SemaTemplate.cpp revision 014e88d94ff83e3aad4e33b16413a2d1817ec208
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "TreeTransform.h" 14#include "clang/AST/ASTContext.h" 15#include "clang/AST/Expr.h" 16#include "clang/AST/ExprCXX.h" 17#include "clang/AST/DeclTemplate.h" 18#include "clang/Parse/DeclSpec.h" 19#include "clang/Basic/LangOptions.h" 20#include "clang/Basic/PartialDiagnostic.h" 21#include "llvm/Support/Compiler.h" 22#include "llvm/ADT/StringExtras.h" 23using namespace clang; 24 25/// \brief Determine whether the declaration found is acceptable as the name 26/// of a template and, if so, return that template declaration. Otherwise, 27/// returns NULL. 28static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 29 if (!D) 30 return 0; 31 32 if (isa<TemplateDecl>(D)) 33 return D; 34 35 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 36 // C++ [temp.local]p1: 37 // Like normal (non-template) classes, class templates have an 38 // injected-class-name (Clause 9). The injected-class-name 39 // can be used with or without a template-argument-list. When 40 // it is used without a template-argument-list, it is 41 // equivalent to the injected-class-name followed by the 42 // template-parameters of the class template enclosed in 43 // <>. When it is used with a template-argument-list, it 44 // refers to the specified class template specialization, 45 // which could be the current specialization or another 46 // specialization. 47 if (Record->isInjectedClassName()) { 48 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 49 if (Record->getDescribedClassTemplate()) 50 return Record->getDescribedClassTemplate(); 51 52 if (ClassTemplateSpecializationDecl *Spec 53 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 54 return Spec->getSpecializedTemplate(); 55 } 56 57 return 0; 58 } 59 60 OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D); 61 if (!Ovl) 62 return 0; 63 64 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), 65 FEnd = Ovl->function_end(); 66 F != FEnd; ++F) { 67 if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) { 68 // We've found a function template. Determine whether there are 69 // any other function templates we need to bundle together in an 70 // OverloadedFunctionDecl 71 for (++F; F != FEnd; ++F) { 72 if (isa<FunctionTemplateDecl>(*F)) 73 break; 74 } 75 76 if (F != FEnd) { 77 // Build an overloaded function decl containing only the 78 // function templates in Ovl. 79 OverloadedFunctionDecl *OvlTemplate 80 = OverloadedFunctionDecl::Create(Context, 81 Ovl->getDeclContext(), 82 Ovl->getDeclName()); 83 OvlTemplate->addOverload(FuncTmpl); 84 OvlTemplate->addOverload(*F); 85 for (++F; F != FEnd; ++F) { 86 if (isa<FunctionTemplateDecl>(*F)) 87 OvlTemplate->addOverload(*F); 88 } 89 90 return OvlTemplate; 91 } 92 93 return FuncTmpl; 94 } 95 } 96 97 return 0; 98} 99 100TemplateNameKind Sema::isTemplateName(Scope *S, 101 const CXXScopeSpec &SS, 102 UnqualifiedId &Name, 103 TypeTy *ObjectTypePtr, 104 bool EnteringContext, 105 TemplateTy &TemplateResult) { 106 DeclarationName TName; 107 108 switch (Name.getKind()) { 109 case UnqualifiedId::IK_Identifier: 110 TName = DeclarationName(Name.Identifier); 111 break; 112 113 case UnqualifiedId::IK_OperatorFunctionId: 114 TName = Context.DeclarationNames.getCXXOperatorName( 115 Name.OperatorFunctionId.Operator); 116 break; 117 118 default: 119 return TNK_Non_template; 120 } 121 122 // Determine where to perform name lookup 123 DeclContext *LookupCtx = 0; 124 bool isDependent = false; 125 if (ObjectTypePtr) { 126 // This nested-name-specifier occurs in a member access expression, e.g., 127 // x->B::f, and we are looking into the type of the object. 128 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 129 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 130 LookupCtx = computeDeclContext(ObjectType); 131 isDependent = ObjectType->isDependentType(); 132 } else if (SS.isSet()) { 133 // This nested-name-specifier occurs after another nested-name-specifier, 134 // so long into the context associated with the prior nested-name-specifier. 135 136 LookupCtx = computeDeclContext(SS, EnteringContext); 137 isDependent = isDependentScopeSpecifier(SS); 138 } 139 140 LookupResult Found; 141 bool ObjectTypeSearchedInScope = false; 142 if (LookupCtx) { 143 // Perform "qualified" name lookup into the declaration context we 144 // computed, which is either the type of the base of a member access 145 // expression or the declaration context associated with a prior 146 // nested-name-specifier. 147 148 // The declaration context must be complete. 149 if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS)) 150 return TNK_Non_template; 151 152 LookupQualifiedName(Found, LookupCtx, TName, LookupOrdinaryName); 153 154 if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) { 155 // C++ [basic.lookup.classref]p1: 156 // In a class member access expression (5.2.5), if the . or -> token is 157 // immediately followed by an identifier followed by a <, the 158 // identifier must be looked up to determine whether the < is the 159 // beginning of a template argument list (14.2) or a less-than operator. 160 // The identifier is first looked up in the class of the object 161 // expression. If the identifier is not found, it is then looked up in 162 // the context of the entire postfix-expression and shall name a class 163 // or function template. 164 // 165 // FIXME: When we're instantiating a template, do we actually have to 166 // look in the scope of the template? Seems fishy... 167 LookupName(Found, S, TName, LookupOrdinaryName); 168 ObjectTypeSearchedInScope = true; 169 } 170 } else if (isDependent) { 171 // We cannot look into a dependent object type or 172 return TNK_Non_template; 173 } else { 174 // Perform unqualified name lookup in the current scope. 175 LookupName(Found, S, TName, LookupOrdinaryName); 176 } 177 178 // FIXME: Cope with ambiguous name-lookup results. 179 assert(!Found.isAmbiguous() && 180 "Cannot handle template name-lookup ambiguities"); 181 182 NamedDecl *Template 183 = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context)); 184 if (!Template) 185 return TNK_Non_template; 186 187 if (ObjectTypePtr && !ObjectTypeSearchedInScope) { 188 // C++ [basic.lookup.classref]p1: 189 // [...] If the lookup in the class of the object expression finds a 190 // template, the name is also looked up in the context of the entire 191 // postfix-expression and [...] 192 // 193 LookupResult FoundOuter; 194 LookupName(FoundOuter, S, TName, LookupOrdinaryName); 195 // FIXME: Handle ambiguities in this lookup better 196 NamedDecl *OuterTemplate 197 = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context)); 198 199 if (!OuterTemplate) { 200 // - if the name is not found, the name found in the class of the 201 // object expression is used, otherwise 202 } else if (!isa<ClassTemplateDecl>(OuterTemplate)) { 203 // - if the name is found in the context of the entire 204 // postfix-expression and does not name a class template, the name 205 // found in the class of the object expression is used, otherwise 206 } else { 207 // - if the name found is a class template, it must refer to the same 208 // entity as the one found in the class of the object expression, 209 // otherwise the program is ill-formed. 210 if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) { 211 Diag(Name.getSourceRange().getBegin(), 212 diag::err_nested_name_member_ref_lookup_ambiguous) 213 << TName 214 << Name.getSourceRange(); 215 Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type) 216 << QualType::getFromOpaquePtr(ObjectTypePtr); 217 Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope); 218 219 // Recover by taking the template that we found in the object 220 // expression's type. 221 } 222 } 223 } 224 225 if (SS.isSet() && !SS.isInvalid()) { 226 NestedNameSpecifier *Qualifier 227 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 228 if (OverloadedFunctionDecl *Ovl 229 = dyn_cast<OverloadedFunctionDecl>(Template)) 230 TemplateResult 231 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 232 Ovl)); 233 else 234 TemplateResult 235 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 236 cast<TemplateDecl>(Template))); 237 } else if (OverloadedFunctionDecl *Ovl 238 = dyn_cast<OverloadedFunctionDecl>(Template)) { 239 TemplateResult = TemplateTy::make(TemplateName(Ovl)); 240 } else { 241 TemplateResult = TemplateTy::make( 242 TemplateName(cast<TemplateDecl>(Template))); 243 } 244 245 if (isa<ClassTemplateDecl>(Template) || 246 isa<TemplateTemplateParmDecl>(Template)) 247 return TNK_Type_template; 248 249 assert((isa<FunctionTemplateDecl>(Template) || 250 isa<OverloadedFunctionDecl>(Template)) && 251 "Unhandled template kind in Sema::isTemplateName"); 252 return TNK_Function_template; 253} 254 255/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 256/// that the template parameter 'PrevDecl' is being shadowed by a new 257/// declaration at location Loc. Returns true to indicate that this is 258/// an error, and false otherwise. 259bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 260 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 261 262 // Microsoft Visual C++ permits template parameters to be shadowed. 263 if (getLangOptions().Microsoft) 264 return false; 265 266 // C++ [temp.local]p4: 267 // A template-parameter shall not be redeclared within its 268 // scope (including nested scopes). 269 Diag(Loc, diag::err_template_param_shadow) 270 << cast<NamedDecl>(PrevDecl)->getDeclName(); 271 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 272 return true; 273} 274 275/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 276/// the parameter D to reference the templated declaration and return a pointer 277/// to the template declaration. Otherwise, do nothing to D and return null. 278TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 279 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 280 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 281 return Temp; 282 } 283 return 0; 284} 285 286/// ActOnTypeParameter - Called when a C++ template type parameter 287/// (e.g., "typename T") has been parsed. Typename specifies whether 288/// the keyword "typename" was used to declare the type parameter 289/// (otherwise, "class" was used), and KeyLoc is the location of the 290/// "class" or "typename" keyword. ParamName is the name of the 291/// parameter (NULL indicates an unnamed template parameter) and 292/// ParamName is the location of the parameter name (if any). 293/// If the type parameter has a default argument, it will be added 294/// later via ActOnTypeParameterDefault. 295Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 296 SourceLocation EllipsisLoc, 297 SourceLocation KeyLoc, 298 IdentifierInfo *ParamName, 299 SourceLocation ParamNameLoc, 300 unsigned Depth, unsigned Position) { 301 assert(S->isTemplateParamScope() && 302 "Template type parameter not in template parameter scope!"); 303 bool Invalid = false; 304 305 if (ParamName) { 306 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 307 if (PrevDecl && PrevDecl->isTemplateParameter()) 308 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 309 PrevDecl); 310 } 311 312 SourceLocation Loc = ParamNameLoc; 313 if (!ParamName) 314 Loc = KeyLoc; 315 316 TemplateTypeParmDecl *Param 317 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 318 Depth, Position, ParamName, Typename, 319 Ellipsis); 320 if (Invalid) 321 Param->setInvalidDecl(); 322 323 if (ParamName) { 324 // Add the template parameter into the current scope. 325 S->AddDecl(DeclPtrTy::make(Param)); 326 IdResolver.AddDecl(Param); 327 } 328 329 return DeclPtrTy::make(Param); 330} 331 332/// ActOnTypeParameterDefault - Adds a default argument (the type 333/// Default) to the given template type parameter (TypeParam). 334void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 335 SourceLocation EqualLoc, 336 SourceLocation DefaultLoc, 337 TypeTy *DefaultT) { 338 TemplateTypeParmDecl *Parm 339 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 340 341 DeclaratorInfo *DefaultDInfo; 342 GetTypeFromParser(DefaultT, &DefaultDInfo); 343 344 assert(DefaultDInfo && "expected source information for type"); 345 346 // C++0x [temp.param]p9: 347 // A default template-argument may be specified for any kind of 348 // template-parameter that is not a template parameter pack. 349 if (Parm->isParameterPack()) { 350 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 351 return; 352 } 353 354 // C++ [temp.param]p14: 355 // A template-parameter shall not be used in its own default argument. 356 // FIXME: Implement this check! Needs a recursive walk over the types. 357 358 // Check the template argument itself. 359 if (CheckTemplateArgument(Parm, DefaultDInfo)) { 360 Parm->setInvalidDecl(); 361 return; 362 } 363 364 Parm->setDefaultArgument(DefaultDInfo, false); 365} 366 367/// \brief Check that the type of a non-type template parameter is 368/// well-formed. 369/// 370/// \returns the (possibly-promoted) parameter type if valid; 371/// otherwise, produces a diagnostic and returns a NULL type. 372QualType 373Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 374 // C++ [temp.param]p4: 375 // 376 // A non-type template-parameter shall have one of the following 377 // (optionally cv-qualified) types: 378 // 379 // -- integral or enumeration type, 380 if (T->isIntegralType() || T->isEnumeralType() || 381 // -- pointer to object or pointer to function, 382 (T->isPointerType() && 383 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 384 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 385 // -- reference to object or reference to function, 386 T->isReferenceType() || 387 // -- pointer to member. 388 T->isMemberPointerType() || 389 // If T is a dependent type, we can't do the check now, so we 390 // assume that it is well-formed. 391 T->isDependentType()) 392 return T; 393 // C++ [temp.param]p8: 394 // 395 // A non-type template-parameter of type "array of T" or 396 // "function returning T" is adjusted to be of type "pointer to 397 // T" or "pointer to function returning T", respectively. 398 else if (T->isArrayType()) 399 // FIXME: Keep the type prior to promotion? 400 return Context.getArrayDecayedType(T); 401 else if (T->isFunctionType()) 402 // FIXME: Keep the type prior to promotion? 403 return Context.getPointerType(T); 404 405 Diag(Loc, diag::err_template_nontype_parm_bad_type) 406 << T; 407 408 return QualType(); 409} 410 411/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 412/// template parameter (e.g., "int Size" in "template<int Size> 413/// class Array") has been parsed. S is the current scope and D is 414/// the parsed declarator. 415Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 416 unsigned Depth, 417 unsigned Position) { 418 DeclaratorInfo *DInfo = 0; 419 QualType T = GetTypeForDeclarator(D, S, &DInfo); 420 421 assert(S->isTemplateParamScope() && 422 "Non-type template parameter not in template parameter scope!"); 423 bool Invalid = false; 424 425 IdentifierInfo *ParamName = D.getIdentifier(); 426 if (ParamName) { 427 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 428 if (PrevDecl && PrevDecl->isTemplateParameter()) 429 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 430 PrevDecl); 431 } 432 433 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 434 if (T.isNull()) { 435 T = Context.IntTy; // Recover with an 'int' type. 436 Invalid = true; 437 } 438 439 NonTypeTemplateParmDecl *Param 440 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 441 Depth, Position, ParamName, T, DInfo); 442 if (Invalid) 443 Param->setInvalidDecl(); 444 445 if (D.getIdentifier()) { 446 // Add the template parameter into the current scope. 447 S->AddDecl(DeclPtrTy::make(Param)); 448 IdResolver.AddDecl(Param); 449 } 450 return DeclPtrTy::make(Param); 451} 452 453/// \brief Adds a default argument to the given non-type template 454/// parameter. 455void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 456 SourceLocation EqualLoc, 457 ExprArg DefaultE) { 458 NonTypeTemplateParmDecl *TemplateParm 459 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 460 Expr *Default = static_cast<Expr *>(DefaultE.get()); 461 462 // C++ [temp.param]p14: 463 // A template-parameter shall not be used in its own default argument. 464 // FIXME: Implement this check! Needs a recursive walk over the types. 465 466 // Check the well-formedness of the default template argument. 467 TemplateArgument Converted; 468 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 469 Converted)) { 470 TemplateParm->setInvalidDecl(); 471 return; 472 } 473 474 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 475} 476 477 478/// ActOnTemplateTemplateParameter - Called when a C++ template template 479/// parameter (e.g. T in template <template <typename> class T> class array) 480/// has been parsed. S is the current scope. 481Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 482 SourceLocation TmpLoc, 483 TemplateParamsTy *Params, 484 IdentifierInfo *Name, 485 SourceLocation NameLoc, 486 unsigned Depth, 487 unsigned Position) { 488 assert(S->isTemplateParamScope() && 489 "Template template parameter not in template parameter scope!"); 490 491 // Construct the parameter object. 492 TemplateTemplateParmDecl *Param = 493 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 494 Position, Name, 495 (TemplateParameterList*)Params); 496 497 // Make sure the parameter is valid. 498 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 499 // do anything yet. However, if the template parameter list or (eventual) 500 // default value is ever invalidated, that will propagate here. 501 bool Invalid = false; 502 if (Invalid) { 503 Param->setInvalidDecl(); 504 } 505 506 // If the tt-param has a name, then link the identifier into the scope 507 // and lookup mechanisms. 508 if (Name) { 509 S->AddDecl(DeclPtrTy::make(Param)); 510 IdResolver.AddDecl(Param); 511 } 512 513 return DeclPtrTy::make(Param); 514} 515 516/// \brief Adds a default argument to the given template template 517/// parameter. 518void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 519 SourceLocation EqualLoc, 520 ExprArg DefaultE) { 521 TemplateTemplateParmDecl *TemplateParm 522 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 523 524 // Since a template-template parameter's default argument is an 525 // id-expression, it must be a DeclRefExpr. 526 DeclRefExpr *Default 527 = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get())); 528 529 // C++ [temp.param]p14: 530 // A template-parameter shall not be used in its own default argument. 531 // FIXME: Implement this check! Needs a recursive walk over the types. 532 533 // Check the well-formedness of the template argument. 534 if (!isa<TemplateDecl>(Default->getDecl())) { 535 Diag(Default->getSourceRange().getBegin(), 536 diag::err_template_arg_must_be_template) 537 << Default->getSourceRange(); 538 TemplateParm->setInvalidDecl(); 539 return; 540 } 541 if (CheckTemplateArgument(TemplateParm, Default)) { 542 TemplateParm->setInvalidDecl(); 543 return; 544 } 545 546 DefaultE.release(); 547 TemplateParm->setDefaultArgument(Default); 548} 549 550/// ActOnTemplateParameterList - Builds a TemplateParameterList that 551/// contains the template parameters in Params/NumParams. 552Sema::TemplateParamsTy * 553Sema::ActOnTemplateParameterList(unsigned Depth, 554 SourceLocation ExportLoc, 555 SourceLocation TemplateLoc, 556 SourceLocation LAngleLoc, 557 DeclPtrTy *Params, unsigned NumParams, 558 SourceLocation RAngleLoc) { 559 if (ExportLoc.isValid()) 560 Diag(ExportLoc, diag::note_template_export_unsupported); 561 562 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 563 (NamedDecl**)Params, NumParams, 564 RAngleLoc); 565} 566 567Sema::DeclResult 568Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 569 SourceLocation KWLoc, const CXXScopeSpec &SS, 570 IdentifierInfo *Name, SourceLocation NameLoc, 571 AttributeList *Attr, 572 TemplateParameterList *TemplateParams, 573 AccessSpecifier AS) { 574 assert(TemplateParams && TemplateParams->size() > 0 && 575 "No template parameters"); 576 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 577 bool Invalid = false; 578 579 // Check that we can declare a template here. 580 if (CheckTemplateDeclScope(S, TemplateParams)) 581 return true; 582 583 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 584 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 585 586 // There is no such thing as an unnamed class template. 587 if (!Name) { 588 Diag(KWLoc, diag::err_template_unnamed_class); 589 return true; 590 } 591 592 // Find any previous declaration with this name. 593 DeclContext *SemanticContext; 594 LookupResult Previous; 595 if (SS.isNotEmpty() && !SS.isInvalid()) { 596 if (RequireCompleteDeclContext(SS)) 597 return true; 598 599 SemanticContext = computeDeclContext(SS, true); 600 if (!SemanticContext) { 601 // FIXME: Produce a reasonable diagnostic here 602 return true; 603 } 604 605 LookupQualifiedName(Previous, SemanticContext, Name, LookupOrdinaryName, 606 true); 607 } else { 608 SemanticContext = CurContext; 609 LookupName(Previous, S, Name, LookupOrdinaryName, true); 610 } 611 612 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 613 NamedDecl *PrevDecl = 0; 614 if (Previous.begin() != Previous.end()) 615 PrevDecl = *Previous.begin(); 616 617 if (PrevDecl && TUK == TUK_Friend) { 618 // C++ [namespace.memdef]p3: 619 // [...] When looking for a prior declaration of a class or a function 620 // declared as a friend, and when the name of the friend class or 621 // function is neither a qualified name nor a template-id, scopes outside 622 // the innermost enclosing namespace scope are not considered. 623 DeclContext *OutermostContext = CurContext; 624 while (!OutermostContext->isFileContext()) 625 OutermostContext = OutermostContext->getLookupParent(); 626 627 if (OutermostContext->Equals(PrevDecl->getDeclContext()) || 628 OutermostContext->Encloses(PrevDecl->getDeclContext())) { 629 SemanticContext = PrevDecl->getDeclContext(); 630 } else { 631 // Declarations in outer scopes don't matter. However, the outermost 632 // context we computed is the semantic context for our new 633 // declaration. 634 PrevDecl = 0; 635 SemanticContext = OutermostContext; 636 } 637 638 if (CurContext->isDependentContext()) { 639 // If this is a dependent context, we don't want to link the friend 640 // class template to the template in scope, because that would perform 641 // checking of the template parameter lists that can't be performed 642 // until the outer context is instantiated. 643 PrevDecl = 0; 644 } 645 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 646 PrevDecl = 0; 647 648 // If there is a previous declaration with the same name, check 649 // whether this is a valid redeclaration. 650 ClassTemplateDecl *PrevClassTemplate 651 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 652 653 // We may have found the injected-class-name of a class template, 654 // class template partial specialization, or class template specialization. 655 // In these cases, grab the template that is being defined or specialized. 656 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 657 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 658 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 659 PrevClassTemplate 660 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 661 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 662 PrevClassTemplate 663 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 664 ->getSpecializedTemplate(); 665 } 666 } 667 668 if (PrevClassTemplate) { 669 // Ensure that the template parameter lists are compatible. 670 if (!TemplateParameterListsAreEqual(TemplateParams, 671 PrevClassTemplate->getTemplateParameters(), 672 /*Complain=*/true)) 673 return true; 674 675 // C++ [temp.class]p4: 676 // In a redeclaration, partial specialization, explicit 677 // specialization or explicit instantiation of a class template, 678 // the class-key shall agree in kind with the original class 679 // template declaration (7.1.5.3). 680 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 681 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 682 Diag(KWLoc, diag::err_use_with_wrong_tag) 683 << Name 684 << CodeModificationHint::CreateReplacement(KWLoc, 685 PrevRecordDecl->getKindName()); 686 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 687 Kind = PrevRecordDecl->getTagKind(); 688 } 689 690 // Check for redefinition of this class template. 691 if (TUK == TUK_Definition) { 692 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 693 Diag(NameLoc, diag::err_redefinition) << Name; 694 Diag(Def->getLocation(), diag::note_previous_definition); 695 // FIXME: Would it make sense to try to "forget" the previous 696 // definition, as part of error recovery? 697 return true; 698 } 699 } 700 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 701 // Maybe we will complain about the shadowed template parameter. 702 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 703 // Just pretend that we didn't see the previous declaration. 704 PrevDecl = 0; 705 } else if (PrevDecl) { 706 // C++ [temp]p5: 707 // A class template shall not have the same name as any other 708 // template, class, function, object, enumeration, enumerator, 709 // namespace, or type in the same scope (3.3), except as specified 710 // in (14.5.4). 711 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 712 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 713 return true; 714 } 715 716 // Check the template parameter list of this declaration, possibly 717 // merging in the template parameter list from the previous class 718 // template declaration. 719 if (CheckTemplateParameterList(TemplateParams, 720 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0)) 721 Invalid = true; 722 723 // FIXME: If we had a scope specifier, we better have a previous template 724 // declaration! 725 726 CXXRecordDecl *NewClass = 727 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 728 PrevClassTemplate? 729 PrevClassTemplate->getTemplatedDecl() : 0, 730 /*DelayTypeCreation=*/true); 731 732 ClassTemplateDecl *NewTemplate 733 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 734 DeclarationName(Name), TemplateParams, 735 NewClass, PrevClassTemplate); 736 NewClass->setDescribedClassTemplate(NewTemplate); 737 738 // Build the type for the class template declaration now. 739 QualType T = 740 Context.getTypeDeclType(NewClass, 741 PrevClassTemplate? 742 PrevClassTemplate->getTemplatedDecl() : 0); 743 assert(T->isDependentType() && "Class template type is not dependent?"); 744 (void)T; 745 746 // If we are providing an explicit specialization of a member that is a 747 // class template, make a note of that. 748 if (PrevClassTemplate && 749 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 750 PrevClassTemplate->setMemberSpecialization(); 751 752 // Set the access specifier. 753 if (!Invalid && TUK != TUK_Friend) 754 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 755 756 // Set the lexical context of these templates 757 NewClass->setLexicalDeclContext(CurContext); 758 NewTemplate->setLexicalDeclContext(CurContext); 759 760 if (TUK == TUK_Definition) 761 NewClass->startDefinition(); 762 763 if (Attr) 764 ProcessDeclAttributeList(S, NewClass, Attr); 765 766 if (TUK != TUK_Friend) 767 PushOnScopeChains(NewTemplate, S); 768 else { 769 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 770 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 771 NewClass->setAccess(PrevClassTemplate->getAccess()); 772 } 773 774 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 775 PrevClassTemplate != NULL); 776 777 // Friend templates are visible in fairly strange ways. 778 if (!CurContext->isDependentContext()) { 779 DeclContext *DC = SemanticContext->getLookupContext(); 780 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 781 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 782 PushOnScopeChains(NewTemplate, EnclosingScope, 783 /* AddToContext = */ false); 784 } 785 786 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 787 NewClass->getLocation(), 788 NewTemplate, 789 /*FIXME:*/NewClass->getLocation()); 790 Friend->setAccess(AS_public); 791 CurContext->addDecl(Friend); 792 } 793 794 if (Invalid) { 795 NewTemplate->setInvalidDecl(); 796 NewClass->setInvalidDecl(); 797 } 798 return DeclPtrTy::make(NewTemplate); 799} 800 801/// \brief Checks the validity of a template parameter list, possibly 802/// considering the template parameter list from a previous 803/// declaration. 804/// 805/// If an "old" template parameter list is provided, it must be 806/// equivalent (per TemplateParameterListsAreEqual) to the "new" 807/// template parameter list. 808/// 809/// \param NewParams Template parameter list for a new template 810/// declaration. This template parameter list will be updated with any 811/// default arguments that are carried through from the previous 812/// template parameter list. 813/// 814/// \param OldParams If provided, template parameter list from a 815/// previous declaration of the same template. Default template 816/// arguments will be merged from the old template parameter list to 817/// the new template parameter list. 818/// 819/// \returns true if an error occurred, false otherwise. 820bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 821 TemplateParameterList *OldParams) { 822 bool Invalid = false; 823 824 // C++ [temp.param]p10: 825 // The set of default template-arguments available for use with a 826 // template declaration or definition is obtained by merging the 827 // default arguments from the definition (if in scope) and all 828 // declarations in scope in the same way default function 829 // arguments are (8.3.6). 830 bool SawDefaultArgument = false; 831 SourceLocation PreviousDefaultArgLoc; 832 833 bool SawParameterPack = false; 834 SourceLocation ParameterPackLoc; 835 836 // Dummy initialization to avoid warnings. 837 TemplateParameterList::iterator OldParam = NewParams->end(); 838 if (OldParams) 839 OldParam = OldParams->begin(); 840 841 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 842 NewParamEnd = NewParams->end(); 843 NewParam != NewParamEnd; ++NewParam) { 844 // Variables used to diagnose redundant default arguments 845 bool RedundantDefaultArg = false; 846 SourceLocation OldDefaultLoc; 847 SourceLocation NewDefaultLoc; 848 849 // Variables used to diagnose missing default arguments 850 bool MissingDefaultArg = false; 851 852 // C++0x [temp.param]p11: 853 // If a template parameter of a class template is a template parameter pack, 854 // it must be the last template parameter. 855 if (SawParameterPack) { 856 Diag(ParameterPackLoc, 857 diag::err_template_param_pack_must_be_last_template_parameter); 858 Invalid = true; 859 } 860 861 // Merge default arguments for template type parameters. 862 if (TemplateTypeParmDecl *NewTypeParm 863 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 864 TemplateTypeParmDecl *OldTypeParm 865 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 866 867 if (NewTypeParm->isParameterPack()) { 868 assert(!NewTypeParm->hasDefaultArgument() && 869 "Parameter packs can't have a default argument!"); 870 SawParameterPack = true; 871 ParameterPackLoc = NewTypeParm->getLocation(); 872 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 873 NewTypeParm->hasDefaultArgument()) { 874 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 875 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 876 SawDefaultArgument = true; 877 RedundantDefaultArg = true; 878 PreviousDefaultArgLoc = NewDefaultLoc; 879 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 880 // Merge the default argument from the old declaration to the 881 // new declaration. 882 SawDefaultArgument = true; 883 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 884 true); 885 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 886 } else if (NewTypeParm->hasDefaultArgument()) { 887 SawDefaultArgument = true; 888 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 889 } else if (SawDefaultArgument) 890 MissingDefaultArg = true; 891 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 892 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 893 // Merge default arguments for non-type template parameters 894 NonTypeTemplateParmDecl *OldNonTypeParm 895 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 896 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 897 NewNonTypeParm->hasDefaultArgument()) { 898 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 899 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 900 SawDefaultArgument = true; 901 RedundantDefaultArg = true; 902 PreviousDefaultArgLoc = NewDefaultLoc; 903 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 904 // Merge the default argument from the old declaration to the 905 // new declaration. 906 SawDefaultArgument = true; 907 // FIXME: We need to create a new kind of "default argument" 908 // expression that points to a previous template template 909 // parameter. 910 NewNonTypeParm->setDefaultArgument( 911 OldNonTypeParm->getDefaultArgument()); 912 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 913 } else if (NewNonTypeParm->hasDefaultArgument()) { 914 SawDefaultArgument = true; 915 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 916 } else if (SawDefaultArgument) 917 MissingDefaultArg = true; 918 } else { 919 // Merge default arguments for template template parameters 920 TemplateTemplateParmDecl *NewTemplateParm 921 = cast<TemplateTemplateParmDecl>(*NewParam); 922 TemplateTemplateParmDecl *OldTemplateParm 923 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 924 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 925 NewTemplateParm->hasDefaultArgument()) { 926 OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc(); 927 NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc(); 928 SawDefaultArgument = true; 929 RedundantDefaultArg = true; 930 PreviousDefaultArgLoc = NewDefaultLoc; 931 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 932 // Merge the default argument from the old declaration to the 933 // new declaration. 934 SawDefaultArgument = true; 935 // FIXME: We need to create a new kind of "default argument" expression 936 // that points to a previous template template parameter. 937 NewTemplateParm->setDefaultArgument( 938 OldTemplateParm->getDefaultArgument()); 939 PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc(); 940 } else if (NewTemplateParm->hasDefaultArgument()) { 941 SawDefaultArgument = true; 942 PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc(); 943 } else if (SawDefaultArgument) 944 MissingDefaultArg = true; 945 } 946 947 if (RedundantDefaultArg) { 948 // C++ [temp.param]p12: 949 // A template-parameter shall not be given default arguments 950 // by two different declarations in the same scope. 951 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 952 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 953 Invalid = true; 954 } else if (MissingDefaultArg) { 955 // C++ [temp.param]p11: 956 // If a template-parameter has a default template-argument, 957 // all subsequent template-parameters shall have a default 958 // template-argument supplied. 959 Diag((*NewParam)->getLocation(), 960 diag::err_template_param_default_arg_missing); 961 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 962 Invalid = true; 963 } 964 965 // If we have an old template parameter list that we're merging 966 // in, move on to the next parameter. 967 if (OldParams) 968 ++OldParam; 969 } 970 971 return Invalid; 972} 973 974/// \brief Match the given template parameter lists to the given scope 975/// specifier, returning the template parameter list that applies to the 976/// name. 977/// 978/// \param DeclStartLoc the start of the declaration that has a scope 979/// specifier or a template parameter list. 980/// 981/// \param SS the scope specifier that will be matched to the given template 982/// parameter lists. This scope specifier precedes a qualified name that is 983/// being declared. 984/// 985/// \param ParamLists the template parameter lists, from the outermost to the 986/// innermost template parameter lists. 987/// 988/// \param NumParamLists the number of template parameter lists in ParamLists. 989/// 990/// \param IsExplicitSpecialization will be set true if the entity being 991/// declared is an explicit specialization, false otherwise. 992/// 993/// \returns the template parameter list, if any, that corresponds to the 994/// name that is preceded by the scope specifier @p SS. This template 995/// parameter list may be have template parameters (if we're declaring a 996/// template) or may have no template parameters (if we're declaring a 997/// template specialization), or may be NULL (if we were's declaring isn't 998/// itself a template). 999TemplateParameterList * 1000Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1001 const CXXScopeSpec &SS, 1002 TemplateParameterList **ParamLists, 1003 unsigned NumParamLists, 1004 bool &IsExplicitSpecialization) { 1005 IsExplicitSpecialization = false; 1006 1007 // Find the template-ids that occur within the nested-name-specifier. These 1008 // template-ids will match up with the template parameter lists. 1009 llvm::SmallVector<const TemplateSpecializationType *, 4> 1010 TemplateIdsInSpecifier; 1011 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1012 NNS; NNS = NNS->getPrefix()) { 1013 if (const TemplateSpecializationType *SpecType 1014 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 1015 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1016 if (!Template) 1017 continue; // FIXME: should this be an error? probably... 1018 1019 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1020 ClassTemplateSpecializationDecl *SpecDecl 1021 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1022 // If the nested name specifier refers to an explicit specialization, 1023 // we don't need a template<> header. 1024 // FIXME: revisit this approach once we cope with specializations 1025 // properly. 1026 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) 1027 continue; 1028 } 1029 1030 TemplateIdsInSpecifier.push_back(SpecType); 1031 } 1032 } 1033 1034 // Reverse the list of template-ids in the scope specifier, so that we can 1035 // more easily match up the template-ids and the template parameter lists. 1036 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1037 1038 SourceLocation FirstTemplateLoc = DeclStartLoc; 1039 if (NumParamLists) 1040 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1041 1042 // Match the template-ids found in the specifier to the template parameter 1043 // lists. 1044 unsigned Idx = 0; 1045 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1046 Idx != NumTemplateIds; ++Idx) { 1047 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1048 bool DependentTemplateId = TemplateId->isDependentType(); 1049 if (Idx >= NumParamLists) { 1050 // We have a template-id without a corresponding template parameter 1051 // list. 1052 if (DependentTemplateId) { 1053 // FIXME: the location information here isn't great. 1054 Diag(SS.getRange().getBegin(), 1055 diag::err_template_spec_needs_template_parameters) 1056 << TemplateId 1057 << SS.getRange(); 1058 } else { 1059 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1060 << SS.getRange() 1061 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1062 "template<> "); 1063 IsExplicitSpecialization = true; 1064 } 1065 return 0; 1066 } 1067 1068 // Check the template parameter list against its corresponding template-id. 1069 if (DependentTemplateId) { 1070 TemplateDecl *Template 1071 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1072 1073 if (ClassTemplateDecl *ClassTemplate 1074 = dyn_cast<ClassTemplateDecl>(Template)) { 1075 TemplateParameterList *ExpectedTemplateParams = 0; 1076 // Is this template-id naming the primary template? 1077 if (Context.hasSameType(TemplateId, 1078 ClassTemplate->getInjectedClassNameType(Context))) 1079 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1080 // ... or a partial specialization? 1081 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1082 = ClassTemplate->findPartialSpecialization(TemplateId)) 1083 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1084 1085 if (ExpectedTemplateParams) 1086 TemplateParameterListsAreEqual(ParamLists[Idx], 1087 ExpectedTemplateParams, 1088 true); 1089 } 1090 } else if (ParamLists[Idx]->size() > 0) 1091 Diag(ParamLists[Idx]->getTemplateLoc(), 1092 diag::err_template_param_list_matches_nontemplate) 1093 << TemplateId 1094 << ParamLists[Idx]->getSourceRange(); 1095 else 1096 IsExplicitSpecialization = true; 1097 } 1098 1099 // If there were at least as many template-ids as there were template 1100 // parameter lists, then there are no template parameter lists remaining for 1101 // the declaration itself. 1102 if (Idx >= NumParamLists) 1103 return 0; 1104 1105 // If there were too many template parameter lists, complain about that now. 1106 if (Idx != NumParamLists - 1) { 1107 while (Idx < NumParamLists - 1) { 1108 Diag(ParamLists[Idx]->getTemplateLoc(), 1109 diag::err_template_spec_extra_headers) 1110 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1111 ParamLists[Idx]->getRAngleLoc()); 1112 ++Idx; 1113 } 1114 } 1115 1116 // Return the last template parameter list, which corresponds to the 1117 // entity being declared. 1118 return ParamLists[NumParamLists - 1]; 1119} 1120 1121/// \brief Translates template arguments as provided by the parser 1122/// into template arguments used by semantic analysis. 1123void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 1124 SourceLocation *TemplateArgLocs, 1125 llvm::SmallVector<TemplateArgumentLoc, 16> &TemplateArgs) { 1126 TemplateArgs.reserve(TemplateArgsIn.size()); 1127 1128 void **Args = TemplateArgsIn.getArgs(); 1129 bool *ArgIsType = TemplateArgsIn.getArgIsType(); 1130 for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) { 1131 if (ArgIsType[Arg]) { 1132 DeclaratorInfo *DI; 1133 QualType T = Sema::GetTypeFromParser(Args[Arg], &DI); 1134 if (!DI) DI = Context.getTrivialDeclaratorInfo(T, TemplateArgLocs[Arg]); 1135 TemplateArgs.push_back(TemplateArgumentLoc(TemplateArgument(T), DI)); 1136 } else { 1137 Expr *E = reinterpret_cast<Expr *>(Args[Arg]); 1138 TemplateArgs.push_back(TemplateArgumentLoc(TemplateArgument(E), E)); 1139 } 1140 } 1141} 1142 1143QualType Sema::CheckTemplateIdType(TemplateName Name, 1144 SourceLocation TemplateLoc, 1145 SourceLocation LAngleLoc, 1146 const TemplateArgumentLoc *TemplateArgs, 1147 unsigned NumTemplateArgs, 1148 SourceLocation RAngleLoc) { 1149 TemplateDecl *Template = Name.getAsTemplateDecl(); 1150 if (!Template) { 1151 // The template name does not resolve to a template, so we just 1152 // build a dependent template-id type. 1153 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1154 NumTemplateArgs); 1155 } 1156 1157 // Check that the template argument list is well-formed for this 1158 // template. 1159 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1160 NumTemplateArgs); 1161 if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 1162 TemplateArgs, NumTemplateArgs, RAngleLoc, 1163 false, Converted)) 1164 return QualType(); 1165 1166 assert((Converted.structuredSize() == 1167 Template->getTemplateParameters()->size()) && 1168 "Converted template argument list is too short!"); 1169 1170 QualType CanonType; 1171 1172 if (TemplateSpecializationType::anyDependentTemplateArguments( 1173 TemplateArgs, 1174 NumTemplateArgs)) { 1175 // This class template specialization is a dependent 1176 // type. Therefore, its canonical type is another class template 1177 // specialization type that contains all of the converted 1178 // arguments in canonical form. This ensures that, e.g., A<T> and 1179 // A<T, T> have identical types when A is declared as: 1180 // 1181 // template<typename T, typename U = T> struct A; 1182 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1183 CanonType = Context.getTemplateSpecializationType(CanonName, 1184 Converted.getFlatArguments(), 1185 Converted.flatSize()); 1186 1187 // FIXME: CanonType is not actually the canonical type, and unfortunately 1188 // it is a TemplateSpecializationType that we will never use again. 1189 // In the future, we need to teach getTemplateSpecializationType to only 1190 // build the canonical type and return that to us. 1191 CanonType = Context.getCanonicalType(CanonType); 1192 } else if (ClassTemplateDecl *ClassTemplate 1193 = dyn_cast<ClassTemplateDecl>(Template)) { 1194 // Find the class template specialization declaration that 1195 // corresponds to these arguments. 1196 llvm::FoldingSetNodeID ID; 1197 ClassTemplateSpecializationDecl::Profile(ID, 1198 Converted.getFlatArguments(), 1199 Converted.flatSize(), 1200 Context); 1201 void *InsertPos = 0; 1202 ClassTemplateSpecializationDecl *Decl 1203 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1204 if (!Decl) { 1205 // This is the first time we have referenced this class template 1206 // specialization. Create the canonical declaration and add it to 1207 // the set of specializations. 1208 Decl = ClassTemplateSpecializationDecl::Create(Context, 1209 ClassTemplate->getDeclContext(), 1210 ClassTemplate->getLocation(), 1211 ClassTemplate, 1212 Converted, 0); 1213 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1214 Decl->setLexicalDeclContext(CurContext); 1215 } 1216 1217 CanonType = Context.getTypeDeclType(Decl); 1218 } 1219 1220 // Build the fully-sugared type for this class template 1221 // specialization, which refers back to the class template 1222 // specialization we created or found. 1223 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1224 NumTemplateArgs, CanonType); 1225} 1226 1227Action::TypeResult 1228Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1229 SourceLocation LAngleLoc, 1230 ASTTemplateArgsPtr TemplateArgsIn, 1231 SourceLocation *TemplateArgLocsIn, 1232 SourceLocation RAngleLoc) { 1233 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1234 1235 // Translate the parser's template argument list in our AST format. 1236 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 1237 translateTemplateArguments(TemplateArgsIn, TemplateArgLocsIn, TemplateArgs); 1238 1239 QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc, 1240 TemplateArgs.data(), 1241 TemplateArgs.size(), 1242 RAngleLoc); 1243 TemplateArgsIn.release(); 1244 1245 if (Result.isNull()) 1246 return true; 1247 1248 DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result); 1249 TemplateSpecializationTypeLoc TL 1250 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1251 TL.setTemplateNameLoc(TemplateLoc); 1252 TL.setLAngleLoc(LAngleLoc); 1253 TL.setRAngleLoc(RAngleLoc); 1254 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1255 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1256 1257 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1258} 1259 1260Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1261 TagUseKind TUK, 1262 DeclSpec::TST TagSpec, 1263 SourceLocation TagLoc) { 1264 if (TypeResult.isInvalid()) 1265 return Sema::TypeResult(); 1266 1267 // FIXME: preserve source info, ideally without copying the DI. 1268 DeclaratorInfo *DI; 1269 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1270 1271 // Verify the tag specifier. 1272 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1273 1274 if (const RecordType *RT = Type->getAs<RecordType>()) { 1275 RecordDecl *D = RT->getDecl(); 1276 1277 IdentifierInfo *Id = D->getIdentifier(); 1278 assert(Id && "templated class must have an identifier"); 1279 1280 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1281 Diag(TagLoc, diag::err_use_with_wrong_tag) 1282 << Type 1283 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1284 D->getKindName()); 1285 Diag(D->getLocation(), diag::note_previous_use); 1286 } 1287 } 1288 1289 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1290 1291 return ElabType.getAsOpaquePtr(); 1292} 1293 1294Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier, 1295 SourceRange QualifierRange, 1296 TemplateName Template, 1297 SourceLocation TemplateNameLoc, 1298 SourceLocation LAngleLoc, 1299 const TemplateArgumentLoc *TemplateArgs, 1300 unsigned NumTemplateArgs, 1301 SourceLocation RAngleLoc) { 1302 // FIXME: Can we do any checking at this point? I guess we could check the 1303 // template arguments that we have against the template name, if the template 1304 // name refers to a single template. That's not a terribly common case, 1305 // though. 1306 1307 // Cope with an implicit member access in a C++ non-static member function. 1308 NamedDecl *D = Template.getAsTemplateDecl(); 1309 if (!D) 1310 D = Template.getAsOverloadedFunctionDecl(); 1311 1312 CXXScopeSpec SS; 1313 SS.setRange(QualifierRange); 1314 SS.setScopeRep(Qualifier); 1315 QualType ThisType, MemberType; 1316 if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc, 1317 ThisType, MemberType)) { 1318 Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType); 1319 return Owned(MemberExpr::Create(Context, This, true, 1320 Qualifier, QualifierRange, 1321 D, TemplateNameLoc, true, 1322 LAngleLoc, TemplateArgs, 1323 NumTemplateArgs, RAngleLoc, 1324 Context.OverloadTy)); 1325 } 1326 1327 return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy, 1328 Qualifier, QualifierRange, 1329 Template, TemplateNameLoc, LAngleLoc, 1330 TemplateArgs, 1331 NumTemplateArgs, RAngleLoc)); 1332} 1333 1334Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS, 1335 TemplateTy TemplateD, 1336 SourceLocation TemplateNameLoc, 1337 SourceLocation LAngleLoc, 1338 ASTTemplateArgsPtr TemplateArgsIn, 1339 SourceLocation *TemplateArgSLs, 1340 SourceLocation RAngleLoc) { 1341 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1342 1343 // Translate the parser's template argument list in our AST format. 1344 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 1345 translateTemplateArguments(TemplateArgsIn, TemplateArgSLs, TemplateArgs); 1346 TemplateArgsIn.release(); 1347 1348 return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(), 1349 SS.getRange(), 1350 Template, TemplateNameLoc, LAngleLoc, 1351 TemplateArgs.data(), TemplateArgs.size(), 1352 RAngleLoc); 1353} 1354 1355/// \brief Form a dependent template name. 1356/// 1357/// This action forms a dependent template name given the template 1358/// name and its (presumably dependent) scope specifier. For 1359/// example, given "MetaFun::template apply", the scope specifier \p 1360/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1361/// of the "template" keyword, and "apply" is the \p Name. 1362Sema::TemplateTy 1363Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1364 const CXXScopeSpec &SS, 1365 UnqualifiedId &Name, 1366 TypeTy *ObjectType) { 1367 if ((ObjectType && 1368 computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) || 1369 (SS.isSet() && computeDeclContext(SS, false))) { 1370 // C++0x [temp.names]p5: 1371 // If a name prefixed by the keyword template is not the name of 1372 // a template, the program is ill-formed. [Note: the keyword 1373 // template may not be applied to non-template members of class 1374 // templates. -end note ] [ Note: as is the case with the 1375 // typename prefix, the template prefix is allowed in cases 1376 // where it is not strictly necessary; i.e., when the 1377 // nested-name-specifier or the expression on the left of the -> 1378 // or . is not dependent on a template-parameter, or the use 1379 // does not appear in the scope of a template. -end note] 1380 // 1381 // Note: C++03 was more strict here, because it banned the use of 1382 // the "template" keyword prior to a template-name that was not a 1383 // dependent name. C++ DR468 relaxed this requirement (the 1384 // "template" keyword is now permitted). We follow the C++0x 1385 // rules, even in C++03 mode, retroactively applying the DR. 1386 TemplateTy Template; 1387 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1388 false, Template); 1389 if (TNK == TNK_Non_template) { 1390 Diag(Name.getSourceRange().getBegin(), 1391 diag::err_template_kw_refers_to_non_template) 1392 << GetNameFromUnqualifiedId(Name) 1393 << Name.getSourceRange(); 1394 return TemplateTy(); 1395 } 1396 1397 return Template; 1398 } 1399 1400 NestedNameSpecifier *Qualifier 1401 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1402 1403 switch (Name.getKind()) { 1404 case UnqualifiedId::IK_Identifier: 1405 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1406 Name.Identifier)); 1407 1408 default: 1409 break; 1410 } 1411 1412 Diag(Name.getSourceRange().getBegin(), 1413 diag::err_template_kw_refers_to_non_template) 1414 << GetNameFromUnqualifiedId(Name) 1415 << Name.getSourceRange(); 1416 return TemplateTy(); 1417} 1418 1419bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1420 const TemplateArgumentLoc &AL, 1421 TemplateArgumentListBuilder &Converted) { 1422 const TemplateArgument &Arg = AL.getArgument(); 1423 1424 // Check template type parameter. 1425 if (Arg.getKind() != TemplateArgument::Type) { 1426 // C++ [temp.arg.type]p1: 1427 // A template-argument for a template-parameter which is a 1428 // type shall be a type-id. 1429 1430 // We have a template type parameter but the template argument 1431 // is not a type. 1432 SourceRange SR = AL.getSourceRange(); 1433 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1434 Diag(Param->getLocation(), diag::note_template_param_here); 1435 1436 return true; 1437 } 1438 1439 if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo())) 1440 return true; 1441 1442 // Add the converted template type argument. 1443 Converted.Append( 1444 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1445 return false; 1446} 1447 1448/// \brief Check that the given template argument list is well-formed 1449/// for specializing the given template. 1450bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1451 SourceLocation TemplateLoc, 1452 SourceLocation LAngleLoc, 1453 const TemplateArgumentLoc *TemplateArgs, 1454 unsigned NumTemplateArgs, 1455 SourceLocation RAngleLoc, 1456 bool PartialTemplateArgs, 1457 TemplateArgumentListBuilder &Converted) { 1458 TemplateParameterList *Params = Template->getTemplateParameters(); 1459 unsigned NumParams = Params->size(); 1460 unsigned NumArgs = NumTemplateArgs; 1461 bool Invalid = false; 1462 1463 bool HasParameterPack = 1464 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 1465 1466 if ((NumArgs > NumParams && !HasParameterPack) || 1467 (NumArgs < Params->getMinRequiredArguments() && 1468 !PartialTemplateArgs)) { 1469 // FIXME: point at either the first arg beyond what we can handle, 1470 // or the '>', depending on whether we have too many or too few 1471 // arguments. 1472 SourceRange Range; 1473 if (NumArgs > NumParams) 1474 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 1475 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 1476 << (NumArgs > NumParams) 1477 << (isa<ClassTemplateDecl>(Template)? 0 : 1478 isa<FunctionTemplateDecl>(Template)? 1 : 1479 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 1480 << Template << Range; 1481 Diag(Template->getLocation(), diag::note_template_decl_here) 1482 << Params->getSourceRange(); 1483 Invalid = true; 1484 } 1485 1486 // C++ [temp.arg]p1: 1487 // [...] The type and form of each template-argument specified in 1488 // a template-id shall match the type and form specified for the 1489 // corresponding parameter declared by the template in its 1490 // template-parameter-list. 1491 unsigned ArgIdx = 0; 1492 for (TemplateParameterList::iterator Param = Params->begin(), 1493 ParamEnd = Params->end(); 1494 Param != ParamEnd; ++Param, ++ArgIdx) { 1495 if (ArgIdx > NumArgs && PartialTemplateArgs) 1496 break; 1497 1498 // Decode the template argument 1499 TemplateArgumentLoc Arg; 1500 1501 if (ArgIdx >= NumArgs) { 1502 // Retrieve the default template argument from the template 1503 // parameter. 1504 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1505 if (TTP->isParameterPack()) { 1506 // We have an empty argument pack. 1507 Converted.BeginPack(); 1508 Converted.EndPack(); 1509 break; 1510 } 1511 1512 if (!TTP->hasDefaultArgument()) 1513 break; 1514 1515 DeclaratorInfo *ArgType = TTP->getDefaultArgumentInfo(); 1516 1517 // If the argument type is dependent, instantiate it now based 1518 // on the previously-computed template arguments. 1519 if (ArgType->getType()->isDependentType()) { 1520 InstantiatingTemplate Inst(*this, TemplateLoc, 1521 Template, Converted.getFlatArguments(), 1522 Converted.flatSize(), 1523 SourceRange(TemplateLoc, RAngleLoc)); 1524 1525 TemplateArgumentList TemplateArgs(Context, Converted, 1526 /*TakeArgs=*/false); 1527 ArgType = SubstType(ArgType, 1528 MultiLevelTemplateArgumentList(TemplateArgs), 1529 TTP->getDefaultArgumentLoc(), 1530 TTP->getDeclName()); 1531 } 1532 1533 if (!ArgType) 1534 return true; 1535 1536 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), ArgType); 1537 } else if (NonTypeTemplateParmDecl *NTTP 1538 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1539 if (!NTTP->hasDefaultArgument()) 1540 break; 1541 1542 InstantiatingTemplate Inst(*this, TemplateLoc, 1543 Template, Converted.getFlatArguments(), 1544 Converted.flatSize(), 1545 SourceRange(TemplateLoc, RAngleLoc)); 1546 1547 TemplateArgumentList TemplateArgs(Context, Converted, 1548 /*TakeArgs=*/false); 1549 1550 Sema::OwningExprResult E 1551 = SubstExpr(NTTP->getDefaultArgument(), 1552 MultiLevelTemplateArgumentList(TemplateArgs)); 1553 if (E.isInvalid()) 1554 return true; 1555 1556 Expr *Ex = E.takeAs<Expr>(); 1557 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 1558 } else { 1559 TemplateTemplateParmDecl *TempParm 1560 = cast<TemplateTemplateParmDecl>(*Param); 1561 1562 if (!TempParm->hasDefaultArgument()) 1563 break; 1564 1565 // FIXME: Subst default argument 1566 Arg = TemplateArgumentLoc(TemplateArgument(TempParm->getDefaultArgument()), 1567 TempParm->getDefaultArgument()); 1568 } 1569 } else { 1570 // Retrieve the template argument produced by the user. 1571 Arg = TemplateArgs[ArgIdx]; 1572 } 1573 1574 1575 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1576 if (TTP->isParameterPack()) { 1577 Converted.BeginPack(); 1578 // Check all the remaining arguments (if any). 1579 for (; ArgIdx < NumArgs; ++ArgIdx) { 1580 if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted)) 1581 Invalid = true; 1582 } 1583 1584 Converted.EndPack(); 1585 } else { 1586 if (CheckTemplateTypeArgument(TTP, Arg, Converted)) 1587 Invalid = true; 1588 } 1589 } else if (NonTypeTemplateParmDecl *NTTP 1590 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1591 // Check non-type template parameters. 1592 1593 // Do substitution on the type of the non-type template parameter 1594 // with the template arguments we've seen thus far. 1595 QualType NTTPType = NTTP->getType(); 1596 if (NTTPType->isDependentType()) { 1597 // Do substitution on the type of the non-type template parameter. 1598 InstantiatingTemplate Inst(*this, TemplateLoc, 1599 Template, Converted.getFlatArguments(), 1600 Converted.flatSize(), 1601 SourceRange(TemplateLoc, RAngleLoc)); 1602 1603 TemplateArgumentList TemplateArgs(Context, Converted, 1604 /*TakeArgs=*/false); 1605 NTTPType = SubstType(NTTPType, 1606 MultiLevelTemplateArgumentList(TemplateArgs), 1607 NTTP->getLocation(), 1608 NTTP->getDeclName()); 1609 // If that worked, check the non-type template parameter type 1610 // for validity. 1611 if (!NTTPType.isNull()) 1612 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1613 NTTP->getLocation()); 1614 if (NTTPType.isNull()) { 1615 Invalid = true; 1616 break; 1617 } 1618 } 1619 1620 switch (Arg.getArgument().getKind()) { 1621 case TemplateArgument::Null: 1622 assert(false && "Should never see a NULL template argument here"); 1623 break; 1624 1625 case TemplateArgument::Expression: { 1626 Expr *E = Arg.getArgument().getAsExpr(); 1627 TemplateArgument Result; 1628 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1629 Invalid = true; 1630 else 1631 Converted.Append(Result); 1632 break; 1633 } 1634 1635 case TemplateArgument::Declaration: 1636 case TemplateArgument::Integral: 1637 // We've already checked this template argument, so just copy 1638 // it to the list of converted arguments. 1639 Converted.Append(Arg.getArgument()); 1640 break; 1641 1642 case TemplateArgument::Type: { 1643 // We have a non-type template parameter but the template 1644 // argument is a type. 1645 1646 // C++ [temp.arg]p2: 1647 // In a template-argument, an ambiguity between a type-id and 1648 // an expression is resolved to a type-id, regardless of the 1649 // form of the corresponding template-parameter. 1650 // 1651 // We warn specifically about this case, since it can be rather 1652 // confusing for users. 1653 QualType T = Arg.getArgument().getAsType(); 1654 SourceRange SR = Arg.getSourceRange(); 1655 if (T->isFunctionType()) 1656 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) 1657 << SR << T; 1658 else 1659 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 1660 Diag((*Param)->getLocation(), diag::note_template_param_here); 1661 Invalid = true; 1662 break; 1663 } 1664 1665 case TemplateArgument::Pack: 1666 assert(0 && "FIXME: Implement!"); 1667 break; 1668 } 1669 } else { 1670 // Check template template parameters. 1671 TemplateTemplateParmDecl *TempParm 1672 = cast<TemplateTemplateParmDecl>(*Param); 1673 1674 switch (Arg.getArgument().getKind()) { 1675 case TemplateArgument::Null: 1676 assert(false && "Should never see a NULL template argument here"); 1677 break; 1678 1679 case TemplateArgument::Expression: { 1680 Expr *ArgExpr = Arg.getArgument().getAsExpr(); 1681 if (ArgExpr && isa<DeclRefExpr>(ArgExpr) && 1682 isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) { 1683 if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr))) 1684 Invalid = true; 1685 1686 // Add the converted template argument. 1687 Decl *D 1688 = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl(); 1689 Converted.Append(TemplateArgument(D)); 1690 continue; 1691 } 1692 } 1693 // fall through 1694 1695 case TemplateArgument::Type: { 1696 // We have a template template parameter but the template 1697 // argument does not refer to a template. 1698 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1699 Invalid = true; 1700 break; 1701 } 1702 1703 case TemplateArgument::Declaration: 1704 // We've already checked this template argument, so just copy 1705 // it to the list of converted arguments. 1706 Converted.Append(Arg.getArgument()); 1707 break; 1708 1709 case TemplateArgument::Integral: 1710 assert(false && "Integral argument with template template parameter"); 1711 break; 1712 1713 case TemplateArgument::Pack: 1714 assert(0 && "FIXME: Implement!"); 1715 break; 1716 } 1717 } 1718 } 1719 1720 return Invalid; 1721} 1722 1723/// \brief Check a template argument against its corresponding 1724/// template type parameter. 1725/// 1726/// This routine implements the semantics of C++ [temp.arg.type]. It 1727/// returns true if an error occurred, and false otherwise. 1728bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 1729 DeclaratorInfo *ArgInfo) { 1730 assert(ArgInfo && "invalid DeclaratorInfo"); 1731 QualType Arg = ArgInfo->getType(); 1732 1733 // C++ [temp.arg.type]p2: 1734 // A local type, a type with no linkage, an unnamed type or a type 1735 // compounded from any of these types shall not be used as a 1736 // template-argument for a template type-parameter. 1737 // 1738 // FIXME: Perform the recursive and no-linkage type checks. 1739 const TagType *Tag = 0; 1740 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 1741 Tag = EnumT; 1742 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 1743 Tag = RecordT; 1744 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 1745 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 1746 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 1747 << QualType(Tag, 0) << SR; 1748 } else if (Tag && !Tag->getDecl()->getDeclName() && 1749 !Tag->getDecl()->getTypedefForAnonDecl()) { 1750 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 1751 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 1752 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 1753 return true; 1754 } 1755 1756 return false; 1757} 1758 1759/// \brief Checks whether the given template argument is the address 1760/// of an object or function according to C++ [temp.arg.nontype]p1. 1761bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 1762 NamedDecl *&Entity) { 1763 bool Invalid = false; 1764 1765 // See through any implicit casts we added to fix the type. 1766 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1767 Arg = Cast->getSubExpr(); 1768 1769 // C++0x allows nullptr, and there's no further checking to be done for that. 1770 if (Arg->getType()->isNullPtrType()) 1771 return false; 1772 1773 // C++ [temp.arg.nontype]p1: 1774 // 1775 // A template-argument for a non-type, non-template 1776 // template-parameter shall be one of: [...] 1777 // 1778 // -- the address of an object or function with external 1779 // linkage, including function templates and function 1780 // template-ids but excluding non-static class members, 1781 // expressed as & id-expression where the & is optional if 1782 // the name refers to a function or array, or if the 1783 // corresponding template-parameter is a reference; or 1784 DeclRefExpr *DRE = 0; 1785 1786 // Ignore (and complain about) any excess parentheses. 1787 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1788 if (!Invalid) { 1789 Diag(Arg->getSourceRange().getBegin(), 1790 diag::err_template_arg_extra_parens) 1791 << Arg->getSourceRange(); 1792 Invalid = true; 1793 } 1794 1795 Arg = Parens->getSubExpr(); 1796 } 1797 1798 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 1799 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1800 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1801 } else 1802 DRE = dyn_cast<DeclRefExpr>(Arg); 1803 1804 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 1805 return Diag(Arg->getSourceRange().getBegin(), 1806 diag::err_template_arg_not_object_or_func_form) 1807 << Arg->getSourceRange(); 1808 1809 // Cannot refer to non-static data members 1810 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 1811 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 1812 << Field << Arg->getSourceRange(); 1813 1814 // Cannot refer to non-static member functions 1815 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 1816 if (!Method->isStatic()) 1817 return Diag(Arg->getSourceRange().getBegin(), 1818 diag::err_template_arg_method) 1819 << Method << Arg->getSourceRange(); 1820 1821 // Functions must have external linkage. 1822 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 1823 if (Func->getStorageClass() == FunctionDecl::Static) { 1824 Diag(Arg->getSourceRange().getBegin(), 1825 diag::err_template_arg_function_not_extern) 1826 << Func << Arg->getSourceRange(); 1827 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 1828 << true; 1829 return true; 1830 } 1831 1832 // Okay: we've named a function with external linkage. 1833 Entity = Func; 1834 return Invalid; 1835 } 1836 1837 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 1838 if (!Var->hasGlobalStorage()) { 1839 Diag(Arg->getSourceRange().getBegin(), 1840 diag::err_template_arg_object_not_extern) 1841 << Var << Arg->getSourceRange(); 1842 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 1843 << true; 1844 return true; 1845 } 1846 1847 // Okay: we've named an object with external linkage 1848 Entity = Var; 1849 return Invalid; 1850 } 1851 1852 // We found something else, but we don't know specifically what it is. 1853 Diag(Arg->getSourceRange().getBegin(), 1854 diag::err_template_arg_not_object_or_func) 1855 << Arg->getSourceRange(); 1856 Diag(DRE->getDecl()->getLocation(), 1857 diag::note_template_arg_refers_here); 1858 return true; 1859} 1860 1861/// \brief Checks whether the given template argument is a pointer to 1862/// member constant according to C++ [temp.arg.nontype]p1. 1863bool 1864Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) { 1865 bool Invalid = false; 1866 1867 // See through any implicit casts we added to fix the type. 1868 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1869 Arg = Cast->getSubExpr(); 1870 1871 // C++0x allows nullptr, and there's no further checking to be done for that. 1872 if (Arg->getType()->isNullPtrType()) 1873 return false; 1874 1875 // C++ [temp.arg.nontype]p1: 1876 // 1877 // A template-argument for a non-type, non-template 1878 // template-parameter shall be one of: [...] 1879 // 1880 // -- a pointer to member expressed as described in 5.3.1. 1881 DeclRefExpr *DRE = 0; 1882 1883 // Ignore (and complain about) any excess parentheses. 1884 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1885 if (!Invalid) { 1886 Diag(Arg->getSourceRange().getBegin(), 1887 diag::err_template_arg_extra_parens) 1888 << Arg->getSourceRange(); 1889 Invalid = true; 1890 } 1891 1892 Arg = Parens->getSubExpr(); 1893 } 1894 1895 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) 1896 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 1897 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1898 if (DRE && !DRE->getQualifier()) 1899 DRE = 0; 1900 } 1901 1902 if (!DRE) 1903 return Diag(Arg->getSourceRange().getBegin(), 1904 diag::err_template_arg_not_pointer_to_member_form) 1905 << Arg->getSourceRange(); 1906 1907 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 1908 assert((isa<FieldDecl>(DRE->getDecl()) || 1909 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 1910 "Only non-static member pointers can make it here"); 1911 1912 // Okay: this is the address of a non-static member, and therefore 1913 // a member pointer constant. 1914 Member = DRE->getDecl(); 1915 return Invalid; 1916 } 1917 1918 // We found something else, but we don't know specifically what it is. 1919 Diag(Arg->getSourceRange().getBegin(), 1920 diag::err_template_arg_not_pointer_to_member_form) 1921 << Arg->getSourceRange(); 1922 Diag(DRE->getDecl()->getLocation(), 1923 diag::note_template_arg_refers_here); 1924 return true; 1925} 1926 1927/// \brief Check a template argument against its corresponding 1928/// non-type template parameter. 1929/// 1930/// This routine implements the semantics of C++ [temp.arg.nontype]. 1931/// It returns true if an error occurred, and false otherwise. \p 1932/// InstantiatedParamType is the type of the non-type template 1933/// parameter after it has been instantiated. 1934/// 1935/// If no error was detected, Converted receives the converted template argument. 1936bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 1937 QualType InstantiatedParamType, Expr *&Arg, 1938 TemplateArgument &Converted) { 1939 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 1940 1941 // If either the parameter has a dependent type or the argument is 1942 // type-dependent, there's nothing we can check now. 1943 // FIXME: Add template argument to Converted! 1944 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 1945 // FIXME: Produce a cloned, canonical expression? 1946 Converted = TemplateArgument(Arg); 1947 return false; 1948 } 1949 1950 // C++ [temp.arg.nontype]p5: 1951 // The following conversions are performed on each expression used 1952 // as a non-type template-argument. If a non-type 1953 // template-argument cannot be converted to the type of the 1954 // corresponding template-parameter then the program is 1955 // ill-formed. 1956 // 1957 // -- for a non-type template-parameter of integral or 1958 // enumeration type, integral promotions (4.5) and integral 1959 // conversions (4.7) are applied. 1960 QualType ParamType = InstantiatedParamType; 1961 QualType ArgType = Arg->getType(); 1962 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 1963 // C++ [temp.arg.nontype]p1: 1964 // A template-argument for a non-type, non-template 1965 // template-parameter shall be one of: 1966 // 1967 // -- an integral constant-expression of integral or enumeration 1968 // type; or 1969 // -- the name of a non-type template-parameter; or 1970 SourceLocation NonConstantLoc; 1971 llvm::APSInt Value; 1972 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 1973 Diag(Arg->getSourceRange().getBegin(), 1974 diag::err_template_arg_not_integral_or_enumeral) 1975 << ArgType << Arg->getSourceRange(); 1976 Diag(Param->getLocation(), diag::note_template_param_here); 1977 return true; 1978 } else if (!Arg->isValueDependent() && 1979 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 1980 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 1981 << ArgType << Arg->getSourceRange(); 1982 return true; 1983 } 1984 1985 // FIXME: We need some way to more easily get the unqualified form 1986 // of the types without going all the way to the 1987 // canonical type. 1988 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 1989 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 1990 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 1991 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 1992 1993 // Try to convert the argument to the parameter's type. 1994 if (ParamType == ArgType) { 1995 // Okay: no conversion necessary 1996 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 1997 !ParamType->isEnumeralType()) { 1998 // This is an integral promotion or conversion. 1999 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2000 } else { 2001 // We can't perform this conversion. 2002 Diag(Arg->getSourceRange().getBegin(), 2003 diag::err_template_arg_not_convertible) 2004 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2005 Diag(Param->getLocation(), diag::note_template_param_here); 2006 return true; 2007 } 2008 2009 QualType IntegerType = Context.getCanonicalType(ParamType); 2010 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2011 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2012 2013 if (!Arg->isValueDependent()) { 2014 // Check that an unsigned parameter does not receive a negative 2015 // value. 2016 if (IntegerType->isUnsignedIntegerType() 2017 && (Value.isSigned() && Value.isNegative())) { 2018 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 2019 << Value.toString(10) << Param->getType() 2020 << Arg->getSourceRange(); 2021 Diag(Param->getLocation(), diag::note_template_param_here); 2022 return true; 2023 } 2024 2025 // Check that we don't overflow the template parameter type. 2026 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2027 if (Value.getActiveBits() > AllowedBits) { 2028 Diag(Arg->getSourceRange().getBegin(), 2029 diag::err_template_arg_too_large) 2030 << Value.toString(10) << Param->getType() 2031 << Arg->getSourceRange(); 2032 Diag(Param->getLocation(), diag::note_template_param_here); 2033 return true; 2034 } 2035 2036 if (Value.getBitWidth() != AllowedBits) 2037 Value.extOrTrunc(AllowedBits); 2038 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2039 } 2040 2041 // Add the value of this argument to the list of converted 2042 // arguments. We use the bitwidth and signedness of the template 2043 // parameter. 2044 if (Arg->isValueDependent()) { 2045 // The argument is value-dependent. Create a new 2046 // TemplateArgument with the converted expression. 2047 Converted = TemplateArgument(Arg); 2048 return false; 2049 } 2050 2051 Converted = TemplateArgument(Value, 2052 ParamType->isEnumeralType() ? ParamType 2053 : IntegerType); 2054 return false; 2055 } 2056 2057 // Handle pointer-to-function, reference-to-function, and 2058 // pointer-to-member-function all in (roughly) the same way. 2059 if (// -- For a non-type template-parameter of type pointer to 2060 // function, only the function-to-pointer conversion (4.3) is 2061 // applied. If the template-argument represents a set of 2062 // overloaded functions (or a pointer to such), the matching 2063 // function is selected from the set (13.4). 2064 // In C++0x, any std::nullptr_t value can be converted. 2065 (ParamType->isPointerType() && 2066 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2067 // -- For a non-type template-parameter of type reference to 2068 // function, no conversions apply. If the template-argument 2069 // represents a set of overloaded functions, the matching 2070 // function is selected from the set (13.4). 2071 (ParamType->isReferenceType() && 2072 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2073 // -- For a non-type template-parameter of type pointer to 2074 // member function, no conversions apply. If the 2075 // template-argument represents a set of overloaded member 2076 // functions, the matching member function is selected from 2077 // the set (13.4). 2078 // Again, C++0x allows a std::nullptr_t value. 2079 (ParamType->isMemberPointerType() && 2080 ParamType->getAs<MemberPointerType>()->getPointeeType() 2081 ->isFunctionType())) { 2082 if (Context.hasSameUnqualifiedType(ArgType, 2083 ParamType.getNonReferenceType())) { 2084 // We don't have to do anything: the types already match. 2085 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2086 ParamType->isMemberPointerType())) { 2087 ArgType = ParamType; 2088 if (ParamType->isMemberPointerType()) 2089 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2090 else 2091 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2092 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2093 ArgType = Context.getPointerType(ArgType); 2094 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2095 } else if (FunctionDecl *Fn 2096 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2097 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2098 return true; 2099 2100 Arg = FixOverloadedFunctionReference(Arg, Fn); 2101 ArgType = Arg->getType(); 2102 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2103 ArgType = Context.getPointerType(Arg->getType()); 2104 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2105 } 2106 } 2107 2108 if (!Context.hasSameUnqualifiedType(ArgType, 2109 ParamType.getNonReferenceType())) { 2110 // We can't perform this conversion. 2111 Diag(Arg->getSourceRange().getBegin(), 2112 diag::err_template_arg_not_convertible) 2113 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2114 Diag(Param->getLocation(), diag::note_template_param_here); 2115 return true; 2116 } 2117 2118 if (ParamType->isMemberPointerType()) { 2119 NamedDecl *Member = 0; 2120 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2121 return true; 2122 2123 if (Member) 2124 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2125 Converted = TemplateArgument(Member); 2126 return false; 2127 } 2128 2129 NamedDecl *Entity = 0; 2130 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2131 return true; 2132 2133 if (Entity) 2134 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2135 Converted = TemplateArgument(Entity); 2136 return false; 2137 } 2138 2139 if (ParamType->isPointerType()) { 2140 // -- for a non-type template-parameter of type pointer to 2141 // object, qualification conversions (4.4) and the 2142 // array-to-pointer conversion (4.2) are applied. 2143 // C++0x also allows a value of std::nullptr_t. 2144 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2145 "Only object pointers allowed here"); 2146 2147 if (ArgType->isNullPtrType()) { 2148 ArgType = ParamType; 2149 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2150 } else if (ArgType->isArrayType()) { 2151 ArgType = Context.getArrayDecayedType(ArgType); 2152 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2153 } 2154 2155 if (IsQualificationConversion(ArgType, ParamType)) { 2156 ArgType = ParamType; 2157 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2158 } 2159 2160 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2161 // We can't perform this conversion. 2162 Diag(Arg->getSourceRange().getBegin(), 2163 diag::err_template_arg_not_convertible) 2164 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2165 Diag(Param->getLocation(), diag::note_template_param_here); 2166 return true; 2167 } 2168 2169 NamedDecl *Entity = 0; 2170 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2171 return true; 2172 2173 if (Entity) 2174 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2175 Converted = TemplateArgument(Entity); 2176 return false; 2177 } 2178 2179 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2180 // -- For a non-type template-parameter of type reference to 2181 // object, no conversions apply. The type referred to by the 2182 // reference may be more cv-qualified than the (otherwise 2183 // identical) type of the template-argument. The 2184 // template-parameter is bound directly to the 2185 // template-argument, which must be an lvalue. 2186 assert(ParamRefType->getPointeeType()->isObjectType() && 2187 "Only object references allowed here"); 2188 2189 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 2190 Diag(Arg->getSourceRange().getBegin(), 2191 diag::err_template_arg_no_ref_bind) 2192 << InstantiatedParamType << Arg->getType() 2193 << Arg->getSourceRange(); 2194 Diag(Param->getLocation(), diag::note_template_param_here); 2195 return true; 2196 } 2197 2198 unsigned ParamQuals 2199 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 2200 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2201 2202 if ((ParamQuals | ArgQuals) != ParamQuals) { 2203 Diag(Arg->getSourceRange().getBegin(), 2204 diag::err_template_arg_ref_bind_ignores_quals) 2205 << InstantiatedParamType << Arg->getType() 2206 << Arg->getSourceRange(); 2207 Diag(Param->getLocation(), diag::note_template_param_here); 2208 return true; 2209 } 2210 2211 NamedDecl *Entity = 0; 2212 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2213 return true; 2214 2215 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2216 Converted = TemplateArgument(Entity); 2217 return false; 2218 } 2219 2220 // -- For a non-type template-parameter of type pointer to data 2221 // member, qualification conversions (4.4) are applied. 2222 // C++0x allows std::nullptr_t values. 2223 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2224 2225 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2226 // Types match exactly: nothing more to do here. 2227 } else if (ArgType->isNullPtrType()) { 2228 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2229 } else if (IsQualificationConversion(ArgType, ParamType)) { 2230 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2231 } else { 2232 // We can't perform this conversion. 2233 Diag(Arg->getSourceRange().getBegin(), 2234 diag::err_template_arg_not_convertible) 2235 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2236 Diag(Param->getLocation(), diag::note_template_param_here); 2237 return true; 2238 } 2239 2240 NamedDecl *Member = 0; 2241 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2242 return true; 2243 2244 if (Member) 2245 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2246 Converted = TemplateArgument(Member); 2247 return false; 2248} 2249 2250/// \brief Check a template argument against its corresponding 2251/// template template parameter. 2252/// 2253/// This routine implements the semantics of C++ [temp.arg.template]. 2254/// It returns true if an error occurred, and false otherwise. 2255bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2256 DeclRefExpr *Arg) { 2257 assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed"); 2258 TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl()); 2259 2260 // C++ [temp.arg.template]p1: 2261 // A template-argument for a template template-parameter shall be 2262 // the name of a class template, expressed as id-expression. Only 2263 // primary class templates are considered when matching the 2264 // template template argument with the corresponding parameter; 2265 // partial specializations are not considered even if their 2266 // parameter lists match that of the template template parameter. 2267 // 2268 // Note that we also allow template template parameters here, which 2269 // will happen when we are dealing with, e.g., class template 2270 // partial specializations. 2271 if (!isa<ClassTemplateDecl>(Template) && 2272 !isa<TemplateTemplateParmDecl>(Template)) { 2273 assert(isa<FunctionTemplateDecl>(Template) && 2274 "Only function templates are possible here"); 2275 Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template); 2276 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2277 << Template; 2278 } 2279 2280 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2281 Param->getTemplateParameters(), 2282 true, true, 2283 Arg->getSourceRange().getBegin()); 2284} 2285 2286/// \brief Determine whether the given template parameter lists are 2287/// equivalent. 2288/// 2289/// \param New The new template parameter list, typically written in the 2290/// source code as part of a new template declaration. 2291/// 2292/// \param Old The old template parameter list, typically found via 2293/// name lookup of the template declared with this template parameter 2294/// list. 2295/// 2296/// \param Complain If true, this routine will produce a diagnostic if 2297/// the template parameter lists are not equivalent. 2298/// 2299/// \param IsTemplateTemplateParm If true, this routine is being 2300/// called to compare the template parameter lists of a template 2301/// template parameter. 2302/// 2303/// \param TemplateArgLoc If this source location is valid, then we 2304/// are actually checking the template parameter list of a template 2305/// argument (New) against the template parameter list of its 2306/// corresponding template template parameter (Old). We produce 2307/// slightly different diagnostics in this scenario. 2308/// 2309/// \returns True if the template parameter lists are equal, false 2310/// otherwise. 2311bool 2312Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2313 TemplateParameterList *Old, 2314 bool Complain, 2315 bool IsTemplateTemplateParm, 2316 SourceLocation TemplateArgLoc) { 2317 if (Old->size() != New->size()) { 2318 if (Complain) { 2319 unsigned NextDiag = diag::err_template_param_list_different_arity; 2320 if (TemplateArgLoc.isValid()) { 2321 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2322 NextDiag = diag::note_template_param_list_different_arity; 2323 } 2324 Diag(New->getTemplateLoc(), NextDiag) 2325 << (New->size() > Old->size()) 2326 << IsTemplateTemplateParm 2327 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2328 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2329 << IsTemplateTemplateParm 2330 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2331 } 2332 2333 return false; 2334 } 2335 2336 for (TemplateParameterList::iterator OldParm = Old->begin(), 2337 OldParmEnd = Old->end(), NewParm = New->begin(); 2338 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2339 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2340 if (Complain) { 2341 unsigned NextDiag = diag::err_template_param_different_kind; 2342 if (TemplateArgLoc.isValid()) { 2343 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2344 NextDiag = diag::note_template_param_different_kind; 2345 } 2346 Diag((*NewParm)->getLocation(), NextDiag) 2347 << IsTemplateTemplateParm; 2348 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2349 << IsTemplateTemplateParm; 2350 } 2351 return false; 2352 } 2353 2354 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2355 // Okay; all template type parameters are equivalent (since we 2356 // know we're at the same index). 2357#if 0 2358 // FIXME: Enable this code in debug mode *after* we properly go through 2359 // and "instantiate" the template parameter lists of template template 2360 // parameters. It's only after this instantiation that (1) any dependent 2361 // types within the template parameter list of the template template 2362 // parameter can be checked, and (2) the template type parameter depths 2363 // will match up. 2364 QualType OldParmType 2365 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm)); 2366 QualType NewParmType 2367 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm)); 2368 assert(Context.getCanonicalType(OldParmType) == 2369 Context.getCanonicalType(NewParmType) && 2370 "type parameter mismatch?"); 2371#endif 2372 } else if (NonTypeTemplateParmDecl *OldNTTP 2373 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2374 // The types of non-type template parameters must agree. 2375 NonTypeTemplateParmDecl *NewNTTP 2376 = cast<NonTypeTemplateParmDecl>(*NewParm); 2377 if (Context.getCanonicalType(OldNTTP->getType()) != 2378 Context.getCanonicalType(NewNTTP->getType())) { 2379 if (Complain) { 2380 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2381 if (TemplateArgLoc.isValid()) { 2382 Diag(TemplateArgLoc, 2383 diag::err_template_arg_template_params_mismatch); 2384 NextDiag = diag::note_template_nontype_parm_different_type; 2385 } 2386 Diag(NewNTTP->getLocation(), NextDiag) 2387 << NewNTTP->getType() 2388 << IsTemplateTemplateParm; 2389 Diag(OldNTTP->getLocation(), 2390 diag::note_template_nontype_parm_prev_declaration) 2391 << OldNTTP->getType(); 2392 } 2393 return false; 2394 } 2395 } else { 2396 // The template parameter lists of template template 2397 // parameters must agree. 2398 // FIXME: Could we perform a faster "type" comparison here? 2399 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2400 "Only template template parameters handled here"); 2401 TemplateTemplateParmDecl *OldTTP 2402 = cast<TemplateTemplateParmDecl>(*OldParm); 2403 TemplateTemplateParmDecl *NewTTP 2404 = cast<TemplateTemplateParmDecl>(*NewParm); 2405 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2406 OldTTP->getTemplateParameters(), 2407 Complain, 2408 /*IsTemplateTemplateParm=*/true, 2409 TemplateArgLoc)) 2410 return false; 2411 } 2412 } 2413 2414 return true; 2415} 2416 2417/// \brief Check whether a template can be declared within this scope. 2418/// 2419/// If the template declaration is valid in this scope, returns 2420/// false. Otherwise, issues a diagnostic and returns true. 2421bool 2422Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2423 // Find the nearest enclosing declaration scope. 2424 while ((S->getFlags() & Scope::DeclScope) == 0 || 2425 (S->getFlags() & Scope::TemplateParamScope) != 0) 2426 S = S->getParent(); 2427 2428 // C++ [temp]p2: 2429 // A template-declaration can appear only as a namespace scope or 2430 // class scope declaration. 2431 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2432 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2433 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2434 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2435 << TemplateParams->getSourceRange(); 2436 2437 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2438 Ctx = Ctx->getParent(); 2439 2440 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2441 return false; 2442 2443 return Diag(TemplateParams->getTemplateLoc(), 2444 diag::err_template_outside_namespace_or_class_scope) 2445 << TemplateParams->getSourceRange(); 2446} 2447 2448/// \brief Determine what kind of template specialization the given declaration 2449/// is. 2450static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2451 if (!D) 2452 return TSK_Undeclared; 2453 2454 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 2455 return Record->getTemplateSpecializationKind(); 2456 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2457 return Function->getTemplateSpecializationKind(); 2458 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 2459 return Var->getTemplateSpecializationKind(); 2460 2461 return TSK_Undeclared; 2462} 2463 2464/// \brief Check whether a specialization is well-formed in the current 2465/// context. 2466/// 2467/// This routine determines whether a template specialization can be declared 2468/// in the current context (C++ [temp.expl.spec]p2). 2469/// 2470/// \param S the semantic analysis object for which this check is being 2471/// performed. 2472/// 2473/// \param Specialized the entity being specialized or instantiated, which 2474/// may be a kind of template (class template, function template, etc.) or 2475/// a member of a class template (member function, static data member, 2476/// member class). 2477/// 2478/// \param PrevDecl the previous declaration of this entity, if any. 2479/// 2480/// \param Loc the location of the explicit specialization or instantiation of 2481/// this entity. 2482/// 2483/// \param IsPartialSpecialization whether this is a partial specialization of 2484/// a class template. 2485/// 2486/// \returns true if there was an error that we cannot recover from, false 2487/// otherwise. 2488static bool CheckTemplateSpecializationScope(Sema &S, 2489 NamedDecl *Specialized, 2490 NamedDecl *PrevDecl, 2491 SourceLocation Loc, 2492 bool IsPartialSpecialization) { 2493 // Keep these "kind" numbers in sync with the %select statements in the 2494 // various diagnostics emitted by this routine. 2495 int EntityKind = 0; 2496 bool isTemplateSpecialization = false; 2497 if (isa<ClassTemplateDecl>(Specialized)) { 2498 EntityKind = IsPartialSpecialization? 1 : 0; 2499 isTemplateSpecialization = true; 2500 } else if (isa<FunctionTemplateDecl>(Specialized)) { 2501 EntityKind = 2; 2502 isTemplateSpecialization = true; 2503 } else if (isa<CXXMethodDecl>(Specialized)) 2504 EntityKind = 3; 2505 else if (isa<VarDecl>(Specialized)) 2506 EntityKind = 4; 2507 else if (isa<RecordDecl>(Specialized)) 2508 EntityKind = 5; 2509 else { 2510 S.Diag(Loc, diag::err_template_spec_unknown_kind); 2511 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2512 return true; 2513 } 2514 2515 // C++ [temp.expl.spec]p2: 2516 // An explicit specialization shall be declared in the namespace 2517 // of which the template is a member, or, for member templates, in 2518 // the namespace of which the enclosing class or enclosing class 2519 // template is a member. An explicit specialization of a member 2520 // function, member class or static data member of a class 2521 // template shall be declared in the namespace of which the class 2522 // template is a member. Such a declaration may also be a 2523 // definition. If the declaration is not a definition, the 2524 // specialization may be defined later in the name- space in which 2525 // the explicit specialization was declared, or in a namespace 2526 // that encloses the one in which the explicit specialization was 2527 // declared. 2528 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 2529 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 2530 << Specialized; 2531 return true; 2532 } 2533 2534 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 2535 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 2536 << Specialized; 2537 return true; 2538 } 2539 2540 // C++ [temp.class.spec]p6: 2541 // A class template partial specialization may be declared or redeclared 2542 // in any namespace scope in which its definition may be defined (14.5.1 2543 // and 14.5.2). 2544 bool ComplainedAboutScope = false; 2545 DeclContext *SpecializedContext 2546 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 2547 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 2548 if ((!PrevDecl || 2549 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 2550 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 2551 // There is no prior declaration of this entity, so this 2552 // specialization must be in the same context as the template 2553 // itself. 2554 if (!DC->Equals(SpecializedContext)) { 2555 if (isa<TranslationUnitDecl>(SpecializedContext)) 2556 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 2557 << EntityKind << Specialized; 2558 else if (isa<NamespaceDecl>(SpecializedContext)) 2559 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 2560 << EntityKind << Specialized 2561 << cast<NamedDecl>(SpecializedContext); 2562 2563 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2564 ComplainedAboutScope = true; 2565 } 2566 } 2567 2568 // Make sure that this redeclaration (or definition) occurs in an enclosing 2569 // namespace. 2570 // Note that HandleDeclarator() performs this check for explicit 2571 // specializations of function templates, static data members, and member 2572 // functions, so we skip the check here for those kinds of entities. 2573 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 2574 // Should we refactor that check, so that it occurs later? 2575 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 2576 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 2577 isa<FunctionDecl>(Specialized))) { 2578 if (isa<TranslationUnitDecl>(SpecializedContext)) 2579 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 2580 << EntityKind << Specialized; 2581 else if (isa<NamespaceDecl>(SpecializedContext)) 2582 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 2583 << EntityKind << Specialized 2584 << cast<NamedDecl>(SpecializedContext); 2585 2586 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2587 } 2588 2589 // FIXME: check for specialization-after-instantiation errors and such. 2590 2591 return false; 2592} 2593 2594/// \brief Check the non-type template arguments of a class template 2595/// partial specialization according to C++ [temp.class.spec]p9. 2596/// 2597/// \param TemplateParams the template parameters of the primary class 2598/// template. 2599/// 2600/// \param TemplateArg the template arguments of the class template 2601/// partial specialization. 2602/// 2603/// \param MirrorsPrimaryTemplate will be set true if the class 2604/// template partial specialization arguments are identical to the 2605/// implicit template arguments of the primary template. This is not 2606/// necessarily an error (C++0x), and it is left to the caller to diagnose 2607/// this condition when it is an error. 2608/// 2609/// \returns true if there was an error, false otherwise. 2610bool Sema::CheckClassTemplatePartialSpecializationArgs( 2611 TemplateParameterList *TemplateParams, 2612 const TemplateArgumentListBuilder &TemplateArgs, 2613 bool &MirrorsPrimaryTemplate) { 2614 // FIXME: the interface to this function will have to change to 2615 // accommodate variadic templates. 2616 MirrorsPrimaryTemplate = true; 2617 2618 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 2619 2620 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2621 // Determine whether the template argument list of the partial 2622 // specialization is identical to the implicit argument list of 2623 // the primary template. The caller may need to diagnostic this as 2624 // an error per C++ [temp.class.spec]p9b3. 2625 if (MirrorsPrimaryTemplate) { 2626 if (TemplateTypeParmDecl *TTP 2627 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 2628 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 2629 Context.getCanonicalType(ArgList[I].getAsType())) 2630 MirrorsPrimaryTemplate = false; 2631 } else if (TemplateTemplateParmDecl *TTP 2632 = dyn_cast<TemplateTemplateParmDecl>( 2633 TemplateParams->getParam(I))) { 2634 // FIXME: We should settle on either Declaration storage or 2635 // Expression storage for template template parameters. 2636 TemplateTemplateParmDecl *ArgDecl 2637 = dyn_cast_or_null<TemplateTemplateParmDecl>( 2638 ArgList[I].getAsDecl()); 2639 if (!ArgDecl) 2640 if (DeclRefExpr *DRE 2641 = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr())) 2642 ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl()); 2643 2644 if (!ArgDecl || 2645 ArgDecl->getIndex() != TTP->getIndex() || 2646 ArgDecl->getDepth() != TTP->getDepth()) 2647 MirrorsPrimaryTemplate = false; 2648 } 2649 } 2650 2651 NonTypeTemplateParmDecl *Param 2652 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 2653 if (!Param) { 2654 continue; 2655 } 2656 2657 Expr *ArgExpr = ArgList[I].getAsExpr(); 2658 if (!ArgExpr) { 2659 MirrorsPrimaryTemplate = false; 2660 continue; 2661 } 2662 2663 // C++ [temp.class.spec]p8: 2664 // A non-type argument is non-specialized if it is the name of a 2665 // non-type parameter. All other non-type arguments are 2666 // specialized. 2667 // 2668 // Below, we check the two conditions that only apply to 2669 // specialized non-type arguments, so skip any non-specialized 2670 // arguments. 2671 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 2672 if (NonTypeTemplateParmDecl *NTTP 2673 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 2674 if (MirrorsPrimaryTemplate && 2675 (Param->getIndex() != NTTP->getIndex() || 2676 Param->getDepth() != NTTP->getDepth())) 2677 MirrorsPrimaryTemplate = false; 2678 2679 continue; 2680 } 2681 2682 // C++ [temp.class.spec]p9: 2683 // Within the argument list of a class template partial 2684 // specialization, the following restrictions apply: 2685 // -- A partially specialized non-type argument expression 2686 // shall not involve a template parameter of the partial 2687 // specialization except when the argument expression is a 2688 // simple identifier. 2689 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 2690 Diag(ArgExpr->getLocStart(), 2691 diag::err_dependent_non_type_arg_in_partial_spec) 2692 << ArgExpr->getSourceRange(); 2693 return true; 2694 } 2695 2696 // -- The type of a template parameter corresponding to a 2697 // specialized non-type argument shall not be dependent on a 2698 // parameter of the specialization. 2699 if (Param->getType()->isDependentType()) { 2700 Diag(ArgExpr->getLocStart(), 2701 diag::err_dependent_typed_non_type_arg_in_partial_spec) 2702 << Param->getType() 2703 << ArgExpr->getSourceRange(); 2704 Diag(Param->getLocation(), diag::note_template_param_here); 2705 return true; 2706 } 2707 2708 MirrorsPrimaryTemplate = false; 2709 } 2710 2711 return false; 2712} 2713 2714Sema::DeclResult 2715Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 2716 TagUseKind TUK, 2717 SourceLocation KWLoc, 2718 const CXXScopeSpec &SS, 2719 TemplateTy TemplateD, 2720 SourceLocation TemplateNameLoc, 2721 SourceLocation LAngleLoc, 2722 ASTTemplateArgsPtr TemplateArgsIn, 2723 SourceLocation *TemplateArgLocs, 2724 SourceLocation RAngleLoc, 2725 AttributeList *Attr, 2726 MultiTemplateParamsArg TemplateParameterLists) { 2727 assert(TUK != TUK_Reference && "References are not specializations"); 2728 2729 // Find the class template we're specializing 2730 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2731 ClassTemplateDecl *ClassTemplate 2732 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2733 2734 bool isExplicitSpecialization = false; 2735 bool isPartialSpecialization = false; 2736 2737 // Check the validity of the template headers that introduce this 2738 // template. 2739 // FIXME: We probably shouldn't complain about these headers for 2740 // friend declarations. 2741 TemplateParameterList *TemplateParams 2742 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 2743 (TemplateParameterList**)TemplateParameterLists.get(), 2744 TemplateParameterLists.size(), 2745 isExplicitSpecialization); 2746 if (TemplateParams && TemplateParams->size() > 0) { 2747 isPartialSpecialization = true; 2748 2749 // C++ [temp.class.spec]p10: 2750 // The template parameter list of a specialization shall not 2751 // contain default template argument values. 2752 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2753 Decl *Param = TemplateParams->getParam(I); 2754 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 2755 if (TTP->hasDefaultArgument()) { 2756 Diag(TTP->getDefaultArgumentLoc(), 2757 diag::err_default_arg_in_partial_spec); 2758 TTP->removeDefaultArgument(); 2759 } 2760 } else if (NonTypeTemplateParmDecl *NTTP 2761 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2762 if (Expr *DefArg = NTTP->getDefaultArgument()) { 2763 Diag(NTTP->getDefaultArgumentLoc(), 2764 diag::err_default_arg_in_partial_spec) 2765 << DefArg->getSourceRange(); 2766 NTTP->setDefaultArgument(0); 2767 DefArg->Destroy(Context); 2768 } 2769 } else { 2770 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 2771 if (Expr *DefArg = TTP->getDefaultArgument()) { 2772 Diag(TTP->getDefaultArgumentLoc(), 2773 diag::err_default_arg_in_partial_spec) 2774 << DefArg->getSourceRange(); 2775 TTP->setDefaultArgument(0); 2776 DefArg->Destroy(Context); 2777 } 2778 } 2779 } 2780 } else if (TemplateParams) { 2781 if (TUK == TUK_Friend) 2782 Diag(KWLoc, diag::err_template_spec_friend) 2783 << CodeModificationHint::CreateRemoval( 2784 SourceRange(TemplateParams->getTemplateLoc(), 2785 TemplateParams->getRAngleLoc())) 2786 << SourceRange(LAngleLoc, RAngleLoc); 2787 else 2788 isExplicitSpecialization = true; 2789 } else if (TUK != TUK_Friend) { 2790 Diag(KWLoc, diag::err_template_spec_needs_header) 2791 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 2792 isExplicitSpecialization = true; 2793 } 2794 2795 // Check that the specialization uses the same tag kind as the 2796 // original template. 2797 TagDecl::TagKind Kind; 2798 switch (TagSpec) { 2799 default: assert(0 && "Unknown tag type!"); 2800 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2801 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2802 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2803 } 2804 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2805 Kind, KWLoc, 2806 *ClassTemplate->getIdentifier())) { 2807 Diag(KWLoc, diag::err_use_with_wrong_tag) 2808 << ClassTemplate 2809 << CodeModificationHint::CreateReplacement(KWLoc, 2810 ClassTemplate->getTemplatedDecl()->getKindName()); 2811 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2812 diag::note_previous_use); 2813 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2814 } 2815 2816 // Translate the parser's template argument list in our AST format. 2817 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 2818 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2819 2820 // Check that the template argument list is well-formed for this 2821 // template. 2822 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2823 TemplateArgs.size()); 2824 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2825 TemplateArgs.data(), TemplateArgs.size(), 2826 RAngleLoc, false, Converted)) 2827 return true; 2828 2829 assert((Converted.structuredSize() == 2830 ClassTemplate->getTemplateParameters()->size()) && 2831 "Converted template argument list is too short!"); 2832 2833 // Find the class template (partial) specialization declaration that 2834 // corresponds to these arguments. 2835 llvm::FoldingSetNodeID ID; 2836 if (isPartialSpecialization) { 2837 bool MirrorsPrimaryTemplate; 2838 if (CheckClassTemplatePartialSpecializationArgs( 2839 ClassTemplate->getTemplateParameters(), 2840 Converted, MirrorsPrimaryTemplate)) 2841 return true; 2842 2843 if (MirrorsPrimaryTemplate) { 2844 // C++ [temp.class.spec]p9b3: 2845 // 2846 // -- The argument list of the specialization shall not be identical 2847 // to the implicit argument list of the primary template. 2848 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 2849 << (TUK == TUK_Definition) 2850 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 2851 RAngleLoc)); 2852 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 2853 ClassTemplate->getIdentifier(), 2854 TemplateNameLoc, 2855 Attr, 2856 TemplateParams, 2857 AS_none); 2858 } 2859 2860 // FIXME: Diagnose friend partial specializations 2861 2862 // FIXME: Template parameter list matters, too 2863 ClassTemplatePartialSpecializationDecl::Profile(ID, 2864 Converted.getFlatArguments(), 2865 Converted.flatSize(), 2866 Context); 2867 } else 2868 ClassTemplateSpecializationDecl::Profile(ID, 2869 Converted.getFlatArguments(), 2870 Converted.flatSize(), 2871 Context); 2872 void *InsertPos = 0; 2873 ClassTemplateSpecializationDecl *PrevDecl = 0; 2874 2875 if (isPartialSpecialization) 2876 PrevDecl 2877 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 2878 InsertPos); 2879 else 2880 PrevDecl 2881 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2882 2883 ClassTemplateSpecializationDecl *Specialization = 0; 2884 2885 // Check whether we can declare a class template specialization in 2886 // the current scope. 2887 if (TUK != TUK_Friend && 2888 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 2889 TemplateNameLoc, 2890 isPartialSpecialization)) 2891 return true; 2892 2893 // The canonical type 2894 QualType CanonType; 2895 if (PrevDecl && 2896 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 2897 TUK == TUK_Friend)) { 2898 // Since the only prior class template specialization with these 2899 // arguments was referenced but not declared, or we're only 2900 // referencing this specialization as a friend, reuse that 2901 // declaration node as our own, updating its source location to 2902 // reflect our new declaration. 2903 Specialization = PrevDecl; 2904 Specialization->setLocation(TemplateNameLoc); 2905 PrevDecl = 0; 2906 CanonType = Context.getTypeDeclType(Specialization); 2907 } else if (isPartialSpecialization) { 2908 // Build the canonical type that describes the converted template 2909 // arguments of the class template partial specialization. 2910 CanonType = Context.getTemplateSpecializationType( 2911 TemplateName(ClassTemplate), 2912 Converted.getFlatArguments(), 2913 Converted.flatSize()); 2914 2915 // Create a new class template partial specialization declaration node. 2916 ClassTemplatePartialSpecializationDecl *PrevPartial 2917 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 2918 ClassTemplatePartialSpecializationDecl *Partial 2919 = ClassTemplatePartialSpecializationDecl::Create(Context, 2920 ClassTemplate->getDeclContext(), 2921 TemplateNameLoc, 2922 TemplateParams, 2923 ClassTemplate, 2924 Converted, 2925 TemplateArgs.data(), 2926 TemplateArgs.size(), 2927 PrevPartial); 2928 2929 if (PrevPartial) { 2930 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 2931 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 2932 } else { 2933 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 2934 } 2935 Specialization = Partial; 2936 2937 // If we are providing an explicit specialization of a member class 2938 // template specialization, make a note of that. 2939 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 2940 PrevPartial->setMemberSpecialization(); 2941 2942 // Check that all of the template parameters of the class template 2943 // partial specialization are deducible from the template 2944 // arguments. If not, this class template partial specialization 2945 // will never be used. 2946 llvm::SmallVector<bool, 8> DeducibleParams; 2947 DeducibleParams.resize(TemplateParams->size()); 2948 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 2949 TemplateParams->getDepth(), 2950 DeducibleParams); 2951 unsigned NumNonDeducible = 0; 2952 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 2953 if (!DeducibleParams[I]) 2954 ++NumNonDeducible; 2955 2956 if (NumNonDeducible) { 2957 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2958 << (NumNonDeducible > 1) 2959 << SourceRange(TemplateNameLoc, RAngleLoc); 2960 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2961 if (!DeducibleParams[I]) { 2962 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2963 if (Param->getDeclName()) 2964 Diag(Param->getLocation(), 2965 diag::note_partial_spec_unused_parameter) 2966 << Param->getDeclName(); 2967 else 2968 Diag(Param->getLocation(), 2969 diag::note_partial_spec_unused_parameter) 2970 << std::string("<anonymous>"); 2971 } 2972 } 2973 } 2974 } else { 2975 // Create a new class template specialization declaration node for 2976 // this explicit specialization or friend declaration. 2977 Specialization 2978 = ClassTemplateSpecializationDecl::Create(Context, 2979 ClassTemplate->getDeclContext(), 2980 TemplateNameLoc, 2981 ClassTemplate, 2982 Converted, 2983 PrevDecl); 2984 2985 if (PrevDecl) { 2986 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 2987 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 2988 } else { 2989 ClassTemplate->getSpecializations().InsertNode(Specialization, 2990 InsertPos); 2991 } 2992 2993 CanonType = Context.getTypeDeclType(Specialization); 2994 } 2995 2996 // C++ [temp.expl.spec]p6: 2997 // If a template, a member template or the member of a class template is 2998 // explicitly specialized then that specialization shall be declared 2999 // before the first use of that specialization that would cause an implicit 3000 // instantiation to take place, in every translation unit in which such a 3001 // use occurs; no diagnostic is required. 3002 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3003 SourceRange Range(TemplateNameLoc, RAngleLoc); 3004 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3005 << Context.getTypeDeclType(Specialization) << Range; 3006 3007 Diag(PrevDecl->getPointOfInstantiation(), 3008 diag::note_instantiation_required_here) 3009 << (PrevDecl->getTemplateSpecializationKind() 3010 != TSK_ImplicitInstantiation); 3011 return true; 3012 } 3013 3014 // If this is not a friend, note that this is an explicit specialization. 3015 if (TUK != TUK_Friend) 3016 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3017 3018 // Check that this isn't a redefinition of this specialization. 3019 if (TUK == TUK_Definition) { 3020 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 3021 SourceRange Range(TemplateNameLoc, RAngleLoc); 3022 Diag(TemplateNameLoc, diag::err_redefinition) 3023 << Context.getTypeDeclType(Specialization) << Range; 3024 Diag(Def->getLocation(), diag::note_previous_definition); 3025 Specialization->setInvalidDecl(); 3026 return true; 3027 } 3028 } 3029 3030 // Build the fully-sugared type for this class template 3031 // specialization as the user wrote in the specialization 3032 // itself. This means that we'll pretty-print the type retrieved 3033 // from the specialization's declaration the way that the user 3034 // actually wrote the specialization, rather than formatting the 3035 // name based on the "canonical" representation used to store the 3036 // template arguments in the specialization. 3037 QualType WrittenTy 3038 = Context.getTemplateSpecializationType(Name, 3039 TemplateArgs.data(), 3040 TemplateArgs.size(), 3041 CanonType); 3042 if (TUK != TUK_Friend) 3043 Specialization->setTypeAsWritten(WrittenTy); 3044 TemplateArgsIn.release(); 3045 3046 // C++ [temp.expl.spec]p9: 3047 // A template explicit specialization is in the scope of the 3048 // namespace in which the template was defined. 3049 // 3050 // We actually implement this paragraph where we set the semantic 3051 // context (in the creation of the ClassTemplateSpecializationDecl), 3052 // but we also maintain the lexical context where the actual 3053 // definition occurs. 3054 Specialization->setLexicalDeclContext(CurContext); 3055 3056 // We may be starting the definition of this specialization. 3057 if (TUK == TUK_Definition) 3058 Specialization->startDefinition(); 3059 3060 if (TUK == TUK_Friend) { 3061 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3062 TemplateNameLoc, 3063 WrittenTy.getTypePtr(), 3064 /*FIXME:*/KWLoc); 3065 Friend->setAccess(AS_public); 3066 CurContext->addDecl(Friend); 3067 } else { 3068 // Add the specialization into its lexical context, so that it can 3069 // be seen when iterating through the list of declarations in that 3070 // context. However, specializations are not found by name lookup. 3071 CurContext->addDecl(Specialization); 3072 } 3073 return DeclPtrTy::make(Specialization); 3074} 3075 3076Sema::DeclPtrTy 3077Sema::ActOnTemplateDeclarator(Scope *S, 3078 MultiTemplateParamsArg TemplateParameterLists, 3079 Declarator &D) { 3080 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3081} 3082 3083Sema::DeclPtrTy 3084Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3085 MultiTemplateParamsArg TemplateParameterLists, 3086 Declarator &D) { 3087 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3088 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3089 "Not a function declarator!"); 3090 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3091 3092 if (FTI.hasPrototype) { 3093 // FIXME: Diagnose arguments without names in C. 3094 } 3095 3096 Scope *ParentScope = FnBodyScope->getParent(); 3097 3098 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3099 move(TemplateParameterLists), 3100 /*IsFunctionDefinition=*/true); 3101 if (FunctionTemplateDecl *FunctionTemplate 3102 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3103 return ActOnStartOfFunctionDef(FnBodyScope, 3104 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3105 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3106 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3107 return DeclPtrTy(); 3108} 3109 3110/// \brief Diagnose cases where we have an explicit template specialization 3111/// before/after an explicit template instantiation, producing diagnostics 3112/// for those cases where they are required and determining whether the 3113/// new specialization/instantiation will have any effect. 3114/// 3115/// \param NewLoc the location of the new explicit specialization or 3116/// instantiation. 3117/// 3118/// \param NewTSK the kind of the new explicit specialization or instantiation. 3119/// 3120/// \param PrevDecl the previous declaration of the entity. 3121/// 3122/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3123/// 3124/// \param PrevPointOfInstantiation if valid, indicates where the previus 3125/// declaration was instantiated (either implicitly or explicitly). 3126/// 3127/// \param SuppressNew will be set to true to indicate that the new 3128/// specialization or instantiation has no effect and should be ignored. 3129/// 3130/// \returns true if there was an error that should prevent the introduction of 3131/// the new declaration into the AST, false otherwise. 3132bool 3133Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3134 TemplateSpecializationKind NewTSK, 3135 NamedDecl *PrevDecl, 3136 TemplateSpecializationKind PrevTSK, 3137 SourceLocation PrevPointOfInstantiation, 3138 bool &SuppressNew) { 3139 SuppressNew = false; 3140 3141 switch (NewTSK) { 3142 case TSK_Undeclared: 3143 case TSK_ImplicitInstantiation: 3144 assert(false && "Don't check implicit instantiations here"); 3145 return false; 3146 3147 case TSK_ExplicitSpecialization: 3148 switch (PrevTSK) { 3149 case TSK_Undeclared: 3150 case TSK_ExplicitSpecialization: 3151 // Okay, we're just specializing something that is either already 3152 // explicitly specialized or has merely been mentioned without any 3153 // instantiation. 3154 return false; 3155 3156 case TSK_ImplicitInstantiation: 3157 if (PrevPointOfInstantiation.isInvalid()) { 3158 // The declaration itself has not actually been instantiated, so it is 3159 // still okay to specialize it. 3160 return false; 3161 } 3162 // Fall through 3163 3164 case TSK_ExplicitInstantiationDeclaration: 3165 case TSK_ExplicitInstantiationDefinition: 3166 assert((PrevTSK == TSK_ImplicitInstantiation || 3167 PrevPointOfInstantiation.isValid()) && 3168 "Explicit instantiation without point of instantiation?"); 3169 3170 // C++ [temp.expl.spec]p6: 3171 // If a template, a member template or the member of a class template 3172 // is explicitly specialized then that specialization shall be declared 3173 // before the first use of that specialization that would cause an 3174 // implicit instantiation to take place, in every translation unit in 3175 // which such a use occurs; no diagnostic is required. 3176 Diag(NewLoc, diag::err_specialization_after_instantiation) 3177 << PrevDecl; 3178 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3179 << (PrevTSK != TSK_ImplicitInstantiation); 3180 3181 return true; 3182 } 3183 break; 3184 3185 case TSK_ExplicitInstantiationDeclaration: 3186 switch (PrevTSK) { 3187 case TSK_ExplicitInstantiationDeclaration: 3188 // This explicit instantiation declaration is redundant (that's okay). 3189 SuppressNew = true; 3190 return false; 3191 3192 case TSK_Undeclared: 3193 case TSK_ImplicitInstantiation: 3194 // We're explicitly instantiating something that may have already been 3195 // implicitly instantiated; that's fine. 3196 return false; 3197 3198 case TSK_ExplicitSpecialization: 3199 // C++0x [temp.explicit]p4: 3200 // For a given set of template parameters, if an explicit instantiation 3201 // of a template appears after a declaration of an explicit 3202 // specialization for that template, the explicit instantiation has no 3203 // effect. 3204 return false; 3205 3206 case TSK_ExplicitInstantiationDefinition: 3207 // C++0x [temp.explicit]p10: 3208 // If an entity is the subject of both an explicit instantiation 3209 // declaration and an explicit instantiation definition in the same 3210 // translation unit, the definition shall follow the declaration. 3211 Diag(NewLoc, 3212 diag::err_explicit_instantiation_declaration_after_definition); 3213 Diag(PrevPointOfInstantiation, 3214 diag::note_explicit_instantiation_definition_here); 3215 assert(PrevPointOfInstantiation.isValid() && 3216 "Explicit instantiation without point of instantiation?"); 3217 SuppressNew = true; 3218 return false; 3219 } 3220 break; 3221 3222 case TSK_ExplicitInstantiationDefinition: 3223 switch (PrevTSK) { 3224 case TSK_Undeclared: 3225 case TSK_ImplicitInstantiation: 3226 // We're explicitly instantiating something that may have already been 3227 // implicitly instantiated; that's fine. 3228 return false; 3229 3230 case TSK_ExplicitSpecialization: 3231 // C++ DR 259, C++0x [temp.explicit]p4: 3232 // For a given set of template parameters, if an explicit 3233 // instantiation of a template appears after a declaration of 3234 // an explicit specialization for that template, the explicit 3235 // instantiation has no effect. 3236 // 3237 // In C++98/03 mode, we only give an extension warning here, because it 3238 // is not not harmful to try to explicitly instantiate something that 3239 // has been explicitly specialized. 3240 if (!getLangOptions().CPlusPlus0x) { 3241 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3242 << PrevDecl; 3243 Diag(PrevDecl->getLocation(), 3244 diag::note_previous_template_specialization); 3245 } 3246 SuppressNew = true; 3247 return false; 3248 3249 case TSK_ExplicitInstantiationDeclaration: 3250 // We're explicity instantiating a definition for something for which we 3251 // were previously asked to suppress instantiations. That's fine. 3252 return false; 3253 3254 case TSK_ExplicitInstantiationDefinition: 3255 // C++0x [temp.spec]p5: 3256 // For a given template and a given set of template-arguments, 3257 // - an explicit instantiation definition shall appear at most once 3258 // in a program, 3259 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3260 << PrevDecl; 3261 Diag(PrevPointOfInstantiation, 3262 diag::note_previous_explicit_instantiation); 3263 SuppressNew = true; 3264 return false; 3265 } 3266 break; 3267 } 3268 3269 assert(false && "Missing specialization/instantiation case?"); 3270 3271 return false; 3272} 3273 3274/// \brief Perform semantic analysis for the given function template 3275/// specialization. 3276/// 3277/// This routine performs all of the semantic analysis required for an 3278/// explicit function template specialization. On successful completion, 3279/// the function declaration \p FD will become a function template 3280/// specialization. 3281/// 3282/// \param FD the function declaration, which will be updated to become a 3283/// function template specialization. 3284/// 3285/// \param HasExplicitTemplateArgs whether any template arguments were 3286/// explicitly provided. 3287/// 3288/// \param LAngleLoc the location of the left angle bracket ('<'), if 3289/// template arguments were explicitly provided. 3290/// 3291/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3292/// if any. 3293/// 3294/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3295/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3296/// true as in, e.g., \c void sort<>(char*, char*); 3297/// 3298/// \param RAngleLoc the location of the right angle bracket ('>'), if 3299/// template arguments were explicitly provided. 3300/// 3301/// \param PrevDecl the set of declarations that 3302bool 3303Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3304 bool HasExplicitTemplateArgs, 3305 SourceLocation LAngleLoc, 3306 const TemplateArgumentLoc *ExplicitTemplateArgs, 3307 unsigned NumExplicitTemplateArgs, 3308 SourceLocation RAngleLoc, 3309 NamedDecl *&PrevDecl) { 3310 // The set of function template specializations that could match this 3311 // explicit function template specialization. 3312 typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet; 3313 CandidateSet Candidates; 3314 3315 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3316 for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) { 3317 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) { 3318 // Only consider templates found within the same semantic lookup scope as 3319 // FD. 3320 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3321 continue; 3322 3323 // C++ [temp.expl.spec]p11: 3324 // A trailing template-argument can be left unspecified in the 3325 // template-id naming an explicit function template specialization 3326 // provided it can be deduced from the function argument type. 3327 // Perform template argument deduction to determine whether we may be 3328 // specializing this template. 3329 // FIXME: It is somewhat wasteful to build 3330 TemplateDeductionInfo Info(Context); 3331 FunctionDecl *Specialization = 0; 3332 if (TemplateDeductionResult TDK 3333 = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs, 3334 ExplicitTemplateArgs, 3335 NumExplicitTemplateArgs, 3336 FD->getType(), 3337 Specialization, 3338 Info)) { 3339 // FIXME: Template argument deduction failed; record why it failed, so 3340 // that we can provide nifty diagnostics. 3341 (void)TDK; 3342 continue; 3343 } 3344 3345 // Record this candidate. 3346 Candidates.push_back(Specialization); 3347 } 3348 } 3349 3350 // Find the most specialized function template. 3351 FunctionDecl *Specialization = getMostSpecialized(Candidates.data(), 3352 Candidates.size(), 3353 TPOC_Other, 3354 FD->getLocation(), 3355 PartialDiagnostic(diag::err_function_template_spec_no_match) 3356 << FD->getDeclName(), 3357 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3358 << FD->getDeclName() << HasExplicitTemplateArgs, 3359 PartialDiagnostic(diag::note_function_template_spec_matched)); 3360 if (!Specialization) 3361 return true; 3362 3363 // FIXME: Check if the prior specialization has a point of instantiation. 3364 // If so, we have run afoul of . 3365 3366 // Check the scope of this explicit specialization. 3367 if (CheckTemplateSpecializationScope(*this, 3368 Specialization->getPrimaryTemplate(), 3369 Specialization, FD->getLocation(), 3370 false)) 3371 return true; 3372 3373 // C++ [temp.expl.spec]p6: 3374 // If a template, a member template or the member of a class template is 3375 // explicitly specialized then that specialization shall be declared 3376 // before the first use of that specialization that would cause an implicit 3377 // instantiation to take place, in every translation unit in which such a 3378 // use occurs; no diagnostic is required. 3379 FunctionTemplateSpecializationInfo *SpecInfo 3380 = Specialization->getTemplateSpecializationInfo(); 3381 assert(SpecInfo && "Function template specialization info missing?"); 3382 if (SpecInfo->getPointOfInstantiation().isValid()) { 3383 Diag(FD->getLocation(), diag::err_specialization_after_instantiation) 3384 << FD; 3385 Diag(SpecInfo->getPointOfInstantiation(), 3386 diag::note_instantiation_required_here) 3387 << (Specialization->getTemplateSpecializationKind() 3388 != TSK_ImplicitInstantiation); 3389 return true; 3390 } 3391 3392 // Mark the prior declaration as an explicit specialization, so that later 3393 // clients know that this is an explicit specialization. 3394 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3395 3396 // Turn the given function declaration into a function template 3397 // specialization, with the template arguments from the previous 3398 // specialization. 3399 FD->setFunctionTemplateSpecialization(Context, 3400 Specialization->getPrimaryTemplate(), 3401 new (Context) TemplateArgumentList( 3402 *Specialization->getTemplateSpecializationArgs()), 3403 /*InsertPos=*/0, 3404 TSK_ExplicitSpecialization); 3405 3406 // The "previous declaration" for this function template specialization is 3407 // the prior function template specialization. 3408 PrevDecl = Specialization; 3409 return false; 3410} 3411 3412/// \brief Perform semantic analysis for the given non-template member 3413/// specialization. 3414/// 3415/// This routine performs all of the semantic analysis required for an 3416/// explicit member function specialization. On successful completion, 3417/// the function declaration \p FD will become a member function 3418/// specialization. 3419/// 3420/// \param Member the member declaration, which will be updated to become a 3421/// specialization. 3422/// 3423/// \param PrevDecl the set of declarations, one of which may be specialized 3424/// by this function specialization. 3425bool 3426Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) { 3427 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 3428 3429 // Try to find the member we are instantiating. 3430 NamedDecl *Instantiation = 0; 3431 NamedDecl *InstantiatedFrom = 0; 3432 MemberSpecializationInfo *MSInfo = 0; 3433 3434 if (!PrevDecl) { 3435 // Nowhere to look anyway. 3436 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 3437 for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) { 3438 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) { 3439 if (Context.hasSameType(Function->getType(), Method->getType())) { 3440 Instantiation = Method; 3441 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 3442 MSInfo = Method->getMemberSpecializationInfo(); 3443 break; 3444 } 3445 } 3446 } 3447 } else if (isa<VarDecl>(Member)) { 3448 if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl)) 3449 if (PrevVar->isStaticDataMember()) { 3450 Instantiation = PrevDecl; 3451 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 3452 MSInfo = PrevVar->getMemberSpecializationInfo(); 3453 } 3454 } else if (isa<RecordDecl>(Member)) { 3455 if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) { 3456 Instantiation = PrevDecl; 3457 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 3458 MSInfo = PrevRecord->getMemberSpecializationInfo(); 3459 } 3460 } 3461 3462 if (!Instantiation) { 3463 // There is no previous declaration that matches. Since member 3464 // specializations are always out-of-line, the caller will complain about 3465 // this mismatch later. 3466 return false; 3467 } 3468 3469 // Make sure that this is a specialization of a member. 3470 if (!InstantiatedFrom) { 3471 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 3472 << Member; 3473 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 3474 return true; 3475 } 3476 3477 // C++ [temp.expl.spec]p6: 3478 // If a template, a member template or the member of a class template is 3479 // explicitly specialized then that spe- cialization shall be declared 3480 // before the first use of that specialization that would cause an implicit 3481 // instantiation to take place, in every translation unit in which such a 3482 // use occurs; no diagnostic is required. 3483 assert(MSInfo && "Member specialization info missing?"); 3484 if (MSInfo->getPointOfInstantiation().isValid()) { 3485 Diag(Member->getLocation(), diag::err_specialization_after_instantiation) 3486 << Member; 3487 Diag(MSInfo->getPointOfInstantiation(), 3488 diag::note_instantiation_required_here) 3489 << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation); 3490 return true; 3491 } 3492 3493 // Check the scope of this explicit specialization. 3494 if (CheckTemplateSpecializationScope(*this, 3495 InstantiatedFrom, 3496 Instantiation, Member->getLocation(), 3497 false)) 3498 return true; 3499 3500 // Note that this is an explicit instantiation of a member. 3501 // the original declaration to note that it is an explicit specialization 3502 // (if it was previously an implicit instantiation). This latter step 3503 // makes bookkeeping easier. 3504 if (isa<FunctionDecl>(Member)) { 3505 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 3506 if (InstantiationFunction->getTemplateSpecializationKind() == 3507 TSK_ImplicitInstantiation) { 3508 InstantiationFunction->setTemplateSpecializationKind( 3509 TSK_ExplicitSpecialization); 3510 InstantiationFunction->setLocation(Member->getLocation()); 3511 } 3512 3513 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 3514 cast<CXXMethodDecl>(InstantiatedFrom), 3515 TSK_ExplicitSpecialization); 3516 } else if (isa<VarDecl>(Member)) { 3517 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 3518 if (InstantiationVar->getTemplateSpecializationKind() == 3519 TSK_ImplicitInstantiation) { 3520 InstantiationVar->setTemplateSpecializationKind( 3521 TSK_ExplicitSpecialization); 3522 InstantiationVar->setLocation(Member->getLocation()); 3523 } 3524 3525 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 3526 cast<VarDecl>(InstantiatedFrom), 3527 TSK_ExplicitSpecialization); 3528 } else { 3529 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 3530 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 3531 if (InstantiationClass->getTemplateSpecializationKind() == 3532 TSK_ImplicitInstantiation) { 3533 InstantiationClass->setTemplateSpecializationKind( 3534 TSK_ExplicitSpecialization); 3535 InstantiationClass->setLocation(Member->getLocation()); 3536 } 3537 3538 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 3539 cast<CXXRecordDecl>(InstantiatedFrom), 3540 TSK_ExplicitSpecialization); 3541 } 3542 3543 // Save the caller the trouble of having to figure out which declaration 3544 // this specialization matches. 3545 PrevDecl = Instantiation; 3546 return false; 3547} 3548 3549/// \brief Check the scope of an explicit instantiation. 3550static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 3551 SourceLocation InstLoc, 3552 bool WasQualifiedName) { 3553 DeclContext *ExpectedContext 3554 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 3555 DeclContext *CurContext = S.CurContext->getLookupContext(); 3556 3557 // C++0x [temp.explicit]p2: 3558 // An explicit instantiation shall appear in an enclosing namespace of its 3559 // template. 3560 // 3561 // This is DR275, which we do not retroactively apply to C++98/03. 3562 if (S.getLangOptions().CPlusPlus0x && 3563 !CurContext->Encloses(ExpectedContext)) { 3564 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 3565 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 3566 << D << NS; 3567 else 3568 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 3569 << D; 3570 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3571 return; 3572 } 3573 3574 // C++0x [temp.explicit]p2: 3575 // If the name declared in the explicit instantiation is an unqualified 3576 // name, the explicit instantiation shall appear in the namespace where 3577 // its template is declared or, if that namespace is inline (7.3.1), any 3578 // namespace from its enclosing namespace set. 3579 if (WasQualifiedName) 3580 return; 3581 3582 if (CurContext->Equals(ExpectedContext)) 3583 return; 3584 3585 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 3586 << D << ExpectedContext; 3587 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3588} 3589 3590/// \brief Determine whether the given scope specifier has a template-id in it. 3591static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 3592 if (!SS.isSet()) 3593 return false; 3594 3595 // C++0x [temp.explicit]p2: 3596 // If the explicit instantiation is for a member function, a member class 3597 // or a static data member of a class template specialization, the name of 3598 // the class template specialization in the qualified-id for the member 3599 // name shall be a simple-template-id. 3600 // 3601 // C++98 has the same restriction, just worded differently. 3602 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 3603 NNS; NNS = NNS->getPrefix()) 3604 if (Type *T = NNS->getAsType()) 3605 if (isa<TemplateSpecializationType>(T)) 3606 return true; 3607 3608 return false; 3609} 3610 3611// Explicit instantiation of a class template specialization 3612// FIXME: Implement extern template semantics 3613Sema::DeclResult 3614Sema::ActOnExplicitInstantiation(Scope *S, 3615 SourceLocation ExternLoc, 3616 SourceLocation TemplateLoc, 3617 unsigned TagSpec, 3618 SourceLocation KWLoc, 3619 const CXXScopeSpec &SS, 3620 TemplateTy TemplateD, 3621 SourceLocation TemplateNameLoc, 3622 SourceLocation LAngleLoc, 3623 ASTTemplateArgsPtr TemplateArgsIn, 3624 SourceLocation *TemplateArgLocs, 3625 SourceLocation RAngleLoc, 3626 AttributeList *Attr) { 3627 // Find the class template we're specializing 3628 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3629 ClassTemplateDecl *ClassTemplate 3630 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3631 3632 // Check that the specialization uses the same tag kind as the 3633 // original template. 3634 TagDecl::TagKind Kind; 3635 switch (TagSpec) { 3636 default: assert(0 && "Unknown tag type!"); 3637 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3638 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3639 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3640 } 3641 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3642 Kind, KWLoc, 3643 *ClassTemplate->getIdentifier())) { 3644 Diag(KWLoc, diag::err_use_with_wrong_tag) 3645 << ClassTemplate 3646 << CodeModificationHint::CreateReplacement(KWLoc, 3647 ClassTemplate->getTemplatedDecl()->getKindName()); 3648 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3649 diag::note_previous_use); 3650 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3651 } 3652 3653 // C++0x [temp.explicit]p2: 3654 // There are two forms of explicit instantiation: an explicit instantiation 3655 // definition and an explicit instantiation declaration. An explicit 3656 // instantiation declaration begins with the extern keyword. [...] 3657 TemplateSpecializationKind TSK 3658 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3659 : TSK_ExplicitInstantiationDeclaration; 3660 3661 // Translate the parser's template argument list in our AST format. 3662 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 3663 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 3664 3665 // Check that the template argument list is well-formed for this 3666 // template. 3667 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3668 TemplateArgs.size()); 3669 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 3670 TemplateArgs.data(), TemplateArgs.size(), 3671 RAngleLoc, false, Converted)) 3672 return true; 3673 3674 assert((Converted.structuredSize() == 3675 ClassTemplate->getTemplateParameters()->size()) && 3676 "Converted template argument list is too short!"); 3677 3678 // Find the class template specialization declaration that 3679 // corresponds to these arguments. 3680 llvm::FoldingSetNodeID ID; 3681 ClassTemplateSpecializationDecl::Profile(ID, 3682 Converted.getFlatArguments(), 3683 Converted.flatSize(), 3684 Context); 3685 void *InsertPos = 0; 3686 ClassTemplateSpecializationDecl *PrevDecl 3687 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3688 3689 // C++0x [temp.explicit]p2: 3690 // [...] An explicit instantiation shall appear in an enclosing 3691 // namespace of its template. [...] 3692 // 3693 // This is C++ DR 275. 3694 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 3695 SS.isSet()); 3696 3697 ClassTemplateSpecializationDecl *Specialization = 0; 3698 3699 if (PrevDecl) { 3700 bool SuppressNew = false; 3701 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 3702 PrevDecl, 3703 PrevDecl->getSpecializationKind(), 3704 PrevDecl->getPointOfInstantiation(), 3705 SuppressNew)) 3706 return DeclPtrTy::make(PrevDecl); 3707 3708 if (SuppressNew) 3709 return DeclPtrTy::make(PrevDecl); 3710 3711 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 3712 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 3713 // Since the only prior class template specialization with these 3714 // arguments was referenced but not declared, reuse that 3715 // declaration node as our own, updating its source location to 3716 // reflect our new declaration. 3717 Specialization = PrevDecl; 3718 Specialization->setLocation(TemplateNameLoc); 3719 PrevDecl = 0; 3720 } 3721 } 3722 3723 if (!Specialization) { 3724 // Create a new class template specialization declaration node for 3725 // this explicit specialization. 3726 Specialization 3727 = ClassTemplateSpecializationDecl::Create(Context, 3728 ClassTemplate->getDeclContext(), 3729 TemplateNameLoc, 3730 ClassTemplate, 3731 Converted, PrevDecl); 3732 3733 if (PrevDecl) { 3734 // Remove the previous declaration from the folding set, since we want 3735 // to introduce a new declaration. 3736 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3737 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3738 } 3739 3740 // Insert the new specialization. 3741 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 3742 } 3743 3744 // Build the fully-sugared type for this explicit instantiation as 3745 // the user wrote in the explicit instantiation itself. This means 3746 // that we'll pretty-print the type retrieved from the 3747 // specialization's declaration the way that the user actually wrote 3748 // the explicit instantiation, rather than formatting the name based 3749 // on the "canonical" representation used to store the template 3750 // arguments in the specialization. 3751 QualType WrittenTy 3752 = Context.getTemplateSpecializationType(Name, 3753 TemplateArgs.data(), 3754 TemplateArgs.size(), 3755 Context.getTypeDeclType(Specialization)); 3756 Specialization->setTypeAsWritten(WrittenTy); 3757 TemplateArgsIn.release(); 3758 3759 // Add the explicit instantiation into its lexical context. However, 3760 // since explicit instantiations are never found by name lookup, we 3761 // just put it into the declaration context directly. 3762 Specialization->setLexicalDeclContext(CurContext); 3763 CurContext->addDecl(Specialization); 3764 3765 // C++ [temp.explicit]p3: 3766 // A definition of a class template or class member template 3767 // shall be in scope at the point of the explicit instantiation of 3768 // the class template or class member template. 3769 // 3770 // This check comes when we actually try to perform the 3771 // instantiation. 3772 ClassTemplateSpecializationDecl *Def 3773 = cast_or_null<ClassTemplateSpecializationDecl>( 3774 Specialization->getDefinition(Context)); 3775 if (!Def) 3776 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 3777 3778 // Instantiate the members of this class template specialization. 3779 Def = cast_or_null<ClassTemplateSpecializationDecl>( 3780 Specialization->getDefinition(Context)); 3781 if (Def) 3782 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 3783 3784 return DeclPtrTy::make(Specialization); 3785} 3786 3787// Explicit instantiation of a member class of a class template. 3788Sema::DeclResult 3789Sema::ActOnExplicitInstantiation(Scope *S, 3790 SourceLocation ExternLoc, 3791 SourceLocation TemplateLoc, 3792 unsigned TagSpec, 3793 SourceLocation KWLoc, 3794 const CXXScopeSpec &SS, 3795 IdentifierInfo *Name, 3796 SourceLocation NameLoc, 3797 AttributeList *Attr) { 3798 3799 bool Owned = false; 3800 bool IsDependent = false; 3801 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 3802 KWLoc, SS, Name, NameLoc, Attr, AS_none, 3803 MultiTemplateParamsArg(*this, 0, 0), 3804 Owned, IsDependent); 3805 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 3806 3807 if (!TagD) 3808 return true; 3809 3810 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 3811 if (Tag->isEnum()) { 3812 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 3813 << Context.getTypeDeclType(Tag); 3814 return true; 3815 } 3816 3817 if (Tag->isInvalidDecl()) 3818 return true; 3819 3820 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 3821 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 3822 if (!Pattern) { 3823 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 3824 << Context.getTypeDeclType(Record); 3825 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 3826 return true; 3827 } 3828 3829 // C++0x [temp.explicit]p2: 3830 // If the explicit instantiation is for a class or member class, the 3831 // elaborated-type-specifier in the declaration shall include a 3832 // simple-template-id. 3833 // 3834 // C++98 has the same restriction, just worded differently. 3835 if (!ScopeSpecifierHasTemplateId(SS)) 3836 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 3837 << Record << SS.getRange(); 3838 3839 // C++0x [temp.explicit]p2: 3840 // There are two forms of explicit instantiation: an explicit instantiation 3841 // definition and an explicit instantiation declaration. An explicit 3842 // instantiation declaration begins with the extern keyword. [...] 3843 TemplateSpecializationKind TSK 3844 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3845 : TSK_ExplicitInstantiationDeclaration; 3846 3847 // C++0x [temp.explicit]p2: 3848 // [...] An explicit instantiation shall appear in an enclosing 3849 // namespace of its template. [...] 3850 // 3851 // This is C++ DR 275. 3852 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 3853 3854 // Verify that it is okay to explicitly instantiate here. 3855 CXXRecordDecl *PrevDecl 3856 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 3857 if (!PrevDecl && Record->getDefinition(Context)) 3858 PrevDecl = Record; 3859 if (PrevDecl) { 3860 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 3861 bool SuppressNew = false; 3862 assert(MSInfo && "No member specialization information?"); 3863 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 3864 PrevDecl, 3865 MSInfo->getTemplateSpecializationKind(), 3866 MSInfo->getPointOfInstantiation(), 3867 SuppressNew)) 3868 return true; 3869 if (SuppressNew) 3870 return TagD; 3871 } 3872 3873 CXXRecordDecl *RecordDef 3874 = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 3875 if (!RecordDef) { 3876 // C++ [temp.explicit]p3: 3877 // A definition of a member class of a class template shall be in scope 3878 // at the point of an explicit instantiation of the member class. 3879 CXXRecordDecl *Def 3880 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 3881 if (!Def) { 3882 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 3883 << 0 << Record->getDeclName() << Record->getDeclContext(); 3884 Diag(Pattern->getLocation(), diag::note_forward_declaration) 3885 << Pattern; 3886 return true; 3887 } else { 3888 if (InstantiateClass(NameLoc, Record, Def, 3889 getTemplateInstantiationArgs(Record), 3890 TSK)) 3891 return true; 3892 3893 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 3894 if (!RecordDef) 3895 return true; 3896 } 3897 } 3898 3899 // Instantiate all of the members of the class. 3900 InstantiateClassMembers(NameLoc, RecordDef, 3901 getTemplateInstantiationArgs(Record), TSK); 3902 3903 // FIXME: We don't have any representation for explicit instantiations of 3904 // member classes. Such a representation is not needed for compilation, but it 3905 // should be available for clients that want to see all of the declarations in 3906 // the source code. 3907 return TagD; 3908} 3909 3910Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 3911 SourceLocation ExternLoc, 3912 SourceLocation TemplateLoc, 3913 Declarator &D) { 3914 // Explicit instantiations always require a name. 3915 DeclarationName Name = GetNameForDeclarator(D); 3916 if (!Name) { 3917 if (!D.isInvalidType()) 3918 Diag(D.getDeclSpec().getSourceRange().getBegin(), 3919 diag::err_explicit_instantiation_requires_name) 3920 << D.getDeclSpec().getSourceRange() 3921 << D.getSourceRange(); 3922 3923 return true; 3924 } 3925 3926 // The scope passed in may not be a decl scope. Zip up the scope tree until 3927 // we find one that is. 3928 while ((S->getFlags() & Scope::DeclScope) == 0 || 3929 (S->getFlags() & Scope::TemplateParamScope) != 0) 3930 S = S->getParent(); 3931 3932 // Determine the type of the declaration. 3933 QualType R = GetTypeForDeclarator(D, S, 0); 3934 if (R.isNull()) 3935 return true; 3936 3937 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 3938 // Cannot explicitly instantiate a typedef. 3939 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 3940 << Name; 3941 return true; 3942 } 3943 3944 // C++0x [temp.explicit]p1: 3945 // [...] An explicit instantiation of a function template shall not use the 3946 // inline or constexpr specifiers. 3947 // Presumably, this also applies to member functions of class templates as 3948 // well. 3949 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 3950 Diag(D.getDeclSpec().getInlineSpecLoc(), 3951 diag::err_explicit_instantiation_inline) 3952 << CodeModificationHint::CreateRemoval( 3953 SourceRange(D.getDeclSpec().getInlineSpecLoc())); 3954 3955 // FIXME: check for constexpr specifier. 3956 3957 // C++0x [temp.explicit]p2: 3958 // There are two forms of explicit instantiation: an explicit instantiation 3959 // definition and an explicit instantiation declaration. An explicit 3960 // instantiation declaration begins with the extern keyword. [...] 3961 TemplateSpecializationKind TSK 3962 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3963 : TSK_ExplicitInstantiationDeclaration; 3964 3965 LookupResult Previous; 3966 LookupParsedName(Previous, S, &D.getCXXScopeSpec(), 3967 Name, LookupOrdinaryName); 3968 3969 if (!R->isFunctionType()) { 3970 // C++ [temp.explicit]p1: 3971 // A [...] static data member of a class template can be explicitly 3972 // instantiated from the member definition associated with its class 3973 // template. 3974 if (Previous.isAmbiguous()) { 3975 return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(), 3976 D.getSourceRange()); 3977 } 3978 3979 VarDecl *Prev = dyn_cast_or_null<VarDecl>( 3980 Previous.getAsSingleDecl(Context)); 3981 if (!Prev || !Prev->isStaticDataMember()) { 3982 // We expect to see a data data member here. 3983 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 3984 << Name; 3985 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 3986 P != PEnd; ++P) 3987 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 3988 return true; 3989 } 3990 3991 if (!Prev->getInstantiatedFromStaticDataMember()) { 3992 // FIXME: Check for explicit specialization? 3993 Diag(D.getIdentifierLoc(), 3994 diag::err_explicit_instantiation_data_member_not_instantiated) 3995 << Prev; 3996 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 3997 // FIXME: Can we provide a note showing where this was declared? 3998 return true; 3999 } 4000 4001 // C++0x [temp.explicit]p2: 4002 // If the explicit instantiation is for a member function, a member class 4003 // or a static data member of a class template specialization, the name of 4004 // the class template specialization in the qualified-id for the member 4005 // name shall be a simple-template-id. 4006 // 4007 // C++98 has the same restriction, just worded differently. 4008 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4009 Diag(D.getIdentifierLoc(), 4010 diag::err_explicit_instantiation_without_qualified_id) 4011 << Prev << D.getCXXScopeSpec().getRange(); 4012 4013 // Check the scope of this explicit instantiation. 4014 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4015 4016 // Verify that it is okay to explicitly instantiate here. 4017 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4018 assert(MSInfo && "Missing static data member specialization info?"); 4019 bool SuppressNew = false; 4020 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4021 MSInfo->getTemplateSpecializationKind(), 4022 MSInfo->getPointOfInstantiation(), 4023 SuppressNew)) 4024 return true; 4025 if (SuppressNew) 4026 return DeclPtrTy(); 4027 4028 // Instantiate static data member. 4029 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4030 if (TSK == TSK_ExplicitInstantiationDefinition) 4031 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4032 /*DefinitionRequired=*/true); 4033 4034 // FIXME: Create an ExplicitInstantiation node? 4035 return DeclPtrTy(); 4036 } 4037 4038 // If the declarator is a template-id, translate the parser's template 4039 // argument list into our AST format. 4040 bool HasExplicitTemplateArgs = false; 4041 llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs; 4042 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4043 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4044 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4045 TemplateId->getTemplateArgs(), 4046 TemplateId->getTemplateArgIsType(), 4047 TemplateId->NumArgs); 4048 translateTemplateArguments(TemplateArgsPtr, 4049 TemplateId->getTemplateArgLocations(), 4050 TemplateArgs); 4051 HasExplicitTemplateArgs = true; 4052 TemplateArgsPtr.release(); 4053 } 4054 4055 // C++ [temp.explicit]p1: 4056 // A [...] function [...] can be explicitly instantiated from its template. 4057 // A member function [...] of a class template can be explicitly 4058 // instantiated from the member definition associated with its class 4059 // template. 4060 llvm::SmallVector<FunctionDecl *, 8> Matches; 4061 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4062 P != PEnd; ++P) { 4063 NamedDecl *Prev = *P; 4064 if (!HasExplicitTemplateArgs) { 4065 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4066 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4067 Matches.clear(); 4068 Matches.push_back(Method); 4069 break; 4070 } 4071 } 4072 } 4073 4074 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4075 if (!FunTmpl) 4076 continue; 4077 4078 TemplateDeductionInfo Info(Context); 4079 FunctionDecl *Specialization = 0; 4080 if (TemplateDeductionResult TDK 4081 = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs, 4082 TemplateArgs.data(), TemplateArgs.size(), 4083 R, Specialization, Info)) { 4084 // FIXME: Keep track of almost-matches? 4085 (void)TDK; 4086 continue; 4087 } 4088 4089 Matches.push_back(Specialization); 4090 } 4091 4092 // Find the most specialized function template specialization. 4093 FunctionDecl *Specialization 4094 = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other, 4095 D.getIdentifierLoc(), 4096 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4097 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4098 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4099 4100 if (!Specialization) 4101 return true; 4102 4103 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4104 Diag(D.getIdentifierLoc(), 4105 diag::err_explicit_instantiation_member_function_not_instantiated) 4106 << Specialization 4107 << (Specialization->getTemplateSpecializationKind() == 4108 TSK_ExplicitSpecialization); 4109 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4110 return true; 4111 } 4112 4113 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4114 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4115 PrevDecl = Specialization; 4116 4117 if (PrevDecl) { 4118 bool SuppressNew = false; 4119 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4120 PrevDecl, 4121 PrevDecl->getTemplateSpecializationKind(), 4122 PrevDecl->getPointOfInstantiation(), 4123 SuppressNew)) 4124 return true; 4125 4126 // FIXME: We may still want to build some representation of this 4127 // explicit specialization. 4128 if (SuppressNew) 4129 return DeclPtrTy(); 4130 } 4131 4132 if (TSK == TSK_ExplicitInstantiationDefinition) 4133 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4134 false, /*DefinitionRequired=*/true); 4135 4136 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4137 4138 // C++0x [temp.explicit]p2: 4139 // If the explicit instantiation is for a member function, a member class 4140 // or a static data member of a class template specialization, the name of 4141 // the class template specialization in the qualified-id for the member 4142 // name shall be a simple-template-id. 4143 // 4144 // C++98 has the same restriction, just worded differently. 4145 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4146 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4147 D.getCXXScopeSpec().isSet() && 4148 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4149 Diag(D.getIdentifierLoc(), 4150 diag::err_explicit_instantiation_without_qualified_id) 4151 << Specialization << D.getCXXScopeSpec().getRange(); 4152 4153 CheckExplicitInstantiationScope(*this, 4154 FunTmpl? (NamedDecl *)FunTmpl 4155 : Specialization->getInstantiatedFromMemberFunction(), 4156 D.getIdentifierLoc(), 4157 D.getCXXScopeSpec().isSet()); 4158 4159 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4160 return DeclPtrTy(); 4161} 4162 4163Sema::TypeResult 4164Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4165 const CXXScopeSpec &SS, IdentifierInfo *Name, 4166 SourceLocation TagLoc, SourceLocation NameLoc) { 4167 // This has to hold, because SS is expected to be defined. 4168 assert(Name && "Expected a name in a dependent tag"); 4169 4170 NestedNameSpecifier *NNS 4171 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4172 if (!NNS) 4173 return true; 4174 4175 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4176 if (T.isNull()) 4177 return true; 4178 4179 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4180 QualType ElabType = Context.getElaboratedType(T, TagKind); 4181 4182 return ElabType.getAsOpaquePtr(); 4183} 4184 4185Sema::TypeResult 4186Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4187 const IdentifierInfo &II, SourceLocation IdLoc) { 4188 NestedNameSpecifier *NNS 4189 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4190 if (!NNS) 4191 return true; 4192 4193 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4194 if (T.isNull()) 4195 return true; 4196 return T.getAsOpaquePtr(); 4197} 4198 4199Sema::TypeResult 4200Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4201 SourceLocation TemplateLoc, TypeTy *Ty) { 4202 QualType T = GetTypeFromParser(Ty); 4203 NestedNameSpecifier *NNS 4204 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4205 const TemplateSpecializationType *TemplateId 4206 = T->getAs<TemplateSpecializationType>(); 4207 assert(TemplateId && "Expected a template specialization type"); 4208 4209 if (computeDeclContext(SS, false)) { 4210 // If we can compute a declaration context, then the "typename" 4211 // keyword was superfluous. Just build a QualifiedNameType to keep 4212 // track of the nested-name-specifier. 4213 4214 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4215 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4216 } 4217 4218 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4219} 4220 4221/// \brief Build the type that describes a C++ typename specifier, 4222/// e.g., "typename T::type". 4223QualType 4224Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4225 SourceRange Range) { 4226 CXXRecordDecl *CurrentInstantiation = 0; 4227 if (NNS->isDependent()) { 4228 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4229 4230 // If the nested-name-specifier does not refer to the current 4231 // instantiation, then build a typename type. 4232 if (!CurrentInstantiation) 4233 return Context.getTypenameType(NNS, &II); 4234 4235 // The nested-name-specifier refers to the current instantiation, so the 4236 // "typename" keyword itself is superfluous. In C++03, the program is 4237 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4238 // extraneous "typename" keywords, and we retroactively apply this DR to 4239 // C++03 code. 4240 } 4241 4242 DeclContext *Ctx = 0; 4243 4244 if (CurrentInstantiation) 4245 Ctx = CurrentInstantiation; 4246 else { 4247 CXXScopeSpec SS; 4248 SS.setScopeRep(NNS); 4249 SS.setRange(Range); 4250 if (RequireCompleteDeclContext(SS)) 4251 return QualType(); 4252 4253 Ctx = computeDeclContext(SS); 4254 } 4255 assert(Ctx && "No declaration context?"); 4256 4257 DeclarationName Name(&II); 4258 LookupResult Result; 4259 LookupQualifiedName(Result, Ctx, Name, LookupOrdinaryName, false); 4260 unsigned DiagID = 0; 4261 Decl *Referenced = 0; 4262 switch (Result.getKind()) { 4263 case LookupResult::NotFound: 4264 DiagID = diag::err_typename_nested_not_found; 4265 break; 4266 4267 case LookupResult::Found: 4268 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4269 // We found a type. Build a QualifiedNameType, since the 4270 // typename-specifier was just sugar. FIXME: Tell 4271 // QualifiedNameType that it has a "typename" prefix. 4272 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4273 } 4274 4275 DiagID = diag::err_typename_nested_not_type; 4276 Referenced = Result.getFoundDecl(); 4277 break; 4278 4279 case LookupResult::FoundOverloaded: 4280 DiagID = diag::err_typename_nested_not_type; 4281 Referenced = *Result.begin(); 4282 break; 4283 4284 case LookupResult::Ambiguous: 4285 DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range); 4286 return QualType(); 4287 } 4288 4289 // If we get here, it's because name lookup did not find a 4290 // type. Emit an appropriate diagnostic and return an error. 4291 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4292 if (Referenced) 4293 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4294 << Name; 4295 return QualType(); 4296} 4297 4298namespace { 4299 // See Sema::RebuildTypeInCurrentInstantiation 4300 class VISIBILITY_HIDDEN CurrentInstantiationRebuilder 4301 : public TreeTransform<CurrentInstantiationRebuilder> { 4302 SourceLocation Loc; 4303 DeclarationName Entity; 4304 4305 public: 4306 CurrentInstantiationRebuilder(Sema &SemaRef, 4307 SourceLocation Loc, 4308 DeclarationName Entity) 4309 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4310 Loc(Loc), Entity(Entity) { } 4311 4312 /// \brief Determine whether the given type \p T has already been 4313 /// transformed. 4314 /// 4315 /// For the purposes of type reconstruction, a type has already been 4316 /// transformed if it is NULL or if it is not dependent. 4317 bool AlreadyTransformed(QualType T) { 4318 return T.isNull() || !T->isDependentType(); 4319 } 4320 4321 /// \brief Returns the location of the entity whose type is being 4322 /// rebuilt. 4323 SourceLocation getBaseLocation() { return Loc; } 4324 4325 /// \brief Returns the name of the entity whose type is being rebuilt. 4326 DeclarationName getBaseEntity() { return Entity; } 4327 4328 /// \brief Sets the "base" location and entity when that 4329 /// information is known based on another transformation. 4330 void setBase(SourceLocation Loc, DeclarationName Entity) { 4331 this->Loc = Loc; 4332 this->Entity = Entity; 4333 } 4334 4335 /// \brief Transforms an expression by returning the expression itself 4336 /// (an identity function). 4337 /// 4338 /// FIXME: This is completely unsafe; we will need to actually clone the 4339 /// expressions. 4340 Sema::OwningExprResult TransformExpr(Expr *E) { 4341 return getSema().Owned(E); 4342 } 4343 4344 /// \brief Transforms a typename type by determining whether the type now 4345 /// refers to a member of the current instantiation, and then 4346 /// type-checking and building a QualifiedNameType (when possible). 4347 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL); 4348 }; 4349} 4350 4351QualType 4352CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4353 TypenameTypeLoc TL) { 4354 TypenameType *T = TL.getTypePtr(); 4355 4356 NestedNameSpecifier *NNS 4357 = TransformNestedNameSpecifier(T->getQualifier(), 4358 /*FIXME:*/SourceRange(getBaseLocation())); 4359 if (!NNS) 4360 return QualType(); 4361 4362 // If the nested-name-specifier did not change, and we cannot compute the 4363 // context corresponding to the nested-name-specifier, then this 4364 // typename type will not change; exit early. 4365 CXXScopeSpec SS; 4366 SS.setRange(SourceRange(getBaseLocation())); 4367 SS.setScopeRep(NNS); 4368 4369 QualType Result; 4370 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4371 Result = QualType(T, 0); 4372 4373 // Rebuild the typename type, which will probably turn into a 4374 // QualifiedNameType. 4375 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4376 QualType NewTemplateId 4377 = TransformType(QualType(TemplateId, 0)); 4378 if (NewTemplateId.isNull()) 4379 return QualType(); 4380 4381 if (NNS == T->getQualifier() && 4382 NewTemplateId == QualType(TemplateId, 0)) 4383 Result = QualType(T, 0); 4384 else 4385 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); 4386 } else 4387 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), 4388 SourceRange(TL.getNameLoc())); 4389 4390 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 4391 NewTL.setNameLoc(TL.getNameLoc()); 4392 return Result; 4393} 4394 4395/// \brief Rebuilds a type within the context of the current instantiation. 4396/// 4397/// The type \p T is part of the type of an out-of-line member definition of 4398/// a class template (or class template partial specialization) that was parsed 4399/// and constructed before we entered the scope of the class template (or 4400/// partial specialization thereof). This routine will rebuild that type now 4401/// that we have entered the declarator's scope, which may produce different 4402/// canonical types, e.g., 4403/// 4404/// \code 4405/// template<typename T> 4406/// struct X { 4407/// typedef T* pointer; 4408/// pointer data(); 4409/// }; 4410/// 4411/// template<typename T> 4412/// typename X<T>::pointer X<T>::data() { ... } 4413/// \endcode 4414/// 4415/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 4416/// since we do not know that we can look into X<T> when we parsed the type. 4417/// This function will rebuild the type, performing the lookup of "pointer" 4418/// in X<T> and returning a QualifiedNameType whose canonical type is the same 4419/// as the canonical type of T*, allowing the return types of the out-of-line 4420/// definition and the declaration to match. 4421QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 4422 DeclarationName Name) { 4423 if (T.isNull() || !T->isDependentType()) 4424 return T; 4425 4426 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 4427 return Rebuilder.TransformType(T); 4428} 4429 4430/// \brief Produces a formatted string that describes the binding of 4431/// template parameters to template arguments. 4432std::string 4433Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4434 const TemplateArgumentList &Args) { 4435 std::string Result; 4436 4437 if (!Params || Params->size() == 0) 4438 return Result; 4439 4440 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 4441 if (I == 0) 4442 Result += "[with "; 4443 else 4444 Result += ", "; 4445 4446 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 4447 Result += Id->getName(); 4448 } else { 4449 Result += '$'; 4450 Result += llvm::utostr(I); 4451 } 4452 4453 Result += " = "; 4454 4455 switch (Args[I].getKind()) { 4456 case TemplateArgument::Null: 4457 Result += "<no value>"; 4458 break; 4459 4460 case TemplateArgument::Type: { 4461 std::string TypeStr; 4462 Args[I].getAsType().getAsStringInternal(TypeStr, 4463 Context.PrintingPolicy); 4464 Result += TypeStr; 4465 break; 4466 } 4467 4468 case TemplateArgument::Declaration: { 4469 bool Unnamed = true; 4470 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 4471 if (ND->getDeclName()) { 4472 Unnamed = false; 4473 Result += ND->getNameAsString(); 4474 } 4475 } 4476 4477 if (Unnamed) { 4478 Result += "<anonymous>"; 4479 } 4480 break; 4481 } 4482 4483 case TemplateArgument::Integral: { 4484 Result += Args[I].getAsIntegral()->toString(10); 4485 break; 4486 } 4487 4488 case TemplateArgument::Expression: { 4489 assert(false && "No expressions in deduced template arguments!"); 4490 Result += "<expression>"; 4491 break; 4492 } 4493 4494 case TemplateArgument::Pack: 4495 // FIXME: Format template argument packs 4496 Result += "<template argument pack>"; 4497 break; 4498 } 4499 } 4500 4501 Result += ']'; 4502 return Result; 4503} 4504