SemaTemplate.cpp revision 014e88d94ff83e3aad4e33b16413a2d1817ec208
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Basic/LangOptions.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/ADT/StringExtras.h"
23using namespace clang;
24
25/// \brief Determine whether the declaration found is acceptable as the name
26/// of a template and, if so, return that template declaration. Otherwise,
27/// returns NULL.
28static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
29  if (!D)
30    return 0;
31
32  if (isa<TemplateDecl>(D))
33    return D;
34
35  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
36    // C++ [temp.local]p1:
37    //   Like normal (non-template) classes, class templates have an
38    //   injected-class-name (Clause 9). The injected-class-name
39    //   can be used with or without a template-argument-list. When
40    //   it is used without a template-argument-list, it is
41    //   equivalent to the injected-class-name followed by the
42    //   template-parameters of the class template enclosed in
43    //   <>. When it is used with a template-argument-list, it
44    //   refers to the specified class template specialization,
45    //   which could be the current specialization or another
46    //   specialization.
47    if (Record->isInjectedClassName()) {
48      Record = cast<CXXRecordDecl>(Record->getDeclContext());
49      if (Record->getDescribedClassTemplate())
50        return Record->getDescribedClassTemplate();
51
52      if (ClassTemplateSpecializationDecl *Spec
53            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
54        return Spec->getSpecializedTemplate();
55    }
56
57    return 0;
58  }
59
60  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
61  if (!Ovl)
62    return 0;
63
64  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
65                                              FEnd = Ovl->function_end();
66       F != FEnd; ++F) {
67    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
68      // We've found a function template. Determine whether there are
69      // any other function templates we need to bundle together in an
70      // OverloadedFunctionDecl
71      for (++F; F != FEnd; ++F) {
72        if (isa<FunctionTemplateDecl>(*F))
73          break;
74      }
75
76      if (F != FEnd) {
77        // Build an overloaded function decl containing only the
78        // function templates in Ovl.
79        OverloadedFunctionDecl *OvlTemplate
80          = OverloadedFunctionDecl::Create(Context,
81                                           Ovl->getDeclContext(),
82                                           Ovl->getDeclName());
83        OvlTemplate->addOverload(FuncTmpl);
84        OvlTemplate->addOverload(*F);
85        for (++F; F != FEnd; ++F) {
86          if (isa<FunctionTemplateDecl>(*F))
87            OvlTemplate->addOverload(*F);
88        }
89
90        return OvlTemplate;
91      }
92
93      return FuncTmpl;
94    }
95  }
96
97  return 0;
98}
99
100TemplateNameKind Sema::isTemplateName(Scope *S,
101                                      const CXXScopeSpec &SS,
102                                      UnqualifiedId &Name,
103                                      TypeTy *ObjectTypePtr,
104                                      bool EnteringContext,
105                                      TemplateTy &TemplateResult) {
106  DeclarationName TName;
107
108  switch (Name.getKind()) {
109  case UnqualifiedId::IK_Identifier:
110    TName = DeclarationName(Name.Identifier);
111    break;
112
113  case UnqualifiedId::IK_OperatorFunctionId:
114    TName = Context.DeclarationNames.getCXXOperatorName(
115                                              Name.OperatorFunctionId.Operator);
116    break;
117
118  default:
119    return TNK_Non_template;
120  }
121
122  // Determine where to perform name lookup
123  DeclContext *LookupCtx = 0;
124  bool isDependent = false;
125  if (ObjectTypePtr) {
126    // This nested-name-specifier occurs in a member access expression, e.g.,
127    // x->B::f, and we are looking into the type of the object.
128    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
129    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
130    LookupCtx = computeDeclContext(ObjectType);
131    isDependent = ObjectType->isDependentType();
132  } else if (SS.isSet()) {
133    // This nested-name-specifier occurs after another nested-name-specifier,
134    // so long into the context associated with the prior nested-name-specifier.
135
136    LookupCtx = computeDeclContext(SS, EnteringContext);
137    isDependent = isDependentScopeSpecifier(SS);
138  }
139
140  LookupResult Found;
141  bool ObjectTypeSearchedInScope = false;
142  if (LookupCtx) {
143    // Perform "qualified" name lookup into the declaration context we
144    // computed, which is either the type of the base of a member access
145    // expression or the declaration context associated with a prior
146    // nested-name-specifier.
147
148    // The declaration context must be complete.
149    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
150      return TNK_Non_template;
151
152    LookupQualifiedName(Found, LookupCtx, TName, LookupOrdinaryName);
153
154    if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) {
155      // C++ [basic.lookup.classref]p1:
156      //   In a class member access expression (5.2.5), if the . or -> token is
157      //   immediately followed by an identifier followed by a <, the
158      //   identifier must be looked up to determine whether the < is the
159      //   beginning of a template argument list (14.2) or a less-than operator.
160      //   The identifier is first looked up in the class of the object
161      //   expression. If the identifier is not found, it is then looked up in
162      //   the context of the entire postfix-expression and shall name a class
163      //   or function template.
164      //
165      // FIXME: When we're instantiating a template, do we actually have to
166      // look in the scope of the template? Seems fishy...
167      LookupName(Found, S, TName, LookupOrdinaryName);
168      ObjectTypeSearchedInScope = true;
169    }
170  } else if (isDependent) {
171    // We cannot look into a dependent object type or
172    return TNK_Non_template;
173  } else {
174    // Perform unqualified name lookup in the current scope.
175    LookupName(Found, S, TName, LookupOrdinaryName);
176  }
177
178  // FIXME: Cope with ambiguous name-lookup results.
179  assert(!Found.isAmbiguous() &&
180         "Cannot handle template name-lookup ambiguities");
181
182  NamedDecl *Template
183    = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context));
184  if (!Template)
185    return TNK_Non_template;
186
187  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
188    // C++ [basic.lookup.classref]p1:
189    //   [...] If the lookup in the class of the object expression finds a
190    //   template, the name is also looked up in the context of the entire
191    //   postfix-expression and [...]
192    //
193    LookupResult FoundOuter;
194    LookupName(FoundOuter, S, TName, LookupOrdinaryName);
195    // FIXME: Handle ambiguities in this lookup better
196    NamedDecl *OuterTemplate
197      = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context));
198
199    if (!OuterTemplate) {
200      //   - if the name is not found, the name found in the class of the
201      //     object expression is used, otherwise
202    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
203      //   - if the name is found in the context of the entire
204      //     postfix-expression and does not name a class template, the name
205      //     found in the class of the object expression is used, otherwise
206    } else {
207      //   - if the name found is a class template, it must refer to the same
208      //     entity as the one found in the class of the object expression,
209      //     otherwise the program is ill-formed.
210      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
211        Diag(Name.getSourceRange().getBegin(),
212             diag::err_nested_name_member_ref_lookup_ambiguous)
213          << TName
214          << Name.getSourceRange();
215        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
216          << QualType::getFromOpaquePtr(ObjectTypePtr);
217        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
218
219        // Recover by taking the template that we found in the object
220        // expression's type.
221      }
222    }
223  }
224
225  if (SS.isSet() && !SS.isInvalid()) {
226    NestedNameSpecifier *Qualifier
227      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
228    if (OverloadedFunctionDecl *Ovl
229          = dyn_cast<OverloadedFunctionDecl>(Template))
230      TemplateResult
231        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
232                                                            Ovl));
233    else
234      TemplateResult
235        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
236                                                 cast<TemplateDecl>(Template)));
237  } else if (OverloadedFunctionDecl *Ovl
238               = dyn_cast<OverloadedFunctionDecl>(Template)) {
239    TemplateResult = TemplateTy::make(TemplateName(Ovl));
240  } else {
241    TemplateResult = TemplateTy::make(
242                                  TemplateName(cast<TemplateDecl>(Template)));
243  }
244
245  if (isa<ClassTemplateDecl>(Template) ||
246      isa<TemplateTemplateParmDecl>(Template))
247    return TNK_Type_template;
248
249  assert((isa<FunctionTemplateDecl>(Template) ||
250          isa<OverloadedFunctionDecl>(Template)) &&
251         "Unhandled template kind in Sema::isTemplateName");
252  return TNK_Function_template;
253}
254
255/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
256/// that the template parameter 'PrevDecl' is being shadowed by a new
257/// declaration at location Loc. Returns true to indicate that this is
258/// an error, and false otherwise.
259bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
260  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
261
262  // Microsoft Visual C++ permits template parameters to be shadowed.
263  if (getLangOptions().Microsoft)
264    return false;
265
266  // C++ [temp.local]p4:
267  //   A template-parameter shall not be redeclared within its
268  //   scope (including nested scopes).
269  Diag(Loc, diag::err_template_param_shadow)
270    << cast<NamedDecl>(PrevDecl)->getDeclName();
271  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
272  return true;
273}
274
275/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
276/// the parameter D to reference the templated declaration and return a pointer
277/// to the template declaration. Otherwise, do nothing to D and return null.
278TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
279  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
280    D = DeclPtrTy::make(Temp->getTemplatedDecl());
281    return Temp;
282  }
283  return 0;
284}
285
286/// ActOnTypeParameter - Called when a C++ template type parameter
287/// (e.g., "typename T") has been parsed. Typename specifies whether
288/// the keyword "typename" was used to declare the type parameter
289/// (otherwise, "class" was used), and KeyLoc is the location of the
290/// "class" or "typename" keyword. ParamName is the name of the
291/// parameter (NULL indicates an unnamed template parameter) and
292/// ParamName is the location of the parameter name (if any).
293/// If the type parameter has a default argument, it will be added
294/// later via ActOnTypeParameterDefault.
295Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
296                                         SourceLocation EllipsisLoc,
297                                         SourceLocation KeyLoc,
298                                         IdentifierInfo *ParamName,
299                                         SourceLocation ParamNameLoc,
300                                         unsigned Depth, unsigned Position) {
301  assert(S->isTemplateParamScope() &&
302         "Template type parameter not in template parameter scope!");
303  bool Invalid = false;
304
305  if (ParamName) {
306    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
307    if (PrevDecl && PrevDecl->isTemplateParameter())
308      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
309                                                           PrevDecl);
310  }
311
312  SourceLocation Loc = ParamNameLoc;
313  if (!ParamName)
314    Loc = KeyLoc;
315
316  TemplateTypeParmDecl *Param
317    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
318                                   Depth, Position, ParamName, Typename,
319                                   Ellipsis);
320  if (Invalid)
321    Param->setInvalidDecl();
322
323  if (ParamName) {
324    // Add the template parameter into the current scope.
325    S->AddDecl(DeclPtrTy::make(Param));
326    IdResolver.AddDecl(Param);
327  }
328
329  return DeclPtrTy::make(Param);
330}
331
332/// ActOnTypeParameterDefault - Adds a default argument (the type
333/// Default) to the given template type parameter (TypeParam).
334void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
335                                     SourceLocation EqualLoc,
336                                     SourceLocation DefaultLoc,
337                                     TypeTy *DefaultT) {
338  TemplateTypeParmDecl *Parm
339    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
340
341  DeclaratorInfo *DefaultDInfo;
342  GetTypeFromParser(DefaultT, &DefaultDInfo);
343
344  assert(DefaultDInfo && "expected source information for type");
345
346  // C++0x [temp.param]p9:
347  // A default template-argument may be specified for any kind of
348  // template-parameter that is not a template parameter pack.
349  if (Parm->isParameterPack()) {
350    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
351    return;
352  }
353
354  // C++ [temp.param]p14:
355  //   A template-parameter shall not be used in its own default argument.
356  // FIXME: Implement this check! Needs a recursive walk over the types.
357
358  // Check the template argument itself.
359  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
360    Parm->setInvalidDecl();
361    return;
362  }
363
364  Parm->setDefaultArgument(DefaultDInfo, false);
365}
366
367/// \brief Check that the type of a non-type template parameter is
368/// well-formed.
369///
370/// \returns the (possibly-promoted) parameter type if valid;
371/// otherwise, produces a diagnostic and returns a NULL type.
372QualType
373Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
374  // C++ [temp.param]p4:
375  //
376  // A non-type template-parameter shall have one of the following
377  // (optionally cv-qualified) types:
378  //
379  //       -- integral or enumeration type,
380  if (T->isIntegralType() || T->isEnumeralType() ||
381      //   -- pointer to object or pointer to function,
382      (T->isPointerType() &&
383       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
384        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
385      //   -- reference to object or reference to function,
386      T->isReferenceType() ||
387      //   -- pointer to member.
388      T->isMemberPointerType() ||
389      // If T is a dependent type, we can't do the check now, so we
390      // assume that it is well-formed.
391      T->isDependentType())
392    return T;
393  // C++ [temp.param]p8:
394  //
395  //   A non-type template-parameter of type "array of T" or
396  //   "function returning T" is adjusted to be of type "pointer to
397  //   T" or "pointer to function returning T", respectively.
398  else if (T->isArrayType())
399    // FIXME: Keep the type prior to promotion?
400    return Context.getArrayDecayedType(T);
401  else if (T->isFunctionType())
402    // FIXME: Keep the type prior to promotion?
403    return Context.getPointerType(T);
404
405  Diag(Loc, diag::err_template_nontype_parm_bad_type)
406    << T;
407
408  return QualType();
409}
410
411/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
412/// template parameter (e.g., "int Size" in "template<int Size>
413/// class Array") has been parsed. S is the current scope and D is
414/// the parsed declarator.
415Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
416                                                    unsigned Depth,
417                                                    unsigned Position) {
418  DeclaratorInfo *DInfo = 0;
419  QualType T = GetTypeForDeclarator(D, S, &DInfo);
420
421  assert(S->isTemplateParamScope() &&
422         "Non-type template parameter not in template parameter scope!");
423  bool Invalid = false;
424
425  IdentifierInfo *ParamName = D.getIdentifier();
426  if (ParamName) {
427    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
428    if (PrevDecl && PrevDecl->isTemplateParameter())
429      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
430                                                           PrevDecl);
431  }
432
433  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
434  if (T.isNull()) {
435    T = Context.IntTy; // Recover with an 'int' type.
436    Invalid = true;
437  }
438
439  NonTypeTemplateParmDecl *Param
440    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
441                                      Depth, Position, ParamName, T, DInfo);
442  if (Invalid)
443    Param->setInvalidDecl();
444
445  if (D.getIdentifier()) {
446    // Add the template parameter into the current scope.
447    S->AddDecl(DeclPtrTy::make(Param));
448    IdResolver.AddDecl(Param);
449  }
450  return DeclPtrTy::make(Param);
451}
452
453/// \brief Adds a default argument to the given non-type template
454/// parameter.
455void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
456                                                SourceLocation EqualLoc,
457                                                ExprArg DefaultE) {
458  NonTypeTemplateParmDecl *TemplateParm
459    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
460  Expr *Default = static_cast<Expr *>(DefaultE.get());
461
462  // C++ [temp.param]p14:
463  //   A template-parameter shall not be used in its own default argument.
464  // FIXME: Implement this check! Needs a recursive walk over the types.
465
466  // Check the well-formedness of the default template argument.
467  TemplateArgument Converted;
468  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
469                            Converted)) {
470    TemplateParm->setInvalidDecl();
471    return;
472  }
473
474  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
475}
476
477
478/// ActOnTemplateTemplateParameter - Called when a C++ template template
479/// parameter (e.g. T in template <template <typename> class T> class array)
480/// has been parsed. S is the current scope.
481Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
482                                                     SourceLocation TmpLoc,
483                                                     TemplateParamsTy *Params,
484                                                     IdentifierInfo *Name,
485                                                     SourceLocation NameLoc,
486                                                     unsigned Depth,
487                                                     unsigned Position) {
488  assert(S->isTemplateParamScope() &&
489         "Template template parameter not in template parameter scope!");
490
491  // Construct the parameter object.
492  TemplateTemplateParmDecl *Param =
493    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
494                                     Position, Name,
495                                     (TemplateParameterList*)Params);
496
497  // Make sure the parameter is valid.
498  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
499  // do anything yet. However, if the template parameter list or (eventual)
500  // default value is ever invalidated, that will propagate here.
501  bool Invalid = false;
502  if (Invalid) {
503    Param->setInvalidDecl();
504  }
505
506  // If the tt-param has a name, then link the identifier into the scope
507  // and lookup mechanisms.
508  if (Name) {
509    S->AddDecl(DeclPtrTy::make(Param));
510    IdResolver.AddDecl(Param);
511  }
512
513  return DeclPtrTy::make(Param);
514}
515
516/// \brief Adds a default argument to the given template template
517/// parameter.
518void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
519                                                 SourceLocation EqualLoc,
520                                                 ExprArg DefaultE) {
521  TemplateTemplateParmDecl *TemplateParm
522    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
523
524  // Since a template-template parameter's default argument is an
525  // id-expression, it must be a DeclRefExpr.
526  DeclRefExpr *Default
527    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
528
529  // C++ [temp.param]p14:
530  //   A template-parameter shall not be used in its own default argument.
531  // FIXME: Implement this check! Needs a recursive walk over the types.
532
533  // Check the well-formedness of the template argument.
534  if (!isa<TemplateDecl>(Default->getDecl())) {
535    Diag(Default->getSourceRange().getBegin(),
536         diag::err_template_arg_must_be_template)
537      << Default->getSourceRange();
538    TemplateParm->setInvalidDecl();
539    return;
540  }
541  if (CheckTemplateArgument(TemplateParm, Default)) {
542    TemplateParm->setInvalidDecl();
543    return;
544  }
545
546  DefaultE.release();
547  TemplateParm->setDefaultArgument(Default);
548}
549
550/// ActOnTemplateParameterList - Builds a TemplateParameterList that
551/// contains the template parameters in Params/NumParams.
552Sema::TemplateParamsTy *
553Sema::ActOnTemplateParameterList(unsigned Depth,
554                                 SourceLocation ExportLoc,
555                                 SourceLocation TemplateLoc,
556                                 SourceLocation LAngleLoc,
557                                 DeclPtrTy *Params, unsigned NumParams,
558                                 SourceLocation RAngleLoc) {
559  if (ExportLoc.isValid())
560    Diag(ExportLoc, diag::note_template_export_unsupported);
561
562  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
563                                       (NamedDecl**)Params, NumParams,
564                                       RAngleLoc);
565}
566
567Sema::DeclResult
568Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
569                         SourceLocation KWLoc, const CXXScopeSpec &SS,
570                         IdentifierInfo *Name, SourceLocation NameLoc,
571                         AttributeList *Attr,
572                         TemplateParameterList *TemplateParams,
573                         AccessSpecifier AS) {
574  assert(TemplateParams && TemplateParams->size() > 0 &&
575         "No template parameters");
576  assert(TUK != TUK_Reference && "Can only declare or define class templates");
577  bool Invalid = false;
578
579  // Check that we can declare a template here.
580  if (CheckTemplateDeclScope(S, TemplateParams))
581    return true;
582
583  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
584  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
585
586  // There is no such thing as an unnamed class template.
587  if (!Name) {
588    Diag(KWLoc, diag::err_template_unnamed_class);
589    return true;
590  }
591
592  // Find any previous declaration with this name.
593  DeclContext *SemanticContext;
594  LookupResult Previous;
595  if (SS.isNotEmpty() && !SS.isInvalid()) {
596    if (RequireCompleteDeclContext(SS))
597      return true;
598
599    SemanticContext = computeDeclContext(SS, true);
600    if (!SemanticContext) {
601      // FIXME: Produce a reasonable diagnostic here
602      return true;
603    }
604
605    LookupQualifiedName(Previous, SemanticContext, Name, LookupOrdinaryName,
606                                   true);
607  } else {
608    SemanticContext = CurContext;
609    LookupName(Previous, S, Name, LookupOrdinaryName, true);
610  }
611
612  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
613  NamedDecl *PrevDecl = 0;
614  if (Previous.begin() != Previous.end())
615    PrevDecl = *Previous.begin();
616
617  if (PrevDecl && TUK == TUK_Friend) {
618    // C++ [namespace.memdef]p3:
619    //   [...] When looking for a prior declaration of a class or a function
620    //   declared as a friend, and when the name of the friend class or
621    //   function is neither a qualified name nor a template-id, scopes outside
622    //   the innermost enclosing namespace scope are not considered.
623    DeclContext *OutermostContext = CurContext;
624    while (!OutermostContext->isFileContext())
625      OutermostContext = OutermostContext->getLookupParent();
626
627    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
628        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
629      SemanticContext = PrevDecl->getDeclContext();
630    } else {
631      // Declarations in outer scopes don't matter. However, the outermost
632      // context we computed is the semantic context for our new
633      // declaration.
634      PrevDecl = 0;
635      SemanticContext = OutermostContext;
636    }
637
638    if (CurContext->isDependentContext()) {
639      // If this is a dependent context, we don't want to link the friend
640      // class template to the template in scope, because that would perform
641      // checking of the template parameter lists that can't be performed
642      // until the outer context is instantiated.
643      PrevDecl = 0;
644    }
645  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
646    PrevDecl = 0;
647
648  // If there is a previous declaration with the same name, check
649  // whether this is a valid redeclaration.
650  ClassTemplateDecl *PrevClassTemplate
651    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
652
653  // We may have found the injected-class-name of a class template,
654  // class template partial specialization, or class template specialization.
655  // In these cases, grab the template that is being defined or specialized.
656  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
657      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
658    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
659    PrevClassTemplate
660      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
661    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
662      PrevClassTemplate
663        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
664            ->getSpecializedTemplate();
665    }
666  }
667
668  if (PrevClassTemplate) {
669    // Ensure that the template parameter lists are compatible.
670    if (!TemplateParameterListsAreEqual(TemplateParams,
671                                   PrevClassTemplate->getTemplateParameters(),
672                                        /*Complain=*/true))
673      return true;
674
675    // C++ [temp.class]p4:
676    //   In a redeclaration, partial specialization, explicit
677    //   specialization or explicit instantiation of a class template,
678    //   the class-key shall agree in kind with the original class
679    //   template declaration (7.1.5.3).
680    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
681    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
682      Diag(KWLoc, diag::err_use_with_wrong_tag)
683        << Name
684        << CodeModificationHint::CreateReplacement(KWLoc,
685                            PrevRecordDecl->getKindName());
686      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
687      Kind = PrevRecordDecl->getTagKind();
688    }
689
690    // Check for redefinition of this class template.
691    if (TUK == TUK_Definition) {
692      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
693        Diag(NameLoc, diag::err_redefinition) << Name;
694        Diag(Def->getLocation(), diag::note_previous_definition);
695        // FIXME: Would it make sense to try to "forget" the previous
696        // definition, as part of error recovery?
697        return true;
698      }
699    }
700  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
701    // Maybe we will complain about the shadowed template parameter.
702    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
703    // Just pretend that we didn't see the previous declaration.
704    PrevDecl = 0;
705  } else if (PrevDecl) {
706    // C++ [temp]p5:
707    //   A class template shall not have the same name as any other
708    //   template, class, function, object, enumeration, enumerator,
709    //   namespace, or type in the same scope (3.3), except as specified
710    //   in (14.5.4).
711    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
712    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
713    return true;
714  }
715
716  // Check the template parameter list of this declaration, possibly
717  // merging in the template parameter list from the previous class
718  // template declaration.
719  if (CheckTemplateParameterList(TemplateParams,
720            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
721    Invalid = true;
722
723  // FIXME: If we had a scope specifier, we better have a previous template
724  // declaration!
725
726  CXXRecordDecl *NewClass =
727    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
728                          PrevClassTemplate?
729                            PrevClassTemplate->getTemplatedDecl() : 0,
730                          /*DelayTypeCreation=*/true);
731
732  ClassTemplateDecl *NewTemplate
733    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
734                                DeclarationName(Name), TemplateParams,
735                                NewClass, PrevClassTemplate);
736  NewClass->setDescribedClassTemplate(NewTemplate);
737
738  // Build the type for the class template declaration now.
739  QualType T =
740    Context.getTypeDeclType(NewClass,
741                            PrevClassTemplate?
742                              PrevClassTemplate->getTemplatedDecl() : 0);
743  assert(T->isDependentType() && "Class template type is not dependent?");
744  (void)T;
745
746  // If we are providing an explicit specialization of a member that is a
747  // class template, make a note of that.
748  if (PrevClassTemplate &&
749      PrevClassTemplate->getInstantiatedFromMemberTemplate())
750    PrevClassTemplate->setMemberSpecialization();
751
752  // Set the access specifier.
753  if (!Invalid && TUK != TUK_Friend)
754    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
755
756  // Set the lexical context of these templates
757  NewClass->setLexicalDeclContext(CurContext);
758  NewTemplate->setLexicalDeclContext(CurContext);
759
760  if (TUK == TUK_Definition)
761    NewClass->startDefinition();
762
763  if (Attr)
764    ProcessDeclAttributeList(S, NewClass, Attr);
765
766  if (TUK != TUK_Friend)
767    PushOnScopeChains(NewTemplate, S);
768  else {
769    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
770      NewTemplate->setAccess(PrevClassTemplate->getAccess());
771      NewClass->setAccess(PrevClassTemplate->getAccess());
772    }
773
774    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
775                                       PrevClassTemplate != NULL);
776
777    // Friend templates are visible in fairly strange ways.
778    if (!CurContext->isDependentContext()) {
779      DeclContext *DC = SemanticContext->getLookupContext();
780      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
781      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
782        PushOnScopeChains(NewTemplate, EnclosingScope,
783                          /* AddToContext = */ false);
784    }
785
786    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
787                                            NewClass->getLocation(),
788                                            NewTemplate,
789                                    /*FIXME:*/NewClass->getLocation());
790    Friend->setAccess(AS_public);
791    CurContext->addDecl(Friend);
792  }
793
794  if (Invalid) {
795    NewTemplate->setInvalidDecl();
796    NewClass->setInvalidDecl();
797  }
798  return DeclPtrTy::make(NewTemplate);
799}
800
801/// \brief Checks the validity of a template parameter list, possibly
802/// considering the template parameter list from a previous
803/// declaration.
804///
805/// If an "old" template parameter list is provided, it must be
806/// equivalent (per TemplateParameterListsAreEqual) to the "new"
807/// template parameter list.
808///
809/// \param NewParams Template parameter list for a new template
810/// declaration. This template parameter list will be updated with any
811/// default arguments that are carried through from the previous
812/// template parameter list.
813///
814/// \param OldParams If provided, template parameter list from a
815/// previous declaration of the same template. Default template
816/// arguments will be merged from the old template parameter list to
817/// the new template parameter list.
818///
819/// \returns true if an error occurred, false otherwise.
820bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
821                                      TemplateParameterList *OldParams) {
822  bool Invalid = false;
823
824  // C++ [temp.param]p10:
825  //   The set of default template-arguments available for use with a
826  //   template declaration or definition is obtained by merging the
827  //   default arguments from the definition (if in scope) and all
828  //   declarations in scope in the same way default function
829  //   arguments are (8.3.6).
830  bool SawDefaultArgument = false;
831  SourceLocation PreviousDefaultArgLoc;
832
833  bool SawParameterPack = false;
834  SourceLocation ParameterPackLoc;
835
836  // Dummy initialization to avoid warnings.
837  TemplateParameterList::iterator OldParam = NewParams->end();
838  if (OldParams)
839    OldParam = OldParams->begin();
840
841  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
842                                    NewParamEnd = NewParams->end();
843       NewParam != NewParamEnd; ++NewParam) {
844    // Variables used to diagnose redundant default arguments
845    bool RedundantDefaultArg = false;
846    SourceLocation OldDefaultLoc;
847    SourceLocation NewDefaultLoc;
848
849    // Variables used to diagnose missing default arguments
850    bool MissingDefaultArg = false;
851
852    // C++0x [temp.param]p11:
853    // If a template parameter of a class template is a template parameter pack,
854    // it must be the last template parameter.
855    if (SawParameterPack) {
856      Diag(ParameterPackLoc,
857           diag::err_template_param_pack_must_be_last_template_parameter);
858      Invalid = true;
859    }
860
861    // Merge default arguments for template type parameters.
862    if (TemplateTypeParmDecl *NewTypeParm
863          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
864      TemplateTypeParmDecl *OldTypeParm
865          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
866
867      if (NewTypeParm->isParameterPack()) {
868        assert(!NewTypeParm->hasDefaultArgument() &&
869               "Parameter packs can't have a default argument!");
870        SawParameterPack = true;
871        ParameterPackLoc = NewTypeParm->getLocation();
872      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
873                 NewTypeParm->hasDefaultArgument()) {
874        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
875        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
876        SawDefaultArgument = true;
877        RedundantDefaultArg = true;
878        PreviousDefaultArgLoc = NewDefaultLoc;
879      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
880        // Merge the default argument from the old declaration to the
881        // new declaration.
882        SawDefaultArgument = true;
883        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
884                                        true);
885        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
886      } else if (NewTypeParm->hasDefaultArgument()) {
887        SawDefaultArgument = true;
888        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
889      } else if (SawDefaultArgument)
890        MissingDefaultArg = true;
891    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
892               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
893      // Merge default arguments for non-type template parameters
894      NonTypeTemplateParmDecl *OldNonTypeParm
895        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
896      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
897          NewNonTypeParm->hasDefaultArgument()) {
898        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
899        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
900        SawDefaultArgument = true;
901        RedundantDefaultArg = true;
902        PreviousDefaultArgLoc = NewDefaultLoc;
903      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
904        // Merge the default argument from the old declaration to the
905        // new declaration.
906        SawDefaultArgument = true;
907        // FIXME: We need to create a new kind of "default argument"
908        // expression that points to a previous template template
909        // parameter.
910        NewNonTypeParm->setDefaultArgument(
911                                        OldNonTypeParm->getDefaultArgument());
912        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
913      } else if (NewNonTypeParm->hasDefaultArgument()) {
914        SawDefaultArgument = true;
915        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
916      } else if (SawDefaultArgument)
917        MissingDefaultArg = true;
918    } else {
919    // Merge default arguments for template template parameters
920      TemplateTemplateParmDecl *NewTemplateParm
921        = cast<TemplateTemplateParmDecl>(*NewParam);
922      TemplateTemplateParmDecl *OldTemplateParm
923        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
924      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
925          NewTemplateParm->hasDefaultArgument()) {
926        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
927        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
928        SawDefaultArgument = true;
929        RedundantDefaultArg = true;
930        PreviousDefaultArgLoc = NewDefaultLoc;
931      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
932        // Merge the default argument from the old declaration to the
933        // new declaration.
934        SawDefaultArgument = true;
935        // FIXME: We need to create a new kind of "default argument" expression
936        // that points to a previous template template parameter.
937        NewTemplateParm->setDefaultArgument(
938                                        OldTemplateParm->getDefaultArgument());
939        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
940      } else if (NewTemplateParm->hasDefaultArgument()) {
941        SawDefaultArgument = true;
942        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
943      } else if (SawDefaultArgument)
944        MissingDefaultArg = true;
945    }
946
947    if (RedundantDefaultArg) {
948      // C++ [temp.param]p12:
949      //   A template-parameter shall not be given default arguments
950      //   by two different declarations in the same scope.
951      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
952      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
953      Invalid = true;
954    } else if (MissingDefaultArg) {
955      // C++ [temp.param]p11:
956      //   If a template-parameter has a default template-argument,
957      //   all subsequent template-parameters shall have a default
958      //   template-argument supplied.
959      Diag((*NewParam)->getLocation(),
960           diag::err_template_param_default_arg_missing);
961      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
962      Invalid = true;
963    }
964
965    // If we have an old template parameter list that we're merging
966    // in, move on to the next parameter.
967    if (OldParams)
968      ++OldParam;
969  }
970
971  return Invalid;
972}
973
974/// \brief Match the given template parameter lists to the given scope
975/// specifier, returning the template parameter list that applies to the
976/// name.
977///
978/// \param DeclStartLoc the start of the declaration that has a scope
979/// specifier or a template parameter list.
980///
981/// \param SS the scope specifier that will be matched to the given template
982/// parameter lists. This scope specifier precedes a qualified name that is
983/// being declared.
984///
985/// \param ParamLists the template parameter lists, from the outermost to the
986/// innermost template parameter lists.
987///
988/// \param NumParamLists the number of template parameter lists in ParamLists.
989///
990/// \param IsExplicitSpecialization will be set true if the entity being
991/// declared is an explicit specialization, false otherwise.
992///
993/// \returns the template parameter list, if any, that corresponds to the
994/// name that is preceded by the scope specifier @p SS. This template
995/// parameter list may be have template parameters (if we're declaring a
996/// template) or may have no template parameters (if we're declaring a
997/// template specialization), or may be NULL (if we were's declaring isn't
998/// itself a template).
999TemplateParameterList *
1000Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1001                                              const CXXScopeSpec &SS,
1002                                          TemplateParameterList **ParamLists,
1003                                              unsigned NumParamLists,
1004                                              bool &IsExplicitSpecialization) {
1005  IsExplicitSpecialization = false;
1006
1007  // Find the template-ids that occur within the nested-name-specifier. These
1008  // template-ids will match up with the template parameter lists.
1009  llvm::SmallVector<const TemplateSpecializationType *, 4>
1010    TemplateIdsInSpecifier;
1011  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1012       NNS; NNS = NNS->getPrefix()) {
1013    if (const TemplateSpecializationType *SpecType
1014          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
1015      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1016      if (!Template)
1017        continue; // FIXME: should this be an error? probably...
1018
1019      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1020        ClassTemplateSpecializationDecl *SpecDecl
1021          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1022        // If the nested name specifier refers to an explicit specialization,
1023        // we don't need a template<> header.
1024        // FIXME: revisit this approach once we cope with specializations
1025        // properly.
1026        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
1027          continue;
1028      }
1029
1030      TemplateIdsInSpecifier.push_back(SpecType);
1031    }
1032  }
1033
1034  // Reverse the list of template-ids in the scope specifier, so that we can
1035  // more easily match up the template-ids and the template parameter lists.
1036  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1037
1038  SourceLocation FirstTemplateLoc = DeclStartLoc;
1039  if (NumParamLists)
1040    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1041
1042  // Match the template-ids found in the specifier to the template parameter
1043  // lists.
1044  unsigned Idx = 0;
1045  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1046       Idx != NumTemplateIds; ++Idx) {
1047    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1048    bool DependentTemplateId = TemplateId->isDependentType();
1049    if (Idx >= NumParamLists) {
1050      // We have a template-id without a corresponding template parameter
1051      // list.
1052      if (DependentTemplateId) {
1053        // FIXME: the location information here isn't great.
1054        Diag(SS.getRange().getBegin(),
1055             diag::err_template_spec_needs_template_parameters)
1056          << TemplateId
1057          << SS.getRange();
1058      } else {
1059        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1060          << SS.getRange()
1061          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1062                                                   "template<> ");
1063        IsExplicitSpecialization = true;
1064      }
1065      return 0;
1066    }
1067
1068    // Check the template parameter list against its corresponding template-id.
1069    if (DependentTemplateId) {
1070      TemplateDecl *Template
1071        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1072
1073      if (ClassTemplateDecl *ClassTemplate
1074            = dyn_cast<ClassTemplateDecl>(Template)) {
1075        TemplateParameterList *ExpectedTemplateParams = 0;
1076        // Is this template-id naming the primary template?
1077        if (Context.hasSameType(TemplateId,
1078                             ClassTemplate->getInjectedClassNameType(Context)))
1079          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1080        // ... or a partial specialization?
1081        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1082                   = ClassTemplate->findPartialSpecialization(TemplateId))
1083          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1084
1085        if (ExpectedTemplateParams)
1086          TemplateParameterListsAreEqual(ParamLists[Idx],
1087                                         ExpectedTemplateParams,
1088                                         true);
1089      }
1090    } else if (ParamLists[Idx]->size() > 0)
1091      Diag(ParamLists[Idx]->getTemplateLoc(),
1092           diag::err_template_param_list_matches_nontemplate)
1093        << TemplateId
1094        << ParamLists[Idx]->getSourceRange();
1095    else
1096      IsExplicitSpecialization = true;
1097  }
1098
1099  // If there were at least as many template-ids as there were template
1100  // parameter lists, then there are no template parameter lists remaining for
1101  // the declaration itself.
1102  if (Idx >= NumParamLists)
1103    return 0;
1104
1105  // If there were too many template parameter lists, complain about that now.
1106  if (Idx != NumParamLists - 1) {
1107    while (Idx < NumParamLists - 1) {
1108      Diag(ParamLists[Idx]->getTemplateLoc(),
1109           diag::err_template_spec_extra_headers)
1110        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1111                       ParamLists[Idx]->getRAngleLoc());
1112      ++Idx;
1113    }
1114  }
1115
1116  // Return the last template parameter list, which corresponds to the
1117  // entity being declared.
1118  return ParamLists[NumParamLists - 1];
1119}
1120
1121/// \brief Translates template arguments as provided by the parser
1122/// into template arguments used by semantic analysis.
1123void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
1124                                      SourceLocation *TemplateArgLocs,
1125                  llvm::SmallVector<TemplateArgumentLoc, 16> &TemplateArgs) {
1126  TemplateArgs.reserve(TemplateArgsIn.size());
1127
1128  void **Args = TemplateArgsIn.getArgs();
1129  bool *ArgIsType = TemplateArgsIn.getArgIsType();
1130  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
1131    if (ArgIsType[Arg]) {
1132      DeclaratorInfo *DI;
1133      QualType T = Sema::GetTypeFromParser(Args[Arg], &DI);
1134      if (!DI) DI = Context.getTrivialDeclaratorInfo(T, TemplateArgLocs[Arg]);
1135      TemplateArgs.push_back(TemplateArgumentLoc(TemplateArgument(T), DI));
1136    } else {
1137      Expr *E = reinterpret_cast<Expr *>(Args[Arg]);
1138      TemplateArgs.push_back(TemplateArgumentLoc(TemplateArgument(E), E));
1139    }
1140  }
1141}
1142
1143QualType Sema::CheckTemplateIdType(TemplateName Name,
1144                                   SourceLocation TemplateLoc,
1145                                   SourceLocation LAngleLoc,
1146                                   const TemplateArgumentLoc *TemplateArgs,
1147                                   unsigned NumTemplateArgs,
1148                                   SourceLocation RAngleLoc) {
1149  TemplateDecl *Template = Name.getAsTemplateDecl();
1150  if (!Template) {
1151    // The template name does not resolve to a template, so we just
1152    // build a dependent template-id type.
1153    return Context.getTemplateSpecializationType(Name, TemplateArgs,
1154                                                 NumTemplateArgs);
1155  }
1156
1157  // Check that the template argument list is well-formed for this
1158  // template.
1159  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1160                                        NumTemplateArgs);
1161  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
1162                                TemplateArgs, NumTemplateArgs, RAngleLoc,
1163                                false, Converted))
1164    return QualType();
1165
1166  assert((Converted.structuredSize() ==
1167            Template->getTemplateParameters()->size()) &&
1168         "Converted template argument list is too short!");
1169
1170  QualType CanonType;
1171
1172  if (TemplateSpecializationType::anyDependentTemplateArguments(
1173                                                      TemplateArgs,
1174                                                      NumTemplateArgs)) {
1175    // This class template specialization is a dependent
1176    // type. Therefore, its canonical type is another class template
1177    // specialization type that contains all of the converted
1178    // arguments in canonical form. This ensures that, e.g., A<T> and
1179    // A<T, T> have identical types when A is declared as:
1180    //
1181    //   template<typename T, typename U = T> struct A;
1182    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1183    CanonType = Context.getTemplateSpecializationType(CanonName,
1184                                                   Converted.getFlatArguments(),
1185                                                   Converted.flatSize());
1186
1187    // FIXME: CanonType is not actually the canonical type, and unfortunately
1188    // it is a TemplateSpecializationType that we will never use again.
1189    // In the future, we need to teach getTemplateSpecializationType to only
1190    // build the canonical type and return that to us.
1191    CanonType = Context.getCanonicalType(CanonType);
1192  } else if (ClassTemplateDecl *ClassTemplate
1193               = dyn_cast<ClassTemplateDecl>(Template)) {
1194    // Find the class template specialization declaration that
1195    // corresponds to these arguments.
1196    llvm::FoldingSetNodeID ID;
1197    ClassTemplateSpecializationDecl::Profile(ID,
1198                                             Converted.getFlatArguments(),
1199                                             Converted.flatSize(),
1200                                             Context);
1201    void *InsertPos = 0;
1202    ClassTemplateSpecializationDecl *Decl
1203      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1204    if (!Decl) {
1205      // This is the first time we have referenced this class template
1206      // specialization. Create the canonical declaration and add it to
1207      // the set of specializations.
1208      Decl = ClassTemplateSpecializationDecl::Create(Context,
1209                                    ClassTemplate->getDeclContext(),
1210                                    ClassTemplate->getLocation(),
1211                                    ClassTemplate,
1212                                    Converted, 0);
1213      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1214      Decl->setLexicalDeclContext(CurContext);
1215    }
1216
1217    CanonType = Context.getTypeDeclType(Decl);
1218  }
1219
1220  // Build the fully-sugared type for this class template
1221  // specialization, which refers back to the class template
1222  // specialization we created or found.
1223  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1224                                               NumTemplateArgs, CanonType);
1225}
1226
1227Action::TypeResult
1228Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1229                          SourceLocation LAngleLoc,
1230                          ASTTemplateArgsPtr TemplateArgsIn,
1231                          SourceLocation *TemplateArgLocsIn,
1232                          SourceLocation RAngleLoc) {
1233  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1234
1235  // Translate the parser's template argument list in our AST format.
1236  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1237  translateTemplateArguments(TemplateArgsIn, TemplateArgLocsIn, TemplateArgs);
1238
1239  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1240                                        TemplateArgs.data(),
1241                                        TemplateArgs.size(),
1242                                        RAngleLoc);
1243  TemplateArgsIn.release();
1244
1245  if (Result.isNull())
1246    return true;
1247
1248  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
1249  TemplateSpecializationTypeLoc TL
1250    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1251  TL.setTemplateNameLoc(TemplateLoc);
1252  TL.setLAngleLoc(LAngleLoc);
1253  TL.setRAngleLoc(RAngleLoc);
1254  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1255    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1256
1257  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1258}
1259
1260Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1261                                              TagUseKind TUK,
1262                                              DeclSpec::TST TagSpec,
1263                                              SourceLocation TagLoc) {
1264  if (TypeResult.isInvalid())
1265    return Sema::TypeResult();
1266
1267  // FIXME: preserve source info, ideally without copying the DI.
1268  DeclaratorInfo *DI;
1269  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1270
1271  // Verify the tag specifier.
1272  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1273
1274  if (const RecordType *RT = Type->getAs<RecordType>()) {
1275    RecordDecl *D = RT->getDecl();
1276
1277    IdentifierInfo *Id = D->getIdentifier();
1278    assert(Id && "templated class must have an identifier");
1279
1280    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1281      Diag(TagLoc, diag::err_use_with_wrong_tag)
1282        << Type
1283        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1284                                                   D->getKindName());
1285      Diag(D->getLocation(), diag::note_previous_use);
1286    }
1287  }
1288
1289  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1290
1291  return ElabType.getAsOpaquePtr();
1292}
1293
1294Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier,
1295                                                 SourceRange QualifierRange,
1296                                                 TemplateName Template,
1297                                                 SourceLocation TemplateNameLoc,
1298                                                 SourceLocation LAngleLoc,
1299                                        const TemplateArgumentLoc *TemplateArgs,
1300                                                 unsigned NumTemplateArgs,
1301                                                 SourceLocation RAngleLoc) {
1302  // FIXME: Can we do any checking at this point? I guess we could check the
1303  // template arguments that we have against the template name, if the template
1304  // name refers to a single template. That's not a terribly common case,
1305  // though.
1306
1307  // Cope with an implicit member access in a C++ non-static member function.
1308  NamedDecl *D = Template.getAsTemplateDecl();
1309  if (!D)
1310    D = Template.getAsOverloadedFunctionDecl();
1311
1312  CXXScopeSpec SS;
1313  SS.setRange(QualifierRange);
1314  SS.setScopeRep(Qualifier);
1315  QualType ThisType, MemberType;
1316  if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc,
1317                                     ThisType, MemberType)) {
1318    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
1319    return Owned(MemberExpr::Create(Context, This, true,
1320                                    Qualifier, QualifierRange,
1321                                    D, TemplateNameLoc, true,
1322                                    LAngleLoc, TemplateArgs,
1323                                    NumTemplateArgs, RAngleLoc,
1324                                    Context.OverloadTy));
1325  }
1326
1327  return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy,
1328                                         Qualifier, QualifierRange,
1329                                         Template, TemplateNameLoc, LAngleLoc,
1330                                         TemplateArgs,
1331                                         NumTemplateArgs, RAngleLoc));
1332}
1333
1334Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS,
1335                                                 TemplateTy TemplateD,
1336                                                 SourceLocation TemplateNameLoc,
1337                                                 SourceLocation LAngleLoc,
1338                                              ASTTemplateArgsPtr TemplateArgsIn,
1339                                                SourceLocation *TemplateArgSLs,
1340                                                 SourceLocation RAngleLoc) {
1341  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1342
1343  // Translate the parser's template argument list in our AST format.
1344  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1345  translateTemplateArguments(TemplateArgsIn, TemplateArgSLs, TemplateArgs);
1346  TemplateArgsIn.release();
1347
1348  return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(),
1349                             SS.getRange(),
1350                             Template, TemplateNameLoc, LAngleLoc,
1351                             TemplateArgs.data(), TemplateArgs.size(),
1352                             RAngleLoc);
1353}
1354
1355/// \brief Form a dependent template name.
1356///
1357/// This action forms a dependent template name given the template
1358/// name and its (presumably dependent) scope specifier. For
1359/// example, given "MetaFun::template apply", the scope specifier \p
1360/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1361/// of the "template" keyword, and "apply" is the \p Name.
1362Sema::TemplateTy
1363Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1364                                 const CXXScopeSpec &SS,
1365                                 UnqualifiedId &Name,
1366                                 TypeTy *ObjectType) {
1367  if ((ObjectType &&
1368       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1369      (SS.isSet() && computeDeclContext(SS, false))) {
1370    // C++0x [temp.names]p5:
1371    //   If a name prefixed by the keyword template is not the name of
1372    //   a template, the program is ill-formed. [Note: the keyword
1373    //   template may not be applied to non-template members of class
1374    //   templates. -end note ] [ Note: as is the case with the
1375    //   typename prefix, the template prefix is allowed in cases
1376    //   where it is not strictly necessary; i.e., when the
1377    //   nested-name-specifier or the expression on the left of the ->
1378    //   or . is not dependent on a template-parameter, or the use
1379    //   does not appear in the scope of a template. -end note]
1380    //
1381    // Note: C++03 was more strict here, because it banned the use of
1382    // the "template" keyword prior to a template-name that was not a
1383    // dependent name. C++ DR468 relaxed this requirement (the
1384    // "template" keyword is now permitted). We follow the C++0x
1385    // rules, even in C++03 mode, retroactively applying the DR.
1386    TemplateTy Template;
1387    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1388                                          false, Template);
1389    if (TNK == TNK_Non_template) {
1390      Diag(Name.getSourceRange().getBegin(),
1391           diag::err_template_kw_refers_to_non_template)
1392        << GetNameFromUnqualifiedId(Name)
1393        << Name.getSourceRange();
1394      return TemplateTy();
1395    }
1396
1397    return Template;
1398  }
1399
1400  NestedNameSpecifier *Qualifier
1401    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1402
1403  switch (Name.getKind()) {
1404  case UnqualifiedId::IK_Identifier:
1405    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1406                                                             Name.Identifier));
1407
1408  default:
1409    break;
1410  }
1411
1412  Diag(Name.getSourceRange().getBegin(),
1413       diag::err_template_kw_refers_to_non_template)
1414    << GetNameFromUnqualifiedId(Name)
1415    << Name.getSourceRange();
1416  return TemplateTy();
1417}
1418
1419bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1420                                     const TemplateArgumentLoc &AL,
1421                                     TemplateArgumentListBuilder &Converted) {
1422  const TemplateArgument &Arg = AL.getArgument();
1423
1424  // Check template type parameter.
1425  if (Arg.getKind() != TemplateArgument::Type) {
1426    // C++ [temp.arg.type]p1:
1427    //   A template-argument for a template-parameter which is a
1428    //   type shall be a type-id.
1429
1430    // We have a template type parameter but the template argument
1431    // is not a type.
1432    SourceRange SR = AL.getSourceRange();
1433    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1434    Diag(Param->getLocation(), diag::note_template_param_here);
1435
1436    return true;
1437  }
1438
1439  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
1440    return true;
1441
1442  // Add the converted template type argument.
1443  Converted.Append(
1444                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1445  return false;
1446}
1447
1448/// \brief Check that the given template argument list is well-formed
1449/// for specializing the given template.
1450bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1451                                     SourceLocation TemplateLoc,
1452                                     SourceLocation LAngleLoc,
1453                                     const TemplateArgumentLoc *TemplateArgs,
1454                                     unsigned NumTemplateArgs,
1455                                     SourceLocation RAngleLoc,
1456                                     bool PartialTemplateArgs,
1457                                     TemplateArgumentListBuilder &Converted) {
1458  TemplateParameterList *Params = Template->getTemplateParameters();
1459  unsigned NumParams = Params->size();
1460  unsigned NumArgs = NumTemplateArgs;
1461  bool Invalid = false;
1462
1463  bool HasParameterPack =
1464    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1465
1466  if ((NumArgs > NumParams && !HasParameterPack) ||
1467      (NumArgs < Params->getMinRequiredArguments() &&
1468       !PartialTemplateArgs)) {
1469    // FIXME: point at either the first arg beyond what we can handle,
1470    // or the '>', depending on whether we have too many or too few
1471    // arguments.
1472    SourceRange Range;
1473    if (NumArgs > NumParams)
1474      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1475    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1476      << (NumArgs > NumParams)
1477      << (isa<ClassTemplateDecl>(Template)? 0 :
1478          isa<FunctionTemplateDecl>(Template)? 1 :
1479          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1480      << Template << Range;
1481    Diag(Template->getLocation(), diag::note_template_decl_here)
1482      << Params->getSourceRange();
1483    Invalid = true;
1484  }
1485
1486  // C++ [temp.arg]p1:
1487  //   [...] The type and form of each template-argument specified in
1488  //   a template-id shall match the type and form specified for the
1489  //   corresponding parameter declared by the template in its
1490  //   template-parameter-list.
1491  unsigned ArgIdx = 0;
1492  for (TemplateParameterList::iterator Param = Params->begin(),
1493                                       ParamEnd = Params->end();
1494       Param != ParamEnd; ++Param, ++ArgIdx) {
1495    if (ArgIdx > NumArgs && PartialTemplateArgs)
1496      break;
1497
1498    // Decode the template argument
1499    TemplateArgumentLoc Arg;
1500
1501    if (ArgIdx >= NumArgs) {
1502      // Retrieve the default template argument from the template
1503      // parameter.
1504      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1505        if (TTP->isParameterPack()) {
1506          // We have an empty argument pack.
1507          Converted.BeginPack();
1508          Converted.EndPack();
1509          break;
1510        }
1511
1512        if (!TTP->hasDefaultArgument())
1513          break;
1514
1515        DeclaratorInfo *ArgType = TTP->getDefaultArgumentInfo();
1516
1517        // If the argument type is dependent, instantiate it now based
1518        // on the previously-computed template arguments.
1519        if (ArgType->getType()->isDependentType()) {
1520          InstantiatingTemplate Inst(*this, TemplateLoc,
1521                                     Template, Converted.getFlatArguments(),
1522                                     Converted.flatSize(),
1523                                     SourceRange(TemplateLoc, RAngleLoc));
1524
1525          TemplateArgumentList TemplateArgs(Context, Converted,
1526                                            /*TakeArgs=*/false);
1527          ArgType = SubstType(ArgType,
1528                              MultiLevelTemplateArgumentList(TemplateArgs),
1529                              TTP->getDefaultArgumentLoc(),
1530                              TTP->getDeclName());
1531        }
1532
1533        if (!ArgType)
1534          return true;
1535
1536        Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), ArgType);
1537      } else if (NonTypeTemplateParmDecl *NTTP
1538                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1539        if (!NTTP->hasDefaultArgument())
1540          break;
1541
1542        InstantiatingTemplate Inst(*this, TemplateLoc,
1543                                   Template, Converted.getFlatArguments(),
1544                                   Converted.flatSize(),
1545                                   SourceRange(TemplateLoc, RAngleLoc));
1546
1547        TemplateArgumentList TemplateArgs(Context, Converted,
1548                                          /*TakeArgs=*/false);
1549
1550        Sema::OwningExprResult E
1551          = SubstExpr(NTTP->getDefaultArgument(),
1552                      MultiLevelTemplateArgumentList(TemplateArgs));
1553        if (E.isInvalid())
1554          return true;
1555
1556        Expr *Ex = E.takeAs<Expr>();
1557        Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
1558      } else {
1559        TemplateTemplateParmDecl *TempParm
1560          = cast<TemplateTemplateParmDecl>(*Param);
1561
1562        if (!TempParm->hasDefaultArgument())
1563          break;
1564
1565        // FIXME: Subst default argument
1566        Arg = TemplateArgumentLoc(TemplateArgument(TempParm->getDefaultArgument()),
1567                                  TempParm->getDefaultArgument());
1568      }
1569    } else {
1570      // Retrieve the template argument produced by the user.
1571      Arg = TemplateArgs[ArgIdx];
1572    }
1573
1574
1575    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1576      if (TTP->isParameterPack()) {
1577        Converted.BeginPack();
1578        // Check all the remaining arguments (if any).
1579        for (; ArgIdx < NumArgs; ++ArgIdx) {
1580          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1581            Invalid = true;
1582        }
1583
1584        Converted.EndPack();
1585      } else {
1586        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1587          Invalid = true;
1588      }
1589    } else if (NonTypeTemplateParmDecl *NTTP
1590                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1591      // Check non-type template parameters.
1592
1593      // Do substitution on the type of the non-type template parameter
1594      // with the template arguments we've seen thus far.
1595      QualType NTTPType = NTTP->getType();
1596      if (NTTPType->isDependentType()) {
1597        // Do substitution on the type of the non-type template parameter.
1598        InstantiatingTemplate Inst(*this, TemplateLoc,
1599                                   Template, Converted.getFlatArguments(),
1600                                   Converted.flatSize(),
1601                                   SourceRange(TemplateLoc, RAngleLoc));
1602
1603        TemplateArgumentList TemplateArgs(Context, Converted,
1604                                          /*TakeArgs=*/false);
1605        NTTPType = SubstType(NTTPType,
1606                             MultiLevelTemplateArgumentList(TemplateArgs),
1607                             NTTP->getLocation(),
1608                             NTTP->getDeclName());
1609        // If that worked, check the non-type template parameter type
1610        // for validity.
1611        if (!NTTPType.isNull())
1612          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1613                                                       NTTP->getLocation());
1614        if (NTTPType.isNull()) {
1615          Invalid = true;
1616          break;
1617        }
1618      }
1619
1620      switch (Arg.getArgument().getKind()) {
1621      case TemplateArgument::Null:
1622        assert(false && "Should never see a NULL template argument here");
1623        break;
1624
1625      case TemplateArgument::Expression: {
1626        Expr *E = Arg.getArgument().getAsExpr();
1627        TemplateArgument Result;
1628        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1629          Invalid = true;
1630        else
1631          Converted.Append(Result);
1632        break;
1633      }
1634
1635      case TemplateArgument::Declaration:
1636      case TemplateArgument::Integral:
1637        // We've already checked this template argument, so just copy
1638        // it to the list of converted arguments.
1639        Converted.Append(Arg.getArgument());
1640        break;
1641
1642      case TemplateArgument::Type: {
1643        // We have a non-type template parameter but the template
1644        // argument is a type.
1645
1646        // C++ [temp.arg]p2:
1647        //   In a template-argument, an ambiguity between a type-id and
1648        //   an expression is resolved to a type-id, regardless of the
1649        //   form of the corresponding template-parameter.
1650        //
1651        // We warn specifically about this case, since it can be rather
1652        // confusing for users.
1653        QualType T = Arg.getArgument().getAsType();
1654        SourceRange SR = Arg.getSourceRange();
1655        if (T->isFunctionType())
1656          Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig)
1657            << SR << T;
1658        else
1659          Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1660        Diag((*Param)->getLocation(), diag::note_template_param_here);
1661        Invalid = true;
1662        break;
1663      }
1664
1665      case TemplateArgument::Pack:
1666        assert(0 && "FIXME: Implement!");
1667        break;
1668      }
1669    } else {
1670      // Check template template parameters.
1671      TemplateTemplateParmDecl *TempParm
1672        = cast<TemplateTemplateParmDecl>(*Param);
1673
1674      switch (Arg.getArgument().getKind()) {
1675      case TemplateArgument::Null:
1676        assert(false && "Should never see a NULL template argument here");
1677        break;
1678
1679      case TemplateArgument::Expression: {
1680        Expr *ArgExpr = Arg.getArgument().getAsExpr();
1681        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1682            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1683          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1684            Invalid = true;
1685
1686          // Add the converted template argument.
1687          Decl *D
1688            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1689          Converted.Append(TemplateArgument(D));
1690          continue;
1691        }
1692      }
1693        // fall through
1694
1695      case TemplateArgument::Type: {
1696        // We have a template template parameter but the template
1697        // argument does not refer to a template.
1698        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1699        Invalid = true;
1700        break;
1701      }
1702
1703      case TemplateArgument::Declaration:
1704        // We've already checked this template argument, so just copy
1705        // it to the list of converted arguments.
1706        Converted.Append(Arg.getArgument());
1707        break;
1708
1709      case TemplateArgument::Integral:
1710        assert(false && "Integral argument with template template parameter");
1711        break;
1712
1713      case TemplateArgument::Pack:
1714        assert(0 && "FIXME: Implement!");
1715        break;
1716      }
1717    }
1718  }
1719
1720  return Invalid;
1721}
1722
1723/// \brief Check a template argument against its corresponding
1724/// template type parameter.
1725///
1726/// This routine implements the semantics of C++ [temp.arg.type]. It
1727/// returns true if an error occurred, and false otherwise.
1728bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1729                                 DeclaratorInfo *ArgInfo) {
1730  assert(ArgInfo && "invalid DeclaratorInfo");
1731  QualType Arg = ArgInfo->getType();
1732
1733  // C++ [temp.arg.type]p2:
1734  //   A local type, a type with no linkage, an unnamed type or a type
1735  //   compounded from any of these types shall not be used as a
1736  //   template-argument for a template type-parameter.
1737  //
1738  // FIXME: Perform the recursive and no-linkage type checks.
1739  const TagType *Tag = 0;
1740  if (const EnumType *EnumT = Arg->getAs<EnumType>())
1741    Tag = EnumT;
1742  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1743    Tag = RecordT;
1744  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
1745    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1746    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
1747      << QualType(Tag, 0) << SR;
1748  } else if (Tag && !Tag->getDecl()->getDeclName() &&
1749           !Tag->getDecl()->getTypedefForAnonDecl()) {
1750    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1751    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
1752    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1753    return true;
1754  }
1755
1756  return false;
1757}
1758
1759/// \brief Checks whether the given template argument is the address
1760/// of an object or function according to C++ [temp.arg.nontype]p1.
1761bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1762                                                          NamedDecl *&Entity) {
1763  bool Invalid = false;
1764
1765  // See through any implicit casts we added to fix the type.
1766  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1767    Arg = Cast->getSubExpr();
1768
1769  // C++0x allows nullptr, and there's no further checking to be done for that.
1770  if (Arg->getType()->isNullPtrType())
1771    return false;
1772
1773  // C++ [temp.arg.nontype]p1:
1774  //
1775  //   A template-argument for a non-type, non-template
1776  //   template-parameter shall be one of: [...]
1777  //
1778  //     -- the address of an object or function with external
1779  //        linkage, including function templates and function
1780  //        template-ids but excluding non-static class members,
1781  //        expressed as & id-expression where the & is optional if
1782  //        the name refers to a function or array, or if the
1783  //        corresponding template-parameter is a reference; or
1784  DeclRefExpr *DRE = 0;
1785
1786  // Ignore (and complain about) any excess parentheses.
1787  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1788    if (!Invalid) {
1789      Diag(Arg->getSourceRange().getBegin(),
1790           diag::err_template_arg_extra_parens)
1791        << Arg->getSourceRange();
1792      Invalid = true;
1793    }
1794
1795    Arg = Parens->getSubExpr();
1796  }
1797
1798  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1799    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1800      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1801  } else
1802    DRE = dyn_cast<DeclRefExpr>(Arg);
1803
1804  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1805    return Diag(Arg->getSourceRange().getBegin(),
1806                diag::err_template_arg_not_object_or_func_form)
1807      << Arg->getSourceRange();
1808
1809  // Cannot refer to non-static data members
1810  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1811    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1812      << Field << Arg->getSourceRange();
1813
1814  // Cannot refer to non-static member functions
1815  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1816    if (!Method->isStatic())
1817      return Diag(Arg->getSourceRange().getBegin(),
1818                  diag::err_template_arg_method)
1819        << Method << Arg->getSourceRange();
1820
1821  // Functions must have external linkage.
1822  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1823    if (Func->getStorageClass() == FunctionDecl::Static) {
1824      Diag(Arg->getSourceRange().getBegin(),
1825           diag::err_template_arg_function_not_extern)
1826        << Func << Arg->getSourceRange();
1827      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1828        << true;
1829      return true;
1830    }
1831
1832    // Okay: we've named a function with external linkage.
1833    Entity = Func;
1834    return Invalid;
1835  }
1836
1837  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1838    if (!Var->hasGlobalStorage()) {
1839      Diag(Arg->getSourceRange().getBegin(),
1840           diag::err_template_arg_object_not_extern)
1841        << Var << Arg->getSourceRange();
1842      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1843        << true;
1844      return true;
1845    }
1846
1847    // Okay: we've named an object with external linkage
1848    Entity = Var;
1849    return Invalid;
1850  }
1851
1852  // We found something else, but we don't know specifically what it is.
1853  Diag(Arg->getSourceRange().getBegin(),
1854       diag::err_template_arg_not_object_or_func)
1855      << Arg->getSourceRange();
1856  Diag(DRE->getDecl()->getLocation(),
1857       diag::note_template_arg_refers_here);
1858  return true;
1859}
1860
1861/// \brief Checks whether the given template argument is a pointer to
1862/// member constant according to C++ [temp.arg.nontype]p1.
1863bool
1864Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1865  bool Invalid = false;
1866
1867  // See through any implicit casts we added to fix the type.
1868  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1869    Arg = Cast->getSubExpr();
1870
1871  // C++0x allows nullptr, and there's no further checking to be done for that.
1872  if (Arg->getType()->isNullPtrType())
1873    return false;
1874
1875  // C++ [temp.arg.nontype]p1:
1876  //
1877  //   A template-argument for a non-type, non-template
1878  //   template-parameter shall be one of: [...]
1879  //
1880  //     -- a pointer to member expressed as described in 5.3.1.
1881  DeclRefExpr *DRE = 0;
1882
1883  // Ignore (and complain about) any excess parentheses.
1884  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1885    if (!Invalid) {
1886      Diag(Arg->getSourceRange().getBegin(),
1887           diag::err_template_arg_extra_parens)
1888        << Arg->getSourceRange();
1889      Invalid = true;
1890    }
1891
1892    Arg = Parens->getSubExpr();
1893  }
1894
1895  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1896    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
1897      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1898      if (DRE && !DRE->getQualifier())
1899        DRE = 0;
1900    }
1901
1902  if (!DRE)
1903    return Diag(Arg->getSourceRange().getBegin(),
1904                diag::err_template_arg_not_pointer_to_member_form)
1905      << Arg->getSourceRange();
1906
1907  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1908    assert((isa<FieldDecl>(DRE->getDecl()) ||
1909            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1910           "Only non-static member pointers can make it here");
1911
1912    // Okay: this is the address of a non-static member, and therefore
1913    // a member pointer constant.
1914    Member = DRE->getDecl();
1915    return Invalid;
1916  }
1917
1918  // We found something else, but we don't know specifically what it is.
1919  Diag(Arg->getSourceRange().getBegin(),
1920       diag::err_template_arg_not_pointer_to_member_form)
1921      << Arg->getSourceRange();
1922  Diag(DRE->getDecl()->getLocation(),
1923       diag::note_template_arg_refers_here);
1924  return true;
1925}
1926
1927/// \brief Check a template argument against its corresponding
1928/// non-type template parameter.
1929///
1930/// This routine implements the semantics of C++ [temp.arg.nontype].
1931/// It returns true if an error occurred, and false otherwise. \p
1932/// InstantiatedParamType is the type of the non-type template
1933/// parameter after it has been instantiated.
1934///
1935/// If no error was detected, Converted receives the converted template argument.
1936bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1937                                 QualType InstantiatedParamType, Expr *&Arg,
1938                                 TemplateArgument &Converted) {
1939  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1940
1941  // If either the parameter has a dependent type or the argument is
1942  // type-dependent, there's nothing we can check now.
1943  // FIXME: Add template argument to Converted!
1944  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1945    // FIXME: Produce a cloned, canonical expression?
1946    Converted = TemplateArgument(Arg);
1947    return false;
1948  }
1949
1950  // C++ [temp.arg.nontype]p5:
1951  //   The following conversions are performed on each expression used
1952  //   as a non-type template-argument. If a non-type
1953  //   template-argument cannot be converted to the type of the
1954  //   corresponding template-parameter then the program is
1955  //   ill-formed.
1956  //
1957  //     -- for a non-type template-parameter of integral or
1958  //        enumeration type, integral promotions (4.5) and integral
1959  //        conversions (4.7) are applied.
1960  QualType ParamType = InstantiatedParamType;
1961  QualType ArgType = Arg->getType();
1962  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1963    // C++ [temp.arg.nontype]p1:
1964    //   A template-argument for a non-type, non-template
1965    //   template-parameter shall be one of:
1966    //
1967    //     -- an integral constant-expression of integral or enumeration
1968    //        type; or
1969    //     -- the name of a non-type template-parameter; or
1970    SourceLocation NonConstantLoc;
1971    llvm::APSInt Value;
1972    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1973      Diag(Arg->getSourceRange().getBegin(),
1974           diag::err_template_arg_not_integral_or_enumeral)
1975        << ArgType << Arg->getSourceRange();
1976      Diag(Param->getLocation(), diag::note_template_param_here);
1977      return true;
1978    } else if (!Arg->isValueDependent() &&
1979               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1980      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1981        << ArgType << Arg->getSourceRange();
1982      return true;
1983    }
1984
1985    // FIXME: We need some way to more easily get the unqualified form
1986    // of the types without going all the way to the
1987    // canonical type.
1988    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1989      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1990    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1991      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1992
1993    // Try to convert the argument to the parameter's type.
1994    if (ParamType == ArgType) {
1995      // Okay: no conversion necessary
1996    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1997               !ParamType->isEnumeralType()) {
1998      // This is an integral promotion or conversion.
1999      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2000    } else {
2001      // We can't perform this conversion.
2002      Diag(Arg->getSourceRange().getBegin(),
2003           diag::err_template_arg_not_convertible)
2004        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2005      Diag(Param->getLocation(), diag::note_template_param_here);
2006      return true;
2007    }
2008
2009    QualType IntegerType = Context.getCanonicalType(ParamType);
2010    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2011      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2012
2013    if (!Arg->isValueDependent()) {
2014      // Check that an unsigned parameter does not receive a negative
2015      // value.
2016      if (IntegerType->isUnsignedIntegerType()
2017          && (Value.isSigned() && Value.isNegative())) {
2018        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2019          << Value.toString(10) << Param->getType()
2020          << Arg->getSourceRange();
2021        Diag(Param->getLocation(), diag::note_template_param_here);
2022        return true;
2023      }
2024
2025      // Check that we don't overflow the template parameter type.
2026      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2027      if (Value.getActiveBits() > AllowedBits) {
2028        Diag(Arg->getSourceRange().getBegin(),
2029             diag::err_template_arg_too_large)
2030          << Value.toString(10) << Param->getType()
2031          << Arg->getSourceRange();
2032        Diag(Param->getLocation(), diag::note_template_param_here);
2033        return true;
2034      }
2035
2036      if (Value.getBitWidth() != AllowedBits)
2037        Value.extOrTrunc(AllowedBits);
2038      Value.setIsSigned(IntegerType->isSignedIntegerType());
2039    }
2040
2041    // Add the value of this argument to the list of converted
2042    // arguments. We use the bitwidth and signedness of the template
2043    // parameter.
2044    if (Arg->isValueDependent()) {
2045      // The argument is value-dependent. Create a new
2046      // TemplateArgument with the converted expression.
2047      Converted = TemplateArgument(Arg);
2048      return false;
2049    }
2050
2051    Converted = TemplateArgument(Value,
2052                                 ParamType->isEnumeralType() ? ParamType
2053                                                             : IntegerType);
2054    return false;
2055  }
2056
2057  // Handle pointer-to-function, reference-to-function, and
2058  // pointer-to-member-function all in (roughly) the same way.
2059  if (// -- For a non-type template-parameter of type pointer to
2060      //    function, only the function-to-pointer conversion (4.3) is
2061      //    applied. If the template-argument represents a set of
2062      //    overloaded functions (or a pointer to such), the matching
2063      //    function is selected from the set (13.4).
2064      // In C++0x, any std::nullptr_t value can be converted.
2065      (ParamType->isPointerType() &&
2066       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2067      // -- For a non-type template-parameter of type reference to
2068      //    function, no conversions apply. If the template-argument
2069      //    represents a set of overloaded functions, the matching
2070      //    function is selected from the set (13.4).
2071      (ParamType->isReferenceType() &&
2072       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2073      // -- For a non-type template-parameter of type pointer to
2074      //    member function, no conversions apply. If the
2075      //    template-argument represents a set of overloaded member
2076      //    functions, the matching member function is selected from
2077      //    the set (13.4).
2078      // Again, C++0x allows a std::nullptr_t value.
2079      (ParamType->isMemberPointerType() &&
2080       ParamType->getAs<MemberPointerType>()->getPointeeType()
2081         ->isFunctionType())) {
2082    if (Context.hasSameUnqualifiedType(ArgType,
2083                                       ParamType.getNonReferenceType())) {
2084      // We don't have to do anything: the types already match.
2085    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2086                 ParamType->isMemberPointerType())) {
2087      ArgType = ParamType;
2088      if (ParamType->isMemberPointerType())
2089        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2090      else
2091        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2092    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2093      ArgType = Context.getPointerType(ArgType);
2094      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2095    } else if (FunctionDecl *Fn
2096                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2097      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2098        return true;
2099
2100      Arg = FixOverloadedFunctionReference(Arg, Fn);
2101      ArgType = Arg->getType();
2102      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2103        ArgType = Context.getPointerType(Arg->getType());
2104        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2105      }
2106    }
2107
2108    if (!Context.hasSameUnqualifiedType(ArgType,
2109                                        ParamType.getNonReferenceType())) {
2110      // We can't perform this conversion.
2111      Diag(Arg->getSourceRange().getBegin(),
2112           diag::err_template_arg_not_convertible)
2113        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2114      Diag(Param->getLocation(), diag::note_template_param_here);
2115      return true;
2116    }
2117
2118    if (ParamType->isMemberPointerType()) {
2119      NamedDecl *Member = 0;
2120      if (CheckTemplateArgumentPointerToMember(Arg, Member))
2121        return true;
2122
2123      if (Member)
2124        Member = cast<NamedDecl>(Member->getCanonicalDecl());
2125      Converted = TemplateArgument(Member);
2126      return false;
2127    }
2128
2129    NamedDecl *Entity = 0;
2130    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2131      return true;
2132
2133    if (Entity)
2134      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2135    Converted = TemplateArgument(Entity);
2136    return false;
2137  }
2138
2139  if (ParamType->isPointerType()) {
2140    //   -- for a non-type template-parameter of type pointer to
2141    //      object, qualification conversions (4.4) and the
2142    //      array-to-pointer conversion (4.2) are applied.
2143    // C++0x also allows a value of std::nullptr_t.
2144    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2145           "Only object pointers allowed here");
2146
2147    if (ArgType->isNullPtrType()) {
2148      ArgType = ParamType;
2149      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2150    } else if (ArgType->isArrayType()) {
2151      ArgType = Context.getArrayDecayedType(ArgType);
2152      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2153    }
2154
2155    if (IsQualificationConversion(ArgType, ParamType)) {
2156      ArgType = ParamType;
2157      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2158    }
2159
2160    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2161      // We can't perform this conversion.
2162      Diag(Arg->getSourceRange().getBegin(),
2163           diag::err_template_arg_not_convertible)
2164        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2165      Diag(Param->getLocation(), diag::note_template_param_here);
2166      return true;
2167    }
2168
2169    NamedDecl *Entity = 0;
2170    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2171      return true;
2172
2173    if (Entity)
2174      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2175    Converted = TemplateArgument(Entity);
2176    return false;
2177  }
2178
2179  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2180    //   -- For a non-type template-parameter of type reference to
2181    //      object, no conversions apply. The type referred to by the
2182    //      reference may be more cv-qualified than the (otherwise
2183    //      identical) type of the template-argument. The
2184    //      template-parameter is bound directly to the
2185    //      template-argument, which must be an lvalue.
2186    assert(ParamRefType->getPointeeType()->isObjectType() &&
2187           "Only object references allowed here");
2188
2189    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2190      Diag(Arg->getSourceRange().getBegin(),
2191           diag::err_template_arg_no_ref_bind)
2192        << InstantiatedParamType << Arg->getType()
2193        << Arg->getSourceRange();
2194      Diag(Param->getLocation(), diag::note_template_param_here);
2195      return true;
2196    }
2197
2198    unsigned ParamQuals
2199      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2200    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2201
2202    if ((ParamQuals | ArgQuals) != ParamQuals) {
2203      Diag(Arg->getSourceRange().getBegin(),
2204           diag::err_template_arg_ref_bind_ignores_quals)
2205        << InstantiatedParamType << Arg->getType()
2206        << Arg->getSourceRange();
2207      Diag(Param->getLocation(), diag::note_template_param_here);
2208      return true;
2209    }
2210
2211    NamedDecl *Entity = 0;
2212    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2213      return true;
2214
2215    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2216    Converted = TemplateArgument(Entity);
2217    return false;
2218  }
2219
2220  //     -- For a non-type template-parameter of type pointer to data
2221  //        member, qualification conversions (4.4) are applied.
2222  // C++0x allows std::nullptr_t values.
2223  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2224
2225  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2226    // Types match exactly: nothing more to do here.
2227  } else if (ArgType->isNullPtrType()) {
2228    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2229  } else if (IsQualificationConversion(ArgType, ParamType)) {
2230    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2231  } else {
2232    // We can't perform this conversion.
2233    Diag(Arg->getSourceRange().getBegin(),
2234         diag::err_template_arg_not_convertible)
2235      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2236    Diag(Param->getLocation(), diag::note_template_param_here);
2237    return true;
2238  }
2239
2240  NamedDecl *Member = 0;
2241  if (CheckTemplateArgumentPointerToMember(Arg, Member))
2242    return true;
2243
2244  if (Member)
2245    Member = cast<NamedDecl>(Member->getCanonicalDecl());
2246  Converted = TemplateArgument(Member);
2247  return false;
2248}
2249
2250/// \brief Check a template argument against its corresponding
2251/// template template parameter.
2252///
2253/// This routine implements the semantics of C++ [temp.arg.template].
2254/// It returns true if an error occurred, and false otherwise.
2255bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2256                                 DeclRefExpr *Arg) {
2257  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
2258  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
2259
2260  // C++ [temp.arg.template]p1:
2261  //   A template-argument for a template template-parameter shall be
2262  //   the name of a class template, expressed as id-expression. Only
2263  //   primary class templates are considered when matching the
2264  //   template template argument with the corresponding parameter;
2265  //   partial specializations are not considered even if their
2266  //   parameter lists match that of the template template parameter.
2267  //
2268  // Note that we also allow template template parameters here, which
2269  // will happen when we are dealing with, e.g., class template
2270  // partial specializations.
2271  if (!isa<ClassTemplateDecl>(Template) &&
2272      !isa<TemplateTemplateParmDecl>(Template)) {
2273    assert(isa<FunctionTemplateDecl>(Template) &&
2274           "Only function templates are possible here");
2275    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
2276    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2277      << Template;
2278  }
2279
2280  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2281                                         Param->getTemplateParameters(),
2282                                         true, true,
2283                                         Arg->getSourceRange().getBegin());
2284}
2285
2286/// \brief Determine whether the given template parameter lists are
2287/// equivalent.
2288///
2289/// \param New  The new template parameter list, typically written in the
2290/// source code as part of a new template declaration.
2291///
2292/// \param Old  The old template parameter list, typically found via
2293/// name lookup of the template declared with this template parameter
2294/// list.
2295///
2296/// \param Complain  If true, this routine will produce a diagnostic if
2297/// the template parameter lists are not equivalent.
2298///
2299/// \param IsTemplateTemplateParm  If true, this routine is being
2300/// called to compare the template parameter lists of a template
2301/// template parameter.
2302///
2303/// \param TemplateArgLoc If this source location is valid, then we
2304/// are actually checking the template parameter list of a template
2305/// argument (New) against the template parameter list of its
2306/// corresponding template template parameter (Old). We produce
2307/// slightly different diagnostics in this scenario.
2308///
2309/// \returns True if the template parameter lists are equal, false
2310/// otherwise.
2311bool
2312Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2313                                     TemplateParameterList *Old,
2314                                     bool Complain,
2315                                     bool IsTemplateTemplateParm,
2316                                     SourceLocation TemplateArgLoc) {
2317  if (Old->size() != New->size()) {
2318    if (Complain) {
2319      unsigned NextDiag = diag::err_template_param_list_different_arity;
2320      if (TemplateArgLoc.isValid()) {
2321        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2322        NextDiag = diag::note_template_param_list_different_arity;
2323      }
2324      Diag(New->getTemplateLoc(), NextDiag)
2325          << (New->size() > Old->size())
2326          << IsTemplateTemplateParm
2327          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2328      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2329        << IsTemplateTemplateParm
2330        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2331    }
2332
2333    return false;
2334  }
2335
2336  for (TemplateParameterList::iterator OldParm = Old->begin(),
2337         OldParmEnd = Old->end(), NewParm = New->begin();
2338       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2339    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2340      if (Complain) {
2341        unsigned NextDiag = diag::err_template_param_different_kind;
2342        if (TemplateArgLoc.isValid()) {
2343          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2344          NextDiag = diag::note_template_param_different_kind;
2345        }
2346        Diag((*NewParm)->getLocation(), NextDiag)
2347        << IsTemplateTemplateParm;
2348        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2349        << IsTemplateTemplateParm;
2350      }
2351      return false;
2352    }
2353
2354    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2355      // Okay; all template type parameters are equivalent (since we
2356      // know we're at the same index).
2357#if 0
2358      // FIXME: Enable this code in debug mode *after* we properly go through
2359      // and "instantiate" the template parameter lists of template template
2360      // parameters. It's only after this instantiation that (1) any dependent
2361      // types within the template parameter list of the template template
2362      // parameter can be checked, and (2) the template type parameter depths
2363      // will match up.
2364      QualType OldParmType
2365        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2366      QualType NewParmType
2367        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2368      assert(Context.getCanonicalType(OldParmType) ==
2369             Context.getCanonicalType(NewParmType) &&
2370             "type parameter mismatch?");
2371#endif
2372    } else if (NonTypeTemplateParmDecl *OldNTTP
2373                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2374      // The types of non-type template parameters must agree.
2375      NonTypeTemplateParmDecl *NewNTTP
2376        = cast<NonTypeTemplateParmDecl>(*NewParm);
2377      if (Context.getCanonicalType(OldNTTP->getType()) !=
2378            Context.getCanonicalType(NewNTTP->getType())) {
2379        if (Complain) {
2380          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2381          if (TemplateArgLoc.isValid()) {
2382            Diag(TemplateArgLoc,
2383                 diag::err_template_arg_template_params_mismatch);
2384            NextDiag = diag::note_template_nontype_parm_different_type;
2385          }
2386          Diag(NewNTTP->getLocation(), NextDiag)
2387            << NewNTTP->getType()
2388            << IsTemplateTemplateParm;
2389          Diag(OldNTTP->getLocation(),
2390               diag::note_template_nontype_parm_prev_declaration)
2391            << OldNTTP->getType();
2392        }
2393        return false;
2394      }
2395    } else {
2396      // The template parameter lists of template template
2397      // parameters must agree.
2398      // FIXME: Could we perform a faster "type" comparison here?
2399      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2400             "Only template template parameters handled here");
2401      TemplateTemplateParmDecl *OldTTP
2402        = cast<TemplateTemplateParmDecl>(*OldParm);
2403      TemplateTemplateParmDecl *NewTTP
2404        = cast<TemplateTemplateParmDecl>(*NewParm);
2405      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2406                                          OldTTP->getTemplateParameters(),
2407                                          Complain,
2408                                          /*IsTemplateTemplateParm=*/true,
2409                                          TemplateArgLoc))
2410        return false;
2411    }
2412  }
2413
2414  return true;
2415}
2416
2417/// \brief Check whether a template can be declared within this scope.
2418///
2419/// If the template declaration is valid in this scope, returns
2420/// false. Otherwise, issues a diagnostic and returns true.
2421bool
2422Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2423  // Find the nearest enclosing declaration scope.
2424  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2425         (S->getFlags() & Scope::TemplateParamScope) != 0)
2426    S = S->getParent();
2427
2428  // C++ [temp]p2:
2429  //   A template-declaration can appear only as a namespace scope or
2430  //   class scope declaration.
2431  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2432  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2433      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2434    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2435             << TemplateParams->getSourceRange();
2436
2437  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2438    Ctx = Ctx->getParent();
2439
2440  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2441    return false;
2442
2443  return Diag(TemplateParams->getTemplateLoc(),
2444              diag::err_template_outside_namespace_or_class_scope)
2445    << TemplateParams->getSourceRange();
2446}
2447
2448/// \brief Determine what kind of template specialization the given declaration
2449/// is.
2450static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2451  if (!D)
2452    return TSK_Undeclared;
2453
2454  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2455    return Record->getTemplateSpecializationKind();
2456  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2457    return Function->getTemplateSpecializationKind();
2458  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2459    return Var->getTemplateSpecializationKind();
2460
2461  return TSK_Undeclared;
2462}
2463
2464/// \brief Check whether a specialization is well-formed in the current
2465/// context.
2466///
2467/// This routine determines whether a template specialization can be declared
2468/// in the current context (C++ [temp.expl.spec]p2).
2469///
2470/// \param S the semantic analysis object for which this check is being
2471/// performed.
2472///
2473/// \param Specialized the entity being specialized or instantiated, which
2474/// may be a kind of template (class template, function template, etc.) or
2475/// a member of a class template (member function, static data member,
2476/// member class).
2477///
2478/// \param PrevDecl the previous declaration of this entity, if any.
2479///
2480/// \param Loc the location of the explicit specialization or instantiation of
2481/// this entity.
2482///
2483/// \param IsPartialSpecialization whether this is a partial specialization of
2484/// a class template.
2485///
2486/// \returns true if there was an error that we cannot recover from, false
2487/// otherwise.
2488static bool CheckTemplateSpecializationScope(Sema &S,
2489                                             NamedDecl *Specialized,
2490                                             NamedDecl *PrevDecl,
2491                                             SourceLocation Loc,
2492                                             bool IsPartialSpecialization) {
2493  // Keep these "kind" numbers in sync with the %select statements in the
2494  // various diagnostics emitted by this routine.
2495  int EntityKind = 0;
2496  bool isTemplateSpecialization = false;
2497  if (isa<ClassTemplateDecl>(Specialized)) {
2498    EntityKind = IsPartialSpecialization? 1 : 0;
2499    isTemplateSpecialization = true;
2500  } else if (isa<FunctionTemplateDecl>(Specialized)) {
2501    EntityKind = 2;
2502    isTemplateSpecialization = true;
2503  } else if (isa<CXXMethodDecl>(Specialized))
2504    EntityKind = 3;
2505  else if (isa<VarDecl>(Specialized))
2506    EntityKind = 4;
2507  else if (isa<RecordDecl>(Specialized))
2508    EntityKind = 5;
2509  else {
2510    S.Diag(Loc, diag::err_template_spec_unknown_kind);
2511    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2512    return true;
2513  }
2514
2515  // C++ [temp.expl.spec]p2:
2516  //   An explicit specialization shall be declared in the namespace
2517  //   of which the template is a member, or, for member templates, in
2518  //   the namespace of which the enclosing class or enclosing class
2519  //   template is a member. An explicit specialization of a member
2520  //   function, member class or static data member of a class
2521  //   template shall be declared in the namespace of which the class
2522  //   template is a member. Such a declaration may also be a
2523  //   definition. If the declaration is not a definition, the
2524  //   specialization may be defined later in the name- space in which
2525  //   the explicit specialization was declared, or in a namespace
2526  //   that encloses the one in which the explicit specialization was
2527  //   declared.
2528  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
2529    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
2530      << Specialized;
2531    return true;
2532  }
2533
2534  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
2535    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
2536      << Specialized;
2537    return true;
2538  }
2539
2540  // C++ [temp.class.spec]p6:
2541  //   A class template partial specialization may be declared or redeclared
2542  //   in any namespace scope in which its definition may be defined (14.5.1
2543  //   and 14.5.2).
2544  bool ComplainedAboutScope = false;
2545  DeclContext *SpecializedContext
2546    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
2547  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
2548  if ((!PrevDecl ||
2549       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
2550       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
2551    // There is no prior declaration of this entity, so this
2552    // specialization must be in the same context as the template
2553    // itself.
2554    if (!DC->Equals(SpecializedContext)) {
2555      if (isa<TranslationUnitDecl>(SpecializedContext))
2556        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
2557        << EntityKind << Specialized;
2558      else if (isa<NamespaceDecl>(SpecializedContext))
2559        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
2560        << EntityKind << Specialized
2561        << cast<NamedDecl>(SpecializedContext);
2562
2563      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2564      ComplainedAboutScope = true;
2565    }
2566  }
2567
2568  // Make sure that this redeclaration (or definition) occurs in an enclosing
2569  // namespace.
2570  // Note that HandleDeclarator() performs this check for explicit
2571  // specializations of function templates, static data members, and member
2572  // functions, so we skip the check here for those kinds of entities.
2573  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
2574  // Should we refactor that check, so that it occurs later?
2575  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
2576      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
2577        isa<FunctionDecl>(Specialized))) {
2578    if (isa<TranslationUnitDecl>(SpecializedContext))
2579      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
2580        << EntityKind << Specialized;
2581    else if (isa<NamespaceDecl>(SpecializedContext))
2582      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
2583        << EntityKind << Specialized
2584        << cast<NamedDecl>(SpecializedContext);
2585
2586    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2587  }
2588
2589  // FIXME: check for specialization-after-instantiation errors and such.
2590
2591  return false;
2592}
2593
2594/// \brief Check the non-type template arguments of a class template
2595/// partial specialization according to C++ [temp.class.spec]p9.
2596///
2597/// \param TemplateParams the template parameters of the primary class
2598/// template.
2599///
2600/// \param TemplateArg the template arguments of the class template
2601/// partial specialization.
2602///
2603/// \param MirrorsPrimaryTemplate will be set true if the class
2604/// template partial specialization arguments are identical to the
2605/// implicit template arguments of the primary template. This is not
2606/// necessarily an error (C++0x), and it is left to the caller to diagnose
2607/// this condition when it is an error.
2608///
2609/// \returns true if there was an error, false otherwise.
2610bool Sema::CheckClassTemplatePartialSpecializationArgs(
2611                                        TemplateParameterList *TemplateParams,
2612                             const TemplateArgumentListBuilder &TemplateArgs,
2613                                        bool &MirrorsPrimaryTemplate) {
2614  // FIXME: the interface to this function will have to change to
2615  // accommodate variadic templates.
2616  MirrorsPrimaryTemplate = true;
2617
2618  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2619
2620  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2621    // Determine whether the template argument list of the partial
2622    // specialization is identical to the implicit argument list of
2623    // the primary template. The caller may need to diagnostic this as
2624    // an error per C++ [temp.class.spec]p9b3.
2625    if (MirrorsPrimaryTemplate) {
2626      if (TemplateTypeParmDecl *TTP
2627            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2628        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2629              Context.getCanonicalType(ArgList[I].getAsType()))
2630          MirrorsPrimaryTemplate = false;
2631      } else if (TemplateTemplateParmDecl *TTP
2632                   = dyn_cast<TemplateTemplateParmDecl>(
2633                                                 TemplateParams->getParam(I))) {
2634        // FIXME: We should settle on either Declaration storage or
2635        // Expression storage for template template parameters.
2636        TemplateTemplateParmDecl *ArgDecl
2637          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2638                                                  ArgList[I].getAsDecl());
2639        if (!ArgDecl)
2640          if (DeclRefExpr *DRE
2641                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2642            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2643
2644        if (!ArgDecl ||
2645            ArgDecl->getIndex() != TTP->getIndex() ||
2646            ArgDecl->getDepth() != TTP->getDepth())
2647          MirrorsPrimaryTemplate = false;
2648      }
2649    }
2650
2651    NonTypeTemplateParmDecl *Param
2652      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2653    if (!Param) {
2654      continue;
2655    }
2656
2657    Expr *ArgExpr = ArgList[I].getAsExpr();
2658    if (!ArgExpr) {
2659      MirrorsPrimaryTemplate = false;
2660      continue;
2661    }
2662
2663    // C++ [temp.class.spec]p8:
2664    //   A non-type argument is non-specialized if it is the name of a
2665    //   non-type parameter. All other non-type arguments are
2666    //   specialized.
2667    //
2668    // Below, we check the two conditions that only apply to
2669    // specialized non-type arguments, so skip any non-specialized
2670    // arguments.
2671    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2672      if (NonTypeTemplateParmDecl *NTTP
2673            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2674        if (MirrorsPrimaryTemplate &&
2675            (Param->getIndex() != NTTP->getIndex() ||
2676             Param->getDepth() != NTTP->getDepth()))
2677          MirrorsPrimaryTemplate = false;
2678
2679        continue;
2680      }
2681
2682    // C++ [temp.class.spec]p9:
2683    //   Within the argument list of a class template partial
2684    //   specialization, the following restrictions apply:
2685    //     -- A partially specialized non-type argument expression
2686    //        shall not involve a template parameter of the partial
2687    //        specialization except when the argument expression is a
2688    //        simple identifier.
2689    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2690      Diag(ArgExpr->getLocStart(),
2691           diag::err_dependent_non_type_arg_in_partial_spec)
2692        << ArgExpr->getSourceRange();
2693      return true;
2694    }
2695
2696    //     -- The type of a template parameter corresponding to a
2697    //        specialized non-type argument shall not be dependent on a
2698    //        parameter of the specialization.
2699    if (Param->getType()->isDependentType()) {
2700      Diag(ArgExpr->getLocStart(),
2701           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2702        << Param->getType()
2703        << ArgExpr->getSourceRange();
2704      Diag(Param->getLocation(), diag::note_template_param_here);
2705      return true;
2706    }
2707
2708    MirrorsPrimaryTemplate = false;
2709  }
2710
2711  return false;
2712}
2713
2714Sema::DeclResult
2715Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2716                                       TagUseKind TUK,
2717                                       SourceLocation KWLoc,
2718                                       const CXXScopeSpec &SS,
2719                                       TemplateTy TemplateD,
2720                                       SourceLocation TemplateNameLoc,
2721                                       SourceLocation LAngleLoc,
2722                                       ASTTemplateArgsPtr TemplateArgsIn,
2723                                       SourceLocation *TemplateArgLocs,
2724                                       SourceLocation RAngleLoc,
2725                                       AttributeList *Attr,
2726                               MultiTemplateParamsArg TemplateParameterLists) {
2727  assert(TUK != TUK_Reference && "References are not specializations");
2728
2729  // Find the class template we're specializing
2730  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2731  ClassTemplateDecl *ClassTemplate
2732    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2733
2734  bool isExplicitSpecialization = false;
2735  bool isPartialSpecialization = false;
2736
2737  // Check the validity of the template headers that introduce this
2738  // template.
2739  // FIXME: We probably shouldn't complain about these headers for
2740  // friend declarations.
2741  TemplateParameterList *TemplateParams
2742    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2743                        (TemplateParameterList**)TemplateParameterLists.get(),
2744                                              TemplateParameterLists.size(),
2745                                              isExplicitSpecialization);
2746  if (TemplateParams && TemplateParams->size() > 0) {
2747    isPartialSpecialization = true;
2748
2749    // C++ [temp.class.spec]p10:
2750    //   The template parameter list of a specialization shall not
2751    //   contain default template argument values.
2752    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2753      Decl *Param = TemplateParams->getParam(I);
2754      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2755        if (TTP->hasDefaultArgument()) {
2756          Diag(TTP->getDefaultArgumentLoc(),
2757               diag::err_default_arg_in_partial_spec);
2758          TTP->removeDefaultArgument();
2759        }
2760      } else if (NonTypeTemplateParmDecl *NTTP
2761                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2762        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2763          Diag(NTTP->getDefaultArgumentLoc(),
2764               diag::err_default_arg_in_partial_spec)
2765            << DefArg->getSourceRange();
2766          NTTP->setDefaultArgument(0);
2767          DefArg->Destroy(Context);
2768        }
2769      } else {
2770        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2771        if (Expr *DefArg = TTP->getDefaultArgument()) {
2772          Diag(TTP->getDefaultArgumentLoc(),
2773               diag::err_default_arg_in_partial_spec)
2774            << DefArg->getSourceRange();
2775          TTP->setDefaultArgument(0);
2776          DefArg->Destroy(Context);
2777        }
2778      }
2779    }
2780  } else if (TemplateParams) {
2781    if (TUK == TUK_Friend)
2782      Diag(KWLoc, diag::err_template_spec_friend)
2783        << CodeModificationHint::CreateRemoval(
2784                                SourceRange(TemplateParams->getTemplateLoc(),
2785                                            TemplateParams->getRAngleLoc()))
2786        << SourceRange(LAngleLoc, RAngleLoc);
2787    else
2788      isExplicitSpecialization = true;
2789  } else if (TUK != TUK_Friend) {
2790    Diag(KWLoc, diag::err_template_spec_needs_header)
2791      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2792    isExplicitSpecialization = true;
2793  }
2794
2795  // Check that the specialization uses the same tag kind as the
2796  // original template.
2797  TagDecl::TagKind Kind;
2798  switch (TagSpec) {
2799  default: assert(0 && "Unknown tag type!");
2800  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2801  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2802  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2803  }
2804  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2805                                    Kind, KWLoc,
2806                                    *ClassTemplate->getIdentifier())) {
2807    Diag(KWLoc, diag::err_use_with_wrong_tag)
2808      << ClassTemplate
2809      << CodeModificationHint::CreateReplacement(KWLoc,
2810                            ClassTemplate->getTemplatedDecl()->getKindName());
2811    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2812         diag::note_previous_use);
2813    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2814  }
2815
2816  // Translate the parser's template argument list in our AST format.
2817  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2818  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2819
2820  // Check that the template argument list is well-formed for this
2821  // template.
2822  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2823                                        TemplateArgs.size());
2824  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2825                                TemplateArgs.data(), TemplateArgs.size(),
2826                                RAngleLoc, false, Converted))
2827    return true;
2828
2829  assert((Converted.structuredSize() ==
2830            ClassTemplate->getTemplateParameters()->size()) &&
2831         "Converted template argument list is too short!");
2832
2833  // Find the class template (partial) specialization declaration that
2834  // corresponds to these arguments.
2835  llvm::FoldingSetNodeID ID;
2836  if (isPartialSpecialization) {
2837    bool MirrorsPrimaryTemplate;
2838    if (CheckClassTemplatePartialSpecializationArgs(
2839                                         ClassTemplate->getTemplateParameters(),
2840                                         Converted, MirrorsPrimaryTemplate))
2841      return true;
2842
2843    if (MirrorsPrimaryTemplate) {
2844      // C++ [temp.class.spec]p9b3:
2845      //
2846      //   -- The argument list of the specialization shall not be identical
2847      //      to the implicit argument list of the primary template.
2848      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2849        << (TUK == TUK_Definition)
2850        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2851                                                           RAngleLoc));
2852      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
2853                                ClassTemplate->getIdentifier(),
2854                                TemplateNameLoc,
2855                                Attr,
2856                                TemplateParams,
2857                                AS_none);
2858    }
2859
2860    // FIXME: Diagnose friend partial specializations
2861
2862    // FIXME: Template parameter list matters, too
2863    ClassTemplatePartialSpecializationDecl::Profile(ID,
2864                                                   Converted.getFlatArguments(),
2865                                                   Converted.flatSize(),
2866                                                    Context);
2867  } else
2868    ClassTemplateSpecializationDecl::Profile(ID,
2869                                             Converted.getFlatArguments(),
2870                                             Converted.flatSize(),
2871                                             Context);
2872  void *InsertPos = 0;
2873  ClassTemplateSpecializationDecl *PrevDecl = 0;
2874
2875  if (isPartialSpecialization)
2876    PrevDecl
2877      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2878                                                                    InsertPos);
2879  else
2880    PrevDecl
2881      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2882
2883  ClassTemplateSpecializationDecl *Specialization = 0;
2884
2885  // Check whether we can declare a class template specialization in
2886  // the current scope.
2887  if (TUK != TUK_Friend &&
2888      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
2889                                       TemplateNameLoc,
2890                                       isPartialSpecialization))
2891    return true;
2892
2893  // The canonical type
2894  QualType CanonType;
2895  if (PrevDecl &&
2896      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
2897       TUK == TUK_Friend)) {
2898    // Since the only prior class template specialization with these
2899    // arguments was referenced but not declared, or we're only
2900    // referencing this specialization as a friend, reuse that
2901    // declaration node as our own, updating its source location to
2902    // reflect our new declaration.
2903    Specialization = PrevDecl;
2904    Specialization->setLocation(TemplateNameLoc);
2905    PrevDecl = 0;
2906    CanonType = Context.getTypeDeclType(Specialization);
2907  } else if (isPartialSpecialization) {
2908    // Build the canonical type that describes the converted template
2909    // arguments of the class template partial specialization.
2910    CanonType = Context.getTemplateSpecializationType(
2911                                                  TemplateName(ClassTemplate),
2912                                                  Converted.getFlatArguments(),
2913                                                  Converted.flatSize());
2914
2915    // Create a new class template partial specialization declaration node.
2916    ClassTemplatePartialSpecializationDecl *PrevPartial
2917      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2918    ClassTemplatePartialSpecializationDecl *Partial
2919      = ClassTemplatePartialSpecializationDecl::Create(Context,
2920                                             ClassTemplate->getDeclContext(),
2921                                                       TemplateNameLoc,
2922                                                       TemplateParams,
2923                                                       ClassTemplate,
2924                                                       Converted,
2925                                                       TemplateArgs.data(),
2926                                                       TemplateArgs.size(),
2927                                                       PrevPartial);
2928
2929    if (PrevPartial) {
2930      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2931      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2932    } else {
2933      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2934    }
2935    Specialization = Partial;
2936
2937    // If we are providing an explicit specialization of a member class
2938    // template specialization, make a note of that.
2939    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2940      PrevPartial->setMemberSpecialization();
2941
2942    // Check that all of the template parameters of the class template
2943    // partial specialization are deducible from the template
2944    // arguments. If not, this class template partial specialization
2945    // will never be used.
2946    llvm::SmallVector<bool, 8> DeducibleParams;
2947    DeducibleParams.resize(TemplateParams->size());
2948    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2949                               TemplateParams->getDepth(),
2950                               DeducibleParams);
2951    unsigned NumNonDeducible = 0;
2952    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2953      if (!DeducibleParams[I])
2954        ++NumNonDeducible;
2955
2956    if (NumNonDeducible) {
2957      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2958        << (NumNonDeducible > 1)
2959        << SourceRange(TemplateNameLoc, RAngleLoc);
2960      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2961        if (!DeducibleParams[I]) {
2962          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2963          if (Param->getDeclName())
2964            Diag(Param->getLocation(),
2965                 diag::note_partial_spec_unused_parameter)
2966              << Param->getDeclName();
2967          else
2968            Diag(Param->getLocation(),
2969                 diag::note_partial_spec_unused_parameter)
2970              << std::string("<anonymous>");
2971        }
2972      }
2973    }
2974  } else {
2975    // Create a new class template specialization declaration node for
2976    // this explicit specialization or friend declaration.
2977    Specialization
2978      = ClassTemplateSpecializationDecl::Create(Context,
2979                                             ClassTemplate->getDeclContext(),
2980                                                TemplateNameLoc,
2981                                                ClassTemplate,
2982                                                Converted,
2983                                                PrevDecl);
2984
2985    if (PrevDecl) {
2986      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2987      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2988    } else {
2989      ClassTemplate->getSpecializations().InsertNode(Specialization,
2990                                                     InsertPos);
2991    }
2992
2993    CanonType = Context.getTypeDeclType(Specialization);
2994  }
2995
2996  // C++ [temp.expl.spec]p6:
2997  //   If a template, a member template or the member of a class template is
2998  //   explicitly specialized then that specialization shall be declared
2999  //   before the first use of that specialization that would cause an implicit
3000  //   instantiation to take place, in every translation unit in which such a
3001  //   use occurs; no diagnostic is required.
3002  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3003    SourceRange Range(TemplateNameLoc, RAngleLoc);
3004    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3005      << Context.getTypeDeclType(Specialization) << Range;
3006
3007    Diag(PrevDecl->getPointOfInstantiation(),
3008         diag::note_instantiation_required_here)
3009      << (PrevDecl->getTemplateSpecializationKind()
3010                                                != TSK_ImplicitInstantiation);
3011    return true;
3012  }
3013
3014  // If this is not a friend, note that this is an explicit specialization.
3015  if (TUK != TUK_Friend)
3016    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3017
3018  // Check that this isn't a redefinition of this specialization.
3019  if (TUK == TUK_Definition) {
3020    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3021      SourceRange Range(TemplateNameLoc, RAngleLoc);
3022      Diag(TemplateNameLoc, diag::err_redefinition)
3023        << Context.getTypeDeclType(Specialization) << Range;
3024      Diag(Def->getLocation(), diag::note_previous_definition);
3025      Specialization->setInvalidDecl();
3026      return true;
3027    }
3028  }
3029
3030  // Build the fully-sugared type for this class template
3031  // specialization as the user wrote in the specialization
3032  // itself. This means that we'll pretty-print the type retrieved
3033  // from the specialization's declaration the way that the user
3034  // actually wrote the specialization, rather than formatting the
3035  // name based on the "canonical" representation used to store the
3036  // template arguments in the specialization.
3037  QualType WrittenTy
3038    = Context.getTemplateSpecializationType(Name,
3039                                            TemplateArgs.data(),
3040                                            TemplateArgs.size(),
3041                                            CanonType);
3042  if (TUK != TUK_Friend)
3043    Specialization->setTypeAsWritten(WrittenTy);
3044  TemplateArgsIn.release();
3045
3046  // C++ [temp.expl.spec]p9:
3047  //   A template explicit specialization is in the scope of the
3048  //   namespace in which the template was defined.
3049  //
3050  // We actually implement this paragraph where we set the semantic
3051  // context (in the creation of the ClassTemplateSpecializationDecl),
3052  // but we also maintain the lexical context where the actual
3053  // definition occurs.
3054  Specialization->setLexicalDeclContext(CurContext);
3055
3056  // We may be starting the definition of this specialization.
3057  if (TUK == TUK_Definition)
3058    Specialization->startDefinition();
3059
3060  if (TUK == TUK_Friend) {
3061    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3062                                            TemplateNameLoc,
3063                                            WrittenTy.getTypePtr(),
3064                                            /*FIXME:*/KWLoc);
3065    Friend->setAccess(AS_public);
3066    CurContext->addDecl(Friend);
3067  } else {
3068    // Add the specialization into its lexical context, so that it can
3069    // be seen when iterating through the list of declarations in that
3070    // context. However, specializations are not found by name lookup.
3071    CurContext->addDecl(Specialization);
3072  }
3073  return DeclPtrTy::make(Specialization);
3074}
3075
3076Sema::DeclPtrTy
3077Sema::ActOnTemplateDeclarator(Scope *S,
3078                              MultiTemplateParamsArg TemplateParameterLists,
3079                              Declarator &D) {
3080  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3081}
3082
3083Sema::DeclPtrTy
3084Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3085                               MultiTemplateParamsArg TemplateParameterLists,
3086                                      Declarator &D) {
3087  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3088  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3089         "Not a function declarator!");
3090  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3091
3092  if (FTI.hasPrototype) {
3093    // FIXME: Diagnose arguments without names in C.
3094  }
3095
3096  Scope *ParentScope = FnBodyScope->getParent();
3097
3098  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3099                                  move(TemplateParameterLists),
3100                                  /*IsFunctionDefinition=*/true);
3101  if (FunctionTemplateDecl *FunctionTemplate
3102        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3103    return ActOnStartOfFunctionDef(FnBodyScope,
3104                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3105  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3106    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3107  return DeclPtrTy();
3108}
3109
3110/// \brief Diagnose cases where we have an explicit template specialization
3111/// before/after an explicit template instantiation, producing diagnostics
3112/// for those cases where they are required and determining whether the
3113/// new specialization/instantiation will have any effect.
3114///
3115/// \param NewLoc the location of the new explicit specialization or
3116/// instantiation.
3117///
3118/// \param NewTSK the kind of the new explicit specialization or instantiation.
3119///
3120/// \param PrevDecl the previous declaration of the entity.
3121///
3122/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3123///
3124/// \param PrevPointOfInstantiation if valid, indicates where the previus
3125/// declaration was instantiated (either implicitly or explicitly).
3126///
3127/// \param SuppressNew will be set to true to indicate that the new
3128/// specialization or instantiation has no effect and should be ignored.
3129///
3130/// \returns true if there was an error that should prevent the introduction of
3131/// the new declaration into the AST, false otherwise.
3132bool
3133Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3134                                             TemplateSpecializationKind NewTSK,
3135                                             NamedDecl *PrevDecl,
3136                                             TemplateSpecializationKind PrevTSK,
3137                                        SourceLocation PrevPointOfInstantiation,
3138                                             bool &SuppressNew) {
3139  SuppressNew = false;
3140
3141  switch (NewTSK) {
3142  case TSK_Undeclared:
3143  case TSK_ImplicitInstantiation:
3144    assert(false && "Don't check implicit instantiations here");
3145    return false;
3146
3147  case TSK_ExplicitSpecialization:
3148    switch (PrevTSK) {
3149    case TSK_Undeclared:
3150    case TSK_ExplicitSpecialization:
3151      // Okay, we're just specializing something that is either already
3152      // explicitly specialized or has merely been mentioned without any
3153      // instantiation.
3154      return false;
3155
3156    case TSK_ImplicitInstantiation:
3157      if (PrevPointOfInstantiation.isInvalid()) {
3158        // The declaration itself has not actually been instantiated, so it is
3159        // still okay to specialize it.
3160        return false;
3161      }
3162      // Fall through
3163
3164    case TSK_ExplicitInstantiationDeclaration:
3165    case TSK_ExplicitInstantiationDefinition:
3166      assert((PrevTSK == TSK_ImplicitInstantiation ||
3167              PrevPointOfInstantiation.isValid()) &&
3168             "Explicit instantiation without point of instantiation?");
3169
3170      // C++ [temp.expl.spec]p6:
3171      //   If a template, a member template or the member of a class template
3172      //   is explicitly specialized then that specialization shall be declared
3173      //   before the first use of that specialization that would cause an
3174      //   implicit instantiation to take place, in every translation unit in
3175      //   which such a use occurs; no diagnostic is required.
3176      Diag(NewLoc, diag::err_specialization_after_instantiation)
3177        << PrevDecl;
3178      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3179        << (PrevTSK != TSK_ImplicitInstantiation);
3180
3181      return true;
3182    }
3183    break;
3184
3185  case TSK_ExplicitInstantiationDeclaration:
3186    switch (PrevTSK) {
3187    case TSK_ExplicitInstantiationDeclaration:
3188      // This explicit instantiation declaration is redundant (that's okay).
3189      SuppressNew = true;
3190      return false;
3191
3192    case TSK_Undeclared:
3193    case TSK_ImplicitInstantiation:
3194      // We're explicitly instantiating something that may have already been
3195      // implicitly instantiated; that's fine.
3196      return false;
3197
3198    case TSK_ExplicitSpecialization:
3199      // C++0x [temp.explicit]p4:
3200      //   For a given set of template parameters, if an explicit instantiation
3201      //   of a template appears after a declaration of an explicit
3202      //   specialization for that template, the explicit instantiation has no
3203      //   effect.
3204      return false;
3205
3206    case TSK_ExplicitInstantiationDefinition:
3207      // C++0x [temp.explicit]p10:
3208      //   If an entity is the subject of both an explicit instantiation
3209      //   declaration and an explicit instantiation definition in the same
3210      //   translation unit, the definition shall follow the declaration.
3211      Diag(NewLoc,
3212           diag::err_explicit_instantiation_declaration_after_definition);
3213      Diag(PrevPointOfInstantiation,
3214           diag::note_explicit_instantiation_definition_here);
3215      assert(PrevPointOfInstantiation.isValid() &&
3216             "Explicit instantiation without point of instantiation?");
3217      SuppressNew = true;
3218      return false;
3219    }
3220    break;
3221
3222  case TSK_ExplicitInstantiationDefinition:
3223    switch (PrevTSK) {
3224    case TSK_Undeclared:
3225    case TSK_ImplicitInstantiation:
3226      // We're explicitly instantiating something that may have already been
3227      // implicitly instantiated; that's fine.
3228      return false;
3229
3230    case TSK_ExplicitSpecialization:
3231      // C++ DR 259, C++0x [temp.explicit]p4:
3232      //   For a given set of template parameters, if an explicit
3233      //   instantiation of a template appears after a declaration of
3234      //   an explicit specialization for that template, the explicit
3235      //   instantiation has no effect.
3236      //
3237      // In C++98/03 mode, we only give an extension warning here, because it
3238      // is not not harmful to try to explicitly instantiate something that
3239      // has been explicitly specialized.
3240      if (!getLangOptions().CPlusPlus0x) {
3241        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3242          << PrevDecl;
3243        Diag(PrevDecl->getLocation(),
3244             diag::note_previous_template_specialization);
3245      }
3246      SuppressNew = true;
3247      return false;
3248
3249    case TSK_ExplicitInstantiationDeclaration:
3250      // We're explicity instantiating a definition for something for which we
3251      // were previously asked to suppress instantiations. That's fine.
3252      return false;
3253
3254    case TSK_ExplicitInstantiationDefinition:
3255      // C++0x [temp.spec]p5:
3256      //   For a given template and a given set of template-arguments,
3257      //     - an explicit instantiation definition shall appear at most once
3258      //       in a program,
3259      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3260        << PrevDecl;
3261      Diag(PrevPointOfInstantiation,
3262           diag::note_previous_explicit_instantiation);
3263      SuppressNew = true;
3264      return false;
3265    }
3266    break;
3267  }
3268
3269  assert(false && "Missing specialization/instantiation case?");
3270
3271  return false;
3272}
3273
3274/// \brief Perform semantic analysis for the given function template
3275/// specialization.
3276///
3277/// This routine performs all of the semantic analysis required for an
3278/// explicit function template specialization. On successful completion,
3279/// the function declaration \p FD will become a function template
3280/// specialization.
3281///
3282/// \param FD the function declaration, which will be updated to become a
3283/// function template specialization.
3284///
3285/// \param HasExplicitTemplateArgs whether any template arguments were
3286/// explicitly provided.
3287///
3288/// \param LAngleLoc the location of the left angle bracket ('<'), if
3289/// template arguments were explicitly provided.
3290///
3291/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3292/// if any.
3293///
3294/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3295/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3296/// true as in, e.g., \c void sort<>(char*, char*);
3297///
3298/// \param RAngleLoc the location of the right angle bracket ('>'), if
3299/// template arguments were explicitly provided.
3300///
3301/// \param PrevDecl the set of declarations that
3302bool
3303Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3304                                          bool HasExplicitTemplateArgs,
3305                                          SourceLocation LAngleLoc,
3306                           const TemplateArgumentLoc *ExplicitTemplateArgs,
3307                                          unsigned NumExplicitTemplateArgs,
3308                                          SourceLocation RAngleLoc,
3309                                          NamedDecl *&PrevDecl) {
3310  // The set of function template specializations that could match this
3311  // explicit function template specialization.
3312  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3313  CandidateSet Candidates;
3314
3315  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3316  for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3317    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) {
3318      // Only consider templates found within the same semantic lookup scope as
3319      // FD.
3320      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3321        continue;
3322
3323      // C++ [temp.expl.spec]p11:
3324      //   A trailing template-argument can be left unspecified in the
3325      //   template-id naming an explicit function template specialization
3326      //   provided it can be deduced from the function argument type.
3327      // Perform template argument deduction to determine whether we may be
3328      // specializing this template.
3329      // FIXME: It is somewhat wasteful to build
3330      TemplateDeductionInfo Info(Context);
3331      FunctionDecl *Specialization = 0;
3332      if (TemplateDeductionResult TDK
3333            = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
3334                                      ExplicitTemplateArgs,
3335                                      NumExplicitTemplateArgs,
3336                                      FD->getType(),
3337                                      Specialization,
3338                                      Info)) {
3339        // FIXME: Template argument deduction failed; record why it failed, so
3340        // that we can provide nifty diagnostics.
3341        (void)TDK;
3342        continue;
3343      }
3344
3345      // Record this candidate.
3346      Candidates.push_back(Specialization);
3347    }
3348  }
3349
3350  // Find the most specialized function template.
3351  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3352                                                    Candidates.size(),
3353                                                    TPOC_Other,
3354                                                    FD->getLocation(),
3355                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3356                    << FD->getDeclName(),
3357                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3358                    << FD->getDeclName() << HasExplicitTemplateArgs,
3359                  PartialDiagnostic(diag::note_function_template_spec_matched));
3360  if (!Specialization)
3361    return true;
3362
3363  // FIXME: Check if the prior specialization has a point of instantiation.
3364  // If so, we have run afoul of .
3365
3366  // Check the scope of this explicit specialization.
3367  if (CheckTemplateSpecializationScope(*this,
3368                                       Specialization->getPrimaryTemplate(),
3369                                       Specialization, FD->getLocation(),
3370                                       false))
3371    return true;
3372
3373  // C++ [temp.expl.spec]p6:
3374  //   If a template, a member template or the member of a class template is
3375  //   explicitly specialized then that specialization shall be declared
3376  //   before the first use of that specialization that would cause an implicit
3377  //   instantiation to take place, in every translation unit in which such a
3378  //   use occurs; no diagnostic is required.
3379  FunctionTemplateSpecializationInfo *SpecInfo
3380    = Specialization->getTemplateSpecializationInfo();
3381  assert(SpecInfo && "Function template specialization info missing?");
3382  if (SpecInfo->getPointOfInstantiation().isValid()) {
3383    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3384      << FD;
3385    Diag(SpecInfo->getPointOfInstantiation(),
3386         diag::note_instantiation_required_here)
3387      << (Specialization->getTemplateSpecializationKind()
3388                                                != TSK_ImplicitInstantiation);
3389    return true;
3390  }
3391
3392  // Mark the prior declaration as an explicit specialization, so that later
3393  // clients know that this is an explicit specialization.
3394  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3395
3396  // Turn the given function declaration into a function template
3397  // specialization, with the template arguments from the previous
3398  // specialization.
3399  FD->setFunctionTemplateSpecialization(Context,
3400                                        Specialization->getPrimaryTemplate(),
3401                         new (Context) TemplateArgumentList(
3402                             *Specialization->getTemplateSpecializationArgs()),
3403                                        /*InsertPos=*/0,
3404                                        TSK_ExplicitSpecialization);
3405
3406  // The "previous declaration" for this function template specialization is
3407  // the prior function template specialization.
3408  PrevDecl = Specialization;
3409  return false;
3410}
3411
3412/// \brief Perform semantic analysis for the given non-template member
3413/// specialization.
3414///
3415/// This routine performs all of the semantic analysis required for an
3416/// explicit member function specialization. On successful completion,
3417/// the function declaration \p FD will become a member function
3418/// specialization.
3419///
3420/// \param Member the member declaration, which will be updated to become a
3421/// specialization.
3422///
3423/// \param PrevDecl the set of declarations, one of which may be specialized
3424/// by this function specialization.
3425bool
3426Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) {
3427  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3428
3429  // Try to find the member we are instantiating.
3430  NamedDecl *Instantiation = 0;
3431  NamedDecl *InstantiatedFrom = 0;
3432  MemberSpecializationInfo *MSInfo = 0;
3433
3434  if (!PrevDecl) {
3435    // Nowhere to look anyway.
3436  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3437    for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3438      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) {
3439        if (Context.hasSameType(Function->getType(), Method->getType())) {
3440          Instantiation = Method;
3441          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3442          MSInfo = Method->getMemberSpecializationInfo();
3443          break;
3444        }
3445      }
3446    }
3447  } else if (isa<VarDecl>(Member)) {
3448    if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl))
3449      if (PrevVar->isStaticDataMember()) {
3450        Instantiation = PrevDecl;
3451        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3452        MSInfo = PrevVar->getMemberSpecializationInfo();
3453      }
3454  } else if (isa<RecordDecl>(Member)) {
3455    if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) {
3456      Instantiation = PrevDecl;
3457      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3458      MSInfo = PrevRecord->getMemberSpecializationInfo();
3459    }
3460  }
3461
3462  if (!Instantiation) {
3463    // There is no previous declaration that matches. Since member
3464    // specializations are always out-of-line, the caller will complain about
3465    // this mismatch later.
3466    return false;
3467  }
3468
3469  // Make sure that this is a specialization of a member.
3470  if (!InstantiatedFrom) {
3471    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3472      << Member;
3473    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3474    return true;
3475  }
3476
3477  // C++ [temp.expl.spec]p6:
3478  //   If a template, a member template or the member of a class template is
3479  //   explicitly specialized then that spe- cialization shall be declared
3480  //   before the first use of that specialization that would cause an implicit
3481  //   instantiation to take place, in every translation unit in which such a
3482  //   use occurs; no diagnostic is required.
3483  assert(MSInfo && "Member specialization info missing?");
3484  if (MSInfo->getPointOfInstantiation().isValid()) {
3485    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
3486      << Member;
3487    Diag(MSInfo->getPointOfInstantiation(),
3488         diag::note_instantiation_required_here)
3489      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
3490    return true;
3491  }
3492
3493  // Check the scope of this explicit specialization.
3494  if (CheckTemplateSpecializationScope(*this,
3495                                       InstantiatedFrom,
3496                                       Instantiation, Member->getLocation(),
3497                                       false))
3498    return true;
3499
3500  // Note that this is an explicit instantiation of a member.
3501  // the original declaration to note that it is an explicit specialization
3502  // (if it was previously an implicit instantiation). This latter step
3503  // makes bookkeeping easier.
3504  if (isa<FunctionDecl>(Member)) {
3505    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
3506    if (InstantiationFunction->getTemplateSpecializationKind() ==
3507          TSK_ImplicitInstantiation) {
3508      InstantiationFunction->setTemplateSpecializationKind(
3509                                                  TSK_ExplicitSpecialization);
3510      InstantiationFunction->setLocation(Member->getLocation());
3511    }
3512
3513    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
3514                                        cast<CXXMethodDecl>(InstantiatedFrom),
3515                                                  TSK_ExplicitSpecialization);
3516  } else if (isa<VarDecl>(Member)) {
3517    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
3518    if (InstantiationVar->getTemplateSpecializationKind() ==
3519          TSK_ImplicitInstantiation) {
3520      InstantiationVar->setTemplateSpecializationKind(
3521                                                  TSK_ExplicitSpecialization);
3522      InstantiationVar->setLocation(Member->getLocation());
3523    }
3524
3525    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
3526                                                cast<VarDecl>(InstantiatedFrom),
3527                                                TSK_ExplicitSpecialization);
3528  } else {
3529    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
3530    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
3531    if (InstantiationClass->getTemplateSpecializationKind() ==
3532          TSK_ImplicitInstantiation) {
3533      InstantiationClass->setTemplateSpecializationKind(
3534                                                   TSK_ExplicitSpecialization);
3535      InstantiationClass->setLocation(Member->getLocation());
3536    }
3537
3538    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
3539                                        cast<CXXRecordDecl>(InstantiatedFrom),
3540                                                   TSK_ExplicitSpecialization);
3541  }
3542
3543  // Save the caller the trouble of having to figure out which declaration
3544  // this specialization matches.
3545  PrevDecl = Instantiation;
3546  return false;
3547}
3548
3549/// \brief Check the scope of an explicit instantiation.
3550static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
3551                                            SourceLocation InstLoc,
3552                                            bool WasQualifiedName) {
3553  DeclContext *ExpectedContext
3554    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
3555  DeclContext *CurContext = S.CurContext->getLookupContext();
3556
3557  // C++0x [temp.explicit]p2:
3558  //   An explicit instantiation shall appear in an enclosing namespace of its
3559  //   template.
3560  //
3561  // This is DR275, which we do not retroactively apply to C++98/03.
3562  if (S.getLangOptions().CPlusPlus0x &&
3563      !CurContext->Encloses(ExpectedContext)) {
3564    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
3565      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
3566        << D << NS;
3567    else
3568      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
3569        << D;
3570    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3571    return;
3572  }
3573
3574  // C++0x [temp.explicit]p2:
3575  //   If the name declared in the explicit instantiation is an unqualified
3576  //   name, the explicit instantiation shall appear in the namespace where
3577  //   its template is declared or, if that namespace is inline (7.3.1), any
3578  //   namespace from its enclosing namespace set.
3579  if (WasQualifiedName)
3580    return;
3581
3582  if (CurContext->Equals(ExpectedContext))
3583    return;
3584
3585  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
3586    << D << ExpectedContext;
3587  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3588}
3589
3590/// \brief Determine whether the given scope specifier has a template-id in it.
3591static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
3592  if (!SS.isSet())
3593    return false;
3594
3595  // C++0x [temp.explicit]p2:
3596  //   If the explicit instantiation is for a member function, a member class
3597  //   or a static data member of a class template specialization, the name of
3598  //   the class template specialization in the qualified-id for the member
3599  //   name shall be a simple-template-id.
3600  //
3601  // C++98 has the same restriction, just worded differently.
3602  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
3603       NNS; NNS = NNS->getPrefix())
3604    if (Type *T = NNS->getAsType())
3605      if (isa<TemplateSpecializationType>(T))
3606        return true;
3607
3608  return false;
3609}
3610
3611// Explicit instantiation of a class template specialization
3612// FIXME: Implement extern template semantics
3613Sema::DeclResult
3614Sema::ActOnExplicitInstantiation(Scope *S,
3615                                 SourceLocation ExternLoc,
3616                                 SourceLocation TemplateLoc,
3617                                 unsigned TagSpec,
3618                                 SourceLocation KWLoc,
3619                                 const CXXScopeSpec &SS,
3620                                 TemplateTy TemplateD,
3621                                 SourceLocation TemplateNameLoc,
3622                                 SourceLocation LAngleLoc,
3623                                 ASTTemplateArgsPtr TemplateArgsIn,
3624                                 SourceLocation *TemplateArgLocs,
3625                                 SourceLocation RAngleLoc,
3626                                 AttributeList *Attr) {
3627  // Find the class template we're specializing
3628  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3629  ClassTemplateDecl *ClassTemplate
3630    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
3631
3632  // Check that the specialization uses the same tag kind as the
3633  // original template.
3634  TagDecl::TagKind Kind;
3635  switch (TagSpec) {
3636  default: assert(0 && "Unknown tag type!");
3637  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3638  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3639  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3640  }
3641  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3642                                    Kind, KWLoc,
3643                                    *ClassTemplate->getIdentifier())) {
3644    Diag(KWLoc, diag::err_use_with_wrong_tag)
3645      << ClassTemplate
3646      << CodeModificationHint::CreateReplacement(KWLoc,
3647                            ClassTemplate->getTemplatedDecl()->getKindName());
3648    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3649         diag::note_previous_use);
3650    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3651  }
3652
3653  // C++0x [temp.explicit]p2:
3654  //   There are two forms of explicit instantiation: an explicit instantiation
3655  //   definition and an explicit instantiation declaration. An explicit
3656  //   instantiation declaration begins with the extern keyword. [...]
3657  TemplateSpecializationKind TSK
3658    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3659                           : TSK_ExplicitInstantiationDeclaration;
3660
3661  // Translate the parser's template argument list in our AST format.
3662  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
3663  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
3664
3665  // Check that the template argument list is well-formed for this
3666  // template.
3667  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3668                                        TemplateArgs.size());
3669  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3670                                TemplateArgs.data(), TemplateArgs.size(),
3671                                RAngleLoc, false, Converted))
3672    return true;
3673
3674  assert((Converted.structuredSize() ==
3675            ClassTemplate->getTemplateParameters()->size()) &&
3676         "Converted template argument list is too short!");
3677
3678  // Find the class template specialization declaration that
3679  // corresponds to these arguments.
3680  llvm::FoldingSetNodeID ID;
3681  ClassTemplateSpecializationDecl::Profile(ID,
3682                                           Converted.getFlatArguments(),
3683                                           Converted.flatSize(),
3684                                           Context);
3685  void *InsertPos = 0;
3686  ClassTemplateSpecializationDecl *PrevDecl
3687    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3688
3689  // C++0x [temp.explicit]p2:
3690  //   [...] An explicit instantiation shall appear in an enclosing
3691  //   namespace of its template. [...]
3692  //
3693  // This is C++ DR 275.
3694  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
3695                                  SS.isSet());
3696
3697  ClassTemplateSpecializationDecl *Specialization = 0;
3698
3699  if (PrevDecl) {
3700    bool SuppressNew = false;
3701    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
3702                                               PrevDecl,
3703                                              PrevDecl->getSpecializationKind(),
3704                                            PrevDecl->getPointOfInstantiation(),
3705                                               SuppressNew))
3706      return DeclPtrTy::make(PrevDecl);
3707
3708    if (SuppressNew)
3709      return DeclPtrTy::make(PrevDecl);
3710
3711    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
3712        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3713      // Since the only prior class template specialization with these
3714      // arguments was referenced but not declared, reuse that
3715      // declaration node as our own, updating its source location to
3716      // reflect our new declaration.
3717      Specialization = PrevDecl;
3718      Specialization->setLocation(TemplateNameLoc);
3719      PrevDecl = 0;
3720    }
3721  }
3722
3723  if (!Specialization) {
3724    // Create a new class template specialization declaration node for
3725    // this explicit specialization.
3726    Specialization
3727      = ClassTemplateSpecializationDecl::Create(Context,
3728                                             ClassTemplate->getDeclContext(),
3729                                                TemplateNameLoc,
3730                                                ClassTemplate,
3731                                                Converted, PrevDecl);
3732
3733    if (PrevDecl) {
3734      // Remove the previous declaration from the folding set, since we want
3735      // to introduce a new declaration.
3736      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3737      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3738    }
3739
3740    // Insert the new specialization.
3741    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
3742  }
3743
3744  // Build the fully-sugared type for this explicit instantiation as
3745  // the user wrote in the explicit instantiation itself. This means
3746  // that we'll pretty-print the type retrieved from the
3747  // specialization's declaration the way that the user actually wrote
3748  // the explicit instantiation, rather than formatting the name based
3749  // on the "canonical" representation used to store the template
3750  // arguments in the specialization.
3751  QualType WrittenTy
3752    = Context.getTemplateSpecializationType(Name,
3753                                            TemplateArgs.data(),
3754                                            TemplateArgs.size(),
3755                                  Context.getTypeDeclType(Specialization));
3756  Specialization->setTypeAsWritten(WrittenTy);
3757  TemplateArgsIn.release();
3758
3759  // Add the explicit instantiation into its lexical context. However,
3760  // since explicit instantiations are never found by name lookup, we
3761  // just put it into the declaration context directly.
3762  Specialization->setLexicalDeclContext(CurContext);
3763  CurContext->addDecl(Specialization);
3764
3765  // C++ [temp.explicit]p3:
3766  //   A definition of a class template or class member template
3767  //   shall be in scope at the point of the explicit instantiation of
3768  //   the class template or class member template.
3769  //
3770  // This check comes when we actually try to perform the
3771  // instantiation.
3772  ClassTemplateSpecializationDecl *Def
3773    = cast_or_null<ClassTemplateSpecializationDecl>(
3774                                        Specialization->getDefinition(Context));
3775  if (!Def)
3776    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
3777
3778  // Instantiate the members of this class template specialization.
3779  Def = cast_or_null<ClassTemplateSpecializationDecl>(
3780                                       Specialization->getDefinition(Context));
3781  if (Def)
3782    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
3783
3784  return DeclPtrTy::make(Specialization);
3785}
3786
3787// Explicit instantiation of a member class of a class template.
3788Sema::DeclResult
3789Sema::ActOnExplicitInstantiation(Scope *S,
3790                                 SourceLocation ExternLoc,
3791                                 SourceLocation TemplateLoc,
3792                                 unsigned TagSpec,
3793                                 SourceLocation KWLoc,
3794                                 const CXXScopeSpec &SS,
3795                                 IdentifierInfo *Name,
3796                                 SourceLocation NameLoc,
3797                                 AttributeList *Attr) {
3798
3799  bool Owned = false;
3800  bool IsDependent = false;
3801  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
3802                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
3803                            MultiTemplateParamsArg(*this, 0, 0),
3804                            Owned, IsDependent);
3805  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
3806
3807  if (!TagD)
3808    return true;
3809
3810  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3811  if (Tag->isEnum()) {
3812    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
3813      << Context.getTypeDeclType(Tag);
3814    return true;
3815  }
3816
3817  if (Tag->isInvalidDecl())
3818    return true;
3819
3820  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
3821  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
3822  if (!Pattern) {
3823    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
3824      << Context.getTypeDeclType(Record);
3825    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
3826    return true;
3827  }
3828
3829  // C++0x [temp.explicit]p2:
3830  //   If the explicit instantiation is for a class or member class, the
3831  //   elaborated-type-specifier in the declaration shall include a
3832  //   simple-template-id.
3833  //
3834  // C++98 has the same restriction, just worded differently.
3835  if (!ScopeSpecifierHasTemplateId(SS))
3836    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
3837      << Record << SS.getRange();
3838
3839  // C++0x [temp.explicit]p2:
3840  //   There are two forms of explicit instantiation: an explicit instantiation
3841  //   definition and an explicit instantiation declaration. An explicit
3842  //   instantiation declaration begins with the extern keyword. [...]
3843  TemplateSpecializationKind TSK
3844    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3845                           : TSK_ExplicitInstantiationDeclaration;
3846
3847  // C++0x [temp.explicit]p2:
3848  //   [...] An explicit instantiation shall appear in an enclosing
3849  //   namespace of its template. [...]
3850  //
3851  // This is C++ DR 275.
3852  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
3853
3854  // Verify that it is okay to explicitly instantiate here.
3855  CXXRecordDecl *PrevDecl
3856    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
3857  if (!PrevDecl && Record->getDefinition(Context))
3858    PrevDecl = Record;
3859  if (PrevDecl) {
3860    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
3861    bool SuppressNew = false;
3862    assert(MSInfo && "No member specialization information?");
3863    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
3864                                               PrevDecl,
3865                                        MSInfo->getTemplateSpecializationKind(),
3866                                             MSInfo->getPointOfInstantiation(),
3867                                               SuppressNew))
3868      return true;
3869    if (SuppressNew)
3870      return TagD;
3871  }
3872
3873  CXXRecordDecl *RecordDef
3874    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
3875  if (!RecordDef) {
3876    // C++ [temp.explicit]p3:
3877    //   A definition of a member class of a class template shall be in scope
3878    //   at the point of an explicit instantiation of the member class.
3879    CXXRecordDecl *Def
3880      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
3881    if (!Def) {
3882      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
3883        << 0 << Record->getDeclName() << Record->getDeclContext();
3884      Diag(Pattern->getLocation(), diag::note_forward_declaration)
3885        << Pattern;
3886      return true;
3887    } else {
3888      if (InstantiateClass(NameLoc, Record, Def,
3889                           getTemplateInstantiationArgs(Record),
3890                           TSK))
3891        return true;
3892
3893      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
3894      if (!RecordDef)
3895        return true;
3896    }
3897  }
3898
3899  // Instantiate all of the members of the class.
3900  InstantiateClassMembers(NameLoc, RecordDef,
3901                          getTemplateInstantiationArgs(Record), TSK);
3902
3903  // FIXME: We don't have any representation for explicit instantiations of
3904  // member classes. Such a representation is not needed for compilation, but it
3905  // should be available for clients that want to see all of the declarations in
3906  // the source code.
3907  return TagD;
3908}
3909
3910Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
3911                                                  SourceLocation ExternLoc,
3912                                                  SourceLocation TemplateLoc,
3913                                                  Declarator &D) {
3914  // Explicit instantiations always require a name.
3915  DeclarationName Name = GetNameForDeclarator(D);
3916  if (!Name) {
3917    if (!D.isInvalidType())
3918      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3919           diag::err_explicit_instantiation_requires_name)
3920        << D.getDeclSpec().getSourceRange()
3921        << D.getSourceRange();
3922
3923    return true;
3924  }
3925
3926  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3927  // we find one that is.
3928  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3929         (S->getFlags() & Scope::TemplateParamScope) != 0)
3930    S = S->getParent();
3931
3932  // Determine the type of the declaration.
3933  QualType R = GetTypeForDeclarator(D, S, 0);
3934  if (R.isNull())
3935    return true;
3936
3937  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3938    // Cannot explicitly instantiate a typedef.
3939    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
3940      << Name;
3941    return true;
3942  }
3943
3944  // C++0x [temp.explicit]p1:
3945  //   [...] An explicit instantiation of a function template shall not use the
3946  //   inline or constexpr specifiers.
3947  // Presumably, this also applies to member functions of class templates as
3948  // well.
3949  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
3950    Diag(D.getDeclSpec().getInlineSpecLoc(),
3951         diag::err_explicit_instantiation_inline)
3952      << CodeModificationHint::CreateRemoval(
3953                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
3954
3955  // FIXME: check for constexpr specifier.
3956
3957  // C++0x [temp.explicit]p2:
3958  //   There are two forms of explicit instantiation: an explicit instantiation
3959  //   definition and an explicit instantiation declaration. An explicit
3960  //   instantiation declaration begins with the extern keyword. [...]
3961  TemplateSpecializationKind TSK
3962    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3963                           : TSK_ExplicitInstantiationDeclaration;
3964
3965  LookupResult Previous;
3966  LookupParsedName(Previous, S, &D.getCXXScopeSpec(),
3967                   Name, LookupOrdinaryName);
3968
3969  if (!R->isFunctionType()) {
3970    // C++ [temp.explicit]p1:
3971    //   A [...] static data member of a class template can be explicitly
3972    //   instantiated from the member definition associated with its class
3973    //   template.
3974    if (Previous.isAmbiguous()) {
3975      return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(),
3976                                     D.getSourceRange());
3977    }
3978
3979    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
3980        Previous.getAsSingleDecl(Context));
3981    if (!Prev || !Prev->isStaticDataMember()) {
3982      // We expect to see a data data member here.
3983      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
3984        << Name;
3985      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
3986           P != PEnd; ++P)
3987        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
3988      return true;
3989    }
3990
3991    if (!Prev->getInstantiatedFromStaticDataMember()) {
3992      // FIXME: Check for explicit specialization?
3993      Diag(D.getIdentifierLoc(),
3994           diag::err_explicit_instantiation_data_member_not_instantiated)
3995        << Prev;
3996      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
3997      // FIXME: Can we provide a note showing where this was declared?
3998      return true;
3999    }
4000
4001    // C++0x [temp.explicit]p2:
4002    //   If the explicit instantiation is for a member function, a member class
4003    //   or a static data member of a class template specialization, the name of
4004    //   the class template specialization in the qualified-id for the member
4005    //   name shall be a simple-template-id.
4006    //
4007    // C++98 has the same restriction, just worded differently.
4008    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4009      Diag(D.getIdentifierLoc(),
4010           diag::err_explicit_instantiation_without_qualified_id)
4011        << Prev << D.getCXXScopeSpec().getRange();
4012
4013    // Check the scope of this explicit instantiation.
4014    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4015
4016    // Verify that it is okay to explicitly instantiate here.
4017    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4018    assert(MSInfo && "Missing static data member specialization info?");
4019    bool SuppressNew = false;
4020    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4021                                        MSInfo->getTemplateSpecializationKind(),
4022                                              MSInfo->getPointOfInstantiation(),
4023                                               SuppressNew))
4024      return true;
4025    if (SuppressNew)
4026      return DeclPtrTy();
4027
4028    // Instantiate static data member.
4029    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4030    if (TSK == TSK_ExplicitInstantiationDefinition)
4031      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4032                                            /*DefinitionRequired=*/true);
4033
4034    // FIXME: Create an ExplicitInstantiation node?
4035    return DeclPtrTy();
4036  }
4037
4038  // If the declarator is a template-id, translate the parser's template
4039  // argument list into our AST format.
4040  bool HasExplicitTemplateArgs = false;
4041  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
4042  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4043    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4044    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4045                                       TemplateId->getTemplateArgs(),
4046                                       TemplateId->getTemplateArgIsType(),
4047                                       TemplateId->NumArgs);
4048    translateTemplateArguments(TemplateArgsPtr,
4049                               TemplateId->getTemplateArgLocations(),
4050                               TemplateArgs);
4051    HasExplicitTemplateArgs = true;
4052    TemplateArgsPtr.release();
4053  }
4054
4055  // C++ [temp.explicit]p1:
4056  //   A [...] function [...] can be explicitly instantiated from its template.
4057  //   A member function [...] of a class template can be explicitly
4058  //  instantiated from the member definition associated with its class
4059  //  template.
4060  llvm::SmallVector<FunctionDecl *, 8> Matches;
4061  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4062       P != PEnd; ++P) {
4063    NamedDecl *Prev = *P;
4064    if (!HasExplicitTemplateArgs) {
4065      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4066        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4067          Matches.clear();
4068          Matches.push_back(Method);
4069          break;
4070        }
4071      }
4072    }
4073
4074    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4075    if (!FunTmpl)
4076      continue;
4077
4078    TemplateDeductionInfo Info(Context);
4079    FunctionDecl *Specialization = 0;
4080    if (TemplateDeductionResult TDK
4081          = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
4082                                    TemplateArgs.data(), TemplateArgs.size(),
4083                                    R, Specialization, Info)) {
4084      // FIXME: Keep track of almost-matches?
4085      (void)TDK;
4086      continue;
4087    }
4088
4089    Matches.push_back(Specialization);
4090  }
4091
4092  // Find the most specialized function template specialization.
4093  FunctionDecl *Specialization
4094    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4095                         D.getIdentifierLoc(),
4096          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4097          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4098                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4099
4100  if (!Specialization)
4101    return true;
4102
4103  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4104    Diag(D.getIdentifierLoc(),
4105         diag::err_explicit_instantiation_member_function_not_instantiated)
4106      << Specialization
4107      << (Specialization->getTemplateSpecializationKind() ==
4108          TSK_ExplicitSpecialization);
4109    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4110    return true;
4111  }
4112
4113  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4114  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4115    PrevDecl = Specialization;
4116
4117  if (PrevDecl) {
4118    bool SuppressNew = false;
4119    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4120                                               PrevDecl,
4121                                     PrevDecl->getTemplateSpecializationKind(),
4122                                          PrevDecl->getPointOfInstantiation(),
4123                                               SuppressNew))
4124      return true;
4125
4126    // FIXME: We may still want to build some representation of this
4127    // explicit specialization.
4128    if (SuppressNew)
4129      return DeclPtrTy();
4130  }
4131
4132  if (TSK == TSK_ExplicitInstantiationDefinition)
4133    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4134                                  false, /*DefinitionRequired=*/true);
4135
4136  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4137
4138  // C++0x [temp.explicit]p2:
4139  //   If the explicit instantiation is for a member function, a member class
4140  //   or a static data member of a class template specialization, the name of
4141  //   the class template specialization in the qualified-id for the member
4142  //   name shall be a simple-template-id.
4143  //
4144  // C++98 has the same restriction, just worded differently.
4145  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4146  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4147      D.getCXXScopeSpec().isSet() &&
4148      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4149    Diag(D.getIdentifierLoc(),
4150         diag::err_explicit_instantiation_without_qualified_id)
4151    << Specialization << D.getCXXScopeSpec().getRange();
4152
4153  CheckExplicitInstantiationScope(*this,
4154                   FunTmpl? (NamedDecl *)FunTmpl
4155                          : Specialization->getInstantiatedFromMemberFunction(),
4156                                  D.getIdentifierLoc(),
4157                                  D.getCXXScopeSpec().isSet());
4158
4159  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4160  return DeclPtrTy();
4161}
4162
4163Sema::TypeResult
4164Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4165                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4166                        SourceLocation TagLoc, SourceLocation NameLoc) {
4167  // This has to hold, because SS is expected to be defined.
4168  assert(Name && "Expected a name in a dependent tag");
4169
4170  NestedNameSpecifier *NNS
4171    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4172  if (!NNS)
4173    return true;
4174
4175  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4176  if (T.isNull())
4177    return true;
4178
4179  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4180  QualType ElabType = Context.getElaboratedType(T, TagKind);
4181
4182  return ElabType.getAsOpaquePtr();
4183}
4184
4185Sema::TypeResult
4186Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4187                        const IdentifierInfo &II, SourceLocation IdLoc) {
4188  NestedNameSpecifier *NNS
4189    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4190  if (!NNS)
4191    return true;
4192
4193  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4194  if (T.isNull())
4195    return true;
4196  return T.getAsOpaquePtr();
4197}
4198
4199Sema::TypeResult
4200Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4201                        SourceLocation TemplateLoc, TypeTy *Ty) {
4202  QualType T = GetTypeFromParser(Ty);
4203  NestedNameSpecifier *NNS
4204    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4205  const TemplateSpecializationType *TemplateId
4206    = T->getAs<TemplateSpecializationType>();
4207  assert(TemplateId && "Expected a template specialization type");
4208
4209  if (computeDeclContext(SS, false)) {
4210    // If we can compute a declaration context, then the "typename"
4211    // keyword was superfluous. Just build a QualifiedNameType to keep
4212    // track of the nested-name-specifier.
4213
4214    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4215    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4216  }
4217
4218  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4219}
4220
4221/// \brief Build the type that describes a C++ typename specifier,
4222/// e.g., "typename T::type".
4223QualType
4224Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4225                        SourceRange Range) {
4226  CXXRecordDecl *CurrentInstantiation = 0;
4227  if (NNS->isDependent()) {
4228    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4229
4230    // If the nested-name-specifier does not refer to the current
4231    // instantiation, then build a typename type.
4232    if (!CurrentInstantiation)
4233      return Context.getTypenameType(NNS, &II);
4234
4235    // The nested-name-specifier refers to the current instantiation, so the
4236    // "typename" keyword itself is superfluous. In C++03, the program is
4237    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4238    // extraneous "typename" keywords, and we retroactively apply this DR to
4239    // C++03 code.
4240  }
4241
4242  DeclContext *Ctx = 0;
4243
4244  if (CurrentInstantiation)
4245    Ctx = CurrentInstantiation;
4246  else {
4247    CXXScopeSpec SS;
4248    SS.setScopeRep(NNS);
4249    SS.setRange(Range);
4250    if (RequireCompleteDeclContext(SS))
4251      return QualType();
4252
4253    Ctx = computeDeclContext(SS);
4254  }
4255  assert(Ctx && "No declaration context?");
4256
4257  DeclarationName Name(&II);
4258  LookupResult Result;
4259  LookupQualifiedName(Result, Ctx, Name, LookupOrdinaryName, false);
4260  unsigned DiagID = 0;
4261  Decl *Referenced = 0;
4262  switch (Result.getKind()) {
4263  case LookupResult::NotFound:
4264    DiagID = diag::err_typename_nested_not_found;
4265    break;
4266
4267  case LookupResult::Found:
4268    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4269      // We found a type. Build a QualifiedNameType, since the
4270      // typename-specifier was just sugar. FIXME: Tell
4271      // QualifiedNameType that it has a "typename" prefix.
4272      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4273    }
4274
4275    DiagID = diag::err_typename_nested_not_type;
4276    Referenced = Result.getFoundDecl();
4277    break;
4278
4279  case LookupResult::FoundOverloaded:
4280    DiagID = diag::err_typename_nested_not_type;
4281    Referenced = *Result.begin();
4282    break;
4283
4284  case LookupResult::Ambiguous:
4285    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
4286    return QualType();
4287  }
4288
4289  // If we get here, it's because name lookup did not find a
4290  // type. Emit an appropriate diagnostic and return an error.
4291  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4292  if (Referenced)
4293    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4294      << Name;
4295  return QualType();
4296}
4297
4298namespace {
4299  // See Sema::RebuildTypeInCurrentInstantiation
4300  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
4301    : public TreeTransform<CurrentInstantiationRebuilder> {
4302    SourceLocation Loc;
4303    DeclarationName Entity;
4304
4305  public:
4306    CurrentInstantiationRebuilder(Sema &SemaRef,
4307                                  SourceLocation Loc,
4308                                  DeclarationName Entity)
4309    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4310      Loc(Loc), Entity(Entity) { }
4311
4312    /// \brief Determine whether the given type \p T has already been
4313    /// transformed.
4314    ///
4315    /// For the purposes of type reconstruction, a type has already been
4316    /// transformed if it is NULL or if it is not dependent.
4317    bool AlreadyTransformed(QualType T) {
4318      return T.isNull() || !T->isDependentType();
4319    }
4320
4321    /// \brief Returns the location of the entity whose type is being
4322    /// rebuilt.
4323    SourceLocation getBaseLocation() { return Loc; }
4324
4325    /// \brief Returns the name of the entity whose type is being rebuilt.
4326    DeclarationName getBaseEntity() { return Entity; }
4327
4328    /// \brief Sets the "base" location and entity when that
4329    /// information is known based on another transformation.
4330    void setBase(SourceLocation Loc, DeclarationName Entity) {
4331      this->Loc = Loc;
4332      this->Entity = Entity;
4333    }
4334
4335    /// \brief Transforms an expression by returning the expression itself
4336    /// (an identity function).
4337    ///
4338    /// FIXME: This is completely unsafe; we will need to actually clone the
4339    /// expressions.
4340    Sema::OwningExprResult TransformExpr(Expr *E) {
4341      return getSema().Owned(E);
4342    }
4343
4344    /// \brief Transforms a typename type by determining whether the type now
4345    /// refers to a member of the current instantiation, and then
4346    /// type-checking and building a QualifiedNameType (when possible).
4347    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4348  };
4349}
4350
4351QualType
4352CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4353                                                     TypenameTypeLoc TL) {
4354  TypenameType *T = TL.getTypePtr();
4355
4356  NestedNameSpecifier *NNS
4357    = TransformNestedNameSpecifier(T->getQualifier(),
4358                              /*FIXME:*/SourceRange(getBaseLocation()));
4359  if (!NNS)
4360    return QualType();
4361
4362  // If the nested-name-specifier did not change, and we cannot compute the
4363  // context corresponding to the nested-name-specifier, then this
4364  // typename type will not change; exit early.
4365  CXXScopeSpec SS;
4366  SS.setRange(SourceRange(getBaseLocation()));
4367  SS.setScopeRep(NNS);
4368
4369  QualType Result;
4370  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4371    Result = QualType(T, 0);
4372
4373  // Rebuild the typename type, which will probably turn into a
4374  // QualifiedNameType.
4375  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4376    QualType NewTemplateId
4377      = TransformType(QualType(TemplateId, 0));
4378    if (NewTemplateId.isNull())
4379      return QualType();
4380
4381    if (NNS == T->getQualifier() &&
4382        NewTemplateId == QualType(TemplateId, 0))
4383      Result = QualType(T, 0);
4384    else
4385      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4386  } else
4387    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4388                                              SourceRange(TL.getNameLoc()));
4389
4390  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4391  NewTL.setNameLoc(TL.getNameLoc());
4392  return Result;
4393}
4394
4395/// \brief Rebuilds a type within the context of the current instantiation.
4396///
4397/// The type \p T is part of the type of an out-of-line member definition of
4398/// a class template (or class template partial specialization) that was parsed
4399/// and constructed before we entered the scope of the class template (or
4400/// partial specialization thereof). This routine will rebuild that type now
4401/// that we have entered the declarator's scope, which may produce different
4402/// canonical types, e.g.,
4403///
4404/// \code
4405/// template<typename T>
4406/// struct X {
4407///   typedef T* pointer;
4408///   pointer data();
4409/// };
4410///
4411/// template<typename T>
4412/// typename X<T>::pointer X<T>::data() { ... }
4413/// \endcode
4414///
4415/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4416/// since we do not know that we can look into X<T> when we parsed the type.
4417/// This function will rebuild the type, performing the lookup of "pointer"
4418/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4419/// as the canonical type of T*, allowing the return types of the out-of-line
4420/// definition and the declaration to match.
4421QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4422                                                 DeclarationName Name) {
4423  if (T.isNull() || !T->isDependentType())
4424    return T;
4425
4426  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4427  return Rebuilder.TransformType(T);
4428}
4429
4430/// \brief Produces a formatted string that describes the binding of
4431/// template parameters to template arguments.
4432std::string
4433Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4434                                      const TemplateArgumentList &Args) {
4435  std::string Result;
4436
4437  if (!Params || Params->size() == 0)
4438    return Result;
4439
4440  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
4441    if (I == 0)
4442      Result += "[with ";
4443    else
4444      Result += ", ";
4445
4446    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
4447      Result += Id->getName();
4448    } else {
4449      Result += '$';
4450      Result += llvm::utostr(I);
4451    }
4452
4453    Result += " = ";
4454
4455    switch (Args[I].getKind()) {
4456      case TemplateArgument::Null:
4457        Result += "<no value>";
4458        break;
4459
4460      case TemplateArgument::Type: {
4461        std::string TypeStr;
4462        Args[I].getAsType().getAsStringInternal(TypeStr,
4463                                                Context.PrintingPolicy);
4464        Result += TypeStr;
4465        break;
4466      }
4467
4468      case TemplateArgument::Declaration: {
4469        bool Unnamed = true;
4470        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4471          if (ND->getDeclName()) {
4472            Unnamed = false;
4473            Result += ND->getNameAsString();
4474          }
4475        }
4476
4477        if (Unnamed) {
4478          Result += "<anonymous>";
4479        }
4480        break;
4481      }
4482
4483      case TemplateArgument::Integral: {
4484        Result += Args[I].getAsIntegral()->toString(10);
4485        break;
4486      }
4487
4488      case TemplateArgument::Expression: {
4489        assert(false && "No expressions in deduced template arguments!");
4490        Result += "<expression>";
4491        break;
4492      }
4493
4494      case TemplateArgument::Pack:
4495        // FIXME: Format template argument packs
4496        Result += "<template argument pack>";
4497        break;
4498    }
4499  }
4500
4501  Result += ']';
4502  return Result;
4503}
4504