263        << SourceRange(BaseLoc, InitRange.getEnd());
2264
2265      EllipsisLoc = SourceLocation();
2266    }
2267  } else {
2268    // Check for any unexpanded parameter packs.
2269    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2270      return true;
2271
2272    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2273      return true;
2274  }
2275
2276  // Check for direct and virtual base classes.
2277  const CXXBaseSpecifier *DirectBaseSpec = 0;
2278  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2279  if (!Dependent) {
2280    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2281                                       BaseType))
2282      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2283
2284    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2285                        VirtualBaseSpec);
2286
2287    // C++ [base.class.init]p2:
2288    // Unless the mem-initializer-id names a nonstatic data member of the
2289    // constructor's class or a direct or virtual base of that class, the
2290    // mem-initializer is ill-formed.
2291    if (!DirectBaseSpec && !VirtualBaseSpec) {
2292      // If the class has any dependent bases, then it's possible that
2293      // one of those types will resolve to the same type as
2294      // BaseType. Therefore, just treat this as a dependent base
2295      // class initialization.  FIXME: Should we try to check the
2296      // initialization anyway? It seems odd.
2297      if (ClassDecl->hasAnyDependentBases())
2298        Dependent = true;
2299      else
2300        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2301          << BaseType << Context.getTypeDeclType(ClassDecl)
2302          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2303    }
2304  }
2305
2306  if (Dependent) {
2307    DiscardCleanupsInEvaluationContext();
2308
2309    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2310                                            /*IsVirtual=*/false,
2311                                            InitRange.getBegin(), Init,
2312                                            InitRange.getEnd(), EllipsisLoc);
2313  }
2314
2315  // C++ [base.class.init]p2:
2316  //   If a mem-initializer-id is ambiguous because it designates both
2317  //   a direct non-virtual base class and an inherited virtual base
2318  //   class, the mem-initializer is ill-formed.
2319  if (DirectBaseSpec && VirtualBaseSpec)
2320    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2321      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2322
2323  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2324  if (!BaseSpec)
2325    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2326
2327  // Initialize the base.
2328  bool InitList = true;
2329  Expr **Args = &Init;
2330  unsigned NumArgs = 1;
2331  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2332    InitList = false;
2333    Args = ParenList->getExprs();
2334    NumArgs = ParenList->getNumExprs();
2335  }
2336
2337  InitializedEntity BaseEntity =
2338    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2339  InitializationKind Kind =
2340    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2341             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2342                                                InitRange.getEnd());
2343  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2344  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2345                                          MultiExprArg(*this, Args, NumArgs),
2346                                          0);
2347  if (BaseInit.isInvalid())
2348    return true;
2349
2350  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2351
2352  // C++0x [class.base.init]p7:
2353  //   The initialization of each base and member constitutes a
2354  //   full-expression.
2355  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2356  if (BaseInit.isInvalid())
2357    return true;
2358
2359  // If we are in a dependent context, template instantiation will
2360  // perform this type-checking again. Just save the arguments that we
2361  // received in a ParenListExpr.
2362  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2363  // of the information that we have about the base
2364  // initializer. However, deconstructing the ASTs is a dicey process,
2365  // and this approach is far more likely to get the corner cases right.
2366  if (CurContext->isDependentContext())
2367    BaseInit = Owned(Init);
2368
2369  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2370                                          BaseSpec->isVirtual(),
2371                                          InitRange.getBegin(),
2372                                          BaseInit.takeAs<Expr>(),
2373                                          InitRange.getEnd(), EllipsisLoc);
2374}
2375
2376// Create a static_cast\<T&&>(expr).
2377static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2378  QualType ExprType = E->getType();
2379  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2380  SourceLocation ExprLoc = E->getLocStart();
2381  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2382      TargetType, ExprLoc);
2383
2384  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2385                                   SourceRange(ExprLoc, ExprLoc),
2386                                   E->getSourceRange()).take();
2387}
2388
2389/// ImplicitInitializerKind - How an implicit base or member initializer should
2390/// initialize its base or member.
2391enum ImplicitInitializerKind {
2392  IIK_Default,
2393  IIK_Copy,
2394  IIK_Move
2395};
2396
2397static bool
2398BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2399                             ImplicitInitializerKind ImplicitInitKind,
2400                             CXXBaseSpecifier *BaseSpec,
2401                             bool IsInheritedVirtualBase,
2402                             CXXCtorInitializer *&CXXBaseInit) {
2403  InitializedEntity InitEntity
2404    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2405                                        IsInheritedVirtualBase);
2406
2407  ExprResult BaseInit;
2408
2409  switch (ImplicitInitKind) {
2410  case IIK_Default: {
2411    InitializationKind InitKind
2412      = InitializationKind::CreateDefault(Constructor->getLocation());
2413    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2414    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2415                               MultiExprArg(SemaRef, 0, 0));
2416    break;
2417  }
2418
2419  case IIK_Move:
2420  case IIK_Copy: {
2421    bool Moving = ImplicitInitKind == IIK_Move;
2422    ParmVarDecl *Param = Constructor->getParamDecl(0);
2423    QualType ParamType = Param->getType().getNonReferenceType();
2424
2425    Expr *CopyCtorArg =
2426      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2427                          SourceLocation(), Param,
2428                          Constructor->getLocation(), ParamType,
2429                          VK_LValue, 0);
2430
2431    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2432
2433    // Cast to the base class to avoid ambiguities.
2434    QualType ArgTy =
2435      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2436                                       ParamType.getQualifiers());
2437
2438    if (Moving) {
2439      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2440    }
2441
2442    CXXCastPath BasePath;
2443    BasePath.push_back(BaseSpec);
2444    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2445                                            CK_UncheckedDerivedToBase,
2446                                            Moving ? VK_XValue : VK_LValue,
2447                                            &BasePath).take();
2448
2449    InitializationKind InitKind
2450      = InitializationKind::CreateDirect(Constructor->getLocation(),
2451                                         SourceLocation(), SourceLocation());
2452    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2453                                   &CopyCtorArg, 1);
2454    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2455                               MultiExprArg(&CopyCtorArg, 1));
2456    break;
2457  }
2458  }
2459
2460  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2461  if (BaseInit.isInvalid())
2462    return true;
2463
2464  CXXBaseInit =
2465    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2466               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2467                                                        SourceLocation()),
2468                                             BaseSpec->isVirtual(),
2469                                             SourceLocation(),
2470                                             BaseInit.takeAs<Expr>(),
2471                                             SourceLocation(),
2472                                             SourceLocation());
2473
2474  return false;
2475}
2476
2477static bool RefersToRValueRef(Expr *MemRef) {
2478  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2479  return Referenced->getType()->isRValueReferenceType();
2480}
2481
2482static bool
2483BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2484                               ImplicitInitializerKind ImplicitInitKind,
2485                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2486                               CXXCtorInitializer *&CXXMemberInit) {
2487  if (Field->isInvalidDecl())
2488    return true;
2489
2490  SourceLocation Loc = Constructor->getLocation();
2491
2492  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2493    bool Moving = ImplicitInitKind == IIK_Move;
2494    ParmVarDecl *Param = Constructor->getParamDecl(0);
2495    QualType ParamType = Param->getType().getNonReferenceType();
2496
2497    // Suppress copying zero-width bitfields.
2498    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2499      return false;
2500
2501    Expr *MemberExprBase =
2502      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2503                          SourceLocation(), Param,
2504                          Loc, ParamType, VK_LValue, 0);
2505
2506    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2507
2508    if (Moving) {
2509      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2510    }
2511
2512    // Build a reference to this field within the parameter.
2513    CXXScopeSpec SS;
2514    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2515                              Sema::LookupMemberName);
2516    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2517                                  : cast<ValueDecl>(Field), AS_public);
2518    MemberLookup.resolveKind();
2519    ExprResult CtorArg
2520      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2521                                         ParamType, Loc,
2522                                         /*IsArrow=*/false,
2523                                         SS,
2524                                         /*TemplateKWLoc=*/SourceLocation(),
2525                                         /*FirstQualifierInScope=*/0,
2526                                         MemberLookup,
2527                                         /*TemplateArgs=*/0);
2528    if (CtorArg.isInvalid())
2529      return true;
2530
2531    // C++11 [class.copy]p15:
2532    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2533    //     with static_cast<T&&>(x.m);
2534    if (RefersToRValueRef(CtorArg.get())) {
2535      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2536    }
2537
2538    // When the field we are copying is an array, create index variables for
2539    // each dimension of the array. We use these index variables to subscript
2540    // the source array, and other clients (e.g., CodeGen) will perform the
2541    // necessary iteration with these index variables.
2542    SmallVector<VarDecl *, 4> IndexVariables;
2543    QualType BaseType = Field->getType();
2544    QualType SizeType = SemaRef.Context.getSizeType();
2545    bool InitializingArray = false;
2546    while (const ConstantArrayType *Array
2547                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2548      InitializingArray = true;
2549      // Create the iteration variable for this array index.
2550      IdentifierInfo *IterationVarName = 0;
2551      {
2552        SmallString<8> Str;
2553        llvm::raw_svector_ostream OS(Str);
2554        OS << "__i" << IndexVariables.size();
2555        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2556      }
2557      VarDecl *IterationVar
2558        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2559                          IterationVarName, SizeType,
2560                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2561                          SC_None, SC_None);
2562      IndexVariables.push_back(IterationVar);
2563
2564      // Create a reference to the iteration variable.
2565      ExprResult IterationVarRef
2566        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2567      assert(!IterationVarRef.isInvalid() &&
2568             "Reference to invented variable cannot fail!");
2569      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2570      assert(!IterationVarRef.isInvalid() &&
2571             "Conversion of invented variable cannot fail!");
2572
2573      // Subscript the array with this iteration variable.
2574      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2575                                                        IterationVarRef.take(),
2576                                                        Loc);
2577      if (CtorArg.isInvalid())
2578        return true;
2579
2580      BaseType = Array->getElementType();
2581    }
2582
2583    // The array subscript expression is an lvalue, which is wrong for moving.
2584    if (Moving && InitializingArray)
2585      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2586
2587    // Construct the entity that we will be initializing. For an array, this
2588    // will be first element in the array, which may require several levels
2589    // of array-subscript entities.
2590    SmallVector<InitializedEntity, 4> Entities;
2591    Entities.reserve(1 + IndexVariables.size());
2592    if (Indirect)
2593      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2594    else
2595      Entities.push_back(InitializedEntity::InitializeMember(Field));
2596    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2597      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2598                                                              0,
2599                                                              Entities.back()));
2600
2601    // Direct-initialize to use the copy constructor.
2602    InitializationKind InitKind =
2603      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2604
2605    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2606    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2607                                   &CtorArgE, 1);
2608
2609    ExprResult MemberInit
2610      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2611                        MultiExprArg(&CtorArgE, 1));
2612    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2613    if (MemberInit.isInvalid())
2614      return true;
2615
2616    if (Indirect) {
2617      assert(IndexVariables.size() == 0 &&
2618             "Indirect field improperly initialized");
2619      CXXMemberInit
2620        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2621                                                   Loc, Loc,
2622                                                   MemberInit.takeAs<Expr>(),
2623                                                   Loc);
2624    } else
2625      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2626                                                 Loc, MemberInit.takeAs<Expr>(),
2627                                                 Loc,
2628                                                 IndexVariables.data(),
2629                                                 IndexVariables.size());
2630    return false;
2631  }
2632
2633  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2634
2635  QualType FieldBaseElementType =
2636    SemaRef.Context.getBaseElementType(Field->getType());
2637
2638  if (FieldBaseElementType->isRecordType()) {
2639    InitializedEntity InitEntity
2640      = Indirect? InitializedEntity::InitializeMember(Indirect)
2641                : InitializedEntity::InitializeMember(Field);
2642    InitializationKind InitKind =
2643      InitializationKind::CreateDefault(Loc);
2644
2645    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2646    ExprResult MemberInit =
2647      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2648
2649    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2650    if (MemberInit.isInvalid())
2651      return true;
2652
2653    if (Indirect)
2654      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2655                                                               Indirect, Loc,
2656                                                               Loc,
2657                                                               MemberInit.get(),
2658                                                               Loc);
2659    else
2660      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2661                                                               Field, Loc, Loc,
2662                                                               MemberInit.get(),
2663                                                               Loc);
2664    return false;
2665  }
2666
2667  if (!Field->getParent()->isUnion()) {
2668    if (FieldBaseElementType->isReferenceType()) {
2669      SemaRef.Diag(Constructor->getLocation(),
2670                   diag::err_uninitialized_member_in_ctor)
2671      << (int)Constructor->isImplicit()
2672      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2673      << 0 << Field->getDeclName();
2674      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2675      return true;
2676    }
2677
2678    if (FieldBaseElementType.isConstQualified()) {
2679      SemaRef.Diag(Constructor->getLocation(),
2680                   diag::err_uninitialized_member_in_ctor)
2681      << (int)Constructor->isImplicit()
2682      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2683      << 1 << Field->getDeclName();
2684      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2685      return true;
2686    }
2687  }
2688
2689  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2690      FieldBaseElementType->isObjCRetainableType() &&
2691      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2692      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2693    // Instant objects:
2694    //   Default-initialize Objective-C pointers to NULL.
2695    CXXMemberInit
2696      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2697                                                 Loc, Loc,
2698                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2699                                                 Loc);
2700    return false;
2701  }
2702
2703  // Nothing to initialize.
2704  CXXMemberInit = 0;
2705  return false;
2706}
2707
2708namespace {
2709struct BaseAndFieldInfo {
2710  Sema &S;
2711  CXXConstructorDecl *Ctor;
2712  bool AnyErrorsInInits;
2713  ImplicitInitializerKind IIK;
2714  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2715  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2716
2717  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2718    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2719    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2720    if (Generated && Ctor->isCopyConstructor())
2721      IIK = IIK_Copy;
2722    else if (Generated && Ctor->isMoveConstructor())
2723      IIK = IIK_Move;
2724    else
2725      IIK = IIK_Default;
2726  }
2727
2728  bool isImplicitCopyOrMove() const {
2729    switch (IIK) {
2730    case IIK_Copy:
2731    case IIK_Move:
2732      return true;
2733
2734    case IIK_Default:
2735      return false;
2736    }
2737
2738    llvm_unreachable("Invalid ImplicitInitializerKind!");
2739  }
2740};
2741}
2742
2743/// \brief Determine whether the given indirect field declaration is somewhere
2744/// within an anonymous union.
2745static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2746  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2747                                      CEnd = F->chain_end();
2748       C != CEnd; ++C)
2749    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2750      if (Record->isUnion())
2751        return true;
2752
2753  return false;
2754}
2755
2756/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2757/// array type.
2758static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2759  if (T->isIncompleteArrayType())
2760    return true;
2761
2762  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2763    if (!ArrayT->getSize())
2764      return true;
2765
2766    T = ArrayT->getElementType();
2767  }
2768
2769  return false;
2770}
2771
2772static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2773                                    FieldDecl *Field,
2774                                    IndirectFieldDecl *Indirect = 0) {
2775
2776  // Overwhelmingly common case: we have a direct initializer for this field.
2777  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2778    Info.AllToInit.push_back(Init);
2779    return false;
2780  }
2781
2782  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2783  // has a brace-or-equal-initializer, the entity is initialized as specified
2784  // in [dcl.init].
2785  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2786    CXXCtorInitializer *Init;
2787    if (Indirect)
2788      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2789                                                      SourceLocation(),
2790                                                      SourceLocation(), 0,
2791                                                      SourceLocation());
2792    else
2793      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2794                                                      SourceLocation(),
2795                                                      SourceLocation(), 0,
2796                                                      SourceLocation());
2797    Info.AllToInit.push_back(Init);
2798    return false;
2799  }
2800
2801  // Don't build an implicit initializer for union members if none was
2802  // explicitly specified.
2803  if (Field->getParent()->isUnion() ||
2804      (Indirect && isWithinAnonymousUnion(Indirect)))
2805    return false;
2806
2807  // Don't initialize incomplete or zero-length arrays.
2808  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2809    return false;
2810
2811  // Don't try to build an implicit initializer if there were semantic
2812  // errors in any of the initializers (and therefore we might be
2813  // missing some that the user actually wrote).
2814  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2815    return false;
2816
2817  CXXCtorInitializer *Init = 0;
2818  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2819                                     Indirect, Init))
2820    return true;
2821
2822  if (Init)
2823    Info.AllToInit.push_back(Init);
2824
2825  return false;
2826}
2827
2828bool
2829Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2830                               CXXCtorInitializer *Initializer) {
2831  assert(Initializer->isDelegatingInitializer());
2832  Constructor->setNumCtorInitializers(1);
2833  CXXCtorInitializer **initializer =
2834    new (Context) CXXCtorInitializer*[1];
2835  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2836  Constructor->setCtorInitializers(initializer);
2837
2838  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2839    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2840    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2841  }
2842
2843  DelegatingCtorDecls.push_back(Constructor);
2844
2845  return false;
2846}
2847
2848bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2849                               CXXCtorInitializer **Initializers,
2850                               unsigned NumInitializers,
2851                               bool AnyErrors) {
2852  if (Constructor->isDependentContext()) {
2853    // Just store the initializers as written, they will be checked during
2854    // instantiation.
2855    if (NumInitializers > 0) {
2856      Constructor->setNumCtorInitializers(NumInitializers);
2857      CXXCtorInitializer **baseOrMemberInitializers =
2858        new (Context) CXXCtorInitializer*[NumInitializers];
2859      memcpy(baseOrMemberInitializers, Initializers,
2860             NumInitializers * sizeof(CXXCtorInitializer*));
2861      Constructor->setCtorInitializers(baseOrMemberInitializers);
2862    }
2863
2864    return false;
2865  }
2866
2867  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2868
2869  // We need to build the initializer AST according to order of construction
2870  // and not what user specified in the Initializers list.
2871  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2872  if (!ClassDecl)
2873    return true;
2874
2875  bool HadError = false;
2876
2877  for (unsigned i = 0; i < NumInitializers; i++) {
2878    CXXCtorInitializer *Member = Initializers[i];
2879
2880    if (Member->isBaseInitializer())
2881      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2882    else
2883      Info.AllBaseFields[Member->getAnyMember()] = Member;
2884  }
2885
2886  // Keep track of the direct virtual bases.
2887  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2888  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2889       E = ClassDecl->bases_end(); I != E; ++I) {
2890    if (I->isVirtual())
2891      DirectVBases.insert(I);
2892  }
2893
2894  // Push virtual bases before others.
2895  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2896       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2897
2898    if (CXXCtorInitializer *Value
2899        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2900      Info.AllToInit.push_back(Value);
2901    } else if (!AnyErrors) {
2902      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2903      CXXCtorInitializer *CXXBaseInit;
2904      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2905                                       VBase, IsInheritedVirtualBase,
2906                                       CXXBaseInit)) {
2907        HadError = true;
2908        continue;
2909      }
2910
2911      Info.AllToInit.push_back(CXXBaseInit);
2912    }
2913  }
2914
2915  // Non-virtual bases.
2916  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2917       E = ClassDecl->bases_end(); Base != E; ++Base) {
2918    // Virtuals are in the virtual base list and already constructed.
2919    if (Base->isVirtual())
2920      continue;
2921
2922    if (CXXCtorInitializer *Value
2923          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2924      Info.AllToInit.push_back(Value);
2925    } else if (!AnyErrors) {
2926      CXXCtorInitializer *CXXBaseInit;
2927      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2928                                       Base, /*IsInheritedVirtualBase=*/false,
2929                                       CXXBaseInit)) {
2930        HadError = true;
2931        continue;
2932      }
2933
2934      Info.AllToInit.push_back(CXXBaseInit);
2935    }
2936  }
2937
2938  // Fields.
2939  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2940                               MemEnd = ClassDecl->decls_end();
2941       Mem != MemEnd; ++Mem) {
2942    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2943      // C++ [class.bit]p2:
2944      //   A declaration for a bit-field that omits the identifier declares an
2945      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2946      //   initialized.
2947      if (F->isUnnamedBitfield())
2948        continue;
2949
2950      // If we're not generating the implicit copy/move constructor, then we'll
2951      // handle anonymous struct/union fields based on their individual
2952      // indirect fields.
2953      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2954        continue;
2955
2956      if (CollectFieldInitializer(*this, Info, F))
2957        HadError = true;
2958      continue;
2959    }
2960
2961    // Beyond this point, we only consider default initialization.
2962    if (Info.IIK != IIK_Default)
2963      continue;
2964
2965    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2966      if (F->getType()->isIncompleteArrayType()) {
2967        assert(ClassDecl->hasFlexibleArrayMember() &&
2968               "Incomplete array type is not valid");
2969        continue;
2970      }
2971
2972      // Initialize each field of an anonymous struct individually.
2973      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2974        HadError = true;
2975
2976      continue;
2977    }
2978  }
2979
2980  NumInitializers = Info.AllToInit.size();
2981  if (NumInitializers > 0) {
2982    Constructor->setNumCtorInitializers(NumInitializers);
2983    CXXCtorInitializer **baseOrMemberInitializers =
2984      new (Context) CXXCtorInitializer*[NumInitializers];
2985    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2986           NumInitializers * sizeof(CXXCtorInitializer*));
2987    Constructor->setCtorInitializers(baseOrMemberInitializers);
2988
2989    // Constructors implicitly reference the base and member
2990    // destructors.
2991    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2992                                           Constructor->getParent());
2993  }
2994
2995  return HadError;
2996}
2997
2998static void *GetKeyForTopLevelField(FieldDecl *Field) {
2999  // For anonymous unions, use the class declaration as the key.
3000  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3001    if (RT->getDecl()->isAnonymousStructOrUnion())
3002      return static_cast<void *>(RT->getDecl());
3003  }
3004  return static_cast<void *>(Field);
3005}
3006
3007static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3008  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3009}
3010
3011static void *GetKeyForMember(ASTContext &Context,
3012                             CXXCtorInitializer *Member) {
3013  if (!Member->isAnyMemberInitializer())
3014    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3015
3016  // For fields injected into the class via declaration of an anonymous union,
3017  // use its anonymous union class declaration as the unique key.
3018  FieldDecl *Field = Member->getAnyMember();
3019
3020  // If the field is a member of an anonymous struct or union, our key
3021  // is the anonymous record decl that's a direct child of the class.
3022  RecordDecl *RD = Field->getParent();
3023  if (RD->isAnonymousStructOrUnion()) {
3024    while (true) {
3025      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3026      if (Parent->isAnonymousStructOrUnion())
3027        RD = Parent;
3028      else
3029        break;
3030    }
3031
3032    return static_cast<void *>(RD);
3033  }
3034
3035  return static_cast<void *>(Field);
3036}
3037
3038static void
3039DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3040                                  const CXXConstructorDecl *Constructor,
3041                                  CXXCtorInitializer **Inits,
3042                                  unsigned NumInits) {
3043  if (Constructor->getDeclContext()->isDependentContext())
3044    return;
3045
3046  // Don't check initializers order unless the warning is enabled at the
3047  // location of at least one initializer.
3048  bool ShouldCheckOrder = false;
3049  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3050    CXXCtorInitializer *Init = Inits[InitIndex];
3051    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3052                                         Init->getSourceLocation())
3053          != DiagnosticsEngine::Ignored) {
3054      ShouldCheckOrder = true;
3055      break;
3056    }
3057  }
3058  if (!ShouldCheckOrder)
3059    return;
3060
3061  // Build the list of bases and members in the order that they'll
3062  // actually be initialized.  The explicit initializers should be in
3063  // this same order but may be missing things.
3064  SmallVector<const void*, 32> IdealInitKeys;
3065
3066  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3067
3068  // 1. Virtual bases.
3069  for (CXXRecordDecl::base_class_const_iterator VBase =
3070       ClassDecl->vbases_begin(),
3071       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3072    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3073
3074  // 2. Non-virtual bases.
3075  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3076       E = ClassDecl->bases_end(); Base != E; ++Base) {
3077    if (Base->isVirtual())
3078      continue;
3079    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3080  }
3081
3082  // 3. Direct fields.
3083  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3084       E = ClassDecl->field_end(); Field != E; ++Field) {
3085    if (Field->isUnnamedBitfield())
3086      continue;
3087
3088    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3089  }
3090
3091  unsigned NumIdealInits = IdealInitKeys.size();
3092  unsigned IdealIndex = 0;
3093
3094  CXXCtorInitializer *PrevInit = 0;
3095  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3096    CXXCtorInitializer *Init = Inits[InitIndex];
3097    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3098
3099    // Scan forward to try to find this initializer in the idealized
3100    // initializers list.
3101    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3102      if (InitKey == IdealInitKeys[IdealIndex])
3103        break;
3104
3105    // If we didn't find this initializer, it must be because we
3106    // scanned past it on a previous iteration.  That can only
3107    // happen if we're out of order;  emit a warning.
3108    if (IdealIndex == NumIdealInits && PrevInit) {
3109      Sema::SemaDiagnosticBuilder D =
3110        SemaRef.Diag(PrevInit->getSourceLocation(),
3111                     diag::warn_initializer_out_of_order);
3112
3113      if (PrevInit->isAnyMemberInitializer())
3114        D << 0 << PrevInit->getAnyMember()->getDeclName();
3115      else
3116        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3117
3118      if (Init->isAnyMemberInitializer())
3119        D << 0 << Init->getAnyMember()->getDeclName();
3120      else
3121        D << 1 << Init->getTypeSourceInfo()->getType();
3122
3123      // Move back to the initializer's location in the ideal list.
3124      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3125        if (InitKey == IdealInitKeys[IdealIndex])
3126          break;
3127
3128      assert(IdealIndex != NumIdealInits &&
3129             "initializer not found in initializer list");
3130    }
3131
3132    PrevInit = Init;
3133  }
3134}
3135
3136namespace {
3137bool CheckRedundantInit(Sema &S,
3138                        CXXCtorInitializer *Init,
3139                        CXXCtorInitializer *&PrevInit) {
3140  if (!PrevInit) {
3141    PrevInit = Init;
3142    return false;
3143  }
3144
3145  if (FieldDecl *Field = Init->getMember())
3146    S.Diag(Init->getSourceLocation(),
3147           diag::err_multiple_mem_initialization)
3148      << Field->getDeclName()
3149      << Init->getSourceRange();
3150  else {
3151    const Type *BaseClass = Init->getBaseClass();
3152    assert(BaseClass && "neither field nor base");
3153    S.Diag(Init->getSourceLocation(),
3154           diag::err_multiple_base_initialization)
3155      << QualType(BaseClass, 0)
3156      << Init->getSourceRange();
3157  }
3158  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3159    << 0 << PrevInit->getSourceRange();
3160
3161  return true;
3162}
3163
3164typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3165typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3166
3167bool CheckRedundantUnionInit(Sema &S,
3168                             CXXCtorInitializer *Init,
3169                             RedundantUnionMap &Unions) {
3170  FieldDecl *Field = Init->getAnyMember();
3171  RecordDecl *Parent = Field->getParent();
3172  NamedDecl *Child = Field;
3173
3174  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3175    if (Parent->isUnion()) {
3176      UnionEntry &En = Unions[Parent];
3177      if (En.first && En.first != Child) {
3178        S.Diag(Init->getSourceLocation(),
3179               diag::err_multiple_mem_union_initialization)
3180          << Field->getDeclName()
3181          << Init->getSourceRange();
3182        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3183          << 0 << En.second->getSourceRange();
3184        return true;
3185      }
3186      if (!En.first) {
3187        En.first = Child;
3188        En.second = Init;
3189      }
3190      if (!Parent->isAnonymousStructOrUnion())
3191        return false;
3192    }
3193
3194    Child = Parent;
3195    Parent = cast<RecordDecl>(Parent->getDeclContext());
3196  }
3197
3198  return false;
3199}
3200}
3201
3202/// ActOnMemInitializers - Handle the member initializers for a constructor.
3203void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3204                                SourceLocation ColonLoc,
3205                                CXXCtorInitializer **meminits,
3206                                unsigned NumMemInits,
3207                                bool AnyErrors) {
3208  if (!ConstructorDecl)
3209    return;
3210
3211  AdjustDeclIfTemplate(ConstructorDecl);
3212
3213  CXXConstructorDecl *Constructor
3214    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3215
3216  if (!Constructor) {
3217    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3218    return;
3219  }
3220
3221  CXXCtorInitializer **MemInits =
3222    reinterpret_cast<CXXCtorInitializer **>(meminits);
3223
3224  // Mapping for the duplicate initializers check.
3225  // For member initializers, this is keyed with a FieldDecl*.
3226  // For base initializers, this is keyed with a Type*.
3227  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3228
3229  // Mapping for the inconsistent anonymous-union initializers check.
3230  RedundantUnionMap MemberUnions;
3231
3232  bool HadError = false;
3233  for (unsigned i = 0; i < NumMemInits; i++) {
3234    CXXCtorInitializer *Init = MemInits[i];
3235
3236    // Set the source order index.
3237    Init->setSourceOrder(i);
3238
3239    if (Init->isAnyMemberInitializer()) {
3240      FieldDecl *Field = Init->getAnyMember();
3241      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3242          CheckRedundantUnionInit(*this, Init, MemberUnions))
3243        HadError = true;
3244    } else if (Init->isBaseInitializer()) {
3245      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3246      if (CheckRedundantInit(*this, Init, Members[Key]))
3247        HadError = true;
3248    } else {
3249      assert(Init->isDelegatingInitializer());
3250      // This must be the only initializer
3251      if (i != 0 || NumMemInits > 1) {
3252        Diag(MemInits[0]->getSourceLocation(),
3253             diag::err_delegating_initializer_alone)
3254          << MemInits[0]->getSourceRange();
3255        HadError = true;
3256        // We will treat this as being the only initializer.
3257      }
3258      SetDelegatingInitializer(Constructor, MemInits[i]);
3259      // Return immediately as the initializer is set.
3260      return;
3261    }
3262  }
3263
3264  if (HadError)
3265    return;
3266
3267  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3268
3269  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3270}
3271
3272void
3273Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3274                                             CXXRecordDecl *ClassDecl) {
3275  // Ignore dependent contexts. Also ignore unions, since their members never
3276  // have destructors implicitly called.
3277  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3278    return;
3279
3280  // FIXME: all the access-control diagnostics are positioned on the
3281  // field/base declaration.  That's probably good; that said, the
3282  // user might reasonably want to know why the destructor is being
3283  // emitted, and we currently don't say.
3284
3285  // Non-static data members.
3286  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3287       E = ClassDecl->field_end(); I != E; ++I) {
3288    FieldDecl *Field = *I;
3289    if (Field->isInvalidDecl())
3290      continue;
3291
3292    // Don't destroy incomplete or zero-length arrays.
3293    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3294      continue;
3295
3296    QualType FieldType = Context.getBaseElementType(Field->getType());
3297
3298    const RecordType* RT = FieldType->getAs<RecordType>();
3299    if (!RT)
3300      continue;
3301
3302    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3303    if (FieldClassDecl->isInvalidDecl())
3304      continue;
3305    if (FieldClassDecl->hasTrivialDestructor())
3306      continue;
3307
3308    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3309    assert(Dtor && "No dtor found for FieldClassDecl!");
3310    CheckDestructorAccess(Field->getLocation(), Dtor,
3311                          PDiag(diag::err_access_dtor_field)
3312                            << Field->getDeclName()
3313                            << FieldType);
3314
3315    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3316  }
3317
3318  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3319
3320  // Bases.
3321  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3322       E = ClassDecl->bases_end(); Base != E; ++Base) {
3323    // Bases are always records in a well-formed non-dependent class.
3324    const RecordType *RT = Base->getType()->getAs<RecordType>();
3325
3326    // Remember direct virtual bases.
3327    if (Base->isVirtual())
3328      DirectVirtualBases.insert(RT);
3329
3330    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3331    // If our base class is invalid, we probably can't get its dtor anyway.
3332    if (BaseClassDecl->isInvalidDecl())
3333      continue;
3334    // Ignore trivial destructors.
3335    if (BaseClassDecl->hasTrivialDestructor())
3336      continue;
3337
3338    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3339    assert(Dtor && "No dtor found for BaseClassDecl!");
3340
3341    // FIXME: caret should be on the start of the class name
3342    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3343                          PDiag(diag::err_access_dtor_base)
3344                            << Base->getType()
3345                            << Base->getSourceRange());
3346
3347    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3348  }
3349
3350  // Virtual bases.
3351  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3352       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3353
3354    // Bases are always records in a well-formed non-dependent class.
3355    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3356
3357    // Ignore direct virtual bases.
3358    if (DirectVirtualBases.count(RT))
3359      continue;
3360
3361    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3362    // If our base class is invalid, we probably can't get its dtor anyway.
3363    if (BaseClassDecl->isInvalidDecl())
3364      continue;
3365    // Ignore trivial destructors.
3366    if (BaseClassDecl->hasTrivialDestructor())
3367      continue;
3368
3369    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3370    assert(Dtor && "No dtor found for BaseClassDecl!");
3371    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3372                          PDiag(diag::err_access_dtor_vbase)
3373                            << VBase->getType());
3374
3375    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3376  }
3377}
3378
3379void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3380  if (!CDtorDecl)
3381    return;
3382
3383  if (CXXConstructorDecl *Constructor
3384      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3385    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3386}
3387
3388bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3389                                  unsigned DiagID, AbstractDiagSelID SelID) {
3390  if (SelID == -1)
3391    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3392  else
3393    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3394}
3395
3396bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3397                                  const PartialDiagnostic &PD) {
3398  if (!getLangOptions().CPlusPlus)
3399    return false;
3400
3401  if (const ArrayType *AT = Context.getAsArrayType(T))
3402    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3403
3404  if (const PointerType *PT = T->getAs<PointerType>()) {
3405    // Find the innermost pointer type.
3406    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3407      PT = T;
3408
3409    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3410      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3411  }
3412
3413  const RecordType *RT = T->getAs<RecordType>();
3414  if (!RT)
3415    return false;
3416
3417  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3418
3419  // We can't answer whether something is abstract until it has a
3420  // definition.  If it's currently being defined, we'll walk back
3421  // over all the declarations when we have a full definition.
3422  const CXXRecordDecl *Def = RD->getDefinition();
3423  if (!Def || Def->isBeingDefined())
3424    return false;
3425
3426  if (!RD->isAbstract())
3427    return false;
3428
3429  Diag(Loc, PD) << RD->getDeclName();
3430  DiagnoseAbstractType(RD);
3431
3432  return true;
3433}
3434
3435void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3436  // Check if we've already emitted the list of pure virtual functions
3437  // for this class.
3438  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3439    return;
3440
3441  CXXFinalOverriderMap FinalOverriders;
3442  RD->getFinalOverriders(FinalOverriders);
3443
3444  // Keep a set of seen pure methods so we won't diagnose the same method
3445  // more than once.
3446  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3447
3448  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3449                                   MEnd = FinalOverriders.end();
3450       M != MEnd;
3451       ++M) {
3452    for (OverridingMethods::iterator SO = M->second.begin(),
3453                                  SOEnd = M->second.end();
3454         SO != SOEnd; ++SO) {
3455      // C++ [class.abstract]p4:
3456      //   A class is abstract if it contains or inherits at least one
3457      //   pure virtual function for which the final overrider is pure
3458      //   virtual.
3459
3460      //
3461      if (SO->second.size() != 1)
3462        continue;
3463
3464      if (!SO->second.front().Method->isPure())
3465        continue;
3466
3467      if (!SeenPureMethods.insert(SO->second.front().Method))
3468        continue;
3469
3470      Diag(SO->second.front().Method->getLocation(),
3471           diag::note_pure_virtual_function)
3472        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3473    }
3474  }
3475
3476  if (!PureVirtualClassDiagSet)
3477    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3478  PureVirtualClassDiagSet->insert(RD);
3479}
3480
3481namespace {
3482struct AbstractUsageInfo {
3483  Sema &S;
3484  CXXRecordDecl *Record;
3485  CanQualType AbstractType;
3486  bool Invalid;
3487
3488  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3489    : S(S), Record(Record),
3490      AbstractType(S.Context.getCanonicalType(
3491                   S.Context.getTypeDeclType(Record))),
3492      Invalid(false) {}
3493
3494  void DiagnoseAbstractType() {
3495    if (Invalid) return;
3496    S.DiagnoseAbstractType(Record);
3497    Invalid = true;
3498  }
3499
3500  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3501};
3502
3503struct CheckAbstractUsage {
3504  AbstractUsageInfo &Info;
3505  const NamedDecl *Ctx;
3506
3507  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3508    : Info(Info), Ctx(Ctx) {}
3509
3510  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3511    switch (TL.getTypeLocClass()) {
3512#define ABSTRACT_TYPELOC(CLASS, PARENT)
3513#define TYPELOC(CLASS, PARENT) \
3514    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3515#include "clang/AST/TypeLocNodes.def"
3516    }
3517  }
3518
3519  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3520    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3521    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3522      if (!TL.getArg(I))
3523        continue;
3524
3525      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3526      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3527    }
3528  }
3529
3530  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3531    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3532  }
3533
3534  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3535    // Visit the type parameters from a permissive context.
3536    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3537      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3538      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3539        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3540          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3541      // TODO: other template argument types?
3542    }
3543  }
3544
3545  // Visit pointee types from a permissive context.
3546#define CheckPolymorphic(Type) \
3547  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3548    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3549  }
3550  CheckPolymorphic(PointerTypeLoc)
3551  CheckPolymorphic(ReferenceTypeLoc)
3552  CheckPolymorphic(MemberPointerTypeLoc)
3553  CheckPolymorphic(BlockPointerTypeLoc)
3554  CheckPolymorphic(AtomicTypeLoc)
3555
3556  /// Handle all the types we haven't given a more specific
3557  /// implementation for above.
3558  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3559    // Every other kind of type that we haven't called out already
3560    // that has an inner type is either (1) sugar or (2) contains that
3561    // inner type in some way as a subobject.
3562    if (TypeLoc Next = TL.getNextTypeLoc())
3563      return Visit(Next, Sel);
3564
3565    // If there's no inner type and we're in a permissive context,
3566    // don't diagnose.
3567    if (Sel == Sema::AbstractNone) return;
3568
3569    // Check whether the type matches the abstract type.
3570    QualType T = TL.getType();
3571    if (T->isArrayType()) {
3572      Sel = Sema::AbstractArrayType;
3573      T = Info.S.Context.getBaseElementType(T);
3574    }
3575    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3576    if (CT != Info.AbstractType) return;
3577
3578    // It matched; do some magic.
3579    if (Sel == Sema::AbstractArrayType) {
3580      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3581        << T << TL.getSourceRange();
3582    } else {
3583      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3584        << Sel << T << TL.getSourceRange();
3585    }
3586    Info.DiagnoseAbstractType();
3587  }
3588};
3589
3590void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3591                                  Sema::AbstractDiagSelID Sel) {
3592  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3593}
3594
3595}
3596
3597/// Check for invalid uses of an abstract type in a method declaration.
3598static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3599                                    CXXMethodDecl *MD) {
3600  // No need to do the check on definitions, which require that
3601  // the return/param types be complete.
3602  if (MD->doesThisDeclarationHaveABody())
3603    return;
3604
3605  // For safety's sake, just ignore it if we don't have type source
3606  // information.  This should never happen for non-implicit methods,
3607  // but...
3608  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3609    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3610}
3611
3612/// Check for invalid uses of an abstract type within a class definition.
3613static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3614                                    CXXRecordDecl *RD) {
3615  for (CXXRecordDecl::decl_iterator
3616         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3617    Decl *D = *I;
3618    if (D->isImplicit()) continue;
3619
3620    // Methods and method templates.
3621    if (isa<CXXMethodDecl>(D)) {
3622      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3623    } else if (isa<FunctionTemplateDecl>(D)) {
3624      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3625      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3626
3627    // Fields and static variables.
3628    } else if (isa<FieldDecl>(D)) {
3629      FieldDecl *FD = cast<FieldDecl>(D);
3630      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3631        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3632    } else if (isa<VarDecl>(D)) {
3633      VarDecl *VD = cast<VarDecl>(D);
3634      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3635        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3636
3637    // Nested classes and class templates.
3638    } else if (isa<CXXRecordDecl>(D)) {
3639      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3640    } else if (isa<ClassTemplateDecl>(D)) {
3641      CheckAbstractClassUsage(Info,
3642                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3643    }
3644  }
3645}
3646
3647/// \brief Perform semantic checks on a class definition that has been
3648/// completing, introducing implicitly-declared members, checking for
3649/// abstract types, etc.
3650void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3651  if (!Record)
3652    return;
3653
3654  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3655    AbstractUsageInfo Info(*this, Record);
3656    CheckAbstractClassUsage(Info, Record);
3657  }
3658
3659  // If this is not an aggregate type and has no user-declared constructor,
3660  // complain about any non-static data members of reference or const scalar
3661  // type, since they will never get initializers.
3662  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3663      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3664      !Record->isLambda()) {
3665    bool Complained = false;
3666    for (RecordDecl::field_iterator F = Record->field_begin(),
3667                                 FEnd = Record->field_end();
3668         F != FEnd; ++F) {
3669      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3670        continue;
3671
3672      if (F->getType()->isReferenceType() ||
3673          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3674        if (!Complained) {
3675          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3676            << Record->getTagKind() << Record;
3677          Complained = true;
3678        }
3679
3680        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3681          << F->getType()->isReferenceType()
3682          << F->getDeclName();
3683      }
3684    }
3685  }
3686
3687  if (Record->isDynamicClass() && !Record->isDependentType())
3688    DynamicClasses.push_back(Record);
3689
3690  if (Record->getIdentifier()) {
3691    // C++ [class.mem]p13:
3692    //   If T is the name of a class, then each of the following shall have a
3693    //   name different from T:
3694    //     - every member of every anonymous union that is a member of class T.
3695    //
3696    // C++ [class.mem]p14:
3697    //   In addition, if class T has a user-declared constructor (12.1), every
3698    //   non-static data member of class T shall have a name different from T.
3699    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3700         R.first != R.second; ++R.first) {
3701      NamedDecl *D = *R.first;
3702      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3703          isa<IndirectFieldDecl>(D)) {
3704        Diag(D->getLocation(), diag::err_member_name_of_class)
3705          << D->getDeclName();
3706        break;
3707      }
3708    }
3709  }
3710
3711  // Warn if the class has virtual methods but non-virtual public destructor.
3712  if (Record->isPolymorphic() && !Record->isDependentType()) {
3713    CXXDestructorDecl *dtor = Record->getDestructor();
3714    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3715      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3716           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3717  }
3718
3719  // See if a method overloads virtual methods in a base
3720  /// class without overriding any.
3721  if (!Record->isDependentType()) {
3722    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3723                                     MEnd = Record->method_end();
3724         M != MEnd; ++M) {
3725      if (!(*M)->isStatic())
3726        DiagnoseHiddenVirtualMethods(Record, *M);
3727    }
3728  }
3729
3730  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3731  // function that is not a constructor declares that member function to be
3732  // const. [...] The class of which that function is a member shall be
3733  // a literal type.
3734  //
3735  // If the class has virtual bases, any constexpr members will already have
3736  // been diagnosed by the checks performed on the member declaration, so
3737  // suppress this (less useful) diagnostic.
3738  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3739      !Record->isLiteral() && !Record->getNumVBases()) {
3740    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3741                                     MEnd = Record->method_end();
3742         M != MEnd; ++M) {
3743      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3744        switch (Record->getTemplateSpecializationKind()) {
3745        case TSK_ImplicitInstantiation:
3746        case TSK_ExplicitInstantiationDeclaration:
3747        case TSK_ExplicitInstantiationDefinition:
3748          // If a template instantiates to a non-literal type, but its members
3749          // instantiate to constexpr functions, the template is technically
3750          // ill-formed, but we allow it for sanity.
3751          continue;
3752
3753        case TSK_Undeclared:
3754        case TSK_ExplicitSpecialization:
3755          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3756                             PDiag(diag::err_constexpr_method_non_literal));
3757          break;
3758        }
3759
3760        // Only produce one error per class.
3761        break;
3762      }
3763    }
3764  }
3765
3766  // Declare inherited constructors. We do this eagerly here because:
3767  // - The standard requires an eager diagnostic for conflicting inherited
3768  //   constructors from different classes.
3769  // - The lazy declaration of the other implicit constructors is so as to not
3770  //   waste space and performance on classes that are not meant to be
3771  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3772  //   have inherited constructors.
3773  DeclareInheritedConstructors(Record);
3774
3775  if (!Record->isDependentType())
3776    CheckExplicitlyDefaultedMethods(Record);
3777}
3778
3779void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3780  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3781                                      ME = Record->method_end();
3782       MI != ME; ++MI) {
3783    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3784      switch (getSpecialMember(*MI)) {
3785      case CXXDefaultConstructor:
3786        CheckExplicitlyDefaultedDefaultConstructor(
3787                                                  cast<CXXConstructorDecl>(*MI));
3788        break;
3789
3790      case CXXDestructor:
3791        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3792        break;
3793
3794      case CXXCopyConstructor:
3795        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3796        break;
3797
3798      case CXXCopyAssignment:
3799        CheckExplicitlyDefaultedCopyAssignment(*MI);
3800        break;
3801
3802      case CXXMoveConstructor:
3803        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3804        break;
3805
3806      case CXXMoveAssignment:
3807        CheckExplicitlyDefaultedMoveAssignment(*MI);
3808        break;
3809
3810      case CXXInvalid:
3811        llvm_unreachable("non-special member explicitly defaulted!");
3812      }
3813    }
3814  }
3815
3816}
3817
3818void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3819  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3820
3821  // Whether this was the first-declared instance of the constructor.
3822  // This affects whether we implicitly add an exception spec (and, eventually,
3823  // constexpr). It is also ill-formed to explicitly default a constructor such
3824  // that it would be deleted. (C++0x [decl.fct.def.default])
3825  bool First = CD == CD->getCanonicalDecl();
3826
3827  bool HadError = false;
3828  if (CD->getNumParams() != 0) {
3829    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3830      << CD->getSourceRange();
3831    HadError = true;
3832  }
3833
3834  ImplicitExceptionSpecification Spec
3835    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3836  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3837  if (EPI.ExceptionSpecType == EST_Delayed) {
3838    // Exception specification depends on some deferred part of the class. We'll
3839    // try again when the class's definition has been fully processed.
3840    return;
3841  }
3842  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3843                          *ExceptionType = Context.getFunctionType(
3844                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3845
3846  // C++11 [dcl.fct.def.default]p2:
3847  //   An explicitly-defaulted function may be declared constexpr only if it
3848  //   would have been implicitly declared as constexpr,
3849  // Do not apply this rule to templates, since core issue 1358 makes such
3850  // functions always instantiate to constexpr functions.
3851  if (CD->isConstexpr() &&
3852      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3853    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3854      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3855        << CXXDefaultConstructor;
3856      HadError = true;
3857    }
3858  }
3859  //   and may have an explicit exception-specification only if it is compatible
3860  //   with the exception-specification on the implicit declaration.
3861  if (CtorType->hasExceptionSpec()) {
3862    if (CheckEquivalentExceptionSpec(
3863          PDiag(diag::err_incorrect_defaulted_exception_spec)
3864            << CXXDefaultConstructor,
3865          PDiag(),
3866          ExceptionType, SourceLocation(),
3867          CtorType, CD->getLocation())) {
3868      HadError = true;
3869    }
3870  }
3871
3872  //   If a function is explicitly defaulted on its first declaration,
3873  if (First) {
3874    //  -- it is implicitly considered to be constexpr if the implicit
3875    //     definition would be,
3876    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3877
3878    //  -- it is implicitly considered to have the same
3879    //     exception-specification as if it had been implicitly declared
3880    //
3881    // FIXME: a compatible, but different, explicit exception specification
3882    // will be silently overridden. We should issue a warning if this happens.
3883    EPI.ExtInfo = CtorType->getExtInfo();
3884  }
3885
3886  if (HadError) {
3887    CD->setInvalidDecl();
3888    return;
3889  }
3890
3891  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3892    if (First) {
3893      CD->setDeletedAsWritten();
3894    } else {
3895      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3896        << CXXDefaultConstructor;
3897      CD->setInvalidDecl();
3898    }
3899  }
3900}
3901
3902void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3903  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3904
3905  // Whether this was the first-declared instance of the constructor.
3906  bool First = CD == CD->getCanonicalDecl();
3907
3908  bool HadError = false;
3909  if (CD->getNumParams() != 1) {
3910    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3911      << CD->getSourceRange();
3912    HadError = true;
3913  }
3914
3915  ImplicitExceptionSpecification Spec(Context);
3916  bool Const;
3917  llvm::tie(Spec, Const) =
3918    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3919
3920  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3921  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3922                          *ExceptionType = Context.getFunctionType(
3923                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3924
3925  // Check for parameter type matching.
3926  // This is a copy ctor so we know it's a cv-qualified reference to T.
3927  QualType ArgType = CtorType->getArgType(0);
3928  if (ArgType->getPointeeType().isVolatileQualified()) {
3929    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3930    HadError = true;
3931  }
3932  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3933    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3934    HadError = true;
3935  }
3936
3937  // C++11 [dcl.fct.def.default]p2:
3938  //   An explicitly-defaulted function may be declared constexpr only if it
3939  //   would have been implicitly declared as constexpr,
3940  // Do not apply this rule to templates, since core issue 1358 makes such
3941  // functions always instantiate to constexpr functions.
3942  if (CD->isConstexpr() &&
3943      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3944    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3945      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3946        << CXXCopyConstructor;
3947      HadError = true;
3948    }
3949  }
3950  //   and may have an explicit exception-specification only if it is compatible
3951  //   with the exception-specification on the implicit declaration.
3952  if (CtorType->hasExceptionSpec()) {
3953    if (CheckEquivalentExceptionSpec(
3954          PDiag(diag::err_incorrect_defaulted_exception_spec)
3955            << CXXCopyConstructor,
3956          PDiag(),
3957          ExceptionType, SourceLocation(),
3958          CtorType, CD->getLocation())) {
3959      HadError = true;
3960    }
3961  }
3962
3963  //   If a function is explicitly defaulted on its first declaration,
3964  if (First) {
3965    //  -- it is implicitly considered to be constexpr if the implicit
3966    //     definition would be,
3967    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3968
3969    //  -- it is implicitly considered to have the same
3970    //     exception-specification as if it had been implicitly declared, and
3971    //
3972    // FIXME: a compatible, but different, explicit exception specification
3973    // will be silently overridden. We should issue a warning if this happens.
3974    EPI.ExtInfo = CtorType->getExtInfo();
3975
3976    //  -- [...] it shall have the same parameter type as if it had been
3977    //     implicitly declared.
3978    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3979  }
3980
3981  if (HadError) {
3982    CD->setInvalidDecl();
3983    return;
3984  }
3985
3986  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3987    if (First) {
3988      CD->setDeletedAsWritten();
3989    } else {
3990      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3991        << CXXCopyConstructor;
3992      CD->setInvalidDecl();
3993    }
3994  }
3995}
3996
3997void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3998  assert(MD->isExplicitlyDefaulted());
3999
4000  // Whether this was the first-declared instance of the operator
4001  bool First = MD == MD->getCanonicalDecl();
4002
4003  bool HadError = false;
4004  if (MD->getNumParams() != 1) {
4005    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4006      << MD->getSourceRange();
4007    HadError = true;
4008  }
4009
4010  QualType ReturnType =
4011    MD->getType()->getAs<FunctionType>()->getResultType();
4012  if (!ReturnType->isLValueReferenceType() ||
4013      !Context.hasSameType(
4014        Context.getCanonicalType(ReturnType->getPointeeType()),
4015        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4016    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4017    HadError = true;
4018  }
4019
4020  ImplicitExceptionSpecification Spec(Context);
4021  bool Const;
4022  llvm::tie(Spec, Const) =
4023    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4024
4025  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4026  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4027                          *ExceptionType = Context.getFunctionType(
4028                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4029
4030  QualType ArgType = OperType->getArgType(0);
4031  if (!ArgType->isLValueReferenceType()) {
4032    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4033    HadError = true;
4034  } else {
4035    if (ArgType->getPointeeType().isVolatileQualified()) {
4036      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4037      HadError = true;
4038    }
4039    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4040      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4041      HadError = true;
4042    }
4043  }
4044
4045  if (OperType->getTypeQuals()) {
4046    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4047    HadError = true;
4048  }
4049
4050  if (OperType->hasExceptionSpec()) {
4051    if (CheckEquivalentExceptionSpec(
4052          PDiag(diag::err_incorrect_defaulted_exception_spec)
4053            << CXXCopyAssignment,
4054          PDiag(),
4055          ExceptionType, SourceLocation(),
4056          OperType, MD->getLocation())) {
4057      HadError = true;
4058    }
4059  }
4060  if (First) {
4061    // We set the declaration to have the computed exception spec here.
4062    // We duplicate the one parameter type.
4063    EPI.RefQualifier = OperType->getRefQualifier();
4064    EPI.ExtInfo = OperType->getExtInfo();
4065    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4066  }
4067
4068  if (HadError) {
4069    MD->setInvalidDecl();
4070    return;
4071  }
4072
4073  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4074    if (First) {
4075      MD->setDeletedAsWritten();
4076    } else {
4077      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4078        << CXXCopyAssignment;
4079      MD->setInvalidDecl();
4080    }
4081  }
4082}
4083
4084void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4085  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4086
4087  // Whether this was the first-declared instance of the constructor.
4088  bool First = CD == CD->getCanonicalDecl();
4089
4090  bool HadError = false;
4091  if (CD->getNumParams() != 1) {
4092    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4093      << CD->getSourceRange();
4094    HadError = true;
4095  }
4096
4097  ImplicitExceptionSpecification Spec(
4098      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4099
4100  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4101  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4102                          *ExceptionType = Context.getFunctionType(
4103                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4104
4105  // Check for parameter type matching.
4106  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4107  QualType ArgType = CtorType->getArgType(0);
4108  if (ArgType->getPointeeType().isVolatileQualified()) {
4109    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4110    HadError = true;
4111  }
4112  if (ArgType->getPointeeType().isConstQualified()) {
4113    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4114    HadError = true;
4115  }
4116
4117  // C++11 [dcl.fct.def.default]p2:
4118  //   An explicitly-defaulted function may be declared constexpr only if it
4119  //   would have been implicitly declared as constexpr,
4120  // Do not apply this rule to templates, since core issue 1358 makes such
4121  // functions always instantiate to constexpr functions.
4122  if (CD->isConstexpr() &&
4123      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4124    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4125      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4126        << CXXMoveConstructor;
4127      HadError = true;
4128    }
4129  }
4130  //   and may have an explicit exception-specification only if it is compatible
4131  //   with the exception-specification on the implicit declaration.
4132  if (CtorType->hasExceptionSpec()) {
4133    if (CheckEquivalentExceptionSpec(
4134          PDiag(diag::err_incorrect_defaulted_exception_spec)
4135            << CXXMoveConstructor,
4136          PDiag(),
4137          ExceptionType, SourceLocation(),
4138          CtorType, CD->getLocation())) {
4139      HadError = true;
4140    }
4141  }
4142
4143  //   If a function is explicitly defaulted on its first declaration,
4144  if (First) {
4145    //  -- it is implicitly considered to be constexpr if the implicit
4146    //     definition would be,
4147    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4148
4149    //  -- it is implicitly considered to have the same
4150    //     exception-specification as if it had been implicitly declared, and
4151    //
4152    // FIXME: a compatible, but different, explicit exception specification
4153    // will be silently overridden. We should issue a warning if this happens.
4154    EPI.ExtInfo = CtorType->getExtInfo();
4155
4156    //  -- [...] it shall have the same parameter type as if it had been
4157    //     implicitly declared.
4158    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4159  }
4160
4161  if (HadError) {
4162    CD->setInvalidDecl();
4163    return;
4164  }
4165
4166  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4167    if (First) {
4168      CD->setDeletedAsWritten();
4169    } else {
4170      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4171        << CXXMoveConstructor;
4172      CD->setInvalidDecl();
4173    }
4174  }
4175}
4176
4177void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4178  assert(MD->isExplicitlyDefaulted());
4179
4180  // Whether this was the first-declared instance of the operator
4181  bool First = MD == MD->getCanonicalDecl();
4182
4183  bool HadError = false;
4184  if (MD->getNumParams() != 1) {
4185    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4186      << MD->getSourceRange();
4187    HadError = true;
4188  }
4189
4190  QualType ReturnType =
4191    MD->getType()->getAs<FunctionType>()->getResultType();
4192  if (!ReturnType->isLValueReferenceType() ||
4193      !Context.hasSameType(
4194        Context.getCanonicalType(ReturnType->getPointeeType()),
4195        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4196    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4197    HadError = true;
4198  }
4199
4200  ImplicitExceptionSpecification Spec(
4201      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4202
4203  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4204  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4205                          *ExceptionType = Context.getFunctionType(
4206                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4207
4208  QualType ArgType = OperType->getArgType(0);
4209  if (!ArgType->isRValueReferenceType()) {
4210    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4211    HadError = true;
4212  } else {
4213    if (ArgType->getPointeeType().isVolatileQualified()) {
4214      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4215      HadError = true;
4216    }
4217    if (ArgType->getPointeeType().isConstQualified()) {
4218      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4219      HadError = true;
4220    }
4221  }
4222
4223  if (OperType->getTypeQuals()) {
4224    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4225    HadError = true;
4226  }
4227
4228  if (OperType->hasExceptionSpec()) {
4229    if (CheckEquivalentExceptionSpec(
4230          PDiag(diag::err_incorrect_defaulted_exception_spec)
4231            << CXXMoveAssignment,
4232          PDiag(),
4233          ExceptionType, SourceLocation(),
4234          OperType, MD->getLocation())) {
4235      HadError = true;
4236    }
4237  }
4238  if (First) {
4239    // We set the declaration to have the computed exception spec here.
4240    // We duplicate the one parameter type.
4241    EPI.RefQualifier = OperType->getRefQualifier();
4242    EPI.ExtInfo = OperType->getExtInfo();
4243    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4244  }
4245
4246  if (HadError) {
4247    MD->setInvalidDecl();
4248    return;
4249  }
4250
4251  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4252    if (First) {
4253      MD->setDeletedAsWritten();
4254    } else {
4255      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4256        << CXXMoveAssignment;
4257      MD->setInvalidDecl();
4258    }
4259  }
4260}
4261
4262void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4263  assert(DD->isExplicitlyDefaulted());
4264
4265  // Whether this was the first-declared instance of the destructor.
4266  bool First = DD == DD->getCanonicalDecl();
4267
4268  ImplicitExceptionSpecification Spec
4269    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4270  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4271  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4272                          *ExceptionType = Context.getFunctionType(
4273                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4274
4275  if (DtorType->hasExceptionSpec()) {
4276    if (CheckEquivalentExceptionSpec(
4277          PDiag(diag::err_incorrect_defaulted_exception_spec)
4278            << CXXDestructor,
4279          PDiag(),
4280          ExceptionType, SourceLocation(),
4281          DtorType, DD->getLocation())) {
4282      DD->setInvalidDecl();
4283      return;
4284    }
4285  }
4286  if (First) {
4287    // We set the declaration to have the computed exception spec here.
4288    // There are no parameters.
4289    EPI.ExtInfo = DtorType->getExtInfo();
4290    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4291  }
4292
4293  if (ShouldDeleteDestructor(DD)) {
4294    if (First) {
4295      DD->setDeletedAsWritten();
4296    } else {
4297      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4298        << CXXDestructor;
4299      DD->setInvalidDecl();
4300    }
4301  }
4302}
4303
4304/// This function implements the following C++0x paragraphs:
4305///  - [class.ctor]/5
4306///  - [class.copy]/11
4307bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4308  assert(!MD->isInvalidDecl());
4309  CXXRecordDecl *RD = MD->getParent();
4310  assert(!RD->isDependentType() && "do deletion after instantiation");
4311  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4312    return false;
4313
4314  bool IsUnion = RD->isUnion();
4315  bool IsConstructor = false;
4316  bool IsAssignment = false;
4317  bool IsMove = false;
4318
4319  bool ConstArg = false;
4320
4321  switch (CSM) {
4322  case CXXDefaultConstructor:
4323    IsConstructor = true;
4324
4325    // C++11 [expr.lambda.prim]p19:
4326    //   The closure type associated with a lambda-expression has a
4327    //   deleted (8.4.3) default constructor.
4328    if (RD->isLambda())
4329      return true;
4330
4331    break;
4332  case CXXCopyConstructor:
4333    IsConstructor = true;
4334    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4335    break;
4336  case CXXMoveConstructor:
4337    IsConstructor = true;
4338    IsMove = true;
4339    break;
4340  default:
4341    llvm_unreachable("function only currently implemented for default ctors");
4342  }
4343
4344  SourceLocation Loc = MD->getLocation();
4345
4346  // Do access control from the special member function
4347  ContextRAII MethodContext(*this, MD);
4348
4349  bool AllConst = true;
4350
4351  // We do this because we should never actually use an anonymous
4352  // union's constructor.
4353  if (IsUnion && RD->isAnonymousStructOrUnion())
4354    return false;
4355
4356  // FIXME: We should put some diagnostic logic right into this function.
4357
4358  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4359                                          BE = RD->bases_end();
4360       BI != BE; ++BI) {
4361    // We'll handle this one later
4362    if (BI->isVirtual())
4363      continue;
4364
4365    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4366    assert(BaseDecl && "base isn't a CXXRecordDecl");
4367
4368    // Unless we have an assignment operator, the base's destructor must
4369    // be accessible and not deleted.
4370    if (!IsAssignment) {
4371      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4372      if (BaseDtor->isDeleted())
4373        return true;
4374      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4375          AR_accessible)
4376        return true;
4377    }
4378
4379    // Finding the corresponding member in the base should lead to a
4380    // unique, accessible, non-deleted function. If we are doing
4381    // a destructor, we have already checked this case.
4382    if (CSM != CXXDestructor) {
4383      SpecialMemberOverloadResult *SMOR =
4384        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4385                            false);
4386      if (!SMOR->hasSuccess())
4387        return true;
4388      CXXMethodDecl *BaseMember = SMOR->getMethod();
4389      if (IsConstructor) {
4390        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4391        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4392                                   PDiag()) != AR_accessible)
4393          return true;
4394
4395        // For a move operation, the corresponding operation must actually
4396        // be a move operation (and not a copy selected by overload
4397        // resolution) unless we are working on a trivially copyable class.
4398        if (IsMove && !BaseCtor->isMoveConstructor() &&
4399            !BaseDecl->isTriviallyCopyable())
4400          return true;
4401      }
4402    }
4403  }
4404
4405  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4406                                          BE = RD->vbases_end();
4407       BI != BE; ++BI) {
4408    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4409    assert(BaseDecl && "base isn't a CXXRecordDecl");
4410
4411    // Unless we have an assignment operator, the base's destructor must
4412    // be accessible and not deleted.
4413    if (!IsAssignment) {
4414      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4415      if (BaseDtor->isDeleted())
4416        return true;
4417      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4418          AR_accessible)
4419        return true;
4420    }
4421
4422    // Finding the corresponding member in the base should lead to a
4423    // unique, accessible, non-deleted function.
4424    if (CSM != CXXDestructor) {
4425      SpecialMemberOverloadResult *SMOR =
4426        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4427                            false);
4428      if (!SMOR->hasSuccess())
4429        return true;
4430      CXXMethodDecl *BaseMember = SMOR->getMethod();
4431      if (IsConstructor) {
4432        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4433        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4434                                   PDiag()) != AR_accessible)
4435          return true;
4436
4437        // For a move operation, the corresponding operation must actually
4438        // be a move operation (and not a copy selected by overload
4439        // resolution) unless we are working on a trivially copyable class.
4440        if (IsMove && !BaseCtor->isMoveConstructor() &&
4441            !BaseDecl->isTriviallyCopyable())
4442          return true;
4443      }
4444    }
4445  }
4446
4447  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4448                                     FE = RD->field_end();
4449       FI != FE; ++FI) {
4450    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4451      continue;
4452
4453    QualType FieldType = Context.getBaseElementType(FI->getType());
4454    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4455
4456    // For a default constructor, all references must be initialized in-class
4457    // and, if a union, it must have a non-const member.
4458    if (CSM == CXXDefaultConstructor) {
4459      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4460        return true;
4461
4462      if (IsUnion && !FieldType.isConstQualified())
4463        AllConst = false;
4464    // For a copy constructor, data members must not be of rvalue reference
4465    // type.
4466    } else if (CSM == CXXCopyConstructor) {
4467      if (FieldType->isRValueReferenceType())
4468        return true;
4469    }
4470
4471    if (FieldRecord) {
4472      // For a default constructor, a const member must have a user-provided
4473      // default constructor or else be explicitly initialized.
4474      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4475          !FI->hasInClassInitializer() &&
4476          !FieldRecord->hasUserProvidedDefaultConstructor())
4477        return true;
4478
4479      // Some additional restrictions exist on the variant members.
4480      if (!IsUnion && FieldRecord->isUnion() &&
4481          FieldRecord->isAnonymousStructOrUnion()) {
4482        // We're okay to reuse AllConst here since we only care about the
4483        // value otherwise if we're in a union.
4484        AllConst = true;
4485
4486        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4487                                           UE = FieldRecord->field_end();
4488             UI != UE; ++UI) {
4489          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4490          CXXRecordDecl *UnionFieldRecord =
4491            UnionFieldType->getAsCXXRecordDecl();
4492
4493          if (!UnionFieldType.isConstQualified())
4494            AllConst = false;
4495
4496          if (UnionFieldRecord) {
4497            // FIXME: Checking for accessibility and validity of this
4498            //        destructor is technically going beyond the
4499            //        standard, but this is believed to be a defect.
4500            if (!IsAssignment) {
4501              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4502              if (FieldDtor->isDeleted())
4503                return true;
4504              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4505                  AR_accessible)
4506                return true;
4507              if (!FieldDtor->isTrivial())
4508                return true;
4509            }
4510
4511            if (CSM != CXXDestructor) {
4512              SpecialMemberOverloadResult *SMOR =
4513                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4514                                    false, false, false);
4515              // FIXME: Checking for accessibility and validity of this
4516              //        corresponding member is technically going beyond the
4517              //        standard, but this is believed to be a defect.
4518              if (!SMOR->hasSuccess())
4519                return true;
4520
4521              CXXMethodDecl *FieldMember = SMOR->getMethod();
4522              // A member of a union must have a trivial corresponding
4523              // constructor.
4524              if (!FieldMember->isTrivial())
4525                return true;
4526
4527              if (IsConstructor) {
4528                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4529                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4530                                           PDiag()) != AR_accessible)
4531                return true;
4532              }
4533            }
4534          }
4535        }
4536
4537        // At least one member in each anonymous union must be non-const
4538        if (CSM == CXXDefaultConstructor && AllConst)
4539          return true;
4540
4541        // Don't try to initialize the anonymous union
4542        // This is technically non-conformant, but sanity demands it.
4543        continue;
4544      }
4545
4546      // Unless we're doing assignment, the field's destructor must be
4547      // accessible and not deleted.
4548      if (!IsAssignment) {
4549        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4550        if (FieldDtor->isDeleted())
4551          return true;
4552        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4553            AR_accessible)
4554          return true;
4555      }
4556
4557      // Check that the corresponding member of the field is accessible,
4558      // unique, and non-deleted. We don't do this if it has an explicit
4559      // initialization when default-constructing.
4560      if (CSM != CXXDestructor &&
4561          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4562        SpecialMemberOverloadResult *SMOR =
4563          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4564                              false);
4565        if (!SMOR->hasSuccess())
4566          return true;
4567
4568        CXXMethodDecl *FieldMember = SMOR->getMethod();
4569        if (IsConstructor) {
4570          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4571          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4572                                     PDiag()) != AR_accessible)
4573          return true;
4574
4575          // For a move operation, the corresponding operation must actually
4576          // be a move operation (and not a copy selected by overload
4577          // resolution) unless we are working on a trivially copyable class.
4578          if (IsMove && !FieldCtor->isMoveConstructor() &&
4579              !FieldRecord->isTriviallyCopyable())
4580            return true;
4581        }
4582
4583        // We need the corresponding member of a union to be trivial so that
4584        // we can safely copy them all simultaneously.
4585        // FIXME: Note that performing the check here (where we rely on the lack
4586        // of an in-class initializer) is technically ill-formed. However, this
4587        // seems most obviously to be a bug in the standard.
4588        if (IsUnion && !FieldMember->isTrivial())
4589          return true;
4590      }
4591    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4592               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4593      // We can't initialize a const member of non-class type to any value.
4594      return true;
4595    }
4596  }
4597
4598  // We can't have all const members in a union when default-constructing,
4599  // or else they're all nonsensical garbage values that can't be changed.
4600  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4601    return true;
4602
4603  return false;
4604}
4605
4606bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4607  CXXRecordDecl *RD = MD->getParent();
4608  assert(!RD->isDependentType() && "do deletion after instantiation");
4609  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4610    return false;
4611
4612  // C++11 [expr.lambda.prim]p19:
4613  //   The closure type associated with a lambda-expression has a
4614  //   [...] deleted copy assignment operator.
4615  if (RD->isLambda())
4616    return true;
4617
4618  SourceLocation Loc = MD->getLocation();
4619
4620  // Do access control from the constructor
4621  ContextRAII MethodContext(*this, MD);
4622
4623  bool Union = RD->isUnion();
4624
4625  unsigned ArgQuals =
4626    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4627      Qualifiers::Const : 0;
4628
4629  // We do this because we should never actually use an anonymous
4630  // union's constructor.
4631  if (Union && RD->isAnonymousStructOrUnion())
4632    return false;
4633
4634  // FIXME: We should put some diagnostic logic right into this function.
4635
4636  // C++0x [class.copy]/20
4637  //    A defaulted [copy] assignment operator for class X is defined as deleted
4638  //    if X has:
4639
4640  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4641                                          BE = RD->bases_end();
4642       BI != BE; ++BI) {
4643    // We'll handle this one later
4644    if (BI->isVirtual())
4645      continue;
4646
4647    QualType BaseType = BI->getType();
4648    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4649    assert(BaseDecl && "base isn't a CXXRecordDecl");
4650
4651    // -- a [direct base class] B that cannot be [copied] because overload
4652    //    resolution, as applied to B's [copy] assignment operator, results in
4653    //    an ambiguity or a function that is deleted or inaccessible from the
4654    //    assignment operator
4655    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4656                                                      0);
4657    if (!CopyOper || CopyOper->isDeleted())
4658      return true;
4659    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4660      return true;
4661  }
4662
4663  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4664                                          BE = RD->vbases_end();
4665       BI != BE; ++BI) {
4666    QualType BaseType = BI->getType();
4667    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4668    assert(BaseDecl && "base isn't a CXXRecordDecl");
4669
4670    // -- a [virtual base class] B that cannot be [copied] because overload
4671    //    resolution, as applied to B's [copy] assignment operator, results in
4672    //    an ambiguity or a function that is deleted or inaccessible from the
4673    //    assignment operator
4674    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4675                                                      0);
4676    if (!CopyOper || CopyOper->isDeleted())
4677      return true;
4678    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4679      return true;
4680  }
4681
4682  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4683                                     FE = RD->field_end();
4684       FI != FE; ++FI) {
4685    if (FI->isUnnamedBitfield())
4686      continue;
4687
4688    QualType FieldType = Context.getBaseElementType(FI->getType());
4689
4690    // -- a non-static data member of reference type
4691    if (FieldType->isReferenceType())
4692      return true;
4693
4694    // -- a non-static data member of const non-class type (or array thereof)
4695    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4696      return true;
4697
4698    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4699
4700    if (FieldRecord) {
4701      // This is an anonymous union
4702      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4703        // Anonymous unions inside unions do not variant members create
4704        if (!Union) {
4705          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4706                                             UE = FieldRecord->field_end();
4707               UI != UE; ++UI) {
4708            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4709            CXXRecordDecl *UnionFieldRecord =
4710              UnionFieldType->getAsCXXRecordDecl();
4711
4712            // -- a variant member with a non-trivial [copy] assignment operator
4713            //    and X is a union-like class
4714            if (UnionFieldRecord &&
4715                !UnionFieldRecord->hasTrivialCopyAssignment())
4716              return true;
4717          }
4718        }
4719
4720        // Don't try to initalize an anonymous union
4721        continue;
4722      // -- a variant member with a non-trivial [copy] assignment operator
4723      //    and X is a union-like class
4724      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4725          return true;
4726      }
4727
4728      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4729                                                        false, 0);
4730      if (!CopyOper || CopyOper->isDeleted())
4731        return true;
4732      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4733        return true;
4734    }
4735  }
4736
4737  return false;
4738}
4739
4740bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4741  CXXRecordDecl *RD = MD->getParent();
4742  assert(!RD->isDependentType() && "do deletion after instantiation");
4743  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4744    return false;
4745
4746  SourceLocation Loc = MD->getLocation();
4747
4748  // Do access control from the constructor
4749  ContextRAII MethodContext(*this, MD);
4750
4751  bool Union = RD->isUnion();
4752
4753  // We do this because we should never actually use an anonymous
4754  // union's constructor.
4755  if (Union && RD->isAnonymousStructOrUnion())
4756    return false;
4757
4758  // C++0x [class.copy]/20
4759  //    A defaulted [move] assignment operator for class X is defined as deleted
4760  //    if X has:
4761
4762  //    -- for the move constructor, [...] any direct or indirect virtual base
4763  //       class.
4764  if (RD->getNumVBases() != 0)
4765    return true;
4766
4767  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4768                                          BE = RD->bases_end();
4769       BI != BE; ++BI) {
4770
4771    QualType BaseType = BI->getType();
4772    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4773    assert(BaseDecl && "base isn't a CXXRecordDecl");
4774
4775    // -- a [direct base class] B that cannot be [moved] because overload
4776    //    resolution, as applied to B's [move] assignment operator, results in
4777    //    an ambiguity or a function that is deleted or inaccessible from the
4778    //    assignment operator
4779    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4780    if (!MoveOper || MoveOper->isDeleted())
4781      return true;
4782    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4783      return true;
4784
4785    // -- for the move assignment operator, a [direct base class] with a type
4786    //    that does not have a move assignment operator and is not trivially
4787    //    copyable.
4788    if (!MoveOper->isMoveAssignmentOperator() &&
4789        !BaseDecl->isTriviallyCopyable())
4790      return true;
4791  }
4792
4793  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4794                                     FE = RD->field_end();
4795       FI != FE; ++FI) {
4796    if (FI->isUnnamedBitfield())
4797      continue;
4798
4799    QualType FieldType = Context.getBaseElementType(FI->getType());
4800
4801    // -- a non-static data member of reference type
4802    if (FieldType->isReferenceType())
4803      return true;
4804
4805    // -- a non-static data member of const non-class type (or array thereof)
4806    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4807      return true;
4808
4809    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4810
4811    if (FieldRecord) {
4812      // This is an anonymous union
4813      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4814        // Anonymous unions inside unions do not variant members create
4815        if (!Union) {
4816          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4817                                             UE = FieldRecord->field_end();
4818               UI != UE; ++UI) {
4819            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4820            CXXRecordDecl *UnionFieldRecord =
4821              UnionFieldType->getAsCXXRecordDecl();
4822
4823            // -- a variant member with a non-trivial [move] assignment operator
4824            //    and X is a union-like class
4825            if (UnionFieldRecord &&
4826                !UnionFieldRecord->hasTrivialMoveAssignment())
4827              return true;
4828          }
4829        }
4830
4831        // Don't try to initalize an anonymous union
4832        continue;
4833      // -- a variant member with a non-trivial [move] assignment operator
4834      //    and X is a union-like class
4835      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4836          return true;
4837      }
4838
4839      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4840      if (!MoveOper || MoveOper->isDeleted())
4841        return true;
4842      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4843        return true;
4844
4845      // -- for the move assignment operator, a [non-static data member] with a
4846      //    type that does not have a move assignment operator and is not
4847      //    trivially copyable.
4848      if (!MoveOper->isMoveAssignmentOperator() &&
4849          !FieldRecord->isTriviallyCopyable())
4850        return true;
4851    }
4852  }
4853
4854  return false;
4855}
4856
4857bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4858  CXXRecordDecl *RD = DD->getParent();
4859  assert(!RD->isDependentType() && "do deletion after instantiation");
4860  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4861    return false;
4862
4863  SourceLocation Loc = DD->getLocation();
4864
4865  // Do access control from the destructor
4866  ContextRAII CtorContext(*this, DD);
4867
4868  bool Union = RD->isUnion();
4869
4870  // We do this because we should never actually use an anonymous
4871  // union's destructor.
4872  if (Union && RD->isAnonymousStructOrUnion())
4873    return false;
4874
4875  // C++0x [class.dtor]p5
4876  //    A defaulted destructor for a class X is defined as deleted if:
4877  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4878                                          BE = RD->bases_end();
4879       BI != BE; ++BI) {
4880    // We'll handle this one later
4881    if (BI->isVirtual())
4882      continue;
4883
4884    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4885    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4886    assert(BaseDtor && "base has no destructor");
4887
4888    // -- any direct or virtual base class has a deleted destructor or
4889    //    a destructor that is inaccessible from the defaulted destructor
4890    if (BaseDtor->isDeleted())
4891      return true;
4892    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4893        AR_accessible)
4894      return true;
4895  }
4896
4897  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4898                                          BE = RD->vbases_end();
4899       BI != BE; ++BI) {
4900    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4901    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4902    assert(BaseDtor && "base has no destructor");
4903
4904    // -- any direct or virtual base class has a deleted destructor or
4905    //    a destructor that is inaccessible from the defaulted destructor
4906    if (BaseDtor->isDeleted())
4907      return true;
4908    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4909        AR_accessible)
4910      return true;
4911  }
4912
4913  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4914                                     FE = RD->field_end();
4915       FI != FE; ++FI) {
4916    QualType FieldType = Context.getBaseElementType(FI->getType());
4917    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4918    if (FieldRecord) {
4919      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4920         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4921                                            UE = FieldRecord->field_end();
4922              UI != UE; ++UI) {
4923           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4924           CXXRecordDecl *UnionFieldRecord =
4925             UnionFieldType->getAsCXXRecordDecl();
4926
4927           // -- X is a union-like class that has a variant member with a non-
4928           //    trivial destructor.
4929           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4930             return true;
4931         }
4932      // Technically we are supposed to do this next check unconditionally.
4933      // But that makes absolutely no sense.
4934      } else {
4935        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4936
4937        // -- any of the non-static data members has class type M (or array
4938        //    thereof) and M has a deleted destructor or a destructor that is
4939        //    inaccessible from the defaulted destructor
4940        if (FieldDtor->isDeleted())
4941          return true;
4942        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4943          AR_accessible)
4944        return true;
4945
4946        // -- X is a union-like class that has a variant member with a non-
4947        //    trivial destructor.
4948        if (Union && !FieldDtor->isTrivial())
4949          return true;
4950      }
4951    }
4952  }
4953
4954  if (DD->isVirtual()) {
4955    FunctionDecl *OperatorDelete = 0;
4956    DeclarationName Name =
4957      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4958    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4959          false))
4960      return true;
4961  }
4962
4963
4964  return false;
4965}
4966
4967/// \brief Data used with FindHiddenVirtualMethod
4968namespace {
4969  struct FindHiddenVirtualMethodData {
4970    Sema *S;
4971    CXXMethodDecl *Method;
4972    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4973    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4974  };
4975}
4976
4977/// \brief Member lookup function that determines whether a given C++
4978/// method overloads virtual methods in a base class without overriding any,
4979/// to be used with CXXRecordDecl::lookupInBases().
4980static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4981                                    CXXBasePath &Path,
4982                                    void *UserData) {
4983  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4984
4985  FindHiddenVirtualMethodData &Data
4986    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4987
4988  DeclarationName Name = Data.Method->getDeclName();
4989  assert(Name.getNameKind() == DeclarationName::Identifier);
4990
4991  bool foundSameNameMethod = false;
4992  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4993  for (Path.Decls = BaseRecord->lookup(Name);
4994       Path.Decls.first != Path.Decls.second;
4995       ++Path.Decls.first) {
4996    NamedDecl *D = *Path.Decls.first;
4997    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4998      MD = MD->getCanonicalDecl();
4999      foundSameNameMethod = true;
5000      // Interested only in hidden virtual methods.
5001      if (!MD->isVirtual())
5002        continue;
5003      // If the method we are checking overrides a method from its base
5004      // don't warn about the other overloaded methods.
5005      if (!Data.S->IsOverload(Data.Method, MD, false))
5006        return true;
5007      // Collect the overload only if its hidden.
5008      if (!Data.OverridenAndUsingBaseMethods.count(MD))
5009        overloadedMethods.push_back(MD);
5010    }
5011  }
5012
5013  if (foundSameNameMethod)
5014    Data.OverloadedMethods.append(overloadedMethods.begin(),
5015                                   overloadedMethods.end());
5016  return foundSameNameMethod;
5017}
5018
5019/// \brief See if a method overloads virtual methods in a base class without
5020/// overriding any.
5021void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5022  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5023                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5024    return;
5025  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
5026    return;
5027
5028  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5029                     /*bool RecordPaths=*/false,
5030                     /*bool DetectVirtual=*/false);
5031  FindHiddenVirtualMethodData Data;
5032  Data.Method = MD;
5033  Data.S = this;
5034
5035  // Keep the base methods that were overriden or introduced in the subclass
5036  // by 'using' in a set. A base method not in this set is hidden.
5037  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5038       res.first != res.second; ++res.first) {
5039    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5040      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5041                                          E = MD->end_overridden_methods();
5042           I != E; ++I)
5043        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5044    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5045      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5046        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5047  }
5048
5049  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5050      !Data.OverloadedMethods.empty()) {
5051    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5052      << MD << (Data.OverloadedMethods.size() > 1);
5053
5054    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5055      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5056      Diag(overloadedMD->getLocation(),
5057           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5058    }
5059  }
5060}
5061
5062void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5063                                             Decl *TagDecl,
5064                                             SourceLocation LBrac,
5065                                             SourceLocation RBrac,
5066                                             AttributeList *AttrList) {
5067  if (!TagDecl)
5068    return;
5069
5070  AdjustDeclIfTemplate(TagDecl);
5071
5072  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5073              // strict aliasing violation!
5074              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5075              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5076
5077  CheckCompletedCXXClass(
5078                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5079}
5080
5081/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5082/// special functions, such as the default constructor, copy
5083/// constructor, or destructor, to the given C++ class (C++
5084/// [special]p1).  This routine can only be executed just before the
5085/// definition of the class is complete.
5086void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5087  if (!ClassDecl->hasUserDeclaredConstructor())
5088    ++ASTContext::NumImplicitDefaultConstructors;
5089
5090  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5091    ++ASTContext::NumImplicitCopyConstructors;
5092
5093  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5094    ++ASTContext::NumImplicitMoveConstructors;
5095
5096  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5097    ++ASTContext::NumImplicitCopyAssignmentOperators;
5098
5099    // If we have a dynamic class, then the copy assignment operator may be
5100    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5101    // it shows up in the right place in the vtable and that we diagnose
5102    // problems with the implicit exception specification.
5103    if (ClassDecl->isDynamicClass())
5104      DeclareImplicitCopyAssignment(ClassDecl);
5105  }
5106
5107  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5108    ++ASTContext::NumImplicitMoveAssignmentOperators;
5109
5110    // Likewise for the move assignment operator.
5111    if (ClassDecl->isDynamicClass())
5112      DeclareImplicitMoveAssignment(ClassDecl);
5113  }
5114
5115  if (!ClassDecl->hasUserDeclaredDestructor()) {
5116    ++ASTContext::NumImplicitDestructors;
5117
5118    // If we have a dynamic class, then the destructor may be virtual, so we
5119    // have to declare the destructor immediately. This ensures that, e.g., it
5120    // shows up in the right place in the vtable and that we diagnose problems
5121    // with the implicit exception specification.
5122    if (ClassDecl->isDynamicClass())
5123      DeclareImplicitDestructor(ClassDecl);
5124  }
5125}
5126
5127void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5128  if (!D)
5129    return;
5130
5131  int NumParamList = D->getNumTemplateParameterLists();
5132  for (int i = 0; i < NumParamList; i++) {
5133    TemplateParameterList* Params = D->getTemplateParameterList(i);
5134    for (TemplateParameterList::iterator Param = Params->begin(),
5135                                      ParamEnd = Params->end();
5136          Param != ParamEnd; ++Param) {
5137      NamedDecl *Named = cast<NamedDecl>(*Param);
5138      if (Named->getDeclName()) {
5139        S->AddDecl(Named);
5140        IdResolver.AddDecl(Named);
5141      }
5142    }
5143  }
5144}
5145
5146void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5147  if (!D)
5148    return;
5149
5150  TemplateParameterList *Params = 0;
5151  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5152    Params = Template->getTemplateParameters();
5153  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5154           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5155    Params = PartialSpec->getTemplateParameters();
5156  else
5157    return;
5158
5159  for (TemplateParameterList::iterator Param = Params->begin(),
5160                                    ParamEnd = Params->end();
5161       Param != ParamEnd; ++Param) {
5162    NamedDecl *Named = cast<NamedDecl>(*Param);
5163    if (Named->getDeclName()) {
5164      S->AddDecl(Named);
5165      IdResolver.AddDecl(Named);
5166    }
5167  }
5168}
5169
5170void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5171  if (!RecordD) return;
5172  AdjustDeclIfTemplate(RecordD);
5173  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5174  PushDeclContext(S, Record);
5175}
5176
5177void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5178  if (!RecordD) return;
5179  PopDeclContext();
5180}
5181
5182/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5183/// parsing a top-level (non-nested) C++ class, and we are now
5184/// parsing those parts of the given Method declaration that could
5185/// not be parsed earlier (C++ [class.mem]p2), such as default
5186/// arguments. This action should enter the scope of the given
5187/// Method declaration as if we had just parsed the qualified method
5188/// name. However, it should not bring the parameters into scope;
5189/// that will be performed by ActOnDelayedCXXMethodParameter.
5190void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5191}
5192
5193/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5194/// C++ method declaration. We're (re-)introducing the given
5195/// function parameter into scope for use in parsing later parts of
5196/// the method declaration. For example, we could see an
5197/// ActOnParamDefaultArgument event for this parameter.
5198void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5199  if (!ParamD)
5200    return;
5201
5202  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5203
5204  // If this parameter has an unparsed default argument, clear it out
5205  // to make way for the parsed default argument.
5206  if (Param->hasUnparsedDefaultArg())
5207    Param->setDefaultArg(0);
5208
5209  S->AddDecl(Param);
5210  if (Param->getDeclName())
5211    IdResolver.AddDecl(Param);
5212}
5213
5214/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5215/// processing the delayed method declaration for Method. The method
5216/// declaration is now considered finished. There may be a separate
5217/// ActOnStartOfFunctionDef action later (not necessarily
5218/// immediately!) for this method, if it was also defined inside the
5219/// class body.
5220void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5221  if (!MethodD)
5222    return;
5223
5224  AdjustDeclIfTemplate(MethodD);
5225
5226  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5227
5228  // Now that we have our default arguments, check the constructor
5229  // again. It could produce additional diagnostics or affect whether
5230  // the class has implicitly-declared destructors, among other
5231  // things.
5232  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5233    CheckConstructor(Constructor);
5234
5235  // Check the default arguments, which we may have added.
5236  if (!Method->isInvalidDecl())
5237    CheckCXXDefaultArguments(Method);
5238}
5239
5240/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5241/// the well-formedness of the constructor declarator @p D with type @p
5242/// R. If there are any errors in the declarator, this routine will
5243/// emit diagnostics and set the invalid bit to true.  In any case, the type
5244/// will be updated to reflect a well-formed type for the constructor and
5245/// returned.
5246QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5247                                          StorageClass &SC) {
5248  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5249
5250  // C++ [class.ctor]p3:
5251  //   A constructor shall not be virtual (10.3) or static (9.4). A
5252  //   constructor can be invoked for a const, volatile or const
5253  //   volatile object. A constructor shall not be declared const,
5254  //   volatile, or const volatile (9.3.2).
5255  if (isVirtual) {
5256    if (!D.isInvalidType())
5257      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5258        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5259        << SourceRange(D.getIdentifierLoc());
5260    D.setInvalidType();
5261  }
5262  if (SC == SC_Static) {
5263    if (!D.isInvalidType())
5264      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5265        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5266        << SourceRange(D.getIdentifierLoc());
5267    D.setInvalidType();
5268    SC = SC_None;
5269  }
5270
5271  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5272  if (FTI.TypeQuals != 0) {
5273    if (FTI.TypeQuals & Qualifiers::Const)
5274      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5275        << "const" << SourceRange(D.getIdentifierLoc());
5276    if (FTI.TypeQuals & Qualifiers::Volatile)
5277      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5278        << "volatile" << SourceRange(D.getIdentifierLoc());
5279    if (FTI.TypeQuals & Qualifiers::Restrict)
5280      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5281        << "restrict" << SourceRange(D.getIdentifierLoc());
5282    D.setInvalidType();
5283  }
5284
5285  // C++0x [class.ctor]p4:
5286  //   A constructor shall not be declared with a ref-qualifier.
5287  if (FTI.hasRefQualifier()) {
5288    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5289      << FTI.RefQualifierIsLValueRef
5290      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5291    D.setInvalidType();
5292  }
5293
5294  // Rebuild the function type "R" without any type qualifiers (in
5295  // case any of the errors above fired) and with "void" as the
5296  // return type, since constructors don't have return types.
5297  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5298  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5299    return R;
5300
5301  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5302  EPI.TypeQuals = 0;
5303  EPI.RefQualifier = RQ_None;
5304
5305  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5306                                 Proto->getNumArgs(), EPI);
5307}
5308
5309/// CheckConstructor - Checks a fully-formed constructor for
5310/// well-formedness, issuing any diagnostics required. Returns true if
5311/// the constructor declarator is invalid.
5312void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5313  CXXRecordDecl *ClassDecl
5314    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5315  if (!ClassDecl)
5316    return Constructor->setInvalidDecl();
5317
5318  // C++ [class.copy]p3:
5319  //   A declaration of a constructor for a class X is ill-formed if
5320  //   its first parameter is of type (optionally cv-qualified) X and
5321  //   either there are no other parameters or else all other
5322  //   parameters have default arguments.
5323  if (!Constructor->isInvalidDecl() &&
5324      ((Constructor->getNumParams() == 1) ||
5325       (Constructor->getNumParams() > 1 &&
5326        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5327      Constructor->getTemplateSpecializationKind()
5328                                              != TSK_ImplicitInstantiation) {
5329    QualType ParamType = Constructor->getParamDecl(0)->getType();
5330    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5331    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5332      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5333      const char *ConstRef
5334        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5335                                                        : " const &";
5336      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5337        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5338
5339      // FIXME: Rather that making the constructor invalid, we should endeavor
5340      // to fix the type.
5341      Constructor->setInvalidDecl();
5342    }
5343  }
5344}
5345
5346/// CheckDestructor - Checks a fully-formed destructor definition for
5347/// well-formedness, issuing any diagnostics required.  Returns true
5348/// on error.
5349bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5350  CXXRecordDecl *RD = Destructor->getParent();
5351
5352  if (Destructor->isVirtual()) {
5353    SourceLocation Loc;
5354
5355    if (!Destructor->isImplicit())
5356      Loc = Destructor->getLocation();
5357    else
5358      Loc = RD->getLocation();
5359
5360    // If we have a virtual destructor, look up the deallocation function
5361    FunctionDecl *OperatorDelete = 0;
5362    DeclarationName Name =
5363    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5364    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5365      return true;
5366
5367    MarkFunctionReferenced(Loc, OperatorDelete);
5368
5369    Destructor->setOperatorDelete(OperatorDelete);
5370  }
5371
5372  return false;
5373}
5374
5375static inline bool
5376FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5377  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5378          FTI.ArgInfo[0].Param &&
5379          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5380}
5381
5382/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5383/// the well-formednes of the destructor declarator @p D with type @p
5384/// R. If there are any errors in the declarator, this routine will
5385/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5386/// will be updated to reflect a well-formed type for the destructor and
5387/// returned.
5388QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5389                                         StorageClass& SC) {
5390  // C++ [class.dtor]p1:
5391  //   [...] A typedef-name that names a class is a class-name
5392  //   (7.1.3); however, a typedef-name that names a class shall not
5393  //   be used as the identifier in the declarator for a destructor
5394  //   declaration.
5395  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5396  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5397    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5398      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5399  else if (const TemplateSpecializationType *TST =
5400             DeclaratorType->getAs<TemplateSpecializationType>())
5401    if (TST->isTypeAlias())
5402      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5403        << DeclaratorType << 1;
5404
5405  // C++ [class.dtor]p2:
5406  //   A destructor is used to destroy objects of its class type. A
5407  //   destructor takes no parameters, and no return type can be
5408  //   specified for it (not even void). The address of a destructor
5409  //   shall not be taken. A destructor shall not be static. A
5410  //   destructor can be invoked for a const, volatile or const
5411  //   volatile object. A destructor shall not be declared const,
5412  //   volatile or const volatile (9.3.2).
5413  if (SC == SC_Static) {
5414    if (!D.isInvalidType())
5415      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5416        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5417        << SourceRange(D.getIdentifierLoc())
5418        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5419
5420    SC = SC_None;
5421  }
5422  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5423    // Destructors don't have return types, but the parser will
5424    // happily parse something like:
5425    //
5426    //   class X {
5427    //     float ~X();
5428    //   };
5429    //
5430    // The return type will be eliminated later.
5431    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5432      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5433      << SourceRange(D.getIdentifierLoc());
5434  }
5435
5436  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5437  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5438    if (FTI.TypeQuals & Qualifiers::Const)
5439      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5440        << "const" << SourceRange(D.getIdentifierLoc());
5441    if (FTI.TypeQuals & Qualifiers::Volatile)
5442      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5443        << "volatile" << SourceRange(D.getIdentifierLoc());
5444    if (FTI.TypeQuals & Qualifiers::Restrict)
5445      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5446        << "restrict" << SourceRange(D.getIdentifierLoc());
5447    D.setInvalidType();
5448  }
5449
5450  // C++0x [class.dtor]p2:
5451  //   A destructor shall not be declared with a ref-qualifier.
5452  if (FTI.hasRefQualifier()) {
5453    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5454      << FTI.RefQualifierIsLValueRef
5455      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5456    D.setInvalidType();
5457  }
5458
5459  // Make sure we don't have any parameters.
5460  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5461    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5462
5463    // Delete the parameters.
5464    FTI.freeArgs();
5465    D.setInvalidType();
5466  }
5467
5468  // Make sure the destructor isn't variadic.
5469  if (FTI.isVariadic) {
5470    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5471    D.setInvalidType();
5472  }
5473
5474  // Rebuild the function type "R" without any type qualifiers or
5475  // parameters (in case any of the errors above fired) and with
5476  // "void" as the return type, since destructors don't have return
5477  // types.
5478  if (!D.isInvalidType())
5479    return R;
5480
5481  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5482  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5483  EPI.Variadic = false;
5484  EPI.TypeQuals = 0;
5485  EPI.RefQualifier = RQ_None;
5486  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5487}
5488
5489/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5490/// well-formednes of the conversion function declarator @p D with
5491/// type @p R. If there are any errors in the declarator, this routine
5492/// will emit diagnostics and return true. Otherwise, it will return
5493/// false. Either way, the type @p R will be updated to reflect a
5494/// well-formed type for the conversion operator.
5495void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5496                                     StorageClass& SC) {
5497  // C++ [class.conv.fct]p1:
5498  //   Neither parameter types nor return type can be specified. The
5499  //   type of a conversion function (8.3.5) is "function taking no
5500  //   parameter returning conversion-type-id."
5501  if (SC == SC_Static) {
5502    if (!D.isInvalidType())
5503      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5504        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5505        << SourceRange(D.getIdentifierLoc());
5506    D.setInvalidType();
5507    SC = SC_None;
5508  }
5509
5510  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5511
5512  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5513    // Conversion functions don't have return types, but the parser will
5514    // happily parse something like:
5515    //
5516    //   class X {
5517    //     float operator bool();
5518    //   };
5519    //
5520    // The return type will be changed later anyway.
5521    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5522      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5523      << SourceRange(D.getIdentifierLoc());
5524    D.setInvalidType();
5525  }
5526
5527  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5528
5529  // Make sure we don't have any parameters.
5530  if (Proto->getNumArgs() > 0) {
5531    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5532
5533    // Delete the parameters.
5534    D.getFunctionTypeInfo().freeArgs();
5535    D.setInvalidType();
5536  } else if (Proto->isVariadic()) {
5537    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5538    D.setInvalidType();
5539  }
5540
5541  // Diagnose "&operator bool()" and other such nonsense.  This
5542  // is actually a gcc extension which we don't support.
5543  if (Proto->getResultType() != ConvType) {
5544    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5545      << Proto->getResultType();
5546    D.setInvalidType();
5547    ConvType = Proto->getResultType();
5548  }
5549
5550  // C++ [class.conv.fct]p4:
5551  //   The conversion-type-id shall not represent a function type nor
5552  //   an array type.
5553  if (ConvType->isArrayType()) {
5554    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5555    ConvType = Context.getPointerType(ConvType);
5556    D.setInvalidType();
5557  } else if (ConvType->isFunctionType()) {
5558    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5559    ConvType = Context.getPointerType(ConvType);
5560    D.setInvalidType();
5561  }
5562
5563  // Rebuild the function type "R" without any parameters (in case any
5564  // of the errors above fired) and with the conversion type as the
5565  // return type.
5566  if (D.isInvalidType())
5567    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5568
5569  // C++0x explicit conversion operators.
5570  if (D.getDeclSpec().isExplicitSpecified())
5571    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5572         getLangOptions().CPlusPlus0x ?
5573           diag::warn_cxx98_compat_explicit_conversion_functions :
5574           diag::ext_explicit_conversion_functions)
5575      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5576}
5577
5578/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5579/// the declaration of the given C++ conversion function. This routine
5580/// is responsible for recording the conversion function in the C++
5581/// class, if possible.
5582Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5583  assert(Conversion && "Expected to receive a conversion function declaration");
5584
5585  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5586
5587  // Make sure we aren't redeclaring the conversion function.
5588  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5589
5590  // C++ [class.conv.fct]p1:
5591  //   [...] A conversion function is never used to convert a
5592  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5593  //   same object type (or a reference to it), to a (possibly
5594  //   cv-qualified) base class of that type (or a reference to it),
5595  //   or to (possibly cv-qualified) void.
5596  // FIXME: Suppress this warning if the conversion function ends up being a
5597  // virtual function that overrides a virtual function in a base class.
5598  QualType ClassType
5599    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5600  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5601    ConvType = ConvTypeRef->getPointeeType();
5602  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5603      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5604    /* Suppress diagnostics for instantiations. */;
5605  else if (ConvType->isRecordType()) {
5606    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5607    if (ConvType == ClassType)
5608      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5609        << ClassType;
5610    else if (IsDerivedFrom(ClassType, ConvType))
5611      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5612        <<  ClassType << ConvType;
5613  } else if (ConvType->isVoidType()) {
5614    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5615      << ClassType << ConvType;
5616  }
5617
5618  if (FunctionTemplateDecl *ConversionTemplate
5619                                = Conversion->getDescribedFunctionTemplate())
5620    return ConversionTemplate;
5621
5622  return Conversion;
5623}
5624
5625//===----------------------------------------------------------------------===//
5626// Namespace Handling
5627//===----------------------------------------------------------------------===//
5628
5629
5630
5631/// ActOnStartNamespaceDef - This is called at the start of a namespace
5632/// definition.
5633Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5634                                   SourceLocation InlineLoc,
5635                                   SourceLocation NamespaceLoc,
5636                                   SourceLocation IdentLoc,
5637                                   IdentifierInfo *II,
5638                                   SourceLocation LBrace,
5639                                   AttributeList *AttrList) {
5640  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5641  // For anonymous namespace, take the location of the left brace.
5642  SourceLocation Loc = II ? IdentLoc : LBrace;
5643  bool IsInline = InlineLoc.isValid();
5644  bool IsInvalid = false;
5645  bool IsStd = false;
5646  bool AddToKnown = false;
5647  Scope *DeclRegionScope = NamespcScope->getParent();
5648
5649  NamespaceDecl *PrevNS = 0;
5650  if (II) {
5651    // C++ [namespace.def]p2:
5652    //   The identifier in an original-namespace-definition shall not
5653    //   have been previously defined in the declarative region in
5654    //   which the original-namespace-definition appears. The
5655    //   identifier in an original-namespace-definition is the name of
5656    //   the namespace. Subsequently in that declarative region, it is
5657    //   treated as an original-namespace-name.
5658    //
5659    // Since namespace names are unique in their scope, and we don't
5660    // look through using directives, just look for any ordinary names.
5661
5662    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5663    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5664    Decl::IDNS_Namespace;
5665    NamedDecl *PrevDecl = 0;
5666    for (DeclContext::lookup_result R
5667         = CurContext->getRedeclContext()->lookup(II);
5668         R.first != R.second; ++R.first) {
5669      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5670        PrevDecl = *R.first;
5671        break;
5672      }
5673    }
5674
5675    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5676
5677    if (PrevNS) {
5678      // This is an extended namespace definition.
5679      if (IsInline != PrevNS->isInline()) {
5680        // inline-ness must match
5681        if (PrevNS->isInline()) {
5682          // The user probably just forgot the 'inline', so suggest that it
5683          // be added back.
5684          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5685            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5686        } else {
5687          Diag(Loc, diag::err_inline_namespace_mismatch)
5688            << IsInline;
5689        }
5690        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5691
5692        IsInline = PrevNS->isInline();
5693      }
5694    } else if (PrevDecl) {
5695      // This is an invalid name redefinition.
5696      Diag(Loc, diag::err_redefinition_different_kind)
5697        << II;
5698      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5699      IsInvalid = true;
5700      // Continue on to push Namespc as current DeclContext and return it.
5701    } else if (II->isStr("std") &&
5702               CurContext->getRedeclContext()->isTranslationUnit()) {
5703      // This is the first "real" definition of the namespace "std", so update
5704      // our cache of the "std" namespace to point at this definition.
5705      PrevNS = getStdNamespace();
5706      IsStd = true;
5707      AddToKnown = !IsInline;
5708    } else {
5709      // We've seen this namespace for the first time.
5710      AddToKnown = !IsInline;
5711    }
5712  } else {
5713    // Anonymous namespaces.
5714
5715    // Determine whether the parent already has an anonymous namespace.
5716    DeclContext *Parent = CurContext->getRedeclContext();
5717    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5718      PrevNS = TU->getAnonymousNamespace();
5719    } else {
5720      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5721      PrevNS = ND->getAnonymousNamespace();
5722    }
5723
5724    if (PrevNS && IsInline != PrevNS->isInline()) {
5725      // inline-ness must match
5726      Diag(Loc, diag::err_inline_namespace_mismatch)
5727        << IsInline;
5728      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5729
5730      // Recover by ignoring the new namespace's inline status.
5731      IsInline = PrevNS->isInline();
5732    }
5733  }
5734
5735  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5736                                                 StartLoc, Loc, II, PrevNS);
5737  if (IsInvalid)
5738    Namespc->setInvalidDecl();
5739
5740  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5741
5742  // FIXME: Should we be merging attributes?
5743  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5744    PushNamespaceVisibilityAttr(Attr, Loc);
5745
5746  if (IsStd)
5747    StdNamespace = Namespc;
5748  if (AddToKnown)
5749    KnownNamespaces[Namespc] = false;
5750
5751  if (II) {
5752    PushOnScopeChains(Namespc, DeclRegionScope);
5753  } else {
5754    // Link the anonymous namespace into its parent.
5755    DeclContext *Parent = CurContext->getRedeclContext();
5756    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5757      TU->setAnonymousNamespace(Namespc);
5758    } else {
5759      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5760    }
5761
5762    CurContext->addDecl(Namespc);
5763
5764    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5765    //   behaves as if it were replaced by
5766    //     namespace unique { /* empty body */ }
5767    //     using namespace unique;
5768    //     namespace unique { namespace-body }
5769    //   where all occurrences of 'unique' in a translation unit are
5770    //   replaced by the same identifier and this identifier differs
5771    //   from all other identifiers in the entire program.
5772
5773    // We just create the namespace with an empty name and then add an
5774    // implicit using declaration, just like the standard suggests.
5775    //
5776    // CodeGen enforces the "universally unique" aspect by giving all
5777    // declarations semantically contained within an anonymous
5778    // namespace internal linkage.
5779
5780    if (!PrevNS) {
5781      UsingDirectiveDecl* UD
5782        = UsingDirectiveDecl::Create(Context, CurContext,
5783                                     /* 'using' */ LBrace,
5784                                     /* 'namespace' */ SourceLocation(),
5785                                     /* qualifier */ NestedNameSpecifierLoc(),
5786                                     /* identifier */ SourceLocation(),
5787                                     Namespc,
5788                                     /* Ancestor */ CurContext);
5789      UD->setImplicit();
5790      CurContext->addDecl(UD);
5791    }
5792  }
5793
5794  // Although we could have an invalid decl (i.e. the namespace name is a
5795  // redefinition), push it as current DeclContext and try to continue parsing.
5796  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5797  // for the namespace has the declarations that showed up in that particular
5798  // namespace definition.
5799  PushDeclContext(NamespcScope, Namespc);
5800  return Namespc;
5801}
5802
5803/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5804/// is a namespace alias, returns the namespace it points to.
5805static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5806  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5807    return AD->getNamespace();
5808  return dyn_cast_or_null<NamespaceDecl>(D);
5809}
5810
5811/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5812/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5813void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5814  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5815  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5816  Namespc->setRBraceLoc(RBrace);
5817  PopDeclContext();
5818  if (Namespc->hasAttr<VisibilityAttr>())
5819    PopPragmaVisibility(true, RBrace);
5820}
5821
5822CXXRecordDecl *Sema::getStdBadAlloc() const {
5823  return cast_or_null<CXXRecordDecl>(
5824                                  StdBadAlloc.get(Context.getExternalSource()));
5825}
5826
5827NamespaceDecl *Sema::getStdNamespace() const {
5828  return cast_or_null<NamespaceDecl>(
5829                                 StdNamespace.get(Context.getExternalSource()));
5830}
5831
5832/// \brief Retrieve the special "std" namespace, which may require us to
5833/// implicitly define the namespace.
5834NamespaceDecl *Sema::getOrCreateStdNamespace() {
5835  if (!StdNamespace) {
5836    // The "std" namespace has not yet been defined, so build one implicitly.
5837    StdNamespace = NamespaceDecl::Create(Context,
5838                                         Context.getTranslationUnitDecl(),
5839                                         /*Inline=*/false,
5840                                         SourceLocation(), SourceLocation(),
5841                                         &PP.getIdentifierTable().get("std"),
5842                                         /*PrevDecl=*/0);
5843    getStdNamespace()->setImplicit(true);
5844  }
5845
5846  return getStdNamespace();
5847}
5848
5849bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5850  assert(getLangOptions().CPlusPlus &&
5851         "Looking for std::initializer_list outside of C++.");
5852
5853  // We're looking for implicit instantiations of
5854  // template <typename E> class std::initializer_list.
5855
5856  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5857    return false;
5858
5859  ClassTemplateDecl *Template = 0;
5860  const TemplateArgument *Arguments = 0;
5861
5862  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5863
5864    ClassTemplateSpecializationDecl *Specialization =
5865        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5866    if (!Specialization)
5867      return false;
5868
5869    Template = Specialization->getSpecializedTemplate();
5870    Arguments = Specialization->getTemplateArgs().data();
5871  } else if (const TemplateSpecializationType *TST =
5872                 Ty->getAs<TemplateSpecializationType>()) {
5873    Template = dyn_cast_or_null<ClassTemplateDecl>(
5874        TST->getTemplateName().getAsTemplateDecl());
5875    Arguments = TST->getArgs();
5876  }
5877  if (!Template)
5878    return false;
5879
5880  if (!StdInitializerList) {
5881    // Haven't recognized std::initializer_list yet, maybe this is it.
5882    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5883    if (TemplateClass->getIdentifier() !=
5884            &PP.getIdentifierTable().get("initializer_list") ||
5885        !getStdNamespace()->InEnclosingNamespaceSetOf(
5886            TemplateClass->getDeclContext()))
5887      return false;
5888    // This is a template called std::initializer_list, but is it the right
5889    // template?
5890    TemplateParameterList *Params = Template->getTemplateParameters();
5891    if (Params->getMinRequiredArguments() != 1)
5892      return false;
5893    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5894      return false;
5895
5896    // It's the right template.
5897    StdInitializerList = Template;
5898  }
5899
5900  if (Template != StdInitializerList)
5901    return false;
5902
5903  // This is an instance of std::initializer_list. Find the argument type.
5904  if (Element)
5905    *Element = Arguments[0].getAsType();
5906  return true;
5907}
5908
5909static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5910  NamespaceDecl *Std = S.getStdNamespace();
5911  if (!Std) {
5912    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5913    return 0;
5914  }
5915
5916  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5917                      Loc, Sema::LookupOrdinaryName);
5918  if (!S.LookupQualifiedName(Result, Std)) {
5919    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5920    return 0;
5921  }
5922  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5923  if (!Template) {
5924    Result.suppressDiagnostics();
5925    // We found something weird. Complain about the first thing we found.
5926    NamedDecl *Found = *Result.begin();
5927    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5928    return 0;
5929  }
5930
5931  // We found some template called std::initializer_list. Now verify that it's
5932  // correct.
5933  TemplateParameterList *Params = Template->getTemplateParameters();
5934  if (Params->getMinRequiredArguments() != 1 ||
5935      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5936    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5937    return 0;
5938  }
5939
5940  return Template;
5941}
5942
5943QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5944  if (!StdInitializerList) {
5945    StdInitializerList = LookupStdInitializerList(*this, Loc);
5946    if (!StdInitializerList)
5947      return QualType();
5948  }
5949
5950  TemplateArgumentListInfo Args(Loc, Loc);
5951  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5952                                       Context.getTrivialTypeSourceInfo(Element,
5953                                                                        Loc)));
5954  return Context.getCanonicalType(
5955      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5956}
5957
5958bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5959  // C++ [dcl.init.list]p2:
5960  //   A constructor is an initializer-list constructor if its first parameter
5961  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5962  //   std::initializer_list<E> for some type E, and either there are no other
5963  //   parameters or else all other parameters have default arguments.
5964  if (Ctor->getNumParams() < 1 ||
5965      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5966    return false;
5967
5968  QualType ArgType = Ctor->getParamDecl(0)->getType();
5969  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5970    ArgType = RT->getPointeeType().getUnqualifiedType();
5971
5972  return isStdInitializerList(ArgType, 0);
5973}
5974
5975/// \brief Determine whether a using statement is in a context where it will be
5976/// apply in all contexts.
5977static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5978  switch (CurContext->getDeclKind()) {
5979    case Decl::TranslationUnit:
5980      return true;
5981    case Decl::LinkageSpec:
5982      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5983    default:
5984      return false;
5985  }
5986}
5987
5988namespace {
5989
5990// Callback to only accept typo corrections that are namespaces.
5991class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5992 public:
5993  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5994    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5995      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5996    }
5997    return false;
5998  }
5999};
6000
6001}
6002
6003static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6004                                       CXXScopeSpec &SS,
6005                                       SourceLocation IdentLoc,
6006                                       IdentifierInfo *Ident) {
6007  NamespaceValidatorCCC Validator;
6008  R.clear();
6009  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6010                                               R.getLookupKind(), Sc, &SS,
6011                                               Validator)) {
6012    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
6013    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
6014    if (DeclContext *DC = S.computeDeclContext(SS, false))
6015      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6016        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6017        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6018    else
6019      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6020        << Ident << CorrectedQuotedStr
6021        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6022
6023    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6024         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6025
6026    Ident = Corrected.getCorrectionAsIdentifierInfo();
6027    R.addDecl(Corrected.getCorrectionDecl());
6028    return true;
6029  }
6030  return false;
6031}
6032
6033Decl *Sema::ActOnUsingDirective(Scope *S,
6034                                          SourceLocation UsingLoc,
6035                                          SourceLocation NamespcLoc,
6036                                          CXXScopeSpec &SS,
6037                                          SourceLocation IdentLoc,
6038                                          IdentifierInfo *NamespcName,
6039                                          AttributeList *AttrList) {
6040  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6041  assert(NamespcName && "Invalid NamespcName.");
6042  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6043
6044  // This can only happen along a recovery path.
6045  while (S->getFlags() & Scope::TemplateParamScope)
6046    S = S->getParent();
6047  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6048
6049  UsingDirectiveDecl *UDir = 0;
6050  NestedNameSpecifier *Qualifier = 0;
6051  if (SS.isSet())
6052    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6053
6054  // Lookup namespace name.
6055  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6056  LookupParsedName(R, S, &SS);
6057  if (R.isAmbiguous())
6058    return 0;
6059
6060  if (R.empty()) {
6061    R.clear();
6062    // Allow "using namespace std;" or "using namespace ::std;" even if
6063    // "std" hasn't been defined yet, for GCC compatibility.
6064    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6065        NamespcName->isStr("std")) {
6066      Diag(IdentLoc, diag::ext_using_undefined_std);
6067      R.addDecl(getOrCreateStdNamespace());
6068      R.resolveKind();
6069    }
6070    // Otherwise, attempt typo correction.
6071    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6072  }
6073
6074  if (!R.empty()) {
6075    NamedDecl *Named = R.getFoundDecl();
6076    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6077        && "expected namespace decl");
6078    // C++ [namespace.udir]p1:
6079    //   A using-directive specifies that the names in the nominated
6080    //   namespace can be used in the scope in which the
6081    //   using-directive appears after the using-directive. During
6082    //   unqualified name lookup (3.4.1), the names appear as if they
6083    //   were declared in the nearest enclosing namespace which
6084    //   contains both the using-directive and the nominated
6085    //   namespace. [Note: in this context, "contains" means "contains
6086    //   directly or indirectly". ]
6087
6088    // Find enclosing context containing both using-directive and
6089    // nominated namespace.
6090    NamespaceDecl *NS = getNamespaceDecl(Named);
6091    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6092    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6093      CommonAncestor = CommonAncestor->getParent();
6094
6095    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6096                                      SS.getWithLocInContext(Context),
6097                                      IdentLoc, Named, CommonAncestor);
6098
6099    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6100        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6101      Diag(IdentLoc, diag::warn_using_directive_in_header);
6102    }
6103
6104    PushUsingDirective(S, UDir);
6105  } else {
6106    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6107  }
6108
6109  // FIXME: We ignore attributes for now.
6110  return UDir;
6111}
6112
6113void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6114  // If scope has associated entity, then using directive is at namespace
6115  // or translation unit scope. We add UsingDirectiveDecls, into
6116  // it's lookup structure.
6117  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6118    Ctx->addDecl(UDir);
6119  else
6120    // Otherwise it is block-sope. using-directives will affect lookup
6121    // only to the end of scope.
6122    S->PushUsingDirective(UDir);
6123}
6124
6125
6126Decl *Sema::ActOnUsingDeclaration(Scope *S,
6127                                  AccessSpecifier AS,
6128                                  bool HasUsingKeyword,
6129                                  SourceLocation UsingLoc,
6130                                  CXXScopeSpec &SS,
6131                                  UnqualifiedId &Name,
6132                                  AttributeList *AttrList,
6133                                  bool IsTypeName,
6134                                  SourceLocation TypenameLoc) {
6135  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6136
6137  switch (Name.getKind()) {
6138  case UnqualifiedId::IK_ImplicitSelfParam:
6139  case UnqualifiedId::IK_Identifier:
6140  case UnqualifiedId::IK_OperatorFunctionId:
6141  case UnqualifiedId::IK_LiteralOperatorId:
6142  case UnqualifiedId::IK_ConversionFunctionId:
6143    break;
6144
6145  case UnqualifiedId::IK_ConstructorName:
6146  case UnqualifiedId::IK_ConstructorTemplateId:
6147    // C++0x inherited constructors.
6148    Diag(Name.getSourceRange().getBegin(),
6149         getLangOptions().CPlusPlus0x ?
6150           diag::warn_cxx98_compat_using_decl_constructor :
6151           diag::err_using_decl_constructor)
6152      << SS.getRange();
6153
6154    if (getLangOptions().CPlusPlus0x) break;
6155
6156    return 0;
6157
6158  case UnqualifiedId::IK_DestructorName:
6159    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6160      << SS.getRange();
6161    return 0;
6162
6163  case UnqualifiedId::IK_TemplateId:
6164    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6165      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6166    return 0;
6167  }
6168
6169  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6170  DeclarationName TargetName = TargetNameInfo.getName();
6171  if (!TargetName)
6172    return 0;
6173
6174  // Warn about using declarations.
6175  // TODO: store that the declaration was written without 'using' and
6176  // talk about access decls instead of using decls in the
6177  // diagnostics.
6178  if (!HasUsingKeyword) {
6179    UsingLoc = Name.getSourceRange().getBegin();
6180
6181    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6182      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6183  }
6184
6185  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6186      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6187    return 0;
6188
6189  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6190                                        TargetNameInfo, AttrList,
6191                                        /* IsInstantiation */ false,
6192                                        IsTypeName, TypenameLoc);
6193  if (UD)
6194    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6195
6196  return UD;
6197}
6198
6199/// \brief Determine whether a using declaration considers the given
6200/// declarations as "equivalent", e.g., if they are redeclarations of
6201/// the same entity or are both typedefs of the same type.
6202static bool
6203IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6204                         bool &SuppressRedeclaration) {
6205  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6206    SuppressRedeclaration = false;
6207    return true;
6208  }
6209
6210  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6211    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6212      SuppressRedeclaration = true;
6213      return Context.hasSameType(TD1->getUnderlyingType(),
6214                                 TD2->getUnderlyingType());
6215    }
6216
6217  return false;
6218}
6219
6220
6221/// Determines whether to create a using shadow decl for a particular
6222/// decl, given the set of decls existing prior to this using lookup.
6223bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6224                                const LookupResult &Previous) {
6225  // Diagnose finding a decl which is not from a base class of the
6226  // current class.  We do this now because there are cases where this
6227  // function will silently decide not to build a shadow decl, which
6228  // will pre-empt further diagnostics.
6229  //
6230  // We don't need to do this in C++0x because we do the check once on
6231  // the qualifier.
6232  //
6233  // FIXME: diagnose the following if we care enough:
6234  //   struct A { int foo; };
6235  //   struct B : A { using A::foo; };
6236  //   template <class T> struct C : A {};
6237  //   template <class T> struct D : C<T> { using B::foo; } // <---
6238  // This is invalid (during instantiation) in C++03 because B::foo
6239  // resolves to the using decl in B, which is not a base class of D<T>.
6240  // We can't diagnose it immediately because C<T> is an unknown
6241  // specialization.  The UsingShadowDecl in D<T> then points directly
6242  // to A::foo, which will look well-formed when we instantiate.
6243  // The right solution is to not collapse the shadow-decl chain.
6244  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6245    DeclContext *OrigDC = Orig->getDeclContext();
6246
6247    // Handle enums and anonymous structs.
6248    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6249    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6250    while (OrigRec->isAnonymousStructOrUnion())
6251      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6252
6253    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6254      if (OrigDC == CurContext) {
6255        Diag(Using->getLocation(),
6256             diag::err_using_decl_nested_name_specifier_is_current_class)
6257          << Using->getQualifierLoc().getSourceRange();
6258        Diag(Orig->getLocation(), diag::note_using_decl_target);
6259        return true;
6260      }
6261
6262      Diag(Using->getQualifierLoc().getBeginLoc(),
6263           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6264        << Using->getQualifier()
6265        << cast<CXXRecordDecl>(CurContext)
6266        << Using->getQualifierLoc().getSourceRange();
6267      Diag(Orig->getLocation(), diag::note_using_decl_target);
6268      return true;
6269    }
6270  }
6271
6272  if (Previous.empty()) return false;
6273
6274  NamedDecl *Target = Orig;
6275  if (isa<UsingShadowDecl>(Target))
6276    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6277
6278  // If the target happens to be one of the previous declarations, we
6279  // don't have a conflict.
6280  //
6281  // FIXME: but we might be increasing its access, in which case we
6282  // should redeclare it.
6283  NamedDecl *NonTag = 0, *Tag = 0;
6284  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6285         I != E; ++I) {
6286    NamedDecl *D = (*I)->getUnderlyingDecl();
6287    bool Result;
6288    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6289      return Result;
6290
6291    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6292  }
6293
6294  if (Target->isFunctionOrFunctionTemplate()) {
6295    FunctionDecl *FD;
6296    if (isa<FunctionTemplateDecl>(Target))
6297      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6298    else
6299      FD = cast<FunctionDecl>(Target);
6300
6301    NamedDecl *OldDecl = 0;
6302    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6303    case Ovl_Overload:
6304      return false;
6305
6306    case Ovl_NonFunction:
6307      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6308      break;
6309
6310    // We found a decl with the exact signature.
6311    case Ovl_Match:
6312      // If we're in a record, we want to hide the target, so we
6313      // return true (without a diagnostic) to tell the caller not to
6314      // build a shadow decl.
6315      if (CurContext->isRecord())
6316        return true;
6317
6318      // If we're not in a record, this is an error.
6319      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6320      break;
6321    }
6322
6323    Diag(Target->getLocation(), diag::note_using_decl_target);
6324    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6325    return true;
6326  }
6327
6328  // Target is not a function.
6329
6330  if (isa<TagDecl>(Target)) {
6331    // No conflict between a tag and a non-tag.
6332    if (!Tag) return false;
6333
6334    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6335    Diag(Target->getLocation(), diag::note_using_decl_target);
6336    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6337    return true;
6338  }
6339
6340  // No conflict between a tag and a non-tag.
6341  if (!NonTag) return false;
6342
6343  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6344  Diag(Target->getLocation(), diag::note_using_decl_target);
6345  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6346  return true;
6347}
6348
6349/// Builds a shadow declaration corresponding to a 'using' declaration.
6350UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6351                                            UsingDecl *UD,
6352                                            NamedDecl *Orig) {
6353
6354  // If we resolved to another shadow declaration, just coalesce them.
6355  NamedDecl *Target = Orig;
6356  if (isa<UsingShadowDecl>(Target)) {
6357    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6358    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6359  }
6360
6361  UsingShadowDecl *Shadow
6362    = UsingShadowDecl::Create(Context, CurContext,
6363                              UD->getLocation(), UD, Target);
6364  UD->addShadowDecl(Shadow);
6365
6366  Shadow->setAccess(UD->getAccess());
6367  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6368    Shadow->setInvalidDecl();
6369
6370  if (S)
6371    PushOnScopeChains(Shadow, S);
6372  else
6373    CurContext->addDecl(Shadow);
6374
6375
6376  return Shadow;
6377}
6378
6379/// Hides a using shadow declaration.  This is required by the current
6380/// using-decl implementation when a resolvable using declaration in a
6381/// class is followed by a declaration which would hide or override
6382/// one or more of the using decl's targets; for example:
6383///
6384///   struct Base { void foo(int); };
6385///   struct Derived : Base {
6386///     using Base::foo;
6387///     void foo(int);
6388///   };
6389///
6390/// The governing language is C++03 [namespace.udecl]p12:
6391///
6392///   When a using-declaration brings names from a base class into a
6393///   derived class scope, member functions in the derived class
6394///   override and/or hide member functions with the same name and
6395///   parameter types in a base class (rather than conflicting).
6396///
6397/// There are two ways to implement this:
6398///   (1) optimistically create shadow decls when they're not hidden
6399///       by existing declarations, or
6400///   (2) don't create any shadow decls (or at least don't make them
6401///       visible) until we've fully parsed/instantiated the class.
6402/// The problem with (1) is that we might have to retroactively remove
6403/// a shadow decl, which requires several O(n) operations because the
6404/// decl structures are (very reasonably) not designed for removal.
6405/// (2) avoids this but is very fiddly and phase-dependent.
6406void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6407  if (Shadow->getDeclName().getNameKind() ==
6408        DeclarationName::CXXConversionFunctionName)
6409    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6410
6411  // Remove it from the DeclContext...
6412  Shadow->getDeclContext()->removeDecl(Shadow);
6413
6414  // ...and the scope, if applicable...
6415  if (S) {
6416    S->RemoveDecl(Shadow);
6417    IdResolver.RemoveDecl(Shadow);
6418  }
6419
6420  // ...and the using decl.
6421  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6422
6423  // TODO: complain somehow if Shadow was used.  It shouldn't
6424  // be possible for this to happen, because...?
6425}
6426
6427/// Builds a using declaration.
6428///
6429/// \param IsInstantiation - Whether this call arises from an
6430///   instantiation of an unresolved using declaration.  We treat
6431///   the lookup differently for these declarations.
6432NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6433                                       SourceLocation UsingLoc,
6434                                       CXXScopeSpec &SS,
6435                                       const DeclarationNameInfo &NameInfo,
6436                                       AttributeList *AttrList,
6437                                       bool IsInstantiation,
6438                                       bool IsTypeName,
6439                                       SourceLocation TypenameLoc) {
6440  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6441  SourceLocation IdentLoc = NameInfo.getLoc();
6442  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6443
6444  // FIXME: We ignore attributes for now.
6445
6446  if (SS.isEmpty()) {
6447    Diag(IdentLoc, diag::err_using_requires_qualname);
6448    return 0;
6449  }
6450
6451  // Do the redeclaration lookup in the current scope.
6452  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6453                        ForRedeclaration);
6454  Previous.setHideTags(false);
6455  if (S) {
6456    LookupName(Previous, S);
6457
6458    // It is really dumb that we have to do this.
6459    LookupResult::Filter F = Previous.makeFilter();
6460    while (F.hasNext()) {
6461      NamedDecl *D = F.next();
6462      if (!isDeclInScope(D, CurContext, S))
6463        F.erase();
6464    }
6465    F.done();
6466  } else {
6467    assert(IsInstantiation && "no scope in non-instantiation");
6468    assert(CurContext->isRecord() && "scope not record in instantiation");
6469    LookupQualifiedName(Previous, CurContext);
6470  }
6471
6472  // Check for invalid redeclarations.
6473  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6474    return 0;
6475
6476  // Check for bad qualifiers.
6477  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6478    return 0;
6479
6480  DeclContext *LookupContext = computeDeclContext(SS);
6481  NamedDecl *D;
6482  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6483  if (!LookupContext) {
6484    if (IsTypeName) {
6485      // FIXME: not all declaration name kinds are legal here
6486      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6487                                              UsingLoc, TypenameLoc,
6488                                              QualifierLoc,
6489                                              IdentLoc, NameInfo.getName());
6490    } else {
6491      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6492                                           QualifierLoc, NameInfo);
6493    }
6494  } else {
6495    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6496                          NameInfo, IsTypeName);
6497  }
6498  D->setAccess(AS);
6499  CurContext->addDecl(D);
6500
6501  if (!LookupContext) return D;
6502  UsingDecl *UD = cast<UsingDecl>(D);
6503
6504  if (RequireCompleteDeclContext(SS, LookupContext)) {
6505    UD->setInvalidDecl();
6506    return UD;
6507  }
6508
6509  // Constructor inheriting using decls get special treatment.
6510  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6511    if (CheckInheritedConstructorUsingDecl(UD))
6512      UD->setInvalidDecl();
6513    return UD;
6514  }
6515
6516  // Otherwise, look up the target name.
6517
6518  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6519
6520  // Unlike most lookups, we don't always want to hide tag
6521  // declarations: tag names are visible through the using declaration
6522  // even if hidden by ordinary names, *except* in a dependent context
6523  // where it's important for the sanity of two-phase lookup.
6524  if (!IsInstantiation)
6525    R.setHideTags(false);
6526
6527  LookupQualifiedName(R, LookupContext);
6528
6529  if (R.empty()) {
6530    Diag(IdentLoc, diag::err_no_member)
6531      << NameInfo.getName() << LookupContext << SS.getRange();
6532    UD->setInvalidDecl();
6533    return UD;
6534  }
6535
6536  if (R.isAmbiguous()) {
6537    UD->setInvalidDecl();
6538    return UD;
6539  }
6540
6541  if (IsTypeName) {
6542    // If we asked for a typename and got a non-type decl, error out.
6543    if (!R.getAsSingle<TypeDecl>()) {
6544      Diag(IdentLoc, diag::err_using_typename_non_type);
6545      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6546        Diag((*I)->getUnderlyingDecl()->getLocation(),
6547             diag::note_using_decl_target);
6548      UD->setInvalidDecl();
6549      return UD;
6550    }
6551  } else {
6552    // If we asked for a non-typename and we got a type, error out,
6553    // but only if this is an instantiation of an unresolved using
6554    // decl.  Otherwise just silently find the type name.
6555    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6556      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6557      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6558      UD->setInvalidDecl();
6559      return UD;
6560    }
6561  }
6562
6563  // C++0x N2914 [namespace.udecl]p6:
6564  // A using-declaration shall not name a namespace.
6565  if (R.getAsSingle<NamespaceDecl>()) {
6566    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6567      << SS.getRange();
6568    UD->setInvalidDecl();
6569    return UD;
6570  }
6571
6572  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6573    if (!CheckUsingShadowDecl(UD, *I, Previous))
6574      BuildUsingShadowDecl(S, UD, *I);
6575  }
6576
6577  return UD;
6578}
6579
6580/// Additional checks for a using declaration referring to a constructor name.
6581bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6582  if (UD->isTypeName()) {
6583    // FIXME: Cannot specify typename when specifying constructor
6584    return true;
6585  }
6586
6587  const Type *SourceType = UD->getQualifier()->getAsType();
6588  assert(SourceType &&
6589         "Using decl naming constructor doesn't have type in scope spec.");
6590  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6591
6592  // Check whether the named type is a direct base class.
6593  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6594  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6595  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6596       BaseIt != BaseE; ++BaseIt) {
6597    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6598    if (CanonicalSourceType == BaseType)
6599      break;
6600  }
6601
6602  if (BaseIt == BaseE) {
6603    // Did not find SourceType in the bases.
6604    Diag(UD->getUsingLocation(),
6605         diag::err_using_decl_constructor_not_in_direct_base)
6606      << UD->getNameInfo().getSourceRange()
6607      << QualType(SourceType, 0) << TargetClass;
6608    return true;
6609  }
6610
6611  BaseIt->setInheritConstructors();
6612
6613  return false;
6614}
6615
6616/// Checks that the given using declaration is not an invalid
6617/// redeclaration.  Note that this is checking only for the using decl
6618/// itself, not for any ill-formedness among the UsingShadowDecls.
6619bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6620                                       bool isTypeName,
6621                                       const CXXScopeSpec &SS,
6622                                       SourceLocation NameLoc,
6623                                       const LookupResult &Prev) {
6624  // C++03 [namespace.udecl]p8:
6625  // C++0x [namespace.udecl]p10:
6626  //   A using-declaration is a declaration and can therefore be used
6627  //   repeatedly where (and only where) multiple declarations are
6628  //   allowed.
6629  //
6630  // That's in non-member contexts.
6631  if (!CurContext->getRedeclContext()->isRecord())
6632    return false;
6633
6634  NestedNameSpecifier *Qual
6635    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6636
6637  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6638    NamedDecl *D = *I;
6639
6640    bool DTypename;
6641    NestedNameSpecifier *DQual;
6642    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6643      DTypename = UD->isTypeName();
6644      DQual = UD->getQualifier();
6645    } else if (UnresolvedUsingValueDecl *UD
6646                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6647      DTypename = false;
6648      DQual = UD->getQualifier();
6649    } else if (UnresolvedUsingTypenameDecl *UD
6650                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6651      DTypename = true;
6652      DQual = UD->getQualifier();
6653    } else continue;
6654
6655    // using decls differ if one says 'typename' and the other doesn't.
6656    // FIXME: non-dependent using decls?
6657    if (isTypeName != DTypename) continue;
6658
6659    // using decls differ if they name different scopes (but note that
6660    // template instantiation can cause this check to trigger when it
6661    // didn't before instantiation).
6662    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6663        Context.getCanonicalNestedNameSpecifier(DQual))
6664      continue;
6665
6666    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6667    Diag(D->getLocation(), diag::note_using_decl) << 1;
6668    return true;
6669  }
6670
6671  return false;
6672}
6673
6674
6675/// Checks that the given nested-name qualifier used in a using decl
6676/// in the current context is appropriately related to the current
6677/// scope.  If an error is found, diagnoses it and returns true.
6678bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6679                                   const CXXScopeSpec &SS,
6680                                   SourceLocation NameLoc) {
6681  DeclContext *NamedContext = computeDeclContext(SS);
6682
6683  if (!CurContext->isRecord()) {
6684    // C++03 [namespace.udecl]p3:
6685    // C++0x [namespace.udecl]p8:
6686    //   A using-declaration for a class member shall be a member-declaration.
6687
6688    // If we weren't able to compute a valid scope, it must be a
6689    // dependent class scope.
6690    if (!NamedContext || NamedContext->isRecord()) {
6691      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6692        << SS.getRange();
6693      return true;
6694    }
6695
6696    // Otherwise, everything is known to be fine.
6697    return false;
6698  }
6699
6700  // The current scope is a record.
6701
6702  // If the named context is dependent, we can't decide much.
6703  if (!NamedContext) {
6704    // FIXME: in C++0x, we can diagnose if we can prove that the
6705    // nested-name-specifier does not refer to a base class, which is
6706    // still possible in some cases.
6707
6708    // Otherwise we have to conservatively report that things might be
6709    // okay.
6710    return false;
6711  }
6712
6713  if (!NamedContext->isRecord()) {
6714    // Ideally this would point at the last name in the specifier,
6715    // but we don't have that level of source info.
6716    Diag(SS.getRange().getBegin(),
6717         diag::err_using_decl_nested_name_specifier_is_not_class)
6718      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6719    return true;
6720  }
6721
6722  if (!NamedContext->isDependentContext() &&
6723      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6724    return true;
6725
6726  if (getLangOptions().CPlusPlus0x) {
6727    // C++0x [namespace.udecl]p3:
6728    //   In a using-declaration used as a member-declaration, the
6729    //   nested-name-specifier shall name a base class of the class
6730    //   being defined.
6731
6732    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6733                                 cast<CXXRecordDecl>(NamedContext))) {
6734      if (CurContext == NamedContext) {
6735        Diag(NameLoc,
6736             diag::err_using_decl_nested_name_specifier_is_current_class)
6737          << SS.getRange();
6738        return true;
6739      }
6740
6741      Diag(SS.getRange().getBegin(),
6742           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6743        << (NestedNameSpecifier*) SS.getScopeRep()
6744        << cast<CXXRecordDecl>(CurContext)
6745        << SS.getRange();
6746      return true;
6747    }
6748
6749    return false;
6750  }
6751
6752  // C++03 [namespace.udecl]p4:
6753  //   A using-declaration used as a member-declaration shall refer
6754  //   to a member of a base class of the class being defined [etc.].
6755
6756  // Salient point: SS doesn't have to name a base class as long as
6757  // lookup only finds members from base classes.  Therefore we can
6758  // diagnose here only if we can prove that that can't happen,
6759  // i.e. if the class hierarchies provably don't intersect.
6760
6761  // TODO: it would be nice if "definitely valid" results were cached
6762  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6763  // need to be repeated.
6764
6765  struct UserData {
6766    llvm::DenseSet<const CXXRecordDecl*> Bases;
6767
6768    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6769      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6770      Data->Bases.insert(Base);
6771      return true;
6772    }
6773
6774    bool hasDependentBases(const CXXRecordDecl *Class) {
6775      return !Class->forallBases(collect, this);
6776    }
6777
6778    /// Returns true if the base is dependent or is one of the
6779    /// accumulated base classes.
6780    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6781      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6782      return !Data->Bases.count(Base);
6783    }
6784
6785    bool mightShareBases(const CXXRecordDecl *Class) {
6786      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6787    }
6788  };
6789
6790  UserData Data;
6791
6792  // Returns false if we find a dependent base.
6793  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6794    return false;
6795
6796  // Returns false if the class has a dependent base or if it or one
6797  // of its bases is present in the base set of the current context.
6798  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6799    return false;
6800
6801  Diag(SS.getRange().getBegin(),
6802       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6803    << (NestedNameSpecifier*) SS.getScopeRep()
6804    << cast<CXXRecordDecl>(CurContext)
6805    << SS.getRange();
6806
6807  return true;
6808}
6809
6810Decl *Sema::ActOnAliasDeclaration(Scope *S,
6811                                  AccessSpecifier AS,
6812                                  MultiTemplateParamsArg TemplateParamLists,
6813                                  SourceLocation UsingLoc,
6814                                  UnqualifiedId &Name,
6815                                  TypeResult Type) {
6816  // Skip up to the relevant declaration scope.
6817  while (S->getFlags() & Scope::TemplateParamScope)
6818    S = S->getParent();
6819  assert((S->getFlags() & Scope::DeclScope) &&
6820         "got alias-declaration outside of declaration scope");
6821
6822  if (Type.isInvalid())
6823    return 0;
6824
6825  bool Invalid = false;
6826  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6827  TypeSourceInfo *TInfo = 0;
6828  GetTypeFromParser(Type.get(), &TInfo);
6829
6830  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6831    return 0;
6832
6833  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6834                                      UPPC_DeclarationType)) {
6835    Invalid = true;
6836    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6837                                             TInfo->getTypeLoc().getBeginLoc());
6838  }
6839
6840  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6841  LookupName(Previous, S);
6842
6843  // Warn about shadowing the name of a template parameter.
6844  if (Previous.isSingleResult() &&
6845      Previous.getFoundDecl()->isTemplateParameter()) {
6846    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6847    Previous.clear();
6848  }
6849
6850  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6851         "name in alias declaration must be an identifier");
6852  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6853                                               Name.StartLocation,
6854                                               Name.Identifier, TInfo);
6855
6856  NewTD->setAccess(AS);
6857
6858  if (Invalid)
6859    NewTD->setInvalidDecl();
6860
6861  CheckTypedefForVariablyModifiedType(S, NewTD);
6862  Invalid |= NewTD->isInvalidDecl();
6863
6864  bool Redeclaration = false;
6865
6866  NamedDecl *NewND;
6867  if (TemplateParamLists.size()) {
6868    TypeAliasTemplateDecl *OldDecl = 0;
6869    TemplateParameterList *OldTemplateParams = 0;
6870
6871    if (TemplateParamLists.size() != 1) {
6872      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6873        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6874         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6875    }
6876    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6877
6878    // Only consider previous declarations in the same scope.
6879    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6880                         /*ExplicitInstantiationOrSpecialization*/false);
6881    if (!Previous.empty()) {
6882      Redeclaration = true;
6883
6884      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6885      if (!OldDecl && !Invalid) {
6886        Diag(UsingLoc, diag::err_redefinition_different_kind)
6887          << Name.Identifier;
6888
6889        NamedDecl *OldD = Previous.getRepresentativeDecl();
6890        if (OldD->getLocation().isValid())
6891          Diag(OldD->getLocation(), diag::note_previous_definition);
6892
6893        Invalid = true;
6894      }
6895
6896      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6897        if (TemplateParameterListsAreEqual(TemplateParams,
6898                                           OldDecl->getTemplateParameters(),
6899                                           /*Complain=*/true,
6900                                           TPL_TemplateMatch))
6901          OldTemplateParams = OldDecl->getTemplateParameters();
6902        else
6903          Invalid = true;
6904
6905        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6906        if (!Invalid &&
6907            !Context.hasSameType(OldTD->getUnderlyingType(),
6908                                 NewTD->getUnderlyingType())) {
6909          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6910          // but we can't reasonably accept it.
6911          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6912            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6913          if (OldTD->getLocation().isValid())
6914            Diag(OldTD->getLocation(), diag::note_previous_definition);
6915          Invalid = true;
6916        }
6917      }
6918    }
6919
6920    // Merge any previous default template arguments into our parameters,
6921    // and check the parameter list.
6922    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6923                                   TPC_TypeAliasTemplate))
6924      return 0;
6925
6926    TypeAliasTemplateDecl *NewDecl =
6927      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6928                                    Name.Identifier, TemplateParams,
6929                                    NewTD);
6930
6931    NewDecl->setAccess(AS);
6932
6933    if (Invalid)
6934      NewDecl->setInvalidDecl();
6935    else if (OldDecl)
6936      NewDecl->setPreviousDeclaration(OldDecl);
6937
6938    NewND = NewDecl;
6939  } else {
6940    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6941    NewND = NewTD;
6942  }
6943
6944  if (!Redeclaration)
6945    PushOnScopeChains(NewND, S);
6946
6947  return NewND;
6948}
6949
6950Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6951                                             SourceLocation NamespaceLoc,
6952                                             SourceLocation AliasLoc,
6953                                             IdentifierInfo *Alias,
6954                                             CXXScopeSpec &SS,
6955                                             SourceLocation IdentLoc,
6956                                             IdentifierInfo *Ident) {
6957
6958  // Lookup the namespace name.
6959  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6960  LookupParsedName(R, S, &SS);
6961
6962  // Check if we have a previous declaration with the same name.
6963  NamedDecl *PrevDecl
6964    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6965                       ForRedeclaration);
6966  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6967    PrevDecl = 0;
6968
6969  if (PrevDecl) {
6970    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6971      // We already have an alias with the same name that points to the same
6972      // namespace, so don't create a new one.
6973      // FIXME: At some point, we'll want to create the (redundant)
6974      // declaration to maintain better source information.
6975      if (!R.isAmbiguous() && !R.empty() &&
6976          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6977        return 0;
6978    }
6979
6980    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6981      diag::err_redefinition_different_kind;
6982    Diag(AliasLoc, DiagID) << Alias;
6983    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6984    return 0;
6985  }
6986
6987  if (R.isAmbiguous())
6988    return 0;
6989
6990  if (R.empty()) {
6991    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6992      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6993      return 0;
6994    }
6995  }
6996
6997  NamespaceAliasDecl *AliasDecl =
6998    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6999                               Alias, SS.getWithLocInContext(Context),
7000                               IdentLoc, R.getFoundDecl());
7001
7002  PushOnScopeChains(AliasDecl, S);
7003  return AliasDecl;
7004}
7005
7006namespace {
7007  /// \brief Scoped object used to handle the state changes required in Sema
7008  /// to implicitly define the body of a C++ member function;
7009  class ImplicitlyDefinedFunctionScope {
7010    Sema &S;
7011    Sema::ContextRAII SavedContext;
7012
7013  public:
7014    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
7015      : S(S), SavedContext(S, Method)
7016    {
7017      S.PushFunctionScope();
7018      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
7019    }
7020
7021    ~ImplicitlyDefinedFunctionScope() {
7022      S.PopExpressionEvaluationContext();
7023      S.PopFunctionScopeInfo();
7024    }
7025  };
7026}
7027
7028Sema::ImplicitExceptionSpecification
7029Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7030  // C++ [except.spec]p14:
7031  //   An implicitly declared special member function (Clause 12) shall have an
7032  //   exception-specification. [...]
7033  ImplicitExceptionSpecification ExceptSpec(Context);
7034  if (ClassDecl->isInvalidDecl())
7035    return ExceptSpec;
7036
7037  // Direct base-class constructors.
7038  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7039                                       BEnd = ClassDecl->bases_end();
7040       B != BEnd; ++B) {
7041    if (B->isVirtual()) // Handled below.
7042      continue;
7043
7044    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7045      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7046      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7047      // If this is a deleted function, add it anyway. This might be conformant
7048      // with the standard. This might not. I'm not sure. It might not matter.
7049      if (Constructor)
7050        ExceptSpec.CalledDecl(Constructor);
7051    }
7052  }
7053
7054  // Virtual base-class constructors.
7055  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7056                                       BEnd = ClassDecl->vbases_end();
7057       B != BEnd; ++B) {
7058    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7059      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7060      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7061      // If this is a deleted function, add it anyway. This might be conformant
7062      // with the standard. This might not. I'm not sure. It might not matter.
7063      if (Constructor)
7064        ExceptSpec.CalledDecl(Constructor);
7065    }
7066  }
7067
7068  // Field constructors.
7069  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7070                               FEnd = ClassDecl->field_end();
7071       F != FEnd; ++F) {
7072    if (F->hasInClassInitializer()) {
7073      if (Expr *E = F->getInClassInitializer())
7074        ExceptSpec.CalledExpr(E);
7075      else if (!F->isInvalidDecl())
7076        ExceptSpec.SetDelayed();
7077    } else if (const RecordType *RecordTy
7078              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7079      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7080      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7081      // If this is a deleted function, add it anyway. This might be conformant
7082      // with the standard. This might not. I'm not sure. It might not matter.
7083      // In particular, the problem is that this function never gets called. It
7084      // might just be ill-formed because this function attempts to refer to
7085      // a deleted function here.
7086      if (Constructor)
7087        ExceptSpec.CalledDecl(Constructor);
7088    }
7089  }
7090
7091  return ExceptSpec;
7092}
7093
7094CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7095                                                     CXXRecordDecl *ClassDecl) {
7096  // C++ [class.ctor]p5:
7097  //   A default constructor for a class X is a constructor of class X
7098  //   that can be called without an argument. If there is no
7099  //   user-declared constructor for class X, a default constructor is
7100  //   implicitly declared. An implicitly-declared default constructor
7101  //   is an inline public member of its class.
7102  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7103         "Should not build implicit default constructor!");
7104
7105  ImplicitExceptionSpecification Spec =
7106    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7107  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7108
7109  // Create the actual constructor declaration.
7110  CanQualType ClassType
7111    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7112  SourceLocation ClassLoc = ClassDecl->getLocation();
7113  DeclarationName Name
7114    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7115  DeclarationNameInfo NameInfo(Name, ClassLoc);
7116  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7117      Context, ClassDecl, ClassLoc, NameInfo,
7118      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7119      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7120      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7121        getLangOptions().CPlusPlus0x);
7122  DefaultCon->setAccess(AS_public);
7123  DefaultCon->setDefaulted();
7124  DefaultCon->setImplicit();
7125  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7126
7127  // Note that we have declared this constructor.
7128  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7129
7130  if (Scope *S = getScopeForContext(ClassDecl))
7131    PushOnScopeChains(DefaultCon, S, false);
7132  ClassDecl->addDecl(DefaultCon);
7133
7134  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7135    DefaultCon->setDeletedAsWritten();
7136
7137  return DefaultCon;
7138}
7139
7140void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7141                                            CXXConstructorDecl *Constructor) {
7142  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7143          !Constructor->doesThisDeclarationHaveABody() &&
7144          !Constructor->isDeleted()) &&
7145    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7146
7147  CXXRecordDecl *ClassDecl = Constructor->getParent();
7148  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7149
7150  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7151  DiagnosticErrorTrap Trap(Diags);
7152  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7153      Trap.hasErrorOccurred()) {
7154    Diag(CurrentLocation, diag::note_member_synthesized_at)
7155      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7156    Constructor->setInvalidDecl();
7157    return;
7158  }
7159
7160  SourceLocation Loc = Constructor->getLocation();
7161  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7162
7163  Constructor->setUsed();
7164  MarkVTableUsed(CurrentLocation, ClassDecl);
7165
7166  if (ASTMutationListener *L = getASTMutationListener()) {
7167    L->CompletedImplicitDefinition(Constructor);
7168  }
7169}
7170
7171/// Get any existing defaulted default constructor for the given class. Do not
7172/// implicitly define one if it does not exist.
7173static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7174                                                             CXXRecordDecl *D) {
7175  ASTContext &Context = Self.Context;
7176  QualType ClassType = Context.getTypeDeclType(D);
7177  DeclarationName ConstructorName
7178    = Context.DeclarationNames.getCXXConstructorName(
7179                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7180
7181  DeclContext::lookup_const_iterator Con, ConEnd;
7182  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7183       Con != ConEnd; ++Con) {
7184    // A function template cannot be defaulted.
7185    if (isa<FunctionTemplateDecl>(*Con))
7186      continue;
7187
7188    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7189    if (Constructor->isDefaultConstructor())
7190      return Constructor->isDefaulted() ? Constructor : 0;
7191  }
7192  return 0;
7193}
7194
7195void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7196  if (!D) return;
7197  AdjustDeclIfTemplate(D);
7198
7199  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7200  CXXConstructorDecl *CtorDecl
7201    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7202
7203  if (!CtorDecl) return;
7204
7205  // Compute the exception specification for the default constructor.
7206  const FunctionProtoType *CtorTy =
7207    CtorDecl->getType()->castAs<FunctionProtoType>();
7208  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7209    ImplicitExceptionSpecification Spec =
7210      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7211    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7212    assert(EPI.ExceptionSpecType != EST_Delayed);
7213
7214    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7215  }
7216
7217  // If the default constructor is explicitly defaulted, checking the exception
7218  // specification is deferred until now.
7219  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7220      !ClassDecl->isDependentType())
7221    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7222}
7223
7224void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7225  // We start with an initial pass over the base classes to collect those that
7226  // inherit constructors from. If there are none, we can forgo all further
7227  // processing.
7228  typedef SmallVector<const RecordType *, 4> BasesVector;
7229  BasesVector BasesToInheritFrom;
7230  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7231                                          BaseE = ClassDecl->bases_end();
7232         BaseIt != BaseE; ++BaseIt) {
7233    if (BaseIt->getInheritConstructors()) {
7234      QualType Base = BaseIt->getType();
7235      if (Base->isDependentType()) {
7236        // If we inherit constructors from anything that is dependent, just
7237        // abort processing altogether. We'll get another chance for the
7238        // instantiations.
7239        return;
7240      }
7241      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7242    }
7243  }
7244  if (BasesToInheritFrom.empty())
7245    return;
7246
7247  // Now collect the constructors that we already have in the current class.
7248  // Those take precedence over inherited constructors.
7249  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7250  //   unless there is a user-declared constructor with the same signature in
7251  //   the class where the using-declaration appears.
7252  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7253  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7254                                    CtorE = ClassDecl->ctor_end();
7255       CtorIt != CtorE; ++CtorIt) {
7256    ExistingConstructors.insert(
7257        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7258  }
7259
7260  Scope *S = getScopeForContext(ClassDecl);
7261  DeclarationName CreatedCtorName =
7262      Context.DeclarationNames.getCXXConstructorName(
7263          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7264
7265  // Now comes the true work.
7266  // First, we keep a map from constructor types to the base that introduced
7267  // them. Needed for finding conflicting constructors. We also keep the
7268  // actually inserted declarations in there, for pretty diagnostics.
7269  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7270  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7271  ConstructorToSourceMap InheritedConstructors;
7272  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7273                             BaseE = BasesToInheritFrom.end();
7274       BaseIt != BaseE; ++BaseIt) {
7275    const RecordType *Base = *BaseIt;
7276    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7277    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7278    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7279                                      CtorE = BaseDecl->ctor_end();
7280         CtorIt != CtorE; ++CtorIt) {
7281      // Find the using declaration for inheriting this base's constructors.
7282      DeclarationName Name =
7283          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7284      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7285          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7286      SourceLocation UsingLoc = UD ? UD->getLocation() :
7287                                     ClassDecl->getLocation();
7288
7289      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7290      //   from the class X named in the using-declaration consists of actual
7291      //   constructors and notional constructors that result from the
7292      //   transformation of defaulted parameters as follows:
7293      //   - all non-template default constructors of X, and
7294      //   - for each non-template constructor of X that has at least one
7295      //     parameter with a default argument, the set of constructors that
7296      //     results from omitting any ellipsis parameter specification and
7297      //     successively omitting parameters with a default argument from the
7298      //     end of the parameter-type-list.
7299      CXXConstructorDecl *BaseCtor = *CtorIt;
7300      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7301      const FunctionProtoType *BaseCtorType =
7302          BaseCtor->getType()->getAs<FunctionProtoType>();
7303
7304      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7305                    maxParams = BaseCtor->getNumParams();
7306           params <= maxParams; ++params) {
7307        // Skip default constructors. They're never inherited.
7308        if (params == 0)
7309          continue;
7310        // Skip copy and move constructors for the same reason.
7311        if (CanBeCopyOrMove && params == 1)
7312          continue;
7313
7314        // Build up a function type for this particular constructor.
7315        // FIXME: The working paper does not consider that the exception spec
7316        // for the inheriting constructor might be larger than that of the
7317        // source. This code doesn't yet, either. When it does, this code will
7318        // need to be delayed until after exception specifications and in-class
7319        // member initializers are attached.
7320        const Type *NewCtorType;
7321        if (params == maxParams)
7322          NewCtorType = BaseCtorType;
7323        else {
7324          SmallVector<QualType, 16> Args;
7325          for (unsigned i = 0; i < params; ++i) {
7326            Args.push_back(BaseCtorType->getArgType(i));
7327          }
7328          FunctionProtoType::ExtProtoInfo ExtInfo =
7329              BaseCtorType->getExtProtoInfo();
7330          ExtInfo.Variadic = false;
7331          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7332                                                Args.data(), params, ExtInfo)
7333                       .getTypePtr();
7334        }
7335        const Type *CanonicalNewCtorType =
7336            Context.getCanonicalType(NewCtorType);
7337
7338        // Now that we have the type, first check if the class already has a
7339        // constructor with this signature.
7340        if (ExistingConstructors.count(CanonicalNewCtorType))
7341          continue;
7342
7343        // Then we check if we have already declared an inherited constructor
7344        // with this signature.
7345        std::pair<ConstructorToSourceMap::iterator, bool> result =
7346            InheritedConstructors.insert(std::make_pair(
7347                CanonicalNewCtorType,
7348                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7349        if (!result.second) {
7350          // Already in the map. If it came from a different class, that's an
7351          // error. Not if it's from the same.
7352          CanQualType PreviousBase = result.first->second.first;
7353          if (CanonicalBase != PreviousBase) {
7354            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7355            const CXXConstructorDecl *PrevBaseCtor =
7356                PrevCtor->getInheritedConstructor();
7357            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7358
7359            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7360            Diag(BaseCtor->getLocation(),
7361                 diag::note_using_decl_constructor_conflict_current_ctor);
7362            Diag(PrevBaseCtor->getLocation(),
7363                 diag::note_using_decl_constructor_conflict_previous_ctor);
7364            Diag(PrevCtor->getLocation(),
7365                 diag::note_using_decl_constructor_conflict_previous_using);
7366          }
7367          continue;
7368        }
7369
7370        // OK, we're there, now add the constructor.
7371        // C++0x [class.inhctor]p8: [...] that would be performed by a
7372        //   user-written inline constructor [...]
7373        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7374        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7375            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7376            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7377            /*ImplicitlyDeclared=*/true,
7378            // FIXME: Due to a defect in the standard, we treat inherited
7379            // constructors as constexpr even if that makes them ill-formed.
7380            /*Constexpr=*/BaseCtor->isConstexpr());
7381        NewCtor->setAccess(BaseCtor->getAccess());
7382
7383        // Build up the parameter decls and add them.
7384        SmallVector<ParmVarDecl *, 16> ParamDecls;
7385        for (unsigned i = 0; i < params; ++i) {
7386          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7387                                                   UsingLoc, UsingLoc,
7388                                                   /*IdentifierInfo=*/0,
7389                                                   BaseCtorType->getArgType(i),
7390                                                   /*TInfo=*/0, SC_None,
7391                                                   SC_None, /*DefaultArg=*/0));
7392        }
7393        NewCtor->setParams(ParamDecls);
7394        NewCtor->setInheritedConstructor(BaseCtor);
7395
7396        PushOnScopeChains(NewCtor, S, false);
7397        ClassDecl->addDecl(NewCtor);
7398        result.first->second.second = NewCtor;
7399      }
7400    }
7401  }
7402}
7403
7404Sema::ImplicitExceptionSpecification
7405Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7406  // C++ [except.spec]p14:
7407  //   An implicitly declared special member function (Clause 12) shall have
7408  //   an exception-specification.
7409  ImplicitExceptionSpecification ExceptSpec(Context);
7410  if (ClassDecl->isInvalidDecl())
7411    return ExceptSpec;
7412
7413  // Direct base-class destructors.
7414  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7415                                       BEnd = ClassDecl->bases_end();
7416       B != BEnd; ++B) {
7417    if (B->isVirtual()) // Handled below.
7418      continue;
7419
7420    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7421      ExceptSpec.CalledDecl(
7422                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7423  }
7424
7425  // Virtual base-class destructors.
7426  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7427                                       BEnd = ClassDecl->vbases_end();
7428       B != BEnd; ++B) {
7429    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7430      ExceptSpec.CalledDecl(
7431                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7432  }
7433
7434  // Field destructors.
7435  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7436                               FEnd = ClassDecl->field_end();
7437       F != FEnd; ++F) {
7438    if (const RecordType *RecordTy
7439        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7440      ExceptSpec.CalledDecl(
7441                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7442  }
7443
7444  return ExceptSpec;
7445}
7446
7447CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7448  // C++ [class.dtor]p2:
7449  //   If a class has no user-declared destructor, a destructor is
7450  //   declared implicitly. An implicitly-declared destructor is an
7451  //   inline public member of its class.
7452
7453  ImplicitExceptionSpecification Spec =
7454      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7455  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7456
7457  // Create the actual destructor declaration.
7458  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7459
7460  CanQualType ClassType
7461    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7462  SourceLocation ClassLoc = ClassDecl->getLocation();
7463  DeclarationName Name
7464    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7465  DeclarationNameInfo NameInfo(Name, ClassLoc);
7466  CXXDestructorDecl *Destructor
7467      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7468                                  /*isInline=*/true,
7469                                  /*isImplicitlyDeclared=*/true);
7470  Destructor->setAccess(AS_public);
7471  Destructor->setDefaulted();
7472  Destructor->setImplicit();
7473  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7474
7475  // Note that we have declared this destructor.
7476  ++ASTContext::NumImplicitDestructorsDeclared;
7477
7478  // Introduce this destructor into its scope.
7479  if (Scope *S = getScopeForContext(ClassDecl))
7480    PushOnScopeChains(Destructor, S, false);
7481  ClassDecl->addDecl(Destructor);
7482
7483  // This could be uniqued if it ever proves significant.
7484  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7485
7486  if (ShouldDeleteDestructor(Destructor))
7487    Destructor->setDeletedAsWritten();
7488
7489  AddOverriddenMethods(ClassDecl, Destructor);
7490
7491  return Destructor;
7492}
7493
7494void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7495                                    CXXDestructorDecl *Destructor) {
7496  assert((Destructor->isDefaulted() &&
7497          !Destructor->doesThisDeclarationHaveABody()) &&
7498         "DefineImplicitDestructor - call it for implicit default dtor");
7499  CXXRecordDecl *ClassDecl = Destructor->getParent();
7500  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7501
7502  if (Destructor->isInvalidDecl())
7503    return;
7504
7505  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7506
7507  DiagnosticErrorTrap Trap(Diags);
7508  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7509                                         Destructor->getParent());
7510
7511  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7512    Diag(CurrentLocation, diag::note_member_synthesized_at)
7513      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7514
7515    Destructor->setInvalidDecl();
7516    return;
7517  }
7518
7519  SourceLocation Loc = Destructor->getLocation();
7520  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7521  Destructor->setImplicitlyDefined(true);
7522  Destructor->setUsed();
7523  MarkVTableUsed(CurrentLocation, ClassDecl);
7524
7525  if (ASTMutationListener *L = getASTMutationListener()) {
7526    L->CompletedImplicitDefinition(Destructor);
7527  }
7528}
7529
7530void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7531                                         CXXDestructorDecl *destructor) {
7532  // C++11 [class.dtor]p3:
7533  //   A declaration of a destructor that does not have an exception-
7534  //   specification is implicitly considered to have the same exception-
7535  //   specification as an implicit declaration.
7536  const FunctionProtoType *dtorType = destructor->getType()->
7537                                        getAs<FunctionProtoType>();
7538  if (dtorType->hasExceptionSpec())
7539    return;
7540
7541  ImplicitExceptionSpecification exceptSpec =
7542      ComputeDefaultedDtorExceptionSpec(classDecl);
7543
7544  // Replace the destructor's type, building off the existing one. Fortunately,
7545  // the only thing of interest in the destructor type is its extended info.
7546  // The return and arguments are fixed.
7547  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7548  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7549  epi.NumExceptions = exceptSpec.size();
7550  epi.Exceptions = exceptSpec.data();
7551  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7552
7553  destructor->setType(ty);
7554
7555  // FIXME: If the destructor has a body that could throw, and the newly created
7556  // spec doesn't allow exceptions, we should emit a warning, because this
7557  // change in behavior can break conforming C++03 programs at runtime.
7558  // However, we don't have a body yet, so it needs to be done somewhere else.
7559}
7560
7561/// \brief Builds a statement that copies/moves the given entity from \p From to
7562/// \c To.
7563///
7564/// This routine is used to copy/move the members of a class with an
7565/// implicitly-declared copy/move assignment operator. When the entities being
7566/// copied are arrays, this routine builds for loops to copy them.
7567///
7568/// \param S The Sema object used for type-checking.
7569///
7570/// \param Loc The location where the implicit copy/move is being generated.
7571///
7572/// \param T The type of the expressions being copied/moved. Both expressions
7573/// must have this type.
7574///
7575/// \param To The expression we are copying/moving to.
7576///
7577/// \param From The expression we are copying/moving from.
7578///
7579/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7580/// Otherwise, it's a non-static member subobject.
7581///
7582/// \param Copying Whether we're copying or moving.
7583///
7584/// \param Depth Internal parameter recording the depth of the recursion.
7585///
7586/// \returns A statement or a loop that copies the expressions.
7587static StmtResult
7588BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7589                      Expr *To, Expr *From,
7590                      bool CopyingBaseSubobject, bool Copying,
7591                      unsigned Depth = 0) {
7592  // C++0x [class.copy]p28:
7593  //   Each subobject is assigned in the manner appropriate to its type:
7594  //
7595  //     - if the subobject is of class type, as if by a call to operator= with
7596  //       the subobject as the object expression and the corresponding
7597  //       subobject of x as a single function argument (as if by explicit
7598  //       qualification; that is, ignoring any possible virtual overriding
7599  //       functions in more derived classes);
7600  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7601    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7602
7603    // Look for operator=.
7604    DeclarationName Name
7605      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7606    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7607    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7608
7609    // Filter out any result that isn't a copy/move-assignment operator.
7610    LookupResult::Filter F = OpLookup.makeFilter();
7611    while (F.hasNext()) {
7612      NamedDecl *D = F.next();
7613      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7614        if (Copying ? Method->isCopyAssignmentOperator() :
7615                      Method->isMoveAssignmentOperator())
7616          continue;
7617
7618      F.erase();
7619    }
7620    F.done();
7621
7622    // Suppress the protected check (C++ [class.protected]) for each of the
7623    // assignment operators we found. This strange dance is required when
7624    // we're assigning via a base classes's copy-assignment operator. To
7625    // ensure that we're getting the right base class subobject (without
7626    // ambiguities), we need to cast "this" to that subobject type; to
7627    // ensure that we don't go through the virtual call mechanism, we need
7628    // to qualify the operator= name with the base class (see below). However,
7629    // this means that if the base class has a protected copy assignment
7630    // operator, the protected member access check will fail. So, we
7631    // rewrite "protected" access to "public" access in this case, since we
7632    // know by construction that we're calling from a derived class.
7633    if (CopyingBaseSubobject) {
7634      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7635           L != LEnd; ++L) {
7636        if (L.getAccess() == AS_protected)
7637          L.setAccess(AS_public);
7638      }
7639    }
7640
7641    // Create the nested-name-specifier that will be used to qualify the
7642    // reference to operator=; this is required to suppress the virtual
7643    // call mechanism.
7644    CXXScopeSpec SS;
7645    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7646    SS.MakeTrivial(S.Context,
7647                   NestedNameSpecifier::Create(S.Context, 0, false,
7648                                               CanonicalT),
7649                   Loc);
7650
7651    // Create the reference to operator=.
7652    ExprResult OpEqualRef
7653      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7654                                   /*TemplateKWLoc=*/SourceLocation(),
7655                                   /*FirstQualifierInScope=*/0,
7656                                   OpLookup,
7657                                   /*TemplateArgs=*/0,
7658                                   /*SuppressQualifierCheck=*/true);
7659    if (OpEqualRef.isInvalid())
7660      return StmtError();
7661
7662    // Build the call to the assignment operator.
7663
7664    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7665                                                  OpEqualRef.takeAs<Expr>(),
7666                                                  Loc, &From, 1, Loc);
7667    if (Call.isInvalid())
7668      return StmtError();
7669
7670    return S.Owned(Call.takeAs<Stmt>());
7671  }
7672
7673  //     - if the subobject is of scalar type, the built-in assignment
7674  //       operator is used.
7675  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7676  if (!ArrayTy) {
7677    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7678    if (Assignment.isInvalid())
7679      return StmtError();
7680
7681    return S.Owned(Assignment.takeAs<Stmt>());
7682  }
7683
7684  //     - if the subobject is an array, each element is assigned, in the
7685  //       manner appropriate to the element type;
7686
7687  // Construct a loop over the array bounds, e.g.,
7688  //
7689  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7690  //
7691  // that will copy each of the array elements.
7692  QualType SizeType = S.Context.getSizeType();
7693
7694  // Create the iteration variable.
7695  IdentifierInfo *IterationVarName = 0;
7696  {
7697    SmallString<8> Str;
7698    llvm::raw_svector_ostream OS(Str);
7699    OS << "__i" << Depth;
7700    IterationVarName = &S.Context.Idents.get(OS.str());
7701  }
7702  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7703                                          IterationVarName, SizeType,
7704                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7705                                          SC_None, SC_None);
7706
7707  // Initialize the iteration variable to zero.
7708  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7709  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7710
7711  // Create a reference to the iteration variable; we'll use this several
7712  // times throughout.
7713  Expr *IterationVarRef
7714    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7715  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7716  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7717  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7718
7719  // Create the DeclStmt that holds the iteration variable.
7720  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7721
7722  // Create the comparison against the array bound.
7723  llvm::APInt Upper
7724    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7725  Expr *Comparison
7726    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7727                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7728                                     BO_NE, S.Context.BoolTy,
7729                                     VK_RValue, OK_Ordinary, Loc);
7730
7731  // Create the pre-increment of the iteration variable.
7732  Expr *Increment
7733    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7734                                    VK_LValue, OK_Ordinary, Loc);
7735
7736  // Subscript the "from" and "to" expressions with the iteration variable.
7737  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7738                                                         IterationVarRefRVal,
7739                                                         Loc));
7740  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7741                                                       IterationVarRefRVal,
7742                                                       Loc));
7743  if (!Copying) // Cast to rvalue
7744    From = CastForMoving(S, From);
7745
7746  // Build the copy/move for an individual element of the array.
7747  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7748                                          To, From, CopyingBaseSubobject,
7749                                          Copying, Depth + 1);
7750  if (Copy.isInvalid())
7751    return StmtError();
7752
7753  // Construct the loop that copies all elements of this array.
7754  return S.ActOnForStmt(Loc, Loc, InitStmt,
7755                        S.MakeFullExpr(Comparison),
7756                        0, S.MakeFullExpr(Increment),
7757                        Loc, Copy.take());
7758}
7759
7760std::pair<Sema::ImplicitExceptionSpecification, bool>
7761Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7762                                                   CXXRecordDecl *ClassDecl) {
7763  if (ClassDecl->isInvalidDecl())
7764    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7765
7766  // C++ [class.copy]p10:
7767  //   If the class definition does not explicitly declare a copy
7768  //   assignment operator, one is declared implicitly.
7769  //   The implicitly-defined copy assignment operator for a class X
7770  //   will have the form
7771  //
7772  //       X& X::operator=(const X&)
7773  //
7774  //   if
7775  bool HasConstCopyAssignment = true;
7776
7777  //       -- each direct base class B of X has a copy assignment operator
7778  //          whose parameter is of type const B&, const volatile B& or B,
7779  //          and
7780  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7781                                       BaseEnd = ClassDecl->bases_end();
7782       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7783    // We'll handle this below
7784    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7785      continue;
7786
7787    assert(!Base->getType()->isDependentType() &&
7788           "Cannot generate implicit members for class with dependent bases.");
7789    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7790    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7791                            &HasConstCopyAssignment);
7792  }
7793
7794  // In C++11, the above citation has "or virtual" added
7795  if (LangOpts.CPlusPlus0x) {
7796    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7797                                         BaseEnd = ClassDecl->vbases_end();
7798         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7799      assert(!Base->getType()->isDependentType() &&
7800             "Cannot generate implicit members for class with dependent bases.");
7801      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7802      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7803                              &HasConstCopyAssignment);
7804    }
7805  }
7806
7807  //       -- for all the nonstatic data members of X that are of a class
7808  //          type M (or array thereof), each such class type has a copy
7809  //          assignment operator whose parameter is of type const M&,
7810  //          const volatile M& or M.
7811  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7812                                  FieldEnd = ClassDecl->field_end();
7813       HasConstCopyAssignment && Field != FieldEnd;
7814       ++Field) {
7815    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7816    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7817      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7818                              &HasConstCopyAssignment);
7819    }
7820  }
7821
7822  //   Otherwise, the implicitly declared copy assignment operator will
7823  //   have the form
7824  //
7825  //       X& X::operator=(X&)
7826
7827  // C++ [except.spec]p14:
7828  //   An implicitly declared special member function (Clause 12) shall have an
7829  //   exception-specification. [...]
7830
7831  // It is unspecified whether or not an implicit copy assignment operator
7832  // attempts to deduplicate calls to assignment operators of virtual bases are
7833  // made. As such, this exception specification is effectively unspecified.
7834  // Based on a similar decision made for constness in C++0x, we're erring on
7835  // the side of assuming such calls to be made regardless of whether they
7836  // actually happen.
7837  ImplicitExceptionSpecification ExceptSpec(Context);
7838  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7839  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7840                                       BaseEnd = ClassDecl->bases_end();
7841       Base != BaseEnd; ++Base) {
7842    if (Base->isVirtual())
7843      continue;
7844
7845    CXXRecordDecl *BaseClassDecl
7846      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7847    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7848                                                            ArgQuals, false, 0))
7849      ExceptSpec.CalledDecl(CopyAssign);
7850  }
7851
7852  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7853                                       BaseEnd = ClassDecl->vbases_end();
7854       Base != BaseEnd; ++Base) {
7855    CXXRecordDecl *BaseClassDecl
7856      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7857    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7858                                                            ArgQuals, false, 0))
7859      ExceptSpec.CalledDecl(CopyAssign);
7860  }
7861
7862  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7863                                  FieldEnd = ClassDecl->field_end();
7864       Field != FieldEnd;
7865       ++Field) {
7866    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7867    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7868      if (CXXMethodDecl *CopyAssign =
7869          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7870        ExceptSpec.CalledDecl(CopyAssign);
7871    }
7872  }
7873
7874  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7875}
7876
7877CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7878  // Note: The following rules are largely analoguous to the copy
7879  // constructor rules. Note that virtual bases are not taken into account
7880  // for determining the argument type of the operator. Note also that
7881  // operators taking an object instead of a reference are allowed.
7882
7883  ImplicitExceptionSpecification Spec(Context);
7884  bool Const;
7885  llvm::tie(Spec, Const) =
7886    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7887
7888  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7889  QualType RetType = Context.getLValueReferenceType(ArgType);
7890  if (Const)
7891    ArgType = ArgType.withConst();
7892  ArgType = Context.getLValueReferenceType(ArgType);
7893
7894  //   An implicitly-declared copy assignment operator is an inline public
7895  //   member of its class.
7896  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7897  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7898  SourceLocation ClassLoc = ClassDecl->getLocation();
7899  DeclarationNameInfo NameInfo(Name, ClassLoc);
7900  CXXMethodDecl *CopyAssignment
7901    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7902                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7903                            /*TInfo=*/0, /*isStatic=*/false,
7904                            /*StorageClassAsWritten=*/SC_None,
7905                            /*isInline=*/true, /*isConstexpr=*/false,
7906                            SourceLocation());
7907  CopyAssignment->setAccess(AS_public);
7908  CopyAssignment->setDefaulted();
7909  CopyAssignment->setImplicit();
7910  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7911
7912  // Add the parameter to the operator.
7913  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7914                                               ClassLoc, ClassLoc, /*Id=*/0,
7915                                               ArgType, /*TInfo=*/0,
7916                                               SC_None,
7917                                               SC_None, 0);
7918  CopyAssignment->setParams(FromParam);
7919
7920  // Note that we have added this copy-assignment operator.
7921  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7922
7923  if (Scope *S = getScopeForContext(ClassDecl))
7924    PushOnScopeChains(CopyAssignment, S, false);
7925  ClassDecl->addDecl(CopyAssignment);
7926
7927  // C++0x [class.copy]p19:
7928  //   ....  If the class definition does not explicitly declare a copy
7929  //   assignment operator, there is no user-declared move constructor, and
7930  //   there is no user-declared move assignment operator, a copy assignment
7931  //   operator is implicitly declared as defaulted.
7932  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7933          !getLangOptions().MicrosoftMode) ||
7934      ClassDecl->hasUserDeclaredMoveAssignment() ||
7935      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7936    CopyAssignment->setDeletedAsWritten();
7937
7938  AddOverriddenMethods(ClassDecl, CopyAssignment);
7939  return CopyAssignment;
7940}
7941
7942void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7943                                        CXXMethodDecl *CopyAssignOperator) {
7944  assert((CopyAssignOperator->isDefaulted() &&
7945          CopyAssignOperator->isOverloadedOperator() &&
7946          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7947          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7948         "DefineImplicitCopyAssignment called for wrong function");
7949
7950  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7951
7952  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7953    CopyAssignOperator->setInvalidDecl();
7954    return;
7955  }
7956
7957  CopyAssignOperator->setUsed();
7958
7959  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7960  DiagnosticErrorTrap Trap(Diags);
7961
7962  // C++0x [class.copy]p30:
7963  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7964  //   for a non-union class X performs memberwise copy assignment of its
7965  //   subobjects. The direct base classes of X are assigned first, in the
7966  //   order of their declaration in the base-specifier-list, and then the
7967  //   immediate non-static data members of X are assigned, in the order in
7968  //   which they were declared in the class definition.
7969
7970  // The statements that form the synthesized function body.
7971  ASTOwningVector<Stmt*> Statements(*this);
7972
7973  // The parameter for the "other" object, which we are copying from.
7974  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7975  Qualifiers OtherQuals = Other->getType().getQualifiers();
7976  QualType OtherRefType = Other->getType();
7977  if (const LValueReferenceType *OtherRef
7978                                = OtherRefType->getAs<LValueReferenceType>()) {
7979    OtherRefType = OtherRef->getPointeeType();
7980    OtherQuals = OtherRefType.getQualifiers();
7981  }
7982
7983  // Our location for everything implicitly-generated.
7984  SourceLocation Loc = CopyAssignOperator->getLocation();
7985
7986  // Construct a reference to the "other" object. We'll be using this
7987  // throughout the generated ASTs.
7988  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7989  assert(OtherRef && "Reference to parameter cannot fail!");
7990
7991  // Construct the "this" pointer. We'll be using this throughout the generated
7992  // ASTs.
7993  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7994  assert(This && "Reference to this cannot fail!");
7995
7996  // Assign base classes.
7997  bool Invalid = false;
7998  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7999       E = ClassDecl->bases_end(); Base != E; ++Base) {
8000    // Form the assignment:
8001    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8002    QualType BaseType = Base->getType().getUnqualifiedType();
8003    if (!BaseType->isRecordType()) {
8004      Invalid = true;
8005      continue;
8006    }
8007
8008    CXXCastPath BasePath;
8009    BasePath.push_back(Base);
8010
8011    // Construct the "from" expression, which is an implicit cast to the
8012    // appropriately-qualified base type.
8013    Expr *From = OtherRef;
8014    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8015                             CK_UncheckedDerivedToBase,
8016                             VK_LValue, &BasePath).take();
8017
8018    // Dereference "this".
8019    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8020
8021    // Implicitly cast "this" to the appropriately-qualified base type.
8022    To = ImpCastExprToType(To.take(),
8023                           Context.getCVRQualifiedType(BaseType,
8024                                     CopyAssignOperator->getTypeQualifiers()),
8025                           CK_UncheckedDerivedToBase,
8026                           VK_LValue, &BasePath);
8027
8028    // Build the copy.
8029    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
8030                                            To.get(), From,
8031                                            /*CopyingBaseSubobject=*/true,
8032                                            /*Copying=*/true);
8033    if (Copy.isInvalid()) {
8034      Diag(CurrentLocation, diag::note_member_synthesized_at)
8035        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8036      CopyAssignOperator->setInvalidDecl();
8037      return;
8038    }
8039
8040    // Success! Record the copy.
8041    Statements.push_back(Copy.takeAs<Expr>());
8042  }
8043
8044  // \brief Reference to the __builtin_memcpy function.
8045  Expr *BuiltinMemCpyRef = 0;
8046  // \brief Reference to the __builtin_objc_memmove_collectable function.
8047  Expr *CollectableMemCpyRef = 0;
8048
8049  // Assign non-static members.
8050  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8051                                  FieldEnd = ClassDecl->field_end();
8052       Field != FieldEnd; ++Field) {
8053    if (Field->isUnnamedBitfield())
8054      continue;
8055
8056    // Check for members of reference type; we can't copy those.
8057    if (Field->getType()->isReferenceType()) {
8058      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8059        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8060      Diag(Field->getLocation(), diag::note_declared_at);
8061      Diag(CurrentLocation, diag::note_member_synthesized_at)
8062        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8063      Invalid = true;
8064      continue;
8065    }
8066
8067    // Check for members of const-qualified, non-class type.
8068    QualType BaseType = Context.getBaseElementType(Field->getType());
8069    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8070      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8071        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8072      Diag(Field->getLocation(), diag::note_declared_at);
8073      Diag(CurrentLocation, diag::note_member_synthesized_at)
8074        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8075      Invalid = true;
8076      continue;
8077    }
8078
8079    // Suppress assigning zero-width bitfields.
8080    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8081      continue;
8082
8083    QualType FieldType = Field->getType().getNonReferenceType();
8084    if (FieldType->isIncompleteArrayType()) {
8085      assert(ClassDecl->hasFlexibleArrayMember() &&
8086             "Incomplete array type is not valid");
8087      continue;
8088    }
8089
8090    // Build references to the field in the object we're copying from and to.
8091    CXXScopeSpec SS; // Intentionally empty
8092    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8093                              LookupMemberName);
8094    MemberLookup.addDecl(*Field);
8095    MemberLookup.resolveKind();
8096    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8097                                               Loc, /*IsArrow=*/false,
8098                                               SS, SourceLocation(), 0,
8099                                               MemberLookup, 0);
8100    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8101                                             Loc, /*IsArrow=*/true,
8102                                             SS, SourceLocation(), 0,
8103                                             MemberLookup, 0);
8104    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8105    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8106
8107    // If the field should be copied with __builtin_memcpy rather than via
8108    // explicit assignments, do so. This optimization only applies for arrays
8109    // of scalars and arrays of class type with trivial copy-assignment
8110    // operators.
8111    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8112        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8113      // Compute the size of the memory buffer to be copied.
8114      QualType SizeType = Context.getSizeType();
8115      llvm::APInt Size(Context.getTypeSize(SizeType),
8116                       Context.getTypeSizeInChars(BaseType).getQuantity());
8117      for (const ConstantArrayType *Array
8118              = Context.getAsConstantArrayType(FieldType);
8119           Array;
8120           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8121        llvm::APInt ArraySize
8122          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8123        Size *= ArraySize;
8124      }
8125
8126      // Take the address of the field references for "from" and "to".
8127      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8128      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8129
8130      bool NeedsCollectableMemCpy =
8131          (BaseType->isRecordType() &&
8132           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8133
8134      if (NeedsCollectableMemCpy) {
8135        if (!CollectableMemCpyRef) {
8136          // Create a reference to the __builtin_objc_memmove_collectable function.
8137          LookupResult R(*this,
8138                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8139                         Loc, LookupOrdinaryName);
8140          LookupName(R, TUScope, true);
8141
8142          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8143          if (!CollectableMemCpy) {
8144            // Something went horribly wrong earlier, and we will have
8145            // complained about it.
8146            Invalid = true;
8147            continue;
8148          }
8149
8150          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8151                                                  CollectableMemCpy->getType(),
8152                                                  VK_LValue, Loc, 0).take();
8153          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8154        }
8155      }
8156      // Create a reference to the __builtin_memcpy builtin function.
8157      else if (!BuiltinMemCpyRef) {
8158        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8159                       LookupOrdinaryName);
8160        LookupName(R, TUScope, true);
8161
8162        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8163        if (!BuiltinMemCpy) {
8164          // Something went horribly wrong earlier, and we will have complained
8165          // about it.
8166          Invalid = true;
8167          continue;
8168        }
8169
8170        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8171                                            BuiltinMemCpy->getType(),
8172                                            VK_LValue, Loc, 0).take();
8173        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8174      }
8175
8176      ASTOwningVector<Expr*> CallArgs(*this);
8177      CallArgs.push_back(To.takeAs<Expr>());
8178      CallArgs.push_back(From.takeAs<Expr>());
8179      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8180      ExprResult Call = ExprError();
8181      if (NeedsCollectableMemCpy)
8182        Call = ActOnCallExpr(/*Scope=*/0,
8183                             CollectableMemCpyRef,
8184                             Loc, move_arg(CallArgs),
8185                             Loc);
8186      else
8187        Call = ActOnCallExpr(/*Scope=*/0,
8188                             BuiltinMemCpyRef,
8189                             Loc, move_arg(CallArgs),
8190                             Loc);
8191
8192      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8193      Statements.push_back(Call.takeAs<Expr>());
8194      continue;
8195    }
8196
8197    // Build the copy of this field.
8198    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8199                                            To.get(), From.get(),
8200                                            /*CopyingBaseSubobject=*/false,
8201                                            /*Copying=*/true);
8202    if (Copy.isInvalid()) {
8203      Diag(CurrentLocation, diag::note_member_synthesized_at)
8204        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8205      CopyAssignOperator->setInvalidDecl();
8206      return;
8207    }
8208
8209    // Success! Record the copy.
8210    Statements.push_back(Copy.takeAs<Stmt>());
8211  }
8212
8213  if (!Invalid) {
8214    // Add a "return *this;"
8215    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8216
8217    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8218    if (Return.isInvalid())
8219      Invalid = true;
8220    else {
8221      Statements.push_back(Return.takeAs<Stmt>());
8222
8223      if (Trap.hasErrorOccurred()) {
8224        Diag(CurrentLocation, diag::note_member_synthesized_at)
8225          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8226        Invalid = true;
8227      }
8228    }
8229  }
8230
8231  if (Invalid) {
8232    CopyAssignOperator->setInvalidDecl();
8233    return;
8234  }
8235
8236  StmtResult Body;
8237  {
8238    CompoundScopeRAII CompoundScope(*this);
8239    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8240                             /*isStmtExpr=*/false);
8241    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8242  }
8243  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8244
8245  if (ASTMutationListener *L = getASTMutationListener()) {
8246    L->CompletedImplicitDefinition(CopyAssignOperator);
8247  }
8248}
8249
8250Sema::ImplicitExceptionSpecification
8251Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8252  ImplicitExceptionSpecification ExceptSpec(Context);
8253
8254  if (ClassDecl->isInvalidDecl())
8255    return ExceptSpec;
8256
8257  // C++0x [except.spec]p14:
8258  //   An implicitly declared special member function (Clause 12) shall have an
8259  //   exception-specification. [...]
8260
8261  // It is unspecified whether or not an implicit move assignment operator
8262  // attempts to deduplicate calls to assignment operators of virtual bases are
8263  // made. As such, this exception specification is effectively unspecified.
8264  // Based on a similar decision made for constness in C++0x, we're erring on
8265  // the side of assuming such calls to be made regardless of whether they
8266  // actually happen.
8267  // Note that a move constructor is not implicitly declared when there are
8268  // virtual bases, but it can still be user-declared and explicitly defaulted.
8269  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8270                                       BaseEnd = ClassDecl->bases_end();
8271       Base != BaseEnd; ++Base) {
8272    if (Base->isVirtual())
8273      continue;
8274
8275    CXXRecordDecl *BaseClassDecl
8276      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8277    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8278                                                           false, 0))
8279      ExceptSpec.CalledDecl(MoveAssign);
8280  }
8281
8282  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8283                                       BaseEnd = ClassDecl->vbases_end();
8284       Base != BaseEnd; ++Base) {
8285    CXXRecordDecl *BaseClassDecl
8286      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8287    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8288                                                           false, 0))
8289      ExceptSpec.CalledDecl(MoveAssign);
8290  }
8291
8292  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8293                                  FieldEnd = ClassDecl->field_end();
8294       Field != FieldEnd;
8295       ++Field) {
8296    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8297    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8298      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8299                                                             false, 0))
8300        ExceptSpec.CalledDecl(MoveAssign);
8301    }
8302  }
8303
8304  return ExceptSpec;
8305}
8306
8307CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8308  // Note: The following rules are largely analoguous to the move
8309  // constructor rules.
8310
8311  ImplicitExceptionSpecification Spec(
8312      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8313
8314  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8315  QualType RetType = Context.getLValueReferenceType(ArgType);
8316  ArgType = Context.getRValueReferenceType(ArgType);
8317
8318  //   An implicitly-declared move assignment operator is an inline public
8319  //   member of its class.
8320  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8321  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8322  SourceLocation ClassLoc = ClassDecl->getLocation();
8323  DeclarationNameInfo NameInfo(Name, ClassLoc);
8324  CXXMethodDecl *MoveAssignment
8325    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8326                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8327                            /*TInfo=*/0, /*isStatic=*/false,
8328                            /*StorageClassAsWritten=*/SC_None,
8329                            /*isInline=*/true,
8330                            /*isConstexpr=*/false,
8331                            SourceLocation());
8332  MoveAssignment->setAccess(AS_public);
8333  MoveAssignment->setDefaulted();
8334  MoveAssignment->setImplicit();
8335  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8336
8337  // Add the parameter to the operator.
8338  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8339                                               ClassLoc, ClassLoc, /*Id=*/0,
8340                                               ArgType, /*TInfo=*/0,
8341                                               SC_None,
8342                                               SC_None, 0);
8343  MoveAssignment->setParams(FromParam);
8344
8345  // Note that we have added this copy-assignment operator.
8346  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8347
8348  // C++0x [class.copy]p9:
8349  //   If the definition of a class X does not explicitly declare a move
8350  //   assignment operator, one will be implicitly declared as defaulted if and
8351  //   only if:
8352  //   [...]
8353  //   - the move assignment operator would not be implicitly defined as
8354  //     deleted.
8355  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8356    // Cache this result so that we don't try to generate this over and over
8357    // on every lookup, leaking memory and wasting time.
8358    ClassDecl->setFailedImplicitMoveAssignment();
8359    return 0;
8360  }
8361
8362  if (Scope *S = getScopeForContext(ClassDecl))
8363    PushOnScopeChains(MoveAssignment, S, false);
8364  ClassDecl->addDecl(MoveAssignment);
8365
8366  AddOverriddenMethods(ClassDecl, MoveAssignment);
8367  return MoveAssignment;
8368}
8369
8370void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8371                                        CXXMethodDecl *MoveAssignOperator) {
8372  assert((MoveAssignOperator->isDefaulted() &&
8373          MoveAssignOperator->isOverloadedOperator() &&
8374          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8375          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8376         "DefineImplicitMoveAssignment called for wrong function");
8377
8378  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8379
8380  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8381    MoveAssignOperator->setInvalidDecl();
8382    return;
8383  }
8384
8385  MoveAssignOperator->setUsed();
8386
8387  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8388  DiagnosticErrorTrap Trap(Diags);
8389
8390  // C++0x [class.copy]p28:
8391  //   The implicitly-defined or move assignment operator for a non-union class
8392  //   X performs memberwise move assignment of its subobjects. The direct base
8393  //   classes of X are assigned first, in the order of their declaration in the
8394  //   base-specifier-list, and then the immediate non-static data members of X
8395  //   are assigned, in the order in which they were declared in the class
8396  //   definition.
8397
8398  // The statements that form the synthesized function body.
8399  ASTOwningVector<Stmt*> Statements(*this);
8400
8401  // The parameter for the "other" object, which we are move from.
8402  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8403  QualType OtherRefType = Other->getType()->
8404      getAs<RValueReferenceType>()->getPointeeType();
8405  assert(OtherRefType.getQualifiers() == 0 &&
8406         "Bad argument type of defaulted move assignment");
8407
8408  // Our location for everything implicitly-generated.
8409  SourceLocation Loc = MoveAssignOperator->getLocation();
8410
8411  // Construct a reference to the "other" object. We'll be using this
8412  // throughout the generated ASTs.
8413  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8414  assert(OtherRef && "Reference to parameter cannot fail!");
8415  // Cast to rvalue.
8416  OtherRef = CastForMoving(*this, OtherRef);
8417
8418  // Construct the "this" pointer. We'll be using this throughout the generated
8419  // ASTs.
8420  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8421  assert(This && "Reference to this cannot fail!");
8422
8423  // Assign base classes.
8424  bool Invalid = false;
8425  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8426       E = ClassDecl->bases_end(); Base != E; ++Base) {
8427    // Form the assignment:
8428    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8429    QualType BaseType = Base->getType().getUnqualifiedType();
8430    if (!BaseType->isRecordType()) {
8431      Invalid = true;
8432      continue;
8433    }
8434
8435    CXXCastPath BasePath;
8436    BasePath.push_back(Base);
8437
8438    // Construct the "from" expression, which is an implicit cast to the
8439    // appropriately-qualified base type.
8440    Expr *From = OtherRef;
8441    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8442                             VK_XValue, &BasePath).take();
8443
8444    // Dereference "this".
8445    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8446
8447    // Implicitly cast "this" to the appropriately-qualified base type.
8448    To = ImpCastExprToType(To.take(),
8449                           Context.getCVRQualifiedType(BaseType,
8450                                     MoveAssignOperator->getTypeQualifiers()),
8451                           CK_UncheckedDerivedToBase,
8452                           VK_LValue, &BasePath);
8453
8454    // Build the move.
8455    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8456                                            To.get(), From,
8457                                            /*CopyingBaseSubobject=*/true,
8458                                            /*Copying=*/false);
8459    if (Move.isInvalid()) {
8460      Diag(CurrentLocation, diag::note_member_synthesized_at)
8461        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8462      MoveAssignOperator->setInvalidDecl();
8463      return;
8464    }
8465
8466    // Success! Record the move.
8467    Statements.push_back(Move.takeAs<Expr>());
8468  }
8469
8470  // \brief Reference to the __builtin_memcpy function.
8471  Expr *BuiltinMemCpyRef = 0;
8472  // \brief Reference to the __builtin_objc_memmove_collectable function.
8473  Expr *CollectableMemCpyRef = 0;
8474
8475  // Assign non-static members.
8476  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8477                                  FieldEnd = ClassDecl->field_end();
8478       Field != FieldEnd; ++Field) {
8479    if (Field->isUnnamedBitfield())
8480      continue;
8481
8482    // Check for members of reference type; we can't move those.
8483    if (Field->getType()->isReferenceType()) {
8484      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8485        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8486      Diag(Field->getLocation(), diag::note_declared_at);
8487      Diag(CurrentLocation, diag::note_member_synthesized_at)
8488        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8489      Invalid = true;
8490      continue;
8491    }
8492
8493    // Check for members of const-qualified, non-class type.
8494    QualType BaseType = Context.getBaseElementType(Field->getType());
8495    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8496      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8497        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8498      Diag(Field->getLocation(), diag::note_declared_at);
8499      Diag(CurrentLocation, diag::note_member_synthesized_at)
8500        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8501      Invalid = true;
8502      continue;
8503    }
8504
8505    // Suppress assigning zero-width bitfields.
8506    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8507      continue;
8508
8509    QualType FieldType = Field->getType().getNonReferenceType();
8510    if (FieldType->isIncompleteArrayType()) {
8511      assert(ClassDecl->hasFlexibleArrayMember() &&
8512             "Incomplete array type is not valid");
8513      continue;
8514    }
8515
8516    // Build references to the field in the object we're copying from and to.
8517    CXXScopeSpec SS; // Intentionally empty
8518    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8519                              LookupMemberName);
8520    MemberLookup.addDecl(*Field);
8521    MemberLookup.resolveKind();
8522    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8523                                               Loc, /*IsArrow=*/false,
8524                                               SS, SourceLocation(), 0,
8525                                               MemberLookup, 0);
8526    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8527                                             Loc, /*IsArrow=*/true,
8528                                             SS, SourceLocation(), 0,
8529                                             MemberLookup, 0);
8530    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8531    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8532
8533    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8534        "Member reference with rvalue base must be rvalue except for reference "
8535        "members, which aren't allowed for move assignment.");
8536
8537    // If the field should be copied with __builtin_memcpy rather than via
8538    // explicit assignments, do so. This optimization only applies for arrays
8539    // of scalars and arrays of class type with trivial move-assignment
8540    // operators.
8541    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8542        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8543      // Compute the size of the memory buffer to be copied.
8544      QualType SizeType = Context.getSizeType();
8545      llvm::APInt Size(Context.getTypeSize(SizeType),
8546                       Context.getTypeSizeInChars(BaseType).getQuantity());
8547      for (const ConstantArrayType *Array
8548              = Context.getAsConstantArrayType(FieldType);
8549           Array;
8550           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8551        llvm::APInt ArraySize
8552          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8553        Size *= ArraySize;
8554      }
8555
8556      // Take the address of the field references for "from" and "to". We
8557      // directly construct UnaryOperators here because semantic analysis
8558      // does not permit us to take the address of an xvalue.
8559      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8560                             Context.getPointerType(From.get()->getType()),
8561                             VK_RValue, OK_Ordinary, Loc);
8562      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8563                           Context.getPointerType(To.get()->getType()),
8564                           VK_RValue, OK_Ordinary, Loc);
8565
8566      bool NeedsCollectableMemCpy =
8567          (BaseType->isRecordType() &&
8568           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8569
8570      if (NeedsCollectableMemCpy) {
8571        if (!CollectableMemCpyRef) {
8572          // Create a reference to the __builtin_objc_memmove_collectable function.
8573          LookupResult R(*this,
8574                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8575                         Loc, LookupOrdinaryName);
8576          LookupName(R, TUScope, true);
8577
8578          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8579          if (!CollectableMemCpy) {
8580            // Something went horribly wrong earlier, and we will have
8581            // complained about it.
8582            Invalid = true;
8583            continue;
8584          }
8585
8586          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8587                                                  CollectableMemCpy->getType(),
8588                                                  VK_LValue, Loc, 0).take();
8589          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8590        }
8591      }
8592      // Create a reference to the __builtin_memcpy builtin function.
8593      else if (!BuiltinMemCpyRef) {
8594        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8595                       LookupOrdinaryName);
8596        LookupName(R, TUScope, true);
8597
8598        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8599        if (!BuiltinMemCpy) {
8600          // Something went horribly wrong earlier, and we will have complained
8601          // about it.
8602          Invalid = true;
8603          continue;
8604        }
8605
8606        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8607                                            BuiltinMemCpy->getType(),
8608                                            VK_LValue, Loc, 0).take();
8609        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8610      }
8611
8612      ASTOwningVector<Expr*> CallArgs(*this);
8613      CallArgs.push_back(To.takeAs<Expr>());
8614      CallArgs.push_back(From.takeAs<Expr>());
8615      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8616      ExprResult Call = ExprError();
8617      if (NeedsCollectableMemCpy)
8618        Call = ActOnCallExpr(/*Scope=*/0,
8619                             CollectableMemCpyRef,
8620                             Loc, move_arg(CallArgs),
8621                             Loc);
8622      else
8623        Call = ActOnCallExpr(/*Scope=*/0,
8624                             BuiltinMemCpyRef,
8625                             Loc, move_arg(CallArgs),
8626                             Loc);
8627
8628      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8629      Statements.push_back(Call.takeAs<Expr>());
8630      continue;
8631    }
8632
8633    // Build the move of this field.
8634    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8635                                            To.get(), From.get(),
8636                                            /*CopyingBaseSubobject=*/false,
8637                                            /*Copying=*/false);
8638    if (Move.isInvalid()) {
8639      Diag(CurrentLocation, diag::note_member_synthesized_at)
8640        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8641      MoveAssignOperator->setInvalidDecl();
8642      return;
8643    }
8644
8645    // Success! Record the copy.
8646    Statements.push_back(Move.takeAs<Stmt>());
8647  }
8648
8649  if (!Invalid) {
8650    // Add a "return *this;"
8651    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8652
8653    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8654    if (Return.isInvalid())
8655      Invalid = true;
8656    else {
8657      Statements.push_back(Return.takeAs<Stmt>());
8658
8659      if (Trap.hasErrorOccurred()) {
8660        Diag(CurrentLocation, diag::note_member_synthesized_at)
8661          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8662        Invalid = true;
8663      }
8664    }
8665  }
8666
8667  if (Invalid) {
8668    MoveAssignOperator->setInvalidDecl();
8669    return;
8670  }
8671
8672  StmtResult Body;
8673  {
8674    CompoundScopeRAII CompoundScope(*this);
8675    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8676                             /*isStmtExpr=*/false);
8677    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8678  }
8679  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8680
8681  if (ASTMutationListener *L = getASTMutationListener()) {
8682    L->CompletedImplicitDefinition(MoveAssignOperator);
8683  }
8684}
8685
8686std::pair<Sema::ImplicitExceptionSpecification, bool>
8687Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8688  if (ClassDecl->isInvalidDecl())
8689    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8690
8691  // C++ [class.copy]p5:
8692  //   The implicitly-declared copy constructor for a class X will
8693  //   have the form
8694  //
8695  //       X::X(const X&)
8696  //
8697  //   if
8698  // FIXME: It ought to be possible to store this on the record.
8699  bool HasConstCopyConstructor = true;
8700
8701  //     -- each direct or virtual base class B of X has a copy
8702  //        constructor whose first parameter is of type const B& or
8703  //        const volatile B&, and
8704  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8705                                       BaseEnd = ClassDecl->bases_end();
8706       HasConstCopyConstructor && Base != BaseEnd;
8707       ++Base) {
8708    // Virtual bases are handled below.
8709    if (Base->isVirtual())
8710      continue;
8711
8712    CXXRecordDecl *BaseClassDecl
8713      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8714    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8715                             &HasConstCopyConstructor);
8716  }
8717
8718  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8719                                       BaseEnd = ClassDecl->vbases_end();
8720       HasConstCopyConstructor && Base != BaseEnd;
8721       ++Base) {
8722    CXXRecordDecl *BaseClassDecl
8723      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8724    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8725                             &HasConstCopyConstructor);
8726  }
8727
8728  //     -- for all the nonstatic data members of X that are of a
8729  //        class type M (or array thereof), each such class type
8730  //        has a copy constructor whose first parameter is of type
8731  //        const M& or const volatile M&.
8732  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8733                                  FieldEnd = ClassDecl->field_end();
8734       HasConstCopyConstructor && Field != FieldEnd;
8735       ++Field) {
8736    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8737    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8738      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8739                               &HasConstCopyConstructor);
8740    }
8741  }
8742  //   Otherwise, the implicitly declared copy constructor will have
8743  //   the form
8744  //
8745  //       X::X(X&)
8746
8747  // C++ [except.spec]p14:
8748  //   An implicitly declared special member function (Clause 12) shall have an
8749  //   exception-specification. [...]
8750  ImplicitExceptionSpecification ExceptSpec(Context);
8751  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8752  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8753                                       BaseEnd = ClassDecl->bases_end();
8754       Base != BaseEnd;
8755       ++Base) {
8756    // Virtual bases are handled below.
8757    if (Base->isVirtual())
8758      continue;
8759
8760    CXXRecordDecl *BaseClassDecl
8761      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8762    if (CXXConstructorDecl *CopyConstructor =
8763          LookupCopyingConstructor(BaseClassDecl, Quals))
8764      ExceptSpec.CalledDecl(CopyConstructor);
8765  }
8766  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8767                                       BaseEnd = ClassDecl->vbases_end();
8768       Base != BaseEnd;
8769       ++Base) {
8770    CXXRecordDecl *BaseClassDecl
8771      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8772    if (CXXConstructorDecl *CopyConstructor =
8773          LookupCopyingConstructor(BaseClassDecl, Quals))
8774      ExceptSpec.CalledDecl(CopyConstructor);
8775  }
8776  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8777                                  FieldEnd = ClassDecl->field_end();
8778       Field != FieldEnd;
8779       ++Field) {
8780    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8781    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8782      if (CXXConstructorDecl *CopyConstructor =
8783        LookupCopyingConstructor(FieldClassDecl, Quals))
8784      ExceptSpec.CalledDecl(CopyConstructor);
8785    }
8786  }
8787
8788  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8789}
8790
8791CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8792                                                    CXXRecordDecl *ClassDecl) {
8793  // C++ [class.copy]p4:
8794  //   If the class definition does not explicitly declare a copy
8795  //   constructor, one is declared implicitly.
8796
8797  ImplicitExceptionSpecification Spec(Context);
8798  bool Const;
8799  llvm::tie(Spec, Const) =
8800    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8801
8802  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8803  QualType ArgType = ClassType;
8804  if (Const)
8805    ArgType = ArgType.withConst();
8806  ArgType = Context.getLValueReferenceType(ArgType);
8807
8808  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8809
8810  DeclarationName Name
8811    = Context.DeclarationNames.getCXXConstructorName(
8812                                           Context.getCanonicalType(ClassType));
8813  SourceLocation ClassLoc = ClassDecl->getLocation();
8814  DeclarationNameInfo NameInfo(Name, ClassLoc);
8815
8816  //   An implicitly-declared copy constructor is an inline public
8817  //   member of its class.
8818  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8819      Context, ClassDecl, ClassLoc, NameInfo,
8820      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8821      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8822      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8823        getLangOptions().CPlusPlus0x);
8824  CopyConstructor->setAccess(AS_public);
8825  CopyConstructor->setDefaulted();
8826  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8827
8828  // Note that we have declared this constructor.
8829  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8830
8831  // Add the parameter to the constructor.
8832  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8833                                               ClassLoc, ClassLoc,
8834                                               /*IdentifierInfo=*/0,
8835                                               ArgType, /*TInfo=*/0,
8836                                               SC_None,
8837                                               SC_None, 0);
8838  CopyConstructor->setParams(FromParam);
8839
8840  if (Scope *S = getScopeForContext(ClassDecl))
8841    PushOnScopeChains(CopyConstructor, S, false);
8842  ClassDecl->addDecl(CopyConstructor);
8843
8844  // C++11 [class.copy]p8:
8845  //   ... If the class definition does not explicitly declare a copy
8846  //   constructor, there is no user-declared move constructor, and there is no
8847  //   user-declared move assignment operator, a copy constructor is implicitly
8848  //   declared as defaulted.
8849  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8850      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8851          !getLangOptions().MicrosoftMode) ||
8852      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8853    CopyConstructor->setDeletedAsWritten();
8854
8855  return CopyConstructor;
8856}
8857
8858void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8859                                   CXXConstructorDecl *CopyConstructor) {
8860  assert((CopyConstructor->isDefaulted() &&
8861          CopyConstructor->isCopyConstructor() &&
8862          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8863         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8864
8865  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8866  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8867
8868  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8869  DiagnosticErrorTrap Trap(Diags);
8870
8871  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8872      Trap.hasErrorOccurred()) {
8873    Diag(CurrentLocation, diag::note_member_synthesized_at)
8874      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8875    CopyConstructor->setInvalidDecl();
8876  }  else {
8877    Sema::CompoundScopeRAII CompoundScope(*this);
8878    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8879                                               CopyConstructor->getLocation(),
8880                                               MultiStmtArg(*this, 0, 0),
8881                                               /*isStmtExpr=*/false)
8882                                                              .takeAs<Stmt>());
8883    CopyConstructor->setImplicitlyDefined(true);
8884  }
8885
8886  CopyConstructor->setUsed();
8887  if (ASTMutationListener *L = getASTMutationListener()) {
8888    L->CompletedImplicitDefinition(CopyConstructor);
8889  }
8890}
8891
8892Sema::ImplicitExceptionSpecification
8893Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8894  // C++ [except.spec]p14:
8895  //   An implicitly declared special member function (Clause 12) shall have an
8896  //   exception-specification. [...]
8897  ImplicitExceptionSpecification ExceptSpec(Context);
8898  if (ClassDecl->isInvalidDecl())
8899    return ExceptSpec;
8900
8901  // Direct base-class constructors.
8902  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8903                                       BEnd = ClassDecl->bases_end();
8904       B != BEnd; ++B) {
8905    if (B->isVirtual()) // Handled below.
8906      continue;
8907
8908    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8909      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8910      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8911      // If this is a deleted function, add it anyway. This might be conformant
8912      // with the standard. This might not. I'm not sure. It might not matter.
8913      if (Constructor)
8914        ExceptSpec.CalledDecl(Constructor);
8915    }
8916  }
8917
8918  // Virtual base-class constructors.
8919  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8920                                       BEnd = ClassDecl->vbases_end();
8921       B != BEnd; ++B) {
8922    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8923      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8924      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8925      // If this is a deleted function, add it anyway. This might be conformant
8926      // with the standard. This might not. I'm not sure. It might not matter.
8927      if (Constructor)
8928        ExceptSpec.CalledDecl(Constructor);
8929    }
8930  }
8931
8932  // Field constructors.
8933  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8934                               FEnd = ClassDecl->field_end();
8935       F != FEnd; ++F) {
8936    if (const RecordType *RecordTy
8937              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8938      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8939      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8940      // If this is a deleted function, add it anyway. This might be conformant
8941      // with the standard. This might not. I'm not sure. It might not matter.
8942      // In particular, the problem is that this function never gets called. It
8943      // might just be ill-formed because this function attempts to refer to
8944      // a deleted function here.
8945      if (Constructor)
8946        ExceptSpec.CalledDecl(Constructor);
8947    }
8948  }
8949
8950  return ExceptSpec;
8951}
8952
8953CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8954                                                    CXXRecordDecl *ClassDecl) {
8955  ImplicitExceptionSpecification Spec(
8956      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8957
8958  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8959  QualType ArgType = Context.getRValueReferenceType(ClassType);
8960
8961  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8962
8963  DeclarationName Name
8964    = Context.DeclarationNames.getCXXConstructorName(
8965                                           Context.getCanonicalType(ClassType));
8966  SourceLocation ClassLoc = ClassDecl->getLocation();
8967  DeclarationNameInfo NameInfo(Name, ClassLoc);
8968
8969  // C++0x [class.copy]p11:
8970  //   An implicitly-declared copy/move constructor is an inline public
8971  //   member of its class.
8972  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8973      Context, ClassDecl, ClassLoc, NameInfo,
8974      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8975      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8976      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8977        getLangOptions().CPlusPlus0x);
8978  MoveConstructor->setAccess(AS_public);
8979  MoveConstructor->setDefaulted();
8980  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8981
8982  // Add the parameter to the constructor.
8983  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8984                                               ClassLoc, ClassLoc,
8985                                               /*IdentifierInfo=*/0,
8986                                               ArgType, /*TInfo=*/0,
8987                                               SC_None,
8988                                               SC_None, 0);
8989  MoveConstructor->setParams(FromParam);
8990
8991  // C++0x [class.copy]p9:
8992  //   If the definition of a class X does not explicitly declare a move
8993  //   constructor, one will be implicitly declared as defaulted if and only if:
8994  //   [...]
8995  //   - the move constructor would not be implicitly defined as deleted.
8996  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8997    // Cache this result so that we don't try to generate this over and over
8998    // on every lookup, leaking memory and wasting time.
8999    ClassDecl->setFailedImplicitMoveConstructor();
9000    return 0;
9001  }
9002
9003  // Note that we have declared this constructor.
9004  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9005
9006  if (Scope *S = getScopeForContext(ClassDecl))
9007    PushOnScopeChains(MoveConstructor, S, false);
9008  ClassDecl->addDecl(MoveConstructor);
9009
9010  return MoveConstructor;
9011}
9012
9013void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9014                                   CXXConstructorDecl *MoveConstructor) {
9015  assert((MoveConstructor->isDefaulted() &&
9016          MoveConstructor->isMoveConstructor() &&
9017          !MoveConstructor->doesThisDeclarationHaveABody()) &&
9018         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9019
9020  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9021  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9022
9023  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
9024  DiagnosticErrorTrap Trap(Diags);
9025
9026  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
9027      Trap.hasErrorOccurred()) {
9028    Diag(CurrentLocation, diag::note_member_synthesized_at)
9029      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9030    MoveConstructor->setInvalidDecl();
9031  }  else {
9032    Sema::CompoundScopeRAII CompoundScope(*this);
9033    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9034                                               MoveConstructor->getLocation(),
9035                                               MultiStmtArg(*this, 0, 0),
9036                                               /*isStmtExpr=*/false)
9037                                                              .takeAs<Stmt>());
9038    MoveConstructor->setImplicitlyDefined(true);
9039  }
9040
9041  MoveConstructor->setUsed();
9042
9043  if (ASTMutationListener *L = getASTMutationListener()) {
9044    L->CompletedImplicitDefinition(MoveConstructor);
9045  }
9046}
9047
9048bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9049  return FD->isDeleted() &&
9050         (FD->isDefaulted() || FD->isImplicit()) &&
9051         isa<CXXMethodDecl>(FD);
9052}
9053
9054void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9055       SourceLocation CurrentLocation,
9056       CXXConversionDecl *Conv)
9057{
9058  Conv->setUsed();
9059
9060  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
9061  DiagnosticErrorTrap Trap(Diags);
9062
9063  // Introduce a bogus body, which IR generation will override anyway.
9064  Conv->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
9065                                           Conv->getLocation()));
9066
9067  if (ASTMutationListener *L = getASTMutationListener()) {
9068    L->CompletedImplicitDefinition(Conv);
9069  }
9070}
9071
9072void Sema::DefineImplicitLambdaToBlockPointerConversion(
9073       SourceLocation CurrentLocation,
9074       CXXConversionDecl *Conv)
9075{
9076  Conv->setUsed();
9077
9078  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
9079  DiagnosticErrorTrap Trap(Diags);
9080
9081  // Copy-initialize the lambda object as needed to capture
9082  Expr *This = ActOnCXXThis(CurrentLocation).take();
9083  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9084  ExprResult Init = PerformCopyInitialization(
9085                      InitializedEntity::InitializeBlock(CurrentLocation,
9086                                                         DerefThis->getType(),
9087                                                         /*NRVO=*/false),
9088                      CurrentLocation, DerefThis);
9089  if (!Init.isInvalid())
9090    Init = ActOnFinishFullExpr(Init.take());
9091
9092  if (!Init.isInvalid())
9093    Conv->setLambdaToBlockPointerCopyInit(Init.take());
9094  else {
9095    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9096  }
9097
9098  // Introduce a bogus body, which IR generation will override anyway.
9099  Conv->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
9100                                           Conv->getLocation()));
9101
9102  if (ASTMutationListener *L = getASTMutationListener()) {
9103    L->CompletedImplicitDefinition(Conv);
9104  }
9105}
9106
9107ExprResult
9108Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9109                            CXXConstructorDecl *Constructor,
9110                            MultiExprArg ExprArgs,
9111                            bool HadMultipleCandidates,
9112                            bool RequiresZeroInit,
9113                            unsigned ConstructKind,
9114                            SourceRange ParenRange) {
9115  bool Elidable = false;
9116
9117  // C++0x [class.copy]p34:
9118  //   When certain criteria are met, an implementation is allowed to
9119  //   omit the copy/move construction of a class object, even if the
9120  //   copy/move constructor and/or destructor for the object have
9121  //   side effects. [...]
9122  //     - when a temporary class object that has not been bound to a
9123  //       reference (12.2) would be copied/moved to a class object
9124  //       with the same cv-unqualified type, the copy/move operation
9125  //       can be omitted by constructing the temporary object
9126  //       directly into the target of the omitted copy/move
9127  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9128      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9129    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9130    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9131  }
9132
9133  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9134                               Elidable, move(ExprArgs), HadMultipleCandidates,
9135                               RequiresZeroInit, ConstructKind, ParenRange);
9136}
9137
9138/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9139/// including handling of its default argument expressions.
9140ExprResult
9141Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9142                            CXXConstructorDecl *Constructor, bool Elidable,
9143                            MultiExprArg ExprArgs,
9144                            bool HadMultipleCandidates,
9145                            bool RequiresZeroInit,
9146                            unsigned ConstructKind,
9147                            SourceRange ParenRange) {
9148  unsigned NumExprs = ExprArgs.size();
9149  Expr **Exprs = (Expr **)ExprArgs.release();
9150
9151  for (specific_attr_iterator<NonNullAttr>
9152           i = Constructor->specific_attr_begin<NonNullAttr>(),
9153           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9154    const NonNullAttr *NonNull = *i;
9155    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9156  }
9157
9158  MarkFunctionReferenced(ConstructLoc, Constructor);
9159  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9160                                        Constructor, Elidable, Exprs, NumExprs,
9161                                        HadMultipleCandidates, /*FIXME*/false,
9162                                        RequiresZeroInit,
9163              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9164                                        ParenRange));
9165}
9166
9167bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9168                                        CXXConstructorDecl *Constructor,
9169                                        MultiExprArg Exprs,
9170                                        bool HadMultipleCandidates) {
9171  // FIXME: Provide the correct paren SourceRange when available.
9172  ExprResult TempResult =
9173    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9174                          move(Exprs), HadMultipleCandidates, false,
9175                          CXXConstructExpr::CK_Complete, SourceRange());
9176  if (TempResult.isInvalid())
9177    return true;
9178
9179  Expr *Temp = TempResult.takeAs<Expr>();
9180  CheckImplicitConversions(Temp, VD->getLocation());
9181  MarkFunctionReferenced(VD->getLocation(), Constructor);
9182  Temp = MaybeCreateExprWithCleanups(Temp);
9183  VD->setInit(Temp);
9184
9185  return false;
9186}
9187
9188void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9189  if (VD->isInvalidDecl()) return;
9190
9191  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9192  if (ClassDecl->isInvalidDecl()) return;
9193  if (ClassDecl->hasTrivialDestructor()) return;
9194  if (ClassDecl->isDependentContext()) return;
9195
9196  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9197  MarkFunctionReferenced(VD->getLocation(), Destructor);
9198  CheckDestructorAccess(VD->getLocation(), Destructor,
9199                        PDiag(diag::err_access_dtor_var)
9200                        << VD->getDeclName()
9201                        << VD->getType());
9202
9203  if (!VD->hasGlobalStorage()) return;
9204
9205  // Emit warning for non-trivial dtor in global scope (a real global,
9206  // class-static, function-static).
9207  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9208
9209  // TODO: this should be re-enabled for static locals by !CXAAtExit
9210  if (!VD->isStaticLocal())
9211    Diag(VD->getLocation(), diag::warn_global_destructor);
9212}
9213
9214/// \brief Given a constructor and the set of arguments provided for the
9215/// constructor, convert the arguments and add any required default arguments
9216/// to form a proper call to this constructor.
9217///
9218/// \returns true if an error occurred, false otherwise.
9219bool
9220Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9221                              MultiExprArg ArgsPtr,
9222                              SourceLocation Loc,
9223                              ASTOwningVector<Expr*> &ConvertedArgs) {
9224  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9225  unsigned NumArgs = ArgsPtr.size();
9226  Expr **Args = (Expr **)ArgsPtr.get();
9227
9228  const FunctionProtoType *Proto
9229    = Constructor->getType()->getAs<FunctionProtoType>();
9230  assert(Proto && "Constructor without a prototype?");
9231  unsigned NumArgsInProto = Proto->getNumArgs();
9232
9233  // If too few arguments are available, we'll fill in the rest with defaults.
9234  if (NumArgs < NumArgsInProto)
9235    ConvertedArgs.reserve(NumArgsInProto);
9236  else
9237    ConvertedArgs.reserve(NumArgs);
9238
9239  VariadicCallType CallType =
9240    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9241  SmallVector<Expr *, 8> AllArgs;
9242  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9243                                        Proto, 0, Args, NumArgs, AllArgs,
9244                                        CallType);
9245  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9246  return Invalid;
9247}
9248
9249static inline bool
9250CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9251                                       const FunctionDecl *FnDecl) {
9252  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9253  if (isa<NamespaceDecl>(DC)) {
9254    return SemaRef.Diag(FnDecl->getLocation(),
9255                        diag::err_operator_new_delete_declared_in_namespace)
9256      << FnDecl->getDeclName();
9257  }
9258
9259  if (isa<TranslationUnitDecl>(DC) &&
9260      FnDecl->getStorageClass() == SC_Static) {
9261    return SemaRef.Diag(FnDecl->getLocation(),
9262                        diag::err_operator_new_delete_declared_static)
9263      << FnDecl->getDeclName();
9264  }
9265
9266  return false;
9267}
9268
9269static inline bool
9270CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9271                            CanQualType ExpectedResultType,
9272                            CanQualType ExpectedFirstParamType,
9273                            unsigned DependentParamTypeDiag,
9274                            unsigned InvalidParamTypeDiag) {
9275  QualType ResultType =
9276    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9277
9278  // Check that the result type is not dependent.
9279  if (ResultType->isDependentType())
9280    return SemaRef.Diag(FnDecl->getLocation(),
9281                        diag::err_operator_new_delete_dependent_result_type)
9282    << FnDecl->getDeclName() << ExpectedResultType;
9283
9284  // Check that the result type is what we expect.
9285  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9286    return SemaRef.Diag(FnDecl->getLocation(),
9287                        diag::err_operator_new_delete_invalid_result_type)
9288    << FnDecl->getDeclName() << ExpectedResultType;
9289
9290  // A function template must have at least 2 parameters.
9291  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9292    return SemaRef.Diag(FnDecl->getLocation(),
9293                      diag::err_operator_new_delete_template_too_few_parameters)
9294        << FnDecl->getDeclName();
9295
9296  // The function decl must have at least 1 parameter.
9297  if (FnDecl->getNumParams() == 0)
9298    return SemaRef.Diag(FnDecl->getLocation(),
9299                        diag::err_operator_new_delete_too_few_parameters)
9300      << FnDecl->getDeclName();
9301
9302  // Check the the first parameter type is not dependent.
9303  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9304  if (FirstParamType->isDependentType())
9305    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9306      << FnDecl->getDeclName() << ExpectedFirstParamType;
9307
9308  // Check that the first parameter type is what we expect.
9309  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9310      ExpectedFirstParamType)
9311    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9312    << FnDecl->getDeclName() << ExpectedFirstParamType;
9313
9314  return false;
9315}
9316
9317static bool
9318CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9319  // C++ [basic.stc.dynamic.allocation]p1:
9320  //   A program is ill-formed if an allocation function is declared in a
9321  //   namespace scope other than global scope or declared static in global
9322  //   scope.
9323  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9324    return true;
9325
9326  CanQualType SizeTy =
9327    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9328
9329  // C++ [basic.stc.dynamic.allocation]p1:
9330  //  The return type shall be void*. The first parameter shall have type
9331  //  std::size_t.
9332  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9333                                  SizeTy,
9334                                  diag::err_operator_new_dependent_param_type,
9335                                  diag::err_operator_new_param_type))
9336    return true;
9337
9338  // C++ [basic.stc.dynamic.allocation]p1:
9339  //  The first parameter shall not have an associated default argument.
9340  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9341    return SemaRef.Diag(FnDecl->getLocation(),
9342                        diag::err_operator_new_default_arg)
9343      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9344
9345  return false;
9346}
9347
9348static bool
9349CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9350  // C++ [basic.stc.dynamic.deallocation]p1:
9351  //   A program is ill-formed if deallocation functions are declared in a
9352  //   namespace scope other than global scope or declared static in global
9353  //   scope.
9354  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9355    return true;
9356
9357  // C++ [basic.stc.dynamic.deallocation]p2:
9358  //   Each deallocation function shall return void and its first parameter
9359  //   shall be void*.
9360  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9361                                  SemaRef.Context.VoidPtrTy,
9362                                 diag::err_operator_delete_dependent_param_type,
9363                                 diag::err_operator_delete_param_type))
9364    return true;
9365
9366  return false;
9367}
9368
9369/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9370/// of this overloaded operator is well-formed. If so, returns false;
9371/// otherwise, emits appropriate diagnostics and returns true.
9372bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9373  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9374         "Expected an overloaded operator declaration");
9375
9376  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9377
9378  // C++ [over.oper]p5:
9379  //   The allocation and deallocation functions, operator new,
9380  //   operator new[], operator delete and operator delete[], are
9381  //   described completely in 3.7.3. The attributes and restrictions
9382  //   found in the rest of this subclause do not apply to them unless
9383  //   explicitly stated in 3.7.3.
9384  if (Op == OO_Delete || Op == OO_Array_Delete)
9385    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9386
9387  if (Op == OO_New || Op == OO_Array_New)
9388    return CheckOperatorNewDeclaration(*this, FnDecl);
9389
9390  // C++ [over.oper]p6:
9391  //   An operator function shall either be a non-static member
9392  //   function or be a non-member function and have at least one
9393  //   parameter whose type is a class, a reference to a class, an
9394  //   enumeration, or a reference to an enumeration.
9395  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9396    if (MethodDecl->isStatic())
9397      return Diag(FnDecl->getLocation(),
9398                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9399  } else {
9400    bool ClassOrEnumParam = false;
9401    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9402                                   ParamEnd = FnDecl->param_end();
9403         Param != ParamEnd; ++Param) {
9404      QualType ParamType = (*Param)->getType().getNonReferenceType();
9405      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9406          ParamType->isEnumeralType()) {
9407        ClassOrEnumParam = true;
9408        break;
9409      }
9410    }
9411
9412    if (!ClassOrEnumParam)
9413      return Diag(FnDecl->getLocation(),
9414                  diag::err_operator_overload_needs_class_or_enum)
9415        << FnDecl->getDeclName();
9416  }
9417
9418  // C++ [over.oper]p8:
9419  //   An operator function cannot have default arguments (8.3.6),
9420  //   except where explicitly stated below.
9421  //
9422  // Only the function-call operator allows default arguments
9423  // (C++ [over.call]p1).
9424  if (Op != OO_Call) {
9425    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9426         Param != FnDecl->param_end(); ++Param) {
9427      if ((*Param)->hasDefaultArg())
9428        return Diag((*Param)->getLocation(),
9429                    diag::err_operator_overload_default_arg)
9430          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9431    }
9432  }
9433
9434  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9435    { false, false, false }
9436#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9437    , { Unary, Binary, MemberOnly }
9438#include "clang/Basic/OperatorKinds.def"
9439  };
9440
9441  bool CanBeUnaryOperator = OperatorUses[Op][0];
9442  bool CanBeBinaryOperator = OperatorUses[Op][1];
9443  bool MustBeMemberOperator = OperatorUses[Op][2];
9444
9445  // C++ [over.oper]p8:
9446  //   [...] Operator functions cannot have more or fewer parameters
9447  //   than the number required for the corresponding operator, as
9448  //   described in the rest of this subclause.
9449  unsigned NumParams = FnDecl->getNumParams()
9450                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9451  if (Op != OO_Call &&
9452      ((NumParams == 1 && !CanBeUnaryOperator) ||
9453       (NumParams == 2 && !CanBeBinaryOperator) ||
9454       (NumParams < 1) || (NumParams > 2))) {
9455    // We have the wrong number of parameters.
9456    unsigned ErrorKind;
9457    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9458      ErrorKind = 2;  // 2 -> unary or binary.
9459    } else if (CanBeUnaryOperator) {
9460      ErrorKind = 0;  // 0 -> unary
9461    } else {
9462      assert(CanBeBinaryOperator &&
9463             "All non-call overloaded operators are unary or binary!");
9464      ErrorKind = 1;  // 1 -> binary
9465    }
9466
9467    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9468      << FnDecl->getDeclName() << NumParams << ErrorKind;
9469  }
9470
9471  // Overloaded operators other than operator() cannot be variadic.
9472  if (Op != OO_Call &&
9473      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9474    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9475      << FnDecl->getDeclName();
9476  }
9477
9478  // Some operators must be non-static member functions.
9479  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9480    return Diag(FnDecl->getLocation(),
9481                diag::err_operator_overload_must_be_member)
9482      << FnDecl->getDeclName();
9483  }
9484
9485  // C++ [over.inc]p1:
9486  //   The user-defined function called operator++ implements the
9487  //   prefix and postfix ++ operator. If this function is a member
9488  //   function with no parameters, or a non-member function with one
9489  //   parameter of class or enumeration type, it defines the prefix
9490  //   increment operator ++ for objects of that type. If the function
9491  //   is a member function with one parameter (which shall be of type
9492  //   int) or a non-member function with two parameters (the second
9493  //   of which shall be of type int), it defines the postfix
9494  //   increment operator ++ for objects of that type.
9495  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9496    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9497    bool ParamIsInt = false;
9498    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9499      ParamIsInt = BT->getKind() == BuiltinType::Int;
9500
9501    if (!ParamIsInt)
9502      return Diag(LastParam->getLocation(),
9503                  diag::err_operator_overload_post_incdec_must_be_int)
9504        << LastParam->getType() << (Op == OO_MinusMinus);
9505  }
9506
9507  return false;
9508}
9509
9510/// CheckLiteralOperatorDeclaration - Check whether the declaration
9511/// of this literal operator function is well-formed. If so, returns
9512/// false; otherwise, emits appropriate diagnostics and returns true.
9513bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9514  DeclContext *DC = FnDecl->getDeclContext();
9515  Decl::Kind Kind = DC->getDeclKind();
9516  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9517      Kind != Decl::LinkageSpec) {
9518    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9519      << FnDecl->getDeclName();
9520    return true;
9521  }
9522
9523  bool Valid = false;
9524
9525  // template <char...> type operator "" name() is the only valid template
9526  // signature, and the only valid signature with no parameters.
9527  if (FnDecl->param_size() == 0) {
9528    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9529      // Must have only one template parameter
9530      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9531      if (Params->size() == 1) {
9532        NonTypeTemplateParmDecl *PmDecl =
9533          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9534
9535        // The template parameter must be a char parameter pack.
9536        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9537            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9538          Valid = true;
9539      }
9540    }
9541  } else {
9542    // Check the first parameter
9543    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9544
9545    QualType T = (*Param)->getType();
9546
9547    // unsigned long long int, long double, and any character type are allowed
9548    // as the only parameters.
9549    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9550        Context.hasSameType(T, Context.LongDoubleTy) ||
9551        Context.hasSameType(T, Context.CharTy) ||
9552        Context.hasSameType(T, Context.WCharTy) ||
9553        Context.hasSameType(T, Context.Char16Ty) ||
9554        Context.hasSameType(T, Context.Char32Ty)) {
9555      if (++Param == FnDecl->param_end())
9556        Valid = true;
9557      goto FinishedParams;
9558    }
9559
9560    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9561    const PointerType *PT = T->getAs<PointerType>();
9562    if (!PT)
9563      goto FinishedParams;
9564    T = PT->getPointeeType();
9565    if (!T.isConstQualified())
9566      goto FinishedParams;
9567    T = T.getUnqualifiedType();
9568
9569    // Move on to the second parameter;
9570    ++Param;
9571
9572    // If there is no second parameter, the first must be a const char *
9573    if (Param == FnDecl->param_end()) {
9574      if (Context.hasSameType(T, Context.CharTy))
9575        Valid = true;
9576      goto FinishedParams;
9577    }
9578
9579    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9580    // are allowed as the first parameter to a two-parameter function
9581    if (!(Context.hasSameType(T, Context.CharTy) ||
9582          Context.hasSameType(T, Context.WCharTy) ||
9583          Context.hasSameType(T, Context.Char16Ty) ||
9584          Context.hasSameType(T, Context.Char32Ty)))
9585      goto FinishedParams;
9586
9587    // The second and final parameter must be an std::size_t
9588    T = (*Param)->getType().getUnqualifiedType();
9589    if (Context.hasSameType(T, Context.getSizeType()) &&
9590        ++Param == FnDecl->param_end())
9591      Valid = true;
9592  }
9593
9594  // FIXME: This diagnostic is absolutely terrible.
9595FinishedParams:
9596  if (!Valid) {
9597    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9598      << FnDecl->getDeclName();
9599    return true;
9600  }
9601
9602  StringRef LiteralName
9603    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9604  if (LiteralName[0] != '_') {
9605    // C++0x [usrlit.suffix]p1:
9606    //   Literal suffix identifiers that do not start with an underscore are
9607    //   reserved for future standardization.
9608    bool IsHexFloat = true;
9609    if (LiteralName.size() > 1 &&
9610        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9611      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9612        if (!isdigit(LiteralName[I])) {
9613          IsHexFloat = false;
9614          break;
9615        }
9616      }
9617    }
9618
9619    if (IsHexFloat)
9620      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9621        << LiteralName;
9622    else
9623      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9624  }
9625
9626  return false;
9627}
9628
9629/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9630/// linkage specification, including the language and (if present)
9631/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9632/// the location of the language string literal, which is provided
9633/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9634/// the '{' brace. Otherwise, this linkage specification does not
9635/// have any braces.
9636Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9637                                           SourceLocation LangLoc,
9638                                           StringRef Lang,
9639                                           SourceLocation LBraceLoc) {
9640  LinkageSpecDecl::LanguageIDs Language;
9641  if (Lang == "\"C\"")
9642    Language = LinkageSpecDecl::lang_c;
9643  else if (Lang == "\"C++\"")
9644    Language = LinkageSpecDecl::lang_cxx;
9645  else {
9646    Diag(LangLoc, diag::err_bad_language);
9647    return 0;
9648  }
9649
9650  // FIXME: Add all the various semantics of linkage specifications
9651
9652  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9653                                               ExternLoc, LangLoc, Language);
9654  CurContext->addDecl(D);
9655  PushDeclContext(S, D);
9656  return D;
9657}
9658
9659/// ActOnFinishLinkageSpecification - Complete the definition of
9660/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9661/// valid, it's the position of the closing '}' brace in a linkage
9662/// specification that uses braces.
9663Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9664                                            Decl *LinkageSpec,
9665                                            SourceLocation RBraceLoc) {
9666  if (LinkageSpec) {
9667    if (RBraceLoc.isValid()) {
9668      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9669      LSDecl->setRBraceLoc(RBraceLoc);
9670    }
9671    PopDeclContext();
9672  }
9673  return LinkageSpec;
9674}
9675
9676/// \brief Perform semantic analysis for the variable declaration that
9677/// occurs within a C++ catch clause, returning the newly-created
9678/// variable.
9679VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9680                                         TypeSourceInfo *TInfo,
9681                                         SourceLocation StartLoc,
9682                                         SourceLocation Loc,
9683                                         IdentifierInfo *Name) {
9684  bool Invalid = false;
9685  QualType ExDeclType = TInfo->getType();
9686
9687  // Arrays and functions decay.
9688  if (ExDeclType->isArrayType())
9689    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9690  else if (ExDeclType->isFunctionType())
9691    ExDeclType = Context.getPointerType(ExDeclType);
9692
9693  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9694  // The exception-declaration shall not denote a pointer or reference to an
9695  // incomplete type, other than [cv] void*.
9696  // N2844 forbids rvalue references.
9697  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9698    Diag(Loc, diag::err_catch_rvalue_ref);
9699    Invalid = true;
9700  }
9701
9702  QualType BaseType = ExDeclType;
9703  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9704  unsigned DK = diag::err_catch_incomplete;
9705  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9706    BaseType = Ptr->getPointeeType();
9707    Mode = 1;
9708    DK = diag::err_catch_incomplete_ptr;
9709  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9710    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9711    BaseType = Ref->getPointeeType();
9712    Mode = 2;
9713    DK = diag::err_catch_incomplete_ref;
9714  }
9715  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9716      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9717    Invalid = true;
9718
9719  if (!Invalid && !ExDeclType->isDependentType() &&
9720      RequireNonAbstractType(Loc, ExDeclType,
9721                             diag::err_abstract_type_in_decl,
9722                             AbstractVariableType))
9723    Invalid = true;
9724
9725  // Only the non-fragile NeXT runtime currently supports C++ catches
9726  // of ObjC types, and no runtime supports catching ObjC types by value.
9727  if (!Invalid && getLangOptions().ObjC1) {
9728    QualType T = ExDeclType;
9729    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9730      T = RT->getPointeeType();
9731
9732    if (T->isObjCObjectType()) {
9733      Diag(Loc, diag::err_objc_object_catch);
9734      Invalid = true;
9735    } else if (T->isObjCObjectPointerType()) {
9736      if (!getLangOptions().ObjCNonFragileABI)
9737        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9738    }
9739  }
9740
9741  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9742                                    ExDeclType, TInfo, SC_None, SC_None);
9743  ExDecl->setExceptionVariable(true);
9744
9745  // In ARC, infer 'retaining' for variables of retainable type.
9746  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9747    Invalid = true;
9748
9749  if (!Invalid && !ExDeclType->isDependentType()) {
9750    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9751      // C++ [except.handle]p16:
9752      //   The object declared in an exception-declaration or, if the
9753      //   exception-declaration does not specify a name, a temporary (12.2) is
9754      //   copy-initialized (8.5) from the exception object. [...]
9755      //   The object is destroyed when the handler exits, after the destruction
9756      //   of any automatic objects initialized within the handler.
9757      //
9758      // We just pretend to initialize the object with itself, then make sure
9759      // it can be destroyed later.
9760      QualType initType = ExDeclType;
9761
9762      InitializedEntity entity =
9763        InitializedEntity::InitializeVariable(ExDecl);
9764      InitializationKind initKind =
9765        InitializationKind::CreateCopy(Loc, SourceLocation());
9766
9767      Expr *opaqueValue =
9768        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9769      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9770      ExprResult result = sequence.Perform(*this, entity, initKind,
9771                                           MultiExprArg(&opaqueValue, 1));
9772      if (result.isInvalid())
9773        Invalid = true;
9774      else {
9775        // If the constructor used was non-trivial, set this as the
9776        // "initializer".
9777        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9778        if (!construct->getConstructor()->isTrivial()) {
9779          Expr *init = MaybeCreateExprWithCleanups(construct);
9780          ExDecl->setInit(init);
9781        }
9782
9783        // And make sure it's destructable.
9784        FinalizeVarWithDestructor(ExDecl, recordType);
9785      }
9786    }
9787  }
9788
9789  if (Invalid)
9790    ExDecl->setInvalidDecl();
9791
9792  return ExDecl;
9793}
9794
9795/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9796/// handler.
9797Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9798  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9799  bool Invalid = D.isInvalidType();
9800
9801  // Check for unexpanded parameter packs.
9802  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9803                                               UPPC_ExceptionType)) {
9804    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9805                                             D.getIdentifierLoc());
9806    Invalid = true;
9807  }
9808
9809  IdentifierInfo *II = D.getIdentifier();
9810  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9811                                             LookupOrdinaryName,
9812                                             ForRedeclaration)) {
9813    // The scope should be freshly made just for us. There is just no way
9814    // it contains any previous declaration.
9815    assert(!S->isDeclScope(PrevDecl));
9816    if (PrevDecl->isTemplateParameter()) {
9817      // Maybe we will complain about the shadowed template parameter.
9818      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9819      PrevDecl = 0;
9820    }
9821  }
9822
9823  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9824    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9825      << D.getCXXScopeSpec().getRange();
9826    Invalid = true;
9827  }
9828
9829  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9830                                              D.getSourceRange().getBegin(),
9831                                              D.getIdentifierLoc(),
9832                                              D.getIdentifier());
9833  if (Invalid)
9834    ExDecl->setInvalidDecl();
9835
9836  // Add the exception declaration into this scope.
9837  if (II)
9838    PushOnScopeChains(ExDecl, S);
9839  else
9840    CurContext->addDecl(ExDecl);
9841
9842  ProcessDeclAttributes(S, ExDecl, D);
9843  return ExDecl;
9844}
9845
9846Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9847                                         Expr *AssertExpr,
9848                                         Expr *AssertMessageExpr_,
9849                                         SourceLocation RParenLoc) {
9850  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9851
9852  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9853    // In a static_assert-declaration, the constant-expression shall be a
9854    // constant expression that can be contextually converted to bool.
9855    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9856    if (Converted.isInvalid())
9857      return 0;
9858
9859    llvm::APSInt Cond;
9860    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9861          PDiag(diag::err_static_assert_expression_is_not_constant),
9862          /*AllowFold=*/false).isInvalid())
9863      return 0;
9864
9865    if (!Cond)
9866      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9867        << AssertMessage->getString() << AssertExpr->getSourceRange();
9868  }
9869
9870  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9871    return 0;
9872
9873  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9874                                        AssertExpr, AssertMessage, RParenLoc);
9875
9876  CurContext->addDecl(Decl);
9877  return Decl;
9878}
9879
9880/// \brief Perform semantic analysis of the given friend type declaration.
9881///
9882/// \returns A friend declaration that.
9883FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9884                                      SourceLocation FriendLoc,
9885                                      TypeSourceInfo *TSInfo) {
9886  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9887
9888  QualType T = TSInfo->getType();
9889  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9890
9891  // C++03 [class.friend]p2:
9892  //   An elaborated-type-specifier shall be used in a friend declaration
9893  //   for a class.*
9894  //
9895  //   * The class-key of the elaborated-type-specifier is required.
9896  if (!ActiveTemplateInstantiations.empty()) {
9897    // Do not complain about the form of friend template types during
9898    // template instantiation; we will already have complained when the
9899    // template was declared.
9900  } else if (!T->isElaboratedTypeSpecifier()) {
9901    // If we evaluated the type to a record type, suggest putting
9902    // a tag in front.
9903    if (const RecordType *RT = T->getAs<RecordType>()) {
9904      RecordDecl *RD = RT->getDecl();
9905
9906      std::string InsertionText = std::string(" ") + RD->getKindName();
9907
9908      Diag(TypeRange.getBegin(),
9909           getLangOptions().CPlusPlus0x ?
9910             diag::warn_cxx98_compat_unelaborated_friend_type :
9911             diag::ext_unelaborated_friend_type)
9912        << (unsigned) RD->getTagKind()
9913        << T
9914        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9915                                      InsertionText);
9916    } else {
9917      Diag(FriendLoc,
9918           getLangOptions().CPlusPlus0x ?
9919             diag::warn_cxx98_compat_nonclass_type_friend :
9920             diag::ext_nonclass_type_friend)
9921        << T
9922        << SourceRange(FriendLoc, TypeRange.getEnd());
9923    }
9924  } else if (T->getAs<EnumType>()) {
9925    Diag(FriendLoc,
9926         getLangOptions().CPlusPlus0x ?
9927           diag::warn_cxx98_compat_enum_friend :
9928           diag::ext_enum_friend)
9929      << T
9930      << SourceRange(FriendLoc, TypeRange.getEnd());
9931  }
9932
9933  // C++0x [class.friend]p3:
9934  //   If the type specifier in a friend declaration designates a (possibly
9935  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9936  //   the friend declaration is ignored.
9937
9938  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9939  // in [class.friend]p3 that we do not implement.
9940
9941  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9942}
9943
9944/// Handle a friend tag declaration where the scope specifier was
9945/// templated.
9946Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9947                                    unsigned TagSpec, SourceLocation TagLoc,
9948                                    CXXScopeSpec &SS,
9949                                    IdentifierInfo *Name, SourceLocation NameLoc,
9950                                    AttributeList *Attr,
9951                                    MultiTemplateParamsArg TempParamLists) {
9952  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9953
9954  bool isExplicitSpecialization = false;
9955  bool Invalid = false;
9956
9957  if (TemplateParameterList *TemplateParams
9958        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9959                                                  TempParamLists.get(),
9960                                                  TempParamLists.size(),
9961                                                  /*friend*/ true,
9962                                                  isExplicitSpecialization,
9963                                                  Invalid)) {
9964    if (TemplateParams->size() > 0) {
9965      // This is a declaration of a class template.
9966      if (Invalid)
9967        return 0;
9968
9969      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9970                                SS, Name, NameLoc, Attr,
9971                                TemplateParams, AS_public,
9972                                /*ModulePrivateLoc=*/SourceLocation(),
9973                                TempParamLists.size() - 1,
9974                   (TemplateParameterList**) TempParamLists.release()).take();
9975    } else {
9976      // The "template<>" header is extraneous.
9977      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9978        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9979      isExplicitSpecialization = true;
9980    }
9981  }
9982
9983  if (Invalid) return 0;
9984
9985  bool isAllExplicitSpecializations = true;
9986  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9987    if (TempParamLists.get()[I]->size()) {
9988      isAllExplicitSpecializations = false;
9989      break;
9990    }
9991  }
9992
9993  // FIXME: don't ignore attributes.
9994
9995  // If it's explicit specializations all the way down, just forget
9996  // about the template header and build an appropriate non-templated
9997  // friend.  TODO: for source fidelity, remember the headers.
9998  if (isAllExplicitSpecializations) {
9999    if (SS.isEmpty()) {
10000      bool Owned = false;
10001      bool IsDependent = false;
10002      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10003                      Attr, AS_public,
10004                      /*ModulePrivateLoc=*/SourceLocation(),
10005                      MultiTemplateParamsArg(), Owned, IsDependent,
10006                      /*ScopedEnumKWLoc=*/SourceLocation(),
10007                      /*ScopedEnumUsesClassTag=*/false,
10008                      /*UnderlyingType=*/TypeResult());
10009    }
10010
10011    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10012    ElaboratedTypeKeyword Keyword
10013      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10014    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10015                                   *Name, NameLoc);
10016    if (T.isNull())
10017      return 0;
10018
10019    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10020    if (isa<DependentNameType>(T)) {
10021      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10022      TL.setElaboratedKeywordLoc(TagLoc);
10023      TL.setQualifierLoc(QualifierLoc);
10024      TL.setNameLoc(NameLoc);
10025    } else {
10026      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10027      TL.setElaboratedKeywordLoc(TagLoc);
10028      TL.setQualifierLoc(QualifierLoc);
10029      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10030    }
10031
10032    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10033                                            TSI, FriendLoc);
10034    Friend->setAccess(AS_public);
10035    CurContext->addDecl(Friend);
10036    return Friend;
10037  }
10038
10039  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10040
10041
10042
10043  // Handle the case of a templated-scope friend class.  e.g.
10044  //   template <class T> class A<T>::B;
10045  // FIXME: we don't support these right now.
10046  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10047  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10048  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10049  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10050  TL.setElaboratedKeywordLoc(TagLoc);
10051  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10052  TL.setNameLoc(NameLoc);
10053
10054  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10055                                          TSI, FriendLoc);
10056  Friend->setAccess(AS_public);
10057  Friend->setUnsupportedFriend(true);
10058  CurContext->addDecl(Friend);
10059  return Friend;
10060}
10061
10062
10063/// Handle a friend type declaration.  This works in tandem with
10064/// ActOnTag.
10065///
10066/// Notes on friend class templates:
10067///
10068/// We generally treat friend class declarations as if they were
10069/// declaring a class.  So, for example, the elaborated type specifier
10070/// in a friend declaration is required to obey the restrictions of a
10071/// class-head (i.e. no typedefs in the scope chain), template
10072/// parameters are required to match up with simple template-ids, &c.
10073/// However, unlike when declaring a template specialization, it's
10074/// okay to refer to a template specialization without an empty
10075/// template parameter declaration, e.g.
10076///   friend class A<T>::B<unsigned>;
10077/// We permit this as a special case; if there are any template
10078/// parameters present at all, require proper matching, i.e.
10079///   template <> template <class T> friend class A<int>::B;
10080Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10081                                MultiTemplateParamsArg TempParams) {
10082  SourceLocation Loc = DS.getSourceRange().getBegin();
10083
10084  assert(DS.isFriendSpecified());
10085  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10086
10087  // Try to convert the decl specifier to a type.  This works for
10088  // friend templates because ActOnTag never produces a ClassTemplateDecl
10089  // for a TUK_Friend.
10090  Declarator TheDeclarator(DS, Declarator::MemberContext);
10091  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10092  QualType T = TSI->getType();
10093  if (TheDeclarator.isInvalidType())
10094    return 0;
10095
10096  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10097    return 0;
10098
10099  // This is definitely an error in C++98.  It's probably meant to
10100  // be forbidden in C++0x, too, but the specification is just
10101  // poorly written.
10102  //
10103  // The problem is with declarations like the following:
10104  //   template <T> friend A<T>::foo;
10105  // where deciding whether a class C is a friend or not now hinges
10106  // on whether there exists an instantiation of A that causes
10107  // 'foo' to equal C.  There are restrictions on class-heads
10108  // (which we declare (by fiat) elaborated friend declarations to
10109  // be) that makes this tractable.
10110  //
10111  // FIXME: handle "template <> friend class A<T>;", which
10112  // is possibly well-formed?  Who even knows?
10113  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10114    Diag(Loc, diag::err_tagless_friend_type_template)
10115      << DS.getSourceRange();
10116    return 0;
10117  }
10118
10119  // C++98 [class.friend]p1: A friend of a class is a function
10120  //   or class that is not a member of the class . . .
10121  // This is fixed in DR77, which just barely didn't make the C++03
10122  // deadline.  It's also a very silly restriction that seriously
10123  // affects inner classes and which nobody else seems to implement;
10124  // thus we never diagnose it, not even in -pedantic.
10125  //
10126  // But note that we could warn about it: it's always useless to
10127  // friend one of your own members (it's not, however, worthless to
10128  // friend a member of an arbitrary specialization of your template).
10129
10130  Decl *D;
10131  if (unsigned NumTempParamLists = TempParams.size())
10132    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10133                                   NumTempParamLists,
10134                                   TempParams.release(),
10135                                   TSI,
10136                                   DS.getFriendSpecLoc());
10137  else
10138    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10139
10140  if (!D)
10141    return 0;
10142
10143  D->setAccess(AS_public);
10144  CurContext->addDecl(D);
10145
10146  return D;
10147}
10148
10149Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10150                                    MultiTemplateParamsArg TemplateParams) {
10151  const DeclSpec &DS = D.getDeclSpec();
10152
10153  assert(DS.isFriendSpecified());
10154  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10155
10156  SourceLocation Loc = D.getIdentifierLoc();
10157  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10158
10159  // C++ [class.friend]p1
10160  //   A friend of a class is a function or class....
10161  // Note that this sees through typedefs, which is intended.
10162  // It *doesn't* see through dependent types, which is correct
10163  // according to [temp.arg.type]p3:
10164  //   If a declaration acquires a function type through a
10165  //   type dependent on a template-parameter and this causes
10166  //   a declaration that does not use the syntactic form of a
10167  //   function declarator to have a function type, the program
10168  //   is ill-formed.
10169  if (!TInfo->getType()->isFunctionType()) {
10170    Diag(Loc, diag::err_unexpected_friend);
10171
10172    // It might be worthwhile to try to recover by creating an
10173    // appropriate declaration.
10174    return 0;
10175  }
10176
10177  // C++ [namespace.memdef]p3
10178  //  - If a friend declaration in a non-local class first declares a
10179  //    class or function, the friend class or function is a member
10180  //    of the innermost enclosing namespace.
10181  //  - The name of the friend is not found by simple name lookup
10182  //    until a matching declaration is provided in that namespace
10183  //    scope (either before or after the class declaration granting
10184  //    friendship).
10185  //  - If a friend function is called, its name may be found by the
10186  //    name lookup that considers functions from namespaces and
10187  //    classes associated with the types of the function arguments.
10188  //  - When looking for a prior declaration of a class or a function
10189  //    declared as a friend, scopes outside the innermost enclosing
10190  //    namespace scope are not considered.
10191
10192  CXXScopeSpec &SS = D.getCXXScopeSpec();
10193  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10194  DeclarationName Name = NameInfo.getName();
10195  assert(Name);
10196
10197  // Check for unexpanded parameter packs.
10198  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10199      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10200      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10201    return 0;
10202
10203  // The context we found the declaration in, or in which we should
10204  // create the declaration.
10205  DeclContext *DC;
10206  Scope *DCScope = S;
10207  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10208                        ForRedeclaration);
10209
10210  // FIXME: there are different rules in local classes
10211
10212  // There are four cases here.
10213  //   - There's no scope specifier, in which case we just go to the
10214  //     appropriate scope and look for a function or function template
10215  //     there as appropriate.
10216  // Recover from invalid scope qualifiers as if they just weren't there.
10217  if (SS.isInvalid() || !SS.isSet()) {
10218    // C++0x [namespace.memdef]p3:
10219    //   If the name in a friend declaration is neither qualified nor
10220    //   a template-id and the declaration is a function or an
10221    //   elaborated-type-specifier, the lookup to determine whether
10222    //   the entity has been previously declared shall not consider
10223    //   any scopes outside the innermost enclosing namespace.
10224    // C++0x [class.friend]p11:
10225    //   If a friend declaration appears in a local class and the name
10226    //   specified is an unqualified name, a prior declaration is
10227    //   looked up without considering scopes that are outside the
10228    //   innermost enclosing non-class scope. For a friend function
10229    //   declaration, if there is no prior declaration, the program is
10230    //   ill-formed.
10231    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10232    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10233
10234    // Find the appropriate context according to the above.
10235    DC = CurContext;
10236    while (true) {
10237      // Skip class contexts.  If someone can cite chapter and verse
10238      // for this behavior, that would be nice --- it's what GCC and
10239      // EDG do, and it seems like a reasonable intent, but the spec
10240      // really only says that checks for unqualified existing
10241      // declarations should stop at the nearest enclosing namespace,
10242      // not that they should only consider the nearest enclosing
10243      // namespace.
10244      while (DC->isRecord())
10245        DC = DC->getParent();
10246
10247      LookupQualifiedName(Previous, DC);
10248
10249      // TODO: decide what we think about using declarations.
10250      if (isLocal || !Previous.empty())
10251        break;
10252
10253      if (isTemplateId) {
10254        if (isa<TranslationUnitDecl>(DC)) break;
10255      } else {
10256        if (DC->isFileContext()) break;
10257      }
10258      DC = DC->getParent();
10259    }
10260
10261    // C++ [class.friend]p1: A friend of a class is a function or
10262    //   class that is not a member of the class . . .
10263    // C++11 changes this for both friend types and functions.
10264    // Most C++ 98 compilers do seem to give an error here, so
10265    // we do, too.
10266    if (!Previous.empty() && DC->Equals(CurContext))
10267      Diag(DS.getFriendSpecLoc(),
10268           getLangOptions().CPlusPlus0x ?
10269             diag::warn_cxx98_compat_friend_is_member :
10270             diag::err_friend_is_member);
10271
10272    DCScope = getScopeForDeclContext(S, DC);
10273
10274    // C++ [class.friend]p6:
10275    //   A function can be defined in a friend declaration of a class if and
10276    //   only if the class is a non-local class (9.8), the function name is
10277    //   unqualified, and the function has namespace scope.
10278    if (isLocal && D.isFunctionDefinition()) {
10279      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10280    }
10281
10282  //   - There's a non-dependent scope specifier, in which case we
10283  //     compute it and do a previous lookup there for a function
10284  //     or function template.
10285  } else if (!SS.getScopeRep()->isDependent()) {
10286    DC = computeDeclContext(SS);
10287    if (!DC) return 0;
10288
10289    if (RequireCompleteDeclContext(SS, DC)) return 0;
10290
10291    LookupQualifiedName(Previous, DC);
10292
10293    // Ignore things found implicitly in the wrong scope.
10294    // TODO: better diagnostics for this case.  Suggesting the right
10295    // qualified scope would be nice...
10296    LookupResult::Filter F = Previous.makeFilter();
10297    while (F.hasNext()) {
10298      NamedDecl *D = F.next();
10299      if (!DC->InEnclosingNamespaceSetOf(
10300              D->getDeclContext()->getRedeclContext()))
10301        F.erase();
10302    }
10303    F.done();
10304
10305    if (Previous.empty()) {
10306      D.setInvalidType();
10307      Diag(Loc, diag::err_qualified_friend_not_found)
10308          << Name << TInfo->getType();
10309      return 0;
10310    }
10311
10312    // C++ [class.friend]p1: A friend of a class is a function or
10313    //   class that is not a member of the class . . .
10314    if (DC->Equals(CurContext))
10315      Diag(DS.getFriendSpecLoc(),
10316           getLangOptions().CPlusPlus0x ?
10317             diag::warn_cxx98_compat_friend_is_member :
10318             diag::err_friend_is_member);
10319
10320    if (D.isFunctionDefinition()) {
10321      // C++ [class.friend]p6:
10322      //   A function can be defined in a friend declaration of a class if and
10323      //   only if the class is a non-local class (9.8), the function name is
10324      //   unqualified, and the function has namespace scope.
10325      SemaDiagnosticBuilder DB
10326        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10327
10328      DB << SS.getScopeRep();
10329      if (DC->isFileContext())
10330        DB << FixItHint::CreateRemoval(SS.getRange());
10331      SS.clear();
10332    }
10333
10334  //   - There's a scope specifier that does not match any template
10335  //     parameter lists, in which case we use some arbitrary context,
10336  //     create a method or method template, and wait for instantiation.
10337  //   - There's a scope specifier that does match some template
10338  //     parameter lists, which we don't handle right now.
10339  } else {
10340    if (D.isFunctionDefinition()) {
10341      // C++ [class.friend]p6:
10342      //   A function can be defined in a friend declaration of a class if and
10343      //   only if the class is a non-local class (9.8), the function name is
10344      //   unqualified, and the function has namespace scope.
10345      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10346        << SS.getScopeRep();
10347    }
10348
10349    DC = CurContext;
10350    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10351  }
10352
10353  if (!DC->isRecord()) {
10354    // This implies that it has to be an operator or function.
10355    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10356        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10357        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10358      Diag(Loc, diag::err_introducing_special_friend) <<
10359        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10360         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10361      return 0;
10362    }
10363  }
10364
10365  // FIXME: This is an egregious hack to cope with cases where the scope stack
10366  // does not contain the declaration context, i.e., in an out-of-line
10367  // definition of a class.
10368  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10369  if (!DCScope) {
10370    FakeDCScope.setEntity(DC);
10371    DCScope = &FakeDCScope;
10372  }
10373
10374  bool AddToScope = true;
10375  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10376                                          move(TemplateParams), AddToScope);
10377  if (!ND) return 0;
10378
10379  assert(ND->getDeclContext() == DC);
10380  assert(ND->getLexicalDeclContext() == CurContext);
10381
10382  // Add the function declaration to the appropriate lookup tables,
10383  // adjusting the redeclarations list as necessary.  We don't
10384  // want to do this yet if the friending class is dependent.
10385  //
10386  // Also update the scope-based lookup if the target context's
10387  // lookup context is in lexical scope.
10388  if (!CurContext->isDependentContext()) {
10389    DC = DC->getRedeclContext();
10390    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10391    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10392      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10393  }
10394
10395  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10396                                       D.getIdentifierLoc(), ND,
10397                                       DS.getFriendSpecLoc());
10398  FrD->setAccess(AS_public);
10399  CurContext->addDecl(FrD);
10400
10401  if (ND->isInvalidDecl())
10402    FrD->setInvalidDecl();
10403  else {
10404    FunctionDecl *FD;
10405    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10406      FD = FTD->getTemplatedDecl();
10407    else
10408      FD = cast<FunctionDecl>(ND);
10409
10410    // Mark templated-scope function declarations as unsupported.
10411    if (FD->getNumTemplateParameterLists())
10412      FrD->setUnsupportedFriend(true);
10413  }
10414
10415  return ND;
10416}
10417
10418void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10419  AdjustDeclIfTemplate(Dcl);
10420
10421  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10422  if (!Fn) {
10423    Diag(DelLoc, diag::err_deleted_non_function);
10424    return;
10425  }
10426  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10427    Diag(DelLoc, diag::err_deleted_decl_not_first);
10428    Diag(Prev->getLocation(), diag::note_previous_declaration);
10429    // If the declaration wasn't the first, we delete the function anyway for
10430    // recovery.
10431  }
10432  Fn->setDeletedAsWritten();
10433}
10434
10435void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10436  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10437
10438  if (MD) {
10439    if (MD->getParent()->isDependentType()) {
10440      MD->setDefaulted();
10441      MD->setExplicitlyDefaulted();
10442      return;
10443    }
10444
10445    CXXSpecialMember Member = getSpecialMember(MD);
10446    if (Member == CXXInvalid) {
10447      Diag(DefaultLoc, diag::err_default_special_members);
10448      return;
10449    }
10450
10451    MD->setDefaulted();
10452    MD->setExplicitlyDefaulted();
10453
10454    // If this definition appears within the record, do the checking when
10455    // the record is complete.
10456    const FunctionDecl *Primary = MD;
10457    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10458      // Find the uninstantiated declaration that actually had the '= default'
10459      // on it.
10460      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10461
10462    if (Primary == Primary->getCanonicalDecl())
10463      return;
10464
10465    switch (Member) {
10466    case CXXDefaultConstructor: {
10467      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10468      CheckExplicitlyDefaultedDefaultConstructor(CD);
10469      if (!CD->isInvalidDecl())
10470        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10471      break;
10472    }
10473
10474    case CXXCopyConstructor: {
10475      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10476      CheckExplicitlyDefaultedCopyConstructor(CD);
10477      if (!CD->isInvalidDecl())
10478        DefineImplicitCopyConstructor(DefaultLoc, CD);
10479      break;
10480    }
10481
10482    case CXXCopyAssignment: {
10483      CheckExplicitlyDefaultedCopyAssignment(MD);
10484      if (!MD->isInvalidDecl())
10485        DefineImplicitCopyAssignment(DefaultLoc, MD);
10486      break;
10487    }
10488
10489    case CXXDestructor: {
10490      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10491      CheckExplicitlyDefaultedDestructor(DD);
10492      if (!DD->isInvalidDecl())
10493        DefineImplicitDestructor(DefaultLoc, DD);
10494      break;
10495    }
10496
10497    case CXXMoveConstructor: {
10498      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10499      CheckExplicitlyDefaultedMoveConstructor(CD);
10500      if (!CD->isInvalidDecl())
10501        DefineImplicitMoveConstructor(DefaultLoc, CD);
10502      break;
10503    }
10504
10505    case CXXMoveAssignment: {
10506      CheckExplicitlyDefaultedMoveAssignment(MD);
10507      if (!MD->isInvalidDecl())
10508        DefineImplicitMoveAssignment(DefaultLoc, MD);
10509      break;
10510    }
10511
10512    case CXXInvalid:
10513      llvm_unreachable("Invalid special member.");
10514    }
10515  } else {
10516    Diag(DefaultLoc, diag::err_default_special_members);
10517  }
10518}
10519
10520static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10521  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10522    Stmt *SubStmt = *CI;
10523    if (!SubStmt)
10524      continue;
10525    if (isa<ReturnStmt>(SubStmt))
10526      Self.Diag(SubStmt->getSourceRange().getBegin(),
10527           diag::err_return_in_constructor_handler);
10528    if (!isa<Expr>(SubStmt))
10529      SearchForReturnInStmt(Self, SubStmt);
10530  }
10531}
10532
10533void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10534  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10535    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10536    SearchForReturnInStmt(*this, Handler);
10537  }
10538}
10539
10540bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10541                                             const CXXMethodDecl *Old) {
10542  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10543  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10544
10545  if (Context.hasSameType(NewTy, OldTy) ||
10546      NewTy->isDependentType() || OldTy->isDependentType())
10547    return false;
10548
10549  // Check if the return types are covariant
10550  QualType NewClassTy, OldClassTy;
10551
10552  /// Both types must be pointers or references to classes.
10553  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10554    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10555      NewClassTy = NewPT->getPointeeType();
10556      OldClassTy = OldPT->getPointeeType();
10557    }
10558  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10559    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10560      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10561        NewClassTy = NewRT->getPointeeType();
10562        OldClassTy = OldRT->getPointeeType();
10563      }
10564    }
10565  }
10566
10567  // The return types aren't either both pointers or references to a class type.
10568  if (NewClassTy.isNull()) {
10569    Diag(New->getLocation(),
10570         diag::err_different_return_type_for_overriding_virtual_function)
10571      << New->getDeclName() << NewTy << OldTy;
10572    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10573
10574    return true;
10575  }
10576
10577  // C++ [class.virtual]p6:
10578  //   If the return type of D::f differs from the return type of B::f, the
10579  //   class type in the return type of D::f shall be complete at the point of
10580  //   declaration of D::f or shall be the class type D.
10581  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10582    if (!RT->isBeingDefined() &&
10583        RequireCompleteType(New->getLocation(), NewClassTy,
10584                            PDiag(diag::err_covariant_return_incomplete)
10585                              << New->getDeclName()))
10586    return true;
10587  }
10588
10589  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10590    // Check if the new class derives from the old class.
10591    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10592      Diag(New->getLocation(),
10593           diag::err_covariant_return_not_derived)
10594      << New->getDeclName() << NewTy << OldTy;
10595      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10596      return true;
10597    }
10598
10599    // Check if we the conversion from derived to base is valid.
10600    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10601                    diag::err_covariant_return_inaccessible_base,
10602                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10603                    // FIXME: Should this point to the return type?
10604                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10605      // FIXME: this note won't trigger for delayed access control
10606      // diagnostics, and it's impossible to get an undelayed error
10607      // here from access control during the original parse because
10608      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10609      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10610      return true;
10611    }
10612  }
10613
10614  // The qualifiers of the return types must be the same.
10615  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10616    Diag(New->getLocation(),
10617         diag::err_covariant_return_type_different_qualifications)
10618    << New->getDeclName() << NewTy << OldTy;
10619    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10620    return true;
10621  };
10622
10623
10624  // The new class type must have the same or less qualifiers as the old type.
10625  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10626    Diag(New->getLocation(),
10627         diag::err_covariant_return_type_class_type_more_qualified)
10628    << New->getDeclName() << NewTy << OldTy;
10629    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10630    return true;
10631  };
10632
10633  return false;
10634}
10635
10636/// \brief Mark the given method pure.
10637///
10638/// \param Method the method to be marked pure.
10639///
10640/// \param InitRange the source range that covers the "0" initializer.
10641bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10642  SourceLocation EndLoc = InitRange.getEnd();
10643  if (EndLoc.isValid())
10644    Method->setRangeEnd(EndLoc);
10645
10646  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10647    Method->setPure();
10648    return false;
10649  }
10650
10651  if (!Method->isInvalidDecl())
10652    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10653      << Method->getDeclName() << InitRange;
10654  return true;
10655}
10656
10657/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10658/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10659/// is a fresh scope pushed for just this purpose.
10660///
10661/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10662/// static data member of class X, names should be looked up in the scope of
10663/// class X.
10664void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10665  // If there is no declaration, there was an error parsing it.
10666  if (D == 0 || D->isInvalidDecl()) return;
10667
10668  // We should only get called for declarations with scope specifiers, like:
10669  //   int foo::bar;
10670  assert(D->isOutOfLine());
10671  EnterDeclaratorContext(S, D->getDeclContext());
10672}
10673
10674/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10675/// initializer for the out-of-line declaration 'D'.
10676void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10677  // If there is no declaration, there was an error parsing it.
10678  if (D == 0 || D->isInvalidDecl()) return;
10679
10680  assert(D->isOutOfLine());
10681  ExitDeclaratorContext(S);
10682}
10683
10684/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10685/// C++ if/switch/while/for statement.
10686/// e.g: "if (int x = f()) {...}"
10687DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10688  // C++ 6.4p2:
10689  // The declarator shall not specify a function or an array.
10690  // The type-specifier-seq shall not contain typedef and shall not declare a
10691  // new class or enumeration.
10692  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10693         "Parser allowed 'typedef' as storage class of condition decl.");
10694
10695  Decl *Dcl = ActOnDeclarator(S, D);
10696  if (!Dcl)
10697    return true;
10698
10699  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10700    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10701      << D.getSourceRange();
10702    return true;
10703  }
10704
10705  return Dcl;
10706}
10707
10708void Sema::LoadExternalVTableUses() {
10709  if (!ExternalSource)
10710    return;
10711
10712  SmallVector<ExternalVTableUse, 4> VTables;
10713  ExternalSource->ReadUsedVTables(VTables);
10714  SmallVector<VTableUse, 4> NewUses;
10715  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10716    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10717      = VTablesUsed.find(VTables[I].Record);
10718    // Even if a definition wasn't required before, it may be required now.
10719    if (Pos != VTablesUsed.end()) {
10720      if (!Pos->second && VTables[I].DefinitionRequired)
10721        Pos->second = true;
10722      continue;
10723    }
10724
10725    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10726    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10727  }
10728
10729  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10730}
10731
10732void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10733                          bool DefinitionRequired) {
10734  // Ignore any vtable uses in unevaluated operands or for classes that do
10735  // not have a vtable.
10736  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10737      CurContext->isDependentContext() ||
10738      ExprEvalContexts.back().Context == Unevaluated)
10739    return;
10740
10741  // Try to insert this class into the map.
10742  LoadExternalVTableUses();
10743  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10744  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10745    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10746  if (!Pos.second) {
10747    // If we already had an entry, check to see if we are promoting this vtable
10748    // to required a definition. If so, we need to reappend to the VTableUses
10749    // list, since we may have already processed the first entry.
10750    if (DefinitionRequired && !Pos.first->second) {
10751      Pos.first->second = true;
10752    } else {
10753      // Otherwise, we can early exit.
10754      return;
10755    }
10756  }
10757
10758  // Local classes need to have their virtual members marked
10759  // immediately. For all other classes, we mark their virtual members
10760  // at the end of the translation unit.
10761  if (Class->isLocalClass())
10762    MarkVirtualMembersReferenced(Loc, Class);
10763  else
10764    VTableUses.push_back(std::make_pair(Class, Loc));
10765}
10766
10767bool Sema::DefineUsedVTables() {
10768  LoadExternalVTableUses();
10769  if (VTableUses.empty())
10770    return false;
10771
10772  // Note: The VTableUses vector could grow as a result of marking
10773  // the members of a class as "used", so we check the size each
10774  // time through the loop and prefer indices (with are stable) to
10775  // iterators (which are not).
10776  bool DefinedAnything = false;
10777  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10778    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10779    if (!Class)
10780      continue;
10781
10782    SourceLocation Loc = VTableUses[I].second;
10783
10784    // If this class has a key function, but that key function is
10785    // defined in another translation unit, we don't need to emit the
10786    // vtable even though we're using it.
10787    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10788    if (KeyFunction && !KeyFunction->hasBody()) {
10789      switch (KeyFunction->getTemplateSpecializationKind()) {
10790      case TSK_Undeclared:
10791      case TSK_ExplicitSpecialization:
10792      case TSK_ExplicitInstantiationDeclaration:
10793        // The key function is in another translation unit.
10794        continue;
10795
10796      case TSK_ExplicitInstantiationDefinition:
10797      case TSK_ImplicitInstantiation:
10798        // We will be instantiating the key function.
10799        break;
10800      }
10801    } else if (!KeyFunction) {
10802      // If we have a class with no key function that is the subject
10803      // of an explicit instantiation declaration, suppress the
10804      // vtable; it will live with the explicit instantiation
10805      // definition.
10806      bool IsExplicitInstantiationDeclaration
10807        = Class->getTemplateSpecializationKind()
10808                                      == TSK_ExplicitInstantiationDeclaration;
10809      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10810                                 REnd = Class->redecls_end();
10811           R != REnd; ++R) {
10812        TemplateSpecializationKind TSK
10813          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10814        if (TSK == TSK_ExplicitInstantiationDeclaration)
10815          IsExplicitInstantiationDeclaration = true;
10816        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10817          IsExplicitInstantiationDeclaration = false;
10818          break;
10819        }
10820      }
10821
10822      if (IsExplicitInstantiationDeclaration)
10823        continue;
10824    }
10825
10826    // Mark all of the virtual members of this class as referenced, so
10827    // that we can build a vtable. Then, tell the AST consumer that a
10828    // vtable for this class is required.
10829    DefinedAnything = true;
10830    MarkVirtualMembersReferenced(Loc, Class);
10831    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10832    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10833
10834    // Optionally warn if we're emitting a weak vtable.
10835    if (Class->getLinkage() == ExternalLinkage &&
10836        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10837      const FunctionDecl *KeyFunctionDef = 0;
10838      if (!KeyFunction ||
10839          (KeyFunction->hasBody(KeyFunctionDef) &&
10840           KeyFunctionDef->isInlined()))
10841        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10842             TSK_ExplicitInstantiationDefinition
10843             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10844          << Class;
10845    }
10846  }
10847  VTableUses.clear();
10848
10849  return DefinedAnything;
10850}
10851
10852void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10853                                        const CXXRecordDecl *RD) {
10854  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10855       e = RD->method_end(); i != e; ++i) {
10856    CXXMethodDecl *MD = *i;
10857
10858    // C++ [basic.def.odr]p2:
10859    //   [...] A virtual member function is used if it is not pure. [...]
10860    if (MD->isVirtual() && !MD->isPure())
10861      MarkFunctionReferenced(Loc, MD);
10862  }
10863
10864  // Only classes that have virtual bases need a VTT.
10865  if (RD->getNumVBases() == 0)
10866    return;
10867
10868  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10869           e = RD->bases_end(); i != e; ++i) {
10870    const CXXRecordDecl *Base =
10871        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10872    if (Base->getNumVBases() == 0)
10873      continue;
10874    MarkVirtualMembersReferenced(Loc, Base);
10875  }
10876}
10877
10878/// SetIvarInitializers - This routine builds initialization ASTs for the
10879/// Objective-C implementation whose ivars need be initialized.
10880void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10881  if (!getLangOptions().CPlusPlus)
10882    return;
10883  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10884    SmallVector<ObjCIvarDecl*, 8> ivars;
10885    CollectIvarsToConstructOrDestruct(OID, ivars);
10886    if (ivars.empty())
10887      return;
10888    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10889    for (unsigned i = 0; i < ivars.size(); i++) {
10890      FieldDecl *Field = ivars[i];
10891      if (Field->isInvalidDecl())
10892        continue;
10893
10894      CXXCtorInitializer *Member;
10895      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10896      InitializationKind InitKind =
10897        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10898
10899      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10900      ExprResult MemberInit =
10901        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10902      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10903      // Note, MemberInit could actually come back empty if no initialization
10904      // is required (e.g., because it would call a trivial default constructor)
10905      if (!MemberInit.get() || MemberInit.isInvalid())
10906        continue;
10907
10908      Member =
10909        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10910                                         SourceLocation(),
10911                                         MemberInit.takeAs<Expr>(),
10912                                         SourceLocation());
10913      AllToInit.push_back(Member);
10914
10915      // Be sure that the destructor is accessible and is marked as referenced.
10916      if (const RecordType *RecordTy
10917                  = Context.getBaseElementType(Field->getType())
10918                                                        ->getAs<RecordType>()) {
10919                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10920        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10921          MarkFunctionReferenced(Field->getLocation(), Destructor);
10922          CheckDestructorAccess(Field->getLocation(), Destructor,
10923                            PDiag(diag::err_access_dtor_ivar)
10924                              << Context.getBaseElementType(Field->getType()));
10925        }
10926      }
10927    }
10928    ObjCImplementation->setIvarInitializers(Context,
10929                                            AllToInit.data(), AllToInit.size());
10930  }
10931}
10932
10933static
10934void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10935                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10936                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10937                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10938                           Sema &S) {
10939  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10940                                                   CE = Current.end();
10941  if (Ctor->isInvalidDecl())
10942    return;
10943
10944  const FunctionDecl *FNTarget = 0;
10945  CXXConstructorDecl *Target;
10946
10947  // We ignore the result here since if we don't have a body, Target will be
10948  // null below.
10949  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10950  Target
10951= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10952
10953  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10954                     // Avoid dereferencing a null pointer here.
10955                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10956
10957  if (!Current.insert(Canonical))
10958    return;
10959
10960  // We know that beyond here, we aren't chaining into a cycle.
10961  if (!Target || !Target->isDelegatingConstructor() ||
10962      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10963    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10964      Valid.insert(*CI);
10965    Current.clear();
10966  // We've hit a cycle.
10967  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10968             Current.count(TCanonical)) {
10969    // If we haven't diagnosed this cycle yet, do so now.
10970    if (!Invalid.count(TCanonical)) {
10971      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10972             diag::warn_delegating_ctor_cycle)
10973        << Ctor;
10974
10975      // Don't add a note for a function delegating directo to itself.
10976      if (TCanonical != Canonical)
10977        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10978
10979      CXXConstructorDecl *C = Target;
10980      while (C->getCanonicalDecl() != Canonical) {
10981        (void)C->getTargetConstructor()->hasBody(FNTarget);
10982        assert(FNTarget && "Ctor cycle through bodiless function");
10983
10984        C
10985       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10986        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10987      }
10988    }
10989
10990    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10991      Invalid.insert(*CI);
10992    Current.clear();
10993  } else {
10994    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10995  }
10996}
10997
10998
10999void Sema::CheckDelegatingCtorCycles() {
11000  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11001
11002  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11003                                                   CE = Current.end();
11004
11005  for (DelegatingCtorDeclsType::iterator
11006         I = DelegatingCtorDecls.begin(ExternalSource),
11007         E = DelegatingCtorDecls.end();
11008       I != E; ++I) {
11009   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11010  }
11011
11012  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11013    (*CI)->setInvalidDecl();
11014}
11015
11016/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11017Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11018  // Implicitly declared functions (e.g. copy constructors) are
11019  // __host__ __device__
11020  if (D->isImplicit())
11021    return CFT_HostDevice;
11022
11023  if (D->hasAttr<CUDAGlobalAttr>())
11024    return CFT_Global;
11025
11026  if (D->hasAttr<CUDADeviceAttr>()) {
11027    if (D->hasAttr<CUDAHostAttr>())
11028      return CFT_HostDevice;
11029    else
11030      return CFT_Device;
11031  }
11032
11033  return CFT_Host;
11034}
11035
11036bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11037                           CUDAFunctionTarget CalleeTarget) {
11038  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11039  // Callable from the device only."
11040  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11041    return true;
11042
11043  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11044  // Callable from the host only."
11045  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11046  // Callable from the host only."
11047  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11048      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11049    return true;
11050
11051  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11052    return true;
11053
11054  return false;
11055}
11056