SemaDeclCXX.cpp revision ff7fea809bab2badd0cb241703b14ac20ac258cb
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
129                                                 EqualLoc,
130                                                 Param->getDeclName(),
131                                                 /*DirectInit=*/false);
132  if (DefaultArgPtr != DefaultArg.get()) {
133    DefaultArg.take();
134    DefaultArg.reset(DefaultArgPtr);
135  }
136  if (DefaultInitFailed) {
137    return;
138  }
139
140  // Check that the default argument is well-formed
141  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
142  if (DefaultArgChecker.Visit(DefaultArg.get())) {
143    Param->setInvalidDecl();
144    return;
145  }
146
147  // Okay: add the default argument to the parameter
148  Param->setDefaultArg(DefaultArg.take());
149}
150
151/// ActOnParamUnparsedDefaultArgument - We've seen a default
152/// argument for a function parameter, but we can't parse it yet
153/// because we're inside a class definition. Note that this default
154/// argument will be parsed later.
155void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
156                                             SourceLocation EqualLoc) {
157  ParmVarDecl *Param = (ParmVarDecl*)param;
158  if (Param)
159    Param->setUnparsedDefaultArg();
160}
161
162/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
163/// the default argument for the parameter param failed.
164void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
165  ((ParmVarDecl*)param)->setInvalidDecl();
166}
167
168/// CheckExtraCXXDefaultArguments - Check for any extra default
169/// arguments in the declarator, which is not a function declaration
170/// or definition and therefore is not permitted to have default
171/// arguments. This routine should be invoked for every declarator
172/// that is not a function declaration or definition.
173void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
174  // C++ [dcl.fct.default]p3
175  //   A default argument expression shall be specified only in the
176  //   parameter-declaration-clause of a function declaration or in a
177  //   template-parameter (14.1). It shall not be specified for a
178  //   parameter pack. If it is specified in a
179  //   parameter-declaration-clause, it shall not occur within a
180  //   declarator or abstract-declarator of a parameter-declaration.
181  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
182    DeclaratorChunk &chunk = D.getTypeObject(i);
183    if (chunk.Kind == DeclaratorChunk::Function) {
184      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
185        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
186        if (Param->hasUnparsedDefaultArg()) {
187          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
188          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
189            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
190          delete Toks;
191          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
192        } else if (Param->getDefaultArg()) {
193          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
194            << Param->getDefaultArg()->getSourceRange();
195          Param->setDefaultArg(0);
196        }
197      }
198    }
199  }
200}
201
202// MergeCXXFunctionDecl - Merge two declarations of the same C++
203// function, once we already know that they have the same
204// type. Subroutine of MergeFunctionDecl. Returns true if there was an
205// error, false otherwise.
206bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
207  bool Invalid = false;
208
209  // C++ [dcl.fct.default]p4:
210  //
211  //   For non-template functions, default arguments can be added in
212  //   later declarations of a function in the same
213  //   scope. Declarations in different scopes have completely
214  //   distinct sets of default arguments. That is, declarations in
215  //   inner scopes do not acquire default arguments from
216  //   declarations in outer scopes, and vice versa. In a given
217  //   function declaration, all parameters subsequent to a
218  //   parameter with a default argument shall have default
219  //   arguments supplied in this or previous declarations. A
220  //   default argument shall not be redefined by a later
221  //   declaration (not even to the same value).
222  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
223    ParmVarDecl *OldParam = Old->getParamDecl(p);
224    ParmVarDecl *NewParam = New->getParamDecl(p);
225
226    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
227      Diag(NewParam->getLocation(),
228           diag::err_param_default_argument_redefinition)
229        << NewParam->getDefaultArg()->getSourceRange();
230      Diag(OldParam->getLocation(), diag::note_previous_definition);
231      Invalid = true;
232    } else if (OldParam->getDefaultArg()) {
233      // Merge the old default argument into the new parameter
234      NewParam->setDefaultArg(OldParam->getDefaultArg());
235    }
236  }
237
238  return Invalid;
239}
240
241/// CheckCXXDefaultArguments - Verify that the default arguments for a
242/// function declaration are well-formed according to C++
243/// [dcl.fct.default].
244void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
245  unsigned NumParams = FD->getNumParams();
246  unsigned p;
247
248  // Find first parameter with a default argument
249  for (p = 0; p < NumParams; ++p) {
250    ParmVarDecl *Param = FD->getParamDecl(p);
251    if (Param->getDefaultArg())
252      break;
253  }
254
255  // C++ [dcl.fct.default]p4:
256  //   In a given function declaration, all parameters
257  //   subsequent to a parameter with a default argument shall
258  //   have default arguments supplied in this or previous
259  //   declarations. A default argument shall not be redefined
260  //   by a later declaration (not even to the same value).
261  unsigned LastMissingDefaultArg = 0;
262  for(; p < NumParams; ++p) {
263    ParmVarDecl *Param = FD->getParamDecl(p);
264    if (!Param->getDefaultArg()) {
265      if (Param->isInvalidDecl())
266        /* We already complained about this parameter. */;
267      else if (Param->getIdentifier())
268        Diag(Param->getLocation(),
269             diag::err_param_default_argument_missing_name)
270          << Param->getIdentifier();
271      else
272        Diag(Param->getLocation(),
273             diag::err_param_default_argument_missing);
274
275      LastMissingDefaultArg = p;
276    }
277  }
278
279  if (LastMissingDefaultArg > 0) {
280    // Some default arguments were missing. Clear out all of the
281    // default arguments up to (and including) the last missing
282    // default argument, so that we leave the function parameters
283    // in a semantically valid state.
284    for (p = 0; p <= LastMissingDefaultArg; ++p) {
285      ParmVarDecl *Param = FD->getParamDecl(p);
286      if (Param->getDefaultArg()) {
287        if (!Param->hasUnparsedDefaultArg())
288          Param->getDefaultArg()->Destroy(Context);
289        Param->setDefaultArg(0);
290      }
291    }
292  }
293}
294
295/// isCurrentClassName - Determine whether the identifier II is the
296/// name of the class type currently being defined. In the case of
297/// nested classes, this will only return true if II is the name of
298/// the innermost class.
299bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
300                              const CXXScopeSpec *SS) {
301  CXXRecordDecl *CurDecl;
302  if (SS) {
303    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
304    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
305  } else
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
307
308  if (CurDecl)
309    return &II == CurDecl->getIdentifier();
310  else
311    return false;
312}
313
314/// \brief Check the validity of a C++ base class specifier.
315///
316/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
317/// and returns NULL otherwise.
318CXXBaseSpecifier *
319Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
320                         SourceRange SpecifierRange,
321                         bool Virtual, AccessSpecifier Access,
322                         QualType BaseType,
323                         SourceLocation BaseLoc) {
324  // C++ [class.union]p1:
325  //   A union shall not have base classes.
326  if (Class->isUnion()) {
327    Diag(Class->getLocation(), diag::err_base_clause_on_union)
328      << SpecifierRange;
329    return 0;
330  }
331
332  if (BaseType->isDependentType())
333    return new CXXBaseSpecifier(SpecifierRange, Virtual,
334                                Class->getTagKind() == RecordDecl::TK_class,
335                                Access, BaseType);
336
337  // Base specifiers must be record types.
338  if (!BaseType->isRecordType()) {
339    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
340    return 0;
341  }
342
343  // C++ [class.union]p1:
344  //   A union shall not be used as a base class.
345  if (BaseType->isUnionType()) {
346    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
347    return 0;
348  }
349
350  // C++ [class.derived]p2:
351  //   The class-name in a base-specifier shall not be an incompletely
352  //   defined class.
353  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
354                          SpecifierRange))
355    return 0;
356
357  // If the base class is polymorphic, the new one is, too.
358  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
359  assert(BaseDecl && "Record type has no declaration");
360  BaseDecl = BaseDecl->getDefinition(Context);
361  assert(BaseDecl && "Base type is not incomplete, but has no definition");
362  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
363    Class->setPolymorphic(true);
364
365  // C++ [dcl.init.aggr]p1:
366  //   An aggregate is [...] a class with [...] no base classes [...].
367  Class->setAggregate(false);
368  Class->setPOD(false);
369
370  // Create the base specifier.
371  // FIXME: Allocate via ASTContext?
372  return new CXXBaseSpecifier(SpecifierRange, Virtual,
373                              Class->getTagKind() == RecordDecl::TK_class,
374                              Access, BaseType);
375}
376
377/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
378/// one entry in the base class list of a class specifier, for
379/// example:
380///    class foo : public bar, virtual private baz {
381/// 'public bar' and 'virtual private baz' are each base-specifiers.
382Sema::BaseResult
383Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
384                         bool Virtual, AccessSpecifier Access,
385                         TypeTy *basetype, SourceLocation BaseLoc) {
386  AdjustDeclIfTemplate(classdecl);
387  CXXRecordDecl *Class = cast<CXXRecordDecl>((Decl*)classdecl);
388  QualType BaseType = QualType::getFromOpaquePtr(basetype);
389  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
390                                                      Virtual, Access,
391                                                      BaseType, BaseLoc))
392    return BaseSpec;
393
394  return true;
395}
396
397/// \brief Performs the actual work of attaching the given base class
398/// specifiers to a C++ class.
399bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
400                                unsigned NumBases) {
401 if (NumBases == 0)
402    return false;
403
404  // Used to keep track of which base types we have already seen, so
405  // that we can properly diagnose redundant direct base types. Note
406  // that the key is always the unqualified canonical type of the base
407  // class.
408  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
409
410  // Copy non-redundant base specifiers into permanent storage.
411  unsigned NumGoodBases = 0;
412  bool Invalid = false;
413  for (unsigned idx = 0; idx < NumBases; ++idx) {
414    QualType NewBaseType
415      = Context.getCanonicalType(Bases[idx]->getType());
416    NewBaseType = NewBaseType.getUnqualifiedType();
417
418    if (KnownBaseTypes[NewBaseType]) {
419      // C++ [class.mi]p3:
420      //   A class shall not be specified as a direct base class of a
421      //   derived class more than once.
422      Diag(Bases[idx]->getSourceRange().getBegin(),
423           diag::err_duplicate_base_class)
424        << KnownBaseTypes[NewBaseType]->getType()
425        << Bases[idx]->getSourceRange();
426
427      // Delete the duplicate base class specifier; we're going to
428      // overwrite its pointer later.
429      delete Bases[idx];
430
431      Invalid = true;
432    } else {
433      // Okay, add this new base class.
434      KnownBaseTypes[NewBaseType] = Bases[idx];
435      Bases[NumGoodBases++] = Bases[idx];
436    }
437  }
438
439  // Attach the remaining base class specifiers to the derived class.
440  Class->setBases(Bases, NumGoodBases);
441
442  // Delete the remaining (good) base class specifiers, since their
443  // data has been copied into the CXXRecordDecl.
444  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
445    delete Bases[idx];
446
447  return Invalid;
448}
449
450/// ActOnBaseSpecifiers - Attach the given base specifiers to the
451/// class, after checking whether there are any duplicate base
452/// classes.
453void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
454                               unsigned NumBases) {
455  if (!ClassDecl || !Bases || !NumBases)
456    return;
457
458  AdjustDeclIfTemplate(ClassDecl);
459  AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl),
460                       (CXXBaseSpecifier**)(Bases), NumBases);
461}
462
463//===----------------------------------------------------------------------===//
464// C++ class member Handling
465//===----------------------------------------------------------------------===//
466
467/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
468/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
469/// bitfield width if there is one and 'InitExpr' specifies the initializer if
470/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
471/// declarators on it.
472Sema::DeclTy *
473Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
474                               ExprTy *BW, ExprTy *InitExpr,
475                               DeclTy *LastInGroup) {
476  const DeclSpec &DS = D.getDeclSpec();
477  DeclarationName Name = GetNameForDeclarator(D);
478  Expr *BitWidth = static_cast<Expr*>(BW);
479  Expr *Init = static_cast<Expr*>(InitExpr);
480  SourceLocation Loc = D.getIdentifierLoc();
481
482  bool isFunc = D.isFunctionDeclarator();
483
484  // C++ 9.2p6: A member shall not be declared to have automatic storage
485  // duration (auto, register) or with the extern storage-class-specifier.
486  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
487  // data members and cannot be applied to names declared const or static,
488  // and cannot be applied to reference members.
489  switch (DS.getStorageClassSpec()) {
490    case DeclSpec::SCS_unspecified:
491    case DeclSpec::SCS_typedef:
492    case DeclSpec::SCS_static:
493      // FALL THROUGH.
494      break;
495    case DeclSpec::SCS_mutable:
496      if (isFunc) {
497        if (DS.getStorageClassSpecLoc().isValid())
498          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
499        else
500          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
501
502        // FIXME: It would be nicer if the keyword was ignored only for this
503        // declarator. Otherwise we could get follow-up errors.
504        D.getMutableDeclSpec().ClearStorageClassSpecs();
505      } else {
506        QualType T = GetTypeForDeclarator(D, S);
507        diag::kind err = static_cast<diag::kind>(0);
508        if (T->isReferenceType())
509          err = diag::err_mutable_reference;
510        else if (T.isConstQualified())
511          err = diag::err_mutable_const;
512        if (err != 0) {
513          if (DS.getStorageClassSpecLoc().isValid())
514            Diag(DS.getStorageClassSpecLoc(), err);
515          else
516            Diag(DS.getThreadSpecLoc(), err);
517          // FIXME: It would be nicer if the keyword was ignored only for this
518          // declarator. Otherwise we could get follow-up errors.
519          D.getMutableDeclSpec().ClearStorageClassSpecs();
520        }
521      }
522      break;
523    default:
524      if (DS.getStorageClassSpecLoc().isValid())
525        Diag(DS.getStorageClassSpecLoc(),
526             diag::err_storageclass_invalid_for_member);
527      else
528        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
529      D.getMutableDeclSpec().ClearStorageClassSpecs();
530  }
531
532  if (!isFunc &&
533      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
534      D.getNumTypeObjects() == 0) {
535    // Check also for this case:
536    //
537    // typedef int f();
538    // f a;
539    //
540    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
541    isFunc = TDType->isFunctionType();
542  }
543
544  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
545                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
546                      !isFunc);
547
548  Decl *Member;
549  if (isInstField) {
550    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth);
551    assert(Member && "HandleField never returns null");
552  } else {
553    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
554    if (!Member) {
555      if (BitWidth) DeleteExpr(BitWidth);
556      return LastInGroup;
557    }
558
559    // Non-instance-fields can't have a bitfield.
560    if (BitWidth) {
561      if (Member->isInvalidDecl()) {
562        // don't emit another diagnostic.
563      } else if (isa<VarDecl>(Member)) {
564        // C++ 9.6p3: A bit-field shall not be a static member.
565        // "static member 'A' cannot be a bit-field"
566        Diag(Loc, diag::err_static_not_bitfield)
567          << Name << BitWidth->getSourceRange();
568      } else if (isa<TypedefDecl>(Member)) {
569        // "typedef member 'x' cannot be a bit-field"
570        Diag(Loc, diag::err_typedef_not_bitfield)
571          << Name << BitWidth->getSourceRange();
572      } else {
573        // A function typedef ("typedef int f(); f a;").
574        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
575        Diag(Loc, diag::err_not_integral_type_bitfield)
576          << Name << cast<ValueDecl>(Member)->getType()
577          << BitWidth->getSourceRange();
578      }
579
580      DeleteExpr(BitWidth);
581      BitWidth = 0;
582      Member->setInvalidDecl();
583    }
584  }
585
586  assert((Name || isInstField) && "No identifier for non-field ?");
587
588  Member->setAccess(AS);
589
590  // C++ [dcl.init.aggr]p1:
591  //   An aggregate is an array or a class (clause 9) with [...] no
592  //   private or protected non-static data members (clause 11).
593  // A POD must be an aggregate.
594  if (isInstField && (AS == AS_private || AS == AS_protected)) {
595    CXXRecordDecl *Record = cast<CXXRecordDecl>(CurContext);
596    Record->setAggregate(false);
597    Record->setPOD(false);
598  }
599
600  if (DS.isVirtualSpecified()) {
601    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
602      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
603      Member->setInvalidDecl();
604    } else {
605      cast<CXXMethodDecl>(Member)->setVirtual();
606      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
607      CurClass->setAggregate(false);
608      CurClass->setPOD(false);
609      CurClass->setPolymorphic(true);
610    }
611  }
612
613  // FIXME: The above definition of virtual is not sufficient. A function is
614  // also virtual if it overrides an already virtual function. This is important
615  // to do here because it decides the validity of a pure specifier.
616
617  if (Init) {
618    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
619    // if it declares a static member of const integral or const enumeration
620    // type.
621    if (VarDecl *CVD = dyn_cast<VarDecl>(Member)) {
622      // ...static member of...
623      CVD->setInit(Init);
624      // ...const integral or const enumeration type.
625      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
626          CVD->getType()->isIntegralType()) {
627        // constant-initializer
628        if (CheckForConstantInitializer(Init, CVD->getType()))
629          Member->setInvalidDecl();
630
631      } else {
632        // not const integral.
633        Diag(Loc, diag::err_member_initialization)
634          << Name << Init->getSourceRange();
635        Member->setInvalidDecl();
636      }
637
638    } else {
639      // not static member. perhaps virtual function?
640      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
641        // With declarators parsed the way they are, the parser cannot
642        // distinguish between a normal initializer and a pure-specifier.
643        // Thus this grotesque test.
644        IntegerLiteral *IL;
645        if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
646            Context.getCanonicalType(IL->getType()) == Context.IntTy) {
647          if (MD->isVirtual())
648            MD->setPure();
649          else {
650            Diag(Loc, diag::err_non_virtual_pure)
651              << Name << Init->getSourceRange();
652            Member->setInvalidDecl();
653          }
654        } else {
655          Diag(Loc, diag::err_member_function_initialization)
656            << Name << Init->getSourceRange();
657          Member->setInvalidDecl();
658        }
659      } else {
660        Diag(Loc, diag::err_member_initialization)
661          << Name << Init->getSourceRange();
662        Member->setInvalidDecl();
663      }
664    }
665  }
666
667  if (isInstField) {
668    FieldCollector->Add(cast<FieldDecl>(Member));
669    return LastInGroup;
670  }
671  return Member;
672}
673
674/// ActOnMemInitializer - Handle a C++ member initializer.
675Sema::MemInitResult
676Sema::ActOnMemInitializer(DeclTy *ConstructorD,
677                          Scope *S,
678                          IdentifierInfo *MemberOrBase,
679                          SourceLocation IdLoc,
680                          SourceLocation LParenLoc,
681                          ExprTy **Args, unsigned NumArgs,
682                          SourceLocation *CommaLocs,
683                          SourceLocation RParenLoc) {
684  CXXConstructorDecl *Constructor
685    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
686  if (!Constructor) {
687    // The user wrote a constructor initializer on a function that is
688    // not a C++ constructor. Ignore the error for now, because we may
689    // have more member initializers coming; we'll diagnose it just
690    // once in ActOnMemInitializers.
691    return true;
692  }
693
694  CXXRecordDecl *ClassDecl = Constructor->getParent();
695
696  // C++ [class.base.init]p2:
697  //   Names in a mem-initializer-id are looked up in the scope of the
698  //   constructor’s class and, if not found in that scope, are looked
699  //   up in the scope containing the constructor’s
700  //   definition. [Note: if the constructor’s class contains a member
701  //   with the same name as a direct or virtual base class of the
702  //   class, a mem-initializer-id naming the member or base class and
703  //   composed of a single identifier refers to the class member. A
704  //   mem-initializer-id for the hidden base class may be specified
705  //   using a qualified name. ]
706  // Look for a member, first.
707  FieldDecl *Member = 0;
708  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
709  if (Result.first != Result.second)
710    Member = dyn_cast<FieldDecl>(*Result.first);
711
712  // FIXME: Handle members of an anonymous union.
713
714  if (Member) {
715    // FIXME: Perform direct initialization of the member.
716    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
717  }
718
719  // It didn't name a member, so see if it names a class.
720  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
721  if (!BaseTy)
722    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
723      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
724
725  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
726  if (!BaseType->isRecordType())
727    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
728      << BaseType << SourceRange(IdLoc, RParenLoc);
729
730  // C++ [class.base.init]p2:
731  //   [...] Unless the mem-initializer-id names a nonstatic data
732  //   member of the constructor’s class or a direct or virtual base
733  //   of that class, the mem-initializer is ill-formed. A
734  //   mem-initializer-list can initialize a base class using any
735  //   name that denotes that base class type.
736
737  // First, check for a direct base class.
738  const CXXBaseSpecifier *DirectBaseSpec = 0;
739  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
740       Base != ClassDecl->bases_end(); ++Base) {
741    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
742        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
743      // We found a direct base of this type. That's what we're
744      // initializing.
745      DirectBaseSpec = &*Base;
746      break;
747    }
748  }
749
750  // Check for a virtual base class.
751  // FIXME: We might be able to short-circuit this if we know in
752  // advance that there are no virtual bases.
753  const CXXBaseSpecifier *VirtualBaseSpec = 0;
754  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
755    // We haven't found a base yet; search the class hierarchy for a
756    // virtual base class.
757    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
758                    /*DetectVirtual=*/false);
759    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
760      for (BasePaths::paths_iterator Path = Paths.begin();
761           Path != Paths.end(); ++Path) {
762        if (Path->back().Base->isVirtual()) {
763          VirtualBaseSpec = Path->back().Base;
764          break;
765        }
766      }
767    }
768  }
769
770  // C++ [base.class.init]p2:
771  //   If a mem-initializer-id is ambiguous because it designates both
772  //   a direct non-virtual base class and an inherited virtual base
773  //   class, the mem-initializer is ill-formed.
774  if (DirectBaseSpec && VirtualBaseSpec)
775    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
776      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
777
778  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
779}
780
781
782void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
783                                             DeclTy *TagDecl,
784                                             SourceLocation LBrac,
785                                             SourceLocation RBrac) {
786  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
787  ActOnFields(S, RLoc, TagDecl,
788              (DeclTy**)FieldCollector->getCurFields(),
789              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
790
791  if (!Template)
792    AddImplicitlyDeclaredMembersToClass(cast<CXXRecordDecl>((Decl*)TagDecl));
793}
794
795/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
796/// special functions, such as the default constructor, copy
797/// constructor, or destructor, to the given C++ class (C++
798/// [special]p1).  This routine can only be executed just before the
799/// definition of the class is complete.
800void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
801  QualType ClassType = Context.getTypeDeclType(ClassDecl);
802  ClassType = Context.getCanonicalType(ClassType);
803
804  if (!ClassDecl->hasUserDeclaredConstructor()) {
805    // C++ [class.ctor]p5:
806    //   A default constructor for a class X is a constructor of class X
807    //   that can be called without an argument. If there is no
808    //   user-declared constructor for class X, a default constructor is
809    //   implicitly declared. An implicitly-declared default constructor
810    //   is an inline public member of its class.
811    DeclarationName Name
812      = Context.DeclarationNames.getCXXConstructorName(ClassType);
813    CXXConstructorDecl *DefaultCon =
814      CXXConstructorDecl::Create(Context, ClassDecl,
815                                 ClassDecl->getLocation(), Name,
816                                 Context.getFunctionType(Context.VoidTy,
817                                                         0, 0, false, 0),
818                                 /*isExplicit=*/false,
819                                 /*isInline=*/true,
820                                 /*isImplicitlyDeclared=*/true);
821    DefaultCon->setAccess(AS_public);
822    DefaultCon->setImplicit();
823    ClassDecl->addDecl(DefaultCon);
824
825    // Notify the class that we've added a constructor.
826    ClassDecl->addedConstructor(Context, DefaultCon);
827  }
828
829  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
830    // C++ [class.copy]p4:
831    //   If the class definition does not explicitly declare a copy
832    //   constructor, one is declared implicitly.
833
834    // C++ [class.copy]p5:
835    //   The implicitly-declared copy constructor for a class X will
836    //   have the form
837    //
838    //       X::X(const X&)
839    //
840    //   if
841    bool HasConstCopyConstructor = true;
842
843    //     -- each direct or virtual base class B of X has a copy
844    //        constructor whose first parameter is of type const B& or
845    //        const volatile B&, and
846    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
847         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
848      const CXXRecordDecl *BaseClassDecl
849        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
850      HasConstCopyConstructor
851        = BaseClassDecl->hasConstCopyConstructor(Context);
852    }
853
854    //     -- for all the nonstatic data members of X that are of a
855    //        class type M (or array thereof), each such class type
856    //        has a copy constructor whose first parameter is of type
857    //        const M& or const volatile M&.
858    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
859         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
860      QualType FieldType = (*Field)->getType();
861      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
862        FieldType = Array->getElementType();
863      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
864        const CXXRecordDecl *FieldClassDecl
865          = cast<CXXRecordDecl>(FieldClassType->getDecl());
866        HasConstCopyConstructor
867          = FieldClassDecl->hasConstCopyConstructor(Context);
868      }
869    }
870
871    //   Otherwise, the implicitly declared copy constructor will have
872    //   the form
873    //
874    //       X::X(X&)
875    QualType ArgType = ClassType;
876    if (HasConstCopyConstructor)
877      ArgType = ArgType.withConst();
878    ArgType = Context.getReferenceType(ArgType);
879
880    //   An implicitly-declared copy constructor is an inline public
881    //   member of its class.
882    DeclarationName Name
883      = Context.DeclarationNames.getCXXConstructorName(ClassType);
884    CXXConstructorDecl *CopyConstructor
885      = CXXConstructorDecl::Create(Context, ClassDecl,
886                                   ClassDecl->getLocation(), Name,
887                                   Context.getFunctionType(Context.VoidTy,
888                                                           &ArgType, 1,
889                                                           false, 0),
890                                   /*isExplicit=*/false,
891                                   /*isInline=*/true,
892                                   /*isImplicitlyDeclared=*/true);
893    CopyConstructor->setAccess(AS_public);
894    CopyConstructor->setImplicit();
895
896    // Add the parameter to the constructor.
897    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
898                                                 ClassDecl->getLocation(),
899                                                 /*IdentifierInfo=*/0,
900                                                 ArgType, VarDecl::None, 0);
901    CopyConstructor->setParams(Context, &FromParam, 1);
902
903    ClassDecl->addedConstructor(Context, CopyConstructor);
904    ClassDecl->addDecl(CopyConstructor);
905  }
906
907  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
908    // Note: The following rules are largely analoguous to the copy
909    // constructor rules. Note that virtual bases are not taken into account
910    // for determining the argument type of the operator. Note also that
911    // operators taking an object instead of a reference are allowed.
912    //
913    // C++ [class.copy]p10:
914    //   If the class definition does not explicitly declare a copy
915    //   assignment operator, one is declared implicitly.
916    //   The implicitly-defined copy assignment operator for a class X
917    //   will have the form
918    //
919    //       X& X::operator=(const X&)
920    //
921    //   if
922    bool HasConstCopyAssignment = true;
923
924    //       -- each direct base class B of X has a copy assignment operator
925    //          whose parameter is of type const B&, const volatile B& or B,
926    //          and
927    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
928         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
929      const CXXRecordDecl *BaseClassDecl
930        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
931      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
932    }
933
934    //       -- for all the nonstatic data members of X that are of a class
935    //          type M (or array thereof), each such class type has a copy
936    //          assignment operator whose parameter is of type const M&,
937    //          const volatile M& or M.
938    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
939         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
940      QualType FieldType = (*Field)->getType();
941      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
942        FieldType = Array->getElementType();
943      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
944        const CXXRecordDecl *FieldClassDecl
945          = cast<CXXRecordDecl>(FieldClassType->getDecl());
946        HasConstCopyAssignment
947          = FieldClassDecl->hasConstCopyAssignment(Context);
948      }
949    }
950
951    //   Otherwise, the implicitly declared copy assignment operator will
952    //   have the form
953    //
954    //       X& X::operator=(X&)
955    QualType ArgType = ClassType;
956    QualType RetType = Context.getReferenceType(ArgType);
957    if (HasConstCopyAssignment)
958      ArgType = ArgType.withConst();
959    ArgType = Context.getReferenceType(ArgType);
960
961    //   An implicitly-declared copy assignment operator is an inline public
962    //   member of its class.
963    DeclarationName Name =
964      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
965    CXXMethodDecl *CopyAssignment =
966      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
967                            Context.getFunctionType(RetType, &ArgType, 1,
968                                                    false, 0),
969                            /*isStatic=*/false, /*isInline=*/true);
970    CopyAssignment->setAccess(AS_public);
971    CopyAssignment->setImplicit();
972
973    // Add the parameter to the operator.
974    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
975                                                 ClassDecl->getLocation(),
976                                                 /*IdentifierInfo=*/0,
977                                                 ArgType, VarDecl::None, 0);
978    CopyAssignment->setParams(Context, &FromParam, 1);
979
980    // Don't call addedAssignmentOperator. There is no way to distinguish an
981    // implicit from an explicit assignment operator.
982    ClassDecl->addDecl(CopyAssignment);
983  }
984
985  if (!ClassDecl->hasUserDeclaredDestructor()) {
986    // C++ [class.dtor]p2:
987    //   If a class has no user-declared destructor, a destructor is
988    //   declared implicitly. An implicitly-declared destructor is an
989    //   inline public member of its class.
990    DeclarationName Name
991      = Context.DeclarationNames.getCXXDestructorName(ClassType);
992    CXXDestructorDecl *Destructor
993      = CXXDestructorDecl::Create(Context, ClassDecl,
994                                  ClassDecl->getLocation(), Name,
995                                  Context.getFunctionType(Context.VoidTy,
996                                                          0, 0, false, 0),
997                                  /*isInline=*/true,
998                                  /*isImplicitlyDeclared=*/true);
999    Destructor->setAccess(AS_public);
1000    Destructor->setImplicit();
1001    ClassDecl->addDecl(Destructor);
1002  }
1003}
1004
1005/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1006/// parsing a top-level (non-nested) C++ class, and we are now
1007/// parsing those parts of the given Method declaration that could
1008/// not be parsed earlier (C++ [class.mem]p2), such as default
1009/// arguments. This action should enter the scope of the given
1010/// Method declaration as if we had just parsed the qualified method
1011/// name. However, it should not bring the parameters into scope;
1012/// that will be performed by ActOnDelayedCXXMethodParameter.
1013void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
1014  CXXScopeSpec SS;
1015  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
1016  ActOnCXXEnterDeclaratorScope(S, SS);
1017}
1018
1019/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1020/// C++ method declaration. We're (re-)introducing the given
1021/// function parameter into scope for use in parsing later parts of
1022/// the method declaration. For example, we could see an
1023/// ActOnParamDefaultArgument event for this parameter.
1024void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1025  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1026
1027  // If this parameter has an unparsed default argument, clear it out
1028  // to make way for the parsed default argument.
1029  if (Param->hasUnparsedDefaultArg())
1030    Param->setDefaultArg(0);
1031
1032  S->AddDecl(Param);
1033  if (Param->getDeclName())
1034    IdResolver.AddDecl(Param);
1035}
1036
1037/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1038/// processing the delayed method declaration for Method. The method
1039/// declaration is now considered finished. There may be a separate
1040/// ActOnStartOfFunctionDef action later (not necessarily
1041/// immediately!) for this method, if it was also defined inside the
1042/// class body.
1043void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1044  FunctionDecl *Method = (FunctionDecl*)MethodD;
1045  CXXScopeSpec SS;
1046  SS.setScopeRep(Method->getDeclContext());
1047  ActOnCXXExitDeclaratorScope(S, SS);
1048
1049  // Now that we have our default arguments, check the constructor
1050  // again. It could produce additional diagnostics or affect whether
1051  // the class has implicitly-declared destructors, among other
1052  // things.
1053  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1054    if (CheckConstructor(Constructor))
1055      Constructor->setInvalidDecl();
1056  }
1057
1058  // Check the default arguments, which we may have added.
1059  if (!Method->isInvalidDecl())
1060    CheckCXXDefaultArguments(Method);
1061}
1062
1063/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1064/// the well-formedness of the constructor declarator @p D with type @p
1065/// R. If there are any errors in the declarator, this routine will
1066/// emit diagnostics and return true. Otherwise, it will return
1067/// false. Either way, the type @p R will be updated to reflect a
1068/// well-formed type for the constructor.
1069bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1070                                      FunctionDecl::StorageClass& SC) {
1071  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1072  bool isInvalid = false;
1073
1074  // C++ [class.ctor]p3:
1075  //   A constructor shall not be virtual (10.3) or static (9.4). A
1076  //   constructor can be invoked for a const, volatile or const
1077  //   volatile object. A constructor shall not be declared const,
1078  //   volatile, or const volatile (9.3.2).
1079  if (isVirtual) {
1080    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1081      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1082      << SourceRange(D.getIdentifierLoc());
1083    isInvalid = true;
1084  }
1085  if (SC == FunctionDecl::Static) {
1086    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1087      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1088      << SourceRange(D.getIdentifierLoc());
1089    isInvalid = true;
1090    SC = FunctionDecl::None;
1091  }
1092  if (D.getDeclSpec().hasTypeSpecifier()) {
1093    // Constructors don't have return types, but the parser will
1094    // happily parse something like:
1095    //
1096    //   class X {
1097    //     float X(float);
1098    //   };
1099    //
1100    // The return type will be eliminated later.
1101    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1102      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1103      << SourceRange(D.getIdentifierLoc());
1104  }
1105  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1106    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1107    if (FTI.TypeQuals & QualType::Const)
1108      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1109        << "const" << SourceRange(D.getIdentifierLoc());
1110    if (FTI.TypeQuals & QualType::Volatile)
1111      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1112        << "volatile" << SourceRange(D.getIdentifierLoc());
1113    if (FTI.TypeQuals & QualType::Restrict)
1114      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1115        << "restrict" << SourceRange(D.getIdentifierLoc());
1116  }
1117
1118  // Rebuild the function type "R" without any type qualifiers (in
1119  // case any of the errors above fired) and with "void" as the
1120  // return type, since constructors don't have return types. We
1121  // *always* have to do this, because GetTypeForDeclarator will
1122  // put in a result type of "int" when none was specified.
1123  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1124  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1125                              Proto->getNumArgs(),
1126                              Proto->isVariadic(),
1127                              0);
1128
1129  return isInvalid;
1130}
1131
1132/// CheckConstructor - Checks a fully-formed constructor for
1133/// well-formedness, issuing any diagnostics required. Returns true if
1134/// the constructor declarator is invalid.
1135bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1136  if (Constructor->isInvalidDecl())
1137    return true;
1138
1139  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1140  bool Invalid = false;
1141
1142  // C++ [class.copy]p3:
1143  //   A declaration of a constructor for a class X is ill-formed if
1144  //   its first parameter is of type (optionally cv-qualified) X and
1145  //   either there are no other parameters or else all other
1146  //   parameters have default arguments.
1147  if ((Constructor->getNumParams() == 1) ||
1148      (Constructor->getNumParams() > 1 &&
1149       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1150    QualType ParamType = Constructor->getParamDecl(0)->getType();
1151    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1152    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1153      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1154        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1155      Invalid = true;
1156    }
1157  }
1158
1159  // Notify the class that we've added a constructor.
1160  ClassDecl->addedConstructor(Context, Constructor);
1161
1162  return Invalid;
1163}
1164
1165/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1166/// the well-formednes of the destructor declarator @p D with type @p
1167/// R. If there are any errors in the declarator, this routine will
1168/// emit diagnostics and return true. Otherwise, it will return
1169/// false. Either way, the type @p R will be updated to reflect a
1170/// well-formed type for the destructor.
1171bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1172                                     FunctionDecl::StorageClass& SC) {
1173  bool isInvalid = false;
1174
1175  // C++ [class.dtor]p1:
1176  //   [...] A typedef-name that names a class is a class-name
1177  //   (7.1.3); however, a typedef-name that names a class shall not
1178  //   be used as the identifier in the declarator for a destructor
1179  //   declaration.
1180  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1181  if (DeclaratorType->getAsTypedefType()) {
1182    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1183      << DeclaratorType;
1184    isInvalid = true;
1185  }
1186
1187  // C++ [class.dtor]p2:
1188  //   A destructor is used to destroy objects of its class type. A
1189  //   destructor takes no parameters, and no return type can be
1190  //   specified for it (not even void). The address of a destructor
1191  //   shall not be taken. A destructor shall not be static. A
1192  //   destructor can be invoked for a const, volatile or const
1193  //   volatile object. A destructor shall not be declared const,
1194  //   volatile or const volatile (9.3.2).
1195  if (SC == FunctionDecl::Static) {
1196    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1197      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1198      << SourceRange(D.getIdentifierLoc());
1199    isInvalid = true;
1200    SC = FunctionDecl::None;
1201  }
1202  if (D.getDeclSpec().hasTypeSpecifier()) {
1203    // Destructors don't have return types, but the parser will
1204    // happily parse something like:
1205    //
1206    //   class X {
1207    //     float ~X();
1208    //   };
1209    //
1210    // The return type will be eliminated later.
1211    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1212      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1213      << SourceRange(D.getIdentifierLoc());
1214  }
1215  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1216    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1217    if (FTI.TypeQuals & QualType::Const)
1218      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1219        << "const" << SourceRange(D.getIdentifierLoc());
1220    if (FTI.TypeQuals & QualType::Volatile)
1221      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1222        << "volatile" << SourceRange(D.getIdentifierLoc());
1223    if (FTI.TypeQuals & QualType::Restrict)
1224      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1225        << "restrict" << SourceRange(D.getIdentifierLoc());
1226  }
1227
1228  // Make sure we don't have any parameters.
1229  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1230    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1231
1232    // Delete the parameters.
1233    D.getTypeObject(0).Fun.freeArgs();
1234  }
1235
1236  // Make sure the destructor isn't variadic.
1237  if (R->getAsFunctionProtoType()->isVariadic())
1238    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1239
1240  // Rebuild the function type "R" without any type qualifiers or
1241  // parameters (in case any of the errors above fired) and with
1242  // "void" as the return type, since destructors don't have return
1243  // types. We *always* have to do this, because GetTypeForDeclarator
1244  // will put in a result type of "int" when none was specified.
1245  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1246
1247  return isInvalid;
1248}
1249
1250/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1251/// well-formednes of the conversion function declarator @p D with
1252/// type @p R. If there are any errors in the declarator, this routine
1253/// will emit diagnostics and return true. Otherwise, it will return
1254/// false. Either way, the type @p R will be updated to reflect a
1255/// well-formed type for the conversion operator.
1256bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1257                                     FunctionDecl::StorageClass& SC) {
1258  bool isInvalid = false;
1259
1260  // C++ [class.conv.fct]p1:
1261  //   Neither parameter types nor return type can be specified. The
1262  //   type of a conversion function (8.3.5) is “function taking no
1263  //   parameter returning conversion-type-id.”
1264  if (SC == FunctionDecl::Static) {
1265    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1266      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1267      << SourceRange(D.getIdentifierLoc());
1268    isInvalid = true;
1269    SC = FunctionDecl::None;
1270  }
1271  if (D.getDeclSpec().hasTypeSpecifier()) {
1272    // Conversion functions don't have return types, but the parser will
1273    // happily parse something like:
1274    //
1275    //   class X {
1276    //     float operator bool();
1277    //   };
1278    //
1279    // The return type will be changed later anyway.
1280    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1281      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1282      << SourceRange(D.getIdentifierLoc());
1283  }
1284
1285  // Make sure we don't have any parameters.
1286  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1287    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1288
1289    // Delete the parameters.
1290    D.getTypeObject(0).Fun.freeArgs();
1291  }
1292
1293  // Make sure the conversion function isn't variadic.
1294  if (R->getAsFunctionProtoType()->isVariadic())
1295    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1296
1297  // C++ [class.conv.fct]p4:
1298  //   The conversion-type-id shall not represent a function type nor
1299  //   an array type.
1300  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1301  if (ConvType->isArrayType()) {
1302    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1303    ConvType = Context.getPointerType(ConvType);
1304  } else if (ConvType->isFunctionType()) {
1305    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1306    ConvType = Context.getPointerType(ConvType);
1307  }
1308
1309  // Rebuild the function type "R" without any parameters (in case any
1310  // of the errors above fired) and with the conversion type as the
1311  // return type.
1312  R = Context.getFunctionType(ConvType, 0, 0, false,
1313                              R->getAsFunctionProtoType()->getTypeQuals());
1314
1315  // C++0x explicit conversion operators.
1316  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1317    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1318         diag::warn_explicit_conversion_functions)
1319      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1320
1321  return isInvalid;
1322}
1323
1324/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1325/// the declaration of the given C++ conversion function. This routine
1326/// is responsible for recording the conversion function in the C++
1327/// class, if possible.
1328Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1329  assert(Conversion && "Expected to receive a conversion function declaration");
1330
1331  // Set the lexical context of this conversion function
1332  Conversion->setLexicalDeclContext(CurContext);
1333
1334  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1335
1336  // Make sure we aren't redeclaring the conversion function.
1337  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1338
1339  // C++ [class.conv.fct]p1:
1340  //   [...] A conversion function is never used to convert a
1341  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1342  //   same object type (or a reference to it), to a (possibly
1343  //   cv-qualified) base class of that type (or a reference to it),
1344  //   or to (possibly cv-qualified) void.
1345  // FIXME: Suppress this warning if the conversion function ends up
1346  // being a virtual function that overrides a virtual function in a
1347  // base class.
1348  QualType ClassType
1349    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1350  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1351    ConvType = ConvTypeRef->getPointeeType();
1352  if (ConvType->isRecordType()) {
1353    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1354    if (ConvType == ClassType)
1355      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1356        << ClassType;
1357    else if (IsDerivedFrom(ClassType, ConvType))
1358      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1359        <<  ClassType << ConvType;
1360  } else if (ConvType->isVoidType()) {
1361    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1362      << ClassType << ConvType;
1363  }
1364
1365  if (Conversion->getPreviousDeclaration()) {
1366    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1367    for (OverloadedFunctionDecl::function_iterator
1368           Conv = Conversions->function_begin(),
1369           ConvEnd = Conversions->function_end();
1370         Conv != ConvEnd; ++Conv) {
1371      if (*Conv == Conversion->getPreviousDeclaration()) {
1372        *Conv = Conversion;
1373        return (DeclTy *)Conversion;
1374      }
1375    }
1376    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1377  } else
1378    ClassDecl->addConversionFunction(Context, Conversion);
1379
1380  return (DeclTy *)Conversion;
1381}
1382
1383//===----------------------------------------------------------------------===//
1384// Namespace Handling
1385//===----------------------------------------------------------------------===//
1386
1387/// ActOnStartNamespaceDef - This is called at the start of a namespace
1388/// definition.
1389Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1390                                           SourceLocation IdentLoc,
1391                                           IdentifierInfo *II,
1392                                           SourceLocation LBrace) {
1393  NamespaceDecl *Namespc =
1394      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1395  Namespc->setLBracLoc(LBrace);
1396
1397  Scope *DeclRegionScope = NamespcScope->getParent();
1398
1399  if (II) {
1400    // C++ [namespace.def]p2:
1401    // The identifier in an original-namespace-definition shall not have been
1402    // previously defined in the declarative region in which the
1403    // original-namespace-definition appears. The identifier in an
1404    // original-namespace-definition is the name of the namespace. Subsequently
1405    // in that declarative region, it is treated as an original-namespace-name.
1406
1407    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1408                                     true);
1409
1410    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1411      // This is an extended namespace definition.
1412      // Attach this namespace decl to the chain of extended namespace
1413      // definitions.
1414      OrigNS->setNextNamespace(Namespc);
1415      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1416
1417      // Remove the previous declaration from the scope.
1418      if (DeclRegionScope->isDeclScope(OrigNS)) {
1419        IdResolver.RemoveDecl(OrigNS);
1420        DeclRegionScope->RemoveDecl(OrigNS);
1421      }
1422    } else if (PrevDecl) {
1423      // This is an invalid name redefinition.
1424      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1425       << Namespc->getDeclName();
1426      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1427      Namespc->setInvalidDecl();
1428      // Continue on to push Namespc as current DeclContext and return it.
1429    }
1430
1431    PushOnScopeChains(Namespc, DeclRegionScope);
1432  } else {
1433    // FIXME: Handle anonymous namespaces
1434  }
1435
1436  // Although we could have an invalid decl (i.e. the namespace name is a
1437  // redefinition), push it as current DeclContext and try to continue parsing.
1438  // FIXME: We should be able to push Namespc here, so that the
1439  // each DeclContext for the namespace has the declarations
1440  // that showed up in that particular namespace definition.
1441  PushDeclContext(NamespcScope, Namespc);
1442  return Namespc;
1443}
1444
1445/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1446/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1447void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1448  Decl *Dcl = static_cast<Decl *>(D);
1449  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1450  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1451  Namespc->setRBracLoc(RBrace);
1452  PopDeclContext();
1453}
1454
1455Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1456                                        SourceLocation UsingLoc,
1457                                        SourceLocation NamespcLoc,
1458                                        const CXXScopeSpec &SS,
1459                                        SourceLocation IdentLoc,
1460                                        IdentifierInfo *NamespcName,
1461                                        AttributeList *AttrList) {
1462  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1463  assert(NamespcName && "Invalid NamespcName.");
1464  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1465  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1466
1467  UsingDirectiveDecl *UDir = 0;
1468
1469  // Lookup namespace name.
1470  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1471                                    LookupNamespaceName, false);
1472  if (R.isAmbiguous()) {
1473    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1474    return 0;
1475  }
1476  if (NamedDecl *NS = R) {
1477    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1478    // C++ [namespace.udir]p1:
1479    //   A using-directive specifies that the names in the nominated
1480    //   namespace can be used in the scope in which the
1481    //   using-directive appears after the using-directive. During
1482    //   unqualified name lookup (3.4.1), the names appear as if they
1483    //   were declared in the nearest enclosing namespace which
1484    //   contains both the using-directive and the nominated
1485    //   namespace. [Note: in this context, “contains” means “contains
1486    //   directly or indirectly”. ]
1487
1488    // Find enclosing context containing both using-directive and
1489    // nominated namespace.
1490    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1491    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1492      CommonAncestor = CommonAncestor->getParent();
1493
1494    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1495                                      NamespcLoc, IdentLoc,
1496                                      cast<NamespaceDecl>(NS),
1497                                      CommonAncestor);
1498    PushUsingDirective(S, UDir);
1499  } else {
1500    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1501  }
1502
1503  // FIXME: We ignore attributes for now.
1504  delete AttrList;
1505  return UDir;
1506}
1507
1508void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1509  // If scope has associated entity, then using directive is at namespace
1510  // or translation unit scope. We add UsingDirectiveDecls, into
1511  // it's lookup structure.
1512  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1513    Ctx->addDecl(UDir);
1514  else
1515    // Otherwise it is block-sope. using-directives will affect lookup
1516    // only to the end of scope.
1517    S->PushUsingDirective(UDir);
1518}
1519
1520/// AddCXXDirectInitializerToDecl - This action is called immediately after
1521/// ActOnDeclarator, when a C++ direct initializer is present.
1522/// e.g: "int x(1);"
1523void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1524                                         ExprTy **ExprTys, unsigned NumExprs,
1525                                         SourceLocation *CommaLocs,
1526                                         SourceLocation RParenLoc) {
1527  assert(NumExprs != 0 && ExprTys && "missing expressions");
1528  Decl *RealDecl = static_cast<Decl *>(Dcl);
1529
1530  // If there is no declaration, there was an error parsing it.  Just ignore
1531  // the initializer.
1532  if (RealDecl == 0) {
1533    for (unsigned i = 0; i != NumExprs; ++i)
1534      static_cast<Expr *>(ExprTys[i])->Destroy(Context);
1535    return;
1536  }
1537
1538  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1539  if (!VDecl) {
1540    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1541    RealDecl->setInvalidDecl();
1542    return;
1543  }
1544
1545  // We will treat direct-initialization as a copy-initialization:
1546  //    int x(1);  -as-> int x = 1;
1547  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1548  //
1549  // Clients that want to distinguish between the two forms, can check for
1550  // direct initializer using VarDecl::hasCXXDirectInitializer().
1551  // A major benefit is that clients that don't particularly care about which
1552  // exactly form was it (like the CodeGen) can handle both cases without
1553  // special case code.
1554
1555  // C++ 8.5p11:
1556  // The form of initialization (using parentheses or '=') is generally
1557  // insignificant, but does matter when the entity being initialized has a
1558  // class type.
1559  QualType DeclInitType = VDecl->getType();
1560  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1561    DeclInitType = Array->getElementType();
1562
1563  if (VDecl->getType()->isRecordType()) {
1564    CXXConstructorDecl *Constructor
1565      = PerformInitializationByConstructor(DeclInitType,
1566                                           (Expr **)ExprTys, NumExprs,
1567                                           VDecl->getLocation(),
1568                                           SourceRange(VDecl->getLocation(),
1569                                                       RParenLoc),
1570                                           VDecl->getDeclName(),
1571                                           IK_Direct);
1572    if (!Constructor) {
1573      RealDecl->setInvalidDecl();
1574    }
1575
1576    // Let clients know that initialization was done with a direct
1577    // initializer.
1578    VDecl->setCXXDirectInitializer(true);
1579
1580    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1581    // the initializer.
1582    return;
1583  }
1584
1585  if (NumExprs > 1) {
1586    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1587      << SourceRange(VDecl->getLocation(), RParenLoc);
1588    RealDecl->setInvalidDecl();
1589    return;
1590  }
1591
1592  // Let clients know that initialization was done with a direct initializer.
1593  VDecl->setCXXDirectInitializer(true);
1594
1595  assert(NumExprs == 1 && "Expected 1 expression");
1596  // Set the init expression, handles conversions.
1597  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]), /*DirectInit=*/true);
1598}
1599
1600/// PerformInitializationByConstructor - Perform initialization by
1601/// constructor (C++ [dcl.init]p14), which may occur as part of
1602/// direct-initialization or copy-initialization. We are initializing
1603/// an object of type @p ClassType with the given arguments @p
1604/// Args. @p Loc is the location in the source code where the
1605/// initializer occurs (e.g., a declaration, member initializer,
1606/// functional cast, etc.) while @p Range covers the whole
1607/// initialization. @p InitEntity is the entity being initialized,
1608/// which may by the name of a declaration or a type. @p Kind is the
1609/// kind of initialization we're performing, which affects whether
1610/// explicit constructors will be considered. When successful, returns
1611/// the constructor that will be used to perform the initialization;
1612/// when the initialization fails, emits a diagnostic and returns
1613/// null.
1614CXXConstructorDecl *
1615Sema::PerformInitializationByConstructor(QualType ClassType,
1616                                         Expr **Args, unsigned NumArgs,
1617                                         SourceLocation Loc, SourceRange Range,
1618                                         DeclarationName InitEntity,
1619                                         InitializationKind Kind) {
1620  const RecordType *ClassRec = ClassType->getAsRecordType();
1621  assert(ClassRec && "Can only initialize a class type here");
1622
1623  // C++ [dcl.init]p14:
1624  //
1625  //   If the initialization is direct-initialization, or if it is
1626  //   copy-initialization where the cv-unqualified version of the
1627  //   source type is the same class as, or a derived class of, the
1628  //   class of the destination, constructors are considered. The
1629  //   applicable constructors are enumerated (13.3.1.3), and the
1630  //   best one is chosen through overload resolution (13.3). The
1631  //   constructor so selected is called to initialize the object,
1632  //   with the initializer expression(s) as its argument(s). If no
1633  //   constructor applies, or the overload resolution is ambiguous,
1634  //   the initialization is ill-formed.
1635  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1636  OverloadCandidateSet CandidateSet;
1637
1638  // Add constructors to the overload set.
1639  DeclarationName ConstructorName
1640    = Context.DeclarationNames.getCXXConstructorName(
1641                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1642  DeclContext::lookup_const_iterator Con, ConEnd;
1643  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1644       Con != ConEnd; ++Con) {
1645    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1646    if ((Kind == IK_Direct) ||
1647        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1648        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1649      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1650  }
1651
1652  // FIXME: When we decide not to synthesize the implicitly-declared
1653  // constructors, we'll need to make them appear here.
1654
1655  OverloadCandidateSet::iterator Best;
1656  switch (BestViableFunction(CandidateSet, Best)) {
1657  case OR_Success:
1658    // We found a constructor. Return it.
1659    return cast<CXXConstructorDecl>(Best->Function);
1660
1661  case OR_No_Viable_Function:
1662    if (InitEntity)
1663      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1664        << InitEntity << Range;
1665    else
1666      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1667        << ClassType << Range;
1668    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1669    return 0;
1670
1671  case OR_Ambiguous:
1672    if (InitEntity)
1673      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1674    else
1675      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1676    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1677    return 0;
1678
1679  case OR_Deleted:
1680    if (InitEntity)
1681      Diag(Loc, diag::err_ovl_deleted_init)
1682        << Best->Function->isDeleted()
1683        << InitEntity << Range;
1684    else
1685      Diag(Loc, diag::err_ovl_deleted_init)
1686        << Best->Function->isDeleted()
1687        << InitEntity << Range;
1688    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1689    return 0;
1690  }
1691
1692  return 0;
1693}
1694
1695/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1696/// determine whether they are reference-related,
1697/// reference-compatible, reference-compatible with added
1698/// qualification, or incompatible, for use in C++ initialization by
1699/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1700/// type, and the first type (T1) is the pointee type of the reference
1701/// type being initialized.
1702Sema::ReferenceCompareResult
1703Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1704                                   bool& DerivedToBase) {
1705  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1706  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1707
1708  T1 = Context.getCanonicalType(T1);
1709  T2 = Context.getCanonicalType(T2);
1710  QualType UnqualT1 = T1.getUnqualifiedType();
1711  QualType UnqualT2 = T2.getUnqualifiedType();
1712
1713  // C++ [dcl.init.ref]p4:
1714  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1715  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1716  //   T1 is a base class of T2.
1717  if (UnqualT1 == UnqualT2)
1718    DerivedToBase = false;
1719  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1720    DerivedToBase = true;
1721  else
1722    return Ref_Incompatible;
1723
1724  // At this point, we know that T1 and T2 are reference-related (at
1725  // least).
1726
1727  // C++ [dcl.init.ref]p4:
1728  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1729  //   reference-related to T2 and cv1 is the same cv-qualification
1730  //   as, or greater cv-qualification than, cv2. For purposes of
1731  //   overload resolution, cases for which cv1 is greater
1732  //   cv-qualification than cv2 are identified as
1733  //   reference-compatible with added qualification (see 13.3.3.2).
1734  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1735    return Ref_Compatible;
1736  else if (T1.isMoreQualifiedThan(T2))
1737    return Ref_Compatible_With_Added_Qualification;
1738  else
1739    return Ref_Related;
1740}
1741
1742/// CheckReferenceInit - Check the initialization of a reference
1743/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1744/// the initializer (either a simple initializer or an initializer
1745/// list), and DeclType is the type of the declaration. When ICS is
1746/// non-null, this routine will compute the implicit conversion
1747/// sequence according to C++ [over.ics.ref] and will not produce any
1748/// diagnostics; when ICS is null, it will emit diagnostics when any
1749/// errors are found. Either way, a return value of true indicates
1750/// that there was a failure, a return value of false indicates that
1751/// the reference initialization succeeded.
1752///
1753/// When @p SuppressUserConversions, user-defined conversions are
1754/// suppressed.
1755/// When @p AllowExplicit, we also permit explicit user-defined
1756/// conversion functions.
1757bool
1758Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1759                         ImplicitConversionSequence *ICS,
1760                         bool SuppressUserConversions,
1761                         bool AllowExplicit) {
1762  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1763
1764  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1765  QualType T2 = Init->getType();
1766
1767  // If the initializer is the address of an overloaded function, try
1768  // to resolve the overloaded function. If all goes well, T2 is the
1769  // type of the resulting function.
1770  if (T2->isOverloadType()) {
1771    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1772                                                          ICS != 0);
1773    if (Fn) {
1774      // Since we're performing this reference-initialization for
1775      // real, update the initializer with the resulting function.
1776      if (!ICS) {
1777        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1778          return true;
1779
1780        FixOverloadedFunctionReference(Init, Fn);
1781      }
1782
1783      T2 = Fn->getType();
1784    }
1785  }
1786
1787  // Compute some basic properties of the types and the initializer.
1788  bool DerivedToBase = false;
1789  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1790  ReferenceCompareResult RefRelationship
1791    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1792
1793  // Most paths end in a failed conversion.
1794  if (ICS)
1795    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1796
1797  // C++ [dcl.init.ref]p5:
1798  //   A reference to type “cv1 T1” is initialized by an expression
1799  //   of type “cv2 T2” as follows:
1800
1801  //     -- If the initializer expression
1802
1803  bool BindsDirectly = false;
1804  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1805  //          reference-compatible with “cv2 T2,” or
1806  //
1807  // Note that the bit-field check is skipped if we are just computing
1808  // the implicit conversion sequence (C++ [over.best.ics]p2).
1809  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1810      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1811    BindsDirectly = true;
1812
1813    if (ICS) {
1814      // C++ [over.ics.ref]p1:
1815      //   When a parameter of reference type binds directly (8.5.3)
1816      //   to an argument expression, the implicit conversion sequence
1817      //   is the identity conversion, unless the argument expression
1818      //   has a type that is a derived class of the parameter type,
1819      //   in which case the implicit conversion sequence is a
1820      //   derived-to-base Conversion (13.3.3.1).
1821      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1822      ICS->Standard.First = ICK_Identity;
1823      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1824      ICS->Standard.Third = ICK_Identity;
1825      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1826      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1827      ICS->Standard.ReferenceBinding = true;
1828      ICS->Standard.DirectBinding = true;
1829
1830      // Nothing more to do: the inaccessibility/ambiguity check for
1831      // derived-to-base conversions is suppressed when we're
1832      // computing the implicit conversion sequence (C++
1833      // [over.best.ics]p2).
1834      return false;
1835    } else {
1836      // Perform the conversion.
1837      // FIXME: Binding to a subobject of the lvalue is going to require
1838      // more AST annotation than this.
1839      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1840    }
1841  }
1842
1843  //       -- has a class type (i.e., T2 is a class type) and can be
1844  //          implicitly converted to an lvalue of type “cv3 T3,”
1845  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1846  //          92) (this conversion is selected by enumerating the
1847  //          applicable conversion functions (13.3.1.6) and choosing
1848  //          the best one through overload resolution (13.3)),
1849  if (!SuppressUserConversions && T2->isRecordType()) {
1850    // FIXME: Look for conversions in base classes!
1851    CXXRecordDecl *T2RecordDecl
1852      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1853
1854    OverloadCandidateSet CandidateSet;
1855    OverloadedFunctionDecl *Conversions
1856      = T2RecordDecl->getConversionFunctions();
1857    for (OverloadedFunctionDecl::function_iterator Func
1858           = Conversions->function_begin();
1859         Func != Conversions->function_end(); ++Func) {
1860      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1861
1862      // If the conversion function doesn't return a reference type,
1863      // it can't be considered for this conversion.
1864      // FIXME: This will change when we support rvalue references.
1865      if (Conv->getConversionType()->isReferenceType() &&
1866          (AllowExplicit || !Conv->isExplicit()))
1867        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1868    }
1869
1870    OverloadCandidateSet::iterator Best;
1871    switch (BestViableFunction(CandidateSet, Best)) {
1872    case OR_Success:
1873      // This is a direct binding.
1874      BindsDirectly = true;
1875
1876      if (ICS) {
1877        // C++ [over.ics.ref]p1:
1878        //
1879        //   [...] If the parameter binds directly to the result of
1880        //   applying a conversion function to the argument
1881        //   expression, the implicit conversion sequence is a
1882        //   user-defined conversion sequence (13.3.3.1.2), with the
1883        //   second standard conversion sequence either an identity
1884        //   conversion or, if the conversion function returns an
1885        //   entity of a type that is a derived class of the parameter
1886        //   type, a derived-to-base Conversion.
1887        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1888        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1889        ICS->UserDefined.After = Best->FinalConversion;
1890        ICS->UserDefined.ConversionFunction = Best->Function;
1891        assert(ICS->UserDefined.After.ReferenceBinding &&
1892               ICS->UserDefined.After.DirectBinding &&
1893               "Expected a direct reference binding!");
1894        return false;
1895      } else {
1896        // Perform the conversion.
1897        // FIXME: Binding to a subobject of the lvalue is going to require
1898        // more AST annotation than this.
1899        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1900      }
1901      break;
1902
1903    case OR_Ambiguous:
1904      assert(false && "Ambiguous reference binding conversions not implemented.");
1905      return true;
1906
1907    case OR_No_Viable_Function:
1908    case OR_Deleted:
1909      // There was no suitable conversion, or we found a deleted
1910      // conversion; continue with other checks.
1911      break;
1912    }
1913  }
1914
1915  if (BindsDirectly) {
1916    // C++ [dcl.init.ref]p4:
1917    //   [...] In all cases where the reference-related or
1918    //   reference-compatible relationship of two types is used to
1919    //   establish the validity of a reference binding, and T1 is a
1920    //   base class of T2, a program that necessitates such a binding
1921    //   is ill-formed if T1 is an inaccessible (clause 11) or
1922    //   ambiguous (10.2) base class of T2.
1923    //
1924    // Note that we only check this condition when we're allowed to
1925    // complain about errors, because we should not be checking for
1926    // ambiguity (or inaccessibility) unless the reference binding
1927    // actually happens.
1928    if (DerivedToBase)
1929      return CheckDerivedToBaseConversion(T2, T1,
1930                                          Init->getSourceRange().getBegin(),
1931                                          Init->getSourceRange());
1932    else
1933      return false;
1934  }
1935
1936  //     -- Otherwise, the reference shall be to a non-volatile const
1937  //        type (i.e., cv1 shall be const).
1938  if (T1.getCVRQualifiers() != QualType::Const) {
1939    if (!ICS)
1940      Diag(Init->getSourceRange().getBegin(),
1941           diag::err_not_reference_to_const_init)
1942        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1943        << T2 << Init->getSourceRange();
1944    return true;
1945  }
1946
1947  //       -- If the initializer expression is an rvalue, with T2 a
1948  //          class type, and “cv1 T1” is reference-compatible with
1949  //          “cv2 T2,” the reference is bound in one of the
1950  //          following ways (the choice is implementation-defined):
1951  //
1952  //          -- The reference is bound to the object represented by
1953  //             the rvalue (see 3.10) or to a sub-object within that
1954  //             object.
1955  //
1956  //          -- A temporary of type “cv1 T2” [sic] is created, and
1957  //             a constructor is called to copy the entire rvalue
1958  //             object into the temporary. The reference is bound to
1959  //             the temporary or to a sub-object within the
1960  //             temporary.
1961  //
1962  //          The constructor that would be used to make the copy
1963  //          shall be callable whether or not the copy is actually
1964  //          done.
1965  //
1966  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1967  // freedom, so we will always take the first option and never build
1968  // a temporary in this case. FIXME: We will, however, have to check
1969  // for the presence of a copy constructor in C++98/03 mode.
1970  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1971      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1972    if (ICS) {
1973      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1974      ICS->Standard.First = ICK_Identity;
1975      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1976      ICS->Standard.Third = ICK_Identity;
1977      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1978      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1979      ICS->Standard.ReferenceBinding = true;
1980      ICS->Standard.DirectBinding = false;
1981    } else {
1982      // FIXME: Binding to a subobject of the rvalue is going to require
1983      // more AST annotation than this.
1984      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1985    }
1986    return false;
1987  }
1988
1989  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1990  //          initialized from the initializer expression using the
1991  //          rules for a non-reference copy initialization (8.5). The
1992  //          reference is then bound to the temporary. If T1 is
1993  //          reference-related to T2, cv1 must be the same
1994  //          cv-qualification as, or greater cv-qualification than,
1995  //          cv2; otherwise, the program is ill-formed.
1996  if (RefRelationship == Ref_Related) {
1997    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1998    // we would be reference-compatible or reference-compatible with
1999    // added qualification. But that wasn't the case, so the reference
2000    // initialization fails.
2001    if (!ICS)
2002      Diag(Init->getSourceRange().getBegin(),
2003           diag::err_reference_init_drops_quals)
2004        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2005        << T2 << Init->getSourceRange();
2006    return true;
2007  }
2008
2009  // If at least one of the types is a class type, the types are not
2010  // related, and we aren't allowed any user conversions, the
2011  // reference binding fails. This case is important for breaking
2012  // recursion, since TryImplicitConversion below will attempt to
2013  // create a temporary through the use of a copy constructor.
2014  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2015      (T1->isRecordType() || T2->isRecordType())) {
2016    if (!ICS)
2017      Diag(Init->getSourceRange().getBegin(),
2018           diag::err_typecheck_convert_incompatible)
2019        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2020    return true;
2021  }
2022
2023  // Actually try to convert the initializer to T1.
2024  if (ICS) {
2025    /// C++ [over.ics.ref]p2:
2026    ///
2027    ///   When a parameter of reference type is not bound directly to
2028    ///   an argument expression, the conversion sequence is the one
2029    ///   required to convert the argument expression to the
2030    ///   underlying type of the reference according to
2031    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2032    ///   to copy-initializing a temporary of the underlying type with
2033    ///   the argument expression. Any difference in top-level
2034    ///   cv-qualification is subsumed by the initialization itself
2035    ///   and does not constitute a conversion.
2036    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2037    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2038  } else {
2039    return PerformImplicitConversion(Init, T1, "initializing");
2040  }
2041}
2042
2043/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2044/// of this overloaded operator is well-formed. If so, returns false;
2045/// otherwise, emits appropriate diagnostics and returns true.
2046bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2047  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2048         "Expected an overloaded operator declaration");
2049
2050  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2051
2052  // C++ [over.oper]p5:
2053  //   The allocation and deallocation functions, operator new,
2054  //   operator new[], operator delete and operator delete[], are
2055  //   described completely in 3.7.3. The attributes and restrictions
2056  //   found in the rest of this subclause do not apply to them unless
2057  //   explicitly stated in 3.7.3.
2058  // FIXME: Write a separate routine for checking this. For now, just
2059  // allow it.
2060  if (Op == OO_New || Op == OO_Array_New ||
2061      Op == OO_Delete || Op == OO_Array_Delete)
2062    return false;
2063
2064  // C++ [over.oper]p6:
2065  //   An operator function shall either be a non-static member
2066  //   function or be a non-member function and have at least one
2067  //   parameter whose type is a class, a reference to a class, an
2068  //   enumeration, or a reference to an enumeration.
2069  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2070    if (MethodDecl->isStatic())
2071      return Diag(FnDecl->getLocation(),
2072                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2073  } else {
2074    bool ClassOrEnumParam = false;
2075    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2076                                   ParamEnd = FnDecl->param_end();
2077         Param != ParamEnd; ++Param) {
2078      QualType ParamType = (*Param)->getType().getNonReferenceType();
2079      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2080        ClassOrEnumParam = true;
2081        break;
2082      }
2083    }
2084
2085    if (!ClassOrEnumParam)
2086      return Diag(FnDecl->getLocation(),
2087                  diag::err_operator_overload_needs_class_or_enum)
2088        << FnDecl->getDeclName();
2089  }
2090
2091  // C++ [over.oper]p8:
2092  //   An operator function cannot have default arguments (8.3.6),
2093  //   except where explicitly stated below.
2094  //
2095  // Only the function-call operator allows default arguments
2096  // (C++ [over.call]p1).
2097  if (Op != OO_Call) {
2098    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2099         Param != FnDecl->param_end(); ++Param) {
2100      if ((*Param)->hasUnparsedDefaultArg())
2101        return Diag((*Param)->getLocation(),
2102                    diag::err_operator_overload_default_arg)
2103          << FnDecl->getDeclName();
2104      else if (Expr *DefArg = (*Param)->getDefaultArg())
2105        return Diag((*Param)->getLocation(),
2106                    diag::err_operator_overload_default_arg)
2107          << FnDecl->getDeclName() << DefArg->getSourceRange();
2108    }
2109  }
2110
2111  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2112    { false, false, false }
2113#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2114    , { Unary, Binary, MemberOnly }
2115#include "clang/Basic/OperatorKinds.def"
2116  };
2117
2118  bool CanBeUnaryOperator = OperatorUses[Op][0];
2119  bool CanBeBinaryOperator = OperatorUses[Op][1];
2120  bool MustBeMemberOperator = OperatorUses[Op][2];
2121
2122  // C++ [over.oper]p8:
2123  //   [...] Operator functions cannot have more or fewer parameters
2124  //   than the number required for the corresponding operator, as
2125  //   described in the rest of this subclause.
2126  unsigned NumParams = FnDecl->getNumParams()
2127                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2128  if (Op != OO_Call &&
2129      ((NumParams == 1 && !CanBeUnaryOperator) ||
2130       (NumParams == 2 && !CanBeBinaryOperator) ||
2131       (NumParams < 1) || (NumParams > 2))) {
2132    // We have the wrong number of parameters.
2133    unsigned ErrorKind;
2134    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2135      ErrorKind = 2;  // 2 -> unary or binary.
2136    } else if (CanBeUnaryOperator) {
2137      ErrorKind = 0;  // 0 -> unary
2138    } else {
2139      assert(CanBeBinaryOperator &&
2140             "All non-call overloaded operators are unary or binary!");
2141      ErrorKind = 1;  // 1 -> binary
2142    }
2143
2144    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2145      << FnDecl->getDeclName() << NumParams << ErrorKind;
2146  }
2147
2148  // Overloaded operators other than operator() cannot be variadic.
2149  if (Op != OO_Call &&
2150      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2151    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2152      << FnDecl->getDeclName();
2153  }
2154
2155  // Some operators must be non-static member functions.
2156  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2157    return Diag(FnDecl->getLocation(),
2158                diag::err_operator_overload_must_be_member)
2159      << FnDecl->getDeclName();
2160  }
2161
2162  // C++ [over.inc]p1:
2163  //   The user-defined function called operator++ implements the
2164  //   prefix and postfix ++ operator. If this function is a member
2165  //   function with no parameters, or a non-member function with one
2166  //   parameter of class or enumeration type, it defines the prefix
2167  //   increment operator ++ for objects of that type. If the function
2168  //   is a member function with one parameter (which shall be of type
2169  //   int) or a non-member function with two parameters (the second
2170  //   of which shall be of type int), it defines the postfix
2171  //   increment operator ++ for objects of that type.
2172  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2173    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2174    bool ParamIsInt = false;
2175    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2176      ParamIsInt = BT->getKind() == BuiltinType::Int;
2177
2178    if (!ParamIsInt)
2179      return Diag(LastParam->getLocation(),
2180                  diag::err_operator_overload_post_incdec_must_be_int)
2181        << LastParam->getType() << (Op == OO_MinusMinus);
2182  }
2183
2184  // Notify the class if it got an assignment operator.
2185  if (Op == OO_Equal) {
2186    // Would have returned earlier otherwise.
2187    assert(isa<CXXMethodDecl>(FnDecl) &&
2188      "Overloaded = not member, but not filtered.");
2189    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2190    Method->getParent()->addedAssignmentOperator(Context, Method);
2191  }
2192
2193  return false;
2194}
2195
2196/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2197/// linkage specification, including the language and (if present)
2198/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2199/// the location of the language string literal, which is provided
2200/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2201/// the '{' brace. Otherwise, this linkage specification does not
2202/// have any braces.
2203Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2204                                                   SourceLocation ExternLoc,
2205                                                   SourceLocation LangLoc,
2206                                                   const char *Lang,
2207                                                   unsigned StrSize,
2208                                                   SourceLocation LBraceLoc) {
2209  LinkageSpecDecl::LanguageIDs Language;
2210  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2211    Language = LinkageSpecDecl::lang_c;
2212  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2213    Language = LinkageSpecDecl::lang_cxx;
2214  else {
2215    Diag(LangLoc, diag::err_bad_language);
2216    return 0;
2217  }
2218
2219  // FIXME: Add all the various semantics of linkage specifications
2220
2221  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2222                                               LangLoc, Language,
2223                                               LBraceLoc.isValid());
2224  CurContext->addDecl(D);
2225  PushDeclContext(S, D);
2226  return D;
2227}
2228
2229/// ActOnFinishLinkageSpecification - Completely the definition of
2230/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2231/// valid, it's the position of the closing '}' brace in a linkage
2232/// specification that uses braces.
2233Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2234                                                    DeclTy *LinkageSpec,
2235                                                    SourceLocation RBraceLoc) {
2236  if (LinkageSpec)
2237    PopDeclContext();
2238  return LinkageSpec;
2239}
2240
2241/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2242/// handler.
2243Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2244{
2245  QualType ExDeclType = GetTypeForDeclarator(D, S);
2246  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2247
2248  bool Invalid = false;
2249
2250  // Arrays and functions decay.
2251  if (ExDeclType->isArrayType())
2252    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2253  else if (ExDeclType->isFunctionType())
2254    ExDeclType = Context.getPointerType(ExDeclType);
2255
2256  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2257  // The exception-declaration shall not denote a pointer or reference to an
2258  // incomplete type, other than [cv] void*.
2259  QualType BaseType = ExDeclType;
2260  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2261  unsigned DK = diag::err_catch_incomplete;
2262  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2263    BaseType = Ptr->getPointeeType();
2264    Mode = 1;
2265    DK = diag::err_catch_incomplete_ptr;
2266  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2267    BaseType = Ref->getPointeeType();
2268    Mode = 2;
2269    DK = diag::err_catch_incomplete_ref;
2270  }
2271  if ((Mode == 0 || !BaseType->isVoidType()) &&
2272      RequireCompleteType(Begin, BaseType, DK))
2273    Invalid = true;
2274
2275  // FIXME: Need to test for ability to copy-construct and destroy the
2276  // exception variable.
2277  // FIXME: Need to check for abstract classes.
2278
2279  IdentifierInfo *II = D.getIdentifier();
2280  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2281    // The scope should be freshly made just for us. There is just no way
2282    // it contains any previous declaration.
2283    assert(!S->isDeclScope(PrevDecl));
2284    if (PrevDecl->isTemplateParameter()) {
2285      // Maybe we will complain about the shadowed template parameter.
2286      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2287
2288    }
2289  }
2290
2291  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2292                                    II, ExDeclType, VarDecl::None, Begin);
2293  if (D.getInvalidType() || Invalid)
2294    ExDecl->setInvalidDecl();
2295
2296  if (D.getCXXScopeSpec().isSet()) {
2297    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2298      << D.getCXXScopeSpec().getRange();
2299    ExDecl->setInvalidDecl();
2300  }
2301
2302  // Add the exception declaration into this scope.
2303  S->AddDecl(ExDecl);
2304  if (II)
2305    IdResolver.AddDecl(ExDecl);
2306
2307  ProcessDeclAttributes(ExDecl, D);
2308  return ExDecl;
2309}
2310