SemaDeclCXX.cpp revision ff817f7070c0308e9d4486432b774005d4f8e420
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny or unknown spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
250                                      MultiExprArg(*this, &Arg, 1));
251  if (Result.isInvalid())
252    return true;
253  Arg = Result.takeAs<Expr>();
254
255  CheckImplicitConversions(Arg, EqualLoc);
256  Arg = MaybeCreateExprWithCleanups(Arg);
257
258  // Okay: add the default argument to the parameter
259  Param->setDefaultArg(Arg);
260
261  // We have already instantiated this parameter; provide each of the
262  // instantiations with the uninstantiated default argument.
263  UnparsedDefaultArgInstantiationsMap::iterator InstPos
264    = UnparsedDefaultArgInstantiations.find(Param);
265  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
266    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
267      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
268
269    // We're done tracking this parameter's instantiations.
270    UnparsedDefaultArgInstantiations.erase(InstPos);
271  }
272
273  return false;
274}
275
276/// ActOnParamDefaultArgument - Check whether the default argument
277/// provided for a function parameter is well-formed. If so, attach it
278/// to the parameter declaration.
279void
280Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
281                                Expr *DefaultArg) {
282  if (!param || !DefaultArg)
283    return;
284
285  ParmVarDecl *Param = cast<ParmVarDecl>(param);
286  UnparsedDefaultArgLocs.erase(Param);
287
288  // Default arguments are only permitted in C++
289  if (!getLangOpts().CPlusPlus) {
290    Diag(EqualLoc, diag::err_param_default_argument)
291      << DefaultArg->getSourceRange();
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check for unexpanded parameter packs.
297  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
298    Param->setInvalidDecl();
299    return;
300  }
301
302  // Check that the default argument is well-formed
303  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
304  if (DefaultArgChecker.Visit(DefaultArg)) {
305    Param->setInvalidDecl();
306    return;
307  }
308
309  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
310}
311
312/// ActOnParamUnparsedDefaultArgument - We've seen a default
313/// argument for a function parameter, but we can't parse it yet
314/// because we're inside a class definition. Note that this default
315/// argument will be parsed later.
316void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
317                                             SourceLocation EqualLoc,
318                                             SourceLocation ArgLoc) {
319  if (!param)
320    return;
321
322  ParmVarDecl *Param = cast<ParmVarDecl>(param);
323  if (Param)
324    Param->setUnparsedDefaultArg();
325
326  UnparsedDefaultArgLocs[Param] = ArgLoc;
327}
328
329/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
330/// the default argument for the parameter param failed.
331void Sema::ActOnParamDefaultArgumentError(Decl *param) {
332  if (!param)
333    return;
334
335  ParmVarDecl *Param = cast<ParmVarDecl>(param);
336
337  Param->setInvalidDecl();
338
339  UnparsedDefaultArgLocs.erase(Param);
340}
341
342/// CheckExtraCXXDefaultArguments - Check for any extra default
343/// arguments in the declarator, which is not a function declaration
344/// or definition and therefore is not permitted to have default
345/// arguments. This routine should be invoked for every declarator
346/// that is not a function declaration or definition.
347void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
348  // C++ [dcl.fct.default]p3
349  //   A default argument expression shall be specified only in the
350  //   parameter-declaration-clause of a function declaration or in a
351  //   template-parameter (14.1). It shall not be specified for a
352  //   parameter pack. If it is specified in a
353  //   parameter-declaration-clause, it shall not occur within a
354  //   declarator or abstract-declarator of a parameter-declaration.
355  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
356    DeclaratorChunk &chunk = D.getTypeObject(i);
357    if (chunk.Kind == DeclaratorChunk::Function) {
358      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
359        ParmVarDecl *Param =
360          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
361        if (Param->hasUnparsedDefaultArg()) {
362          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
365          delete Toks;
366          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
367        } else if (Param->getDefaultArg()) {
368          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
369            << Param->getDefaultArg()->getSourceRange();
370          Param->setDefaultArg(0);
371        }
372      }
373    }
374  }
375}
376
377// MergeCXXFunctionDecl - Merge two declarations of the same C++
378// function, once we already know that they have the same
379// type. Subroutine of MergeFunctionDecl. Returns true if there was an
380// error, false otherwise.
381bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
382                                Scope *S) {
383  bool Invalid = false;
384
385  // C++ [dcl.fct.default]p4:
386  //   For non-template functions, default arguments can be added in
387  //   later declarations of a function in the same
388  //   scope. Declarations in different scopes have completely
389  //   distinct sets of default arguments. That is, declarations in
390  //   inner scopes do not acquire default arguments from
391  //   declarations in outer scopes, and vice versa. In a given
392  //   function declaration, all parameters subsequent to a
393  //   parameter with a default argument shall have default
394  //   arguments supplied in this or previous declarations. A
395  //   default argument shall not be redefined by a later
396  //   declaration (not even to the same value).
397  //
398  // C++ [dcl.fct.default]p6:
399  //   Except for member functions of class templates, the default arguments
400  //   in a member function definition that appears outside of the class
401  //   definition are added to the set of default arguments provided by the
402  //   member function declaration in the class definition.
403  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
404    ParmVarDecl *OldParam = Old->getParamDecl(p);
405    ParmVarDecl *NewParam = New->getParamDecl(p);
406
407    bool OldParamHasDfl = OldParam->hasDefaultArg();
408    bool NewParamHasDfl = NewParam->hasDefaultArg();
409
410    NamedDecl *ND = Old;
411    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
412      // Ignore default parameters of old decl if they are not in
413      // the same scope.
414      OldParamHasDfl = false;
415
416    if (OldParamHasDfl && NewParamHasDfl) {
417
418      unsigned DiagDefaultParamID =
419        diag::err_param_default_argument_redefinition;
420
421      // MSVC accepts that default parameters be redefined for member functions
422      // of template class. The new default parameter's value is ignored.
423      Invalid = true;
424      if (getLangOpts().MicrosoftExt) {
425        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
426        if (MD && MD->getParent()->getDescribedClassTemplate()) {
427          // Merge the old default argument into the new parameter.
428          NewParam->setHasInheritedDefaultArg();
429          if (OldParam->hasUninstantiatedDefaultArg())
430            NewParam->setUninstantiatedDefaultArg(
431                                      OldParam->getUninstantiatedDefaultArg());
432          else
433            NewParam->setDefaultArg(OldParam->getInit());
434          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
435          Invalid = false;
436        }
437      }
438
439      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
440      // hint here. Alternatively, we could walk the type-source information
441      // for NewParam to find the last source location in the type... but it
442      // isn't worth the effort right now. This is the kind of test case that
443      // is hard to get right:
444      //   int f(int);
445      //   void g(int (*fp)(int) = f);
446      //   void g(int (*fp)(int) = &f);
447      Diag(NewParam->getLocation(), DiagDefaultParamID)
448        << NewParam->getDefaultArgRange();
449
450      // Look for the function declaration where the default argument was
451      // actually written, which may be a declaration prior to Old.
452      for (FunctionDecl *Older = Old->getPreviousDecl();
453           Older; Older = Older->getPreviousDecl()) {
454        if (!Older->getParamDecl(p)->hasDefaultArg())
455          break;
456
457        OldParam = Older->getParamDecl(p);
458      }
459
460      Diag(OldParam->getLocation(), diag::note_previous_definition)
461        << OldParam->getDefaultArgRange();
462    } else if (OldParamHasDfl) {
463      // Merge the old default argument into the new parameter.
464      // It's important to use getInit() here;  getDefaultArg()
465      // strips off any top-level ExprWithCleanups.
466      NewParam->setHasInheritedDefaultArg();
467      if (OldParam->hasUninstantiatedDefaultArg())
468        NewParam->setUninstantiatedDefaultArg(
469                                      OldParam->getUninstantiatedDefaultArg());
470      else
471        NewParam->setDefaultArg(OldParam->getInit());
472    } else if (NewParamHasDfl) {
473      if (New->getDescribedFunctionTemplate()) {
474        // Paragraph 4, quoted above, only applies to non-template functions.
475        Diag(NewParam->getLocation(),
476             diag::err_param_default_argument_template_redecl)
477          << NewParam->getDefaultArgRange();
478        Diag(Old->getLocation(), diag::note_template_prev_declaration)
479          << false;
480      } else if (New->getTemplateSpecializationKind()
481                   != TSK_ImplicitInstantiation &&
482                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
483        // C++ [temp.expr.spec]p21:
484        //   Default function arguments shall not be specified in a declaration
485        //   or a definition for one of the following explicit specializations:
486        //     - the explicit specialization of a function template;
487        //     - the explicit specialization of a member function template;
488        //     - the explicit specialization of a member function of a class
489        //       template where the class template specialization to which the
490        //       member function specialization belongs is implicitly
491        //       instantiated.
492        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
493          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
494          << New->getDeclName()
495          << NewParam->getDefaultArgRange();
496      } else if (New->getDeclContext()->isDependentContext()) {
497        // C++ [dcl.fct.default]p6 (DR217):
498        //   Default arguments for a member function of a class template shall
499        //   be specified on the initial declaration of the member function
500        //   within the class template.
501        //
502        // Reading the tea leaves a bit in DR217 and its reference to DR205
503        // leads me to the conclusion that one cannot add default function
504        // arguments for an out-of-line definition of a member function of a
505        // dependent type.
506        int WhichKind = 2;
507        if (CXXRecordDecl *Record
508              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
509          if (Record->getDescribedClassTemplate())
510            WhichKind = 0;
511          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
512            WhichKind = 1;
513          else
514            WhichKind = 2;
515        }
516
517        Diag(NewParam->getLocation(),
518             diag::err_param_default_argument_member_template_redecl)
519          << WhichKind
520          << NewParam->getDefaultArgRange();
521      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
522        CXXSpecialMember NewSM = getSpecialMember(Ctor),
523                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
524        if (NewSM != OldSM) {
525          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
526            << NewParam->getDefaultArgRange() << NewSM;
527          Diag(Old->getLocation(), diag::note_previous_declaration_special)
528            << OldSM;
529        }
530      }
531    }
532  }
533
534  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
535  // template has a constexpr specifier then all its declarations shall
536  // contain the constexpr specifier.
537  if (New->isConstexpr() != Old->isConstexpr()) {
538    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
539      << New << New->isConstexpr();
540    Diag(Old->getLocation(), diag::note_previous_declaration);
541    Invalid = true;
542  }
543
544  if (CheckEquivalentExceptionSpec(Old, New))
545    Invalid = true;
546
547  return Invalid;
548}
549
550/// \brief Merge the exception specifications of two variable declarations.
551///
552/// This is called when there's a redeclaration of a VarDecl. The function
553/// checks if the redeclaration might have an exception specification and
554/// validates compatibility and merges the specs if necessary.
555void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
556  // Shortcut if exceptions are disabled.
557  if (!getLangOpts().CXXExceptions)
558    return;
559
560  assert(Context.hasSameType(New->getType(), Old->getType()) &&
561         "Should only be called if types are otherwise the same.");
562
563  QualType NewType = New->getType();
564  QualType OldType = Old->getType();
565
566  // We're only interested in pointers and references to functions, as well
567  // as pointers to member functions.
568  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
569    NewType = R->getPointeeType();
570    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
571  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
572    NewType = P->getPointeeType();
573    OldType = OldType->getAs<PointerType>()->getPointeeType();
574  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
575    NewType = M->getPointeeType();
576    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
577  }
578
579  if (!NewType->isFunctionProtoType())
580    return;
581
582  // There's lots of special cases for functions. For function pointers, system
583  // libraries are hopefully not as broken so that we don't need these
584  // workarounds.
585  if (CheckEquivalentExceptionSpec(
586        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
587        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
588    New->setInvalidDecl();
589  }
590}
591
592/// CheckCXXDefaultArguments - Verify that the default arguments for a
593/// function declaration are well-formed according to C++
594/// [dcl.fct.default].
595void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
596  unsigned NumParams = FD->getNumParams();
597  unsigned p;
598
599  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
600                  isa<CXXMethodDecl>(FD) &&
601                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
602
603  // Find first parameter with a default argument
604  for (p = 0; p < NumParams; ++p) {
605    ParmVarDecl *Param = FD->getParamDecl(p);
606    if (Param->hasDefaultArg()) {
607      // C++11 [expr.prim.lambda]p5:
608      //   [...] Default arguments (8.3.6) shall not be specified in the
609      //   parameter-declaration-clause of a lambda-declarator.
610      //
611      // FIXME: Core issue 974 strikes this sentence, we only provide an
612      // extension warning.
613      if (IsLambda)
614        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
615          << Param->getDefaultArgRange();
616      break;
617    }
618  }
619
620  // C++ [dcl.fct.default]p4:
621  //   In a given function declaration, all parameters
622  //   subsequent to a parameter with a default argument shall
623  //   have default arguments supplied in this or previous
624  //   declarations. A default argument shall not be redefined
625  //   by a later declaration (not even to the same value).
626  unsigned LastMissingDefaultArg = 0;
627  for (; p < NumParams; ++p) {
628    ParmVarDecl *Param = FD->getParamDecl(p);
629    if (!Param->hasDefaultArg()) {
630      if (Param->isInvalidDecl())
631        /* We already complained about this parameter. */;
632      else if (Param->getIdentifier())
633        Diag(Param->getLocation(),
634             diag::err_param_default_argument_missing_name)
635          << Param->getIdentifier();
636      else
637        Diag(Param->getLocation(),
638             diag::err_param_default_argument_missing);
639
640      LastMissingDefaultArg = p;
641    }
642  }
643
644  if (LastMissingDefaultArg > 0) {
645    // Some default arguments were missing. Clear out all of the
646    // default arguments up to (and including) the last missing
647    // default argument, so that we leave the function parameters
648    // in a semantically valid state.
649    for (p = 0; p <= LastMissingDefaultArg; ++p) {
650      ParmVarDecl *Param = FD->getParamDecl(p);
651      if (Param->hasDefaultArg()) {
652        Param->setDefaultArg(0);
653      }
654    }
655  }
656}
657
658// CheckConstexprParameterTypes - Check whether a function's parameter types
659// are all literal types. If so, return true. If not, produce a suitable
660// diagnostic and return false.
661static bool CheckConstexprParameterTypes(Sema &SemaRef,
662                                         const FunctionDecl *FD) {
663  unsigned ArgIndex = 0;
664  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
665  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
666       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
667    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
668    SourceLocation ParamLoc = PD->getLocation();
669    if (!(*i)->isDependentType() &&
670        SemaRef.RequireLiteralType(ParamLoc, *i,
671                                   diag::err_constexpr_non_literal_param,
672                                   ArgIndex+1, PD->getSourceRange(),
673                                   isa<CXXConstructorDecl>(FD)))
674      return false;
675  }
676  return true;
677}
678
679// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
680// the requirements of a constexpr function definition or a constexpr
681// constructor definition. If so, return true. If not, produce appropriate
682// diagnostics and return false.
683//
684// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
685bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
686  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
687  if (MD && MD->isInstance()) {
688    // C++11 [dcl.constexpr]p4:
689    //  The definition of a constexpr constructor shall satisfy the following
690    //  constraints:
691    //  - the class shall not have any virtual base classes;
692    const CXXRecordDecl *RD = MD->getParent();
693    if (RD->getNumVBases()) {
694      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
695        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
696        << RD->getNumVBases();
697      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
698             E = RD->vbases_end(); I != E; ++I)
699        Diag(I->getLocStart(),
700             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
701      return false;
702    }
703  }
704
705  if (!isa<CXXConstructorDecl>(NewFD)) {
706    // C++11 [dcl.constexpr]p3:
707    //  The definition of a constexpr function shall satisfy the following
708    //  constraints:
709    // - it shall not be virtual;
710    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
711    if (Method && Method->isVirtual()) {
712      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
713
714      // If it's not obvious why this function is virtual, find an overridden
715      // function which uses the 'virtual' keyword.
716      const CXXMethodDecl *WrittenVirtual = Method;
717      while (!WrittenVirtual->isVirtualAsWritten())
718        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
719      if (WrittenVirtual != Method)
720        Diag(WrittenVirtual->getLocation(),
721             diag::note_overridden_virtual_function);
722      return false;
723    }
724
725    // - its return type shall be a literal type;
726    QualType RT = NewFD->getResultType();
727    if (!RT->isDependentType() &&
728        RequireLiteralType(NewFD->getLocation(), RT,
729                           diag::err_constexpr_non_literal_return))
730      return false;
731  }
732
733  // - each of its parameter types shall be a literal type;
734  if (!CheckConstexprParameterTypes(*this, NewFD))
735    return false;
736
737  return true;
738}
739
740/// Check the given declaration statement is legal within a constexpr function
741/// body. C++0x [dcl.constexpr]p3,p4.
742///
743/// \return true if the body is OK, false if we have diagnosed a problem.
744static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
745                                   DeclStmt *DS) {
746  // C++0x [dcl.constexpr]p3 and p4:
747  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
748  //  contain only
749  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
750         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
751    switch ((*DclIt)->getKind()) {
752    case Decl::StaticAssert:
753    case Decl::Using:
754    case Decl::UsingShadow:
755    case Decl::UsingDirective:
756    case Decl::UnresolvedUsingTypename:
757      //   - static_assert-declarations
758      //   - using-declarations,
759      //   - using-directives,
760      continue;
761
762    case Decl::Typedef:
763    case Decl::TypeAlias: {
764      //   - typedef declarations and alias-declarations that do not define
765      //     classes or enumerations,
766      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
767      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
768        // Don't allow variably-modified types in constexpr functions.
769        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
770        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
771          << TL.getSourceRange() << TL.getType()
772          << isa<CXXConstructorDecl>(Dcl);
773        return false;
774      }
775      continue;
776    }
777
778    case Decl::Enum:
779    case Decl::CXXRecord:
780      // As an extension, we allow the declaration (but not the definition) of
781      // classes and enumerations in all declarations, not just in typedef and
782      // alias declarations.
783      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
784        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789
790    case Decl::Var:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794
795    default:
796      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
797        << isa<CXXConstructorDecl>(Dcl);
798      return false;
799    }
800  }
801
802  return true;
803}
804
805/// Check that the given field is initialized within a constexpr constructor.
806///
807/// \param Dcl The constexpr constructor being checked.
808/// \param Field The field being checked. This may be a member of an anonymous
809///        struct or union nested within the class being checked.
810/// \param Inits All declarations, including anonymous struct/union members and
811///        indirect members, for which any initialization was provided.
812/// \param Diagnosed Set to true if an error is produced.
813static void CheckConstexprCtorInitializer(Sema &SemaRef,
814                                          const FunctionDecl *Dcl,
815                                          FieldDecl *Field,
816                                          llvm::SmallSet<Decl*, 16> &Inits,
817                                          bool &Diagnosed) {
818  if (Field->isUnnamedBitfield())
819    return;
820
821  if (Field->isAnonymousStructOrUnion() &&
822      Field->getType()->getAsCXXRecordDecl()->isEmpty())
823    return;
824
825  if (!Inits.count(Field)) {
826    if (!Diagnosed) {
827      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
828      Diagnosed = true;
829    }
830    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
831  } else if (Field->isAnonymousStructOrUnion()) {
832    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
833    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
834         I != E; ++I)
835      // If an anonymous union contains an anonymous struct of which any member
836      // is initialized, all members must be initialized.
837      if (!RD->isUnion() || Inits.count(*I))
838        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
839  }
840}
841
842/// Check the body for the given constexpr function declaration only contains
843/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
844///
845/// \return true if the body is OK, false if we have diagnosed a problem.
846bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
847  if (isa<CXXTryStmt>(Body)) {
848    // C++11 [dcl.constexpr]p3:
849    //  The definition of a constexpr function shall satisfy the following
850    //  constraints: [...]
851    // - its function-body shall be = delete, = default, or a
852    //   compound-statement
853    //
854    // C++11 [dcl.constexpr]p4:
855    //  In the definition of a constexpr constructor, [...]
856    // - its function-body shall not be a function-try-block;
857    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
858      << isa<CXXConstructorDecl>(Dcl);
859    return false;
860  }
861
862  // - its function-body shall be [...] a compound-statement that contains only
863  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
864
865  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
866  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
867         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
868    switch ((*BodyIt)->getStmtClass()) {
869    case Stmt::NullStmtClass:
870      //   - null statements,
871      continue;
872
873    case Stmt::DeclStmtClass:
874      //   - static_assert-declarations
875      //   - using-declarations,
876      //   - using-directives,
877      //   - typedef declarations and alias-declarations that do not define
878      //     classes or enumerations,
879      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
880        return false;
881      continue;
882
883    case Stmt::ReturnStmtClass:
884      //   - and exactly one return statement;
885      if (isa<CXXConstructorDecl>(Dcl))
886        break;
887
888      ReturnStmts.push_back((*BodyIt)->getLocStart());
889      continue;
890
891    default:
892      break;
893    }
894
895    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
896      << isa<CXXConstructorDecl>(Dcl);
897    return false;
898  }
899
900  if (const CXXConstructorDecl *Constructor
901        = dyn_cast<CXXConstructorDecl>(Dcl)) {
902    const CXXRecordDecl *RD = Constructor->getParent();
903    // DR1359:
904    // - every non-variant non-static data member and base class sub-object
905    //   shall be initialized;
906    // - if the class is a non-empty union, or for each non-empty anonymous
907    //   union member of a non-union class, exactly one non-static data member
908    //   shall be initialized;
909    if (RD->isUnion()) {
910      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
911        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
912        return false;
913      }
914    } else if (!Constructor->isDependentContext() &&
915               !Constructor->isDelegatingConstructor()) {
916      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
917
918      // Skip detailed checking if we have enough initializers, and we would
919      // allow at most one initializer per member.
920      bool AnyAnonStructUnionMembers = false;
921      unsigned Fields = 0;
922      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
923           E = RD->field_end(); I != E; ++I, ++Fields) {
924        if (I->isAnonymousStructOrUnion()) {
925          AnyAnonStructUnionMembers = true;
926          break;
927        }
928      }
929      if (AnyAnonStructUnionMembers ||
930          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
931        // Check initialization of non-static data members. Base classes are
932        // always initialized so do not need to be checked. Dependent bases
933        // might not have initializers in the member initializer list.
934        llvm::SmallSet<Decl*, 16> Inits;
935        for (CXXConstructorDecl::init_const_iterator
936               I = Constructor->init_begin(), E = Constructor->init_end();
937             I != E; ++I) {
938          if (FieldDecl *FD = (*I)->getMember())
939            Inits.insert(FD);
940          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
941            Inits.insert(ID->chain_begin(), ID->chain_end());
942        }
943
944        bool Diagnosed = false;
945        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
946             E = RD->field_end(); I != E; ++I)
947          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
948        if (Diagnosed)
949          return false;
950      }
951    }
952  } else {
953    if (ReturnStmts.empty()) {
954      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
955      return false;
956    }
957    if (ReturnStmts.size() > 1) {
958      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
959      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
960        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
961      return false;
962    }
963  }
964
965  // C++11 [dcl.constexpr]p5:
966  //   if no function argument values exist such that the function invocation
967  //   substitution would produce a constant expression, the program is
968  //   ill-formed; no diagnostic required.
969  // C++11 [dcl.constexpr]p3:
970  //   - every constructor call and implicit conversion used in initializing the
971  //     return value shall be one of those allowed in a constant expression.
972  // C++11 [dcl.constexpr]p4:
973  //   - every constructor involved in initializing non-static data members and
974  //     base class sub-objects shall be a constexpr constructor.
975  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
976  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
977    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
978      << isa<CXXConstructorDecl>(Dcl);
979    for (size_t I = 0, N = Diags.size(); I != N; ++I)
980      Diag(Diags[I].first, Diags[I].second);
981    return false;
982  }
983
984  return true;
985}
986
987/// isCurrentClassName - Determine whether the identifier II is the
988/// name of the class type currently being defined. In the case of
989/// nested classes, this will only return true if II is the name of
990/// the innermost class.
991bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
992                              const CXXScopeSpec *SS) {
993  assert(getLangOpts().CPlusPlus && "No class names in C!");
994
995  CXXRecordDecl *CurDecl;
996  if (SS && SS->isSet() && !SS->isInvalid()) {
997    DeclContext *DC = computeDeclContext(*SS, true);
998    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
999  } else
1000    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1001
1002  if (CurDecl && CurDecl->getIdentifier())
1003    return &II == CurDecl->getIdentifier();
1004  else
1005    return false;
1006}
1007
1008/// \brief Check the validity of a C++ base class specifier.
1009///
1010/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1011/// and returns NULL otherwise.
1012CXXBaseSpecifier *
1013Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1014                         SourceRange SpecifierRange,
1015                         bool Virtual, AccessSpecifier Access,
1016                         TypeSourceInfo *TInfo,
1017                         SourceLocation EllipsisLoc) {
1018  QualType BaseType = TInfo->getType();
1019
1020  // C++ [class.union]p1:
1021  //   A union shall not have base classes.
1022  if (Class->isUnion()) {
1023    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1024      << SpecifierRange;
1025    return 0;
1026  }
1027
1028  if (EllipsisLoc.isValid() &&
1029      !TInfo->getType()->containsUnexpandedParameterPack()) {
1030    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1031      << TInfo->getTypeLoc().getSourceRange();
1032    EllipsisLoc = SourceLocation();
1033  }
1034
1035  if (BaseType->isDependentType())
1036    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1037                                          Class->getTagKind() == TTK_Class,
1038                                          Access, TInfo, EllipsisLoc);
1039
1040  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1041
1042  // Base specifiers must be record types.
1043  if (!BaseType->isRecordType()) {
1044    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1045    return 0;
1046  }
1047
1048  // C++ [class.union]p1:
1049  //   A union shall not be used as a base class.
1050  if (BaseType->isUnionType()) {
1051    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1052    return 0;
1053  }
1054
1055  // C++ [class.derived]p2:
1056  //   The class-name in a base-specifier shall not be an incompletely
1057  //   defined class.
1058  if (RequireCompleteType(BaseLoc, BaseType,
1059                          diag::err_incomplete_base_class, SpecifierRange)) {
1060    Class->setInvalidDecl();
1061    return 0;
1062  }
1063
1064  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1065  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1066  assert(BaseDecl && "Record type has no declaration");
1067  BaseDecl = BaseDecl->getDefinition();
1068  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1069  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1070  assert(CXXBaseDecl && "Base type is not a C++ type");
1071
1072  // C++ [class]p3:
1073  //   If a class is marked final and it appears as a base-type-specifier in
1074  //   base-clause, the program is ill-formed.
1075  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1076    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1077      << CXXBaseDecl->getDeclName();
1078    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1079      << CXXBaseDecl->getDeclName();
1080    return 0;
1081  }
1082
1083  if (BaseDecl->isInvalidDecl())
1084    Class->setInvalidDecl();
1085
1086  // Create the base specifier.
1087  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1088                                        Class->getTagKind() == TTK_Class,
1089                                        Access, TInfo, EllipsisLoc);
1090}
1091
1092/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1093/// one entry in the base class list of a class specifier, for
1094/// example:
1095///    class foo : public bar, virtual private baz {
1096/// 'public bar' and 'virtual private baz' are each base-specifiers.
1097BaseResult
1098Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1099                         bool Virtual, AccessSpecifier Access,
1100                         ParsedType basetype, SourceLocation BaseLoc,
1101                         SourceLocation EllipsisLoc) {
1102  if (!classdecl)
1103    return true;
1104
1105  AdjustDeclIfTemplate(classdecl);
1106  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1107  if (!Class)
1108    return true;
1109
1110  TypeSourceInfo *TInfo = 0;
1111  GetTypeFromParser(basetype, &TInfo);
1112
1113  if (EllipsisLoc.isInvalid() &&
1114      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1115                                      UPPC_BaseType))
1116    return true;
1117
1118  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1119                                                      Virtual, Access, TInfo,
1120                                                      EllipsisLoc))
1121    return BaseSpec;
1122  else
1123    Class->setInvalidDecl();
1124
1125  return true;
1126}
1127
1128/// \brief Performs the actual work of attaching the given base class
1129/// specifiers to a C++ class.
1130bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1131                                unsigned NumBases) {
1132 if (NumBases == 0)
1133    return false;
1134
1135  // Used to keep track of which base types we have already seen, so
1136  // that we can properly diagnose redundant direct base types. Note
1137  // that the key is always the unqualified canonical type of the base
1138  // class.
1139  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1140
1141  // Copy non-redundant base specifiers into permanent storage.
1142  unsigned NumGoodBases = 0;
1143  bool Invalid = false;
1144  for (unsigned idx = 0; idx < NumBases; ++idx) {
1145    QualType NewBaseType
1146      = Context.getCanonicalType(Bases[idx]->getType());
1147    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1148
1149    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1150    if (KnownBase) {
1151      // C++ [class.mi]p3:
1152      //   A class shall not be specified as a direct base class of a
1153      //   derived class more than once.
1154      Diag(Bases[idx]->getLocStart(),
1155           diag::err_duplicate_base_class)
1156        << KnownBase->getType()
1157        << Bases[idx]->getSourceRange();
1158
1159      // Delete the duplicate base class specifier; we're going to
1160      // overwrite its pointer later.
1161      Context.Deallocate(Bases[idx]);
1162
1163      Invalid = true;
1164    } else {
1165      // Okay, add this new base class.
1166      KnownBase = Bases[idx];
1167      Bases[NumGoodBases++] = Bases[idx];
1168      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1169        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1170          if (RD->hasAttr<WeakAttr>())
1171            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1172    }
1173  }
1174
1175  // Attach the remaining base class specifiers to the derived class.
1176  Class->setBases(Bases, NumGoodBases);
1177
1178  // Delete the remaining (good) base class specifiers, since their
1179  // data has been copied into the CXXRecordDecl.
1180  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1181    Context.Deallocate(Bases[idx]);
1182
1183  return Invalid;
1184}
1185
1186/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1187/// class, after checking whether there are any duplicate base
1188/// classes.
1189void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1190                               unsigned NumBases) {
1191  if (!ClassDecl || !Bases || !NumBases)
1192    return;
1193
1194  AdjustDeclIfTemplate(ClassDecl);
1195  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1196                       (CXXBaseSpecifier**)(Bases), NumBases);
1197}
1198
1199static CXXRecordDecl *GetClassForType(QualType T) {
1200  if (const RecordType *RT = T->getAs<RecordType>())
1201    return cast<CXXRecordDecl>(RT->getDecl());
1202  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1203    return ICT->getDecl();
1204  else
1205    return 0;
1206}
1207
1208/// \brief Determine whether the type \p Derived is a C++ class that is
1209/// derived from the type \p Base.
1210bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1211  if (!getLangOpts().CPlusPlus)
1212    return false;
1213
1214  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1215  if (!DerivedRD)
1216    return false;
1217
1218  CXXRecordDecl *BaseRD = GetClassForType(Base);
1219  if (!BaseRD)
1220    return false;
1221
1222  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1223  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1224}
1225
1226/// \brief Determine whether the type \p Derived is a C++ class that is
1227/// derived from the type \p Base.
1228bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1229  if (!getLangOpts().CPlusPlus)
1230    return false;
1231
1232  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1233  if (!DerivedRD)
1234    return false;
1235
1236  CXXRecordDecl *BaseRD = GetClassForType(Base);
1237  if (!BaseRD)
1238    return false;
1239
1240  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1241}
1242
1243void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1244                              CXXCastPath &BasePathArray) {
1245  assert(BasePathArray.empty() && "Base path array must be empty!");
1246  assert(Paths.isRecordingPaths() && "Must record paths!");
1247
1248  const CXXBasePath &Path = Paths.front();
1249
1250  // We first go backward and check if we have a virtual base.
1251  // FIXME: It would be better if CXXBasePath had the base specifier for
1252  // the nearest virtual base.
1253  unsigned Start = 0;
1254  for (unsigned I = Path.size(); I != 0; --I) {
1255    if (Path[I - 1].Base->isVirtual()) {
1256      Start = I - 1;
1257      break;
1258    }
1259  }
1260
1261  // Now add all bases.
1262  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1263    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1264}
1265
1266/// \brief Determine whether the given base path includes a virtual
1267/// base class.
1268bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1269  for (CXXCastPath::const_iterator B = BasePath.begin(),
1270                                BEnd = BasePath.end();
1271       B != BEnd; ++B)
1272    if ((*B)->isVirtual())
1273      return true;
1274
1275  return false;
1276}
1277
1278/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1279/// conversion (where Derived and Base are class types) is
1280/// well-formed, meaning that the conversion is unambiguous (and
1281/// that all of the base classes are accessible). Returns true
1282/// and emits a diagnostic if the code is ill-formed, returns false
1283/// otherwise. Loc is the location where this routine should point to
1284/// if there is an error, and Range is the source range to highlight
1285/// if there is an error.
1286bool
1287Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1288                                   unsigned InaccessibleBaseID,
1289                                   unsigned AmbigiousBaseConvID,
1290                                   SourceLocation Loc, SourceRange Range,
1291                                   DeclarationName Name,
1292                                   CXXCastPath *BasePath) {
1293  // First, determine whether the path from Derived to Base is
1294  // ambiguous. This is slightly more expensive than checking whether
1295  // the Derived to Base conversion exists, because here we need to
1296  // explore multiple paths to determine if there is an ambiguity.
1297  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1298                     /*DetectVirtual=*/false);
1299  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1300  assert(DerivationOkay &&
1301         "Can only be used with a derived-to-base conversion");
1302  (void)DerivationOkay;
1303
1304  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1305    if (InaccessibleBaseID) {
1306      // Check that the base class can be accessed.
1307      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1308                                   InaccessibleBaseID)) {
1309        case AR_inaccessible:
1310          return true;
1311        case AR_accessible:
1312        case AR_dependent:
1313        case AR_delayed:
1314          break;
1315      }
1316    }
1317
1318    // Build a base path if necessary.
1319    if (BasePath)
1320      BuildBasePathArray(Paths, *BasePath);
1321    return false;
1322  }
1323
1324  // We know that the derived-to-base conversion is ambiguous, and
1325  // we're going to produce a diagnostic. Perform the derived-to-base
1326  // search just one more time to compute all of the possible paths so
1327  // that we can print them out. This is more expensive than any of
1328  // the previous derived-to-base checks we've done, but at this point
1329  // performance isn't as much of an issue.
1330  Paths.clear();
1331  Paths.setRecordingPaths(true);
1332  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1333  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1334  (void)StillOkay;
1335
1336  // Build up a textual representation of the ambiguous paths, e.g.,
1337  // D -> B -> A, that will be used to illustrate the ambiguous
1338  // conversions in the diagnostic. We only print one of the paths
1339  // to each base class subobject.
1340  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1341
1342  Diag(Loc, AmbigiousBaseConvID)
1343  << Derived << Base << PathDisplayStr << Range << Name;
1344  return true;
1345}
1346
1347bool
1348Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1349                                   SourceLocation Loc, SourceRange Range,
1350                                   CXXCastPath *BasePath,
1351                                   bool IgnoreAccess) {
1352  return CheckDerivedToBaseConversion(Derived, Base,
1353                                      IgnoreAccess ? 0
1354                                       : diag::err_upcast_to_inaccessible_base,
1355                                      diag::err_ambiguous_derived_to_base_conv,
1356                                      Loc, Range, DeclarationName(),
1357                                      BasePath);
1358}
1359
1360
1361/// @brief Builds a string representing ambiguous paths from a
1362/// specific derived class to different subobjects of the same base
1363/// class.
1364///
1365/// This function builds a string that can be used in error messages
1366/// to show the different paths that one can take through the
1367/// inheritance hierarchy to go from the derived class to different
1368/// subobjects of a base class. The result looks something like this:
1369/// @code
1370/// struct D -> struct B -> struct A
1371/// struct D -> struct C -> struct A
1372/// @endcode
1373std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1374  std::string PathDisplayStr;
1375  std::set<unsigned> DisplayedPaths;
1376  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1377       Path != Paths.end(); ++Path) {
1378    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1379      // We haven't displayed a path to this particular base
1380      // class subobject yet.
1381      PathDisplayStr += "\n    ";
1382      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1383      for (CXXBasePath::const_iterator Element = Path->begin();
1384           Element != Path->end(); ++Element)
1385        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1386    }
1387  }
1388
1389  return PathDisplayStr;
1390}
1391
1392//===----------------------------------------------------------------------===//
1393// C++ class member Handling
1394//===----------------------------------------------------------------------===//
1395
1396/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1397bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1398                                SourceLocation ASLoc,
1399                                SourceLocation ColonLoc,
1400                                AttributeList *Attrs) {
1401  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1402  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1403                                                  ASLoc, ColonLoc);
1404  CurContext->addHiddenDecl(ASDecl);
1405  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1406}
1407
1408/// CheckOverrideControl - Check C++0x override control semantics.
1409void Sema::CheckOverrideControl(const Decl *D) {
1410  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1411  if (!MD || !MD->isVirtual())
1412    return;
1413
1414  if (MD->isDependentContext())
1415    return;
1416
1417  // C++0x [class.virtual]p3:
1418  //   If a virtual function is marked with the virt-specifier override and does
1419  //   not override a member function of a base class,
1420  //   the program is ill-formed.
1421  bool HasOverriddenMethods =
1422    MD->begin_overridden_methods() != MD->end_overridden_methods();
1423  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1424    Diag(MD->getLocation(),
1425                 diag::err_function_marked_override_not_overriding)
1426      << MD->getDeclName();
1427    return;
1428  }
1429}
1430
1431/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1432/// function overrides a virtual member function marked 'final', according to
1433/// C++0x [class.virtual]p3.
1434bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1435                                                  const CXXMethodDecl *Old) {
1436  if (!Old->hasAttr<FinalAttr>())
1437    return false;
1438
1439  Diag(New->getLocation(), diag::err_final_function_overridden)
1440    << New->getDeclName();
1441  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1442  return true;
1443}
1444
1445static bool InitializationHasSideEffects(const FieldDecl &FD) {
1446  if (!FD.getType().isNull()) {
1447    if (const CXXRecordDecl *RD = FD.getType()->getAsCXXRecordDecl()) {
1448      return !RD->isCompleteDefinition() ||
1449             !RD->hasTrivialDefaultConstructor() ||
1450             !RD->hasTrivialDestructor();
1451    }
1452  }
1453  return false;
1454}
1455
1456/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1457/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1458/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1459/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1460/// present (but parsing it has been deferred).
1461Decl *
1462Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1463                               MultiTemplateParamsArg TemplateParameterLists,
1464                               Expr *BW, const VirtSpecifiers &VS,
1465                               InClassInitStyle InitStyle) {
1466  const DeclSpec &DS = D.getDeclSpec();
1467  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1468  DeclarationName Name = NameInfo.getName();
1469  SourceLocation Loc = NameInfo.getLoc();
1470
1471  // For anonymous bitfields, the location should point to the type.
1472  if (Loc.isInvalid())
1473    Loc = D.getLocStart();
1474
1475  Expr *BitWidth = static_cast<Expr*>(BW);
1476
1477  assert(isa<CXXRecordDecl>(CurContext));
1478  assert(!DS.isFriendSpecified());
1479
1480  bool isFunc = D.isDeclarationOfFunction();
1481
1482  // C++ 9.2p6: A member shall not be declared to have automatic storage
1483  // duration (auto, register) or with the extern storage-class-specifier.
1484  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1485  // data members and cannot be applied to names declared const or static,
1486  // and cannot be applied to reference members.
1487  switch (DS.getStorageClassSpec()) {
1488    case DeclSpec::SCS_unspecified:
1489    case DeclSpec::SCS_typedef:
1490    case DeclSpec::SCS_static:
1491      // FALL THROUGH.
1492      break;
1493    case DeclSpec::SCS_mutable:
1494      if (isFunc) {
1495        if (DS.getStorageClassSpecLoc().isValid())
1496          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1497        else
1498          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1499
1500        // FIXME: It would be nicer if the keyword was ignored only for this
1501        // declarator. Otherwise we could get follow-up errors.
1502        D.getMutableDeclSpec().ClearStorageClassSpecs();
1503      }
1504      break;
1505    default:
1506      if (DS.getStorageClassSpecLoc().isValid())
1507        Diag(DS.getStorageClassSpecLoc(),
1508             diag::err_storageclass_invalid_for_member);
1509      else
1510        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1511      D.getMutableDeclSpec().ClearStorageClassSpecs();
1512  }
1513
1514  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1515                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1516                      !isFunc);
1517
1518  Decl *Member;
1519  if (isInstField) {
1520    CXXScopeSpec &SS = D.getCXXScopeSpec();
1521
1522    // Data members must have identifiers for names.
1523    if (!Name.isIdentifier()) {
1524      Diag(Loc, diag::err_bad_variable_name)
1525        << Name;
1526      return 0;
1527    }
1528
1529    IdentifierInfo *II = Name.getAsIdentifierInfo();
1530
1531    // Member field could not be with "template" keyword.
1532    // So TemplateParameterLists should be empty in this case.
1533    if (TemplateParameterLists.size()) {
1534      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1535      if (TemplateParams->size()) {
1536        // There is no such thing as a member field template.
1537        Diag(D.getIdentifierLoc(), diag::err_template_member)
1538            << II
1539            << SourceRange(TemplateParams->getTemplateLoc(),
1540                TemplateParams->getRAngleLoc());
1541      } else {
1542        // There is an extraneous 'template<>' for this member.
1543        Diag(TemplateParams->getTemplateLoc(),
1544            diag::err_template_member_noparams)
1545            << II
1546            << SourceRange(TemplateParams->getTemplateLoc(),
1547                TemplateParams->getRAngleLoc());
1548      }
1549      return 0;
1550    }
1551
1552    if (SS.isSet() && !SS.isInvalid()) {
1553      // The user provided a superfluous scope specifier inside a class
1554      // definition:
1555      //
1556      // class X {
1557      //   int X::member;
1558      // };
1559      if (DeclContext *DC = computeDeclContext(SS, false))
1560        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1561      else
1562        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1563          << Name << SS.getRange();
1564
1565      SS.clear();
1566    }
1567
1568    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1569                         InitStyle, AS);
1570    assert(Member && "HandleField never returns null");
1571  } else {
1572    assert(InitStyle == ICIS_NoInit);
1573
1574    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1575    if (!Member) {
1576      return 0;
1577    }
1578
1579    // Non-instance-fields can't have a bitfield.
1580    if (BitWidth) {
1581      if (Member->isInvalidDecl()) {
1582        // don't emit another diagnostic.
1583      } else if (isa<VarDecl>(Member)) {
1584        // C++ 9.6p3: A bit-field shall not be a static member.
1585        // "static member 'A' cannot be a bit-field"
1586        Diag(Loc, diag::err_static_not_bitfield)
1587          << Name << BitWidth->getSourceRange();
1588      } else if (isa<TypedefDecl>(Member)) {
1589        // "typedef member 'x' cannot be a bit-field"
1590        Diag(Loc, diag::err_typedef_not_bitfield)
1591          << Name << BitWidth->getSourceRange();
1592      } else {
1593        // A function typedef ("typedef int f(); f a;").
1594        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1595        Diag(Loc, diag::err_not_integral_type_bitfield)
1596          << Name << cast<ValueDecl>(Member)->getType()
1597          << BitWidth->getSourceRange();
1598      }
1599
1600      BitWidth = 0;
1601      Member->setInvalidDecl();
1602    }
1603
1604    Member->setAccess(AS);
1605
1606    // If we have declared a member function template, set the access of the
1607    // templated declaration as well.
1608    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1609      FunTmpl->getTemplatedDecl()->setAccess(AS);
1610  }
1611
1612  if (VS.isOverrideSpecified()) {
1613    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1614    if (!MD || !MD->isVirtual()) {
1615      Diag(Member->getLocStart(),
1616           diag::override_keyword_only_allowed_on_virtual_member_functions)
1617        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1618    } else
1619      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1620  }
1621  if (VS.isFinalSpecified()) {
1622    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1623    if (!MD || !MD->isVirtual()) {
1624      Diag(Member->getLocStart(),
1625           diag::override_keyword_only_allowed_on_virtual_member_functions)
1626      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1627    } else
1628      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1629  }
1630
1631  if (VS.getLastLocation().isValid()) {
1632    // Update the end location of a method that has a virt-specifiers.
1633    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1634      MD->setRangeEnd(VS.getLastLocation());
1635  }
1636
1637  CheckOverrideControl(Member);
1638
1639  assert((Name || isInstField) && "No identifier for non-field ?");
1640
1641  if (isInstField) {
1642    FieldDecl *FD = cast<FieldDecl>(Member);
1643    FieldCollector->Add(FD);
1644
1645    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1646                                 FD->getLocation())
1647          != DiagnosticsEngine::Ignored) {
1648      // Remember all explicit private FieldDecls that have a name, no side
1649      // effects and are not part of a dependent type declaration.
1650      if (!FD->isImplicit() && FD->getDeclName() &&
1651          FD->getAccess() == AS_private &&
1652          !FD->hasAttr<UnusedAttr>() &&
1653          !FD->getParent()->getTypeForDecl()->isDependentType() &&
1654          !InitializationHasSideEffects(*FD))
1655        UnusedPrivateFields.insert(FD);
1656    }
1657  }
1658
1659  return Member;
1660}
1661
1662/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1663/// in-class initializer for a non-static C++ class member, and after
1664/// instantiating an in-class initializer in a class template. Such actions
1665/// are deferred until the class is complete.
1666void
1667Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1668                                       Expr *InitExpr) {
1669  FieldDecl *FD = cast<FieldDecl>(D);
1670  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1671         "must set init style when field is created");
1672
1673  if (!InitExpr) {
1674    FD->setInvalidDecl();
1675    FD->removeInClassInitializer();
1676    return;
1677  }
1678
1679  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1680    FD->setInvalidDecl();
1681    FD->removeInClassInitializer();
1682    return;
1683  }
1684
1685  ExprResult Init = InitExpr;
1686  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1687    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1688      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1689        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1690    }
1691    Expr **Inits = &InitExpr;
1692    unsigned NumInits = 1;
1693    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1694    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1695        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1696        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1697    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1698    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1699    if (Init.isInvalid()) {
1700      FD->setInvalidDecl();
1701      return;
1702    }
1703
1704    CheckImplicitConversions(Init.get(), InitLoc);
1705  }
1706
1707  // C++0x [class.base.init]p7:
1708  //   The initialization of each base and member constitutes a
1709  //   full-expression.
1710  Init = MaybeCreateExprWithCleanups(Init);
1711  if (Init.isInvalid()) {
1712    FD->setInvalidDecl();
1713    return;
1714  }
1715
1716  InitExpr = Init.release();
1717
1718  FD->setInClassInitializer(InitExpr);
1719}
1720
1721/// \brief Find the direct and/or virtual base specifiers that
1722/// correspond to the given base type, for use in base initialization
1723/// within a constructor.
1724static bool FindBaseInitializer(Sema &SemaRef,
1725                                CXXRecordDecl *ClassDecl,
1726                                QualType BaseType,
1727                                const CXXBaseSpecifier *&DirectBaseSpec,
1728                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1729  // First, check for a direct base class.
1730  DirectBaseSpec = 0;
1731  for (CXXRecordDecl::base_class_const_iterator Base
1732         = ClassDecl->bases_begin();
1733       Base != ClassDecl->bases_end(); ++Base) {
1734    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1735      // We found a direct base of this type. That's what we're
1736      // initializing.
1737      DirectBaseSpec = &*Base;
1738      break;
1739    }
1740  }
1741
1742  // Check for a virtual base class.
1743  // FIXME: We might be able to short-circuit this if we know in advance that
1744  // there are no virtual bases.
1745  VirtualBaseSpec = 0;
1746  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1747    // We haven't found a base yet; search the class hierarchy for a
1748    // virtual base class.
1749    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1750                       /*DetectVirtual=*/false);
1751    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1752                              BaseType, Paths)) {
1753      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1754           Path != Paths.end(); ++Path) {
1755        if (Path->back().Base->isVirtual()) {
1756          VirtualBaseSpec = Path->back().Base;
1757          break;
1758        }
1759      }
1760    }
1761  }
1762
1763  return DirectBaseSpec || VirtualBaseSpec;
1764}
1765
1766/// \brief Handle a C++ member initializer using braced-init-list syntax.
1767MemInitResult
1768Sema::ActOnMemInitializer(Decl *ConstructorD,
1769                          Scope *S,
1770                          CXXScopeSpec &SS,
1771                          IdentifierInfo *MemberOrBase,
1772                          ParsedType TemplateTypeTy,
1773                          const DeclSpec &DS,
1774                          SourceLocation IdLoc,
1775                          Expr *InitList,
1776                          SourceLocation EllipsisLoc) {
1777  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1778                             DS, IdLoc, InitList,
1779                             EllipsisLoc);
1780}
1781
1782/// \brief Handle a C++ member initializer using parentheses syntax.
1783MemInitResult
1784Sema::ActOnMemInitializer(Decl *ConstructorD,
1785                          Scope *S,
1786                          CXXScopeSpec &SS,
1787                          IdentifierInfo *MemberOrBase,
1788                          ParsedType TemplateTypeTy,
1789                          const DeclSpec &DS,
1790                          SourceLocation IdLoc,
1791                          SourceLocation LParenLoc,
1792                          Expr **Args, unsigned NumArgs,
1793                          SourceLocation RParenLoc,
1794                          SourceLocation EllipsisLoc) {
1795  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1796                                           RParenLoc);
1797  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1798                             DS, IdLoc, List, EllipsisLoc);
1799}
1800
1801namespace {
1802
1803// Callback to only accept typo corrections that can be a valid C++ member
1804// intializer: either a non-static field member or a base class.
1805class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1806 public:
1807  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1808      : ClassDecl(ClassDecl) {}
1809
1810  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1811    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1812      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1813        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1814      else
1815        return isa<TypeDecl>(ND);
1816    }
1817    return false;
1818  }
1819
1820 private:
1821  CXXRecordDecl *ClassDecl;
1822};
1823
1824}
1825
1826/// \brief Handle a C++ member initializer.
1827MemInitResult
1828Sema::BuildMemInitializer(Decl *ConstructorD,
1829                          Scope *S,
1830                          CXXScopeSpec &SS,
1831                          IdentifierInfo *MemberOrBase,
1832                          ParsedType TemplateTypeTy,
1833                          const DeclSpec &DS,
1834                          SourceLocation IdLoc,
1835                          Expr *Init,
1836                          SourceLocation EllipsisLoc) {
1837  if (!ConstructorD)
1838    return true;
1839
1840  AdjustDeclIfTemplate(ConstructorD);
1841
1842  CXXConstructorDecl *Constructor
1843    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1844  if (!Constructor) {
1845    // The user wrote a constructor initializer on a function that is
1846    // not a C++ constructor. Ignore the error for now, because we may
1847    // have more member initializers coming; we'll diagnose it just
1848    // once in ActOnMemInitializers.
1849    return true;
1850  }
1851
1852  CXXRecordDecl *ClassDecl = Constructor->getParent();
1853
1854  // C++ [class.base.init]p2:
1855  //   Names in a mem-initializer-id are looked up in the scope of the
1856  //   constructor's class and, if not found in that scope, are looked
1857  //   up in the scope containing the constructor's definition.
1858  //   [Note: if the constructor's class contains a member with the
1859  //   same name as a direct or virtual base class of the class, a
1860  //   mem-initializer-id naming the member or base class and composed
1861  //   of a single identifier refers to the class member. A
1862  //   mem-initializer-id for the hidden base class may be specified
1863  //   using a qualified name. ]
1864  if (!SS.getScopeRep() && !TemplateTypeTy) {
1865    // Look for a member, first.
1866    DeclContext::lookup_result Result
1867      = ClassDecl->lookup(MemberOrBase);
1868    if (Result.first != Result.second) {
1869      ValueDecl *Member;
1870      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1871          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1872        if (EllipsisLoc.isValid())
1873          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1874            << MemberOrBase
1875            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1876
1877        return BuildMemberInitializer(Member, Init, IdLoc);
1878      }
1879    }
1880  }
1881  // It didn't name a member, so see if it names a class.
1882  QualType BaseType;
1883  TypeSourceInfo *TInfo = 0;
1884
1885  if (TemplateTypeTy) {
1886    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1887  } else if (DS.getTypeSpecType() == TST_decltype) {
1888    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1889  } else {
1890    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1891    LookupParsedName(R, S, &SS);
1892
1893    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1894    if (!TyD) {
1895      if (R.isAmbiguous()) return true;
1896
1897      // We don't want access-control diagnostics here.
1898      R.suppressDiagnostics();
1899
1900      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1901        bool NotUnknownSpecialization = false;
1902        DeclContext *DC = computeDeclContext(SS, false);
1903        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1904          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1905
1906        if (!NotUnknownSpecialization) {
1907          // When the scope specifier can refer to a member of an unknown
1908          // specialization, we take it as a type name.
1909          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1910                                       SS.getWithLocInContext(Context),
1911                                       *MemberOrBase, IdLoc);
1912          if (BaseType.isNull())
1913            return true;
1914
1915          R.clear();
1916          R.setLookupName(MemberOrBase);
1917        }
1918      }
1919
1920      // If no results were found, try to correct typos.
1921      TypoCorrection Corr;
1922      MemInitializerValidatorCCC Validator(ClassDecl);
1923      if (R.empty() && BaseType.isNull() &&
1924          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1925                              Validator, ClassDecl))) {
1926        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1927        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1928        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1929          // We have found a non-static data member with a similar
1930          // name to what was typed; complain and initialize that
1931          // member.
1932          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1933            << MemberOrBase << true << CorrectedQuotedStr
1934            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1935          Diag(Member->getLocation(), diag::note_previous_decl)
1936            << CorrectedQuotedStr;
1937
1938          return BuildMemberInitializer(Member, Init, IdLoc);
1939        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1940          const CXXBaseSpecifier *DirectBaseSpec;
1941          const CXXBaseSpecifier *VirtualBaseSpec;
1942          if (FindBaseInitializer(*this, ClassDecl,
1943                                  Context.getTypeDeclType(Type),
1944                                  DirectBaseSpec, VirtualBaseSpec)) {
1945            // We have found a direct or virtual base class with a
1946            // similar name to what was typed; complain and initialize
1947            // that base class.
1948            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1949              << MemberOrBase << false << CorrectedQuotedStr
1950              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1951
1952            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1953                                                             : VirtualBaseSpec;
1954            Diag(BaseSpec->getLocStart(),
1955                 diag::note_base_class_specified_here)
1956              << BaseSpec->getType()
1957              << BaseSpec->getSourceRange();
1958
1959            TyD = Type;
1960          }
1961        }
1962      }
1963
1964      if (!TyD && BaseType.isNull()) {
1965        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1966          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1967        return true;
1968      }
1969    }
1970
1971    if (BaseType.isNull()) {
1972      BaseType = Context.getTypeDeclType(TyD);
1973      if (SS.isSet()) {
1974        NestedNameSpecifier *Qualifier =
1975          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1976
1977        // FIXME: preserve source range information
1978        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1979      }
1980    }
1981  }
1982
1983  if (!TInfo)
1984    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1985
1986  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1987}
1988
1989/// Checks a member initializer expression for cases where reference (or
1990/// pointer) members are bound to by-value parameters (or their addresses).
1991static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1992                                               Expr *Init,
1993                                               SourceLocation IdLoc) {
1994  QualType MemberTy = Member->getType();
1995
1996  // We only handle pointers and references currently.
1997  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1998  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1999    return;
2000
2001  const bool IsPointer = MemberTy->isPointerType();
2002  if (IsPointer) {
2003    if (const UnaryOperator *Op
2004          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2005      // The only case we're worried about with pointers requires taking the
2006      // address.
2007      if (Op->getOpcode() != UO_AddrOf)
2008        return;
2009
2010      Init = Op->getSubExpr();
2011    } else {
2012      // We only handle address-of expression initializers for pointers.
2013      return;
2014    }
2015  }
2016
2017  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2018    // Taking the address of a temporary will be diagnosed as a hard error.
2019    if (IsPointer)
2020      return;
2021
2022    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2023      << Member << Init->getSourceRange();
2024  } else if (const DeclRefExpr *DRE
2025               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2026    // We only warn when referring to a non-reference parameter declaration.
2027    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2028    if (!Parameter || Parameter->getType()->isReferenceType())
2029      return;
2030
2031    S.Diag(Init->getExprLoc(),
2032           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2033                     : diag::warn_bind_ref_member_to_parameter)
2034      << Member << Parameter << Init->getSourceRange();
2035  } else {
2036    // Other initializers are fine.
2037    return;
2038  }
2039
2040  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2041    << (unsigned)IsPointer;
2042}
2043
2044namespace {
2045  class UninitializedFieldVisitor
2046      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2047    Sema &S;
2048    ValueDecl *VD;
2049  public:
2050    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2051    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2052                                                        S(S), VD(VD) {
2053    }
2054
2055    void HandleExpr(Expr *E) {
2056      if (!E) return;
2057
2058      // Expressions like x(x) sometimes lack the surrounding expressions
2059      // but need to be checked anyways.
2060      HandleValue(E);
2061      Visit(E);
2062    }
2063
2064    void HandleValue(Expr *E) {
2065      E = E->IgnoreParens();
2066
2067      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2068        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2069            return;
2070        Expr *Base = E;
2071        while (isa<MemberExpr>(Base)) {
2072          ME = dyn_cast<MemberExpr>(Base);
2073          if (VarDecl *VarD = dyn_cast<VarDecl>(ME->getMemberDecl()))
2074            if (VarD->hasGlobalStorage())
2075              return;
2076          Base = ME->getBase();
2077        }
2078
2079        if (VD == ME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2080          S.Diag(ME->getExprLoc(), diag::warn_field_is_uninit);
2081          return;
2082        }
2083      }
2084
2085      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2086        HandleValue(CO->getTrueExpr());
2087        HandleValue(CO->getFalseExpr());
2088        return;
2089      }
2090
2091      if (BinaryConditionalOperator *BCO =
2092              dyn_cast<BinaryConditionalOperator>(E)) {
2093        HandleValue(BCO->getCommon());
2094        HandleValue(BCO->getFalseExpr());
2095        return;
2096      }
2097
2098      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2099        switch (BO->getOpcode()) {
2100        default:
2101          return;
2102        case(BO_PtrMemD):
2103        case(BO_PtrMemI):
2104          HandleValue(BO->getLHS());
2105          return;
2106        case(BO_Comma):
2107          HandleValue(BO->getRHS());
2108          return;
2109        }
2110      }
2111    }
2112
2113    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2114      if (E->getCastKind() == CK_LValueToRValue)
2115        HandleValue(E->getSubExpr());
2116
2117      Inherited::VisitImplicitCastExpr(E);
2118    }
2119
2120    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2121      Expr *Callee = E->getCallee();
2122      if (isa<MemberExpr>(Callee))
2123        HandleValue(Callee);
2124
2125      Inherited::VisitCXXMemberCallExpr(E);
2126    }
2127  };
2128  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2129                                                       ValueDecl *VD) {
2130    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2131  }
2132} // namespace
2133
2134MemInitResult
2135Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2136                             SourceLocation IdLoc) {
2137  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2138  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2139  assert((DirectMember || IndirectMember) &&
2140         "Member must be a FieldDecl or IndirectFieldDecl");
2141
2142  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2143    return true;
2144
2145  if (Member->isInvalidDecl())
2146    return true;
2147
2148  // Diagnose value-uses of fields to initialize themselves, e.g.
2149  //   foo(foo)
2150  // where foo is not also a parameter to the constructor.
2151  // TODO: implement -Wuninitialized and fold this into that framework.
2152  Expr **Args;
2153  unsigned NumArgs;
2154  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2155    Args = ParenList->getExprs();
2156    NumArgs = ParenList->getNumExprs();
2157  } else {
2158    InitListExpr *InitList = cast<InitListExpr>(Init);
2159    Args = InitList->getInits();
2160    NumArgs = InitList->getNumInits();
2161  }
2162
2163  // Mark FieldDecl as being used if it is a non-primitive type and the
2164  // initializer does not call the default constructor (which is trivial
2165  // for all entries in UnusedPrivateFields).
2166  // FIXME: Make this smarter once more side effect-free types can be
2167  // determined.
2168  if (NumArgs > 0) {
2169    if (Member->getType()->isRecordType()) {
2170      UnusedPrivateFields.remove(Member);
2171    } else {
2172      for (unsigned i = 0; i < NumArgs; ++i) {
2173        if (Args[i]->HasSideEffects(Context)) {
2174          UnusedPrivateFields.remove(Member);
2175          break;
2176        }
2177      }
2178    }
2179  }
2180
2181  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2182        != DiagnosticsEngine::Ignored)
2183    for (unsigned i = 0; i < NumArgs; ++i)
2184      // FIXME: Warn about the case when other fields are used before being
2185      // uninitialized. For example, let this field be the i'th field. When
2186      // initializing the i'th field, throw a warning if any of the >= i'th
2187      // fields are used, as they are not yet initialized.
2188      // Right now we are only handling the case where the i'th field uses
2189      // itself in its initializer.
2190      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2191
2192  SourceRange InitRange = Init->getSourceRange();
2193
2194  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2195    // Can't check initialization for a member of dependent type or when
2196    // any of the arguments are type-dependent expressions.
2197    DiscardCleanupsInEvaluationContext();
2198  } else {
2199    bool InitList = false;
2200    if (isa<InitListExpr>(Init)) {
2201      InitList = true;
2202      Args = &Init;
2203      NumArgs = 1;
2204
2205      if (isStdInitializerList(Member->getType(), 0)) {
2206        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2207            << /*at end of ctor*/1 << InitRange;
2208      }
2209    }
2210
2211    // Initialize the member.
2212    InitializedEntity MemberEntity =
2213      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2214                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2215    InitializationKind Kind =
2216      InitList ? InitializationKind::CreateDirectList(IdLoc)
2217               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2218                                                  InitRange.getEnd());
2219
2220    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2221    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2222                                            MultiExprArg(*this, Args, NumArgs),
2223                                            0);
2224    if (MemberInit.isInvalid())
2225      return true;
2226
2227    CheckImplicitConversions(MemberInit.get(),
2228                             InitRange.getBegin());
2229
2230    // C++0x [class.base.init]p7:
2231    //   The initialization of each base and member constitutes a
2232    //   full-expression.
2233    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2234    if (MemberInit.isInvalid())
2235      return true;
2236
2237    // If we are in a dependent context, template instantiation will
2238    // perform this type-checking again. Just save the arguments that we
2239    // received.
2240    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2241    // of the information that we have about the member
2242    // initializer. However, deconstructing the ASTs is a dicey process,
2243    // and this approach is far more likely to get the corner cases right.
2244    if (CurContext->isDependentContext()) {
2245      // The existing Init will do fine.
2246    } else {
2247      Init = MemberInit.get();
2248      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2249    }
2250  }
2251
2252  if (DirectMember) {
2253    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2254                                            InitRange.getBegin(), Init,
2255                                            InitRange.getEnd());
2256  } else {
2257    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2258                                            InitRange.getBegin(), Init,
2259                                            InitRange.getEnd());
2260  }
2261}
2262
2263MemInitResult
2264Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2265                                 CXXRecordDecl *ClassDecl) {
2266  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2267  if (!LangOpts.CPlusPlus0x)
2268    return Diag(NameLoc, diag::err_delegating_ctor)
2269      << TInfo->getTypeLoc().getLocalSourceRange();
2270  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2271
2272  bool InitList = true;
2273  Expr **Args = &Init;
2274  unsigned NumArgs = 1;
2275  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2276    InitList = false;
2277    Args = ParenList->getExprs();
2278    NumArgs = ParenList->getNumExprs();
2279  }
2280
2281  SourceRange InitRange = Init->getSourceRange();
2282  // Initialize the object.
2283  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2284                                     QualType(ClassDecl->getTypeForDecl(), 0));
2285  InitializationKind Kind =
2286    InitList ? InitializationKind::CreateDirectList(NameLoc)
2287             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2288                                                InitRange.getEnd());
2289  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2290  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2291                                              MultiExprArg(*this, Args,NumArgs),
2292                                              0);
2293  if (DelegationInit.isInvalid())
2294    return true;
2295
2296  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2297         "Delegating constructor with no target?");
2298
2299  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2300
2301  // C++0x [class.base.init]p7:
2302  //   The initialization of each base and member constitutes a
2303  //   full-expression.
2304  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2305  if (DelegationInit.isInvalid())
2306    return true;
2307
2308  // If we are in a dependent context, template instantiation will
2309  // perform this type-checking again. Just save the arguments that we
2310  // received in a ParenListExpr.
2311  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2312  // of the information that we have about the base
2313  // initializer. However, deconstructing the ASTs is a dicey process,
2314  // and this approach is far more likely to get the corner cases right.
2315  if (CurContext->isDependentContext())
2316    DelegationInit = Owned(Init);
2317
2318  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2319                                          DelegationInit.takeAs<Expr>(),
2320                                          InitRange.getEnd());
2321}
2322
2323MemInitResult
2324Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2325                           Expr *Init, CXXRecordDecl *ClassDecl,
2326                           SourceLocation EllipsisLoc) {
2327  SourceLocation BaseLoc
2328    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2329
2330  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2331    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2332             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2333
2334  // C++ [class.base.init]p2:
2335  //   [...] Unless the mem-initializer-id names a nonstatic data
2336  //   member of the constructor's class or a direct or virtual base
2337  //   of that class, the mem-initializer is ill-formed. A
2338  //   mem-initializer-list can initialize a base class using any
2339  //   name that denotes that base class type.
2340  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2341
2342  SourceRange InitRange = Init->getSourceRange();
2343  if (EllipsisLoc.isValid()) {
2344    // This is a pack expansion.
2345    if (!BaseType->containsUnexpandedParameterPack())  {
2346      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2347        << SourceRange(BaseLoc, InitRange.getEnd());
2348
2349      EllipsisLoc = SourceLocation();
2350    }
2351  } else {
2352    // Check for any unexpanded parameter packs.
2353    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2354      return true;
2355
2356    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2357      return true;
2358  }
2359
2360  // Check for direct and virtual base classes.
2361  const CXXBaseSpecifier *DirectBaseSpec = 0;
2362  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2363  if (!Dependent) {
2364    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2365                                       BaseType))
2366      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2367
2368    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2369                        VirtualBaseSpec);
2370
2371    // C++ [base.class.init]p2:
2372    // Unless the mem-initializer-id names a nonstatic data member of the
2373    // constructor's class or a direct or virtual base of that class, the
2374    // mem-initializer is ill-formed.
2375    if (!DirectBaseSpec && !VirtualBaseSpec) {
2376      // If the class has any dependent bases, then it's possible that
2377      // one of those types will resolve to the same type as
2378      // BaseType. Therefore, just treat this as a dependent base
2379      // class initialization.  FIXME: Should we try to check the
2380      // initialization anyway? It seems odd.
2381      if (ClassDecl->hasAnyDependentBases())
2382        Dependent = true;
2383      else
2384        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2385          << BaseType << Context.getTypeDeclType(ClassDecl)
2386          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2387    }
2388  }
2389
2390  if (Dependent) {
2391    DiscardCleanupsInEvaluationContext();
2392
2393    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2394                                            /*IsVirtual=*/false,
2395                                            InitRange.getBegin(), Init,
2396                                            InitRange.getEnd(), EllipsisLoc);
2397  }
2398
2399  // C++ [base.class.init]p2:
2400  //   If a mem-initializer-id is ambiguous because it designates both
2401  //   a direct non-virtual base class and an inherited virtual base
2402  //   class, the mem-initializer is ill-formed.
2403  if (DirectBaseSpec && VirtualBaseSpec)
2404    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2405      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2406
2407  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2408  if (!BaseSpec)
2409    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2410
2411  // Initialize the base.
2412  bool InitList = true;
2413  Expr **Args = &Init;
2414  unsigned NumArgs = 1;
2415  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2416    InitList = false;
2417    Args = ParenList->getExprs();
2418    NumArgs = ParenList->getNumExprs();
2419  }
2420
2421  InitializedEntity BaseEntity =
2422    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2423  InitializationKind Kind =
2424    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2425             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2426                                                InitRange.getEnd());
2427  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2428  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2429                                          MultiExprArg(*this, Args, NumArgs),
2430                                          0);
2431  if (BaseInit.isInvalid())
2432    return true;
2433
2434  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2435
2436  // C++0x [class.base.init]p7:
2437  //   The initialization of each base and member constitutes a
2438  //   full-expression.
2439  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2440  if (BaseInit.isInvalid())
2441    return true;
2442
2443  // If we are in a dependent context, template instantiation will
2444  // perform this type-checking again. Just save the arguments that we
2445  // received in a ParenListExpr.
2446  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2447  // of the information that we have about the base
2448  // initializer. However, deconstructing the ASTs is a dicey process,
2449  // and this approach is far more likely to get the corner cases right.
2450  if (CurContext->isDependentContext())
2451    BaseInit = Owned(Init);
2452
2453  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2454                                          BaseSpec->isVirtual(),
2455                                          InitRange.getBegin(),
2456                                          BaseInit.takeAs<Expr>(),
2457                                          InitRange.getEnd(), EllipsisLoc);
2458}
2459
2460// Create a static_cast\<T&&>(expr).
2461static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2462  QualType ExprType = E->getType();
2463  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2464  SourceLocation ExprLoc = E->getLocStart();
2465  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2466      TargetType, ExprLoc);
2467
2468  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2469                                   SourceRange(ExprLoc, ExprLoc),
2470                                   E->getSourceRange()).take();
2471}
2472
2473/// ImplicitInitializerKind - How an implicit base or member initializer should
2474/// initialize its base or member.
2475enum ImplicitInitializerKind {
2476  IIK_Default,
2477  IIK_Copy,
2478  IIK_Move
2479};
2480
2481static bool
2482BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2483                             ImplicitInitializerKind ImplicitInitKind,
2484                             CXXBaseSpecifier *BaseSpec,
2485                             bool IsInheritedVirtualBase,
2486                             CXXCtorInitializer *&CXXBaseInit) {
2487  InitializedEntity InitEntity
2488    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2489                                        IsInheritedVirtualBase);
2490
2491  ExprResult BaseInit;
2492
2493  switch (ImplicitInitKind) {
2494  case IIK_Default: {
2495    InitializationKind InitKind
2496      = InitializationKind::CreateDefault(Constructor->getLocation());
2497    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2498    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2499                               MultiExprArg(SemaRef, 0, 0));
2500    break;
2501  }
2502
2503  case IIK_Move:
2504  case IIK_Copy: {
2505    bool Moving = ImplicitInitKind == IIK_Move;
2506    ParmVarDecl *Param = Constructor->getParamDecl(0);
2507    QualType ParamType = Param->getType().getNonReferenceType();
2508
2509    Expr *CopyCtorArg =
2510      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2511                          SourceLocation(), Param, false,
2512                          Constructor->getLocation(), ParamType,
2513                          VK_LValue, 0);
2514
2515    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2516
2517    // Cast to the base class to avoid ambiguities.
2518    QualType ArgTy =
2519      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2520                                       ParamType.getQualifiers());
2521
2522    if (Moving) {
2523      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2524    }
2525
2526    CXXCastPath BasePath;
2527    BasePath.push_back(BaseSpec);
2528    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2529                                            CK_UncheckedDerivedToBase,
2530                                            Moving ? VK_XValue : VK_LValue,
2531                                            &BasePath).take();
2532
2533    InitializationKind InitKind
2534      = InitializationKind::CreateDirect(Constructor->getLocation(),
2535                                         SourceLocation(), SourceLocation());
2536    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2537                                   &CopyCtorArg, 1);
2538    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2539                               MultiExprArg(&CopyCtorArg, 1));
2540    break;
2541  }
2542  }
2543
2544  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2545  if (BaseInit.isInvalid())
2546    return true;
2547
2548  CXXBaseInit =
2549    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2550               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2551                                                        SourceLocation()),
2552                                             BaseSpec->isVirtual(),
2553                                             SourceLocation(),
2554                                             BaseInit.takeAs<Expr>(),
2555                                             SourceLocation(),
2556                                             SourceLocation());
2557
2558  return false;
2559}
2560
2561static bool RefersToRValueRef(Expr *MemRef) {
2562  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2563  return Referenced->getType()->isRValueReferenceType();
2564}
2565
2566static bool
2567BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2568                               ImplicitInitializerKind ImplicitInitKind,
2569                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2570                               CXXCtorInitializer *&CXXMemberInit) {
2571  if (Field->isInvalidDecl())
2572    return true;
2573
2574  SourceLocation Loc = Constructor->getLocation();
2575
2576  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2577    bool Moving = ImplicitInitKind == IIK_Move;
2578    ParmVarDecl *Param = Constructor->getParamDecl(0);
2579    QualType ParamType = Param->getType().getNonReferenceType();
2580
2581    // Suppress copying zero-width bitfields.
2582    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2583      return false;
2584
2585    Expr *MemberExprBase =
2586      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2587                          SourceLocation(), Param, false,
2588                          Loc, ParamType, VK_LValue, 0);
2589
2590    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2591
2592    if (Moving) {
2593      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2594    }
2595
2596    // Build a reference to this field within the parameter.
2597    CXXScopeSpec SS;
2598    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2599                              Sema::LookupMemberName);
2600    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2601                                  : cast<ValueDecl>(Field), AS_public);
2602    MemberLookup.resolveKind();
2603    ExprResult CtorArg
2604      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2605                                         ParamType, Loc,
2606                                         /*IsArrow=*/false,
2607                                         SS,
2608                                         /*TemplateKWLoc=*/SourceLocation(),
2609                                         /*FirstQualifierInScope=*/0,
2610                                         MemberLookup,
2611                                         /*TemplateArgs=*/0);
2612    if (CtorArg.isInvalid())
2613      return true;
2614
2615    // C++11 [class.copy]p15:
2616    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2617    //     with static_cast<T&&>(x.m);
2618    if (RefersToRValueRef(CtorArg.get())) {
2619      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2620    }
2621
2622    // When the field we are copying is an array, create index variables for
2623    // each dimension of the array. We use these index variables to subscript
2624    // the source array, and other clients (e.g., CodeGen) will perform the
2625    // necessary iteration with these index variables.
2626    SmallVector<VarDecl *, 4> IndexVariables;
2627    QualType BaseType = Field->getType();
2628    QualType SizeType = SemaRef.Context.getSizeType();
2629    bool InitializingArray = false;
2630    while (const ConstantArrayType *Array
2631                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2632      InitializingArray = true;
2633      // Create the iteration variable for this array index.
2634      IdentifierInfo *IterationVarName = 0;
2635      {
2636        SmallString<8> Str;
2637        llvm::raw_svector_ostream OS(Str);
2638        OS << "__i" << IndexVariables.size();
2639        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2640      }
2641      VarDecl *IterationVar
2642        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2643                          IterationVarName, SizeType,
2644                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2645                          SC_None, SC_None);
2646      IndexVariables.push_back(IterationVar);
2647
2648      // Create a reference to the iteration variable.
2649      ExprResult IterationVarRef
2650        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2651      assert(!IterationVarRef.isInvalid() &&
2652             "Reference to invented variable cannot fail!");
2653      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2654      assert(!IterationVarRef.isInvalid() &&
2655             "Conversion of invented variable cannot fail!");
2656
2657      // Subscript the array with this iteration variable.
2658      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2659                                                        IterationVarRef.take(),
2660                                                        Loc);
2661      if (CtorArg.isInvalid())
2662        return true;
2663
2664      BaseType = Array->getElementType();
2665    }
2666
2667    // The array subscript expression is an lvalue, which is wrong for moving.
2668    if (Moving && InitializingArray)
2669      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2670
2671    // Construct the entity that we will be initializing. For an array, this
2672    // will be first element in the array, which may require several levels
2673    // of array-subscript entities.
2674    SmallVector<InitializedEntity, 4> Entities;
2675    Entities.reserve(1 + IndexVariables.size());
2676    if (Indirect)
2677      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2678    else
2679      Entities.push_back(InitializedEntity::InitializeMember(Field));
2680    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2681      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2682                                                              0,
2683                                                              Entities.back()));
2684
2685    // Direct-initialize to use the copy constructor.
2686    InitializationKind InitKind =
2687      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2688
2689    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2690    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2691                                   &CtorArgE, 1);
2692
2693    ExprResult MemberInit
2694      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2695                        MultiExprArg(&CtorArgE, 1));
2696    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2697    if (MemberInit.isInvalid())
2698      return true;
2699
2700    if (Indirect) {
2701      assert(IndexVariables.size() == 0 &&
2702             "Indirect field improperly initialized");
2703      CXXMemberInit
2704        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2705                                                   Loc, Loc,
2706                                                   MemberInit.takeAs<Expr>(),
2707                                                   Loc);
2708    } else
2709      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2710                                                 Loc, MemberInit.takeAs<Expr>(),
2711                                                 Loc,
2712                                                 IndexVariables.data(),
2713                                                 IndexVariables.size());
2714    return false;
2715  }
2716
2717  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2718
2719  QualType FieldBaseElementType =
2720    SemaRef.Context.getBaseElementType(Field->getType());
2721
2722  if (FieldBaseElementType->isRecordType()) {
2723    InitializedEntity InitEntity
2724      = Indirect? InitializedEntity::InitializeMember(Indirect)
2725                : InitializedEntity::InitializeMember(Field);
2726    InitializationKind InitKind =
2727      InitializationKind::CreateDefault(Loc);
2728
2729    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2730    ExprResult MemberInit =
2731      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2732
2733    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2734    if (MemberInit.isInvalid())
2735      return true;
2736
2737    if (Indirect)
2738      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2739                                                               Indirect, Loc,
2740                                                               Loc,
2741                                                               MemberInit.get(),
2742                                                               Loc);
2743    else
2744      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2745                                                               Field, Loc, Loc,
2746                                                               MemberInit.get(),
2747                                                               Loc);
2748    return false;
2749  }
2750
2751  if (!Field->getParent()->isUnion()) {
2752    if (FieldBaseElementType->isReferenceType()) {
2753      SemaRef.Diag(Constructor->getLocation(),
2754                   diag::err_uninitialized_member_in_ctor)
2755      << (int)Constructor->isImplicit()
2756      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2757      << 0 << Field->getDeclName();
2758      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2759      return true;
2760    }
2761
2762    if (FieldBaseElementType.isConstQualified()) {
2763      SemaRef.Diag(Constructor->getLocation(),
2764                   diag::err_uninitialized_member_in_ctor)
2765      << (int)Constructor->isImplicit()
2766      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2767      << 1 << Field->getDeclName();
2768      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2769      return true;
2770    }
2771  }
2772
2773  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2774      FieldBaseElementType->isObjCRetainableType() &&
2775      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2776      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2777    // Instant objects:
2778    //   Default-initialize Objective-C pointers to NULL.
2779    CXXMemberInit
2780      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2781                                                 Loc, Loc,
2782                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2783                                                 Loc);
2784    return false;
2785  }
2786
2787  // Nothing to initialize.
2788  CXXMemberInit = 0;
2789  return false;
2790}
2791
2792namespace {
2793struct BaseAndFieldInfo {
2794  Sema &S;
2795  CXXConstructorDecl *Ctor;
2796  bool AnyErrorsInInits;
2797  ImplicitInitializerKind IIK;
2798  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2799  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2800
2801  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2802    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2803    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2804    if (Generated && Ctor->isCopyConstructor())
2805      IIK = IIK_Copy;
2806    else if (Generated && Ctor->isMoveConstructor())
2807      IIK = IIK_Move;
2808    else
2809      IIK = IIK_Default;
2810  }
2811
2812  bool isImplicitCopyOrMove() const {
2813    switch (IIK) {
2814    case IIK_Copy:
2815    case IIK_Move:
2816      return true;
2817
2818    case IIK_Default:
2819      return false;
2820    }
2821
2822    llvm_unreachable("Invalid ImplicitInitializerKind!");
2823  }
2824};
2825}
2826
2827/// \brief Determine whether the given indirect field declaration is somewhere
2828/// within an anonymous union.
2829static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2830  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2831                                      CEnd = F->chain_end();
2832       C != CEnd; ++C)
2833    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2834      if (Record->isUnion())
2835        return true;
2836
2837  return false;
2838}
2839
2840/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2841/// array type.
2842static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2843  if (T->isIncompleteArrayType())
2844    return true;
2845
2846  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2847    if (!ArrayT->getSize())
2848      return true;
2849
2850    T = ArrayT->getElementType();
2851  }
2852
2853  return false;
2854}
2855
2856static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2857                                    FieldDecl *Field,
2858                                    IndirectFieldDecl *Indirect = 0) {
2859
2860  // Overwhelmingly common case: we have a direct initializer for this field.
2861  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2862    Info.AllToInit.push_back(Init);
2863    return false;
2864  }
2865
2866  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2867  // has a brace-or-equal-initializer, the entity is initialized as specified
2868  // in [dcl.init].
2869  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2870    CXXCtorInitializer *Init;
2871    if (Indirect)
2872      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2873                                                      SourceLocation(),
2874                                                      SourceLocation(), 0,
2875                                                      SourceLocation());
2876    else
2877      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2878                                                      SourceLocation(),
2879                                                      SourceLocation(), 0,
2880                                                      SourceLocation());
2881    Info.AllToInit.push_back(Init);
2882
2883    // Check whether this initializer makes the field "used".
2884    Expr *InitExpr = Field->getInClassInitializer();
2885    if (Field->getType()->isRecordType() ||
2886        (InitExpr && InitExpr->HasSideEffects(SemaRef.Context)))
2887      SemaRef.UnusedPrivateFields.remove(Field);
2888
2889    return false;
2890  }
2891
2892  // Don't build an implicit initializer for union members if none was
2893  // explicitly specified.
2894  if (Field->getParent()->isUnion() ||
2895      (Indirect && isWithinAnonymousUnion(Indirect)))
2896    return false;
2897
2898  // Don't initialize incomplete or zero-length arrays.
2899  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2900    return false;
2901
2902  // Don't try to build an implicit initializer if there were semantic
2903  // errors in any of the initializers (and therefore we might be
2904  // missing some that the user actually wrote).
2905  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2906    return false;
2907
2908  CXXCtorInitializer *Init = 0;
2909  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2910                                     Indirect, Init))
2911    return true;
2912
2913  if (Init)
2914    Info.AllToInit.push_back(Init);
2915
2916  return false;
2917}
2918
2919bool
2920Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2921                               CXXCtorInitializer *Initializer) {
2922  assert(Initializer->isDelegatingInitializer());
2923  Constructor->setNumCtorInitializers(1);
2924  CXXCtorInitializer **initializer =
2925    new (Context) CXXCtorInitializer*[1];
2926  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2927  Constructor->setCtorInitializers(initializer);
2928
2929  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2930    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2931    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2932  }
2933
2934  DelegatingCtorDecls.push_back(Constructor);
2935
2936  return false;
2937}
2938
2939bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2940                               CXXCtorInitializer **Initializers,
2941                               unsigned NumInitializers,
2942                               bool AnyErrors) {
2943  if (Constructor->isDependentContext()) {
2944    // Just store the initializers as written, they will be checked during
2945    // instantiation.
2946    if (NumInitializers > 0) {
2947      Constructor->setNumCtorInitializers(NumInitializers);
2948      CXXCtorInitializer **baseOrMemberInitializers =
2949        new (Context) CXXCtorInitializer*[NumInitializers];
2950      memcpy(baseOrMemberInitializers, Initializers,
2951             NumInitializers * sizeof(CXXCtorInitializer*));
2952      Constructor->setCtorInitializers(baseOrMemberInitializers);
2953    }
2954
2955    return false;
2956  }
2957
2958  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2959
2960  // We need to build the initializer AST according to order of construction
2961  // and not what user specified in the Initializers list.
2962  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2963  if (!ClassDecl)
2964    return true;
2965
2966  bool HadError = false;
2967
2968  for (unsigned i = 0; i < NumInitializers; i++) {
2969    CXXCtorInitializer *Member = Initializers[i];
2970
2971    if (Member->isBaseInitializer())
2972      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2973    else
2974      Info.AllBaseFields[Member->getAnyMember()] = Member;
2975  }
2976
2977  // Keep track of the direct virtual bases.
2978  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2979  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2980       E = ClassDecl->bases_end(); I != E; ++I) {
2981    if (I->isVirtual())
2982      DirectVBases.insert(I);
2983  }
2984
2985  // Push virtual bases before others.
2986  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2987       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2988
2989    if (CXXCtorInitializer *Value
2990        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2991      Info.AllToInit.push_back(Value);
2992    } else if (!AnyErrors) {
2993      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2994      CXXCtorInitializer *CXXBaseInit;
2995      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2996                                       VBase, IsInheritedVirtualBase,
2997                                       CXXBaseInit)) {
2998        HadError = true;
2999        continue;
3000      }
3001
3002      Info.AllToInit.push_back(CXXBaseInit);
3003    }
3004  }
3005
3006  // Non-virtual bases.
3007  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3008       E = ClassDecl->bases_end(); Base != E; ++Base) {
3009    // Virtuals are in the virtual base list and already constructed.
3010    if (Base->isVirtual())
3011      continue;
3012
3013    if (CXXCtorInitializer *Value
3014          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3015      Info.AllToInit.push_back(Value);
3016    } else if (!AnyErrors) {
3017      CXXCtorInitializer *CXXBaseInit;
3018      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3019                                       Base, /*IsInheritedVirtualBase=*/false,
3020                                       CXXBaseInit)) {
3021        HadError = true;
3022        continue;
3023      }
3024
3025      Info.AllToInit.push_back(CXXBaseInit);
3026    }
3027  }
3028
3029  // Fields.
3030  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3031                               MemEnd = ClassDecl->decls_end();
3032       Mem != MemEnd; ++Mem) {
3033    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3034      // C++ [class.bit]p2:
3035      //   A declaration for a bit-field that omits the identifier declares an
3036      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3037      //   initialized.
3038      if (F->isUnnamedBitfield())
3039        continue;
3040
3041      // If we're not generating the implicit copy/move constructor, then we'll
3042      // handle anonymous struct/union fields based on their individual
3043      // indirect fields.
3044      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3045        continue;
3046
3047      if (CollectFieldInitializer(*this, Info, F))
3048        HadError = true;
3049      continue;
3050    }
3051
3052    // Beyond this point, we only consider default initialization.
3053    if (Info.IIK != IIK_Default)
3054      continue;
3055
3056    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3057      if (F->getType()->isIncompleteArrayType()) {
3058        assert(ClassDecl->hasFlexibleArrayMember() &&
3059               "Incomplete array type is not valid");
3060        continue;
3061      }
3062
3063      // Initialize each field of an anonymous struct individually.
3064      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3065        HadError = true;
3066
3067      continue;
3068    }
3069  }
3070
3071  NumInitializers = Info.AllToInit.size();
3072  if (NumInitializers > 0) {
3073    Constructor->setNumCtorInitializers(NumInitializers);
3074    CXXCtorInitializer **baseOrMemberInitializers =
3075      new (Context) CXXCtorInitializer*[NumInitializers];
3076    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3077           NumInitializers * sizeof(CXXCtorInitializer*));
3078    Constructor->setCtorInitializers(baseOrMemberInitializers);
3079
3080    // Constructors implicitly reference the base and member
3081    // destructors.
3082    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3083                                           Constructor->getParent());
3084  }
3085
3086  return HadError;
3087}
3088
3089static void *GetKeyForTopLevelField(FieldDecl *Field) {
3090  // For anonymous unions, use the class declaration as the key.
3091  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3092    if (RT->getDecl()->isAnonymousStructOrUnion())
3093      return static_cast<void *>(RT->getDecl());
3094  }
3095  return static_cast<void *>(Field);
3096}
3097
3098static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3099  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3100}
3101
3102static void *GetKeyForMember(ASTContext &Context,
3103                             CXXCtorInitializer *Member) {
3104  if (!Member->isAnyMemberInitializer())
3105    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3106
3107  // For fields injected into the class via declaration of an anonymous union,
3108  // use its anonymous union class declaration as the unique key.
3109  FieldDecl *Field = Member->getAnyMember();
3110
3111  // If the field is a member of an anonymous struct or union, our key
3112  // is the anonymous record decl that's a direct child of the class.
3113  RecordDecl *RD = Field->getParent();
3114  if (RD->isAnonymousStructOrUnion()) {
3115    while (true) {
3116      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3117      if (Parent->isAnonymousStructOrUnion())
3118        RD = Parent;
3119      else
3120        break;
3121    }
3122
3123    return static_cast<void *>(RD);
3124  }
3125
3126  return static_cast<void *>(Field);
3127}
3128
3129static void
3130DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3131                                  const CXXConstructorDecl *Constructor,
3132                                  CXXCtorInitializer **Inits,
3133                                  unsigned NumInits) {
3134  if (Constructor->getDeclContext()->isDependentContext())
3135    return;
3136
3137  // Don't check initializers order unless the warning is enabled at the
3138  // location of at least one initializer.
3139  bool ShouldCheckOrder = false;
3140  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3141    CXXCtorInitializer *Init = Inits[InitIndex];
3142    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3143                                         Init->getSourceLocation())
3144          != DiagnosticsEngine::Ignored) {
3145      ShouldCheckOrder = true;
3146      break;
3147    }
3148  }
3149  if (!ShouldCheckOrder)
3150    return;
3151
3152  // Build the list of bases and members in the order that they'll
3153  // actually be initialized.  The explicit initializers should be in
3154  // this same order but may be missing things.
3155  SmallVector<const void*, 32> IdealInitKeys;
3156
3157  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3158
3159  // 1. Virtual bases.
3160  for (CXXRecordDecl::base_class_const_iterator VBase =
3161       ClassDecl->vbases_begin(),
3162       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3163    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3164
3165  // 2. Non-virtual bases.
3166  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3167       E = ClassDecl->bases_end(); Base != E; ++Base) {
3168    if (Base->isVirtual())
3169      continue;
3170    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3171  }
3172
3173  // 3. Direct fields.
3174  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3175       E = ClassDecl->field_end(); Field != E; ++Field) {
3176    if (Field->isUnnamedBitfield())
3177      continue;
3178
3179    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3180  }
3181
3182  unsigned NumIdealInits = IdealInitKeys.size();
3183  unsigned IdealIndex = 0;
3184
3185  CXXCtorInitializer *PrevInit = 0;
3186  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3187    CXXCtorInitializer *Init = Inits[InitIndex];
3188    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3189
3190    // Scan forward to try to find this initializer in the idealized
3191    // initializers list.
3192    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3193      if (InitKey == IdealInitKeys[IdealIndex])
3194        break;
3195
3196    // If we didn't find this initializer, it must be because we
3197    // scanned past it on a previous iteration.  That can only
3198    // happen if we're out of order;  emit a warning.
3199    if (IdealIndex == NumIdealInits && PrevInit) {
3200      Sema::SemaDiagnosticBuilder D =
3201        SemaRef.Diag(PrevInit->getSourceLocation(),
3202                     diag::warn_initializer_out_of_order);
3203
3204      if (PrevInit->isAnyMemberInitializer())
3205        D << 0 << PrevInit->getAnyMember()->getDeclName();
3206      else
3207        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3208
3209      if (Init->isAnyMemberInitializer())
3210        D << 0 << Init->getAnyMember()->getDeclName();
3211      else
3212        D << 1 << Init->getTypeSourceInfo()->getType();
3213
3214      // Move back to the initializer's location in the ideal list.
3215      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3216        if (InitKey == IdealInitKeys[IdealIndex])
3217          break;
3218
3219      assert(IdealIndex != NumIdealInits &&
3220             "initializer not found in initializer list");
3221    }
3222
3223    PrevInit = Init;
3224  }
3225}
3226
3227namespace {
3228bool CheckRedundantInit(Sema &S,
3229                        CXXCtorInitializer *Init,
3230                        CXXCtorInitializer *&PrevInit) {
3231  if (!PrevInit) {
3232    PrevInit = Init;
3233    return false;
3234  }
3235
3236  if (FieldDecl *Field = Init->getMember())
3237    S.Diag(Init->getSourceLocation(),
3238           diag::err_multiple_mem_initialization)
3239      << Field->getDeclName()
3240      << Init->getSourceRange();
3241  else {
3242    const Type *BaseClass = Init->getBaseClass();
3243    assert(BaseClass && "neither field nor base");
3244    S.Diag(Init->getSourceLocation(),
3245           diag::err_multiple_base_initialization)
3246      << QualType(BaseClass, 0)
3247      << Init->getSourceRange();
3248  }
3249  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3250    << 0 << PrevInit->getSourceRange();
3251
3252  return true;
3253}
3254
3255typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3256typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3257
3258bool CheckRedundantUnionInit(Sema &S,
3259                             CXXCtorInitializer *Init,
3260                             RedundantUnionMap &Unions) {
3261  FieldDecl *Field = Init->getAnyMember();
3262  RecordDecl *Parent = Field->getParent();
3263  NamedDecl *Child = Field;
3264
3265  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3266    if (Parent->isUnion()) {
3267      UnionEntry &En = Unions[Parent];
3268      if (En.first && En.first != Child) {
3269        S.Diag(Init->getSourceLocation(),
3270               diag::err_multiple_mem_union_initialization)
3271          << Field->getDeclName()
3272          << Init->getSourceRange();
3273        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3274          << 0 << En.second->getSourceRange();
3275        return true;
3276      }
3277      if (!En.first) {
3278        En.first = Child;
3279        En.second = Init;
3280      }
3281      if (!Parent->isAnonymousStructOrUnion())
3282        return false;
3283    }
3284
3285    Child = Parent;
3286    Parent = cast<RecordDecl>(Parent->getDeclContext());
3287  }
3288
3289  return false;
3290}
3291}
3292
3293/// ActOnMemInitializers - Handle the member initializers for a constructor.
3294void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3295                                SourceLocation ColonLoc,
3296                                CXXCtorInitializer **meminits,
3297                                unsigned NumMemInits,
3298                                bool AnyErrors) {
3299  if (!ConstructorDecl)
3300    return;
3301
3302  AdjustDeclIfTemplate(ConstructorDecl);
3303
3304  CXXConstructorDecl *Constructor
3305    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3306
3307  if (!Constructor) {
3308    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3309    return;
3310  }
3311
3312  CXXCtorInitializer **MemInits =
3313    reinterpret_cast<CXXCtorInitializer **>(meminits);
3314
3315  // Mapping for the duplicate initializers check.
3316  // For member initializers, this is keyed with a FieldDecl*.
3317  // For base initializers, this is keyed with a Type*.
3318  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3319
3320  // Mapping for the inconsistent anonymous-union initializers check.
3321  RedundantUnionMap MemberUnions;
3322
3323  bool HadError = false;
3324  for (unsigned i = 0; i < NumMemInits; i++) {
3325    CXXCtorInitializer *Init = MemInits[i];
3326
3327    // Set the source order index.
3328    Init->setSourceOrder(i);
3329
3330    if (Init->isAnyMemberInitializer()) {
3331      FieldDecl *Field = Init->getAnyMember();
3332      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3333          CheckRedundantUnionInit(*this, Init, MemberUnions))
3334        HadError = true;
3335    } else if (Init->isBaseInitializer()) {
3336      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3337      if (CheckRedundantInit(*this, Init, Members[Key]))
3338        HadError = true;
3339    } else {
3340      assert(Init->isDelegatingInitializer());
3341      // This must be the only initializer
3342      if (i != 0 || NumMemInits > 1) {
3343        Diag(MemInits[0]->getSourceLocation(),
3344             diag::err_delegating_initializer_alone)
3345          << MemInits[0]->getSourceRange();
3346        HadError = true;
3347        // We will treat this as being the only initializer.
3348      }
3349      SetDelegatingInitializer(Constructor, MemInits[i]);
3350      // Return immediately as the initializer is set.
3351      return;
3352    }
3353  }
3354
3355  if (HadError)
3356    return;
3357
3358  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3359
3360  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3361}
3362
3363void
3364Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3365                                             CXXRecordDecl *ClassDecl) {
3366  // Ignore dependent contexts. Also ignore unions, since their members never
3367  // have destructors implicitly called.
3368  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3369    return;
3370
3371  // FIXME: all the access-control diagnostics are positioned on the
3372  // field/base declaration.  That's probably good; that said, the
3373  // user might reasonably want to know why the destructor is being
3374  // emitted, and we currently don't say.
3375
3376  // Non-static data members.
3377  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3378       E = ClassDecl->field_end(); I != E; ++I) {
3379    FieldDecl *Field = *I;
3380    if (Field->isInvalidDecl())
3381      continue;
3382
3383    // Don't destroy incomplete or zero-length arrays.
3384    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3385      continue;
3386
3387    QualType FieldType = Context.getBaseElementType(Field->getType());
3388
3389    const RecordType* RT = FieldType->getAs<RecordType>();
3390    if (!RT)
3391      continue;
3392
3393    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3394    if (FieldClassDecl->isInvalidDecl())
3395      continue;
3396    if (FieldClassDecl->hasIrrelevantDestructor())
3397      continue;
3398    // The destructor for an implicit anonymous union member is never invoked.
3399    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3400      continue;
3401
3402    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3403    assert(Dtor && "No dtor found for FieldClassDecl!");
3404    CheckDestructorAccess(Field->getLocation(), Dtor,
3405                          PDiag(diag::err_access_dtor_field)
3406                            << Field->getDeclName()
3407                            << FieldType);
3408
3409    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3410    DiagnoseUseOfDecl(Dtor, Location);
3411  }
3412
3413  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3414
3415  // Bases.
3416  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3417       E = ClassDecl->bases_end(); Base != E; ++Base) {
3418    // Bases are always records in a well-formed non-dependent class.
3419    const RecordType *RT = Base->getType()->getAs<RecordType>();
3420
3421    // Remember direct virtual bases.
3422    if (Base->isVirtual())
3423      DirectVirtualBases.insert(RT);
3424
3425    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3426    // If our base class is invalid, we probably can't get its dtor anyway.
3427    if (BaseClassDecl->isInvalidDecl())
3428      continue;
3429    if (BaseClassDecl->hasIrrelevantDestructor())
3430      continue;
3431
3432    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3433    assert(Dtor && "No dtor found for BaseClassDecl!");
3434
3435    // FIXME: caret should be on the start of the class name
3436    CheckDestructorAccess(Base->getLocStart(), Dtor,
3437                          PDiag(diag::err_access_dtor_base)
3438                            << Base->getType()
3439                            << Base->getSourceRange(),
3440                          Context.getTypeDeclType(ClassDecl));
3441
3442    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3443    DiagnoseUseOfDecl(Dtor, Location);
3444  }
3445
3446  // Virtual bases.
3447  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3448       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3449
3450    // Bases are always records in a well-formed non-dependent class.
3451    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3452
3453    // Ignore direct virtual bases.
3454    if (DirectVirtualBases.count(RT))
3455      continue;
3456
3457    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3458    // If our base class is invalid, we probably can't get its dtor anyway.
3459    if (BaseClassDecl->isInvalidDecl())
3460      continue;
3461    if (BaseClassDecl->hasIrrelevantDestructor())
3462      continue;
3463
3464    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3465    assert(Dtor && "No dtor found for BaseClassDecl!");
3466    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3467                          PDiag(diag::err_access_dtor_vbase)
3468                            << VBase->getType(),
3469                          Context.getTypeDeclType(ClassDecl));
3470
3471    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3472    DiagnoseUseOfDecl(Dtor, Location);
3473  }
3474}
3475
3476void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3477  if (!CDtorDecl)
3478    return;
3479
3480  if (CXXConstructorDecl *Constructor
3481      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3482    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3483}
3484
3485bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3486                                  unsigned DiagID, AbstractDiagSelID SelID) {
3487  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3488    unsigned DiagID;
3489    AbstractDiagSelID SelID;
3490
3491  public:
3492    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3493      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3494
3495    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3496      if (SelID == -1)
3497        S.Diag(Loc, DiagID) << T;
3498      else
3499        S.Diag(Loc, DiagID) << SelID << T;
3500    }
3501  } Diagnoser(DiagID, SelID);
3502
3503  return RequireNonAbstractType(Loc, T, Diagnoser);
3504}
3505
3506bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3507                                  TypeDiagnoser &Diagnoser) {
3508  if (!getLangOpts().CPlusPlus)
3509    return false;
3510
3511  if (const ArrayType *AT = Context.getAsArrayType(T))
3512    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3513
3514  if (const PointerType *PT = T->getAs<PointerType>()) {
3515    // Find the innermost pointer type.
3516    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3517      PT = T;
3518
3519    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3520      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3521  }
3522
3523  const RecordType *RT = T->getAs<RecordType>();
3524  if (!RT)
3525    return false;
3526
3527  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3528
3529  // We can't answer whether something is abstract until it has a
3530  // definition.  If it's currently being defined, we'll walk back
3531  // over all the declarations when we have a full definition.
3532  const CXXRecordDecl *Def = RD->getDefinition();
3533  if (!Def || Def->isBeingDefined())
3534    return false;
3535
3536  if (!RD->isAbstract())
3537    return false;
3538
3539  Diagnoser.diagnose(*this, Loc, T);
3540  DiagnoseAbstractType(RD);
3541
3542  return true;
3543}
3544
3545void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3546  // Check if we've already emitted the list of pure virtual functions
3547  // for this class.
3548  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3549    return;
3550
3551  CXXFinalOverriderMap FinalOverriders;
3552  RD->getFinalOverriders(FinalOverriders);
3553
3554  // Keep a set of seen pure methods so we won't diagnose the same method
3555  // more than once.
3556  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3557
3558  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3559                                   MEnd = FinalOverriders.end();
3560       M != MEnd;
3561       ++M) {
3562    for (OverridingMethods::iterator SO = M->second.begin(),
3563                                  SOEnd = M->second.end();
3564         SO != SOEnd; ++SO) {
3565      // C++ [class.abstract]p4:
3566      //   A class is abstract if it contains or inherits at least one
3567      //   pure virtual function for which the final overrider is pure
3568      //   virtual.
3569
3570      //
3571      if (SO->second.size() != 1)
3572        continue;
3573
3574      if (!SO->second.front().Method->isPure())
3575        continue;
3576
3577      if (!SeenPureMethods.insert(SO->second.front().Method))
3578        continue;
3579
3580      Diag(SO->second.front().Method->getLocation(),
3581           diag::note_pure_virtual_function)
3582        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3583    }
3584  }
3585
3586  if (!PureVirtualClassDiagSet)
3587    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3588  PureVirtualClassDiagSet->insert(RD);
3589}
3590
3591namespace {
3592struct AbstractUsageInfo {
3593  Sema &S;
3594  CXXRecordDecl *Record;
3595  CanQualType AbstractType;
3596  bool Invalid;
3597
3598  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3599    : S(S), Record(Record),
3600      AbstractType(S.Context.getCanonicalType(
3601                   S.Context.getTypeDeclType(Record))),
3602      Invalid(false) {}
3603
3604  void DiagnoseAbstractType() {
3605    if (Invalid) return;
3606    S.DiagnoseAbstractType(Record);
3607    Invalid = true;
3608  }
3609
3610  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3611};
3612
3613struct CheckAbstractUsage {
3614  AbstractUsageInfo &Info;
3615  const NamedDecl *Ctx;
3616
3617  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3618    : Info(Info), Ctx(Ctx) {}
3619
3620  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3621    switch (TL.getTypeLocClass()) {
3622#define ABSTRACT_TYPELOC(CLASS, PARENT)
3623#define TYPELOC(CLASS, PARENT) \
3624    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3625#include "clang/AST/TypeLocNodes.def"
3626    }
3627  }
3628
3629  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3630    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3631    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3632      if (!TL.getArg(I))
3633        continue;
3634
3635      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3636      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3637    }
3638  }
3639
3640  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3641    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3642  }
3643
3644  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3645    // Visit the type parameters from a permissive context.
3646    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3647      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3648      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3649        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3650          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3651      // TODO: other template argument types?
3652    }
3653  }
3654
3655  // Visit pointee types from a permissive context.
3656#define CheckPolymorphic(Type) \
3657  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3658    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3659  }
3660  CheckPolymorphic(PointerTypeLoc)
3661  CheckPolymorphic(ReferenceTypeLoc)
3662  CheckPolymorphic(MemberPointerTypeLoc)
3663  CheckPolymorphic(BlockPointerTypeLoc)
3664  CheckPolymorphic(AtomicTypeLoc)
3665
3666  /// Handle all the types we haven't given a more specific
3667  /// implementation for above.
3668  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3669    // Every other kind of type that we haven't called out already
3670    // that has an inner type is either (1) sugar or (2) contains that
3671    // inner type in some way as a subobject.
3672    if (TypeLoc Next = TL.getNextTypeLoc())
3673      return Visit(Next, Sel);
3674
3675    // If there's no inner type and we're in a permissive context,
3676    // don't diagnose.
3677    if (Sel == Sema::AbstractNone) return;
3678
3679    // Check whether the type matches the abstract type.
3680    QualType T = TL.getType();
3681    if (T->isArrayType()) {
3682      Sel = Sema::AbstractArrayType;
3683      T = Info.S.Context.getBaseElementType(T);
3684    }
3685    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3686    if (CT != Info.AbstractType) return;
3687
3688    // It matched; do some magic.
3689    if (Sel == Sema::AbstractArrayType) {
3690      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3691        << T << TL.getSourceRange();
3692    } else {
3693      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3694        << Sel << T << TL.getSourceRange();
3695    }
3696    Info.DiagnoseAbstractType();
3697  }
3698};
3699
3700void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3701                                  Sema::AbstractDiagSelID Sel) {
3702  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3703}
3704
3705}
3706
3707/// Check for invalid uses of an abstract type in a method declaration.
3708static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3709                                    CXXMethodDecl *MD) {
3710  // No need to do the check on definitions, which require that
3711  // the return/param types be complete.
3712  if (MD->doesThisDeclarationHaveABody())
3713    return;
3714
3715  // For safety's sake, just ignore it if we don't have type source
3716  // information.  This should never happen for non-implicit methods,
3717  // but...
3718  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3719    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3720}
3721
3722/// Check for invalid uses of an abstract type within a class definition.
3723static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3724                                    CXXRecordDecl *RD) {
3725  for (CXXRecordDecl::decl_iterator
3726         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3727    Decl *D = *I;
3728    if (D->isImplicit()) continue;
3729
3730    // Methods and method templates.
3731    if (isa<CXXMethodDecl>(D)) {
3732      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3733    } else if (isa<FunctionTemplateDecl>(D)) {
3734      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3735      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3736
3737    // Fields and static variables.
3738    } else if (isa<FieldDecl>(D)) {
3739      FieldDecl *FD = cast<FieldDecl>(D);
3740      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3741        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3742    } else if (isa<VarDecl>(D)) {
3743      VarDecl *VD = cast<VarDecl>(D);
3744      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3745        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3746
3747    // Nested classes and class templates.
3748    } else if (isa<CXXRecordDecl>(D)) {
3749      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3750    } else if (isa<ClassTemplateDecl>(D)) {
3751      CheckAbstractClassUsage(Info,
3752                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3753    }
3754  }
3755}
3756
3757/// \brief Perform semantic checks on a class definition that has been
3758/// completing, introducing implicitly-declared members, checking for
3759/// abstract types, etc.
3760void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3761  if (!Record)
3762    return;
3763
3764  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3765    AbstractUsageInfo Info(*this, Record);
3766    CheckAbstractClassUsage(Info, Record);
3767  }
3768
3769  // If this is not an aggregate type and has no user-declared constructor,
3770  // complain about any non-static data members of reference or const scalar
3771  // type, since they will never get initializers.
3772  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3773      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3774      !Record->isLambda()) {
3775    bool Complained = false;
3776    for (RecordDecl::field_iterator F = Record->field_begin(),
3777                                 FEnd = Record->field_end();
3778         F != FEnd; ++F) {
3779      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3780        continue;
3781
3782      if (F->getType()->isReferenceType() ||
3783          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3784        if (!Complained) {
3785          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3786            << Record->getTagKind() << Record;
3787          Complained = true;
3788        }
3789
3790        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3791          << F->getType()->isReferenceType()
3792          << F->getDeclName();
3793      }
3794    }
3795  }
3796
3797  if (Record->isDynamicClass() && !Record->isDependentType())
3798    DynamicClasses.push_back(Record);
3799
3800  if (Record->getIdentifier()) {
3801    // C++ [class.mem]p13:
3802    //   If T is the name of a class, then each of the following shall have a
3803    //   name different from T:
3804    //     - every member of every anonymous union that is a member of class T.
3805    //
3806    // C++ [class.mem]p14:
3807    //   In addition, if class T has a user-declared constructor (12.1), every
3808    //   non-static data member of class T shall have a name different from T.
3809    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3810         R.first != R.second; ++R.first) {
3811      NamedDecl *D = *R.first;
3812      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3813          isa<IndirectFieldDecl>(D)) {
3814        Diag(D->getLocation(), diag::err_member_name_of_class)
3815          << D->getDeclName();
3816        break;
3817      }
3818    }
3819  }
3820
3821  // Warn if the class has virtual methods but non-virtual public destructor.
3822  if (Record->isPolymorphic() && !Record->isDependentType()) {
3823    CXXDestructorDecl *dtor = Record->getDestructor();
3824    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3825      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3826           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3827  }
3828
3829  // See if a method overloads virtual methods in a base
3830  /// class without overriding any.
3831  if (!Record->isDependentType()) {
3832    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3833                                     MEnd = Record->method_end();
3834         M != MEnd; ++M) {
3835      if (!M->isStatic())
3836        DiagnoseHiddenVirtualMethods(Record, *M);
3837    }
3838  }
3839
3840  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3841  // function that is not a constructor declares that member function to be
3842  // const. [...] The class of which that function is a member shall be
3843  // a literal type.
3844  //
3845  // If the class has virtual bases, any constexpr members will already have
3846  // been diagnosed by the checks performed on the member declaration, so
3847  // suppress this (less useful) diagnostic.
3848  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3849      !Record->isLiteral() && !Record->getNumVBases()) {
3850    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3851                                     MEnd = Record->method_end();
3852         M != MEnd; ++M) {
3853      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3854        switch (Record->getTemplateSpecializationKind()) {
3855        case TSK_ImplicitInstantiation:
3856        case TSK_ExplicitInstantiationDeclaration:
3857        case TSK_ExplicitInstantiationDefinition:
3858          // If a template instantiates to a non-literal type, but its members
3859          // instantiate to constexpr functions, the template is technically
3860          // ill-formed, but we allow it for sanity.
3861          continue;
3862
3863        case TSK_Undeclared:
3864        case TSK_ExplicitSpecialization:
3865          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3866                             diag::err_constexpr_method_non_literal);
3867          break;
3868        }
3869
3870        // Only produce one error per class.
3871        break;
3872      }
3873    }
3874  }
3875
3876  // Declare inherited constructors. We do this eagerly here because:
3877  // - The standard requires an eager diagnostic for conflicting inherited
3878  //   constructors from different classes.
3879  // - The lazy declaration of the other implicit constructors is so as to not
3880  //   waste space and performance on classes that are not meant to be
3881  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3882  //   have inherited constructors.
3883  DeclareInheritedConstructors(Record);
3884
3885  if (!Record->isDependentType())
3886    CheckExplicitlyDefaultedMethods(Record);
3887}
3888
3889void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3890  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3891                                      ME = Record->method_end();
3892       MI != ME; ++MI)
3893    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3894      CheckExplicitlyDefaultedSpecialMember(*MI);
3895}
3896
3897/// Is the special member function which would be selected to perform the
3898/// specified operation on the specified class type a constexpr constructor?
3899static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3900                                     Sema::CXXSpecialMember CSM,
3901                                     bool ConstArg) {
3902  Sema::SpecialMemberOverloadResult *SMOR =
3903      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
3904                            false, false, false, false);
3905  if (!SMOR || !SMOR->getMethod())
3906    // A constructor we wouldn't select can't be "involved in initializing"
3907    // anything.
3908    return true;
3909  return SMOR->getMethod()->isConstexpr();
3910}
3911
3912/// Determine whether the specified special member function would be constexpr
3913/// if it were implicitly defined.
3914static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3915                                              Sema::CXXSpecialMember CSM,
3916                                              bool ConstArg) {
3917  if (!S.getLangOpts().CPlusPlus0x)
3918    return false;
3919
3920  // C++11 [dcl.constexpr]p4:
3921  // In the definition of a constexpr constructor [...]
3922  switch (CSM) {
3923  case Sema::CXXDefaultConstructor:
3924    // Since default constructor lookup is essentially trivial (and cannot
3925    // involve, for instance, template instantiation), we compute whether a
3926    // defaulted default constructor is constexpr directly within CXXRecordDecl.
3927    //
3928    // This is important for performance; we need to know whether the default
3929    // constructor is constexpr to determine whether the type is a literal type.
3930    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
3931
3932  case Sema::CXXCopyConstructor:
3933  case Sema::CXXMoveConstructor:
3934    // For copy or move constructors, we need to perform overload resolution.
3935    break;
3936
3937  case Sema::CXXCopyAssignment:
3938  case Sema::CXXMoveAssignment:
3939  case Sema::CXXDestructor:
3940  case Sema::CXXInvalid:
3941    return false;
3942  }
3943
3944  //   -- if the class is a non-empty union, or for each non-empty anonymous
3945  //      union member of a non-union class, exactly one non-static data member
3946  //      shall be initialized; [DR1359]
3947  //
3948  // If we squint, this is guaranteed, since exactly one non-static data member
3949  // will be initialized (if the constructor isn't deleted), we just don't know
3950  // which one.
3951  if (ClassDecl->isUnion())
3952    return true;
3953
3954  //   -- the class shall not have any virtual base classes;
3955  if (ClassDecl->getNumVBases())
3956    return false;
3957
3958  //   -- every constructor involved in initializing [...] base class
3959  //      sub-objects shall be a constexpr constructor;
3960  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
3961                                       BEnd = ClassDecl->bases_end();
3962       B != BEnd; ++B) {
3963    const RecordType *BaseType = B->getType()->getAs<RecordType>();
3964    if (!BaseType) continue;
3965
3966    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3967    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
3968      return false;
3969  }
3970
3971  //   -- every constructor involved in initializing non-static data members
3972  //      [...] shall be a constexpr constructor;
3973  //   -- every non-static data member and base class sub-object shall be
3974  //      initialized
3975  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
3976                               FEnd = ClassDecl->field_end();
3977       F != FEnd; ++F) {
3978    if (F->isInvalidDecl())
3979      continue;
3980    if (const RecordType *RecordTy =
3981            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
3982      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
3983      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
3984        return false;
3985    }
3986  }
3987
3988  // All OK, it's constexpr!
3989  return true;
3990}
3991
3992void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
3993  CXXRecordDecl *RD = MD->getParent();
3994  CXXSpecialMember CSM = getSpecialMember(MD);
3995
3996  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
3997         "not an explicitly-defaulted special member");
3998
3999  // Whether this was the first-declared instance of the constructor.
4000  // This affects whether we implicitly add an exception spec and constexpr.
4001  bool First = MD == MD->getCanonicalDecl();
4002
4003  bool HadError = false;
4004
4005  // C++11 [dcl.fct.def.default]p1:
4006  //   A function that is explicitly defaulted shall
4007  //     -- be a special member function (checked elsewhere),
4008  //     -- have the same type (except for ref-qualifiers, and except that a
4009  //        copy operation can take a non-const reference) as an implicit
4010  //        declaration, and
4011  //     -- not have default arguments.
4012  unsigned ExpectedParams = 1;
4013  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4014    ExpectedParams = 0;
4015  if (MD->getNumParams() != ExpectedParams) {
4016    // This also checks for default arguments: a copy or move constructor with a
4017    // default argument is classified as a default constructor, and assignment
4018    // operations and destructors can't have default arguments.
4019    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4020      << CSM << MD->getSourceRange();
4021    HadError = true;
4022  }
4023
4024  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4025
4026  // Compute implicit exception specification, argument constness, constexpr
4027  // and triviality.
4028  ImplicitExceptionSpecification Spec(*this);
4029  bool CanHaveConstParam = false;
4030  bool Trivial;
4031  switch (CSM) {
4032  case CXXDefaultConstructor:
4033    Spec = ComputeDefaultedDefaultCtorExceptionSpec(RD);
4034    if (Spec.isDelayed())
4035      // Exception specification depends on some deferred part of the class.
4036      // We'll try again when the class's definition has been fully processed.
4037      return;
4038    Trivial = RD->hasTrivialDefaultConstructor();
4039    break;
4040  case CXXCopyConstructor:
4041    llvm::tie(Spec, CanHaveConstParam) =
4042      ComputeDefaultedCopyCtorExceptionSpecAndConst(RD);
4043    Trivial = RD->hasTrivialCopyConstructor();
4044    break;
4045  case CXXCopyAssignment:
4046    llvm::tie(Spec, CanHaveConstParam) =
4047      ComputeDefaultedCopyAssignmentExceptionSpecAndConst(RD);
4048    Trivial = RD->hasTrivialCopyAssignment();
4049    break;
4050  case CXXMoveConstructor:
4051    Spec = ComputeDefaultedMoveCtorExceptionSpec(RD);
4052    Trivial = RD->hasTrivialMoveConstructor();
4053    break;
4054  case CXXMoveAssignment:
4055    Spec = ComputeDefaultedMoveAssignmentExceptionSpec(RD);
4056    Trivial = RD->hasTrivialMoveAssignment();
4057    break;
4058  case CXXDestructor:
4059    Spec = ComputeDefaultedDtorExceptionSpec(RD);
4060    Trivial = RD->hasTrivialDestructor();
4061    break;
4062  case CXXInvalid:
4063    llvm_unreachable("non-special member explicitly defaulted!");
4064  }
4065
4066  QualType ReturnType = Context.VoidTy;
4067  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4068    // Check for return type matching.
4069    ReturnType = Type->getResultType();
4070    QualType ExpectedReturnType =
4071        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4072    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4073      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4074        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4075      HadError = true;
4076    }
4077
4078    // A defaulted special member cannot have cv-qualifiers.
4079    if (Type->getTypeQuals()) {
4080      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4081        << (CSM == CXXMoveAssignment);
4082      HadError = true;
4083    }
4084  }
4085
4086  // Check for parameter type matching.
4087  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4088  bool HasConstParam = false;
4089  if (ExpectedParams && ArgType->isReferenceType()) {
4090    // Argument must be reference to possibly-const T.
4091    QualType ReferentType = ArgType->getPointeeType();
4092    HasConstParam = ReferentType.isConstQualified();
4093
4094    if (ReferentType.isVolatileQualified()) {
4095      Diag(MD->getLocation(),
4096           diag::err_defaulted_special_member_volatile_param) << CSM;
4097      HadError = true;
4098    }
4099
4100    if (HasConstParam && !CanHaveConstParam) {
4101      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4102        Diag(MD->getLocation(),
4103             diag::err_defaulted_special_member_copy_const_param)
4104          << (CSM == CXXCopyAssignment);
4105        // FIXME: Explain why this special member can't be const.
4106      } else {
4107        Diag(MD->getLocation(),
4108             diag::err_defaulted_special_member_move_const_param)
4109          << (CSM == CXXMoveAssignment);
4110      }
4111      HadError = true;
4112    }
4113
4114    // If a function is explicitly defaulted on its first declaration, it shall
4115    // have the same parameter type as if it had been implicitly declared.
4116    // (Presumably this is to prevent it from being trivial?)
4117    if (!HasConstParam && CanHaveConstParam && First)
4118      Diag(MD->getLocation(),
4119           diag::err_defaulted_special_member_copy_non_const_param)
4120        << (CSM == CXXCopyAssignment);
4121  } else if (ExpectedParams) {
4122    // A copy assignment operator can take its argument by value, but a
4123    // defaulted one cannot.
4124    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4125    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4126    HadError = true;
4127  }
4128
4129  // Rebuild the type with the implicit exception specification added.
4130  FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4131  Spec.getEPI(EPI);
4132  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4133    Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4134
4135  // C++11 [dcl.fct.def.default]p2:
4136  //   An explicitly-defaulted function may be declared constexpr only if it
4137  //   would have been implicitly declared as constexpr,
4138  // Do not apply this rule to members of class templates, since core issue 1358
4139  // makes such functions always instantiate to constexpr functions. For
4140  // non-constructors, this is checked elsewhere.
4141  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4142                                                     HasConstParam);
4143  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4144      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4145    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4146    // FIXME: Explain why the constructor can't be constexpr.
4147    HadError = true;
4148  }
4149  //   and may have an explicit exception-specification only if it is compatible
4150  //   with the exception-specification on the implicit declaration.
4151  if (Type->hasExceptionSpec() &&
4152      CheckEquivalentExceptionSpec(
4153        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4154        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4155    HadError = true;
4156
4157  //   If a function is explicitly defaulted on its first declaration,
4158  if (First) {
4159    //  -- it is implicitly considered to be constexpr if the implicit
4160    //     definition would be,
4161    MD->setConstexpr(Constexpr);
4162
4163    //  -- it is implicitly considered to have the same exception-specification
4164    //     as if it had been implicitly declared,
4165    MD->setType(QualType(ImplicitType, 0));
4166
4167    // Such a function is also trivial if the implicitly-declared function
4168    // would have been.
4169    MD->setTrivial(Trivial);
4170  }
4171
4172  if (ShouldDeleteSpecialMember(MD, CSM)) {
4173    if (First) {
4174      MD->setDeletedAsWritten();
4175    } else {
4176      // C++11 [dcl.fct.def.default]p4:
4177      //   [For a] user-provided explicitly-defaulted function [...] if such a
4178      //   function is implicitly defined as deleted, the program is ill-formed.
4179      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4180      HadError = true;
4181    }
4182  }
4183
4184  if (HadError)
4185    MD->setInvalidDecl();
4186}
4187
4188namespace {
4189struct SpecialMemberDeletionInfo {
4190  Sema &S;
4191  CXXMethodDecl *MD;
4192  Sema::CXXSpecialMember CSM;
4193  bool Diagnose;
4194
4195  // Properties of the special member, computed for convenience.
4196  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4197  SourceLocation Loc;
4198
4199  bool AllFieldsAreConst;
4200
4201  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4202                            Sema::CXXSpecialMember CSM, bool Diagnose)
4203    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4204      IsConstructor(false), IsAssignment(false), IsMove(false),
4205      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4206      AllFieldsAreConst(true) {
4207    switch (CSM) {
4208      case Sema::CXXDefaultConstructor:
4209      case Sema::CXXCopyConstructor:
4210        IsConstructor = true;
4211        break;
4212      case Sema::CXXMoveConstructor:
4213        IsConstructor = true;
4214        IsMove = true;
4215        break;
4216      case Sema::CXXCopyAssignment:
4217        IsAssignment = true;
4218        break;
4219      case Sema::CXXMoveAssignment:
4220        IsAssignment = true;
4221        IsMove = true;
4222        break;
4223      case Sema::CXXDestructor:
4224        break;
4225      case Sema::CXXInvalid:
4226        llvm_unreachable("invalid special member kind");
4227    }
4228
4229    if (MD->getNumParams()) {
4230      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4231      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4232    }
4233  }
4234
4235  bool inUnion() const { return MD->getParent()->isUnion(); }
4236
4237  /// Look up the corresponding special member in the given class.
4238  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4239    unsigned TQ = MD->getTypeQualifiers();
4240    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4241                                 MD->getRefQualifier() == RQ_RValue,
4242                                 TQ & Qualifiers::Const,
4243                                 TQ & Qualifiers::Volatile);
4244  }
4245
4246  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4247
4248  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4249  bool shouldDeleteForField(FieldDecl *FD);
4250  bool shouldDeleteForAllConstMembers();
4251
4252  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4253  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4254                                    Sema::SpecialMemberOverloadResult *SMOR,
4255                                    bool IsDtorCallInCtor);
4256
4257  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4258};
4259}
4260
4261/// Is the given special member inaccessible when used on the given
4262/// sub-object.
4263bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4264                                             CXXMethodDecl *target) {
4265  /// If we're operating on a base class, the object type is the
4266  /// type of this special member.
4267  QualType objectTy;
4268  AccessSpecifier access = target->getAccess();;
4269  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4270    objectTy = S.Context.getTypeDeclType(MD->getParent());
4271    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4272
4273  // If we're operating on a field, the object type is the type of the field.
4274  } else {
4275    objectTy = S.Context.getTypeDeclType(target->getParent());
4276  }
4277
4278  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4279}
4280
4281/// Check whether we should delete a special member due to the implicit
4282/// definition containing a call to a special member of a subobject.
4283bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4284    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4285    bool IsDtorCallInCtor) {
4286  CXXMethodDecl *Decl = SMOR->getMethod();
4287  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4288
4289  int DiagKind = -1;
4290
4291  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4292    DiagKind = !Decl ? 0 : 1;
4293  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4294    DiagKind = 2;
4295  else if (!isAccessible(Subobj, Decl))
4296    DiagKind = 3;
4297  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4298           !Decl->isTrivial()) {
4299    // A member of a union must have a trivial corresponding special member.
4300    // As a weird special case, a destructor call from a union's constructor
4301    // must be accessible and non-deleted, but need not be trivial. Such a
4302    // destructor is never actually called, but is semantically checked as
4303    // if it were.
4304    DiagKind = 4;
4305  }
4306
4307  if (DiagKind == -1)
4308    return false;
4309
4310  if (Diagnose) {
4311    if (Field) {
4312      S.Diag(Field->getLocation(),
4313             diag::note_deleted_special_member_class_subobject)
4314        << CSM << MD->getParent() << /*IsField*/true
4315        << Field << DiagKind << IsDtorCallInCtor;
4316    } else {
4317      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4318      S.Diag(Base->getLocStart(),
4319             diag::note_deleted_special_member_class_subobject)
4320        << CSM << MD->getParent() << /*IsField*/false
4321        << Base->getType() << DiagKind << IsDtorCallInCtor;
4322    }
4323
4324    if (DiagKind == 1)
4325      S.NoteDeletedFunction(Decl);
4326    // FIXME: Explain inaccessibility if DiagKind == 3.
4327  }
4328
4329  return true;
4330}
4331
4332/// Check whether we should delete a special member function due to having a
4333/// direct or virtual base class or static data member of class type M.
4334bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4335    CXXRecordDecl *Class, Subobject Subobj) {
4336  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4337
4338  // C++11 [class.ctor]p5:
4339  // -- any direct or virtual base class, or non-static data member with no
4340  //    brace-or-equal-initializer, has class type M (or array thereof) and
4341  //    either M has no default constructor or overload resolution as applied
4342  //    to M's default constructor results in an ambiguity or in a function
4343  //    that is deleted or inaccessible
4344  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4345  // -- a direct or virtual base class B that cannot be copied/moved because
4346  //    overload resolution, as applied to B's corresponding special member,
4347  //    results in an ambiguity or a function that is deleted or inaccessible
4348  //    from the defaulted special member
4349  // C++11 [class.dtor]p5:
4350  // -- any direct or virtual base class [...] has a type with a destructor
4351  //    that is deleted or inaccessible
4352  if (!(CSM == Sema::CXXDefaultConstructor &&
4353        Field && Field->hasInClassInitializer()) &&
4354      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4355    return true;
4356
4357  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4358  // -- any direct or virtual base class or non-static data member has a
4359  //    type with a destructor that is deleted or inaccessible
4360  if (IsConstructor) {
4361    Sema::SpecialMemberOverloadResult *SMOR =
4362        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4363                              false, false, false, false, false);
4364    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4365      return true;
4366  }
4367
4368  return false;
4369}
4370
4371/// Check whether we should delete a special member function due to the class
4372/// having a particular direct or virtual base class.
4373bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4374  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4375  return shouldDeleteForClassSubobject(BaseClass, Base);
4376}
4377
4378/// Check whether we should delete a special member function due to the class
4379/// having a particular non-static data member.
4380bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4381  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4382  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4383
4384  if (CSM == Sema::CXXDefaultConstructor) {
4385    // For a default constructor, all references must be initialized in-class
4386    // and, if a union, it must have a non-const member.
4387    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4388      if (Diagnose)
4389        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4390          << MD->getParent() << FD << FieldType << /*Reference*/0;
4391      return true;
4392    }
4393    // C++11 [class.ctor]p5: any non-variant non-static data member of
4394    // const-qualified type (or array thereof) with no
4395    // brace-or-equal-initializer does not have a user-provided default
4396    // constructor.
4397    if (!inUnion() && FieldType.isConstQualified() &&
4398        !FD->hasInClassInitializer() &&
4399        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4400      if (Diagnose)
4401        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4402          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4403      return true;
4404    }
4405
4406    if (inUnion() && !FieldType.isConstQualified())
4407      AllFieldsAreConst = false;
4408  } else if (CSM == Sema::CXXCopyConstructor) {
4409    // For a copy constructor, data members must not be of rvalue reference
4410    // type.
4411    if (FieldType->isRValueReferenceType()) {
4412      if (Diagnose)
4413        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4414          << MD->getParent() << FD << FieldType;
4415      return true;
4416    }
4417  } else if (IsAssignment) {
4418    // For an assignment operator, data members must not be of reference type.
4419    if (FieldType->isReferenceType()) {
4420      if (Diagnose)
4421        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4422          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4423      return true;
4424    }
4425    if (!FieldRecord && FieldType.isConstQualified()) {
4426      // C++11 [class.copy]p23:
4427      // -- a non-static data member of const non-class type (or array thereof)
4428      if (Diagnose)
4429        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4430          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4431      return true;
4432    }
4433  }
4434
4435  if (FieldRecord) {
4436    // Some additional restrictions exist on the variant members.
4437    if (!inUnion() && FieldRecord->isUnion() &&
4438        FieldRecord->isAnonymousStructOrUnion()) {
4439      bool AllVariantFieldsAreConst = true;
4440
4441      // FIXME: Handle anonymous unions declared within anonymous unions.
4442      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4443                                         UE = FieldRecord->field_end();
4444           UI != UE; ++UI) {
4445        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4446
4447        if (!UnionFieldType.isConstQualified())
4448          AllVariantFieldsAreConst = false;
4449
4450        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4451        if (UnionFieldRecord &&
4452            shouldDeleteForClassSubobject(UnionFieldRecord, *UI))
4453          return true;
4454      }
4455
4456      // At least one member in each anonymous union must be non-const
4457      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4458          FieldRecord->field_begin() != FieldRecord->field_end()) {
4459        if (Diagnose)
4460          S.Diag(FieldRecord->getLocation(),
4461                 diag::note_deleted_default_ctor_all_const)
4462            << MD->getParent() << /*anonymous union*/1;
4463        return true;
4464      }
4465
4466      // Don't check the implicit member of the anonymous union type.
4467      // This is technically non-conformant, but sanity demands it.
4468      return false;
4469    }
4470
4471    if (shouldDeleteForClassSubobject(FieldRecord, FD))
4472      return true;
4473  }
4474
4475  return false;
4476}
4477
4478/// C++11 [class.ctor] p5:
4479///   A defaulted default constructor for a class X is defined as deleted if
4480/// X is a union and all of its variant members are of const-qualified type.
4481bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4482  // This is a silly definition, because it gives an empty union a deleted
4483  // default constructor. Don't do that.
4484  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4485      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4486    if (Diagnose)
4487      S.Diag(MD->getParent()->getLocation(),
4488             diag::note_deleted_default_ctor_all_const)
4489        << MD->getParent() << /*not anonymous union*/0;
4490    return true;
4491  }
4492  return false;
4493}
4494
4495/// Determine whether a defaulted special member function should be defined as
4496/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4497/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4498bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4499                                     bool Diagnose) {
4500  assert(!MD->isInvalidDecl());
4501  CXXRecordDecl *RD = MD->getParent();
4502  assert(!RD->isDependentType() && "do deletion after instantiation");
4503  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4504    return false;
4505
4506  // C++11 [expr.lambda.prim]p19:
4507  //   The closure type associated with a lambda-expression has a
4508  //   deleted (8.4.3) default constructor and a deleted copy
4509  //   assignment operator.
4510  if (RD->isLambda() &&
4511      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4512    if (Diagnose)
4513      Diag(RD->getLocation(), diag::note_lambda_decl);
4514    return true;
4515  }
4516
4517  // For an anonymous struct or union, the copy and assignment special members
4518  // will never be used, so skip the check. For an anonymous union declared at
4519  // namespace scope, the constructor and destructor are used.
4520  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4521      RD->isAnonymousStructOrUnion())
4522    return false;
4523
4524  // C++11 [class.copy]p7, p18:
4525  //   If the class definition declares a move constructor or move assignment
4526  //   operator, an implicitly declared copy constructor or copy assignment
4527  //   operator is defined as deleted.
4528  if (MD->isImplicit() &&
4529      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4530    CXXMethodDecl *UserDeclaredMove = 0;
4531
4532    // In Microsoft mode, a user-declared move only causes the deletion of the
4533    // corresponding copy operation, not both copy operations.
4534    if (RD->hasUserDeclaredMoveConstructor() &&
4535        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4536      if (!Diagnose) return true;
4537      UserDeclaredMove = RD->getMoveConstructor();
4538      assert(UserDeclaredMove);
4539    } else if (RD->hasUserDeclaredMoveAssignment() &&
4540               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4541      if (!Diagnose) return true;
4542      UserDeclaredMove = RD->getMoveAssignmentOperator();
4543      assert(UserDeclaredMove);
4544    }
4545
4546    if (UserDeclaredMove) {
4547      Diag(UserDeclaredMove->getLocation(),
4548           diag::note_deleted_copy_user_declared_move)
4549        << (CSM == CXXCopyAssignment) << RD
4550        << UserDeclaredMove->isMoveAssignmentOperator();
4551      return true;
4552    }
4553  }
4554
4555  // Do access control from the special member function
4556  ContextRAII MethodContext(*this, MD);
4557
4558  // C++11 [class.dtor]p5:
4559  // -- for a virtual destructor, lookup of the non-array deallocation function
4560  //    results in an ambiguity or in a function that is deleted or inaccessible
4561  if (CSM == CXXDestructor && MD->isVirtual()) {
4562    FunctionDecl *OperatorDelete = 0;
4563    DeclarationName Name =
4564      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4565    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4566                                 OperatorDelete, false)) {
4567      if (Diagnose)
4568        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4569      return true;
4570    }
4571  }
4572
4573  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4574
4575  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4576                                          BE = RD->bases_end(); BI != BE; ++BI)
4577    if (!BI->isVirtual() &&
4578        SMI.shouldDeleteForBase(BI))
4579      return true;
4580
4581  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4582                                          BE = RD->vbases_end(); BI != BE; ++BI)
4583    if (SMI.shouldDeleteForBase(BI))
4584      return true;
4585
4586  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4587                                     FE = RD->field_end(); FI != FE; ++FI)
4588    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4589        SMI.shouldDeleteForField(*FI))
4590      return true;
4591
4592  if (SMI.shouldDeleteForAllConstMembers())
4593    return true;
4594
4595  return false;
4596}
4597
4598/// \brief Data used with FindHiddenVirtualMethod
4599namespace {
4600  struct FindHiddenVirtualMethodData {
4601    Sema *S;
4602    CXXMethodDecl *Method;
4603    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4604    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4605  };
4606}
4607
4608/// \brief Member lookup function that determines whether a given C++
4609/// method overloads virtual methods in a base class without overriding any,
4610/// to be used with CXXRecordDecl::lookupInBases().
4611static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4612                                    CXXBasePath &Path,
4613                                    void *UserData) {
4614  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4615
4616  FindHiddenVirtualMethodData &Data
4617    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4618
4619  DeclarationName Name = Data.Method->getDeclName();
4620  assert(Name.getNameKind() == DeclarationName::Identifier);
4621
4622  bool foundSameNameMethod = false;
4623  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4624  for (Path.Decls = BaseRecord->lookup(Name);
4625       Path.Decls.first != Path.Decls.second;
4626       ++Path.Decls.first) {
4627    NamedDecl *D = *Path.Decls.first;
4628    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4629      MD = MD->getCanonicalDecl();
4630      foundSameNameMethod = true;
4631      // Interested only in hidden virtual methods.
4632      if (!MD->isVirtual())
4633        continue;
4634      // If the method we are checking overrides a method from its base
4635      // don't warn about the other overloaded methods.
4636      if (!Data.S->IsOverload(Data.Method, MD, false))
4637        return true;
4638      // Collect the overload only if its hidden.
4639      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4640        overloadedMethods.push_back(MD);
4641    }
4642  }
4643
4644  if (foundSameNameMethod)
4645    Data.OverloadedMethods.append(overloadedMethods.begin(),
4646                                   overloadedMethods.end());
4647  return foundSameNameMethod;
4648}
4649
4650/// \brief See if a method overloads virtual methods in a base class without
4651/// overriding any.
4652void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4653  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4654                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4655    return;
4656  if (!MD->getDeclName().isIdentifier())
4657    return;
4658
4659  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4660                     /*bool RecordPaths=*/false,
4661                     /*bool DetectVirtual=*/false);
4662  FindHiddenVirtualMethodData Data;
4663  Data.Method = MD;
4664  Data.S = this;
4665
4666  // Keep the base methods that were overriden or introduced in the subclass
4667  // by 'using' in a set. A base method not in this set is hidden.
4668  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4669       res.first != res.second; ++res.first) {
4670    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4671      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4672                                          E = MD->end_overridden_methods();
4673           I != E; ++I)
4674        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4675    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4676      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4677        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4678  }
4679
4680  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4681      !Data.OverloadedMethods.empty()) {
4682    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4683      << MD << (Data.OverloadedMethods.size() > 1);
4684
4685    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4686      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4687      Diag(overloadedMD->getLocation(),
4688           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4689    }
4690  }
4691}
4692
4693void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4694                                             Decl *TagDecl,
4695                                             SourceLocation LBrac,
4696                                             SourceLocation RBrac,
4697                                             AttributeList *AttrList) {
4698  if (!TagDecl)
4699    return;
4700
4701  AdjustDeclIfTemplate(TagDecl);
4702
4703  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4704              // strict aliasing violation!
4705              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4706              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4707
4708  CheckCompletedCXXClass(
4709                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4710}
4711
4712/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4713/// special functions, such as the default constructor, copy
4714/// constructor, or destructor, to the given C++ class (C++
4715/// [special]p1).  This routine can only be executed just before the
4716/// definition of the class is complete.
4717void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4718  if (!ClassDecl->hasUserDeclaredConstructor())
4719    ++ASTContext::NumImplicitDefaultConstructors;
4720
4721  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4722    ++ASTContext::NumImplicitCopyConstructors;
4723
4724  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4725    ++ASTContext::NumImplicitMoveConstructors;
4726
4727  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4728    ++ASTContext::NumImplicitCopyAssignmentOperators;
4729
4730    // If we have a dynamic class, then the copy assignment operator may be
4731    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4732    // it shows up in the right place in the vtable and that we diagnose
4733    // problems with the implicit exception specification.
4734    if (ClassDecl->isDynamicClass())
4735      DeclareImplicitCopyAssignment(ClassDecl);
4736  }
4737
4738  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4739    ++ASTContext::NumImplicitMoveAssignmentOperators;
4740
4741    // Likewise for the move assignment operator.
4742    if (ClassDecl->isDynamicClass())
4743      DeclareImplicitMoveAssignment(ClassDecl);
4744  }
4745
4746  if (!ClassDecl->hasUserDeclaredDestructor()) {
4747    ++ASTContext::NumImplicitDestructors;
4748
4749    // If we have a dynamic class, then the destructor may be virtual, so we
4750    // have to declare the destructor immediately. This ensures that, e.g., it
4751    // shows up in the right place in the vtable and that we diagnose problems
4752    // with the implicit exception specification.
4753    if (ClassDecl->isDynamicClass())
4754      DeclareImplicitDestructor(ClassDecl);
4755  }
4756}
4757
4758void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4759  if (!D)
4760    return;
4761
4762  int NumParamList = D->getNumTemplateParameterLists();
4763  for (int i = 0; i < NumParamList; i++) {
4764    TemplateParameterList* Params = D->getTemplateParameterList(i);
4765    for (TemplateParameterList::iterator Param = Params->begin(),
4766                                      ParamEnd = Params->end();
4767          Param != ParamEnd; ++Param) {
4768      NamedDecl *Named = cast<NamedDecl>(*Param);
4769      if (Named->getDeclName()) {
4770        S->AddDecl(Named);
4771        IdResolver.AddDecl(Named);
4772      }
4773    }
4774  }
4775}
4776
4777void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4778  if (!D)
4779    return;
4780
4781  TemplateParameterList *Params = 0;
4782  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4783    Params = Template->getTemplateParameters();
4784  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4785           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4786    Params = PartialSpec->getTemplateParameters();
4787  else
4788    return;
4789
4790  for (TemplateParameterList::iterator Param = Params->begin(),
4791                                    ParamEnd = Params->end();
4792       Param != ParamEnd; ++Param) {
4793    NamedDecl *Named = cast<NamedDecl>(*Param);
4794    if (Named->getDeclName()) {
4795      S->AddDecl(Named);
4796      IdResolver.AddDecl(Named);
4797    }
4798  }
4799}
4800
4801void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4802  if (!RecordD) return;
4803  AdjustDeclIfTemplate(RecordD);
4804  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4805  PushDeclContext(S, Record);
4806}
4807
4808void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4809  if (!RecordD) return;
4810  PopDeclContext();
4811}
4812
4813/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4814/// parsing a top-level (non-nested) C++ class, and we are now
4815/// parsing those parts of the given Method declaration that could
4816/// not be parsed earlier (C++ [class.mem]p2), such as default
4817/// arguments. This action should enter the scope of the given
4818/// Method declaration as if we had just parsed the qualified method
4819/// name. However, it should not bring the parameters into scope;
4820/// that will be performed by ActOnDelayedCXXMethodParameter.
4821void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4822}
4823
4824/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4825/// C++ method declaration. We're (re-)introducing the given
4826/// function parameter into scope for use in parsing later parts of
4827/// the method declaration. For example, we could see an
4828/// ActOnParamDefaultArgument event for this parameter.
4829void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4830  if (!ParamD)
4831    return;
4832
4833  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4834
4835  // If this parameter has an unparsed default argument, clear it out
4836  // to make way for the parsed default argument.
4837  if (Param->hasUnparsedDefaultArg())
4838    Param->setDefaultArg(0);
4839
4840  S->AddDecl(Param);
4841  if (Param->getDeclName())
4842    IdResolver.AddDecl(Param);
4843}
4844
4845/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4846/// processing the delayed method declaration for Method. The method
4847/// declaration is now considered finished. There may be a separate
4848/// ActOnStartOfFunctionDef action later (not necessarily
4849/// immediately!) for this method, if it was also defined inside the
4850/// class body.
4851void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4852  if (!MethodD)
4853    return;
4854
4855  AdjustDeclIfTemplate(MethodD);
4856
4857  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4858
4859  // Now that we have our default arguments, check the constructor
4860  // again. It could produce additional diagnostics or affect whether
4861  // the class has implicitly-declared destructors, among other
4862  // things.
4863  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4864    CheckConstructor(Constructor);
4865
4866  // Check the default arguments, which we may have added.
4867  if (!Method->isInvalidDecl())
4868    CheckCXXDefaultArguments(Method);
4869}
4870
4871/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4872/// the well-formedness of the constructor declarator @p D with type @p
4873/// R. If there are any errors in the declarator, this routine will
4874/// emit diagnostics and set the invalid bit to true.  In any case, the type
4875/// will be updated to reflect a well-formed type for the constructor and
4876/// returned.
4877QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4878                                          StorageClass &SC) {
4879  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4880
4881  // C++ [class.ctor]p3:
4882  //   A constructor shall not be virtual (10.3) or static (9.4). A
4883  //   constructor can be invoked for a const, volatile or const
4884  //   volatile object. A constructor shall not be declared const,
4885  //   volatile, or const volatile (9.3.2).
4886  if (isVirtual) {
4887    if (!D.isInvalidType())
4888      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4889        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4890        << SourceRange(D.getIdentifierLoc());
4891    D.setInvalidType();
4892  }
4893  if (SC == SC_Static) {
4894    if (!D.isInvalidType())
4895      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4896        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4897        << SourceRange(D.getIdentifierLoc());
4898    D.setInvalidType();
4899    SC = SC_None;
4900  }
4901
4902  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4903  if (FTI.TypeQuals != 0) {
4904    if (FTI.TypeQuals & Qualifiers::Const)
4905      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4906        << "const" << SourceRange(D.getIdentifierLoc());
4907    if (FTI.TypeQuals & Qualifiers::Volatile)
4908      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4909        << "volatile" << SourceRange(D.getIdentifierLoc());
4910    if (FTI.TypeQuals & Qualifiers::Restrict)
4911      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4912        << "restrict" << SourceRange(D.getIdentifierLoc());
4913    D.setInvalidType();
4914  }
4915
4916  // C++0x [class.ctor]p4:
4917  //   A constructor shall not be declared with a ref-qualifier.
4918  if (FTI.hasRefQualifier()) {
4919    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4920      << FTI.RefQualifierIsLValueRef
4921      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4922    D.setInvalidType();
4923  }
4924
4925  // Rebuild the function type "R" without any type qualifiers (in
4926  // case any of the errors above fired) and with "void" as the
4927  // return type, since constructors don't have return types.
4928  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4929  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4930    return R;
4931
4932  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4933  EPI.TypeQuals = 0;
4934  EPI.RefQualifier = RQ_None;
4935
4936  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4937                                 Proto->getNumArgs(), EPI);
4938}
4939
4940/// CheckConstructor - Checks a fully-formed constructor for
4941/// well-formedness, issuing any diagnostics required. Returns true if
4942/// the constructor declarator is invalid.
4943void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4944  CXXRecordDecl *ClassDecl
4945    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4946  if (!ClassDecl)
4947    return Constructor->setInvalidDecl();
4948
4949  // C++ [class.copy]p3:
4950  //   A declaration of a constructor for a class X is ill-formed if
4951  //   its first parameter is of type (optionally cv-qualified) X and
4952  //   either there are no other parameters or else all other
4953  //   parameters have default arguments.
4954  if (!Constructor->isInvalidDecl() &&
4955      ((Constructor->getNumParams() == 1) ||
4956       (Constructor->getNumParams() > 1 &&
4957        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4958      Constructor->getTemplateSpecializationKind()
4959                                              != TSK_ImplicitInstantiation) {
4960    QualType ParamType = Constructor->getParamDecl(0)->getType();
4961    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4962    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4963      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4964      const char *ConstRef
4965        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4966                                                        : " const &";
4967      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4968        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4969
4970      // FIXME: Rather that making the constructor invalid, we should endeavor
4971      // to fix the type.
4972      Constructor->setInvalidDecl();
4973    }
4974  }
4975}
4976
4977/// CheckDestructor - Checks a fully-formed destructor definition for
4978/// well-formedness, issuing any diagnostics required.  Returns true
4979/// on error.
4980bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4981  CXXRecordDecl *RD = Destructor->getParent();
4982
4983  if (Destructor->isVirtual()) {
4984    SourceLocation Loc;
4985
4986    if (!Destructor->isImplicit())
4987      Loc = Destructor->getLocation();
4988    else
4989      Loc = RD->getLocation();
4990
4991    // If we have a virtual destructor, look up the deallocation function
4992    FunctionDecl *OperatorDelete = 0;
4993    DeclarationName Name =
4994    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4995    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4996      return true;
4997
4998    MarkFunctionReferenced(Loc, OperatorDelete);
4999
5000    Destructor->setOperatorDelete(OperatorDelete);
5001  }
5002
5003  return false;
5004}
5005
5006static inline bool
5007FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5008  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5009          FTI.ArgInfo[0].Param &&
5010          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5011}
5012
5013/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5014/// the well-formednes of the destructor declarator @p D with type @p
5015/// R. If there are any errors in the declarator, this routine will
5016/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5017/// will be updated to reflect a well-formed type for the destructor and
5018/// returned.
5019QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5020                                         StorageClass& SC) {
5021  // C++ [class.dtor]p1:
5022  //   [...] A typedef-name that names a class is a class-name
5023  //   (7.1.3); however, a typedef-name that names a class shall not
5024  //   be used as the identifier in the declarator for a destructor
5025  //   declaration.
5026  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5027  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5028    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5029      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5030  else if (const TemplateSpecializationType *TST =
5031             DeclaratorType->getAs<TemplateSpecializationType>())
5032    if (TST->isTypeAlias())
5033      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5034        << DeclaratorType << 1;
5035
5036  // C++ [class.dtor]p2:
5037  //   A destructor is used to destroy objects of its class type. A
5038  //   destructor takes no parameters, and no return type can be
5039  //   specified for it (not even void). The address of a destructor
5040  //   shall not be taken. A destructor shall not be static. A
5041  //   destructor can be invoked for a const, volatile or const
5042  //   volatile object. A destructor shall not be declared const,
5043  //   volatile or const volatile (9.3.2).
5044  if (SC == SC_Static) {
5045    if (!D.isInvalidType())
5046      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5047        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5048        << SourceRange(D.getIdentifierLoc())
5049        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5050
5051    SC = SC_None;
5052  }
5053  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5054    // Destructors don't have return types, but the parser will
5055    // happily parse something like:
5056    //
5057    //   class X {
5058    //     float ~X();
5059    //   };
5060    //
5061    // The return type will be eliminated later.
5062    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5063      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5064      << SourceRange(D.getIdentifierLoc());
5065  }
5066
5067  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5068  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5069    if (FTI.TypeQuals & Qualifiers::Const)
5070      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5071        << "const" << SourceRange(D.getIdentifierLoc());
5072    if (FTI.TypeQuals & Qualifiers::Volatile)
5073      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5074        << "volatile" << SourceRange(D.getIdentifierLoc());
5075    if (FTI.TypeQuals & Qualifiers::Restrict)
5076      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5077        << "restrict" << SourceRange(D.getIdentifierLoc());
5078    D.setInvalidType();
5079  }
5080
5081  // C++0x [class.dtor]p2:
5082  //   A destructor shall not be declared with a ref-qualifier.
5083  if (FTI.hasRefQualifier()) {
5084    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5085      << FTI.RefQualifierIsLValueRef
5086      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5087    D.setInvalidType();
5088  }
5089
5090  // Make sure we don't have any parameters.
5091  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5092    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5093
5094    // Delete the parameters.
5095    FTI.freeArgs();
5096    D.setInvalidType();
5097  }
5098
5099  // Make sure the destructor isn't variadic.
5100  if (FTI.isVariadic) {
5101    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5102    D.setInvalidType();
5103  }
5104
5105  // Rebuild the function type "R" without any type qualifiers or
5106  // parameters (in case any of the errors above fired) and with
5107  // "void" as the return type, since destructors don't have return
5108  // types.
5109  if (!D.isInvalidType())
5110    return R;
5111
5112  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5113  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5114  EPI.Variadic = false;
5115  EPI.TypeQuals = 0;
5116  EPI.RefQualifier = RQ_None;
5117  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5118}
5119
5120/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5121/// well-formednes of the conversion function declarator @p D with
5122/// type @p R. If there are any errors in the declarator, this routine
5123/// will emit diagnostics and return true. Otherwise, it will return
5124/// false. Either way, the type @p R will be updated to reflect a
5125/// well-formed type for the conversion operator.
5126void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5127                                     StorageClass& SC) {
5128  // C++ [class.conv.fct]p1:
5129  //   Neither parameter types nor return type can be specified. The
5130  //   type of a conversion function (8.3.5) is "function taking no
5131  //   parameter returning conversion-type-id."
5132  if (SC == SC_Static) {
5133    if (!D.isInvalidType())
5134      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5135        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5136        << SourceRange(D.getIdentifierLoc());
5137    D.setInvalidType();
5138    SC = SC_None;
5139  }
5140
5141  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5142
5143  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5144    // Conversion functions don't have return types, but the parser will
5145    // happily parse something like:
5146    //
5147    //   class X {
5148    //     float operator bool();
5149    //   };
5150    //
5151    // The return type will be changed later anyway.
5152    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5153      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5154      << SourceRange(D.getIdentifierLoc());
5155    D.setInvalidType();
5156  }
5157
5158  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5159
5160  // Make sure we don't have any parameters.
5161  if (Proto->getNumArgs() > 0) {
5162    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5163
5164    // Delete the parameters.
5165    D.getFunctionTypeInfo().freeArgs();
5166    D.setInvalidType();
5167  } else if (Proto->isVariadic()) {
5168    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5169    D.setInvalidType();
5170  }
5171
5172  // Diagnose "&operator bool()" and other such nonsense.  This
5173  // is actually a gcc extension which we don't support.
5174  if (Proto->getResultType() != ConvType) {
5175    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5176      << Proto->getResultType();
5177    D.setInvalidType();
5178    ConvType = Proto->getResultType();
5179  }
5180
5181  // C++ [class.conv.fct]p4:
5182  //   The conversion-type-id shall not represent a function type nor
5183  //   an array type.
5184  if (ConvType->isArrayType()) {
5185    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5186    ConvType = Context.getPointerType(ConvType);
5187    D.setInvalidType();
5188  } else if (ConvType->isFunctionType()) {
5189    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5190    ConvType = Context.getPointerType(ConvType);
5191    D.setInvalidType();
5192  }
5193
5194  // Rebuild the function type "R" without any parameters (in case any
5195  // of the errors above fired) and with the conversion type as the
5196  // return type.
5197  if (D.isInvalidType())
5198    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5199
5200  // C++0x explicit conversion operators.
5201  if (D.getDeclSpec().isExplicitSpecified())
5202    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5203         getLangOpts().CPlusPlus0x ?
5204           diag::warn_cxx98_compat_explicit_conversion_functions :
5205           diag::ext_explicit_conversion_functions)
5206      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5207}
5208
5209/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5210/// the declaration of the given C++ conversion function. This routine
5211/// is responsible for recording the conversion function in the C++
5212/// class, if possible.
5213Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5214  assert(Conversion && "Expected to receive a conversion function declaration");
5215
5216  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5217
5218  // Make sure we aren't redeclaring the conversion function.
5219  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5220
5221  // C++ [class.conv.fct]p1:
5222  //   [...] A conversion function is never used to convert a
5223  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5224  //   same object type (or a reference to it), to a (possibly
5225  //   cv-qualified) base class of that type (or a reference to it),
5226  //   or to (possibly cv-qualified) void.
5227  // FIXME: Suppress this warning if the conversion function ends up being a
5228  // virtual function that overrides a virtual function in a base class.
5229  QualType ClassType
5230    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5231  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5232    ConvType = ConvTypeRef->getPointeeType();
5233  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5234      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5235    /* Suppress diagnostics for instantiations. */;
5236  else if (ConvType->isRecordType()) {
5237    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5238    if (ConvType == ClassType)
5239      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5240        << ClassType;
5241    else if (IsDerivedFrom(ClassType, ConvType))
5242      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5243        <<  ClassType << ConvType;
5244  } else if (ConvType->isVoidType()) {
5245    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5246      << ClassType << ConvType;
5247  }
5248
5249  if (FunctionTemplateDecl *ConversionTemplate
5250                                = Conversion->getDescribedFunctionTemplate())
5251    return ConversionTemplate;
5252
5253  return Conversion;
5254}
5255
5256//===----------------------------------------------------------------------===//
5257// Namespace Handling
5258//===----------------------------------------------------------------------===//
5259
5260
5261
5262/// ActOnStartNamespaceDef - This is called at the start of a namespace
5263/// definition.
5264Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5265                                   SourceLocation InlineLoc,
5266                                   SourceLocation NamespaceLoc,
5267                                   SourceLocation IdentLoc,
5268                                   IdentifierInfo *II,
5269                                   SourceLocation LBrace,
5270                                   AttributeList *AttrList) {
5271  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5272  // For anonymous namespace, take the location of the left brace.
5273  SourceLocation Loc = II ? IdentLoc : LBrace;
5274  bool IsInline = InlineLoc.isValid();
5275  bool IsInvalid = false;
5276  bool IsStd = false;
5277  bool AddToKnown = false;
5278  Scope *DeclRegionScope = NamespcScope->getParent();
5279
5280  NamespaceDecl *PrevNS = 0;
5281  if (II) {
5282    // C++ [namespace.def]p2:
5283    //   The identifier in an original-namespace-definition shall not
5284    //   have been previously defined in the declarative region in
5285    //   which the original-namespace-definition appears. The
5286    //   identifier in an original-namespace-definition is the name of
5287    //   the namespace. Subsequently in that declarative region, it is
5288    //   treated as an original-namespace-name.
5289    //
5290    // Since namespace names are unique in their scope, and we don't
5291    // look through using directives, just look for any ordinary names.
5292
5293    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5294    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5295    Decl::IDNS_Namespace;
5296    NamedDecl *PrevDecl = 0;
5297    for (DeclContext::lookup_result R
5298         = CurContext->getRedeclContext()->lookup(II);
5299         R.first != R.second; ++R.first) {
5300      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5301        PrevDecl = *R.first;
5302        break;
5303      }
5304    }
5305
5306    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5307
5308    if (PrevNS) {
5309      // This is an extended namespace definition.
5310      if (IsInline != PrevNS->isInline()) {
5311        // inline-ness must match
5312        if (PrevNS->isInline()) {
5313          // The user probably just forgot the 'inline', so suggest that it
5314          // be added back.
5315          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5316            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5317        } else {
5318          Diag(Loc, diag::err_inline_namespace_mismatch)
5319            << IsInline;
5320        }
5321        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5322
5323        IsInline = PrevNS->isInline();
5324      }
5325    } else if (PrevDecl) {
5326      // This is an invalid name redefinition.
5327      Diag(Loc, diag::err_redefinition_different_kind)
5328        << II;
5329      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5330      IsInvalid = true;
5331      // Continue on to push Namespc as current DeclContext and return it.
5332    } else if (II->isStr("std") &&
5333               CurContext->getRedeclContext()->isTranslationUnit()) {
5334      // This is the first "real" definition of the namespace "std", so update
5335      // our cache of the "std" namespace to point at this definition.
5336      PrevNS = getStdNamespace();
5337      IsStd = true;
5338      AddToKnown = !IsInline;
5339    } else {
5340      // We've seen this namespace for the first time.
5341      AddToKnown = !IsInline;
5342    }
5343  } else {
5344    // Anonymous namespaces.
5345
5346    // Determine whether the parent already has an anonymous namespace.
5347    DeclContext *Parent = CurContext->getRedeclContext();
5348    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5349      PrevNS = TU->getAnonymousNamespace();
5350    } else {
5351      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5352      PrevNS = ND->getAnonymousNamespace();
5353    }
5354
5355    if (PrevNS && IsInline != PrevNS->isInline()) {
5356      // inline-ness must match
5357      Diag(Loc, diag::err_inline_namespace_mismatch)
5358        << IsInline;
5359      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5360
5361      // Recover by ignoring the new namespace's inline status.
5362      IsInline = PrevNS->isInline();
5363    }
5364  }
5365
5366  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5367                                                 StartLoc, Loc, II, PrevNS);
5368  if (IsInvalid)
5369    Namespc->setInvalidDecl();
5370
5371  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5372
5373  // FIXME: Should we be merging attributes?
5374  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5375    PushNamespaceVisibilityAttr(Attr, Loc);
5376
5377  if (IsStd)
5378    StdNamespace = Namespc;
5379  if (AddToKnown)
5380    KnownNamespaces[Namespc] = false;
5381
5382  if (II) {
5383    PushOnScopeChains(Namespc, DeclRegionScope);
5384  } else {
5385    // Link the anonymous namespace into its parent.
5386    DeclContext *Parent = CurContext->getRedeclContext();
5387    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5388      TU->setAnonymousNamespace(Namespc);
5389    } else {
5390      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5391    }
5392
5393    CurContext->addDecl(Namespc);
5394
5395    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5396    //   behaves as if it were replaced by
5397    //     namespace unique { /* empty body */ }
5398    //     using namespace unique;
5399    //     namespace unique { namespace-body }
5400    //   where all occurrences of 'unique' in a translation unit are
5401    //   replaced by the same identifier and this identifier differs
5402    //   from all other identifiers in the entire program.
5403
5404    // We just create the namespace with an empty name and then add an
5405    // implicit using declaration, just like the standard suggests.
5406    //
5407    // CodeGen enforces the "universally unique" aspect by giving all
5408    // declarations semantically contained within an anonymous
5409    // namespace internal linkage.
5410
5411    if (!PrevNS) {
5412      UsingDirectiveDecl* UD
5413        = UsingDirectiveDecl::Create(Context, CurContext,
5414                                     /* 'using' */ LBrace,
5415                                     /* 'namespace' */ SourceLocation(),
5416                                     /* qualifier */ NestedNameSpecifierLoc(),
5417                                     /* identifier */ SourceLocation(),
5418                                     Namespc,
5419                                     /* Ancestor */ CurContext);
5420      UD->setImplicit();
5421      CurContext->addDecl(UD);
5422    }
5423  }
5424
5425  // Although we could have an invalid decl (i.e. the namespace name is a
5426  // redefinition), push it as current DeclContext and try to continue parsing.
5427  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5428  // for the namespace has the declarations that showed up in that particular
5429  // namespace definition.
5430  PushDeclContext(NamespcScope, Namespc);
5431  return Namespc;
5432}
5433
5434/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5435/// is a namespace alias, returns the namespace it points to.
5436static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5437  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5438    return AD->getNamespace();
5439  return dyn_cast_or_null<NamespaceDecl>(D);
5440}
5441
5442/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5443/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5444void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5445  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5446  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5447  Namespc->setRBraceLoc(RBrace);
5448  PopDeclContext();
5449  if (Namespc->hasAttr<VisibilityAttr>())
5450    PopPragmaVisibility(true, RBrace);
5451}
5452
5453CXXRecordDecl *Sema::getStdBadAlloc() const {
5454  return cast_or_null<CXXRecordDecl>(
5455                                  StdBadAlloc.get(Context.getExternalSource()));
5456}
5457
5458NamespaceDecl *Sema::getStdNamespace() const {
5459  return cast_or_null<NamespaceDecl>(
5460                                 StdNamespace.get(Context.getExternalSource()));
5461}
5462
5463/// \brief Retrieve the special "std" namespace, which may require us to
5464/// implicitly define the namespace.
5465NamespaceDecl *Sema::getOrCreateStdNamespace() {
5466  if (!StdNamespace) {
5467    // The "std" namespace has not yet been defined, so build one implicitly.
5468    StdNamespace = NamespaceDecl::Create(Context,
5469                                         Context.getTranslationUnitDecl(),
5470                                         /*Inline=*/false,
5471                                         SourceLocation(), SourceLocation(),
5472                                         &PP.getIdentifierTable().get("std"),
5473                                         /*PrevDecl=*/0);
5474    getStdNamespace()->setImplicit(true);
5475  }
5476
5477  return getStdNamespace();
5478}
5479
5480bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5481  assert(getLangOpts().CPlusPlus &&
5482         "Looking for std::initializer_list outside of C++.");
5483
5484  // We're looking for implicit instantiations of
5485  // template <typename E> class std::initializer_list.
5486
5487  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5488    return false;
5489
5490  ClassTemplateDecl *Template = 0;
5491  const TemplateArgument *Arguments = 0;
5492
5493  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5494
5495    ClassTemplateSpecializationDecl *Specialization =
5496        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5497    if (!Specialization)
5498      return false;
5499
5500    Template = Specialization->getSpecializedTemplate();
5501    Arguments = Specialization->getTemplateArgs().data();
5502  } else if (const TemplateSpecializationType *TST =
5503                 Ty->getAs<TemplateSpecializationType>()) {
5504    Template = dyn_cast_or_null<ClassTemplateDecl>(
5505        TST->getTemplateName().getAsTemplateDecl());
5506    Arguments = TST->getArgs();
5507  }
5508  if (!Template)
5509    return false;
5510
5511  if (!StdInitializerList) {
5512    // Haven't recognized std::initializer_list yet, maybe this is it.
5513    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5514    if (TemplateClass->getIdentifier() !=
5515            &PP.getIdentifierTable().get("initializer_list") ||
5516        !getStdNamespace()->InEnclosingNamespaceSetOf(
5517            TemplateClass->getDeclContext()))
5518      return false;
5519    // This is a template called std::initializer_list, but is it the right
5520    // template?
5521    TemplateParameterList *Params = Template->getTemplateParameters();
5522    if (Params->getMinRequiredArguments() != 1)
5523      return false;
5524    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5525      return false;
5526
5527    // It's the right template.
5528    StdInitializerList = Template;
5529  }
5530
5531  if (Template != StdInitializerList)
5532    return false;
5533
5534  // This is an instance of std::initializer_list. Find the argument type.
5535  if (Element)
5536    *Element = Arguments[0].getAsType();
5537  return true;
5538}
5539
5540static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5541  NamespaceDecl *Std = S.getStdNamespace();
5542  if (!Std) {
5543    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5544    return 0;
5545  }
5546
5547  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5548                      Loc, Sema::LookupOrdinaryName);
5549  if (!S.LookupQualifiedName(Result, Std)) {
5550    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5551    return 0;
5552  }
5553  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5554  if (!Template) {
5555    Result.suppressDiagnostics();
5556    // We found something weird. Complain about the first thing we found.
5557    NamedDecl *Found = *Result.begin();
5558    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5559    return 0;
5560  }
5561
5562  // We found some template called std::initializer_list. Now verify that it's
5563  // correct.
5564  TemplateParameterList *Params = Template->getTemplateParameters();
5565  if (Params->getMinRequiredArguments() != 1 ||
5566      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5567    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5568    return 0;
5569  }
5570
5571  return Template;
5572}
5573
5574QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5575  if (!StdInitializerList) {
5576    StdInitializerList = LookupStdInitializerList(*this, Loc);
5577    if (!StdInitializerList)
5578      return QualType();
5579  }
5580
5581  TemplateArgumentListInfo Args(Loc, Loc);
5582  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5583                                       Context.getTrivialTypeSourceInfo(Element,
5584                                                                        Loc)));
5585  return Context.getCanonicalType(
5586      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5587}
5588
5589bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5590  // C++ [dcl.init.list]p2:
5591  //   A constructor is an initializer-list constructor if its first parameter
5592  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5593  //   std::initializer_list<E> for some type E, and either there are no other
5594  //   parameters or else all other parameters have default arguments.
5595  if (Ctor->getNumParams() < 1 ||
5596      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5597    return false;
5598
5599  QualType ArgType = Ctor->getParamDecl(0)->getType();
5600  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5601    ArgType = RT->getPointeeType().getUnqualifiedType();
5602
5603  return isStdInitializerList(ArgType, 0);
5604}
5605
5606/// \brief Determine whether a using statement is in a context where it will be
5607/// apply in all contexts.
5608static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5609  switch (CurContext->getDeclKind()) {
5610    case Decl::TranslationUnit:
5611      return true;
5612    case Decl::LinkageSpec:
5613      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5614    default:
5615      return false;
5616  }
5617}
5618
5619namespace {
5620
5621// Callback to only accept typo corrections that are namespaces.
5622class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5623 public:
5624  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5625    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5626      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5627    }
5628    return false;
5629  }
5630};
5631
5632}
5633
5634static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5635                                       CXXScopeSpec &SS,
5636                                       SourceLocation IdentLoc,
5637                                       IdentifierInfo *Ident) {
5638  NamespaceValidatorCCC Validator;
5639  R.clear();
5640  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5641                                               R.getLookupKind(), Sc, &SS,
5642                                               Validator)) {
5643    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5644    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5645    if (DeclContext *DC = S.computeDeclContext(SS, false))
5646      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5647        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5648        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5649    else
5650      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5651        << Ident << CorrectedQuotedStr
5652        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5653
5654    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5655         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5656
5657    R.addDecl(Corrected.getCorrectionDecl());
5658    return true;
5659  }
5660  return false;
5661}
5662
5663Decl *Sema::ActOnUsingDirective(Scope *S,
5664                                          SourceLocation UsingLoc,
5665                                          SourceLocation NamespcLoc,
5666                                          CXXScopeSpec &SS,
5667                                          SourceLocation IdentLoc,
5668                                          IdentifierInfo *NamespcName,
5669                                          AttributeList *AttrList) {
5670  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5671  assert(NamespcName && "Invalid NamespcName.");
5672  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5673
5674  // This can only happen along a recovery path.
5675  while (S->getFlags() & Scope::TemplateParamScope)
5676    S = S->getParent();
5677  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5678
5679  UsingDirectiveDecl *UDir = 0;
5680  NestedNameSpecifier *Qualifier = 0;
5681  if (SS.isSet())
5682    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5683
5684  // Lookup namespace name.
5685  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5686  LookupParsedName(R, S, &SS);
5687  if (R.isAmbiguous())
5688    return 0;
5689
5690  if (R.empty()) {
5691    R.clear();
5692    // Allow "using namespace std;" or "using namespace ::std;" even if
5693    // "std" hasn't been defined yet, for GCC compatibility.
5694    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5695        NamespcName->isStr("std")) {
5696      Diag(IdentLoc, diag::ext_using_undefined_std);
5697      R.addDecl(getOrCreateStdNamespace());
5698      R.resolveKind();
5699    }
5700    // Otherwise, attempt typo correction.
5701    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5702  }
5703
5704  if (!R.empty()) {
5705    NamedDecl *Named = R.getFoundDecl();
5706    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5707        && "expected namespace decl");
5708    // C++ [namespace.udir]p1:
5709    //   A using-directive specifies that the names in the nominated
5710    //   namespace can be used in the scope in which the
5711    //   using-directive appears after the using-directive. During
5712    //   unqualified name lookup (3.4.1), the names appear as if they
5713    //   were declared in the nearest enclosing namespace which
5714    //   contains both the using-directive and the nominated
5715    //   namespace. [Note: in this context, "contains" means "contains
5716    //   directly or indirectly". ]
5717
5718    // Find enclosing context containing both using-directive and
5719    // nominated namespace.
5720    NamespaceDecl *NS = getNamespaceDecl(Named);
5721    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5722    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5723      CommonAncestor = CommonAncestor->getParent();
5724
5725    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5726                                      SS.getWithLocInContext(Context),
5727                                      IdentLoc, Named, CommonAncestor);
5728
5729    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5730        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5731      Diag(IdentLoc, diag::warn_using_directive_in_header);
5732    }
5733
5734    PushUsingDirective(S, UDir);
5735  } else {
5736    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5737  }
5738
5739  // FIXME: We ignore attributes for now.
5740  return UDir;
5741}
5742
5743void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5744  // If the scope has an associated entity and the using directive is at
5745  // namespace or translation unit scope, add the UsingDirectiveDecl into
5746  // its lookup structure so qualified name lookup can find it.
5747  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5748  if (Ctx && !Ctx->isFunctionOrMethod())
5749    Ctx->addDecl(UDir);
5750  else
5751    // Otherwise, it is at block sope. The using-directives will affect lookup
5752    // only to the end of the scope.
5753    S->PushUsingDirective(UDir);
5754}
5755
5756
5757Decl *Sema::ActOnUsingDeclaration(Scope *S,
5758                                  AccessSpecifier AS,
5759                                  bool HasUsingKeyword,
5760                                  SourceLocation UsingLoc,
5761                                  CXXScopeSpec &SS,
5762                                  UnqualifiedId &Name,
5763                                  AttributeList *AttrList,
5764                                  bool IsTypeName,
5765                                  SourceLocation TypenameLoc) {
5766  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5767
5768  switch (Name.getKind()) {
5769  case UnqualifiedId::IK_ImplicitSelfParam:
5770  case UnqualifiedId::IK_Identifier:
5771  case UnqualifiedId::IK_OperatorFunctionId:
5772  case UnqualifiedId::IK_LiteralOperatorId:
5773  case UnqualifiedId::IK_ConversionFunctionId:
5774    break;
5775
5776  case UnqualifiedId::IK_ConstructorName:
5777  case UnqualifiedId::IK_ConstructorTemplateId:
5778    // C++11 inheriting constructors.
5779    Diag(Name.getLocStart(),
5780         getLangOpts().CPlusPlus0x ?
5781           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5782           //        instead once inheriting constructors work.
5783           diag::err_using_decl_constructor_unsupported :
5784           diag::err_using_decl_constructor)
5785      << SS.getRange();
5786
5787    if (getLangOpts().CPlusPlus0x) break;
5788
5789    return 0;
5790
5791  case UnqualifiedId::IK_DestructorName:
5792    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5793      << SS.getRange();
5794    return 0;
5795
5796  case UnqualifiedId::IK_TemplateId:
5797    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5798      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5799    return 0;
5800  }
5801
5802  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5803  DeclarationName TargetName = TargetNameInfo.getName();
5804  if (!TargetName)
5805    return 0;
5806
5807  // Warn about using declarations.
5808  // TODO: store that the declaration was written without 'using' and
5809  // talk about access decls instead of using decls in the
5810  // diagnostics.
5811  if (!HasUsingKeyword) {
5812    UsingLoc = Name.getLocStart();
5813
5814    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5815      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5816  }
5817
5818  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5819      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5820    return 0;
5821
5822  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5823                                        TargetNameInfo, AttrList,
5824                                        /* IsInstantiation */ false,
5825                                        IsTypeName, TypenameLoc);
5826  if (UD)
5827    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5828
5829  return UD;
5830}
5831
5832/// \brief Determine whether a using declaration considers the given
5833/// declarations as "equivalent", e.g., if they are redeclarations of
5834/// the same entity or are both typedefs of the same type.
5835static bool
5836IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5837                         bool &SuppressRedeclaration) {
5838  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5839    SuppressRedeclaration = false;
5840    return true;
5841  }
5842
5843  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5844    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5845      SuppressRedeclaration = true;
5846      return Context.hasSameType(TD1->getUnderlyingType(),
5847                                 TD2->getUnderlyingType());
5848    }
5849
5850  return false;
5851}
5852
5853
5854/// Determines whether to create a using shadow decl for a particular
5855/// decl, given the set of decls existing prior to this using lookup.
5856bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5857                                const LookupResult &Previous) {
5858  // Diagnose finding a decl which is not from a base class of the
5859  // current class.  We do this now because there are cases where this
5860  // function will silently decide not to build a shadow decl, which
5861  // will pre-empt further diagnostics.
5862  //
5863  // We don't need to do this in C++0x because we do the check once on
5864  // the qualifier.
5865  //
5866  // FIXME: diagnose the following if we care enough:
5867  //   struct A { int foo; };
5868  //   struct B : A { using A::foo; };
5869  //   template <class T> struct C : A {};
5870  //   template <class T> struct D : C<T> { using B::foo; } // <---
5871  // This is invalid (during instantiation) in C++03 because B::foo
5872  // resolves to the using decl in B, which is not a base class of D<T>.
5873  // We can't diagnose it immediately because C<T> is an unknown
5874  // specialization.  The UsingShadowDecl in D<T> then points directly
5875  // to A::foo, which will look well-formed when we instantiate.
5876  // The right solution is to not collapse the shadow-decl chain.
5877  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5878    DeclContext *OrigDC = Orig->getDeclContext();
5879
5880    // Handle enums and anonymous structs.
5881    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5882    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5883    while (OrigRec->isAnonymousStructOrUnion())
5884      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5885
5886    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5887      if (OrigDC == CurContext) {
5888        Diag(Using->getLocation(),
5889             diag::err_using_decl_nested_name_specifier_is_current_class)
5890          << Using->getQualifierLoc().getSourceRange();
5891        Diag(Orig->getLocation(), diag::note_using_decl_target);
5892        return true;
5893      }
5894
5895      Diag(Using->getQualifierLoc().getBeginLoc(),
5896           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5897        << Using->getQualifier()
5898        << cast<CXXRecordDecl>(CurContext)
5899        << Using->getQualifierLoc().getSourceRange();
5900      Diag(Orig->getLocation(), diag::note_using_decl_target);
5901      return true;
5902    }
5903  }
5904
5905  if (Previous.empty()) return false;
5906
5907  NamedDecl *Target = Orig;
5908  if (isa<UsingShadowDecl>(Target))
5909    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5910
5911  // If the target happens to be one of the previous declarations, we
5912  // don't have a conflict.
5913  //
5914  // FIXME: but we might be increasing its access, in which case we
5915  // should redeclare it.
5916  NamedDecl *NonTag = 0, *Tag = 0;
5917  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5918         I != E; ++I) {
5919    NamedDecl *D = (*I)->getUnderlyingDecl();
5920    bool Result;
5921    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5922      return Result;
5923
5924    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5925  }
5926
5927  if (Target->isFunctionOrFunctionTemplate()) {
5928    FunctionDecl *FD;
5929    if (isa<FunctionTemplateDecl>(Target))
5930      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5931    else
5932      FD = cast<FunctionDecl>(Target);
5933
5934    NamedDecl *OldDecl = 0;
5935    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5936    case Ovl_Overload:
5937      return false;
5938
5939    case Ovl_NonFunction:
5940      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5941      break;
5942
5943    // We found a decl with the exact signature.
5944    case Ovl_Match:
5945      // If we're in a record, we want to hide the target, so we
5946      // return true (without a diagnostic) to tell the caller not to
5947      // build a shadow decl.
5948      if (CurContext->isRecord())
5949        return true;
5950
5951      // If we're not in a record, this is an error.
5952      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5953      break;
5954    }
5955
5956    Diag(Target->getLocation(), diag::note_using_decl_target);
5957    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5958    return true;
5959  }
5960
5961  // Target is not a function.
5962
5963  if (isa<TagDecl>(Target)) {
5964    // No conflict between a tag and a non-tag.
5965    if (!Tag) return false;
5966
5967    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5968    Diag(Target->getLocation(), diag::note_using_decl_target);
5969    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5970    return true;
5971  }
5972
5973  // No conflict between a tag and a non-tag.
5974  if (!NonTag) return false;
5975
5976  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5977  Diag(Target->getLocation(), diag::note_using_decl_target);
5978  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5979  return true;
5980}
5981
5982/// Builds a shadow declaration corresponding to a 'using' declaration.
5983UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5984                                            UsingDecl *UD,
5985                                            NamedDecl *Orig) {
5986
5987  // If we resolved to another shadow declaration, just coalesce them.
5988  NamedDecl *Target = Orig;
5989  if (isa<UsingShadowDecl>(Target)) {
5990    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5991    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5992  }
5993
5994  UsingShadowDecl *Shadow
5995    = UsingShadowDecl::Create(Context, CurContext,
5996                              UD->getLocation(), UD, Target);
5997  UD->addShadowDecl(Shadow);
5998
5999  Shadow->setAccess(UD->getAccess());
6000  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6001    Shadow->setInvalidDecl();
6002
6003  if (S)
6004    PushOnScopeChains(Shadow, S);
6005  else
6006    CurContext->addDecl(Shadow);
6007
6008
6009  return Shadow;
6010}
6011
6012/// Hides a using shadow declaration.  This is required by the current
6013/// using-decl implementation when a resolvable using declaration in a
6014/// class is followed by a declaration which would hide or override
6015/// one or more of the using decl's targets; for example:
6016///
6017///   struct Base { void foo(int); };
6018///   struct Derived : Base {
6019///     using Base::foo;
6020///     void foo(int);
6021///   };
6022///
6023/// The governing language is C++03 [namespace.udecl]p12:
6024///
6025///   When a using-declaration brings names from a base class into a
6026///   derived class scope, member functions in the derived class
6027///   override and/or hide member functions with the same name and
6028///   parameter types in a base class (rather than conflicting).
6029///
6030/// There are two ways to implement this:
6031///   (1) optimistically create shadow decls when they're not hidden
6032///       by existing declarations, or
6033///   (2) don't create any shadow decls (or at least don't make them
6034///       visible) until we've fully parsed/instantiated the class.
6035/// The problem with (1) is that we might have to retroactively remove
6036/// a shadow decl, which requires several O(n) operations because the
6037/// decl structures are (very reasonably) not designed for removal.
6038/// (2) avoids this but is very fiddly and phase-dependent.
6039void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6040  if (Shadow->getDeclName().getNameKind() ==
6041        DeclarationName::CXXConversionFunctionName)
6042    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6043
6044  // Remove it from the DeclContext...
6045  Shadow->getDeclContext()->removeDecl(Shadow);
6046
6047  // ...and the scope, if applicable...
6048  if (S) {
6049    S->RemoveDecl(Shadow);
6050    IdResolver.RemoveDecl(Shadow);
6051  }
6052
6053  // ...and the using decl.
6054  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6055
6056  // TODO: complain somehow if Shadow was used.  It shouldn't
6057  // be possible for this to happen, because...?
6058}
6059
6060/// Builds a using declaration.
6061///
6062/// \param IsInstantiation - Whether this call arises from an
6063///   instantiation of an unresolved using declaration.  We treat
6064///   the lookup differently for these declarations.
6065NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6066                                       SourceLocation UsingLoc,
6067                                       CXXScopeSpec &SS,
6068                                       const DeclarationNameInfo &NameInfo,
6069                                       AttributeList *AttrList,
6070                                       bool IsInstantiation,
6071                                       bool IsTypeName,
6072                                       SourceLocation TypenameLoc) {
6073  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6074  SourceLocation IdentLoc = NameInfo.getLoc();
6075  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6076
6077  // FIXME: We ignore attributes for now.
6078
6079  if (SS.isEmpty()) {
6080    Diag(IdentLoc, diag::err_using_requires_qualname);
6081    return 0;
6082  }
6083
6084  // Do the redeclaration lookup in the current scope.
6085  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6086                        ForRedeclaration);
6087  Previous.setHideTags(false);
6088  if (S) {
6089    LookupName(Previous, S);
6090
6091    // It is really dumb that we have to do this.
6092    LookupResult::Filter F = Previous.makeFilter();
6093    while (F.hasNext()) {
6094      NamedDecl *D = F.next();
6095      if (!isDeclInScope(D, CurContext, S))
6096        F.erase();
6097    }
6098    F.done();
6099  } else {
6100    assert(IsInstantiation && "no scope in non-instantiation");
6101    assert(CurContext->isRecord() && "scope not record in instantiation");
6102    LookupQualifiedName(Previous, CurContext);
6103  }
6104
6105  // Check for invalid redeclarations.
6106  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6107    return 0;
6108
6109  // Check for bad qualifiers.
6110  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6111    return 0;
6112
6113  DeclContext *LookupContext = computeDeclContext(SS);
6114  NamedDecl *D;
6115  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6116  if (!LookupContext) {
6117    if (IsTypeName) {
6118      // FIXME: not all declaration name kinds are legal here
6119      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6120                                              UsingLoc, TypenameLoc,
6121                                              QualifierLoc,
6122                                              IdentLoc, NameInfo.getName());
6123    } else {
6124      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6125                                           QualifierLoc, NameInfo);
6126    }
6127  } else {
6128    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6129                          NameInfo, IsTypeName);
6130  }
6131  D->setAccess(AS);
6132  CurContext->addDecl(D);
6133
6134  if (!LookupContext) return D;
6135  UsingDecl *UD = cast<UsingDecl>(D);
6136
6137  if (RequireCompleteDeclContext(SS, LookupContext)) {
6138    UD->setInvalidDecl();
6139    return UD;
6140  }
6141
6142  // The normal rules do not apply to inheriting constructor declarations.
6143  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6144    if (CheckInheritingConstructorUsingDecl(UD))
6145      UD->setInvalidDecl();
6146    return UD;
6147  }
6148
6149  // Otherwise, look up the target name.
6150
6151  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6152
6153  // Unlike most lookups, we don't always want to hide tag
6154  // declarations: tag names are visible through the using declaration
6155  // even if hidden by ordinary names, *except* in a dependent context
6156  // where it's important for the sanity of two-phase lookup.
6157  if (!IsInstantiation)
6158    R.setHideTags(false);
6159
6160  // For the purposes of this lookup, we have a base object type
6161  // equal to that of the current context.
6162  if (CurContext->isRecord()) {
6163    R.setBaseObjectType(
6164                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6165  }
6166
6167  LookupQualifiedName(R, LookupContext);
6168
6169  if (R.empty()) {
6170    Diag(IdentLoc, diag::err_no_member)
6171      << NameInfo.getName() << LookupContext << SS.getRange();
6172    UD->setInvalidDecl();
6173    return UD;
6174  }
6175
6176  if (R.isAmbiguous()) {
6177    UD->setInvalidDecl();
6178    return UD;
6179  }
6180
6181  if (IsTypeName) {
6182    // If we asked for a typename and got a non-type decl, error out.
6183    if (!R.getAsSingle<TypeDecl>()) {
6184      Diag(IdentLoc, diag::err_using_typename_non_type);
6185      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6186        Diag((*I)->getUnderlyingDecl()->getLocation(),
6187             diag::note_using_decl_target);
6188      UD->setInvalidDecl();
6189      return UD;
6190    }
6191  } else {
6192    // If we asked for a non-typename and we got a type, error out,
6193    // but only if this is an instantiation of an unresolved using
6194    // decl.  Otherwise just silently find the type name.
6195    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6196      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6197      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6198      UD->setInvalidDecl();
6199      return UD;
6200    }
6201  }
6202
6203  // C++0x N2914 [namespace.udecl]p6:
6204  // A using-declaration shall not name a namespace.
6205  if (R.getAsSingle<NamespaceDecl>()) {
6206    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6207      << SS.getRange();
6208    UD->setInvalidDecl();
6209    return UD;
6210  }
6211
6212  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6213    if (!CheckUsingShadowDecl(UD, *I, Previous))
6214      BuildUsingShadowDecl(S, UD, *I);
6215  }
6216
6217  return UD;
6218}
6219
6220/// Additional checks for a using declaration referring to a constructor name.
6221bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6222  assert(!UD->isTypeName() && "expecting a constructor name");
6223
6224  const Type *SourceType = UD->getQualifier()->getAsType();
6225  assert(SourceType &&
6226         "Using decl naming constructor doesn't have type in scope spec.");
6227  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6228
6229  // Check whether the named type is a direct base class.
6230  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6231  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6232  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6233       BaseIt != BaseE; ++BaseIt) {
6234    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6235    if (CanonicalSourceType == BaseType)
6236      break;
6237    if (BaseIt->getType()->isDependentType())
6238      break;
6239  }
6240
6241  if (BaseIt == BaseE) {
6242    // Did not find SourceType in the bases.
6243    Diag(UD->getUsingLocation(),
6244         diag::err_using_decl_constructor_not_in_direct_base)
6245      << UD->getNameInfo().getSourceRange()
6246      << QualType(SourceType, 0) << TargetClass;
6247    return true;
6248  }
6249
6250  if (!CurContext->isDependentContext())
6251    BaseIt->setInheritConstructors();
6252
6253  return false;
6254}
6255
6256/// Checks that the given using declaration is not an invalid
6257/// redeclaration.  Note that this is checking only for the using decl
6258/// itself, not for any ill-formedness among the UsingShadowDecls.
6259bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6260                                       bool isTypeName,
6261                                       const CXXScopeSpec &SS,
6262                                       SourceLocation NameLoc,
6263                                       const LookupResult &Prev) {
6264  // C++03 [namespace.udecl]p8:
6265  // C++0x [namespace.udecl]p10:
6266  //   A using-declaration is a declaration and can therefore be used
6267  //   repeatedly where (and only where) multiple declarations are
6268  //   allowed.
6269  //
6270  // That's in non-member contexts.
6271  if (!CurContext->getRedeclContext()->isRecord())
6272    return false;
6273
6274  NestedNameSpecifier *Qual
6275    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6276
6277  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6278    NamedDecl *D = *I;
6279
6280    bool DTypename;
6281    NestedNameSpecifier *DQual;
6282    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6283      DTypename = UD->isTypeName();
6284      DQual = UD->getQualifier();
6285    } else if (UnresolvedUsingValueDecl *UD
6286                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6287      DTypename = false;
6288      DQual = UD->getQualifier();
6289    } else if (UnresolvedUsingTypenameDecl *UD
6290                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6291      DTypename = true;
6292      DQual = UD->getQualifier();
6293    } else continue;
6294
6295    // using decls differ if one says 'typename' and the other doesn't.
6296    // FIXME: non-dependent using decls?
6297    if (isTypeName != DTypename) continue;
6298
6299    // using decls differ if they name different scopes (but note that
6300    // template instantiation can cause this check to trigger when it
6301    // didn't before instantiation).
6302    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6303        Context.getCanonicalNestedNameSpecifier(DQual))
6304      continue;
6305
6306    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6307    Diag(D->getLocation(), diag::note_using_decl) << 1;
6308    return true;
6309  }
6310
6311  return false;
6312}
6313
6314
6315/// Checks that the given nested-name qualifier used in a using decl
6316/// in the current context is appropriately related to the current
6317/// scope.  If an error is found, diagnoses it and returns true.
6318bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6319                                   const CXXScopeSpec &SS,
6320                                   SourceLocation NameLoc) {
6321  DeclContext *NamedContext = computeDeclContext(SS);
6322
6323  if (!CurContext->isRecord()) {
6324    // C++03 [namespace.udecl]p3:
6325    // C++0x [namespace.udecl]p8:
6326    //   A using-declaration for a class member shall be a member-declaration.
6327
6328    // If we weren't able to compute a valid scope, it must be a
6329    // dependent class scope.
6330    if (!NamedContext || NamedContext->isRecord()) {
6331      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6332        << SS.getRange();
6333      return true;
6334    }
6335
6336    // Otherwise, everything is known to be fine.
6337    return false;
6338  }
6339
6340  // The current scope is a record.
6341
6342  // If the named context is dependent, we can't decide much.
6343  if (!NamedContext) {
6344    // FIXME: in C++0x, we can diagnose if we can prove that the
6345    // nested-name-specifier does not refer to a base class, which is
6346    // still possible in some cases.
6347
6348    // Otherwise we have to conservatively report that things might be
6349    // okay.
6350    return false;
6351  }
6352
6353  if (!NamedContext->isRecord()) {
6354    // Ideally this would point at the last name in the specifier,
6355    // but we don't have that level of source info.
6356    Diag(SS.getRange().getBegin(),
6357         diag::err_using_decl_nested_name_specifier_is_not_class)
6358      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6359    return true;
6360  }
6361
6362  if (!NamedContext->isDependentContext() &&
6363      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6364    return true;
6365
6366  if (getLangOpts().CPlusPlus0x) {
6367    // C++0x [namespace.udecl]p3:
6368    //   In a using-declaration used as a member-declaration, the
6369    //   nested-name-specifier shall name a base class of the class
6370    //   being defined.
6371
6372    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6373                                 cast<CXXRecordDecl>(NamedContext))) {
6374      if (CurContext == NamedContext) {
6375        Diag(NameLoc,
6376             diag::err_using_decl_nested_name_specifier_is_current_class)
6377          << SS.getRange();
6378        return true;
6379      }
6380
6381      Diag(SS.getRange().getBegin(),
6382           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6383        << (NestedNameSpecifier*) SS.getScopeRep()
6384        << cast<CXXRecordDecl>(CurContext)
6385        << SS.getRange();
6386      return true;
6387    }
6388
6389    return false;
6390  }
6391
6392  // C++03 [namespace.udecl]p4:
6393  //   A using-declaration used as a member-declaration shall refer
6394  //   to a member of a base class of the class being defined [etc.].
6395
6396  // Salient point: SS doesn't have to name a base class as long as
6397  // lookup only finds members from base classes.  Therefore we can
6398  // diagnose here only if we can prove that that can't happen,
6399  // i.e. if the class hierarchies provably don't intersect.
6400
6401  // TODO: it would be nice if "definitely valid" results were cached
6402  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6403  // need to be repeated.
6404
6405  struct UserData {
6406    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6407
6408    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6409      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6410      Data->Bases.insert(Base);
6411      return true;
6412    }
6413
6414    bool hasDependentBases(const CXXRecordDecl *Class) {
6415      return !Class->forallBases(collect, this);
6416    }
6417
6418    /// Returns true if the base is dependent or is one of the
6419    /// accumulated base classes.
6420    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6421      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6422      return !Data->Bases.count(Base);
6423    }
6424
6425    bool mightShareBases(const CXXRecordDecl *Class) {
6426      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6427    }
6428  };
6429
6430  UserData Data;
6431
6432  // Returns false if we find a dependent base.
6433  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6434    return false;
6435
6436  // Returns false if the class has a dependent base or if it or one
6437  // of its bases is present in the base set of the current context.
6438  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6439    return false;
6440
6441  Diag(SS.getRange().getBegin(),
6442       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6443    << (NestedNameSpecifier*) SS.getScopeRep()
6444    << cast<CXXRecordDecl>(CurContext)
6445    << SS.getRange();
6446
6447  return true;
6448}
6449
6450Decl *Sema::ActOnAliasDeclaration(Scope *S,
6451                                  AccessSpecifier AS,
6452                                  MultiTemplateParamsArg TemplateParamLists,
6453                                  SourceLocation UsingLoc,
6454                                  UnqualifiedId &Name,
6455                                  TypeResult Type) {
6456  // Skip up to the relevant declaration scope.
6457  while (S->getFlags() & Scope::TemplateParamScope)
6458    S = S->getParent();
6459  assert((S->getFlags() & Scope::DeclScope) &&
6460         "got alias-declaration outside of declaration scope");
6461
6462  if (Type.isInvalid())
6463    return 0;
6464
6465  bool Invalid = false;
6466  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6467  TypeSourceInfo *TInfo = 0;
6468  GetTypeFromParser(Type.get(), &TInfo);
6469
6470  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6471    return 0;
6472
6473  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6474                                      UPPC_DeclarationType)) {
6475    Invalid = true;
6476    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6477                                             TInfo->getTypeLoc().getBeginLoc());
6478  }
6479
6480  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6481  LookupName(Previous, S);
6482
6483  // Warn about shadowing the name of a template parameter.
6484  if (Previous.isSingleResult() &&
6485      Previous.getFoundDecl()->isTemplateParameter()) {
6486    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6487    Previous.clear();
6488  }
6489
6490  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6491         "name in alias declaration must be an identifier");
6492  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6493                                               Name.StartLocation,
6494                                               Name.Identifier, TInfo);
6495
6496  NewTD->setAccess(AS);
6497
6498  if (Invalid)
6499    NewTD->setInvalidDecl();
6500
6501  CheckTypedefForVariablyModifiedType(S, NewTD);
6502  Invalid |= NewTD->isInvalidDecl();
6503
6504  bool Redeclaration = false;
6505
6506  NamedDecl *NewND;
6507  if (TemplateParamLists.size()) {
6508    TypeAliasTemplateDecl *OldDecl = 0;
6509    TemplateParameterList *OldTemplateParams = 0;
6510
6511    if (TemplateParamLists.size() != 1) {
6512      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6513        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6514         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6515    }
6516    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6517
6518    // Only consider previous declarations in the same scope.
6519    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6520                         /*ExplicitInstantiationOrSpecialization*/false);
6521    if (!Previous.empty()) {
6522      Redeclaration = true;
6523
6524      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6525      if (!OldDecl && !Invalid) {
6526        Diag(UsingLoc, diag::err_redefinition_different_kind)
6527          << Name.Identifier;
6528
6529        NamedDecl *OldD = Previous.getRepresentativeDecl();
6530        if (OldD->getLocation().isValid())
6531          Diag(OldD->getLocation(), diag::note_previous_definition);
6532
6533        Invalid = true;
6534      }
6535
6536      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6537        if (TemplateParameterListsAreEqual(TemplateParams,
6538                                           OldDecl->getTemplateParameters(),
6539                                           /*Complain=*/true,
6540                                           TPL_TemplateMatch))
6541          OldTemplateParams = OldDecl->getTemplateParameters();
6542        else
6543          Invalid = true;
6544
6545        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6546        if (!Invalid &&
6547            !Context.hasSameType(OldTD->getUnderlyingType(),
6548                                 NewTD->getUnderlyingType())) {
6549          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6550          // but we can't reasonably accept it.
6551          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6552            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6553          if (OldTD->getLocation().isValid())
6554            Diag(OldTD->getLocation(), diag::note_previous_definition);
6555          Invalid = true;
6556        }
6557      }
6558    }
6559
6560    // Merge any previous default template arguments into our parameters,
6561    // and check the parameter list.
6562    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6563                                   TPC_TypeAliasTemplate))
6564      return 0;
6565
6566    TypeAliasTemplateDecl *NewDecl =
6567      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6568                                    Name.Identifier, TemplateParams,
6569                                    NewTD);
6570
6571    NewDecl->setAccess(AS);
6572
6573    if (Invalid)
6574      NewDecl->setInvalidDecl();
6575    else if (OldDecl)
6576      NewDecl->setPreviousDeclaration(OldDecl);
6577
6578    NewND = NewDecl;
6579  } else {
6580    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6581    NewND = NewTD;
6582  }
6583
6584  if (!Redeclaration)
6585    PushOnScopeChains(NewND, S);
6586
6587  return NewND;
6588}
6589
6590Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6591                                             SourceLocation NamespaceLoc,
6592                                             SourceLocation AliasLoc,
6593                                             IdentifierInfo *Alias,
6594                                             CXXScopeSpec &SS,
6595                                             SourceLocation IdentLoc,
6596                                             IdentifierInfo *Ident) {
6597
6598  // Lookup the namespace name.
6599  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6600  LookupParsedName(R, S, &SS);
6601
6602  // Check if we have a previous declaration with the same name.
6603  NamedDecl *PrevDecl
6604    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6605                       ForRedeclaration);
6606  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6607    PrevDecl = 0;
6608
6609  if (PrevDecl) {
6610    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6611      // We already have an alias with the same name that points to the same
6612      // namespace, so don't create a new one.
6613      // FIXME: At some point, we'll want to create the (redundant)
6614      // declaration to maintain better source information.
6615      if (!R.isAmbiguous() && !R.empty() &&
6616          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6617        return 0;
6618    }
6619
6620    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6621      diag::err_redefinition_different_kind;
6622    Diag(AliasLoc, DiagID) << Alias;
6623    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6624    return 0;
6625  }
6626
6627  if (R.isAmbiguous())
6628    return 0;
6629
6630  if (R.empty()) {
6631    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6632      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6633      return 0;
6634    }
6635  }
6636
6637  NamespaceAliasDecl *AliasDecl =
6638    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6639                               Alias, SS.getWithLocInContext(Context),
6640                               IdentLoc, R.getFoundDecl());
6641
6642  PushOnScopeChains(AliasDecl, S);
6643  return AliasDecl;
6644}
6645
6646namespace {
6647  /// \brief Scoped object used to handle the state changes required in Sema
6648  /// to implicitly define the body of a C++ member function;
6649  class ImplicitlyDefinedFunctionScope {
6650    Sema &S;
6651    Sema::ContextRAII SavedContext;
6652
6653  public:
6654    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6655      : S(S), SavedContext(S, Method)
6656    {
6657      S.PushFunctionScope();
6658      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6659    }
6660
6661    ~ImplicitlyDefinedFunctionScope() {
6662      S.PopExpressionEvaluationContext();
6663      S.PopFunctionScopeInfo();
6664    }
6665  };
6666}
6667
6668Sema::ImplicitExceptionSpecification
6669Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6670  // C++ [except.spec]p14:
6671  //   An implicitly declared special member function (Clause 12) shall have an
6672  //   exception-specification. [...]
6673  ImplicitExceptionSpecification ExceptSpec(*this);
6674  if (ClassDecl->isInvalidDecl())
6675    return ExceptSpec;
6676
6677  // Direct base-class constructors.
6678  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6679                                       BEnd = ClassDecl->bases_end();
6680       B != BEnd; ++B) {
6681    if (B->isVirtual()) // Handled below.
6682      continue;
6683
6684    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6685      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6686      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6687      // If this is a deleted function, add it anyway. This might be conformant
6688      // with the standard. This might not. I'm not sure. It might not matter.
6689      if (Constructor)
6690        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6691    }
6692  }
6693
6694  // Virtual base-class constructors.
6695  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6696                                       BEnd = ClassDecl->vbases_end();
6697       B != BEnd; ++B) {
6698    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6699      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6700      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6701      // If this is a deleted function, add it anyway. This might be conformant
6702      // with the standard. This might not. I'm not sure. It might not matter.
6703      if (Constructor)
6704        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6705    }
6706  }
6707
6708  // Field constructors.
6709  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6710                               FEnd = ClassDecl->field_end();
6711       F != FEnd; ++F) {
6712    if (F->hasInClassInitializer()) {
6713      if (Expr *E = F->getInClassInitializer())
6714        ExceptSpec.CalledExpr(E);
6715      else if (!F->isInvalidDecl())
6716        ExceptSpec.SetDelayed();
6717    } else if (const RecordType *RecordTy
6718              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6719      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6720      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6721      // If this is a deleted function, add it anyway. This might be conformant
6722      // with the standard. This might not. I'm not sure. It might not matter.
6723      // In particular, the problem is that this function never gets called. It
6724      // might just be ill-formed because this function attempts to refer to
6725      // a deleted function here.
6726      if (Constructor)
6727        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6728    }
6729  }
6730
6731  return ExceptSpec;
6732}
6733
6734CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6735                                                     CXXRecordDecl *ClassDecl) {
6736  // C++ [class.ctor]p5:
6737  //   A default constructor for a class X is a constructor of class X
6738  //   that can be called without an argument. If there is no
6739  //   user-declared constructor for class X, a default constructor is
6740  //   implicitly declared. An implicitly-declared default constructor
6741  //   is an inline public member of its class.
6742  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6743         "Should not build implicit default constructor!");
6744
6745  ImplicitExceptionSpecification Spec =
6746    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6747  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6748
6749  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6750                                                     CXXDefaultConstructor,
6751                                                     false);
6752
6753  // Create the actual constructor declaration.
6754  CanQualType ClassType
6755    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6756  SourceLocation ClassLoc = ClassDecl->getLocation();
6757  DeclarationName Name
6758    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6759  DeclarationNameInfo NameInfo(Name, ClassLoc);
6760  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6761      Context, ClassDecl, ClassLoc, NameInfo,
6762      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6763      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6764      Constexpr);
6765  DefaultCon->setAccess(AS_public);
6766  DefaultCon->setDefaulted();
6767  DefaultCon->setImplicit();
6768  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6769
6770  // Note that we have declared this constructor.
6771  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6772
6773  if (Scope *S = getScopeForContext(ClassDecl))
6774    PushOnScopeChains(DefaultCon, S, false);
6775  ClassDecl->addDecl(DefaultCon);
6776
6777  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6778    DefaultCon->setDeletedAsWritten();
6779
6780  return DefaultCon;
6781}
6782
6783void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6784                                            CXXConstructorDecl *Constructor) {
6785  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6786          !Constructor->doesThisDeclarationHaveABody() &&
6787          !Constructor->isDeleted()) &&
6788    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6789
6790  CXXRecordDecl *ClassDecl = Constructor->getParent();
6791  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6792
6793  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6794  DiagnosticErrorTrap Trap(Diags);
6795  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6796      Trap.hasErrorOccurred()) {
6797    Diag(CurrentLocation, diag::note_member_synthesized_at)
6798      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6799    Constructor->setInvalidDecl();
6800    return;
6801  }
6802
6803  SourceLocation Loc = Constructor->getLocation();
6804  Constructor->setBody(new (Context) CompoundStmt(Loc));
6805
6806  Constructor->setUsed();
6807  MarkVTableUsed(CurrentLocation, ClassDecl);
6808
6809  if (ASTMutationListener *L = getASTMutationListener()) {
6810    L->CompletedImplicitDefinition(Constructor);
6811  }
6812}
6813
6814/// Get any existing defaulted default constructor for the given class. Do not
6815/// implicitly define one if it does not exist.
6816static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6817                                                             CXXRecordDecl *D) {
6818  ASTContext &Context = Self.Context;
6819  QualType ClassType = Context.getTypeDeclType(D);
6820  DeclarationName ConstructorName
6821    = Context.DeclarationNames.getCXXConstructorName(
6822                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6823
6824  DeclContext::lookup_const_iterator Con, ConEnd;
6825  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6826       Con != ConEnd; ++Con) {
6827    // A function template cannot be defaulted.
6828    if (isa<FunctionTemplateDecl>(*Con))
6829      continue;
6830
6831    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6832    if (Constructor->isDefaultConstructor())
6833      return Constructor->isDefaulted() ? Constructor : 0;
6834  }
6835  return 0;
6836}
6837
6838void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6839  if (!D) return;
6840  AdjustDeclIfTemplate(D);
6841
6842  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6843  CXXConstructorDecl *CtorDecl
6844    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6845
6846  if (!CtorDecl) return;
6847
6848  // Compute the exception specification for the default constructor.
6849  const FunctionProtoType *CtorTy =
6850    CtorDecl->getType()->castAs<FunctionProtoType>();
6851  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6852    // FIXME: Don't do this unless the exception spec is needed.
6853    ImplicitExceptionSpecification Spec =
6854      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6855    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6856    assert(EPI.ExceptionSpecType != EST_Delayed);
6857
6858    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6859  }
6860
6861  // If the default constructor is explicitly defaulted, checking the exception
6862  // specification is deferred until now.
6863  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6864      !ClassDecl->isDependentType())
6865    CheckExplicitlyDefaultedSpecialMember(CtorDecl);
6866}
6867
6868void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6869  // We start with an initial pass over the base classes to collect those that
6870  // inherit constructors from. If there are none, we can forgo all further
6871  // processing.
6872  typedef SmallVector<const RecordType *, 4> BasesVector;
6873  BasesVector BasesToInheritFrom;
6874  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6875                                          BaseE = ClassDecl->bases_end();
6876         BaseIt != BaseE; ++BaseIt) {
6877    if (BaseIt->getInheritConstructors()) {
6878      QualType Base = BaseIt->getType();
6879      if (Base->isDependentType()) {
6880        // If we inherit constructors from anything that is dependent, just
6881        // abort processing altogether. We'll get another chance for the
6882        // instantiations.
6883        return;
6884      }
6885      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6886    }
6887  }
6888  if (BasesToInheritFrom.empty())
6889    return;
6890
6891  // Now collect the constructors that we already have in the current class.
6892  // Those take precedence over inherited constructors.
6893  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6894  //   unless there is a user-declared constructor with the same signature in
6895  //   the class where the using-declaration appears.
6896  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6897  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6898                                    CtorE = ClassDecl->ctor_end();
6899       CtorIt != CtorE; ++CtorIt) {
6900    ExistingConstructors.insert(
6901        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6902  }
6903
6904  DeclarationName CreatedCtorName =
6905      Context.DeclarationNames.getCXXConstructorName(
6906          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6907
6908  // Now comes the true work.
6909  // First, we keep a map from constructor types to the base that introduced
6910  // them. Needed for finding conflicting constructors. We also keep the
6911  // actually inserted declarations in there, for pretty diagnostics.
6912  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6913  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6914  ConstructorToSourceMap InheritedConstructors;
6915  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6916                             BaseE = BasesToInheritFrom.end();
6917       BaseIt != BaseE; ++BaseIt) {
6918    const RecordType *Base = *BaseIt;
6919    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6920    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6921    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6922                                      CtorE = BaseDecl->ctor_end();
6923         CtorIt != CtorE; ++CtorIt) {
6924      // Find the using declaration for inheriting this base's constructors.
6925      // FIXME: Don't perform name lookup just to obtain a source location!
6926      DeclarationName Name =
6927          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6928      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6929      LookupQualifiedName(Result, CurContext);
6930      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6931      SourceLocation UsingLoc = UD ? UD->getLocation() :
6932                                     ClassDecl->getLocation();
6933
6934      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6935      //   from the class X named in the using-declaration consists of actual
6936      //   constructors and notional constructors that result from the
6937      //   transformation of defaulted parameters as follows:
6938      //   - all non-template default constructors of X, and
6939      //   - for each non-template constructor of X that has at least one
6940      //     parameter with a default argument, the set of constructors that
6941      //     results from omitting any ellipsis parameter specification and
6942      //     successively omitting parameters with a default argument from the
6943      //     end of the parameter-type-list.
6944      CXXConstructorDecl *BaseCtor = *CtorIt;
6945      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6946      const FunctionProtoType *BaseCtorType =
6947          BaseCtor->getType()->getAs<FunctionProtoType>();
6948
6949      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6950                    maxParams = BaseCtor->getNumParams();
6951           params <= maxParams; ++params) {
6952        // Skip default constructors. They're never inherited.
6953        if (params == 0)
6954          continue;
6955        // Skip copy and move constructors for the same reason.
6956        if (CanBeCopyOrMove && params == 1)
6957          continue;
6958
6959        // Build up a function type for this particular constructor.
6960        // FIXME: The working paper does not consider that the exception spec
6961        // for the inheriting constructor might be larger than that of the
6962        // source. This code doesn't yet, either. When it does, this code will
6963        // need to be delayed until after exception specifications and in-class
6964        // member initializers are attached.
6965        const Type *NewCtorType;
6966        if (params == maxParams)
6967          NewCtorType = BaseCtorType;
6968        else {
6969          SmallVector<QualType, 16> Args;
6970          for (unsigned i = 0; i < params; ++i) {
6971            Args.push_back(BaseCtorType->getArgType(i));
6972          }
6973          FunctionProtoType::ExtProtoInfo ExtInfo =
6974              BaseCtorType->getExtProtoInfo();
6975          ExtInfo.Variadic = false;
6976          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6977                                                Args.data(), params, ExtInfo)
6978                       .getTypePtr();
6979        }
6980        const Type *CanonicalNewCtorType =
6981            Context.getCanonicalType(NewCtorType);
6982
6983        // Now that we have the type, first check if the class already has a
6984        // constructor with this signature.
6985        if (ExistingConstructors.count(CanonicalNewCtorType))
6986          continue;
6987
6988        // Then we check if we have already declared an inherited constructor
6989        // with this signature.
6990        std::pair<ConstructorToSourceMap::iterator, bool> result =
6991            InheritedConstructors.insert(std::make_pair(
6992                CanonicalNewCtorType,
6993                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6994        if (!result.second) {
6995          // Already in the map. If it came from a different class, that's an
6996          // error. Not if it's from the same.
6997          CanQualType PreviousBase = result.first->second.first;
6998          if (CanonicalBase != PreviousBase) {
6999            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7000            const CXXConstructorDecl *PrevBaseCtor =
7001                PrevCtor->getInheritedConstructor();
7002            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7003
7004            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7005            Diag(BaseCtor->getLocation(),
7006                 diag::note_using_decl_constructor_conflict_current_ctor);
7007            Diag(PrevBaseCtor->getLocation(),
7008                 diag::note_using_decl_constructor_conflict_previous_ctor);
7009            Diag(PrevCtor->getLocation(),
7010                 diag::note_using_decl_constructor_conflict_previous_using);
7011          }
7012          continue;
7013        }
7014
7015        // OK, we're there, now add the constructor.
7016        // C++0x [class.inhctor]p8: [...] that would be performed by a
7017        //   user-written inline constructor [...]
7018        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7019        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7020            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7021            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7022            /*ImplicitlyDeclared=*/true,
7023            // FIXME: Due to a defect in the standard, we treat inherited
7024            // constructors as constexpr even if that makes them ill-formed.
7025            /*Constexpr=*/BaseCtor->isConstexpr());
7026        NewCtor->setAccess(BaseCtor->getAccess());
7027
7028        // Build up the parameter decls and add them.
7029        SmallVector<ParmVarDecl *, 16> ParamDecls;
7030        for (unsigned i = 0; i < params; ++i) {
7031          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7032                                                   UsingLoc, UsingLoc,
7033                                                   /*IdentifierInfo=*/0,
7034                                                   BaseCtorType->getArgType(i),
7035                                                   /*TInfo=*/0, SC_None,
7036                                                   SC_None, /*DefaultArg=*/0));
7037        }
7038        NewCtor->setParams(ParamDecls);
7039        NewCtor->setInheritedConstructor(BaseCtor);
7040
7041        ClassDecl->addDecl(NewCtor);
7042        result.first->second.second = NewCtor;
7043      }
7044    }
7045  }
7046}
7047
7048Sema::ImplicitExceptionSpecification
7049Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7050  // C++ [except.spec]p14:
7051  //   An implicitly declared special member function (Clause 12) shall have
7052  //   an exception-specification.
7053  ImplicitExceptionSpecification ExceptSpec(*this);
7054  if (ClassDecl->isInvalidDecl())
7055    return ExceptSpec;
7056
7057  // Direct base-class destructors.
7058  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7059                                       BEnd = ClassDecl->bases_end();
7060       B != BEnd; ++B) {
7061    if (B->isVirtual()) // Handled below.
7062      continue;
7063
7064    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7065      ExceptSpec.CalledDecl(B->getLocStart(),
7066                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7067  }
7068
7069  // Virtual base-class destructors.
7070  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7071                                       BEnd = ClassDecl->vbases_end();
7072       B != BEnd; ++B) {
7073    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7074      ExceptSpec.CalledDecl(B->getLocStart(),
7075                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7076  }
7077
7078  // Field destructors.
7079  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7080                               FEnd = ClassDecl->field_end();
7081       F != FEnd; ++F) {
7082    if (const RecordType *RecordTy
7083        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7084      ExceptSpec.CalledDecl(F->getLocation(),
7085                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7086  }
7087
7088  return ExceptSpec;
7089}
7090
7091CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7092  // C++ [class.dtor]p2:
7093  //   If a class has no user-declared destructor, a destructor is
7094  //   declared implicitly. An implicitly-declared destructor is an
7095  //   inline public member of its class.
7096
7097  ImplicitExceptionSpecification Spec =
7098      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7099  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7100
7101  // Create the actual destructor declaration.
7102  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7103
7104  CanQualType ClassType
7105    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7106  SourceLocation ClassLoc = ClassDecl->getLocation();
7107  DeclarationName Name
7108    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7109  DeclarationNameInfo NameInfo(Name, ClassLoc);
7110  CXXDestructorDecl *Destructor
7111      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7112                                  /*isInline=*/true,
7113                                  /*isImplicitlyDeclared=*/true);
7114  Destructor->setAccess(AS_public);
7115  Destructor->setDefaulted();
7116  Destructor->setImplicit();
7117  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7118
7119  // Note that we have declared this destructor.
7120  ++ASTContext::NumImplicitDestructorsDeclared;
7121
7122  // Introduce this destructor into its scope.
7123  if (Scope *S = getScopeForContext(ClassDecl))
7124    PushOnScopeChains(Destructor, S, false);
7125  ClassDecl->addDecl(Destructor);
7126
7127  // This could be uniqued if it ever proves significant.
7128  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7129
7130  AddOverriddenMethods(ClassDecl, Destructor);
7131
7132  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7133    Destructor->setDeletedAsWritten();
7134
7135  return Destructor;
7136}
7137
7138void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7139                                    CXXDestructorDecl *Destructor) {
7140  assert((Destructor->isDefaulted() &&
7141          !Destructor->doesThisDeclarationHaveABody() &&
7142          !Destructor->isDeleted()) &&
7143         "DefineImplicitDestructor - call it for implicit default dtor");
7144  CXXRecordDecl *ClassDecl = Destructor->getParent();
7145  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7146
7147  if (Destructor->isInvalidDecl())
7148    return;
7149
7150  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7151
7152  DiagnosticErrorTrap Trap(Diags);
7153  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7154                                         Destructor->getParent());
7155
7156  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7157    Diag(CurrentLocation, diag::note_member_synthesized_at)
7158      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7159
7160    Destructor->setInvalidDecl();
7161    return;
7162  }
7163
7164  SourceLocation Loc = Destructor->getLocation();
7165  Destructor->setBody(new (Context) CompoundStmt(Loc));
7166  Destructor->setImplicitlyDefined(true);
7167  Destructor->setUsed();
7168  MarkVTableUsed(CurrentLocation, ClassDecl);
7169
7170  if (ASTMutationListener *L = getASTMutationListener()) {
7171    L->CompletedImplicitDefinition(Destructor);
7172  }
7173}
7174
7175/// \brief Perform any semantic analysis which needs to be delayed until all
7176/// pending class member declarations have been parsed.
7177void Sema::ActOnFinishCXXMemberDecls() {
7178  // Now we have parsed all exception specifications, determine the implicit
7179  // exception specifications for destructors.
7180  for (unsigned i = 0, e = DelayedDestructorExceptionSpecs.size();
7181       i != e; ++i) {
7182    CXXDestructorDecl *Dtor = DelayedDestructorExceptionSpecs[i];
7183    AdjustDestructorExceptionSpec(Dtor->getParent(), Dtor, true);
7184  }
7185  DelayedDestructorExceptionSpecs.clear();
7186
7187  // Perform any deferred checking of exception specifications for virtual
7188  // destructors.
7189  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7190       i != e; ++i) {
7191    const CXXDestructorDecl *Dtor =
7192        DelayedDestructorExceptionSpecChecks[i].first;
7193    assert(!Dtor->getParent()->isDependentType() &&
7194           "Should not ever add destructors of templates into the list.");
7195    CheckOverridingFunctionExceptionSpec(Dtor,
7196        DelayedDestructorExceptionSpecChecks[i].second);
7197  }
7198  DelayedDestructorExceptionSpecChecks.clear();
7199}
7200
7201void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7202                                         CXXDestructorDecl *destructor,
7203                                         bool WasDelayed) {
7204  // C++11 [class.dtor]p3:
7205  //   A declaration of a destructor that does not have an exception-
7206  //   specification is implicitly considered to have the same exception-
7207  //   specification as an implicit declaration.
7208  const FunctionProtoType *dtorType = destructor->getType()->
7209                                        getAs<FunctionProtoType>();
7210  if (!WasDelayed && dtorType->hasExceptionSpec())
7211    return;
7212
7213  ImplicitExceptionSpecification exceptSpec =
7214      ComputeDefaultedDtorExceptionSpec(classDecl);
7215
7216  // Replace the destructor's type, building off the existing one. Fortunately,
7217  // the only thing of interest in the destructor type is its extended info.
7218  // The return and arguments are fixed.
7219  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7220  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7221  epi.NumExceptions = exceptSpec.size();
7222  epi.Exceptions = exceptSpec.data();
7223  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7224
7225  destructor->setType(ty);
7226
7227  // If we can't compute the exception specification for this destructor yet
7228  // (because it depends on an exception specification which we have not parsed
7229  // yet), make a note that we need to try again when the class is complete.
7230  if (epi.ExceptionSpecType == EST_Delayed) {
7231    assert(!WasDelayed && "couldn't compute destructor exception spec");
7232    DelayedDestructorExceptionSpecs.push_back(destructor);
7233  }
7234
7235  // FIXME: If the destructor has a body that could throw, and the newly created
7236  // spec doesn't allow exceptions, we should emit a warning, because this
7237  // change in behavior can break conforming C++03 programs at runtime.
7238  // However, we don't have a body yet, so it needs to be done somewhere else.
7239}
7240
7241/// \brief Builds a statement that copies/moves the given entity from \p From to
7242/// \c To.
7243///
7244/// This routine is used to copy/move the members of a class with an
7245/// implicitly-declared copy/move assignment operator. When the entities being
7246/// copied are arrays, this routine builds for loops to copy them.
7247///
7248/// \param S The Sema object used for type-checking.
7249///
7250/// \param Loc The location where the implicit copy/move is being generated.
7251///
7252/// \param T The type of the expressions being copied/moved. Both expressions
7253/// must have this type.
7254///
7255/// \param To The expression we are copying/moving to.
7256///
7257/// \param From The expression we are copying/moving from.
7258///
7259/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7260/// Otherwise, it's a non-static member subobject.
7261///
7262/// \param Copying Whether we're copying or moving.
7263///
7264/// \param Depth Internal parameter recording the depth of the recursion.
7265///
7266/// \returns A statement or a loop that copies the expressions.
7267static StmtResult
7268BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7269                      Expr *To, Expr *From,
7270                      bool CopyingBaseSubobject, bool Copying,
7271                      unsigned Depth = 0) {
7272  // C++0x [class.copy]p28:
7273  //   Each subobject is assigned in the manner appropriate to its type:
7274  //
7275  //     - if the subobject is of class type, as if by a call to operator= with
7276  //       the subobject as the object expression and the corresponding
7277  //       subobject of x as a single function argument (as if by explicit
7278  //       qualification; that is, ignoring any possible virtual overriding
7279  //       functions in more derived classes);
7280  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7281    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7282
7283    // Look for operator=.
7284    DeclarationName Name
7285      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7286    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7287    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7288
7289    // Filter out any result that isn't a copy/move-assignment operator.
7290    LookupResult::Filter F = OpLookup.makeFilter();
7291    while (F.hasNext()) {
7292      NamedDecl *D = F.next();
7293      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7294        if (Method->isCopyAssignmentOperator() ||
7295            (!Copying && Method->isMoveAssignmentOperator()))
7296          continue;
7297
7298      F.erase();
7299    }
7300    F.done();
7301
7302    // Suppress the protected check (C++ [class.protected]) for each of the
7303    // assignment operators we found. This strange dance is required when
7304    // we're assigning via a base classes's copy-assignment operator. To
7305    // ensure that we're getting the right base class subobject (without
7306    // ambiguities), we need to cast "this" to that subobject type; to
7307    // ensure that we don't go through the virtual call mechanism, we need
7308    // to qualify the operator= name with the base class (see below). However,
7309    // this means that if the base class has a protected copy assignment
7310    // operator, the protected member access check will fail. So, we
7311    // rewrite "protected" access to "public" access in this case, since we
7312    // know by construction that we're calling from a derived class.
7313    if (CopyingBaseSubobject) {
7314      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7315           L != LEnd; ++L) {
7316        if (L.getAccess() == AS_protected)
7317          L.setAccess(AS_public);
7318      }
7319    }
7320
7321    // Create the nested-name-specifier that will be used to qualify the
7322    // reference to operator=; this is required to suppress the virtual
7323    // call mechanism.
7324    CXXScopeSpec SS;
7325    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7326    SS.MakeTrivial(S.Context,
7327                   NestedNameSpecifier::Create(S.Context, 0, false,
7328                                               CanonicalT),
7329                   Loc);
7330
7331    // Create the reference to operator=.
7332    ExprResult OpEqualRef
7333      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7334                                   /*TemplateKWLoc=*/SourceLocation(),
7335                                   /*FirstQualifierInScope=*/0,
7336                                   OpLookup,
7337                                   /*TemplateArgs=*/0,
7338                                   /*SuppressQualifierCheck=*/true);
7339    if (OpEqualRef.isInvalid())
7340      return StmtError();
7341
7342    // Build the call to the assignment operator.
7343
7344    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7345                                                  OpEqualRef.takeAs<Expr>(),
7346                                                  Loc, &From, 1, Loc);
7347    if (Call.isInvalid())
7348      return StmtError();
7349
7350    return S.Owned(Call.takeAs<Stmt>());
7351  }
7352
7353  //     - if the subobject is of scalar type, the built-in assignment
7354  //       operator is used.
7355  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7356  if (!ArrayTy) {
7357    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7358    if (Assignment.isInvalid())
7359      return StmtError();
7360
7361    return S.Owned(Assignment.takeAs<Stmt>());
7362  }
7363
7364  //     - if the subobject is an array, each element is assigned, in the
7365  //       manner appropriate to the element type;
7366
7367  // Construct a loop over the array bounds, e.g.,
7368  //
7369  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7370  //
7371  // that will copy each of the array elements.
7372  QualType SizeType = S.Context.getSizeType();
7373
7374  // Create the iteration variable.
7375  IdentifierInfo *IterationVarName = 0;
7376  {
7377    SmallString<8> Str;
7378    llvm::raw_svector_ostream OS(Str);
7379    OS << "__i" << Depth;
7380    IterationVarName = &S.Context.Idents.get(OS.str());
7381  }
7382  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7383                                          IterationVarName, SizeType,
7384                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7385                                          SC_None, SC_None);
7386
7387  // Initialize the iteration variable to zero.
7388  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7389  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7390
7391  // Create a reference to the iteration variable; we'll use this several
7392  // times throughout.
7393  Expr *IterationVarRef
7394    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7395  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7396  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7397  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7398
7399  // Create the DeclStmt that holds the iteration variable.
7400  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7401
7402  // Create the comparison against the array bound.
7403  llvm::APInt Upper
7404    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7405  Expr *Comparison
7406    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7407                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7408                                     BO_NE, S.Context.BoolTy,
7409                                     VK_RValue, OK_Ordinary, Loc);
7410
7411  // Create the pre-increment of the iteration variable.
7412  Expr *Increment
7413    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7414                                    VK_LValue, OK_Ordinary, Loc);
7415
7416  // Subscript the "from" and "to" expressions with the iteration variable.
7417  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7418                                                         IterationVarRefRVal,
7419                                                         Loc));
7420  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7421                                                       IterationVarRefRVal,
7422                                                       Loc));
7423  if (!Copying) // Cast to rvalue
7424    From = CastForMoving(S, From);
7425
7426  // Build the copy/move for an individual element of the array.
7427  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7428                                          To, From, CopyingBaseSubobject,
7429                                          Copying, Depth + 1);
7430  if (Copy.isInvalid())
7431    return StmtError();
7432
7433  // Construct the loop that copies all elements of this array.
7434  return S.ActOnForStmt(Loc, Loc, InitStmt,
7435                        S.MakeFullExpr(Comparison),
7436                        0, S.MakeFullExpr(Increment),
7437                        Loc, Copy.take());
7438}
7439
7440std::pair<Sema::ImplicitExceptionSpecification, bool>
7441Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7442                                                   CXXRecordDecl *ClassDecl) {
7443  if (ClassDecl->isInvalidDecl())
7444    return std::make_pair(ImplicitExceptionSpecification(*this), true);
7445
7446  // C++ [class.copy]p10:
7447  //   If the class definition does not explicitly declare a copy
7448  //   assignment operator, one is declared implicitly.
7449  //   The implicitly-defined copy assignment operator for a class X
7450  //   will have the form
7451  //
7452  //       X& X::operator=(const X&)
7453  //
7454  //   if
7455  bool HasConstCopyAssignment = true;
7456
7457  //       -- each direct base class B of X has a copy assignment operator
7458  //          whose parameter is of type const B&, const volatile B& or B,
7459  //          and
7460  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7461                                       BaseEnd = ClassDecl->bases_end();
7462       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7463    // We'll handle this below
7464    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7465      continue;
7466
7467    assert(!Base->getType()->isDependentType() &&
7468           "Cannot generate implicit members for class with dependent bases.");
7469    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7470    HasConstCopyAssignment &=
7471      (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7472                                    false, 0);
7473  }
7474
7475  // In C++11, the above citation has "or virtual" added
7476  if (LangOpts.CPlusPlus0x) {
7477    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7478                                         BaseEnd = ClassDecl->vbases_end();
7479         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7480      assert(!Base->getType()->isDependentType() &&
7481             "Cannot generate implicit members for class with dependent bases.");
7482      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7483      HasConstCopyAssignment &=
7484        (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7485                                      false, 0);
7486    }
7487  }
7488
7489  //       -- for all the nonstatic data members of X that are of a class
7490  //          type M (or array thereof), each such class type has a copy
7491  //          assignment operator whose parameter is of type const M&,
7492  //          const volatile M& or M.
7493  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7494                                  FieldEnd = ClassDecl->field_end();
7495       HasConstCopyAssignment && Field != FieldEnd;
7496       ++Field) {
7497    QualType FieldType = Context.getBaseElementType(Field->getType());
7498    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7499      HasConstCopyAssignment &=
7500        (bool)LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7501                                      false, 0);
7502    }
7503  }
7504
7505  //   Otherwise, the implicitly declared copy assignment operator will
7506  //   have the form
7507  //
7508  //       X& X::operator=(X&)
7509
7510  // C++ [except.spec]p14:
7511  //   An implicitly declared special member function (Clause 12) shall have an
7512  //   exception-specification. [...]
7513
7514  // It is unspecified whether or not an implicit copy assignment operator
7515  // attempts to deduplicate calls to assignment operators of virtual bases are
7516  // made. As such, this exception specification is effectively unspecified.
7517  // Based on a similar decision made for constness in C++0x, we're erring on
7518  // the side of assuming such calls to be made regardless of whether they
7519  // actually happen.
7520  ImplicitExceptionSpecification ExceptSpec(*this);
7521  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7522  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7523                                       BaseEnd = ClassDecl->bases_end();
7524       Base != BaseEnd; ++Base) {
7525    if (Base->isVirtual())
7526      continue;
7527
7528    CXXRecordDecl *BaseClassDecl
7529      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7530    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7531                                                            ArgQuals, false, 0))
7532      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7533  }
7534
7535  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7536                                       BaseEnd = ClassDecl->vbases_end();
7537       Base != BaseEnd; ++Base) {
7538    CXXRecordDecl *BaseClassDecl
7539      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7540    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7541                                                            ArgQuals, false, 0))
7542      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7543  }
7544
7545  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7546                                  FieldEnd = ClassDecl->field_end();
7547       Field != FieldEnd;
7548       ++Field) {
7549    QualType FieldType = Context.getBaseElementType(Field->getType());
7550    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7551      if (CXXMethodDecl *CopyAssign =
7552          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7553        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7554    }
7555  }
7556
7557  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7558}
7559
7560CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7561  // Note: The following rules are largely analoguous to the copy
7562  // constructor rules. Note that virtual bases are not taken into account
7563  // for determining the argument type of the operator. Note also that
7564  // operators taking an object instead of a reference are allowed.
7565
7566  ImplicitExceptionSpecification Spec(*this);
7567  bool Const;
7568  llvm::tie(Spec, Const) =
7569    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7570
7571  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7572  QualType RetType = Context.getLValueReferenceType(ArgType);
7573  if (Const)
7574    ArgType = ArgType.withConst();
7575  ArgType = Context.getLValueReferenceType(ArgType);
7576
7577  //   An implicitly-declared copy assignment operator is an inline public
7578  //   member of its class.
7579  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7580  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7581  SourceLocation ClassLoc = ClassDecl->getLocation();
7582  DeclarationNameInfo NameInfo(Name, ClassLoc);
7583  CXXMethodDecl *CopyAssignment
7584    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7585                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7586                            /*TInfo=*/0, /*isStatic=*/false,
7587                            /*StorageClassAsWritten=*/SC_None,
7588                            /*isInline=*/true, /*isConstexpr=*/false,
7589                            SourceLocation());
7590  CopyAssignment->setAccess(AS_public);
7591  CopyAssignment->setDefaulted();
7592  CopyAssignment->setImplicit();
7593  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7594
7595  // Add the parameter to the operator.
7596  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7597                                               ClassLoc, ClassLoc, /*Id=*/0,
7598                                               ArgType, /*TInfo=*/0,
7599                                               SC_None,
7600                                               SC_None, 0);
7601  CopyAssignment->setParams(FromParam);
7602
7603  // Note that we have added this copy-assignment operator.
7604  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7605
7606  if (Scope *S = getScopeForContext(ClassDecl))
7607    PushOnScopeChains(CopyAssignment, S, false);
7608  ClassDecl->addDecl(CopyAssignment);
7609
7610  // C++0x [class.copy]p19:
7611  //   ....  If the class definition does not explicitly declare a copy
7612  //   assignment operator, there is no user-declared move constructor, and
7613  //   there is no user-declared move assignment operator, a copy assignment
7614  //   operator is implicitly declared as defaulted.
7615  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7616    CopyAssignment->setDeletedAsWritten();
7617
7618  AddOverriddenMethods(ClassDecl, CopyAssignment);
7619  return CopyAssignment;
7620}
7621
7622void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7623                                        CXXMethodDecl *CopyAssignOperator) {
7624  assert((CopyAssignOperator->isDefaulted() &&
7625          CopyAssignOperator->isOverloadedOperator() &&
7626          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7627          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7628          !CopyAssignOperator->isDeleted()) &&
7629         "DefineImplicitCopyAssignment called for wrong function");
7630
7631  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7632
7633  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7634    CopyAssignOperator->setInvalidDecl();
7635    return;
7636  }
7637
7638  CopyAssignOperator->setUsed();
7639
7640  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7641  DiagnosticErrorTrap Trap(Diags);
7642
7643  // C++0x [class.copy]p30:
7644  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7645  //   for a non-union class X performs memberwise copy assignment of its
7646  //   subobjects. The direct base classes of X are assigned first, in the
7647  //   order of their declaration in the base-specifier-list, and then the
7648  //   immediate non-static data members of X are assigned, in the order in
7649  //   which they were declared in the class definition.
7650
7651  // The statements that form the synthesized function body.
7652  ASTOwningVector<Stmt*> Statements(*this);
7653
7654  // The parameter for the "other" object, which we are copying from.
7655  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7656  Qualifiers OtherQuals = Other->getType().getQualifiers();
7657  QualType OtherRefType = Other->getType();
7658  if (const LValueReferenceType *OtherRef
7659                                = OtherRefType->getAs<LValueReferenceType>()) {
7660    OtherRefType = OtherRef->getPointeeType();
7661    OtherQuals = OtherRefType.getQualifiers();
7662  }
7663
7664  // Our location for everything implicitly-generated.
7665  SourceLocation Loc = CopyAssignOperator->getLocation();
7666
7667  // Construct a reference to the "other" object. We'll be using this
7668  // throughout the generated ASTs.
7669  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7670  assert(OtherRef && "Reference to parameter cannot fail!");
7671
7672  // Construct the "this" pointer. We'll be using this throughout the generated
7673  // ASTs.
7674  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7675  assert(This && "Reference to this cannot fail!");
7676
7677  // Assign base classes.
7678  bool Invalid = false;
7679  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7680       E = ClassDecl->bases_end(); Base != E; ++Base) {
7681    // Form the assignment:
7682    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7683    QualType BaseType = Base->getType().getUnqualifiedType();
7684    if (!BaseType->isRecordType()) {
7685      Invalid = true;
7686      continue;
7687    }
7688
7689    CXXCastPath BasePath;
7690    BasePath.push_back(Base);
7691
7692    // Construct the "from" expression, which is an implicit cast to the
7693    // appropriately-qualified base type.
7694    Expr *From = OtherRef;
7695    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7696                             CK_UncheckedDerivedToBase,
7697                             VK_LValue, &BasePath).take();
7698
7699    // Dereference "this".
7700    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7701
7702    // Implicitly cast "this" to the appropriately-qualified base type.
7703    To = ImpCastExprToType(To.take(),
7704                           Context.getCVRQualifiedType(BaseType,
7705                                     CopyAssignOperator->getTypeQualifiers()),
7706                           CK_UncheckedDerivedToBase,
7707                           VK_LValue, &BasePath);
7708
7709    // Build the copy.
7710    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7711                                            To.get(), From,
7712                                            /*CopyingBaseSubobject=*/true,
7713                                            /*Copying=*/true);
7714    if (Copy.isInvalid()) {
7715      Diag(CurrentLocation, diag::note_member_synthesized_at)
7716        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7717      CopyAssignOperator->setInvalidDecl();
7718      return;
7719    }
7720
7721    // Success! Record the copy.
7722    Statements.push_back(Copy.takeAs<Expr>());
7723  }
7724
7725  // \brief Reference to the __builtin_memcpy function.
7726  Expr *BuiltinMemCpyRef = 0;
7727  // \brief Reference to the __builtin_objc_memmove_collectable function.
7728  Expr *CollectableMemCpyRef = 0;
7729
7730  // Assign non-static members.
7731  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7732                                  FieldEnd = ClassDecl->field_end();
7733       Field != FieldEnd; ++Field) {
7734    if (Field->isUnnamedBitfield())
7735      continue;
7736
7737    // Check for members of reference type; we can't copy those.
7738    if (Field->getType()->isReferenceType()) {
7739      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7740        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7741      Diag(Field->getLocation(), diag::note_declared_at);
7742      Diag(CurrentLocation, diag::note_member_synthesized_at)
7743        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7744      Invalid = true;
7745      continue;
7746    }
7747
7748    // Check for members of const-qualified, non-class type.
7749    QualType BaseType = Context.getBaseElementType(Field->getType());
7750    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7751      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7752        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7753      Diag(Field->getLocation(), diag::note_declared_at);
7754      Diag(CurrentLocation, diag::note_member_synthesized_at)
7755        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7756      Invalid = true;
7757      continue;
7758    }
7759
7760    // Suppress assigning zero-width bitfields.
7761    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7762      continue;
7763
7764    QualType FieldType = Field->getType().getNonReferenceType();
7765    if (FieldType->isIncompleteArrayType()) {
7766      assert(ClassDecl->hasFlexibleArrayMember() &&
7767             "Incomplete array type is not valid");
7768      continue;
7769    }
7770
7771    // Build references to the field in the object we're copying from and to.
7772    CXXScopeSpec SS; // Intentionally empty
7773    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7774                              LookupMemberName);
7775    MemberLookup.addDecl(*Field);
7776    MemberLookup.resolveKind();
7777    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7778                                               Loc, /*IsArrow=*/false,
7779                                               SS, SourceLocation(), 0,
7780                                               MemberLookup, 0);
7781    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7782                                             Loc, /*IsArrow=*/true,
7783                                             SS, SourceLocation(), 0,
7784                                             MemberLookup, 0);
7785    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7786    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7787
7788    // If the field should be copied with __builtin_memcpy rather than via
7789    // explicit assignments, do so. This optimization only applies for arrays
7790    // of scalars and arrays of class type with trivial copy-assignment
7791    // operators.
7792    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7793        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7794      // Compute the size of the memory buffer to be copied.
7795      QualType SizeType = Context.getSizeType();
7796      llvm::APInt Size(Context.getTypeSize(SizeType),
7797                       Context.getTypeSizeInChars(BaseType).getQuantity());
7798      for (const ConstantArrayType *Array
7799              = Context.getAsConstantArrayType(FieldType);
7800           Array;
7801           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7802        llvm::APInt ArraySize
7803          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7804        Size *= ArraySize;
7805      }
7806
7807      // Take the address of the field references for "from" and "to".
7808      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7809      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7810
7811      bool NeedsCollectableMemCpy =
7812          (BaseType->isRecordType() &&
7813           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7814
7815      if (NeedsCollectableMemCpy) {
7816        if (!CollectableMemCpyRef) {
7817          // Create a reference to the __builtin_objc_memmove_collectable function.
7818          LookupResult R(*this,
7819                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7820                         Loc, LookupOrdinaryName);
7821          LookupName(R, TUScope, true);
7822
7823          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7824          if (!CollectableMemCpy) {
7825            // Something went horribly wrong earlier, and we will have
7826            // complained about it.
7827            Invalid = true;
7828            continue;
7829          }
7830
7831          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7832                                                  CollectableMemCpy->getType(),
7833                                                  VK_LValue, Loc, 0).take();
7834          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7835        }
7836      }
7837      // Create a reference to the __builtin_memcpy builtin function.
7838      else if (!BuiltinMemCpyRef) {
7839        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7840                       LookupOrdinaryName);
7841        LookupName(R, TUScope, true);
7842
7843        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7844        if (!BuiltinMemCpy) {
7845          // Something went horribly wrong earlier, and we will have complained
7846          // about it.
7847          Invalid = true;
7848          continue;
7849        }
7850
7851        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7852                                            BuiltinMemCpy->getType(),
7853                                            VK_LValue, Loc, 0).take();
7854        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7855      }
7856
7857      ASTOwningVector<Expr*> CallArgs(*this);
7858      CallArgs.push_back(To.takeAs<Expr>());
7859      CallArgs.push_back(From.takeAs<Expr>());
7860      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7861      ExprResult Call = ExprError();
7862      if (NeedsCollectableMemCpy)
7863        Call = ActOnCallExpr(/*Scope=*/0,
7864                             CollectableMemCpyRef,
7865                             Loc, move_arg(CallArgs),
7866                             Loc);
7867      else
7868        Call = ActOnCallExpr(/*Scope=*/0,
7869                             BuiltinMemCpyRef,
7870                             Loc, move_arg(CallArgs),
7871                             Loc);
7872
7873      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7874      Statements.push_back(Call.takeAs<Expr>());
7875      continue;
7876    }
7877
7878    // Build the copy of this field.
7879    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7880                                            To.get(), From.get(),
7881                                            /*CopyingBaseSubobject=*/false,
7882                                            /*Copying=*/true);
7883    if (Copy.isInvalid()) {
7884      Diag(CurrentLocation, diag::note_member_synthesized_at)
7885        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7886      CopyAssignOperator->setInvalidDecl();
7887      return;
7888    }
7889
7890    // Success! Record the copy.
7891    Statements.push_back(Copy.takeAs<Stmt>());
7892  }
7893
7894  if (!Invalid) {
7895    // Add a "return *this;"
7896    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7897
7898    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7899    if (Return.isInvalid())
7900      Invalid = true;
7901    else {
7902      Statements.push_back(Return.takeAs<Stmt>());
7903
7904      if (Trap.hasErrorOccurred()) {
7905        Diag(CurrentLocation, diag::note_member_synthesized_at)
7906          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7907        Invalid = true;
7908      }
7909    }
7910  }
7911
7912  if (Invalid) {
7913    CopyAssignOperator->setInvalidDecl();
7914    return;
7915  }
7916
7917  StmtResult Body;
7918  {
7919    CompoundScopeRAII CompoundScope(*this);
7920    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7921                             /*isStmtExpr=*/false);
7922    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7923  }
7924  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7925
7926  if (ASTMutationListener *L = getASTMutationListener()) {
7927    L->CompletedImplicitDefinition(CopyAssignOperator);
7928  }
7929}
7930
7931Sema::ImplicitExceptionSpecification
7932Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7933  ImplicitExceptionSpecification ExceptSpec(*this);
7934
7935  if (ClassDecl->isInvalidDecl())
7936    return ExceptSpec;
7937
7938  // C++0x [except.spec]p14:
7939  //   An implicitly declared special member function (Clause 12) shall have an
7940  //   exception-specification. [...]
7941
7942  // It is unspecified whether or not an implicit move assignment operator
7943  // attempts to deduplicate calls to assignment operators of virtual bases are
7944  // made. As such, this exception specification is effectively unspecified.
7945  // Based on a similar decision made for constness in C++0x, we're erring on
7946  // the side of assuming such calls to be made regardless of whether they
7947  // actually happen.
7948  // Note that a move constructor is not implicitly declared when there are
7949  // virtual bases, but it can still be user-declared and explicitly defaulted.
7950  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7951                                       BaseEnd = ClassDecl->bases_end();
7952       Base != BaseEnd; ++Base) {
7953    if (Base->isVirtual())
7954      continue;
7955
7956    CXXRecordDecl *BaseClassDecl
7957      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7958    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7959                                                           false, 0))
7960      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7961  }
7962
7963  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7964                                       BaseEnd = ClassDecl->vbases_end();
7965       Base != BaseEnd; ++Base) {
7966    CXXRecordDecl *BaseClassDecl
7967      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7968    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7969                                                           false, 0))
7970      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7971  }
7972
7973  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7974                                  FieldEnd = ClassDecl->field_end();
7975       Field != FieldEnd;
7976       ++Field) {
7977    QualType FieldType = Context.getBaseElementType(Field->getType());
7978    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7979      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7980                                                             false, 0))
7981        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
7982    }
7983  }
7984
7985  return ExceptSpec;
7986}
7987
7988/// Determine whether the class type has any direct or indirect virtual base
7989/// classes which have a non-trivial move assignment operator.
7990static bool
7991hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
7992  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7993                                          BaseEnd = ClassDecl->vbases_end();
7994       Base != BaseEnd; ++Base) {
7995    CXXRecordDecl *BaseClass =
7996        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7997
7998    // Try to declare the move assignment. If it would be deleted, then the
7999    // class does not have a non-trivial move assignment.
8000    if (BaseClass->needsImplicitMoveAssignment())
8001      S.DeclareImplicitMoveAssignment(BaseClass);
8002
8003    // If the class has both a trivial move assignment and a non-trivial move
8004    // assignment, hasTrivialMoveAssignment() is false.
8005    if (BaseClass->hasDeclaredMoveAssignment() &&
8006        !BaseClass->hasTrivialMoveAssignment())
8007      return true;
8008  }
8009
8010  return false;
8011}
8012
8013/// Determine whether the given type either has a move constructor or is
8014/// trivially copyable.
8015static bool
8016hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8017  Type = S.Context.getBaseElementType(Type);
8018
8019  // FIXME: Technically, non-trivially-copyable non-class types, such as
8020  // reference types, are supposed to return false here, but that appears
8021  // to be a standard defect.
8022  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8023  if (!ClassDecl || !ClassDecl->getDefinition())
8024    return true;
8025
8026  if (Type.isTriviallyCopyableType(S.Context))
8027    return true;
8028
8029  if (IsConstructor) {
8030    if (ClassDecl->needsImplicitMoveConstructor())
8031      S.DeclareImplicitMoveConstructor(ClassDecl);
8032    return ClassDecl->hasDeclaredMoveConstructor();
8033  }
8034
8035  if (ClassDecl->needsImplicitMoveAssignment())
8036    S.DeclareImplicitMoveAssignment(ClassDecl);
8037  return ClassDecl->hasDeclaredMoveAssignment();
8038}
8039
8040/// Determine whether all non-static data members and direct or virtual bases
8041/// of class \p ClassDecl have either a move operation, or are trivially
8042/// copyable.
8043static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8044                                            bool IsConstructor) {
8045  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8046                                          BaseEnd = ClassDecl->bases_end();
8047       Base != BaseEnd; ++Base) {
8048    if (Base->isVirtual())
8049      continue;
8050
8051    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8052      return false;
8053  }
8054
8055  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8056                                          BaseEnd = ClassDecl->vbases_end();
8057       Base != BaseEnd; ++Base) {
8058    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8059      return false;
8060  }
8061
8062  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8063                                     FieldEnd = ClassDecl->field_end();
8064       Field != FieldEnd; ++Field) {
8065    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8066      return false;
8067  }
8068
8069  return true;
8070}
8071
8072CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8073  // C++11 [class.copy]p20:
8074  //   If the definition of a class X does not explicitly declare a move
8075  //   assignment operator, one will be implicitly declared as defaulted
8076  //   if and only if:
8077  //
8078  //   - [first 4 bullets]
8079  assert(ClassDecl->needsImplicitMoveAssignment());
8080
8081  // [Checked after we build the declaration]
8082  //   - the move assignment operator would not be implicitly defined as
8083  //     deleted,
8084
8085  // [DR1402]:
8086  //   - X has no direct or indirect virtual base class with a non-trivial
8087  //     move assignment operator, and
8088  //   - each of X's non-static data members and direct or virtual base classes
8089  //     has a type that either has a move assignment operator or is trivially
8090  //     copyable.
8091  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8092      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8093    ClassDecl->setFailedImplicitMoveAssignment();
8094    return 0;
8095  }
8096
8097  // Note: The following rules are largely analoguous to the move
8098  // constructor rules.
8099
8100  ImplicitExceptionSpecification Spec(
8101      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8102
8103  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8104  QualType RetType = Context.getLValueReferenceType(ArgType);
8105  ArgType = Context.getRValueReferenceType(ArgType);
8106
8107  //   An implicitly-declared move assignment operator is an inline public
8108  //   member of its class.
8109  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8110  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8111  SourceLocation ClassLoc = ClassDecl->getLocation();
8112  DeclarationNameInfo NameInfo(Name, ClassLoc);
8113  CXXMethodDecl *MoveAssignment
8114    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8115                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8116                            /*TInfo=*/0, /*isStatic=*/false,
8117                            /*StorageClassAsWritten=*/SC_None,
8118                            /*isInline=*/true,
8119                            /*isConstexpr=*/false,
8120                            SourceLocation());
8121  MoveAssignment->setAccess(AS_public);
8122  MoveAssignment->setDefaulted();
8123  MoveAssignment->setImplicit();
8124  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8125
8126  // Add the parameter to the operator.
8127  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8128                                               ClassLoc, ClassLoc, /*Id=*/0,
8129                                               ArgType, /*TInfo=*/0,
8130                                               SC_None,
8131                                               SC_None, 0);
8132  MoveAssignment->setParams(FromParam);
8133
8134  // Note that we have added this copy-assignment operator.
8135  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8136
8137  // C++0x [class.copy]p9:
8138  //   If the definition of a class X does not explicitly declare a move
8139  //   assignment operator, one will be implicitly declared as defaulted if and
8140  //   only if:
8141  //   [...]
8142  //   - the move assignment operator would not be implicitly defined as
8143  //     deleted.
8144  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8145    // Cache this result so that we don't try to generate this over and over
8146    // on every lookup, leaking memory and wasting time.
8147    ClassDecl->setFailedImplicitMoveAssignment();
8148    return 0;
8149  }
8150
8151  if (Scope *S = getScopeForContext(ClassDecl))
8152    PushOnScopeChains(MoveAssignment, S, false);
8153  ClassDecl->addDecl(MoveAssignment);
8154
8155  AddOverriddenMethods(ClassDecl, MoveAssignment);
8156  return MoveAssignment;
8157}
8158
8159void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8160                                        CXXMethodDecl *MoveAssignOperator) {
8161  assert((MoveAssignOperator->isDefaulted() &&
8162          MoveAssignOperator->isOverloadedOperator() &&
8163          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8164          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8165          !MoveAssignOperator->isDeleted()) &&
8166         "DefineImplicitMoveAssignment called for wrong function");
8167
8168  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8169
8170  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8171    MoveAssignOperator->setInvalidDecl();
8172    return;
8173  }
8174
8175  MoveAssignOperator->setUsed();
8176
8177  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8178  DiagnosticErrorTrap Trap(Diags);
8179
8180  // C++0x [class.copy]p28:
8181  //   The implicitly-defined or move assignment operator for a non-union class
8182  //   X performs memberwise move assignment of its subobjects. The direct base
8183  //   classes of X are assigned first, in the order of their declaration in the
8184  //   base-specifier-list, and then the immediate non-static data members of X
8185  //   are assigned, in the order in which they were declared in the class
8186  //   definition.
8187
8188  // The statements that form the synthesized function body.
8189  ASTOwningVector<Stmt*> Statements(*this);
8190
8191  // The parameter for the "other" object, which we are move from.
8192  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8193  QualType OtherRefType = Other->getType()->
8194      getAs<RValueReferenceType>()->getPointeeType();
8195  assert(OtherRefType.getQualifiers() == 0 &&
8196         "Bad argument type of defaulted move assignment");
8197
8198  // Our location for everything implicitly-generated.
8199  SourceLocation Loc = MoveAssignOperator->getLocation();
8200
8201  // Construct a reference to the "other" object. We'll be using this
8202  // throughout the generated ASTs.
8203  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8204  assert(OtherRef && "Reference to parameter cannot fail!");
8205  // Cast to rvalue.
8206  OtherRef = CastForMoving(*this, OtherRef);
8207
8208  // Construct the "this" pointer. We'll be using this throughout the generated
8209  // ASTs.
8210  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8211  assert(This && "Reference to this cannot fail!");
8212
8213  // Assign base classes.
8214  bool Invalid = false;
8215  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8216       E = ClassDecl->bases_end(); Base != E; ++Base) {
8217    // Form the assignment:
8218    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8219    QualType BaseType = Base->getType().getUnqualifiedType();
8220    if (!BaseType->isRecordType()) {
8221      Invalid = true;
8222      continue;
8223    }
8224
8225    CXXCastPath BasePath;
8226    BasePath.push_back(Base);
8227
8228    // Construct the "from" expression, which is an implicit cast to the
8229    // appropriately-qualified base type.
8230    Expr *From = OtherRef;
8231    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8232                             VK_XValue, &BasePath).take();
8233
8234    // Dereference "this".
8235    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8236
8237    // Implicitly cast "this" to the appropriately-qualified base type.
8238    To = ImpCastExprToType(To.take(),
8239                           Context.getCVRQualifiedType(BaseType,
8240                                     MoveAssignOperator->getTypeQualifiers()),
8241                           CK_UncheckedDerivedToBase,
8242                           VK_LValue, &BasePath);
8243
8244    // Build the move.
8245    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8246                                            To.get(), From,
8247                                            /*CopyingBaseSubobject=*/true,
8248                                            /*Copying=*/false);
8249    if (Move.isInvalid()) {
8250      Diag(CurrentLocation, diag::note_member_synthesized_at)
8251        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8252      MoveAssignOperator->setInvalidDecl();
8253      return;
8254    }
8255
8256    // Success! Record the move.
8257    Statements.push_back(Move.takeAs<Expr>());
8258  }
8259
8260  // \brief Reference to the __builtin_memcpy function.
8261  Expr *BuiltinMemCpyRef = 0;
8262  // \brief Reference to the __builtin_objc_memmove_collectable function.
8263  Expr *CollectableMemCpyRef = 0;
8264
8265  // Assign non-static members.
8266  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8267                                  FieldEnd = ClassDecl->field_end();
8268       Field != FieldEnd; ++Field) {
8269    if (Field->isUnnamedBitfield())
8270      continue;
8271
8272    // Check for members of reference type; we can't move those.
8273    if (Field->getType()->isReferenceType()) {
8274      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8275        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8276      Diag(Field->getLocation(), diag::note_declared_at);
8277      Diag(CurrentLocation, diag::note_member_synthesized_at)
8278        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8279      Invalid = true;
8280      continue;
8281    }
8282
8283    // Check for members of const-qualified, non-class type.
8284    QualType BaseType = Context.getBaseElementType(Field->getType());
8285    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8286      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8287        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8288      Diag(Field->getLocation(), diag::note_declared_at);
8289      Diag(CurrentLocation, diag::note_member_synthesized_at)
8290        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8291      Invalid = true;
8292      continue;
8293    }
8294
8295    // Suppress assigning zero-width bitfields.
8296    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8297      continue;
8298
8299    QualType FieldType = Field->getType().getNonReferenceType();
8300    if (FieldType->isIncompleteArrayType()) {
8301      assert(ClassDecl->hasFlexibleArrayMember() &&
8302             "Incomplete array type is not valid");
8303      continue;
8304    }
8305
8306    // Build references to the field in the object we're copying from and to.
8307    CXXScopeSpec SS; // Intentionally empty
8308    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8309                              LookupMemberName);
8310    MemberLookup.addDecl(*Field);
8311    MemberLookup.resolveKind();
8312    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8313                                               Loc, /*IsArrow=*/false,
8314                                               SS, SourceLocation(), 0,
8315                                               MemberLookup, 0);
8316    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8317                                             Loc, /*IsArrow=*/true,
8318                                             SS, SourceLocation(), 0,
8319                                             MemberLookup, 0);
8320    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8321    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8322
8323    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8324        "Member reference with rvalue base must be rvalue except for reference "
8325        "members, which aren't allowed for move assignment.");
8326
8327    // If the field should be copied with __builtin_memcpy rather than via
8328    // explicit assignments, do so. This optimization only applies for arrays
8329    // of scalars and arrays of class type with trivial move-assignment
8330    // operators.
8331    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8332        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8333      // Compute the size of the memory buffer to be copied.
8334      QualType SizeType = Context.getSizeType();
8335      llvm::APInt Size(Context.getTypeSize(SizeType),
8336                       Context.getTypeSizeInChars(BaseType).getQuantity());
8337      for (const ConstantArrayType *Array
8338              = Context.getAsConstantArrayType(FieldType);
8339           Array;
8340           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8341        llvm::APInt ArraySize
8342          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8343        Size *= ArraySize;
8344      }
8345
8346      // Take the address of the field references for "from" and "to". We
8347      // directly construct UnaryOperators here because semantic analysis
8348      // does not permit us to take the address of an xvalue.
8349      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8350                             Context.getPointerType(From.get()->getType()),
8351                             VK_RValue, OK_Ordinary, Loc);
8352      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8353                           Context.getPointerType(To.get()->getType()),
8354                           VK_RValue, OK_Ordinary, Loc);
8355
8356      bool NeedsCollectableMemCpy =
8357          (BaseType->isRecordType() &&
8358           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8359
8360      if (NeedsCollectableMemCpy) {
8361        if (!CollectableMemCpyRef) {
8362          // Create a reference to the __builtin_objc_memmove_collectable function.
8363          LookupResult R(*this,
8364                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8365                         Loc, LookupOrdinaryName);
8366          LookupName(R, TUScope, true);
8367
8368          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8369          if (!CollectableMemCpy) {
8370            // Something went horribly wrong earlier, and we will have
8371            // complained about it.
8372            Invalid = true;
8373            continue;
8374          }
8375
8376          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8377                                                  CollectableMemCpy->getType(),
8378                                                  VK_LValue, Loc, 0).take();
8379          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8380        }
8381      }
8382      // Create a reference to the __builtin_memcpy builtin function.
8383      else if (!BuiltinMemCpyRef) {
8384        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8385                       LookupOrdinaryName);
8386        LookupName(R, TUScope, true);
8387
8388        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8389        if (!BuiltinMemCpy) {
8390          // Something went horribly wrong earlier, and we will have complained
8391          // about it.
8392          Invalid = true;
8393          continue;
8394        }
8395
8396        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8397                                            BuiltinMemCpy->getType(),
8398                                            VK_LValue, Loc, 0).take();
8399        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8400      }
8401
8402      ASTOwningVector<Expr*> CallArgs(*this);
8403      CallArgs.push_back(To.takeAs<Expr>());
8404      CallArgs.push_back(From.takeAs<Expr>());
8405      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8406      ExprResult Call = ExprError();
8407      if (NeedsCollectableMemCpy)
8408        Call = ActOnCallExpr(/*Scope=*/0,
8409                             CollectableMemCpyRef,
8410                             Loc, move_arg(CallArgs),
8411                             Loc);
8412      else
8413        Call = ActOnCallExpr(/*Scope=*/0,
8414                             BuiltinMemCpyRef,
8415                             Loc, move_arg(CallArgs),
8416                             Loc);
8417
8418      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8419      Statements.push_back(Call.takeAs<Expr>());
8420      continue;
8421    }
8422
8423    // Build the move of this field.
8424    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8425                                            To.get(), From.get(),
8426                                            /*CopyingBaseSubobject=*/false,
8427                                            /*Copying=*/false);
8428    if (Move.isInvalid()) {
8429      Diag(CurrentLocation, diag::note_member_synthesized_at)
8430        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8431      MoveAssignOperator->setInvalidDecl();
8432      return;
8433    }
8434
8435    // Success! Record the copy.
8436    Statements.push_back(Move.takeAs<Stmt>());
8437  }
8438
8439  if (!Invalid) {
8440    // Add a "return *this;"
8441    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8442
8443    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8444    if (Return.isInvalid())
8445      Invalid = true;
8446    else {
8447      Statements.push_back(Return.takeAs<Stmt>());
8448
8449      if (Trap.hasErrorOccurred()) {
8450        Diag(CurrentLocation, diag::note_member_synthesized_at)
8451          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8452        Invalid = true;
8453      }
8454    }
8455  }
8456
8457  if (Invalid) {
8458    MoveAssignOperator->setInvalidDecl();
8459    return;
8460  }
8461
8462  StmtResult Body;
8463  {
8464    CompoundScopeRAII CompoundScope(*this);
8465    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8466                             /*isStmtExpr=*/false);
8467    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8468  }
8469  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8470
8471  if (ASTMutationListener *L = getASTMutationListener()) {
8472    L->CompletedImplicitDefinition(MoveAssignOperator);
8473  }
8474}
8475
8476std::pair<Sema::ImplicitExceptionSpecification, bool>
8477Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8478  if (ClassDecl->isInvalidDecl())
8479    return std::make_pair(ImplicitExceptionSpecification(*this), true);
8480
8481  // C++ [class.copy]p5:
8482  //   The implicitly-declared copy constructor for a class X will
8483  //   have the form
8484  //
8485  //       X::X(const X&)
8486  //
8487  //   if
8488  // FIXME: It ought to be possible to store this on the record.
8489  bool HasConstCopyConstructor = true;
8490
8491  //     -- each direct or virtual base class B of X has a copy
8492  //        constructor whose first parameter is of type const B& or
8493  //        const volatile B&, and
8494  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8495                                       BaseEnd = ClassDecl->bases_end();
8496       HasConstCopyConstructor && Base != BaseEnd;
8497       ++Base) {
8498    // Virtual bases are handled below.
8499    if (Base->isVirtual())
8500      continue;
8501
8502    CXXRecordDecl *BaseClassDecl
8503      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8504    HasConstCopyConstructor &=
8505      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8506  }
8507
8508  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8509                                       BaseEnd = ClassDecl->vbases_end();
8510       HasConstCopyConstructor && Base != BaseEnd;
8511       ++Base) {
8512    CXXRecordDecl *BaseClassDecl
8513      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8514    HasConstCopyConstructor &=
8515      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8516  }
8517
8518  //     -- for all the nonstatic data members of X that are of a
8519  //        class type M (or array thereof), each such class type
8520  //        has a copy constructor whose first parameter is of type
8521  //        const M& or const volatile M&.
8522  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8523                                  FieldEnd = ClassDecl->field_end();
8524       HasConstCopyConstructor && Field != FieldEnd;
8525       ++Field) {
8526    QualType FieldType = Context.getBaseElementType(Field->getType());
8527    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8528      HasConstCopyConstructor &=
8529        (bool)LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const);
8530    }
8531  }
8532  //   Otherwise, the implicitly declared copy constructor will have
8533  //   the form
8534  //
8535  //       X::X(X&)
8536
8537  // C++ [except.spec]p14:
8538  //   An implicitly declared special member function (Clause 12) shall have an
8539  //   exception-specification. [...]
8540  ImplicitExceptionSpecification ExceptSpec(*this);
8541  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8542  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8543                                       BaseEnd = ClassDecl->bases_end();
8544       Base != BaseEnd;
8545       ++Base) {
8546    // Virtual bases are handled below.
8547    if (Base->isVirtual())
8548      continue;
8549
8550    CXXRecordDecl *BaseClassDecl
8551      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8552    if (CXXConstructorDecl *CopyConstructor =
8553          LookupCopyingConstructor(BaseClassDecl, Quals))
8554      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8555  }
8556  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8557                                       BaseEnd = ClassDecl->vbases_end();
8558       Base != BaseEnd;
8559       ++Base) {
8560    CXXRecordDecl *BaseClassDecl
8561      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8562    if (CXXConstructorDecl *CopyConstructor =
8563          LookupCopyingConstructor(BaseClassDecl, Quals))
8564      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8565  }
8566  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8567                                  FieldEnd = ClassDecl->field_end();
8568       Field != FieldEnd;
8569       ++Field) {
8570    QualType FieldType = Context.getBaseElementType(Field->getType());
8571    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8572      if (CXXConstructorDecl *CopyConstructor =
8573        LookupCopyingConstructor(FieldClassDecl, Quals))
8574      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8575    }
8576  }
8577
8578  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8579}
8580
8581CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8582                                                    CXXRecordDecl *ClassDecl) {
8583  // C++ [class.copy]p4:
8584  //   If the class definition does not explicitly declare a copy
8585  //   constructor, one is declared implicitly.
8586
8587  ImplicitExceptionSpecification Spec(*this);
8588  bool Const;
8589  llvm::tie(Spec, Const) =
8590    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8591
8592  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8593  QualType ArgType = ClassType;
8594  if (Const)
8595    ArgType = ArgType.withConst();
8596  ArgType = Context.getLValueReferenceType(ArgType);
8597
8598  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8599
8600  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8601                                                     CXXCopyConstructor,
8602                                                     Const);
8603
8604  DeclarationName Name
8605    = Context.DeclarationNames.getCXXConstructorName(
8606                                           Context.getCanonicalType(ClassType));
8607  SourceLocation ClassLoc = ClassDecl->getLocation();
8608  DeclarationNameInfo NameInfo(Name, ClassLoc);
8609
8610  //   An implicitly-declared copy constructor is an inline public
8611  //   member of its class.
8612  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8613      Context, ClassDecl, ClassLoc, NameInfo,
8614      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8615      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8616      Constexpr);
8617  CopyConstructor->setAccess(AS_public);
8618  CopyConstructor->setDefaulted();
8619  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8620
8621  // Note that we have declared this constructor.
8622  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8623
8624  // Add the parameter to the constructor.
8625  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8626                                               ClassLoc, ClassLoc,
8627                                               /*IdentifierInfo=*/0,
8628                                               ArgType, /*TInfo=*/0,
8629                                               SC_None,
8630                                               SC_None, 0);
8631  CopyConstructor->setParams(FromParam);
8632
8633  if (Scope *S = getScopeForContext(ClassDecl))
8634    PushOnScopeChains(CopyConstructor, S, false);
8635  ClassDecl->addDecl(CopyConstructor);
8636
8637  // C++11 [class.copy]p8:
8638  //   ... If the class definition does not explicitly declare a copy
8639  //   constructor, there is no user-declared move constructor, and there is no
8640  //   user-declared move assignment operator, a copy constructor is implicitly
8641  //   declared as defaulted.
8642  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8643    CopyConstructor->setDeletedAsWritten();
8644
8645  return CopyConstructor;
8646}
8647
8648void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8649                                   CXXConstructorDecl *CopyConstructor) {
8650  assert((CopyConstructor->isDefaulted() &&
8651          CopyConstructor->isCopyConstructor() &&
8652          !CopyConstructor->doesThisDeclarationHaveABody() &&
8653          !CopyConstructor->isDeleted()) &&
8654         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8655
8656  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8657  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8658
8659  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8660  DiagnosticErrorTrap Trap(Diags);
8661
8662  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8663      Trap.hasErrorOccurred()) {
8664    Diag(CurrentLocation, diag::note_member_synthesized_at)
8665      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8666    CopyConstructor->setInvalidDecl();
8667  }  else {
8668    Sema::CompoundScopeRAII CompoundScope(*this);
8669    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8670                                               CopyConstructor->getLocation(),
8671                                               MultiStmtArg(*this, 0, 0),
8672                                               /*isStmtExpr=*/false)
8673                                                              .takeAs<Stmt>());
8674    CopyConstructor->setImplicitlyDefined(true);
8675  }
8676
8677  CopyConstructor->setUsed();
8678  if (ASTMutationListener *L = getASTMutationListener()) {
8679    L->CompletedImplicitDefinition(CopyConstructor);
8680  }
8681}
8682
8683Sema::ImplicitExceptionSpecification
8684Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8685  // C++ [except.spec]p14:
8686  //   An implicitly declared special member function (Clause 12) shall have an
8687  //   exception-specification. [...]
8688  ImplicitExceptionSpecification ExceptSpec(*this);
8689  if (ClassDecl->isInvalidDecl())
8690    return ExceptSpec;
8691
8692  // Direct base-class constructors.
8693  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8694                                       BEnd = ClassDecl->bases_end();
8695       B != BEnd; ++B) {
8696    if (B->isVirtual()) // Handled below.
8697      continue;
8698
8699    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8700      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8701      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8702      // If this is a deleted function, add it anyway. This might be conformant
8703      // with the standard. This might not. I'm not sure. It might not matter.
8704      if (Constructor)
8705        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8706    }
8707  }
8708
8709  // Virtual base-class constructors.
8710  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8711                                       BEnd = ClassDecl->vbases_end();
8712       B != BEnd; ++B) {
8713    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8714      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8715      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8716      // If this is a deleted function, add it anyway. This might be conformant
8717      // with the standard. This might not. I'm not sure. It might not matter.
8718      if (Constructor)
8719        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8720    }
8721  }
8722
8723  // Field constructors.
8724  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8725                               FEnd = ClassDecl->field_end();
8726       F != FEnd; ++F) {
8727    if (const RecordType *RecordTy
8728              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8729      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8730      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8731      // If this is a deleted function, add it anyway. This might be conformant
8732      // with the standard. This might not. I'm not sure. It might not matter.
8733      // In particular, the problem is that this function never gets called. It
8734      // might just be ill-formed because this function attempts to refer to
8735      // a deleted function here.
8736      if (Constructor)
8737        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8738    }
8739  }
8740
8741  return ExceptSpec;
8742}
8743
8744CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8745                                                    CXXRecordDecl *ClassDecl) {
8746  // C++11 [class.copy]p9:
8747  //   If the definition of a class X does not explicitly declare a move
8748  //   constructor, one will be implicitly declared as defaulted if and only if:
8749  //
8750  //   - [first 4 bullets]
8751  assert(ClassDecl->needsImplicitMoveConstructor());
8752
8753  // [Checked after we build the declaration]
8754  //   - the move assignment operator would not be implicitly defined as
8755  //     deleted,
8756
8757  // [DR1402]:
8758  //   - each of X's non-static data members and direct or virtual base classes
8759  //     has a type that either has a move constructor or is trivially copyable.
8760  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8761    ClassDecl->setFailedImplicitMoveConstructor();
8762    return 0;
8763  }
8764
8765  ImplicitExceptionSpecification Spec(
8766      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8767
8768  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8769  QualType ArgType = Context.getRValueReferenceType(ClassType);
8770
8771  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8772
8773  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8774                                                     CXXMoveConstructor,
8775                                                     false);
8776
8777  DeclarationName Name
8778    = Context.DeclarationNames.getCXXConstructorName(
8779                                           Context.getCanonicalType(ClassType));
8780  SourceLocation ClassLoc = ClassDecl->getLocation();
8781  DeclarationNameInfo NameInfo(Name, ClassLoc);
8782
8783  // C++0x [class.copy]p11:
8784  //   An implicitly-declared copy/move constructor is an inline public
8785  //   member of its class.
8786  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8787      Context, ClassDecl, ClassLoc, NameInfo,
8788      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8789      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8790      Constexpr);
8791  MoveConstructor->setAccess(AS_public);
8792  MoveConstructor->setDefaulted();
8793  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8794
8795  // Add the parameter to the constructor.
8796  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8797                                               ClassLoc, ClassLoc,
8798                                               /*IdentifierInfo=*/0,
8799                                               ArgType, /*TInfo=*/0,
8800                                               SC_None,
8801                                               SC_None, 0);
8802  MoveConstructor->setParams(FromParam);
8803
8804  // C++0x [class.copy]p9:
8805  //   If the definition of a class X does not explicitly declare a move
8806  //   constructor, one will be implicitly declared as defaulted if and only if:
8807  //   [...]
8808  //   - the move constructor would not be implicitly defined as deleted.
8809  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8810    // Cache this result so that we don't try to generate this over and over
8811    // on every lookup, leaking memory and wasting time.
8812    ClassDecl->setFailedImplicitMoveConstructor();
8813    return 0;
8814  }
8815
8816  // Note that we have declared this constructor.
8817  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8818
8819  if (Scope *S = getScopeForContext(ClassDecl))
8820    PushOnScopeChains(MoveConstructor, S, false);
8821  ClassDecl->addDecl(MoveConstructor);
8822
8823  return MoveConstructor;
8824}
8825
8826void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8827                                   CXXConstructorDecl *MoveConstructor) {
8828  assert((MoveConstructor->isDefaulted() &&
8829          MoveConstructor->isMoveConstructor() &&
8830          !MoveConstructor->doesThisDeclarationHaveABody() &&
8831          !MoveConstructor->isDeleted()) &&
8832         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8833
8834  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8835  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8836
8837  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8838  DiagnosticErrorTrap Trap(Diags);
8839
8840  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8841      Trap.hasErrorOccurred()) {
8842    Diag(CurrentLocation, diag::note_member_synthesized_at)
8843      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8844    MoveConstructor->setInvalidDecl();
8845  }  else {
8846    Sema::CompoundScopeRAII CompoundScope(*this);
8847    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8848                                               MoveConstructor->getLocation(),
8849                                               MultiStmtArg(*this, 0, 0),
8850                                               /*isStmtExpr=*/false)
8851                                                              .takeAs<Stmt>());
8852    MoveConstructor->setImplicitlyDefined(true);
8853  }
8854
8855  MoveConstructor->setUsed();
8856
8857  if (ASTMutationListener *L = getASTMutationListener()) {
8858    L->CompletedImplicitDefinition(MoveConstructor);
8859  }
8860}
8861
8862bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8863  return FD->isDeleted() &&
8864         (FD->isDefaulted() || FD->isImplicit()) &&
8865         isa<CXXMethodDecl>(FD);
8866}
8867
8868/// \brief Mark the call operator of the given lambda closure type as "used".
8869static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8870  CXXMethodDecl *CallOperator
8871    = cast<CXXMethodDecl>(
8872        *Lambda->lookup(
8873          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8874  CallOperator->setReferenced();
8875  CallOperator->setUsed();
8876}
8877
8878void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8879       SourceLocation CurrentLocation,
8880       CXXConversionDecl *Conv)
8881{
8882  CXXRecordDecl *Lambda = Conv->getParent();
8883
8884  // Make sure that the lambda call operator is marked used.
8885  markLambdaCallOperatorUsed(*this, Lambda);
8886
8887  Conv->setUsed();
8888
8889  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8890  DiagnosticErrorTrap Trap(Diags);
8891
8892  // Return the address of the __invoke function.
8893  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8894  CXXMethodDecl *Invoke
8895    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8896  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8897                                       VK_LValue, Conv->getLocation()).take();
8898  assert(FunctionRef && "Can't refer to __invoke function?");
8899  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8900  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8901                                           Conv->getLocation(),
8902                                           Conv->getLocation()));
8903
8904  // Fill in the __invoke function with a dummy implementation. IR generation
8905  // will fill in the actual details.
8906  Invoke->setUsed();
8907  Invoke->setReferenced();
8908  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
8909
8910  if (ASTMutationListener *L = getASTMutationListener()) {
8911    L->CompletedImplicitDefinition(Conv);
8912    L->CompletedImplicitDefinition(Invoke);
8913  }
8914}
8915
8916void Sema::DefineImplicitLambdaToBlockPointerConversion(
8917       SourceLocation CurrentLocation,
8918       CXXConversionDecl *Conv)
8919{
8920  Conv->setUsed();
8921
8922  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8923  DiagnosticErrorTrap Trap(Diags);
8924
8925  // Copy-initialize the lambda object as needed to capture it.
8926  Expr *This = ActOnCXXThis(CurrentLocation).take();
8927  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8928
8929  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8930                                                        Conv->getLocation(),
8931                                                        Conv, DerefThis);
8932
8933  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8934  // behavior.  Note that only the general conversion function does this
8935  // (since it's unusable otherwise); in the case where we inline the
8936  // block literal, it has block literal lifetime semantics.
8937  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8938    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8939                                          CK_CopyAndAutoreleaseBlockObject,
8940                                          BuildBlock.get(), 0, VK_RValue);
8941
8942  if (BuildBlock.isInvalid()) {
8943    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8944    Conv->setInvalidDecl();
8945    return;
8946  }
8947
8948  // Create the return statement that returns the block from the conversion
8949  // function.
8950  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
8951  if (Return.isInvalid()) {
8952    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8953    Conv->setInvalidDecl();
8954    return;
8955  }
8956
8957  // Set the body of the conversion function.
8958  Stmt *ReturnS = Return.take();
8959  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8960                                           Conv->getLocation(),
8961                                           Conv->getLocation()));
8962
8963  // We're done; notify the mutation listener, if any.
8964  if (ASTMutationListener *L = getASTMutationListener()) {
8965    L->CompletedImplicitDefinition(Conv);
8966  }
8967}
8968
8969/// \brief Determine whether the given list arguments contains exactly one
8970/// "real" (non-default) argument.
8971static bool hasOneRealArgument(MultiExprArg Args) {
8972  switch (Args.size()) {
8973  case 0:
8974    return false;
8975
8976  default:
8977    if (!Args.get()[1]->isDefaultArgument())
8978      return false;
8979
8980    // fall through
8981  case 1:
8982    return !Args.get()[0]->isDefaultArgument();
8983  }
8984
8985  return false;
8986}
8987
8988ExprResult
8989Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8990                            CXXConstructorDecl *Constructor,
8991                            MultiExprArg ExprArgs,
8992                            bool HadMultipleCandidates,
8993                            bool RequiresZeroInit,
8994                            unsigned ConstructKind,
8995                            SourceRange ParenRange) {
8996  bool Elidable = false;
8997
8998  // C++0x [class.copy]p34:
8999  //   When certain criteria are met, an implementation is allowed to
9000  //   omit the copy/move construction of a class object, even if the
9001  //   copy/move constructor and/or destructor for the object have
9002  //   side effects. [...]
9003  //     - when a temporary class object that has not been bound to a
9004  //       reference (12.2) would be copied/moved to a class object
9005  //       with the same cv-unqualified type, the copy/move operation
9006  //       can be omitted by constructing the temporary object
9007  //       directly into the target of the omitted copy/move
9008  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9009      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9010    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9011    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9012  }
9013
9014  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9015                               Elidable, move(ExprArgs), HadMultipleCandidates,
9016                               RequiresZeroInit, ConstructKind, ParenRange);
9017}
9018
9019/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9020/// including handling of its default argument expressions.
9021ExprResult
9022Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9023                            CXXConstructorDecl *Constructor, bool Elidable,
9024                            MultiExprArg ExprArgs,
9025                            bool HadMultipleCandidates,
9026                            bool RequiresZeroInit,
9027                            unsigned ConstructKind,
9028                            SourceRange ParenRange) {
9029  unsigned NumExprs = ExprArgs.size();
9030  Expr **Exprs = (Expr **)ExprArgs.release();
9031
9032  MarkFunctionReferenced(ConstructLoc, Constructor);
9033  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9034                                        Constructor, Elidable, Exprs, NumExprs,
9035                                        HadMultipleCandidates, /*FIXME*/false,
9036                                        RequiresZeroInit,
9037              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9038                                        ParenRange));
9039}
9040
9041bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9042                                        CXXConstructorDecl *Constructor,
9043                                        MultiExprArg Exprs,
9044                                        bool HadMultipleCandidates) {
9045  // FIXME: Provide the correct paren SourceRange when available.
9046  ExprResult TempResult =
9047    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9048                          move(Exprs), HadMultipleCandidates, false,
9049                          CXXConstructExpr::CK_Complete, SourceRange());
9050  if (TempResult.isInvalid())
9051    return true;
9052
9053  Expr *Temp = TempResult.takeAs<Expr>();
9054  CheckImplicitConversions(Temp, VD->getLocation());
9055  MarkFunctionReferenced(VD->getLocation(), Constructor);
9056  Temp = MaybeCreateExprWithCleanups(Temp);
9057  VD->setInit(Temp);
9058
9059  return false;
9060}
9061
9062void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9063  if (VD->isInvalidDecl()) return;
9064
9065  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9066  if (ClassDecl->isInvalidDecl()) return;
9067  if (ClassDecl->hasIrrelevantDestructor()) return;
9068  if (ClassDecl->isDependentContext()) return;
9069
9070  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9071  MarkFunctionReferenced(VD->getLocation(), Destructor);
9072  CheckDestructorAccess(VD->getLocation(), Destructor,
9073                        PDiag(diag::err_access_dtor_var)
9074                        << VD->getDeclName()
9075                        << VD->getType());
9076  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9077
9078  if (!VD->hasGlobalStorage()) return;
9079
9080  // Emit warning for non-trivial dtor in global scope (a real global,
9081  // class-static, function-static).
9082  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9083
9084  // TODO: this should be re-enabled for static locals by !CXAAtExit
9085  if (!VD->isStaticLocal())
9086    Diag(VD->getLocation(), diag::warn_global_destructor);
9087}
9088
9089/// \brief Given a constructor and the set of arguments provided for the
9090/// constructor, convert the arguments and add any required default arguments
9091/// to form a proper call to this constructor.
9092///
9093/// \returns true if an error occurred, false otherwise.
9094bool
9095Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9096                              MultiExprArg ArgsPtr,
9097                              SourceLocation Loc,
9098                              ASTOwningVector<Expr*> &ConvertedArgs,
9099                              bool AllowExplicit) {
9100  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9101  unsigned NumArgs = ArgsPtr.size();
9102  Expr **Args = (Expr **)ArgsPtr.get();
9103
9104  const FunctionProtoType *Proto
9105    = Constructor->getType()->getAs<FunctionProtoType>();
9106  assert(Proto && "Constructor without a prototype?");
9107  unsigned NumArgsInProto = Proto->getNumArgs();
9108
9109  // If too few arguments are available, we'll fill in the rest with defaults.
9110  if (NumArgs < NumArgsInProto)
9111    ConvertedArgs.reserve(NumArgsInProto);
9112  else
9113    ConvertedArgs.reserve(NumArgs);
9114
9115  VariadicCallType CallType =
9116    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9117  SmallVector<Expr *, 8> AllArgs;
9118  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9119                                        Proto, 0, Args, NumArgs, AllArgs,
9120                                        CallType, AllowExplicit);
9121  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9122
9123  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9124
9125  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9126                       Proto, Loc);
9127
9128  return Invalid;
9129}
9130
9131static inline bool
9132CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9133                                       const FunctionDecl *FnDecl) {
9134  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9135  if (isa<NamespaceDecl>(DC)) {
9136    return SemaRef.Diag(FnDecl->getLocation(),
9137                        diag::err_operator_new_delete_declared_in_namespace)
9138      << FnDecl->getDeclName();
9139  }
9140
9141  if (isa<TranslationUnitDecl>(DC) &&
9142      FnDecl->getStorageClass() == SC_Static) {
9143    return SemaRef.Diag(FnDecl->getLocation(),
9144                        diag::err_operator_new_delete_declared_static)
9145      << FnDecl->getDeclName();
9146  }
9147
9148  return false;
9149}
9150
9151static inline bool
9152CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9153                            CanQualType ExpectedResultType,
9154                            CanQualType ExpectedFirstParamType,
9155                            unsigned DependentParamTypeDiag,
9156                            unsigned InvalidParamTypeDiag) {
9157  QualType ResultType =
9158    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9159
9160  // Check that the result type is not dependent.
9161  if (ResultType->isDependentType())
9162    return SemaRef.Diag(FnDecl->getLocation(),
9163                        diag::err_operator_new_delete_dependent_result_type)
9164    << FnDecl->getDeclName() << ExpectedResultType;
9165
9166  // Check that the result type is what we expect.
9167  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9168    return SemaRef.Diag(FnDecl->getLocation(),
9169                        diag::err_operator_new_delete_invalid_result_type)
9170    << FnDecl->getDeclName() << ExpectedResultType;
9171
9172  // A function template must have at least 2 parameters.
9173  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9174    return SemaRef.Diag(FnDecl->getLocation(),
9175                      diag::err_operator_new_delete_template_too_few_parameters)
9176        << FnDecl->getDeclName();
9177
9178  // The function decl must have at least 1 parameter.
9179  if (FnDecl->getNumParams() == 0)
9180    return SemaRef.Diag(FnDecl->getLocation(),
9181                        diag::err_operator_new_delete_too_few_parameters)
9182      << FnDecl->getDeclName();
9183
9184  // Check the the first parameter type is not dependent.
9185  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9186  if (FirstParamType->isDependentType())
9187    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9188      << FnDecl->getDeclName() << ExpectedFirstParamType;
9189
9190  // Check that the first parameter type is what we expect.
9191  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9192      ExpectedFirstParamType)
9193    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9194    << FnDecl->getDeclName() << ExpectedFirstParamType;
9195
9196  return false;
9197}
9198
9199static bool
9200CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9201  // C++ [basic.stc.dynamic.allocation]p1:
9202  //   A program is ill-formed if an allocation function is declared in a
9203  //   namespace scope other than global scope or declared static in global
9204  //   scope.
9205  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9206    return true;
9207
9208  CanQualType SizeTy =
9209    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9210
9211  // C++ [basic.stc.dynamic.allocation]p1:
9212  //  The return type shall be void*. The first parameter shall have type
9213  //  std::size_t.
9214  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9215                                  SizeTy,
9216                                  diag::err_operator_new_dependent_param_type,
9217                                  diag::err_operator_new_param_type))
9218    return true;
9219
9220  // C++ [basic.stc.dynamic.allocation]p1:
9221  //  The first parameter shall not have an associated default argument.
9222  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9223    return SemaRef.Diag(FnDecl->getLocation(),
9224                        diag::err_operator_new_default_arg)
9225      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9226
9227  return false;
9228}
9229
9230static bool
9231CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9232  // C++ [basic.stc.dynamic.deallocation]p1:
9233  //   A program is ill-formed if deallocation functions are declared in a
9234  //   namespace scope other than global scope or declared static in global
9235  //   scope.
9236  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9237    return true;
9238
9239  // C++ [basic.stc.dynamic.deallocation]p2:
9240  //   Each deallocation function shall return void and its first parameter
9241  //   shall be void*.
9242  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9243                                  SemaRef.Context.VoidPtrTy,
9244                                 diag::err_operator_delete_dependent_param_type,
9245                                 diag::err_operator_delete_param_type))
9246    return true;
9247
9248  return false;
9249}
9250
9251/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9252/// of this overloaded operator is well-formed. If so, returns false;
9253/// otherwise, emits appropriate diagnostics and returns true.
9254bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9255  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9256         "Expected an overloaded operator declaration");
9257
9258  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9259
9260  // C++ [over.oper]p5:
9261  //   The allocation and deallocation functions, operator new,
9262  //   operator new[], operator delete and operator delete[], are
9263  //   described completely in 3.7.3. The attributes and restrictions
9264  //   found in the rest of this subclause do not apply to them unless
9265  //   explicitly stated in 3.7.3.
9266  if (Op == OO_Delete || Op == OO_Array_Delete)
9267    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9268
9269  if (Op == OO_New || Op == OO_Array_New)
9270    return CheckOperatorNewDeclaration(*this, FnDecl);
9271
9272  // C++ [over.oper]p6:
9273  //   An operator function shall either be a non-static member
9274  //   function or be a non-member function and have at least one
9275  //   parameter whose type is a class, a reference to a class, an
9276  //   enumeration, or a reference to an enumeration.
9277  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9278    if (MethodDecl->isStatic())
9279      return Diag(FnDecl->getLocation(),
9280                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9281  } else {
9282    bool ClassOrEnumParam = false;
9283    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9284                                   ParamEnd = FnDecl->param_end();
9285         Param != ParamEnd; ++Param) {
9286      QualType ParamType = (*Param)->getType().getNonReferenceType();
9287      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9288          ParamType->isEnumeralType()) {
9289        ClassOrEnumParam = true;
9290        break;
9291      }
9292    }
9293
9294    if (!ClassOrEnumParam)
9295      return Diag(FnDecl->getLocation(),
9296                  diag::err_operator_overload_needs_class_or_enum)
9297        << FnDecl->getDeclName();
9298  }
9299
9300  // C++ [over.oper]p8:
9301  //   An operator function cannot have default arguments (8.3.6),
9302  //   except where explicitly stated below.
9303  //
9304  // Only the function-call operator allows default arguments
9305  // (C++ [over.call]p1).
9306  if (Op != OO_Call) {
9307    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9308         Param != FnDecl->param_end(); ++Param) {
9309      if ((*Param)->hasDefaultArg())
9310        return Diag((*Param)->getLocation(),
9311                    diag::err_operator_overload_default_arg)
9312          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9313    }
9314  }
9315
9316  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9317    { false, false, false }
9318#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9319    , { Unary, Binary, MemberOnly }
9320#include "clang/Basic/OperatorKinds.def"
9321  };
9322
9323  bool CanBeUnaryOperator = OperatorUses[Op][0];
9324  bool CanBeBinaryOperator = OperatorUses[Op][1];
9325  bool MustBeMemberOperator = OperatorUses[Op][2];
9326
9327  // C++ [over.oper]p8:
9328  //   [...] Operator functions cannot have more or fewer parameters
9329  //   than the number required for the corresponding operator, as
9330  //   described in the rest of this subclause.
9331  unsigned NumParams = FnDecl->getNumParams()
9332                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9333  if (Op != OO_Call &&
9334      ((NumParams == 1 && !CanBeUnaryOperator) ||
9335       (NumParams == 2 && !CanBeBinaryOperator) ||
9336       (NumParams < 1) || (NumParams > 2))) {
9337    // We have the wrong number of parameters.
9338    unsigned ErrorKind;
9339    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9340      ErrorKind = 2;  // 2 -> unary or binary.
9341    } else if (CanBeUnaryOperator) {
9342      ErrorKind = 0;  // 0 -> unary
9343    } else {
9344      assert(CanBeBinaryOperator &&
9345             "All non-call overloaded operators are unary or binary!");
9346      ErrorKind = 1;  // 1 -> binary
9347    }
9348
9349    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9350      << FnDecl->getDeclName() << NumParams << ErrorKind;
9351  }
9352
9353  // Overloaded operators other than operator() cannot be variadic.
9354  if (Op != OO_Call &&
9355      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9356    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9357      << FnDecl->getDeclName();
9358  }
9359
9360  // Some operators must be non-static member functions.
9361  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9362    return Diag(FnDecl->getLocation(),
9363                diag::err_operator_overload_must_be_member)
9364      << FnDecl->getDeclName();
9365  }
9366
9367  // C++ [over.inc]p1:
9368  //   The user-defined function called operator++ implements the
9369  //   prefix and postfix ++ operator. If this function is a member
9370  //   function with no parameters, or a non-member function with one
9371  //   parameter of class or enumeration type, it defines the prefix
9372  //   increment operator ++ for objects of that type. If the function
9373  //   is a member function with one parameter (which shall be of type
9374  //   int) or a non-member function with two parameters (the second
9375  //   of which shall be of type int), it defines the postfix
9376  //   increment operator ++ for objects of that type.
9377  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9378    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9379    bool ParamIsInt = false;
9380    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9381      ParamIsInt = BT->getKind() == BuiltinType::Int;
9382
9383    if (!ParamIsInt)
9384      return Diag(LastParam->getLocation(),
9385                  diag::err_operator_overload_post_incdec_must_be_int)
9386        << LastParam->getType() << (Op == OO_MinusMinus);
9387  }
9388
9389  return false;
9390}
9391
9392/// CheckLiteralOperatorDeclaration - Check whether the declaration
9393/// of this literal operator function is well-formed. If so, returns
9394/// false; otherwise, emits appropriate diagnostics and returns true.
9395bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9396  if (isa<CXXMethodDecl>(FnDecl)) {
9397    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9398      << FnDecl->getDeclName();
9399    return true;
9400  }
9401
9402  if (FnDecl->isExternC()) {
9403    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9404    return true;
9405  }
9406
9407  bool Valid = false;
9408
9409  // This might be the definition of a literal operator template.
9410  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9411  // This might be a specialization of a literal operator template.
9412  if (!TpDecl)
9413    TpDecl = FnDecl->getPrimaryTemplate();
9414
9415  // template <char...> type operator "" name() is the only valid template
9416  // signature, and the only valid signature with no parameters.
9417  if (TpDecl) {
9418    if (FnDecl->param_size() == 0) {
9419      // Must have only one template parameter
9420      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9421      if (Params->size() == 1) {
9422        NonTypeTemplateParmDecl *PmDecl =
9423          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9424
9425        // The template parameter must be a char parameter pack.
9426        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9427            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9428          Valid = true;
9429      }
9430    }
9431  } else if (FnDecl->param_size()) {
9432    // Check the first parameter
9433    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9434
9435    QualType T = (*Param)->getType().getUnqualifiedType();
9436
9437    // unsigned long long int, long double, and any character type are allowed
9438    // as the only parameters.
9439    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9440        Context.hasSameType(T, Context.LongDoubleTy) ||
9441        Context.hasSameType(T, Context.CharTy) ||
9442        Context.hasSameType(T, Context.WCharTy) ||
9443        Context.hasSameType(T, Context.Char16Ty) ||
9444        Context.hasSameType(T, Context.Char32Ty)) {
9445      if (++Param == FnDecl->param_end())
9446        Valid = true;
9447      goto FinishedParams;
9448    }
9449
9450    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9451    const PointerType *PT = T->getAs<PointerType>();
9452    if (!PT)
9453      goto FinishedParams;
9454    T = PT->getPointeeType();
9455    if (!T.isConstQualified() || T.isVolatileQualified())
9456      goto FinishedParams;
9457    T = T.getUnqualifiedType();
9458
9459    // Move on to the second parameter;
9460    ++Param;
9461
9462    // If there is no second parameter, the first must be a const char *
9463    if (Param == FnDecl->param_end()) {
9464      if (Context.hasSameType(T, Context.CharTy))
9465        Valid = true;
9466      goto FinishedParams;
9467    }
9468
9469    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9470    // are allowed as the first parameter to a two-parameter function
9471    if (!(Context.hasSameType(T, Context.CharTy) ||
9472          Context.hasSameType(T, Context.WCharTy) ||
9473          Context.hasSameType(T, Context.Char16Ty) ||
9474          Context.hasSameType(T, Context.Char32Ty)))
9475      goto FinishedParams;
9476
9477    // The second and final parameter must be an std::size_t
9478    T = (*Param)->getType().getUnqualifiedType();
9479    if (Context.hasSameType(T, Context.getSizeType()) &&
9480        ++Param == FnDecl->param_end())
9481      Valid = true;
9482  }
9483
9484  // FIXME: This diagnostic is absolutely terrible.
9485FinishedParams:
9486  if (!Valid) {
9487    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9488      << FnDecl->getDeclName();
9489    return true;
9490  }
9491
9492  // A parameter-declaration-clause containing a default argument is not
9493  // equivalent to any of the permitted forms.
9494  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9495                                    ParamEnd = FnDecl->param_end();
9496       Param != ParamEnd; ++Param) {
9497    if ((*Param)->hasDefaultArg()) {
9498      Diag((*Param)->getDefaultArgRange().getBegin(),
9499           diag::err_literal_operator_default_argument)
9500        << (*Param)->getDefaultArgRange();
9501      break;
9502    }
9503  }
9504
9505  StringRef LiteralName
9506    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9507  if (LiteralName[0] != '_') {
9508    // C++11 [usrlit.suffix]p1:
9509    //   Literal suffix identifiers that do not start with an underscore
9510    //   are reserved for future standardization.
9511    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9512  }
9513
9514  return false;
9515}
9516
9517/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9518/// linkage specification, including the language and (if present)
9519/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9520/// the location of the language string literal, which is provided
9521/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9522/// the '{' brace. Otherwise, this linkage specification does not
9523/// have any braces.
9524Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9525                                           SourceLocation LangLoc,
9526                                           StringRef Lang,
9527                                           SourceLocation LBraceLoc) {
9528  LinkageSpecDecl::LanguageIDs Language;
9529  if (Lang == "\"C\"")
9530    Language = LinkageSpecDecl::lang_c;
9531  else if (Lang == "\"C++\"")
9532    Language = LinkageSpecDecl::lang_cxx;
9533  else {
9534    Diag(LangLoc, diag::err_bad_language);
9535    return 0;
9536  }
9537
9538  // FIXME: Add all the various semantics of linkage specifications
9539
9540  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9541                                               ExternLoc, LangLoc, Language);
9542  CurContext->addDecl(D);
9543  PushDeclContext(S, D);
9544  return D;
9545}
9546
9547/// ActOnFinishLinkageSpecification - Complete the definition of
9548/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9549/// valid, it's the position of the closing '}' brace in a linkage
9550/// specification that uses braces.
9551Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9552                                            Decl *LinkageSpec,
9553                                            SourceLocation RBraceLoc) {
9554  if (LinkageSpec) {
9555    if (RBraceLoc.isValid()) {
9556      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9557      LSDecl->setRBraceLoc(RBraceLoc);
9558    }
9559    PopDeclContext();
9560  }
9561  return LinkageSpec;
9562}
9563
9564/// \brief Perform semantic analysis for the variable declaration that
9565/// occurs within a C++ catch clause, returning the newly-created
9566/// variable.
9567VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9568                                         TypeSourceInfo *TInfo,
9569                                         SourceLocation StartLoc,
9570                                         SourceLocation Loc,
9571                                         IdentifierInfo *Name) {
9572  bool Invalid = false;
9573  QualType ExDeclType = TInfo->getType();
9574
9575  // Arrays and functions decay.
9576  if (ExDeclType->isArrayType())
9577    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9578  else if (ExDeclType->isFunctionType())
9579    ExDeclType = Context.getPointerType(ExDeclType);
9580
9581  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9582  // The exception-declaration shall not denote a pointer or reference to an
9583  // incomplete type, other than [cv] void*.
9584  // N2844 forbids rvalue references.
9585  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9586    Diag(Loc, diag::err_catch_rvalue_ref);
9587    Invalid = true;
9588  }
9589
9590  QualType BaseType = ExDeclType;
9591  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9592  unsigned DK = diag::err_catch_incomplete;
9593  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9594    BaseType = Ptr->getPointeeType();
9595    Mode = 1;
9596    DK = diag::err_catch_incomplete_ptr;
9597  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9598    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9599    BaseType = Ref->getPointeeType();
9600    Mode = 2;
9601    DK = diag::err_catch_incomplete_ref;
9602  }
9603  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9604      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9605    Invalid = true;
9606
9607  if (!Invalid && !ExDeclType->isDependentType() &&
9608      RequireNonAbstractType(Loc, ExDeclType,
9609                             diag::err_abstract_type_in_decl,
9610                             AbstractVariableType))
9611    Invalid = true;
9612
9613  // Only the non-fragile NeXT runtime currently supports C++ catches
9614  // of ObjC types, and no runtime supports catching ObjC types by value.
9615  if (!Invalid && getLangOpts().ObjC1) {
9616    QualType T = ExDeclType;
9617    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9618      T = RT->getPointeeType();
9619
9620    if (T->isObjCObjectType()) {
9621      Diag(Loc, diag::err_objc_object_catch);
9622      Invalid = true;
9623    } else if (T->isObjCObjectPointerType()) {
9624      // FIXME: should this be a test for macosx-fragile specifically?
9625      if (getLangOpts().ObjCRuntime.isFragile())
9626        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9627    }
9628  }
9629
9630  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9631                                    ExDeclType, TInfo, SC_None, SC_None);
9632  ExDecl->setExceptionVariable(true);
9633
9634  // In ARC, infer 'retaining' for variables of retainable type.
9635  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9636    Invalid = true;
9637
9638  if (!Invalid && !ExDeclType->isDependentType()) {
9639    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9640      // C++ [except.handle]p16:
9641      //   The object declared in an exception-declaration or, if the
9642      //   exception-declaration does not specify a name, a temporary (12.2) is
9643      //   copy-initialized (8.5) from the exception object. [...]
9644      //   The object is destroyed when the handler exits, after the destruction
9645      //   of any automatic objects initialized within the handler.
9646      //
9647      // We just pretend to initialize the object with itself, then make sure
9648      // it can be destroyed later.
9649      QualType initType = ExDeclType;
9650
9651      InitializedEntity entity =
9652        InitializedEntity::InitializeVariable(ExDecl);
9653      InitializationKind initKind =
9654        InitializationKind::CreateCopy(Loc, SourceLocation());
9655
9656      Expr *opaqueValue =
9657        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9658      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9659      ExprResult result = sequence.Perform(*this, entity, initKind,
9660                                           MultiExprArg(&opaqueValue, 1));
9661      if (result.isInvalid())
9662        Invalid = true;
9663      else {
9664        // If the constructor used was non-trivial, set this as the
9665        // "initializer".
9666        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9667        if (!construct->getConstructor()->isTrivial()) {
9668          Expr *init = MaybeCreateExprWithCleanups(construct);
9669          ExDecl->setInit(init);
9670        }
9671
9672        // And make sure it's destructable.
9673        FinalizeVarWithDestructor(ExDecl, recordType);
9674      }
9675    }
9676  }
9677
9678  if (Invalid)
9679    ExDecl->setInvalidDecl();
9680
9681  return ExDecl;
9682}
9683
9684/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9685/// handler.
9686Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9687  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9688  bool Invalid = D.isInvalidType();
9689
9690  // Check for unexpanded parameter packs.
9691  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9692                                               UPPC_ExceptionType)) {
9693    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9694                                             D.getIdentifierLoc());
9695    Invalid = true;
9696  }
9697
9698  IdentifierInfo *II = D.getIdentifier();
9699  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9700                                             LookupOrdinaryName,
9701                                             ForRedeclaration)) {
9702    // The scope should be freshly made just for us. There is just no way
9703    // it contains any previous declaration.
9704    assert(!S->isDeclScope(PrevDecl));
9705    if (PrevDecl->isTemplateParameter()) {
9706      // Maybe we will complain about the shadowed template parameter.
9707      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9708      PrevDecl = 0;
9709    }
9710  }
9711
9712  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9713    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9714      << D.getCXXScopeSpec().getRange();
9715    Invalid = true;
9716  }
9717
9718  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9719                                              D.getLocStart(),
9720                                              D.getIdentifierLoc(),
9721                                              D.getIdentifier());
9722  if (Invalid)
9723    ExDecl->setInvalidDecl();
9724
9725  // Add the exception declaration into this scope.
9726  if (II)
9727    PushOnScopeChains(ExDecl, S);
9728  else
9729    CurContext->addDecl(ExDecl);
9730
9731  ProcessDeclAttributes(S, ExDecl, D);
9732  return ExDecl;
9733}
9734
9735Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9736                                         Expr *AssertExpr,
9737                                         Expr *AssertMessageExpr_,
9738                                         SourceLocation RParenLoc) {
9739  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9740
9741  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9742    // In a static_assert-declaration, the constant-expression shall be a
9743    // constant expression that can be contextually converted to bool.
9744    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9745    if (Converted.isInvalid())
9746      return 0;
9747
9748    llvm::APSInt Cond;
9749    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9750          diag::err_static_assert_expression_is_not_constant,
9751          /*AllowFold=*/false).isInvalid())
9752      return 0;
9753
9754    if (!Cond) {
9755      llvm::SmallString<256> MsgBuffer;
9756      llvm::raw_svector_ostream Msg(MsgBuffer);
9757      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9758      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9759        << Msg.str() << AssertExpr->getSourceRange();
9760    }
9761  }
9762
9763  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9764    return 0;
9765
9766  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9767                                        AssertExpr, AssertMessage, RParenLoc);
9768
9769  CurContext->addDecl(Decl);
9770  return Decl;
9771}
9772
9773/// \brief Perform semantic analysis of the given friend type declaration.
9774///
9775/// \returns A friend declaration that.
9776FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9777                                      SourceLocation FriendLoc,
9778                                      TypeSourceInfo *TSInfo) {
9779  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9780
9781  QualType T = TSInfo->getType();
9782  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9783
9784  // C++03 [class.friend]p2:
9785  //   An elaborated-type-specifier shall be used in a friend declaration
9786  //   for a class.*
9787  //
9788  //   * The class-key of the elaborated-type-specifier is required.
9789  if (!ActiveTemplateInstantiations.empty()) {
9790    // Do not complain about the form of friend template types during
9791    // template instantiation; we will already have complained when the
9792    // template was declared.
9793  } else if (!T->isElaboratedTypeSpecifier()) {
9794    // If we evaluated the type to a record type, suggest putting
9795    // a tag in front.
9796    if (const RecordType *RT = T->getAs<RecordType>()) {
9797      RecordDecl *RD = RT->getDecl();
9798
9799      std::string InsertionText = std::string(" ") + RD->getKindName();
9800
9801      Diag(TypeRange.getBegin(),
9802           getLangOpts().CPlusPlus0x ?
9803             diag::warn_cxx98_compat_unelaborated_friend_type :
9804             diag::ext_unelaborated_friend_type)
9805        << (unsigned) RD->getTagKind()
9806        << T
9807        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9808                                      InsertionText);
9809    } else {
9810      Diag(FriendLoc,
9811           getLangOpts().CPlusPlus0x ?
9812             diag::warn_cxx98_compat_nonclass_type_friend :
9813             diag::ext_nonclass_type_friend)
9814        << T
9815        << SourceRange(FriendLoc, TypeRange.getEnd());
9816    }
9817  } else if (T->getAs<EnumType>()) {
9818    Diag(FriendLoc,
9819         getLangOpts().CPlusPlus0x ?
9820           diag::warn_cxx98_compat_enum_friend :
9821           diag::ext_enum_friend)
9822      << T
9823      << SourceRange(FriendLoc, TypeRange.getEnd());
9824  }
9825
9826  // C++0x [class.friend]p3:
9827  //   If the type specifier in a friend declaration designates a (possibly
9828  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9829  //   the friend declaration is ignored.
9830
9831  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9832  // in [class.friend]p3 that we do not implement.
9833
9834  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9835}
9836
9837/// Handle a friend tag declaration where the scope specifier was
9838/// templated.
9839Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9840                                    unsigned TagSpec, SourceLocation TagLoc,
9841                                    CXXScopeSpec &SS,
9842                                    IdentifierInfo *Name, SourceLocation NameLoc,
9843                                    AttributeList *Attr,
9844                                    MultiTemplateParamsArg TempParamLists) {
9845  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9846
9847  bool isExplicitSpecialization = false;
9848  bool Invalid = false;
9849
9850  if (TemplateParameterList *TemplateParams
9851        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9852                                                  TempParamLists.get(),
9853                                                  TempParamLists.size(),
9854                                                  /*friend*/ true,
9855                                                  isExplicitSpecialization,
9856                                                  Invalid)) {
9857    if (TemplateParams->size() > 0) {
9858      // This is a declaration of a class template.
9859      if (Invalid)
9860        return 0;
9861
9862      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9863                                SS, Name, NameLoc, Attr,
9864                                TemplateParams, AS_public,
9865                                /*ModulePrivateLoc=*/SourceLocation(),
9866                                TempParamLists.size() - 1,
9867                   (TemplateParameterList**) TempParamLists.release()).take();
9868    } else {
9869      // The "template<>" header is extraneous.
9870      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9871        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9872      isExplicitSpecialization = true;
9873    }
9874  }
9875
9876  if (Invalid) return 0;
9877
9878  bool isAllExplicitSpecializations = true;
9879  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9880    if (TempParamLists.get()[I]->size()) {
9881      isAllExplicitSpecializations = false;
9882      break;
9883    }
9884  }
9885
9886  // FIXME: don't ignore attributes.
9887
9888  // If it's explicit specializations all the way down, just forget
9889  // about the template header and build an appropriate non-templated
9890  // friend.  TODO: for source fidelity, remember the headers.
9891  if (isAllExplicitSpecializations) {
9892    if (SS.isEmpty()) {
9893      bool Owned = false;
9894      bool IsDependent = false;
9895      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9896                      Attr, AS_public,
9897                      /*ModulePrivateLoc=*/SourceLocation(),
9898                      MultiTemplateParamsArg(), Owned, IsDependent,
9899                      /*ScopedEnumKWLoc=*/SourceLocation(),
9900                      /*ScopedEnumUsesClassTag=*/false,
9901                      /*UnderlyingType=*/TypeResult());
9902    }
9903
9904    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9905    ElaboratedTypeKeyword Keyword
9906      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9907    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9908                                   *Name, NameLoc);
9909    if (T.isNull())
9910      return 0;
9911
9912    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9913    if (isa<DependentNameType>(T)) {
9914      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9915      TL.setElaboratedKeywordLoc(TagLoc);
9916      TL.setQualifierLoc(QualifierLoc);
9917      TL.setNameLoc(NameLoc);
9918    } else {
9919      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9920      TL.setElaboratedKeywordLoc(TagLoc);
9921      TL.setQualifierLoc(QualifierLoc);
9922      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9923    }
9924
9925    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9926                                            TSI, FriendLoc);
9927    Friend->setAccess(AS_public);
9928    CurContext->addDecl(Friend);
9929    return Friend;
9930  }
9931
9932  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9933
9934
9935
9936  // Handle the case of a templated-scope friend class.  e.g.
9937  //   template <class T> class A<T>::B;
9938  // FIXME: we don't support these right now.
9939  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9940  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9941  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9942  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9943  TL.setElaboratedKeywordLoc(TagLoc);
9944  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9945  TL.setNameLoc(NameLoc);
9946
9947  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9948                                          TSI, FriendLoc);
9949  Friend->setAccess(AS_public);
9950  Friend->setUnsupportedFriend(true);
9951  CurContext->addDecl(Friend);
9952  return Friend;
9953}
9954
9955
9956/// Handle a friend type declaration.  This works in tandem with
9957/// ActOnTag.
9958///
9959/// Notes on friend class templates:
9960///
9961/// We generally treat friend class declarations as if they were
9962/// declaring a class.  So, for example, the elaborated type specifier
9963/// in a friend declaration is required to obey the restrictions of a
9964/// class-head (i.e. no typedefs in the scope chain), template
9965/// parameters are required to match up with simple template-ids, &c.
9966/// However, unlike when declaring a template specialization, it's
9967/// okay to refer to a template specialization without an empty
9968/// template parameter declaration, e.g.
9969///   friend class A<T>::B<unsigned>;
9970/// We permit this as a special case; if there are any template
9971/// parameters present at all, require proper matching, i.e.
9972///   template <> template \<class T> friend class A<int>::B;
9973Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9974                                MultiTemplateParamsArg TempParams) {
9975  SourceLocation Loc = DS.getLocStart();
9976
9977  assert(DS.isFriendSpecified());
9978  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9979
9980  // Try to convert the decl specifier to a type.  This works for
9981  // friend templates because ActOnTag never produces a ClassTemplateDecl
9982  // for a TUK_Friend.
9983  Declarator TheDeclarator(DS, Declarator::MemberContext);
9984  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9985  QualType T = TSI->getType();
9986  if (TheDeclarator.isInvalidType())
9987    return 0;
9988
9989  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9990    return 0;
9991
9992  // This is definitely an error in C++98.  It's probably meant to
9993  // be forbidden in C++0x, too, but the specification is just
9994  // poorly written.
9995  //
9996  // The problem is with declarations like the following:
9997  //   template <T> friend A<T>::foo;
9998  // where deciding whether a class C is a friend or not now hinges
9999  // on whether there exists an instantiation of A that causes
10000  // 'foo' to equal C.  There are restrictions on class-heads
10001  // (which we declare (by fiat) elaborated friend declarations to
10002  // be) that makes this tractable.
10003  //
10004  // FIXME: handle "template <> friend class A<T>;", which
10005  // is possibly well-formed?  Who even knows?
10006  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10007    Diag(Loc, diag::err_tagless_friend_type_template)
10008      << DS.getSourceRange();
10009    return 0;
10010  }
10011
10012  // C++98 [class.friend]p1: A friend of a class is a function
10013  //   or class that is not a member of the class . . .
10014  // This is fixed in DR77, which just barely didn't make the C++03
10015  // deadline.  It's also a very silly restriction that seriously
10016  // affects inner classes and which nobody else seems to implement;
10017  // thus we never diagnose it, not even in -pedantic.
10018  //
10019  // But note that we could warn about it: it's always useless to
10020  // friend one of your own members (it's not, however, worthless to
10021  // friend a member of an arbitrary specialization of your template).
10022
10023  Decl *D;
10024  if (unsigned NumTempParamLists = TempParams.size())
10025    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10026                                   NumTempParamLists,
10027                                   TempParams.release(),
10028                                   TSI,
10029                                   DS.getFriendSpecLoc());
10030  else
10031    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10032
10033  if (!D)
10034    return 0;
10035
10036  D->setAccess(AS_public);
10037  CurContext->addDecl(D);
10038
10039  return D;
10040}
10041
10042Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10043                                    MultiTemplateParamsArg TemplateParams) {
10044  const DeclSpec &DS = D.getDeclSpec();
10045
10046  assert(DS.isFriendSpecified());
10047  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10048
10049  SourceLocation Loc = D.getIdentifierLoc();
10050  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10051
10052  // C++ [class.friend]p1
10053  //   A friend of a class is a function or class....
10054  // Note that this sees through typedefs, which is intended.
10055  // It *doesn't* see through dependent types, which is correct
10056  // according to [temp.arg.type]p3:
10057  //   If a declaration acquires a function type through a
10058  //   type dependent on a template-parameter and this causes
10059  //   a declaration that does not use the syntactic form of a
10060  //   function declarator to have a function type, the program
10061  //   is ill-formed.
10062  if (!TInfo->getType()->isFunctionType()) {
10063    Diag(Loc, diag::err_unexpected_friend);
10064
10065    // It might be worthwhile to try to recover by creating an
10066    // appropriate declaration.
10067    return 0;
10068  }
10069
10070  // C++ [namespace.memdef]p3
10071  //  - If a friend declaration in a non-local class first declares a
10072  //    class or function, the friend class or function is a member
10073  //    of the innermost enclosing namespace.
10074  //  - The name of the friend is not found by simple name lookup
10075  //    until a matching declaration is provided in that namespace
10076  //    scope (either before or after the class declaration granting
10077  //    friendship).
10078  //  - If a friend function is called, its name may be found by the
10079  //    name lookup that considers functions from namespaces and
10080  //    classes associated with the types of the function arguments.
10081  //  - When looking for a prior declaration of a class or a function
10082  //    declared as a friend, scopes outside the innermost enclosing
10083  //    namespace scope are not considered.
10084
10085  CXXScopeSpec &SS = D.getCXXScopeSpec();
10086  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10087  DeclarationName Name = NameInfo.getName();
10088  assert(Name);
10089
10090  // Check for unexpanded parameter packs.
10091  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10092      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10093      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10094    return 0;
10095
10096  // The context we found the declaration in, or in which we should
10097  // create the declaration.
10098  DeclContext *DC;
10099  Scope *DCScope = S;
10100  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10101                        ForRedeclaration);
10102
10103  // FIXME: there are different rules in local classes
10104
10105  // There are four cases here.
10106  //   - There's no scope specifier, in which case we just go to the
10107  //     appropriate scope and look for a function or function template
10108  //     there as appropriate.
10109  // Recover from invalid scope qualifiers as if they just weren't there.
10110  if (SS.isInvalid() || !SS.isSet()) {
10111    // C++0x [namespace.memdef]p3:
10112    //   If the name in a friend declaration is neither qualified nor
10113    //   a template-id and the declaration is a function or an
10114    //   elaborated-type-specifier, the lookup to determine whether
10115    //   the entity has been previously declared shall not consider
10116    //   any scopes outside the innermost enclosing namespace.
10117    // C++0x [class.friend]p11:
10118    //   If a friend declaration appears in a local class and the name
10119    //   specified is an unqualified name, a prior declaration is
10120    //   looked up without considering scopes that are outside the
10121    //   innermost enclosing non-class scope. For a friend function
10122    //   declaration, if there is no prior declaration, the program is
10123    //   ill-formed.
10124    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10125    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10126
10127    // Find the appropriate context according to the above.
10128    DC = CurContext;
10129    while (true) {
10130      // Skip class contexts.  If someone can cite chapter and verse
10131      // for this behavior, that would be nice --- it's what GCC and
10132      // EDG do, and it seems like a reasonable intent, but the spec
10133      // really only says that checks for unqualified existing
10134      // declarations should stop at the nearest enclosing namespace,
10135      // not that they should only consider the nearest enclosing
10136      // namespace.
10137      while (DC->isRecord() || DC->isTransparentContext())
10138        DC = DC->getParent();
10139
10140      LookupQualifiedName(Previous, DC);
10141
10142      // TODO: decide what we think about using declarations.
10143      if (isLocal || !Previous.empty())
10144        break;
10145
10146      if (isTemplateId) {
10147        if (isa<TranslationUnitDecl>(DC)) break;
10148      } else {
10149        if (DC->isFileContext()) break;
10150      }
10151      DC = DC->getParent();
10152    }
10153
10154    // C++ [class.friend]p1: A friend of a class is a function or
10155    //   class that is not a member of the class . . .
10156    // C++11 changes this for both friend types and functions.
10157    // Most C++ 98 compilers do seem to give an error here, so
10158    // we do, too.
10159    if (!Previous.empty() && DC->Equals(CurContext))
10160      Diag(DS.getFriendSpecLoc(),
10161           getLangOpts().CPlusPlus0x ?
10162             diag::warn_cxx98_compat_friend_is_member :
10163             diag::err_friend_is_member);
10164
10165    DCScope = getScopeForDeclContext(S, DC);
10166
10167    // C++ [class.friend]p6:
10168    //   A function can be defined in a friend declaration of a class if and
10169    //   only if the class is a non-local class (9.8), the function name is
10170    //   unqualified, and the function has namespace scope.
10171    if (isLocal && D.isFunctionDefinition()) {
10172      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10173    }
10174
10175  //   - There's a non-dependent scope specifier, in which case we
10176  //     compute it and do a previous lookup there for a function
10177  //     or function template.
10178  } else if (!SS.getScopeRep()->isDependent()) {
10179    DC = computeDeclContext(SS);
10180    if (!DC) return 0;
10181
10182    if (RequireCompleteDeclContext(SS, DC)) return 0;
10183
10184    LookupQualifiedName(Previous, DC);
10185
10186    // Ignore things found implicitly in the wrong scope.
10187    // TODO: better diagnostics for this case.  Suggesting the right
10188    // qualified scope would be nice...
10189    LookupResult::Filter F = Previous.makeFilter();
10190    while (F.hasNext()) {
10191      NamedDecl *D = F.next();
10192      if (!DC->InEnclosingNamespaceSetOf(
10193              D->getDeclContext()->getRedeclContext()))
10194        F.erase();
10195    }
10196    F.done();
10197
10198    if (Previous.empty()) {
10199      D.setInvalidType();
10200      Diag(Loc, diag::err_qualified_friend_not_found)
10201          << Name << TInfo->getType();
10202      return 0;
10203    }
10204
10205    // C++ [class.friend]p1: A friend of a class is a function or
10206    //   class that is not a member of the class . . .
10207    if (DC->Equals(CurContext))
10208      Diag(DS.getFriendSpecLoc(),
10209           getLangOpts().CPlusPlus0x ?
10210             diag::warn_cxx98_compat_friend_is_member :
10211             diag::err_friend_is_member);
10212
10213    if (D.isFunctionDefinition()) {
10214      // C++ [class.friend]p6:
10215      //   A function can be defined in a friend declaration of a class if and
10216      //   only if the class is a non-local class (9.8), the function name is
10217      //   unqualified, and the function has namespace scope.
10218      SemaDiagnosticBuilder DB
10219        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10220
10221      DB << SS.getScopeRep();
10222      if (DC->isFileContext())
10223        DB << FixItHint::CreateRemoval(SS.getRange());
10224      SS.clear();
10225    }
10226
10227  //   - There's a scope specifier that does not match any template
10228  //     parameter lists, in which case we use some arbitrary context,
10229  //     create a method or method template, and wait for instantiation.
10230  //   - There's a scope specifier that does match some template
10231  //     parameter lists, which we don't handle right now.
10232  } else {
10233    if (D.isFunctionDefinition()) {
10234      // C++ [class.friend]p6:
10235      //   A function can be defined in a friend declaration of a class if and
10236      //   only if the class is a non-local class (9.8), the function name is
10237      //   unqualified, and the function has namespace scope.
10238      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10239        << SS.getScopeRep();
10240    }
10241
10242    DC = CurContext;
10243    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10244  }
10245
10246  if (!DC->isRecord()) {
10247    // This implies that it has to be an operator or function.
10248    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10249        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10250        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10251      Diag(Loc, diag::err_introducing_special_friend) <<
10252        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10253         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10254      return 0;
10255    }
10256  }
10257
10258  // FIXME: This is an egregious hack to cope with cases where the scope stack
10259  // does not contain the declaration context, i.e., in an out-of-line
10260  // definition of a class.
10261  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10262  if (!DCScope) {
10263    FakeDCScope.setEntity(DC);
10264    DCScope = &FakeDCScope;
10265  }
10266
10267  bool AddToScope = true;
10268  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10269                                          move(TemplateParams), AddToScope);
10270  if (!ND) return 0;
10271
10272  assert(ND->getDeclContext() == DC);
10273  assert(ND->getLexicalDeclContext() == CurContext);
10274
10275  // Add the function declaration to the appropriate lookup tables,
10276  // adjusting the redeclarations list as necessary.  We don't
10277  // want to do this yet if the friending class is dependent.
10278  //
10279  // Also update the scope-based lookup if the target context's
10280  // lookup context is in lexical scope.
10281  if (!CurContext->isDependentContext()) {
10282    DC = DC->getRedeclContext();
10283    DC->makeDeclVisibleInContext(ND);
10284    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10285      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10286  }
10287
10288  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10289                                       D.getIdentifierLoc(), ND,
10290                                       DS.getFriendSpecLoc());
10291  FrD->setAccess(AS_public);
10292  CurContext->addDecl(FrD);
10293
10294  if (ND->isInvalidDecl())
10295    FrD->setInvalidDecl();
10296  else {
10297    FunctionDecl *FD;
10298    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10299      FD = FTD->getTemplatedDecl();
10300    else
10301      FD = cast<FunctionDecl>(ND);
10302
10303    // Mark templated-scope function declarations as unsupported.
10304    if (FD->getNumTemplateParameterLists())
10305      FrD->setUnsupportedFriend(true);
10306  }
10307
10308  return ND;
10309}
10310
10311void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10312  AdjustDeclIfTemplate(Dcl);
10313
10314  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10315  if (!Fn) {
10316    Diag(DelLoc, diag::err_deleted_non_function);
10317    return;
10318  }
10319  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10320    // Don't consider the implicit declaration we generate for explicit
10321    // specializations. FIXME: Do not generate these implicit declarations.
10322    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10323        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10324      Diag(DelLoc, diag::err_deleted_decl_not_first);
10325      Diag(Prev->getLocation(), diag::note_previous_declaration);
10326    }
10327    // If the declaration wasn't the first, we delete the function anyway for
10328    // recovery.
10329  }
10330  Fn->setDeletedAsWritten();
10331
10332  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10333  if (!MD)
10334    return;
10335
10336  // A deleted special member function is trivial if the corresponding
10337  // implicitly-declared function would have been.
10338  switch (getSpecialMember(MD)) {
10339  case CXXInvalid:
10340    break;
10341  case CXXDefaultConstructor:
10342    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10343    break;
10344  case CXXCopyConstructor:
10345    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10346    break;
10347  case CXXMoveConstructor:
10348    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10349    break;
10350  case CXXCopyAssignment:
10351    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10352    break;
10353  case CXXMoveAssignment:
10354    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10355    break;
10356  case CXXDestructor:
10357    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10358    break;
10359  }
10360}
10361
10362void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10363  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10364
10365  if (MD) {
10366    if (MD->getParent()->isDependentType()) {
10367      MD->setDefaulted();
10368      MD->setExplicitlyDefaulted();
10369      return;
10370    }
10371
10372    CXXSpecialMember Member = getSpecialMember(MD);
10373    if (Member == CXXInvalid) {
10374      Diag(DefaultLoc, diag::err_default_special_members);
10375      return;
10376    }
10377
10378    MD->setDefaulted();
10379    MD->setExplicitlyDefaulted();
10380
10381    // If this definition appears within the record, do the checking when
10382    // the record is complete.
10383    const FunctionDecl *Primary = MD;
10384    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10385      // Find the uninstantiated declaration that actually had the '= default'
10386      // on it.
10387      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10388
10389    if (Primary == Primary->getCanonicalDecl())
10390      return;
10391
10392    switch (Member) {
10393    case CXXDefaultConstructor: {
10394      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10395      CheckExplicitlyDefaultedSpecialMember(CD);
10396      if (!CD->isInvalidDecl())
10397        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10398      break;
10399    }
10400
10401    case CXXCopyConstructor: {
10402      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10403      CheckExplicitlyDefaultedSpecialMember(CD);
10404      if (!CD->isInvalidDecl())
10405        DefineImplicitCopyConstructor(DefaultLoc, CD);
10406      break;
10407    }
10408
10409    case CXXCopyAssignment: {
10410      CheckExplicitlyDefaultedSpecialMember(MD);
10411      if (!MD->isInvalidDecl())
10412        DefineImplicitCopyAssignment(DefaultLoc, MD);
10413      break;
10414    }
10415
10416    case CXXDestructor: {
10417      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10418      CheckExplicitlyDefaultedSpecialMember(DD);
10419      if (!DD->isInvalidDecl())
10420        DefineImplicitDestructor(DefaultLoc, DD);
10421      break;
10422    }
10423
10424    case CXXMoveConstructor: {
10425      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10426      CheckExplicitlyDefaultedSpecialMember(CD);
10427      if (!CD->isInvalidDecl())
10428        DefineImplicitMoveConstructor(DefaultLoc, CD);
10429      break;
10430    }
10431
10432    case CXXMoveAssignment: {
10433      CheckExplicitlyDefaultedSpecialMember(MD);
10434      if (!MD->isInvalidDecl())
10435        DefineImplicitMoveAssignment(DefaultLoc, MD);
10436      break;
10437    }
10438
10439    case CXXInvalid:
10440      llvm_unreachable("Invalid special member.");
10441    }
10442  } else {
10443    Diag(DefaultLoc, diag::err_default_special_members);
10444  }
10445}
10446
10447static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10448  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10449    Stmt *SubStmt = *CI;
10450    if (!SubStmt)
10451      continue;
10452    if (isa<ReturnStmt>(SubStmt))
10453      Self.Diag(SubStmt->getLocStart(),
10454           diag::err_return_in_constructor_handler);
10455    if (!isa<Expr>(SubStmt))
10456      SearchForReturnInStmt(Self, SubStmt);
10457  }
10458}
10459
10460void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10461  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10462    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10463    SearchForReturnInStmt(*this, Handler);
10464  }
10465}
10466
10467bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10468                                             const CXXMethodDecl *Old) {
10469  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10470  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10471
10472  if (Context.hasSameType(NewTy, OldTy) ||
10473      NewTy->isDependentType() || OldTy->isDependentType())
10474    return false;
10475
10476  // Check if the return types are covariant
10477  QualType NewClassTy, OldClassTy;
10478
10479  /// Both types must be pointers or references to classes.
10480  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10481    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10482      NewClassTy = NewPT->getPointeeType();
10483      OldClassTy = OldPT->getPointeeType();
10484    }
10485  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10486    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10487      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10488        NewClassTy = NewRT->getPointeeType();
10489        OldClassTy = OldRT->getPointeeType();
10490      }
10491    }
10492  }
10493
10494  // The return types aren't either both pointers or references to a class type.
10495  if (NewClassTy.isNull()) {
10496    Diag(New->getLocation(),
10497         diag::err_different_return_type_for_overriding_virtual_function)
10498      << New->getDeclName() << NewTy << OldTy;
10499    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10500
10501    return true;
10502  }
10503
10504  // C++ [class.virtual]p6:
10505  //   If the return type of D::f differs from the return type of B::f, the
10506  //   class type in the return type of D::f shall be complete at the point of
10507  //   declaration of D::f or shall be the class type D.
10508  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10509    if (!RT->isBeingDefined() &&
10510        RequireCompleteType(New->getLocation(), NewClassTy,
10511                            diag::err_covariant_return_incomplete,
10512                            New->getDeclName()))
10513    return true;
10514  }
10515
10516  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10517    // Check if the new class derives from the old class.
10518    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10519      Diag(New->getLocation(),
10520           diag::err_covariant_return_not_derived)
10521      << New->getDeclName() << NewTy << OldTy;
10522      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10523      return true;
10524    }
10525
10526    // Check if we the conversion from derived to base is valid.
10527    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10528                    diag::err_covariant_return_inaccessible_base,
10529                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10530                    // FIXME: Should this point to the return type?
10531                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10532      // FIXME: this note won't trigger for delayed access control
10533      // diagnostics, and it's impossible to get an undelayed error
10534      // here from access control during the original parse because
10535      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10536      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10537      return true;
10538    }
10539  }
10540
10541  // The qualifiers of the return types must be the same.
10542  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10543    Diag(New->getLocation(),
10544         diag::err_covariant_return_type_different_qualifications)
10545    << New->getDeclName() << NewTy << OldTy;
10546    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10547    return true;
10548  };
10549
10550
10551  // The new class type must have the same or less qualifiers as the old type.
10552  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10553    Diag(New->getLocation(),
10554         diag::err_covariant_return_type_class_type_more_qualified)
10555    << New->getDeclName() << NewTy << OldTy;
10556    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10557    return true;
10558  };
10559
10560  return false;
10561}
10562
10563/// \brief Mark the given method pure.
10564///
10565/// \param Method the method to be marked pure.
10566///
10567/// \param InitRange the source range that covers the "0" initializer.
10568bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10569  SourceLocation EndLoc = InitRange.getEnd();
10570  if (EndLoc.isValid())
10571    Method->setRangeEnd(EndLoc);
10572
10573  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10574    Method->setPure();
10575    return false;
10576  }
10577
10578  if (!Method->isInvalidDecl())
10579    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10580      << Method->getDeclName() << InitRange;
10581  return true;
10582}
10583
10584/// \brief Determine whether the given declaration is a static data member.
10585static bool isStaticDataMember(Decl *D) {
10586  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10587  if (!Var)
10588    return false;
10589
10590  return Var->isStaticDataMember();
10591}
10592/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10593/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10594/// is a fresh scope pushed for just this purpose.
10595///
10596/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10597/// static data member of class X, names should be looked up in the scope of
10598/// class X.
10599void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10600  // If there is no declaration, there was an error parsing it.
10601  if (D == 0 || D->isInvalidDecl()) return;
10602
10603  // We should only get called for declarations with scope specifiers, like:
10604  //   int foo::bar;
10605  assert(D->isOutOfLine());
10606  EnterDeclaratorContext(S, D->getDeclContext());
10607
10608  // If we are parsing the initializer for a static data member, push a
10609  // new expression evaluation context that is associated with this static
10610  // data member.
10611  if (isStaticDataMember(D))
10612    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10613}
10614
10615/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10616/// initializer for the out-of-line declaration 'D'.
10617void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10618  // If there is no declaration, there was an error parsing it.
10619  if (D == 0 || D->isInvalidDecl()) return;
10620
10621  if (isStaticDataMember(D))
10622    PopExpressionEvaluationContext();
10623
10624  assert(D->isOutOfLine());
10625  ExitDeclaratorContext(S);
10626}
10627
10628/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10629/// C++ if/switch/while/for statement.
10630/// e.g: "if (int x = f()) {...}"
10631DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10632  // C++ 6.4p2:
10633  // The declarator shall not specify a function or an array.
10634  // The type-specifier-seq shall not contain typedef and shall not declare a
10635  // new class or enumeration.
10636  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10637         "Parser allowed 'typedef' as storage class of condition decl.");
10638
10639  Decl *Dcl = ActOnDeclarator(S, D);
10640  if (!Dcl)
10641    return true;
10642
10643  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10644    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10645      << D.getSourceRange();
10646    return true;
10647  }
10648
10649  return Dcl;
10650}
10651
10652void Sema::LoadExternalVTableUses() {
10653  if (!ExternalSource)
10654    return;
10655
10656  SmallVector<ExternalVTableUse, 4> VTables;
10657  ExternalSource->ReadUsedVTables(VTables);
10658  SmallVector<VTableUse, 4> NewUses;
10659  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10660    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10661      = VTablesUsed.find(VTables[I].Record);
10662    // Even if a definition wasn't required before, it may be required now.
10663    if (Pos != VTablesUsed.end()) {
10664      if (!Pos->second && VTables[I].DefinitionRequired)
10665        Pos->second = true;
10666      continue;
10667    }
10668
10669    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10670    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10671  }
10672
10673  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10674}
10675
10676void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10677                          bool DefinitionRequired) {
10678  // Ignore any vtable uses in unevaluated operands or for classes that do
10679  // not have a vtable.
10680  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10681      CurContext->isDependentContext() ||
10682      ExprEvalContexts.back().Context == Unevaluated)
10683    return;
10684
10685  // Try to insert this class into the map.
10686  LoadExternalVTableUses();
10687  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10688  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10689    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10690  if (!Pos.second) {
10691    // If we already had an entry, check to see if we are promoting this vtable
10692    // to required a definition. If so, we need to reappend to the VTableUses
10693    // list, since we may have already processed the first entry.
10694    if (DefinitionRequired && !Pos.first->second) {
10695      Pos.first->second = true;
10696    } else {
10697      // Otherwise, we can early exit.
10698      return;
10699    }
10700  }
10701
10702  // Local classes need to have their virtual members marked
10703  // immediately. For all other classes, we mark their virtual members
10704  // at the end of the translation unit.
10705  if (Class->isLocalClass())
10706    MarkVirtualMembersReferenced(Loc, Class);
10707  else
10708    VTableUses.push_back(std::make_pair(Class, Loc));
10709}
10710
10711bool Sema::DefineUsedVTables() {
10712  LoadExternalVTableUses();
10713  if (VTableUses.empty())
10714    return false;
10715
10716  // Note: The VTableUses vector could grow as a result of marking
10717  // the members of a class as "used", so we check the size each
10718  // time through the loop and prefer indices (with are stable) to
10719  // iterators (which are not).
10720  bool DefinedAnything = false;
10721  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10722    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10723    if (!Class)
10724      continue;
10725
10726    SourceLocation Loc = VTableUses[I].second;
10727
10728    // If this class has a key function, but that key function is
10729    // defined in another translation unit, we don't need to emit the
10730    // vtable even though we're using it.
10731    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10732    if (KeyFunction && !KeyFunction->hasBody()) {
10733      switch (KeyFunction->getTemplateSpecializationKind()) {
10734      case TSK_Undeclared:
10735      case TSK_ExplicitSpecialization:
10736      case TSK_ExplicitInstantiationDeclaration:
10737        // The key function is in another translation unit.
10738        continue;
10739
10740      case TSK_ExplicitInstantiationDefinition:
10741      case TSK_ImplicitInstantiation:
10742        // We will be instantiating the key function.
10743        break;
10744      }
10745    } else if (!KeyFunction) {
10746      // If we have a class with no key function that is the subject
10747      // of an explicit instantiation declaration, suppress the
10748      // vtable; it will live with the explicit instantiation
10749      // definition.
10750      bool IsExplicitInstantiationDeclaration
10751        = Class->getTemplateSpecializationKind()
10752                                      == TSK_ExplicitInstantiationDeclaration;
10753      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10754                                 REnd = Class->redecls_end();
10755           R != REnd; ++R) {
10756        TemplateSpecializationKind TSK
10757          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10758        if (TSK == TSK_ExplicitInstantiationDeclaration)
10759          IsExplicitInstantiationDeclaration = true;
10760        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10761          IsExplicitInstantiationDeclaration = false;
10762          break;
10763        }
10764      }
10765
10766      if (IsExplicitInstantiationDeclaration)
10767        continue;
10768    }
10769
10770    // Mark all of the virtual members of this class as referenced, so
10771    // that we can build a vtable. Then, tell the AST consumer that a
10772    // vtable for this class is required.
10773    DefinedAnything = true;
10774    MarkVirtualMembersReferenced(Loc, Class);
10775    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10776    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10777
10778    // Optionally warn if we're emitting a weak vtable.
10779    if (Class->getLinkage() == ExternalLinkage &&
10780        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10781      const FunctionDecl *KeyFunctionDef = 0;
10782      if (!KeyFunction ||
10783          (KeyFunction->hasBody(KeyFunctionDef) &&
10784           KeyFunctionDef->isInlined()))
10785        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10786             TSK_ExplicitInstantiationDefinition
10787             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10788          << Class;
10789    }
10790  }
10791  VTableUses.clear();
10792
10793  return DefinedAnything;
10794}
10795
10796void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10797                                        const CXXRecordDecl *RD) {
10798  // Mark all functions which will appear in RD's vtable as used.
10799  CXXFinalOverriderMap FinalOverriders;
10800  RD->getFinalOverriders(FinalOverriders);
10801  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
10802                                            E = FinalOverriders.end();
10803       I != E; ++I) {
10804    for (OverridingMethods::const_iterator OI = I->second.begin(),
10805                                           OE = I->second.end();
10806         OI != OE; ++OI) {
10807      assert(OI->second.size() > 0 && "no final overrider");
10808      CXXMethodDecl *Overrider = OI->second.front().Method;
10809
10810      // C++ [basic.def.odr]p2:
10811      //   [...] A virtual member function is used if it is not pure. [...]
10812      if (!Overrider->isPure())
10813        MarkFunctionReferenced(Loc, Overrider);
10814    }
10815  }
10816
10817  // Only classes that have virtual bases need a VTT.
10818  if (RD->getNumVBases() == 0)
10819    return;
10820
10821  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10822           e = RD->bases_end(); i != e; ++i) {
10823    const CXXRecordDecl *Base =
10824        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10825    if (Base->getNumVBases() == 0)
10826      continue;
10827    MarkVirtualMembersReferenced(Loc, Base);
10828  }
10829}
10830
10831/// SetIvarInitializers - This routine builds initialization ASTs for the
10832/// Objective-C implementation whose ivars need be initialized.
10833void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10834  if (!getLangOpts().CPlusPlus)
10835    return;
10836  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10837    SmallVector<ObjCIvarDecl*, 8> ivars;
10838    CollectIvarsToConstructOrDestruct(OID, ivars);
10839    if (ivars.empty())
10840      return;
10841    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10842    for (unsigned i = 0; i < ivars.size(); i++) {
10843      FieldDecl *Field = ivars[i];
10844      if (Field->isInvalidDecl())
10845        continue;
10846
10847      CXXCtorInitializer *Member;
10848      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10849      InitializationKind InitKind =
10850        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10851
10852      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10853      ExprResult MemberInit =
10854        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10855      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10856      // Note, MemberInit could actually come back empty if no initialization
10857      // is required (e.g., because it would call a trivial default constructor)
10858      if (!MemberInit.get() || MemberInit.isInvalid())
10859        continue;
10860
10861      Member =
10862        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10863                                         SourceLocation(),
10864                                         MemberInit.takeAs<Expr>(),
10865                                         SourceLocation());
10866      AllToInit.push_back(Member);
10867
10868      // Be sure that the destructor is accessible and is marked as referenced.
10869      if (const RecordType *RecordTy
10870                  = Context.getBaseElementType(Field->getType())
10871                                                        ->getAs<RecordType>()) {
10872                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10873        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10874          MarkFunctionReferenced(Field->getLocation(), Destructor);
10875          CheckDestructorAccess(Field->getLocation(), Destructor,
10876                            PDiag(diag::err_access_dtor_ivar)
10877                              << Context.getBaseElementType(Field->getType()));
10878        }
10879      }
10880    }
10881    ObjCImplementation->setIvarInitializers(Context,
10882                                            AllToInit.data(), AllToInit.size());
10883  }
10884}
10885
10886static
10887void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10888                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10889                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10890                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10891                           Sema &S) {
10892  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10893                                                   CE = Current.end();
10894  if (Ctor->isInvalidDecl())
10895    return;
10896
10897  const FunctionDecl *FNTarget = 0;
10898  CXXConstructorDecl *Target;
10899
10900  // We ignore the result here since if we don't have a body, Target will be
10901  // null below.
10902  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10903  Target
10904= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10905
10906  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10907                     // Avoid dereferencing a null pointer here.
10908                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10909
10910  if (!Current.insert(Canonical))
10911    return;
10912
10913  // We know that beyond here, we aren't chaining into a cycle.
10914  if (!Target || !Target->isDelegatingConstructor() ||
10915      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10916    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10917      Valid.insert(*CI);
10918    Current.clear();
10919  // We've hit a cycle.
10920  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10921             Current.count(TCanonical)) {
10922    // If we haven't diagnosed this cycle yet, do so now.
10923    if (!Invalid.count(TCanonical)) {
10924      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10925             diag::warn_delegating_ctor_cycle)
10926        << Ctor;
10927
10928      // Don't add a note for a function delegating directo to itself.
10929      if (TCanonical != Canonical)
10930        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10931
10932      CXXConstructorDecl *C = Target;
10933      while (C->getCanonicalDecl() != Canonical) {
10934        (void)C->getTargetConstructor()->hasBody(FNTarget);
10935        assert(FNTarget && "Ctor cycle through bodiless function");
10936
10937        C
10938       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10939        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10940      }
10941    }
10942
10943    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10944      Invalid.insert(*CI);
10945    Current.clear();
10946  } else {
10947    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10948  }
10949}
10950
10951
10952void Sema::CheckDelegatingCtorCycles() {
10953  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10954
10955  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10956                                                   CE = Current.end();
10957
10958  for (DelegatingCtorDeclsType::iterator
10959         I = DelegatingCtorDecls.begin(ExternalSource),
10960         E = DelegatingCtorDecls.end();
10961       I != E; ++I) {
10962   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10963  }
10964
10965  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10966    (*CI)->setInvalidDecl();
10967}
10968
10969namespace {
10970  /// \brief AST visitor that finds references to the 'this' expression.
10971  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
10972    Sema &S;
10973
10974  public:
10975    explicit FindCXXThisExpr(Sema &S) : S(S) { }
10976
10977    bool VisitCXXThisExpr(CXXThisExpr *E) {
10978      S.Diag(E->getLocation(), diag::err_this_static_member_func)
10979        << E->isImplicit();
10980      return false;
10981    }
10982  };
10983}
10984
10985bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
10986  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
10987  if (!TSInfo)
10988    return false;
10989
10990  TypeLoc TL = TSInfo->getTypeLoc();
10991  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
10992  if (!ProtoTL)
10993    return false;
10994
10995  // C++11 [expr.prim.general]p3:
10996  //   [The expression this] shall not appear before the optional
10997  //   cv-qualifier-seq and it shall not appear within the declaration of a
10998  //   static member function (although its type and value category are defined
10999  //   within a static member function as they are within a non-static member
11000  //   function). [ Note: this is because declaration matching does not occur
11001  //  until the complete declarator is known. - end note ]
11002  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11003  FindCXXThisExpr Finder(*this);
11004
11005  // If the return type came after the cv-qualifier-seq, check it now.
11006  if (Proto->hasTrailingReturn() &&
11007      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11008    return true;
11009
11010  // Check the exception specification.
11011  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11012    return true;
11013
11014  return checkThisInStaticMemberFunctionAttributes(Method);
11015}
11016
11017bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11018  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11019  if (!TSInfo)
11020    return false;
11021
11022  TypeLoc TL = TSInfo->getTypeLoc();
11023  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11024  if (!ProtoTL)
11025    return false;
11026
11027  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11028  FindCXXThisExpr Finder(*this);
11029
11030  switch (Proto->getExceptionSpecType()) {
11031  case EST_Uninstantiated:
11032  case EST_BasicNoexcept:
11033  case EST_Delayed:
11034  case EST_DynamicNone:
11035  case EST_MSAny:
11036  case EST_None:
11037    break;
11038
11039  case EST_ComputedNoexcept:
11040    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11041      return true;
11042
11043  case EST_Dynamic:
11044    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11045         EEnd = Proto->exception_end();
11046         E != EEnd; ++E) {
11047      if (!Finder.TraverseType(*E))
11048        return true;
11049    }
11050    break;
11051  }
11052
11053  return false;
11054}
11055
11056bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11057  FindCXXThisExpr Finder(*this);
11058
11059  // Check attributes.
11060  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11061       A != AEnd; ++A) {
11062    // FIXME: This should be emitted by tblgen.
11063    Expr *Arg = 0;
11064    ArrayRef<Expr *> Args;
11065    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11066      Arg = G->getArg();
11067    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11068      Arg = G->getArg();
11069    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11070      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11071    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11072      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11073    else if (ExclusiveLockFunctionAttr *ELF
11074               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11075      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11076    else if (SharedLockFunctionAttr *SLF
11077               = dyn_cast<SharedLockFunctionAttr>(*A))
11078      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11079    else if (ExclusiveTrylockFunctionAttr *ETLF
11080               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11081      Arg = ETLF->getSuccessValue();
11082      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11083    } else if (SharedTrylockFunctionAttr *STLF
11084                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11085      Arg = STLF->getSuccessValue();
11086      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11087    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11088      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11089    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11090      Arg = LR->getArg();
11091    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11092      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11093    else if (ExclusiveLocksRequiredAttr *ELR
11094               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11095      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11096    else if (SharedLocksRequiredAttr *SLR
11097               = dyn_cast<SharedLocksRequiredAttr>(*A))
11098      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11099
11100    if (Arg && !Finder.TraverseStmt(Arg))
11101      return true;
11102
11103    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11104      if (!Finder.TraverseStmt(Args[I]))
11105        return true;
11106    }
11107  }
11108
11109  return false;
11110}
11111
11112void
11113Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11114                                  ArrayRef<ParsedType> DynamicExceptions,
11115                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11116                                  Expr *NoexceptExpr,
11117                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11118                                  FunctionProtoType::ExtProtoInfo &EPI) {
11119  Exceptions.clear();
11120  EPI.ExceptionSpecType = EST;
11121  if (EST == EST_Dynamic) {
11122    Exceptions.reserve(DynamicExceptions.size());
11123    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11124      // FIXME: Preserve type source info.
11125      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11126
11127      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11128      collectUnexpandedParameterPacks(ET, Unexpanded);
11129      if (!Unexpanded.empty()) {
11130        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11131                                         UPPC_ExceptionType,
11132                                         Unexpanded);
11133        continue;
11134      }
11135
11136      // Check that the type is valid for an exception spec, and
11137      // drop it if not.
11138      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11139        Exceptions.push_back(ET);
11140    }
11141    EPI.NumExceptions = Exceptions.size();
11142    EPI.Exceptions = Exceptions.data();
11143    return;
11144  }
11145
11146  if (EST == EST_ComputedNoexcept) {
11147    // If an error occurred, there's no expression here.
11148    if (NoexceptExpr) {
11149      assert((NoexceptExpr->isTypeDependent() ||
11150              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11151              Context.BoolTy) &&
11152             "Parser should have made sure that the expression is boolean");
11153      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11154        EPI.ExceptionSpecType = EST_BasicNoexcept;
11155        return;
11156      }
11157
11158      if (!NoexceptExpr->isValueDependent())
11159        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11160                         diag::err_noexcept_needs_constant_expression,
11161                         /*AllowFold*/ false).take();
11162      EPI.NoexceptExpr = NoexceptExpr;
11163    }
11164    return;
11165  }
11166}
11167
11168/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11169Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11170  // Implicitly declared functions (e.g. copy constructors) are
11171  // __host__ __device__
11172  if (D->isImplicit())
11173    return CFT_HostDevice;
11174
11175  if (D->hasAttr<CUDAGlobalAttr>())
11176    return CFT_Global;
11177
11178  if (D->hasAttr<CUDADeviceAttr>()) {
11179    if (D->hasAttr<CUDAHostAttr>())
11180      return CFT_HostDevice;
11181    else
11182      return CFT_Device;
11183  }
11184
11185  return CFT_Host;
11186}
11187
11188bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11189                           CUDAFunctionTarget CalleeTarget) {
11190  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11191  // Callable from the device only."
11192  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11193    return true;
11194
11195  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11196  // Callable from the host only."
11197  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11198  // Callable from the host only."
11199  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11200      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11201    return true;
11202
11203  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11204    return true;
11205
11206  return false;
11207}
11208