SemaTemplate.cpp revision 01e56aecb77a96dcd93fa0e901b919f2e441981d
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 31 if (!D) 32 return 0; 33 34 if (isa<TemplateDecl>(D)) 35 return D; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 // The set of class templates we've already seen. 67 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 68 LookupResult::Filter filter = R.makeFilter(); 69 while (filter.hasNext()) { 70 NamedDecl *Orig = filter.next(); 71 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 72 if (!Repl) 73 filter.erase(); 74 else if (Repl != Orig) { 75 76 // C++ [temp.local]p3: 77 // A lookup that finds an injected-class-name (10.2) can result in an 78 // ambiguity in certain cases (for example, if it is found in more than 79 // one base class). If all of the injected-class-names that are found 80 // refer to specializations of the same class template, and if the name 81 // is followed by a template-argument-list, the reference refers to the 82 // class template itself and not a specialization thereof, and is not 83 // ambiguous. 84 // 85 // FIXME: Will we eventually have to do the same for alias templates? 86 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 87 if (!ClassTemplates.insert(ClassTmpl)) { 88 filter.erase(); 89 continue; 90 } 91 92 filter.replace(Repl); 93 } 94 } 95 filter.done(); 96} 97 98TemplateNameKind Sema::isTemplateName(Scope *S, 99 CXXScopeSpec &SS, 100 UnqualifiedId &Name, 101 TypeTy *ObjectTypePtr, 102 bool EnteringContext, 103 TemplateTy &TemplateResult) { 104 assert(getLangOptions().CPlusPlus && "No template names in C!"); 105 106 DeclarationName TName; 107 108 switch (Name.getKind()) { 109 case UnqualifiedId::IK_Identifier: 110 TName = DeclarationName(Name.Identifier); 111 break; 112 113 case UnqualifiedId::IK_OperatorFunctionId: 114 TName = Context.DeclarationNames.getCXXOperatorName( 115 Name.OperatorFunctionId.Operator); 116 break; 117 118 case UnqualifiedId::IK_LiteralOperatorId: 119 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 120 break; 121 122 default: 123 return TNK_Non_template; 124 } 125 126 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 127 128 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 129 LookupOrdinaryName); 130 R.suppressDiagnostics(); 131 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 132 if (R.empty() || R.isAmbiguous()) 133 return TNK_Non_template; 134 135 TemplateName Template; 136 TemplateNameKind TemplateKind; 137 138 unsigned ResultCount = R.end() - R.begin(); 139 if (ResultCount > 1) { 140 // We assume that we'll preserve the qualifier from a function 141 // template name in other ways. 142 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 143 TemplateKind = TNK_Function_template; 144 } else { 145 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 146 147 if (SS.isSet() && !SS.isInvalid()) { 148 NestedNameSpecifier *Qualifier 149 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 150 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 151 } else { 152 Template = TemplateName(TD); 153 } 154 155 if (isa<FunctionTemplateDecl>(TD)) 156 TemplateKind = TNK_Function_template; 157 else { 158 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 159 TemplateKind = TNK_Type_template; 160 } 161 } 162 163 TemplateResult = TemplateTy::make(Template); 164 return TemplateKind; 165} 166 167bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 168 SourceLocation IILoc, 169 Scope *S, 170 const CXXScopeSpec *SS, 171 TemplateTy &SuggestedTemplate, 172 TemplateNameKind &SuggestedKind) { 173 // We can't recover unless there's a dependent scope specifier preceding the 174 // template name. 175 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 176 computeDeclContext(*SS)) 177 return false; 178 179 // The code is missing a 'template' keyword prior to the dependent template 180 // name. 181 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 182 Diag(IILoc, diag::err_template_kw_missing) 183 << Qualifier << II.getName() 184 << FixItHint::CreateInsertion(IILoc, "template "); 185 SuggestedTemplate 186 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 187 SuggestedKind = TNK_Dependent_template_name; 188 return true; 189} 190 191void Sema::LookupTemplateName(LookupResult &Found, 192 Scope *S, CXXScopeSpec &SS, 193 QualType ObjectType, 194 bool EnteringContext) { 195 // Determine where to perform name lookup 196 DeclContext *LookupCtx = 0; 197 bool isDependent = false; 198 if (!ObjectType.isNull()) { 199 // This nested-name-specifier occurs in a member access expression, e.g., 200 // x->B::f, and we are looking into the type of the object. 201 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 202 LookupCtx = computeDeclContext(ObjectType); 203 isDependent = ObjectType->isDependentType(); 204 assert((isDependent || !ObjectType->isIncompleteType()) && 205 "Caller should have completed object type"); 206 } else if (SS.isSet()) { 207 // This nested-name-specifier occurs after another nested-name-specifier, 208 // so long into the context associated with the prior nested-name-specifier. 209 LookupCtx = computeDeclContext(SS, EnteringContext); 210 isDependent = isDependentScopeSpecifier(SS); 211 212 // The declaration context must be complete. 213 if (LookupCtx && RequireCompleteDeclContext(SS)) 214 return; 215 } 216 217 bool ObjectTypeSearchedInScope = false; 218 if (LookupCtx) { 219 // Perform "qualified" name lookup into the declaration context we 220 // computed, which is either the type of the base of a member access 221 // expression or the declaration context associated with a prior 222 // nested-name-specifier. 223 LookupQualifiedName(Found, LookupCtx); 224 225 if (!ObjectType.isNull() && Found.empty()) { 226 // C++ [basic.lookup.classref]p1: 227 // In a class member access expression (5.2.5), if the . or -> token is 228 // immediately followed by an identifier followed by a <, the 229 // identifier must be looked up to determine whether the < is the 230 // beginning of a template argument list (14.2) or a less-than operator. 231 // The identifier is first looked up in the class of the object 232 // expression. If the identifier is not found, it is then looked up in 233 // the context of the entire postfix-expression and shall name a class 234 // or function template. 235 // 236 // FIXME: When we're instantiating a template, do we actually have to 237 // look in the scope of the template? Seems fishy... 238 if (S) LookupName(Found, S); 239 ObjectTypeSearchedInScope = true; 240 } 241 } else if (isDependent) { 242 // We cannot look into a dependent object type or nested nme 243 // specifier. 244 return; 245 } else { 246 // Perform unqualified name lookup in the current scope. 247 LookupName(Found, S); 248 } 249 250 if (Found.empty() && !isDependent) { 251 // If we did not find any names, attempt to correct any typos. 252 DeclarationName Name = Found.getLookupName(); 253 if (CorrectTypo(Found, S, &SS, LookupCtx)) { 254 FilterAcceptableTemplateNames(Context, Found); 255 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 256 if (LookupCtx) 257 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 258 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 259 << FixItHint::CreateReplacement(Found.getNameLoc(), 260 Found.getLookupName().getAsString()); 261 else 262 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 263 << Name << Found.getLookupName() 264 << FixItHint::CreateReplacement(Found.getNameLoc(), 265 Found.getLookupName().getAsString()); 266 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 267 Diag(Template->getLocation(), diag::note_previous_decl) 268 << Template->getDeclName(); 269 } else 270 Found.clear(); 271 } else { 272 Found.clear(); 273 } 274 } 275 276 FilterAcceptableTemplateNames(Context, Found); 277 if (Found.empty()) 278 return; 279 280 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 281 // C++ [basic.lookup.classref]p1: 282 // [...] If the lookup in the class of the object expression finds a 283 // template, the name is also looked up in the context of the entire 284 // postfix-expression and [...] 285 // 286 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 287 LookupOrdinaryName); 288 LookupName(FoundOuter, S); 289 FilterAcceptableTemplateNames(Context, FoundOuter); 290 291 if (FoundOuter.empty()) { 292 // - if the name is not found, the name found in the class of the 293 // object expression is used, otherwise 294 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 295 // - if the name is found in the context of the entire 296 // postfix-expression and does not name a class template, the name 297 // found in the class of the object expression is used, otherwise 298 } else { 299 // - if the name found is a class template, it must refer to the same 300 // entity as the one found in the class of the object expression, 301 // otherwise the program is ill-formed. 302 if (!Found.isSingleResult() || 303 Found.getFoundDecl()->getCanonicalDecl() 304 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 305 Diag(Found.getNameLoc(), 306 diag::err_nested_name_member_ref_lookup_ambiguous) 307 << Found.getLookupName(); 308 Diag(Found.getRepresentativeDecl()->getLocation(), 309 diag::note_ambig_member_ref_object_type) 310 << ObjectType; 311 Diag(FoundOuter.getFoundDecl()->getLocation(), 312 diag::note_ambig_member_ref_scope); 313 314 // Recover by taking the template that we found in the object 315 // expression's type. 316 } 317 } 318 } 319} 320 321/// ActOnDependentIdExpression - Handle a dependent id-expression that 322/// was just parsed. This is only possible with an explicit scope 323/// specifier naming a dependent type. 324Sema::OwningExprResult 325Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 326 DeclarationName Name, 327 SourceLocation NameLoc, 328 bool isAddressOfOperand, 329 const TemplateArgumentListInfo *TemplateArgs) { 330 NestedNameSpecifier *Qualifier 331 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 332 333 if (!isAddressOfOperand && 334 isa<CXXMethodDecl>(CurContext) && 335 cast<CXXMethodDecl>(CurContext)->isInstance()) { 336 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 337 338 // Since the 'this' expression is synthesized, we don't need to 339 // perform the double-lookup check. 340 NamedDecl *FirstQualifierInScope = 0; 341 342 return Owned(CXXDependentScopeMemberExpr::Create(Context, 343 /*This*/ 0, ThisType, 344 /*IsArrow*/ true, 345 /*Op*/ SourceLocation(), 346 Qualifier, SS.getRange(), 347 FirstQualifierInScope, 348 Name, NameLoc, 349 TemplateArgs)); 350 } 351 352 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 353} 354 355Sema::OwningExprResult 356Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 357 DeclarationName Name, 358 SourceLocation NameLoc, 359 const TemplateArgumentListInfo *TemplateArgs) { 360 return Owned(DependentScopeDeclRefExpr::Create(Context, 361 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 362 SS.getRange(), 363 Name, NameLoc, 364 TemplateArgs)); 365} 366 367/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 368/// that the template parameter 'PrevDecl' is being shadowed by a new 369/// declaration at location Loc. Returns true to indicate that this is 370/// an error, and false otherwise. 371bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 372 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 373 374 // Microsoft Visual C++ permits template parameters to be shadowed. 375 if (getLangOptions().Microsoft) 376 return false; 377 378 // C++ [temp.local]p4: 379 // A template-parameter shall not be redeclared within its 380 // scope (including nested scopes). 381 Diag(Loc, diag::err_template_param_shadow) 382 << cast<NamedDecl>(PrevDecl)->getDeclName(); 383 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 384 return true; 385} 386 387/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 388/// the parameter D to reference the templated declaration and return a pointer 389/// to the template declaration. Otherwise, do nothing to D and return null. 390TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 391 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 392 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 393 return Temp; 394 } 395 return 0; 396} 397 398static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 399 const ParsedTemplateArgument &Arg) { 400 401 switch (Arg.getKind()) { 402 case ParsedTemplateArgument::Type: { 403 TypeSourceInfo *DI; 404 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 405 if (!DI) 406 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 407 return TemplateArgumentLoc(TemplateArgument(T), DI); 408 } 409 410 case ParsedTemplateArgument::NonType: { 411 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 412 return TemplateArgumentLoc(TemplateArgument(E), E); 413 } 414 415 case ParsedTemplateArgument::Template: { 416 TemplateName Template 417 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 418 return TemplateArgumentLoc(TemplateArgument(Template), 419 Arg.getScopeSpec().getRange(), 420 Arg.getLocation()); 421 } 422 } 423 424 llvm_unreachable("Unhandled parsed template argument"); 425 return TemplateArgumentLoc(); 426} 427 428/// \brief Translates template arguments as provided by the parser 429/// into template arguments used by semantic analysis. 430void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 431 TemplateArgumentListInfo &TemplateArgs) { 432 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 433 TemplateArgs.addArgument(translateTemplateArgument(*this, 434 TemplateArgsIn[I])); 435} 436 437/// ActOnTypeParameter - Called when a C++ template type parameter 438/// (e.g., "typename T") has been parsed. Typename specifies whether 439/// the keyword "typename" was used to declare the type parameter 440/// (otherwise, "class" was used), and KeyLoc is the location of the 441/// "class" or "typename" keyword. ParamName is the name of the 442/// parameter (NULL indicates an unnamed template parameter) and 443/// ParamName is the location of the parameter name (if any). 444/// If the type parameter has a default argument, it will be added 445/// later via ActOnTypeParameterDefault. 446Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 447 SourceLocation EllipsisLoc, 448 SourceLocation KeyLoc, 449 IdentifierInfo *ParamName, 450 SourceLocation ParamNameLoc, 451 unsigned Depth, unsigned Position) { 452 assert(S->isTemplateParamScope() && 453 "Template type parameter not in template parameter scope!"); 454 bool Invalid = false; 455 456 if (ParamName) { 457 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 458 if (PrevDecl && PrevDecl->isTemplateParameter()) 459 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 460 PrevDecl); 461 } 462 463 SourceLocation Loc = ParamNameLoc; 464 if (!ParamName) 465 Loc = KeyLoc; 466 467 TemplateTypeParmDecl *Param 468 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 469 Loc, Depth, Position, ParamName, Typename, 470 Ellipsis); 471 if (Invalid) 472 Param->setInvalidDecl(); 473 474 if (ParamName) { 475 // Add the template parameter into the current scope. 476 S->AddDecl(DeclPtrTy::make(Param)); 477 IdResolver.AddDecl(Param); 478 } 479 480 return DeclPtrTy::make(Param); 481} 482 483/// ActOnTypeParameterDefault - Adds a default argument (the type 484/// Default) to the given template type parameter (TypeParam). 485void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 486 SourceLocation EqualLoc, 487 SourceLocation DefaultLoc, 488 TypeTy *DefaultT) { 489 TemplateTypeParmDecl *Parm 490 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 491 492 TypeSourceInfo *DefaultTInfo; 493 GetTypeFromParser(DefaultT, &DefaultTInfo); 494 495 assert(DefaultTInfo && "expected source information for type"); 496 497 // C++0x [temp.param]p9: 498 // A default template-argument may be specified for any kind of 499 // template-parameter that is not a template parameter pack. 500 if (Parm->isParameterPack()) { 501 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 502 return; 503 } 504 505 // C++ [temp.param]p14: 506 // A template-parameter shall not be used in its own default argument. 507 // FIXME: Implement this check! Needs a recursive walk over the types. 508 509 // Check the template argument itself. 510 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 511 Parm->setInvalidDecl(); 512 return; 513 } 514 515 Parm->setDefaultArgument(DefaultTInfo, false); 516} 517 518/// \brief Check that the type of a non-type template parameter is 519/// well-formed. 520/// 521/// \returns the (possibly-promoted) parameter type if valid; 522/// otherwise, produces a diagnostic and returns a NULL type. 523QualType 524Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 525 // C++ [temp.param]p4: 526 // 527 // A non-type template-parameter shall have one of the following 528 // (optionally cv-qualified) types: 529 // 530 // -- integral or enumeration type, 531 if (T->isIntegralType() || T->isEnumeralType() || 532 // -- pointer to object or pointer to function, 533 (T->isPointerType() && 534 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 535 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 536 // -- reference to object or reference to function, 537 T->isReferenceType() || 538 // -- pointer to member. 539 T->isMemberPointerType() || 540 // If T is a dependent type, we can't do the check now, so we 541 // assume that it is well-formed. 542 T->isDependentType()) 543 return T; 544 // C++ [temp.param]p8: 545 // 546 // A non-type template-parameter of type "array of T" or 547 // "function returning T" is adjusted to be of type "pointer to 548 // T" or "pointer to function returning T", respectively. 549 else if (T->isArrayType()) 550 // FIXME: Keep the type prior to promotion? 551 return Context.getArrayDecayedType(T); 552 else if (T->isFunctionType()) 553 // FIXME: Keep the type prior to promotion? 554 return Context.getPointerType(T); 555 556 Diag(Loc, diag::err_template_nontype_parm_bad_type) 557 << T; 558 559 return QualType(); 560} 561 562/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 563/// template parameter (e.g., "int Size" in "template<int Size> 564/// class Array") has been parsed. S is the current scope and D is 565/// the parsed declarator. 566Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 567 unsigned Depth, 568 unsigned Position) { 569 TypeSourceInfo *TInfo = 0; 570 QualType T = GetTypeForDeclarator(D, S, &TInfo); 571 572 assert(S->isTemplateParamScope() && 573 "Non-type template parameter not in template parameter scope!"); 574 bool Invalid = false; 575 576 IdentifierInfo *ParamName = D.getIdentifier(); 577 if (ParamName) { 578 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 579 if (PrevDecl && PrevDecl->isTemplateParameter()) 580 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 581 PrevDecl); 582 } 583 584 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 585 if (T.isNull()) { 586 T = Context.IntTy; // Recover with an 'int' type. 587 Invalid = true; 588 } 589 590 NonTypeTemplateParmDecl *Param 591 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 592 D.getIdentifierLoc(), 593 Depth, Position, ParamName, T, TInfo); 594 if (Invalid) 595 Param->setInvalidDecl(); 596 597 if (D.getIdentifier()) { 598 // Add the template parameter into the current scope. 599 S->AddDecl(DeclPtrTy::make(Param)); 600 IdResolver.AddDecl(Param); 601 } 602 return DeclPtrTy::make(Param); 603} 604 605/// \brief Adds a default argument to the given non-type template 606/// parameter. 607void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 608 SourceLocation EqualLoc, 609 ExprArg DefaultE) { 610 NonTypeTemplateParmDecl *TemplateParm 611 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 612 Expr *Default = static_cast<Expr *>(DefaultE.get()); 613 614 // C++ [temp.param]p14: 615 // A template-parameter shall not be used in its own default argument. 616 // FIXME: Implement this check! Needs a recursive walk over the types. 617 618 // Check the well-formedness of the default template argument. 619 TemplateArgument Converted; 620 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 621 Converted)) { 622 TemplateParm->setInvalidDecl(); 623 return; 624 } 625 626 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 627} 628 629 630/// ActOnTemplateTemplateParameter - Called when a C++ template template 631/// parameter (e.g. T in template <template <typename> class T> class array) 632/// has been parsed. S is the current scope. 633Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 634 SourceLocation TmpLoc, 635 TemplateParamsTy *Params, 636 IdentifierInfo *Name, 637 SourceLocation NameLoc, 638 unsigned Depth, 639 unsigned Position) { 640 assert(S->isTemplateParamScope() && 641 "Template template parameter not in template parameter scope!"); 642 643 // Construct the parameter object. 644 TemplateTemplateParmDecl *Param = 645 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 646 TmpLoc, Depth, Position, Name, 647 (TemplateParameterList*)Params); 648 649 // Make sure the parameter is valid. 650 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 651 // do anything yet. However, if the template parameter list or (eventual) 652 // default value is ever invalidated, that will propagate here. 653 bool Invalid = false; 654 if (Invalid) { 655 Param->setInvalidDecl(); 656 } 657 658 // If the tt-param has a name, then link the identifier into the scope 659 // and lookup mechanisms. 660 if (Name) { 661 S->AddDecl(DeclPtrTy::make(Param)); 662 IdResolver.AddDecl(Param); 663 } 664 665 return DeclPtrTy::make(Param); 666} 667 668/// \brief Adds a default argument to the given template template 669/// parameter. 670void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 671 SourceLocation EqualLoc, 672 const ParsedTemplateArgument &Default) { 673 TemplateTemplateParmDecl *TemplateParm 674 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 675 676 // C++ [temp.param]p14: 677 // A template-parameter shall not be used in its own default argument. 678 // FIXME: Implement this check! Needs a recursive walk over the types. 679 680 // Check only that we have a template template argument. We don't want to 681 // try to check well-formedness now, because our template template parameter 682 // might have dependent types in its template parameters, which we wouldn't 683 // be able to match now. 684 // 685 // If none of the template template parameter's template arguments mention 686 // other template parameters, we could actually perform more checking here. 687 // However, it isn't worth doing. 688 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 689 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 690 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 691 << DefaultArg.getSourceRange(); 692 return; 693 } 694 695 TemplateParm->setDefaultArgument(DefaultArg); 696} 697 698/// ActOnTemplateParameterList - Builds a TemplateParameterList that 699/// contains the template parameters in Params/NumParams. 700Sema::TemplateParamsTy * 701Sema::ActOnTemplateParameterList(unsigned Depth, 702 SourceLocation ExportLoc, 703 SourceLocation TemplateLoc, 704 SourceLocation LAngleLoc, 705 DeclPtrTy *Params, unsigned NumParams, 706 SourceLocation RAngleLoc) { 707 if (ExportLoc.isValid()) 708 Diag(ExportLoc, diag::warn_template_export_unsupported); 709 710 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 711 (NamedDecl**)Params, NumParams, 712 RAngleLoc); 713} 714 715static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 716 if (SS.isSet()) 717 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 718 SS.getRange()); 719} 720 721Sema::DeclResult 722Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 723 SourceLocation KWLoc, CXXScopeSpec &SS, 724 IdentifierInfo *Name, SourceLocation NameLoc, 725 AttributeList *Attr, 726 TemplateParameterList *TemplateParams, 727 AccessSpecifier AS) { 728 assert(TemplateParams && TemplateParams->size() > 0 && 729 "No template parameters"); 730 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 731 bool Invalid = false; 732 733 // Check that we can declare a template here. 734 if (CheckTemplateDeclScope(S, TemplateParams)) 735 return true; 736 737 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 738 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 739 740 // There is no such thing as an unnamed class template. 741 if (!Name) { 742 Diag(KWLoc, diag::err_template_unnamed_class); 743 return true; 744 } 745 746 // Find any previous declaration with this name. 747 DeclContext *SemanticContext; 748 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 749 ForRedeclaration); 750 if (SS.isNotEmpty() && !SS.isInvalid()) { 751 if (RequireCompleteDeclContext(SS)) 752 return true; 753 754 SemanticContext = computeDeclContext(SS, true); 755 if (!SemanticContext) { 756 // FIXME: Produce a reasonable diagnostic here 757 return true; 758 } 759 760 LookupQualifiedName(Previous, SemanticContext); 761 } else { 762 SemanticContext = CurContext; 763 LookupName(Previous, S); 764 } 765 766 if (Previous.isAmbiguous()) 767 return true; 768 769 NamedDecl *PrevDecl = 0; 770 if (Previous.begin() != Previous.end()) 771 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 772 773 // If there is a previous declaration with the same name, check 774 // whether this is a valid redeclaration. 775 ClassTemplateDecl *PrevClassTemplate 776 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 777 778 // We may have found the injected-class-name of a class template, 779 // class template partial specialization, or class template specialization. 780 // In these cases, grab the template that is being defined or specialized. 781 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 782 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 783 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 784 PrevClassTemplate 785 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 786 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 787 PrevClassTemplate 788 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 789 ->getSpecializedTemplate(); 790 } 791 } 792 793 if (TUK == TUK_Friend) { 794 // C++ [namespace.memdef]p3: 795 // [...] When looking for a prior declaration of a class or a function 796 // declared as a friend, and when the name of the friend class or 797 // function is neither a qualified name nor a template-id, scopes outside 798 // the innermost enclosing namespace scope are not considered. 799 DeclContext *OutermostContext = CurContext; 800 while (!OutermostContext->isFileContext()) 801 OutermostContext = OutermostContext->getLookupParent(); 802 803 if (PrevDecl && 804 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 805 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 806 SemanticContext = PrevDecl->getDeclContext(); 807 } else { 808 // Declarations in outer scopes don't matter. However, the outermost 809 // context we computed is the semantic context for our new 810 // declaration. 811 PrevDecl = PrevClassTemplate = 0; 812 SemanticContext = OutermostContext; 813 } 814 815 if (CurContext->isDependentContext()) { 816 // If this is a dependent context, we don't want to link the friend 817 // class template to the template in scope, because that would perform 818 // checking of the template parameter lists that can't be performed 819 // until the outer context is instantiated. 820 PrevDecl = PrevClassTemplate = 0; 821 } 822 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 823 PrevDecl = PrevClassTemplate = 0; 824 825 if (PrevClassTemplate) { 826 // Ensure that the template parameter lists are compatible. 827 if (!TemplateParameterListsAreEqual(TemplateParams, 828 PrevClassTemplate->getTemplateParameters(), 829 /*Complain=*/true, 830 TPL_TemplateMatch)) 831 return true; 832 833 // C++ [temp.class]p4: 834 // In a redeclaration, partial specialization, explicit 835 // specialization or explicit instantiation of a class template, 836 // the class-key shall agree in kind with the original class 837 // template declaration (7.1.5.3). 838 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 839 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 840 Diag(KWLoc, diag::err_use_with_wrong_tag) 841 << Name 842 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 843 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 844 Kind = PrevRecordDecl->getTagKind(); 845 } 846 847 // Check for redefinition of this class template. 848 if (TUK == TUK_Definition) { 849 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 850 Diag(NameLoc, diag::err_redefinition) << Name; 851 Diag(Def->getLocation(), diag::note_previous_definition); 852 // FIXME: Would it make sense to try to "forget" the previous 853 // definition, as part of error recovery? 854 return true; 855 } 856 } 857 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 858 // Maybe we will complain about the shadowed template parameter. 859 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 860 // Just pretend that we didn't see the previous declaration. 861 PrevDecl = 0; 862 } else if (PrevDecl) { 863 // C++ [temp]p5: 864 // A class template shall not have the same name as any other 865 // template, class, function, object, enumeration, enumerator, 866 // namespace, or type in the same scope (3.3), except as specified 867 // in (14.5.4). 868 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 869 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 870 return true; 871 } 872 873 // Check the template parameter list of this declaration, possibly 874 // merging in the template parameter list from the previous class 875 // template declaration. 876 if (CheckTemplateParameterList(TemplateParams, 877 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 878 TPC_ClassTemplate)) 879 Invalid = true; 880 881 if (SS.isSet()) { 882 // If the name of the template was qualified, we must be defining the 883 // template out-of-line. 884 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 885 !(TUK == TUK_Friend && CurContext->isDependentContext())) 886 Diag(NameLoc, diag::err_member_def_does_not_match) 887 << Name << SemanticContext << SS.getRange(); 888 } 889 890 CXXRecordDecl *NewClass = 891 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 892 PrevClassTemplate? 893 PrevClassTemplate->getTemplatedDecl() : 0, 894 /*DelayTypeCreation=*/true); 895 SetNestedNameSpecifier(NewClass, SS); 896 897 ClassTemplateDecl *NewTemplate 898 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 899 DeclarationName(Name), TemplateParams, 900 NewClass, PrevClassTemplate); 901 NewClass->setDescribedClassTemplate(NewTemplate); 902 903 // Build the type for the class template declaration now. 904 QualType T = NewTemplate->getInjectedClassNameSpecialization(Context); 905 T = Context.getInjectedClassNameType(NewClass, T); 906 assert(T->isDependentType() && "Class template type is not dependent?"); 907 (void)T; 908 909 // If we are providing an explicit specialization of a member that is a 910 // class template, make a note of that. 911 if (PrevClassTemplate && 912 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 913 PrevClassTemplate->setMemberSpecialization(); 914 915 // Set the access specifier. 916 if (!Invalid && TUK != TUK_Friend) 917 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 918 919 // Set the lexical context of these templates 920 NewClass->setLexicalDeclContext(CurContext); 921 NewTemplate->setLexicalDeclContext(CurContext); 922 923 if (TUK == TUK_Definition) 924 NewClass->startDefinition(); 925 926 if (Attr) 927 ProcessDeclAttributeList(S, NewClass, Attr); 928 929 if (TUK != TUK_Friend) 930 PushOnScopeChains(NewTemplate, S); 931 else { 932 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 933 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 934 NewClass->setAccess(PrevClassTemplate->getAccess()); 935 } 936 937 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 938 PrevClassTemplate != NULL); 939 940 // Friend templates are visible in fairly strange ways. 941 if (!CurContext->isDependentContext()) { 942 DeclContext *DC = SemanticContext->getLookupContext(); 943 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 944 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 945 PushOnScopeChains(NewTemplate, EnclosingScope, 946 /* AddToContext = */ false); 947 } 948 949 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 950 NewClass->getLocation(), 951 NewTemplate, 952 /*FIXME:*/NewClass->getLocation()); 953 Friend->setAccess(AS_public); 954 CurContext->addDecl(Friend); 955 } 956 957 if (Invalid) { 958 NewTemplate->setInvalidDecl(); 959 NewClass->setInvalidDecl(); 960 } 961 return DeclPtrTy::make(NewTemplate); 962} 963 964/// \brief Diagnose the presence of a default template argument on a 965/// template parameter, which is ill-formed in certain contexts. 966/// 967/// \returns true if the default template argument should be dropped. 968static bool DiagnoseDefaultTemplateArgument(Sema &S, 969 Sema::TemplateParamListContext TPC, 970 SourceLocation ParamLoc, 971 SourceRange DefArgRange) { 972 switch (TPC) { 973 case Sema::TPC_ClassTemplate: 974 return false; 975 976 case Sema::TPC_FunctionTemplate: 977 // C++ [temp.param]p9: 978 // A default template-argument shall not be specified in a 979 // function template declaration or a function template 980 // definition [...] 981 // (This sentence is not in C++0x, per DR226). 982 if (!S.getLangOptions().CPlusPlus0x) 983 S.Diag(ParamLoc, 984 diag::err_template_parameter_default_in_function_template) 985 << DefArgRange; 986 return false; 987 988 case Sema::TPC_ClassTemplateMember: 989 // C++0x [temp.param]p9: 990 // A default template-argument shall not be specified in the 991 // template-parameter-lists of the definition of a member of a 992 // class template that appears outside of the member's class. 993 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 994 << DefArgRange; 995 return true; 996 997 case Sema::TPC_FriendFunctionTemplate: 998 // C++ [temp.param]p9: 999 // A default template-argument shall not be specified in a 1000 // friend template declaration. 1001 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1002 << DefArgRange; 1003 return true; 1004 1005 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1006 // for friend function templates if there is only a single 1007 // declaration (and it is a definition). Strange! 1008 } 1009 1010 return false; 1011} 1012 1013/// \brief Checks the validity of a template parameter list, possibly 1014/// considering the template parameter list from a previous 1015/// declaration. 1016/// 1017/// If an "old" template parameter list is provided, it must be 1018/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1019/// template parameter list. 1020/// 1021/// \param NewParams Template parameter list for a new template 1022/// declaration. This template parameter list will be updated with any 1023/// default arguments that are carried through from the previous 1024/// template parameter list. 1025/// 1026/// \param OldParams If provided, template parameter list from a 1027/// previous declaration of the same template. Default template 1028/// arguments will be merged from the old template parameter list to 1029/// the new template parameter list. 1030/// 1031/// \param TPC Describes the context in which we are checking the given 1032/// template parameter list. 1033/// 1034/// \returns true if an error occurred, false otherwise. 1035bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1036 TemplateParameterList *OldParams, 1037 TemplateParamListContext TPC) { 1038 bool Invalid = false; 1039 1040 // C++ [temp.param]p10: 1041 // The set of default template-arguments available for use with a 1042 // template declaration or definition is obtained by merging the 1043 // default arguments from the definition (if in scope) and all 1044 // declarations in scope in the same way default function 1045 // arguments are (8.3.6). 1046 bool SawDefaultArgument = false; 1047 SourceLocation PreviousDefaultArgLoc; 1048 1049 bool SawParameterPack = false; 1050 SourceLocation ParameterPackLoc; 1051 1052 // Dummy initialization to avoid warnings. 1053 TemplateParameterList::iterator OldParam = NewParams->end(); 1054 if (OldParams) 1055 OldParam = OldParams->begin(); 1056 1057 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1058 NewParamEnd = NewParams->end(); 1059 NewParam != NewParamEnd; ++NewParam) { 1060 // Variables used to diagnose redundant default arguments 1061 bool RedundantDefaultArg = false; 1062 SourceLocation OldDefaultLoc; 1063 SourceLocation NewDefaultLoc; 1064 1065 // Variables used to diagnose missing default arguments 1066 bool MissingDefaultArg = false; 1067 1068 // C++0x [temp.param]p11: 1069 // If a template parameter of a class template is a template parameter pack, 1070 // it must be the last template parameter. 1071 if (SawParameterPack) { 1072 Diag(ParameterPackLoc, 1073 diag::err_template_param_pack_must_be_last_template_parameter); 1074 Invalid = true; 1075 } 1076 1077 if (TemplateTypeParmDecl *NewTypeParm 1078 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1079 // Check the presence of a default argument here. 1080 if (NewTypeParm->hasDefaultArgument() && 1081 DiagnoseDefaultTemplateArgument(*this, TPC, 1082 NewTypeParm->getLocation(), 1083 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1084 .getFullSourceRange())) 1085 NewTypeParm->removeDefaultArgument(); 1086 1087 // Merge default arguments for template type parameters. 1088 TemplateTypeParmDecl *OldTypeParm 1089 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1090 1091 if (NewTypeParm->isParameterPack()) { 1092 assert(!NewTypeParm->hasDefaultArgument() && 1093 "Parameter packs can't have a default argument!"); 1094 SawParameterPack = true; 1095 ParameterPackLoc = NewTypeParm->getLocation(); 1096 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1097 NewTypeParm->hasDefaultArgument()) { 1098 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1099 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1100 SawDefaultArgument = true; 1101 RedundantDefaultArg = true; 1102 PreviousDefaultArgLoc = NewDefaultLoc; 1103 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1104 // Merge the default argument from the old declaration to the 1105 // new declaration. 1106 SawDefaultArgument = true; 1107 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1108 true); 1109 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1110 } else if (NewTypeParm->hasDefaultArgument()) { 1111 SawDefaultArgument = true; 1112 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1113 } else if (SawDefaultArgument) 1114 MissingDefaultArg = true; 1115 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1116 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1117 // Check the presence of a default argument here. 1118 if (NewNonTypeParm->hasDefaultArgument() && 1119 DiagnoseDefaultTemplateArgument(*this, TPC, 1120 NewNonTypeParm->getLocation(), 1121 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1122 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1123 NewNonTypeParm->setDefaultArgument(0); 1124 } 1125 1126 // Merge default arguments for non-type template parameters 1127 NonTypeTemplateParmDecl *OldNonTypeParm 1128 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1129 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1130 NewNonTypeParm->hasDefaultArgument()) { 1131 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1132 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1133 SawDefaultArgument = true; 1134 RedundantDefaultArg = true; 1135 PreviousDefaultArgLoc = NewDefaultLoc; 1136 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1137 // Merge the default argument from the old declaration to the 1138 // new declaration. 1139 SawDefaultArgument = true; 1140 // FIXME: We need to create a new kind of "default argument" 1141 // expression that points to a previous template template 1142 // parameter. 1143 NewNonTypeParm->setDefaultArgument( 1144 OldNonTypeParm->getDefaultArgument()); 1145 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1146 } else if (NewNonTypeParm->hasDefaultArgument()) { 1147 SawDefaultArgument = true; 1148 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1149 } else if (SawDefaultArgument) 1150 MissingDefaultArg = true; 1151 } else { 1152 // Check the presence of a default argument here. 1153 TemplateTemplateParmDecl *NewTemplateParm 1154 = cast<TemplateTemplateParmDecl>(*NewParam); 1155 if (NewTemplateParm->hasDefaultArgument() && 1156 DiagnoseDefaultTemplateArgument(*this, TPC, 1157 NewTemplateParm->getLocation(), 1158 NewTemplateParm->getDefaultArgument().getSourceRange())) 1159 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1160 1161 // Merge default arguments for template template parameters 1162 TemplateTemplateParmDecl *OldTemplateParm 1163 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1164 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1165 NewTemplateParm->hasDefaultArgument()) { 1166 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1167 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1168 SawDefaultArgument = true; 1169 RedundantDefaultArg = true; 1170 PreviousDefaultArgLoc = NewDefaultLoc; 1171 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1172 // Merge the default argument from the old declaration to the 1173 // new declaration. 1174 SawDefaultArgument = true; 1175 // FIXME: We need to create a new kind of "default argument" expression 1176 // that points to a previous template template parameter. 1177 NewTemplateParm->setDefaultArgument( 1178 OldTemplateParm->getDefaultArgument()); 1179 PreviousDefaultArgLoc 1180 = OldTemplateParm->getDefaultArgument().getLocation(); 1181 } else if (NewTemplateParm->hasDefaultArgument()) { 1182 SawDefaultArgument = true; 1183 PreviousDefaultArgLoc 1184 = NewTemplateParm->getDefaultArgument().getLocation(); 1185 } else if (SawDefaultArgument) 1186 MissingDefaultArg = true; 1187 } 1188 1189 if (RedundantDefaultArg) { 1190 // C++ [temp.param]p12: 1191 // A template-parameter shall not be given default arguments 1192 // by two different declarations in the same scope. 1193 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1194 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1195 Invalid = true; 1196 } else if (MissingDefaultArg) { 1197 // C++ [temp.param]p11: 1198 // If a template-parameter has a default template-argument, 1199 // all subsequent template-parameters shall have a default 1200 // template-argument supplied. 1201 Diag((*NewParam)->getLocation(), 1202 diag::err_template_param_default_arg_missing); 1203 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1204 Invalid = true; 1205 } 1206 1207 // If we have an old template parameter list that we're merging 1208 // in, move on to the next parameter. 1209 if (OldParams) 1210 ++OldParam; 1211 } 1212 1213 return Invalid; 1214} 1215 1216/// \brief Match the given template parameter lists to the given scope 1217/// specifier, returning the template parameter list that applies to the 1218/// name. 1219/// 1220/// \param DeclStartLoc the start of the declaration that has a scope 1221/// specifier or a template parameter list. 1222/// 1223/// \param SS the scope specifier that will be matched to the given template 1224/// parameter lists. This scope specifier precedes a qualified name that is 1225/// being declared. 1226/// 1227/// \param ParamLists the template parameter lists, from the outermost to the 1228/// innermost template parameter lists. 1229/// 1230/// \param NumParamLists the number of template parameter lists in ParamLists. 1231/// 1232/// \param IsExplicitSpecialization will be set true if the entity being 1233/// declared is an explicit specialization, false otherwise. 1234/// 1235/// \returns the template parameter list, if any, that corresponds to the 1236/// name that is preceded by the scope specifier @p SS. This template 1237/// parameter list may be have template parameters (if we're declaring a 1238/// template) or may have no template parameters (if we're declaring a 1239/// template specialization), or may be NULL (if we were's declaring isn't 1240/// itself a template). 1241TemplateParameterList * 1242Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1243 const CXXScopeSpec &SS, 1244 TemplateParameterList **ParamLists, 1245 unsigned NumParamLists, 1246 bool &IsExplicitSpecialization) { 1247 IsExplicitSpecialization = false; 1248 1249 // Find the template-ids that occur within the nested-name-specifier. These 1250 // template-ids will match up with the template parameter lists. 1251 llvm::SmallVector<const TemplateSpecializationType *, 4> 1252 TemplateIdsInSpecifier; 1253 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1254 ExplicitSpecializationsInSpecifier; 1255 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1256 NNS; NNS = NNS->getPrefix()) { 1257 const Type *T = NNS->getAsType(); 1258 if (!T) break; 1259 1260 // C++0x [temp.expl.spec]p17: 1261 // A member or a member template may be nested within many 1262 // enclosing class templates. In an explicit specialization for 1263 // such a member, the member declaration shall be preceded by a 1264 // template<> for each enclosing class template that is 1265 // explicitly specialized. 1266 // 1267 // Following the existing practice of GNU and EDG, we allow a typedef of a 1268 // template specialization type. 1269 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1270 T = TT->LookThroughTypedefs().getTypePtr(); 1271 1272 if (const TemplateSpecializationType *SpecType 1273 = dyn_cast<TemplateSpecializationType>(T)) { 1274 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1275 if (!Template) 1276 continue; // FIXME: should this be an error? probably... 1277 1278 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1279 ClassTemplateSpecializationDecl *SpecDecl 1280 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1281 // If the nested name specifier refers to an explicit specialization, 1282 // we don't need a template<> header. 1283 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1284 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1285 continue; 1286 } 1287 } 1288 1289 TemplateIdsInSpecifier.push_back(SpecType); 1290 } 1291 } 1292 1293 // Reverse the list of template-ids in the scope specifier, so that we can 1294 // more easily match up the template-ids and the template parameter lists. 1295 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1296 1297 SourceLocation FirstTemplateLoc = DeclStartLoc; 1298 if (NumParamLists) 1299 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1300 1301 // Match the template-ids found in the specifier to the template parameter 1302 // lists. 1303 unsigned Idx = 0; 1304 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1305 Idx != NumTemplateIds; ++Idx) { 1306 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1307 bool DependentTemplateId = TemplateId->isDependentType(); 1308 if (Idx >= NumParamLists) { 1309 // We have a template-id without a corresponding template parameter 1310 // list. 1311 if (DependentTemplateId) { 1312 // FIXME: the location information here isn't great. 1313 Diag(SS.getRange().getBegin(), 1314 diag::err_template_spec_needs_template_parameters) 1315 << TemplateId 1316 << SS.getRange(); 1317 } else { 1318 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1319 << SS.getRange() 1320 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1321 IsExplicitSpecialization = true; 1322 } 1323 return 0; 1324 } 1325 1326 // Check the template parameter list against its corresponding template-id. 1327 if (DependentTemplateId) { 1328 TemplateDecl *Template 1329 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1330 1331 if (ClassTemplateDecl *ClassTemplate 1332 = dyn_cast<ClassTemplateDecl>(Template)) { 1333 TemplateParameterList *ExpectedTemplateParams = 0; 1334 // Is this template-id naming the primary template? 1335 if (Context.hasSameType(TemplateId, 1336 ClassTemplate->getInjectedClassNameSpecialization(Context))) 1337 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1338 // ... or a partial specialization? 1339 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1340 = ClassTemplate->findPartialSpecialization(TemplateId)) 1341 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1342 1343 if (ExpectedTemplateParams) 1344 TemplateParameterListsAreEqual(ParamLists[Idx], 1345 ExpectedTemplateParams, 1346 true, TPL_TemplateMatch); 1347 } 1348 1349 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1350 } else if (ParamLists[Idx]->size() > 0) 1351 Diag(ParamLists[Idx]->getTemplateLoc(), 1352 diag::err_template_param_list_matches_nontemplate) 1353 << TemplateId 1354 << ParamLists[Idx]->getSourceRange(); 1355 else 1356 IsExplicitSpecialization = true; 1357 } 1358 1359 // If there were at least as many template-ids as there were template 1360 // parameter lists, then there are no template parameter lists remaining for 1361 // the declaration itself. 1362 if (Idx >= NumParamLists) 1363 return 0; 1364 1365 // If there were too many template parameter lists, complain about that now. 1366 if (Idx != NumParamLists - 1) { 1367 while (Idx < NumParamLists - 1) { 1368 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1369 Diag(ParamLists[Idx]->getTemplateLoc(), 1370 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1371 : diag::err_template_spec_extra_headers) 1372 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1373 ParamLists[Idx]->getRAngleLoc()); 1374 1375 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1376 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1377 diag::note_explicit_template_spec_does_not_need_header) 1378 << ExplicitSpecializationsInSpecifier.back(); 1379 ExplicitSpecializationsInSpecifier.pop_back(); 1380 } 1381 1382 ++Idx; 1383 } 1384 } 1385 1386 // Return the last template parameter list, which corresponds to the 1387 // entity being declared. 1388 return ParamLists[NumParamLists - 1]; 1389} 1390 1391QualType Sema::CheckTemplateIdType(TemplateName Name, 1392 SourceLocation TemplateLoc, 1393 const TemplateArgumentListInfo &TemplateArgs) { 1394 TemplateDecl *Template = Name.getAsTemplateDecl(); 1395 if (!Template) { 1396 // The template name does not resolve to a template, so we just 1397 // build a dependent template-id type. 1398 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1399 } 1400 1401 // Check that the template argument list is well-formed for this 1402 // template. 1403 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1404 TemplateArgs.size()); 1405 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1406 false, Converted)) 1407 return QualType(); 1408 1409 assert((Converted.structuredSize() == 1410 Template->getTemplateParameters()->size()) && 1411 "Converted template argument list is too short!"); 1412 1413 QualType CanonType; 1414 1415 if (Name.isDependent() || 1416 TemplateSpecializationType::anyDependentTemplateArguments( 1417 TemplateArgs)) { 1418 // This class template specialization is a dependent 1419 // type. Therefore, its canonical type is another class template 1420 // specialization type that contains all of the converted 1421 // arguments in canonical form. This ensures that, e.g., A<T> and 1422 // A<T, T> have identical types when A is declared as: 1423 // 1424 // template<typename T, typename U = T> struct A; 1425 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1426 CanonType = Context.getTemplateSpecializationType(CanonName, 1427 Converted.getFlatArguments(), 1428 Converted.flatSize()); 1429 1430 // FIXME: CanonType is not actually the canonical type, and unfortunately 1431 // it is a TemplateSpecializationType that we will never use again. 1432 // In the future, we need to teach getTemplateSpecializationType to only 1433 // build the canonical type and return that to us. 1434 CanonType = Context.getCanonicalType(CanonType); 1435 } else if (ClassTemplateDecl *ClassTemplate 1436 = dyn_cast<ClassTemplateDecl>(Template)) { 1437 // Find the class template specialization declaration that 1438 // corresponds to these arguments. 1439 llvm::FoldingSetNodeID ID; 1440 ClassTemplateSpecializationDecl::Profile(ID, 1441 Converted.getFlatArguments(), 1442 Converted.flatSize(), 1443 Context); 1444 void *InsertPos = 0; 1445 ClassTemplateSpecializationDecl *Decl 1446 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1447 if (!Decl) { 1448 // This is the first time we have referenced this class template 1449 // specialization. Create the canonical declaration and add it to 1450 // the set of specializations. 1451 Decl = ClassTemplateSpecializationDecl::Create(Context, 1452 ClassTemplate->getDeclContext(), 1453 ClassTemplate->getLocation(), 1454 ClassTemplate, 1455 Converted, 0); 1456 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1457 Decl->setLexicalDeclContext(CurContext); 1458 } 1459 1460 CanonType = Context.getTypeDeclType(Decl); 1461 assert(isa<RecordType>(CanonType) && 1462 "type of non-dependent specialization is not a RecordType"); 1463 } 1464 1465 // Build the fully-sugared type for this class template 1466 // specialization, which refers back to the class template 1467 // specialization we created or found. 1468 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1469} 1470 1471Action::TypeResult 1472Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1473 SourceLocation LAngleLoc, 1474 ASTTemplateArgsPtr TemplateArgsIn, 1475 SourceLocation RAngleLoc) { 1476 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1477 1478 // Translate the parser's template argument list in our AST format. 1479 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1480 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1481 1482 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1483 TemplateArgsIn.release(); 1484 1485 if (Result.isNull()) 1486 return true; 1487 1488 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1489 TemplateSpecializationTypeLoc TL 1490 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1491 TL.setTemplateNameLoc(TemplateLoc); 1492 TL.setLAngleLoc(LAngleLoc); 1493 TL.setRAngleLoc(RAngleLoc); 1494 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1495 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1496 1497 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1498} 1499 1500Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1501 TagUseKind TUK, 1502 DeclSpec::TST TagSpec, 1503 SourceLocation TagLoc) { 1504 if (TypeResult.isInvalid()) 1505 return Sema::TypeResult(); 1506 1507 // FIXME: preserve source info, ideally without copying the DI. 1508 TypeSourceInfo *DI; 1509 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1510 1511 // Verify the tag specifier. 1512 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1513 1514 if (const RecordType *RT = Type->getAs<RecordType>()) { 1515 RecordDecl *D = RT->getDecl(); 1516 1517 IdentifierInfo *Id = D->getIdentifier(); 1518 assert(Id && "templated class must have an identifier"); 1519 1520 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1521 Diag(TagLoc, diag::err_use_with_wrong_tag) 1522 << Type 1523 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1524 Diag(D->getLocation(), diag::note_previous_use); 1525 } 1526 } 1527 1528 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1529 1530 return ElabType.getAsOpaquePtr(); 1531} 1532 1533Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1534 LookupResult &R, 1535 bool RequiresADL, 1536 const TemplateArgumentListInfo &TemplateArgs) { 1537 // FIXME: Can we do any checking at this point? I guess we could check the 1538 // template arguments that we have against the template name, if the template 1539 // name refers to a single template. That's not a terribly common case, 1540 // though. 1541 1542 // These should be filtered out by our callers. 1543 assert(!R.empty() && "empty lookup results when building templateid"); 1544 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1545 1546 NestedNameSpecifier *Qualifier = 0; 1547 SourceRange QualifierRange; 1548 if (SS.isSet()) { 1549 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1550 QualifierRange = SS.getRange(); 1551 } 1552 1553 // We don't want lookup warnings at this point. 1554 R.suppressDiagnostics(); 1555 1556 bool Dependent 1557 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1558 &TemplateArgs); 1559 UnresolvedLookupExpr *ULE 1560 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1561 Qualifier, QualifierRange, 1562 R.getLookupName(), R.getNameLoc(), 1563 RequiresADL, TemplateArgs); 1564 ULE->addDecls(R.begin(), R.end()); 1565 1566 return Owned(ULE); 1567} 1568 1569// We actually only call this from template instantiation. 1570Sema::OwningExprResult 1571Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1572 DeclarationName Name, 1573 SourceLocation NameLoc, 1574 const TemplateArgumentListInfo &TemplateArgs) { 1575 DeclContext *DC; 1576 if (!(DC = computeDeclContext(SS, false)) || 1577 DC->isDependentContext() || 1578 RequireCompleteDeclContext(SS)) 1579 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1580 1581 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1582 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1583 1584 if (R.isAmbiguous()) 1585 return ExprError(); 1586 1587 if (R.empty()) { 1588 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1589 << Name << SS.getRange(); 1590 return ExprError(); 1591 } 1592 1593 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1594 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1595 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1596 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1597 return ExprError(); 1598 } 1599 1600 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1601} 1602 1603/// \brief Form a dependent template name. 1604/// 1605/// This action forms a dependent template name given the template 1606/// name and its (presumably dependent) scope specifier. For 1607/// example, given "MetaFun::template apply", the scope specifier \p 1608/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1609/// of the "template" keyword, and "apply" is the \p Name. 1610Sema::TemplateTy 1611Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1612 CXXScopeSpec &SS, 1613 UnqualifiedId &Name, 1614 TypeTy *ObjectType, 1615 bool EnteringContext) { 1616 DeclContext *LookupCtx = 0; 1617 if (SS.isSet()) 1618 LookupCtx = computeDeclContext(SS, EnteringContext); 1619 if (!LookupCtx && ObjectType) 1620 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1621 if (LookupCtx) { 1622 // C++0x [temp.names]p5: 1623 // If a name prefixed by the keyword template is not the name of 1624 // a template, the program is ill-formed. [Note: the keyword 1625 // template may not be applied to non-template members of class 1626 // templates. -end note ] [ Note: as is the case with the 1627 // typename prefix, the template prefix is allowed in cases 1628 // where it is not strictly necessary; i.e., when the 1629 // nested-name-specifier or the expression on the left of the -> 1630 // or . is not dependent on a template-parameter, or the use 1631 // does not appear in the scope of a template. -end note] 1632 // 1633 // Note: C++03 was more strict here, because it banned the use of 1634 // the "template" keyword prior to a template-name that was not a 1635 // dependent name. C++ DR468 relaxed this requirement (the 1636 // "template" keyword is now permitted). We follow the C++0x 1637 // rules, even in C++03 mode, retroactively applying the DR. 1638 TemplateTy Template; 1639 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1640 EnteringContext, Template); 1641 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1642 isa<CXXRecordDecl>(LookupCtx) && 1643 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1644 // This is a dependent template. 1645 } else if (TNK == TNK_Non_template) { 1646 Diag(Name.getSourceRange().getBegin(), 1647 diag::err_template_kw_refers_to_non_template) 1648 << GetNameFromUnqualifiedId(Name) 1649 << Name.getSourceRange(); 1650 return TemplateTy(); 1651 } else { 1652 // We found something; return it. 1653 return Template; 1654 } 1655 } 1656 1657 NestedNameSpecifier *Qualifier 1658 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1659 1660 switch (Name.getKind()) { 1661 case UnqualifiedId::IK_Identifier: 1662 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1663 Name.Identifier)); 1664 1665 case UnqualifiedId::IK_OperatorFunctionId: 1666 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1667 Name.OperatorFunctionId.Operator)); 1668 1669 case UnqualifiedId::IK_LiteralOperatorId: 1670 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1671 1672 default: 1673 break; 1674 } 1675 1676 Diag(Name.getSourceRange().getBegin(), 1677 diag::err_template_kw_refers_to_non_template) 1678 << GetNameFromUnqualifiedId(Name) 1679 << Name.getSourceRange(); 1680 return TemplateTy(); 1681} 1682 1683bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1684 const TemplateArgumentLoc &AL, 1685 TemplateArgumentListBuilder &Converted) { 1686 const TemplateArgument &Arg = AL.getArgument(); 1687 1688 // Check template type parameter. 1689 switch(Arg.getKind()) { 1690 case TemplateArgument::Type: 1691 // C++ [temp.arg.type]p1: 1692 // A template-argument for a template-parameter which is a 1693 // type shall be a type-id. 1694 break; 1695 case TemplateArgument::Template: { 1696 // We have a template type parameter but the template argument 1697 // is a template without any arguments. 1698 SourceRange SR = AL.getSourceRange(); 1699 TemplateName Name = Arg.getAsTemplate(); 1700 Diag(SR.getBegin(), diag::err_template_missing_args) 1701 << Name << SR; 1702 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1703 Diag(Decl->getLocation(), diag::note_template_decl_here); 1704 1705 return true; 1706 } 1707 default: { 1708 // We have a template type parameter but the template argument 1709 // is not a type. 1710 SourceRange SR = AL.getSourceRange(); 1711 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1712 Diag(Param->getLocation(), diag::note_template_param_here); 1713 1714 return true; 1715 } 1716 } 1717 1718 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1719 return true; 1720 1721 // Add the converted template type argument. 1722 Converted.Append( 1723 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1724 return false; 1725} 1726 1727/// \brief Substitute template arguments into the default template argument for 1728/// the given template type parameter. 1729/// 1730/// \param SemaRef the semantic analysis object for which we are performing 1731/// the substitution. 1732/// 1733/// \param Template the template that we are synthesizing template arguments 1734/// for. 1735/// 1736/// \param TemplateLoc the location of the template name that started the 1737/// template-id we are checking. 1738/// 1739/// \param RAngleLoc the location of the right angle bracket ('>') that 1740/// terminates the template-id. 1741/// 1742/// \param Param the template template parameter whose default we are 1743/// substituting into. 1744/// 1745/// \param Converted the list of template arguments provided for template 1746/// parameters that precede \p Param in the template parameter list. 1747/// 1748/// \returns the substituted template argument, or NULL if an error occurred. 1749static TypeSourceInfo * 1750SubstDefaultTemplateArgument(Sema &SemaRef, 1751 TemplateDecl *Template, 1752 SourceLocation TemplateLoc, 1753 SourceLocation RAngleLoc, 1754 TemplateTypeParmDecl *Param, 1755 TemplateArgumentListBuilder &Converted) { 1756 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1757 1758 // If the argument type is dependent, instantiate it now based 1759 // on the previously-computed template arguments. 1760 if (ArgType->getType()->isDependentType()) { 1761 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1762 /*TakeArgs=*/false); 1763 1764 MultiLevelTemplateArgumentList AllTemplateArgs 1765 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1766 1767 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1768 Template, Converted.getFlatArguments(), 1769 Converted.flatSize(), 1770 SourceRange(TemplateLoc, RAngleLoc)); 1771 1772 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1773 Param->getDefaultArgumentLoc(), 1774 Param->getDeclName()); 1775 } 1776 1777 return ArgType; 1778} 1779 1780/// \brief Substitute template arguments into the default template argument for 1781/// the given non-type template parameter. 1782/// 1783/// \param SemaRef the semantic analysis object for which we are performing 1784/// the substitution. 1785/// 1786/// \param Template the template that we are synthesizing template arguments 1787/// for. 1788/// 1789/// \param TemplateLoc the location of the template name that started the 1790/// template-id we are checking. 1791/// 1792/// \param RAngleLoc the location of the right angle bracket ('>') that 1793/// terminates the template-id. 1794/// 1795/// \param Param the non-type template parameter whose default we are 1796/// substituting into. 1797/// 1798/// \param Converted the list of template arguments provided for template 1799/// parameters that precede \p Param in the template parameter list. 1800/// 1801/// \returns the substituted template argument, or NULL if an error occurred. 1802static Sema::OwningExprResult 1803SubstDefaultTemplateArgument(Sema &SemaRef, 1804 TemplateDecl *Template, 1805 SourceLocation TemplateLoc, 1806 SourceLocation RAngleLoc, 1807 NonTypeTemplateParmDecl *Param, 1808 TemplateArgumentListBuilder &Converted) { 1809 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1810 /*TakeArgs=*/false); 1811 1812 MultiLevelTemplateArgumentList AllTemplateArgs 1813 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1814 1815 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1816 Template, Converted.getFlatArguments(), 1817 Converted.flatSize(), 1818 SourceRange(TemplateLoc, RAngleLoc)); 1819 1820 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1821} 1822 1823/// \brief Substitute template arguments into the default template argument for 1824/// the given template template parameter. 1825/// 1826/// \param SemaRef the semantic analysis object for which we are performing 1827/// the substitution. 1828/// 1829/// \param Template the template that we are synthesizing template arguments 1830/// for. 1831/// 1832/// \param TemplateLoc the location of the template name that started the 1833/// template-id we are checking. 1834/// 1835/// \param RAngleLoc the location of the right angle bracket ('>') that 1836/// terminates the template-id. 1837/// 1838/// \param Param the template template parameter whose default we are 1839/// substituting into. 1840/// 1841/// \param Converted the list of template arguments provided for template 1842/// parameters that precede \p Param in the template parameter list. 1843/// 1844/// \returns the substituted template argument, or NULL if an error occurred. 1845static TemplateName 1846SubstDefaultTemplateArgument(Sema &SemaRef, 1847 TemplateDecl *Template, 1848 SourceLocation TemplateLoc, 1849 SourceLocation RAngleLoc, 1850 TemplateTemplateParmDecl *Param, 1851 TemplateArgumentListBuilder &Converted) { 1852 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1853 /*TakeArgs=*/false); 1854 1855 MultiLevelTemplateArgumentList AllTemplateArgs 1856 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1857 1858 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1859 Template, Converted.getFlatArguments(), 1860 Converted.flatSize(), 1861 SourceRange(TemplateLoc, RAngleLoc)); 1862 1863 return SemaRef.SubstTemplateName( 1864 Param->getDefaultArgument().getArgument().getAsTemplate(), 1865 Param->getDefaultArgument().getTemplateNameLoc(), 1866 AllTemplateArgs); 1867} 1868 1869/// \brief If the given template parameter has a default template 1870/// argument, substitute into that default template argument and 1871/// return the corresponding template argument. 1872TemplateArgumentLoc 1873Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1874 SourceLocation TemplateLoc, 1875 SourceLocation RAngleLoc, 1876 Decl *Param, 1877 TemplateArgumentListBuilder &Converted) { 1878 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1879 if (!TypeParm->hasDefaultArgument()) 1880 return TemplateArgumentLoc(); 1881 1882 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1883 TemplateLoc, 1884 RAngleLoc, 1885 TypeParm, 1886 Converted); 1887 if (DI) 1888 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1889 1890 return TemplateArgumentLoc(); 1891 } 1892 1893 if (NonTypeTemplateParmDecl *NonTypeParm 1894 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1895 if (!NonTypeParm->hasDefaultArgument()) 1896 return TemplateArgumentLoc(); 1897 1898 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1899 TemplateLoc, 1900 RAngleLoc, 1901 NonTypeParm, 1902 Converted); 1903 if (Arg.isInvalid()) 1904 return TemplateArgumentLoc(); 1905 1906 Expr *ArgE = Arg.takeAs<Expr>(); 1907 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1908 } 1909 1910 TemplateTemplateParmDecl *TempTempParm 1911 = cast<TemplateTemplateParmDecl>(Param); 1912 if (!TempTempParm->hasDefaultArgument()) 1913 return TemplateArgumentLoc(); 1914 1915 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1916 TemplateLoc, 1917 RAngleLoc, 1918 TempTempParm, 1919 Converted); 1920 if (TName.isNull()) 1921 return TemplateArgumentLoc(); 1922 1923 return TemplateArgumentLoc(TemplateArgument(TName), 1924 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1925 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1926} 1927 1928/// \brief Check that the given template argument corresponds to the given 1929/// template parameter. 1930bool Sema::CheckTemplateArgument(NamedDecl *Param, 1931 const TemplateArgumentLoc &Arg, 1932 TemplateDecl *Template, 1933 SourceLocation TemplateLoc, 1934 SourceLocation RAngleLoc, 1935 TemplateArgumentListBuilder &Converted, 1936 CheckTemplateArgumentKind CTAK) { 1937 // Check template type parameters. 1938 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1939 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1940 1941 // Check non-type template parameters. 1942 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1943 // Do substitution on the type of the non-type template parameter 1944 // with the template arguments we've seen thus far. 1945 QualType NTTPType = NTTP->getType(); 1946 if (NTTPType->isDependentType()) { 1947 // Do substitution on the type of the non-type template parameter. 1948 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1949 NTTP, Converted.getFlatArguments(), 1950 Converted.flatSize(), 1951 SourceRange(TemplateLoc, RAngleLoc)); 1952 1953 TemplateArgumentList TemplateArgs(Context, Converted, 1954 /*TakeArgs=*/false); 1955 NTTPType = SubstType(NTTPType, 1956 MultiLevelTemplateArgumentList(TemplateArgs), 1957 NTTP->getLocation(), 1958 NTTP->getDeclName()); 1959 // If that worked, check the non-type template parameter type 1960 // for validity. 1961 if (!NTTPType.isNull()) 1962 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1963 NTTP->getLocation()); 1964 if (NTTPType.isNull()) 1965 return true; 1966 } 1967 1968 switch (Arg.getArgument().getKind()) { 1969 case TemplateArgument::Null: 1970 assert(false && "Should never see a NULL template argument here"); 1971 return true; 1972 1973 case TemplateArgument::Expression: { 1974 Expr *E = Arg.getArgument().getAsExpr(); 1975 TemplateArgument Result; 1976 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 1977 return true; 1978 1979 Converted.Append(Result); 1980 break; 1981 } 1982 1983 case TemplateArgument::Declaration: 1984 case TemplateArgument::Integral: 1985 // We've already checked this template argument, so just copy 1986 // it to the list of converted arguments. 1987 Converted.Append(Arg.getArgument()); 1988 break; 1989 1990 case TemplateArgument::Template: 1991 // We were given a template template argument. It may not be ill-formed; 1992 // see below. 1993 if (DependentTemplateName *DTN 1994 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 1995 // We have a template argument such as \c T::template X, which we 1996 // parsed as a template template argument. However, since we now 1997 // know that we need a non-type template argument, convert this 1998 // template name into an expression. 1999 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2000 DTN->getQualifier(), 2001 Arg.getTemplateQualifierRange(), 2002 DTN->getIdentifier(), 2003 Arg.getTemplateNameLoc()); 2004 2005 TemplateArgument Result; 2006 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2007 return true; 2008 2009 Converted.Append(Result); 2010 break; 2011 } 2012 2013 // We have a template argument that actually does refer to a class 2014 // template, template alias, or template template parameter, and 2015 // therefore cannot be a non-type template argument. 2016 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2017 << Arg.getSourceRange(); 2018 2019 Diag(Param->getLocation(), diag::note_template_param_here); 2020 return true; 2021 2022 case TemplateArgument::Type: { 2023 // We have a non-type template parameter but the template 2024 // argument is a type. 2025 2026 // C++ [temp.arg]p2: 2027 // In a template-argument, an ambiguity between a type-id and 2028 // an expression is resolved to a type-id, regardless of the 2029 // form of the corresponding template-parameter. 2030 // 2031 // We warn specifically about this case, since it can be rather 2032 // confusing for users. 2033 QualType T = Arg.getArgument().getAsType(); 2034 SourceRange SR = Arg.getSourceRange(); 2035 if (T->isFunctionType()) 2036 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2037 else 2038 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2039 Diag(Param->getLocation(), diag::note_template_param_here); 2040 return true; 2041 } 2042 2043 case TemplateArgument::Pack: 2044 llvm_unreachable("Caller must expand template argument packs"); 2045 break; 2046 } 2047 2048 return false; 2049 } 2050 2051 2052 // Check template template parameters. 2053 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2054 2055 // Substitute into the template parameter list of the template 2056 // template parameter, since previously-supplied template arguments 2057 // may appear within the template template parameter. 2058 { 2059 // Set up a template instantiation context. 2060 LocalInstantiationScope Scope(*this); 2061 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2062 TempParm, Converted.getFlatArguments(), 2063 Converted.flatSize(), 2064 SourceRange(TemplateLoc, RAngleLoc)); 2065 2066 TemplateArgumentList TemplateArgs(Context, Converted, 2067 /*TakeArgs=*/false); 2068 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2069 SubstDecl(TempParm, CurContext, 2070 MultiLevelTemplateArgumentList(TemplateArgs))); 2071 if (!TempParm) 2072 return true; 2073 2074 // FIXME: TempParam is leaked. 2075 } 2076 2077 switch (Arg.getArgument().getKind()) { 2078 case TemplateArgument::Null: 2079 assert(false && "Should never see a NULL template argument here"); 2080 return true; 2081 2082 case TemplateArgument::Template: 2083 if (CheckTemplateArgument(TempParm, Arg)) 2084 return true; 2085 2086 Converted.Append(Arg.getArgument()); 2087 break; 2088 2089 case TemplateArgument::Expression: 2090 case TemplateArgument::Type: 2091 // We have a template template parameter but the template 2092 // argument does not refer to a template. 2093 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2094 return true; 2095 2096 case TemplateArgument::Declaration: 2097 llvm_unreachable( 2098 "Declaration argument with template template parameter"); 2099 break; 2100 case TemplateArgument::Integral: 2101 llvm_unreachable( 2102 "Integral argument with template template parameter"); 2103 break; 2104 2105 case TemplateArgument::Pack: 2106 llvm_unreachable("Caller must expand template argument packs"); 2107 break; 2108 } 2109 2110 return false; 2111} 2112 2113/// \brief Check that the given template argument list is well-formed 2114/// for specializing the given template. 2115bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2116 SourceLocation TemplateLoc, 2117 const TemplateArgumentListInfo &TemplateArgs, 2118 bool PartialTemplateArgs, 2119 TemplateArgumentListBuilder &Converted) { 2120 TemplateParameterList *Params = Template->getTemplateParameters(); 2121 unsigned NumParams = Params->size(); 2122 unsigned NumArgs = TemplateArgs.size(); 2123 bool Invalid = false; 2124 2125 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2126 2127 bool HasParameterPack = 2128 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2129 2130 if ((NumArgs > NumParams && !HasParameterPack) || 2131 (NumArgs < Params->getMinRequiredArguments() && 2132 !PartialTemplateArgs)) { 2133 // FIXME: point at either the first arg beyond what we can handle, 2134 // or the '>', depending on whether we have too many or too few 2135 // arguments. 2136 SourceRange Range; 2137 if (NumArgs > NumParams) 2138 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2139 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2140 << (NumArgs > NumParams) 2141 << (isa<ClassTemplateDecl>(Template)? 0 : 2142 isa<FunctionTemplateDecl>(Template)? 1 : 2143 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2144 << Template << Range; 2145 Diag(Template->getLocation(), diag::note_template_decl_here) 2146 << Params->getSourceRange(); 2147 Invalid = true; 2148 } 2149 2150 // C++ [temp.arg]p1: 2151 // [...] The type and form of each template-argument specified in 2152 // a template-id shall match the type and form specified for the 2153 // corresponding parameter declared by the template in its 2154 // template-parameter-list. 2155 unsigned ArgIdx = 0; 2156 for (TemplateParameterList::iterator Param = Params->begin(), 2157 ParamEnd = Params->end(); 2158 Param != ParamEnd; ++Param, ++ArgIdx) { 2159 if (ArgIdx > NumArgs && PartialTemplateArgs) 2160 break; 2161 2162 // If we have a template parameter pack, check every remaining template 2163 // argument against that template parameter pack. 2164 if ((*Param)->isTemplateParameterPack()) { 2165 Converted.BeginPack(); 2166 for (; ArgIdx < NumArgs; ++ArgIdx) { 2167 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2168 TemplateLoc, RAngleLoc, Converted)) { 2169 Invalid = true; 2170 break; 2171 } 2172 } 2173 Converted.EndPack(); 2174 continue; 2175 } 2176 2177 if (ArgIdx < NumArgs) { 2178 // Check the template argument we were given. 2179 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2180 TemplateLoc, RAngleLoc, Converted)) 2181 return true; 2182 2183 continue; 2184 } 2185 2186 // We have a default template argument that we will use. 2187 TemplateArgumentLoc Arg; 2188 2189 // Retrieve the default template argument from the template 2190 // parameter. For each kind of template parameter, we substitute the 2191 // template arguments provided thus far and any "outer" template arguments 2192 // (when the template parameter was part of a nested template) into 2193 // the default argument. 2194 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2195 if (!TTP->hasDefaultArgument()) { 2196 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2197 break; 2198 } 2199 2200 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2201 Template, 2202 TemplateLoc, 2203 RAngleLoc, 2204 TTP, 2205 Converted); 2206 if (!ArgType) 2207 return true; 2208 2209 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2210 ArgType); 2211 } else if (NonTypeTemplateParmDecl *NTTP 2212 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2213 if (!NTTP->hasDefaultArgument()) { 2214 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2215 break; 2216 } 2217 2218 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2219 TemplateLoc, 2220 RAngleLoc, 2221 NTTP, 2222 Converted); 2223 if (E.isInvalid()) 2224 return true; 2225 2226 Expr *Ex = E.takeAs<Expr>(); 2227 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2228 } else { 2229 TemplateTemplateParmDecl *TempParm 2230 = cast<TemplateTemplateParmDecl>(*Param); 2231 2232 if (!TempParm->hasDefaultArgument()) { 2233 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2234 break; 2235 } 2236 2237 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2238 TemplateLoc, 2239 RAngleLoc, 2240 TempParm, 2241 Converted); 2242 if (Name.isNull()) 2243 return true; 2244 2245 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2246 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2247 TempParm->getDefaultArgument().getTemplateNameLoc()); 2248 } 2249 2250 // Introduce an instantiation record that describes where we are using 2251 // the default template argument. 2252 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2253 Converted.getFlatArguments(), 2254 Converted.flatSize(), 2255 SourceRange(TemplateLoc, RAngleLoc)); 2256 2257 // Check the default template argument. 2258 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2259 RAngleLoc, Converted)) 2260 return true; 2261 } 2262 2263 return Invalid; 2264} 2265 2266/// \brief Check a template argument against its corresponding 2267/// template type parameter. 2268/// 2269/// This routine implements the semantics of C++ [temp.arg.type]. It 2270/// returns true if an error occurred, and false otherwise. 2271bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2272 TypeSourceInfo *ArgInfo) { 2273 assert(ArgInfo && "invalid TypeSourceInfo"); 2274 QualType Arg = ArgInfo->getType(); 2275 2276 // C++ [temp.arg.type]p2: 2277 // A local type, a type with no linkage, an unnamed type or a type 2278 // compounded from any of these types shall not be used as a 2279 // template-argument for a template type-parameter. 2280 // 2281 // FIXME: Perform the recursive and no-linkage type checks. 2282 const TagType *Tag = 0; 2283 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2284 Tag = EnumT; 2285 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2286 Tag = RecordT; 2287 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2288 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2289 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2290 << QualType(Tag, 0) << SR; 2291 } else if (Tag && !Tag->getDecl()->getDeclName() && 2292 !Tag->getDecl()->getTypedefForAnonDecl()) { 2293 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2294 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2295 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2296 return true; 2297 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2298 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2299 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2300 } 2301 2302 return false; 2303} 2304 2305/// \brief Checks whether the given template argument is the address 2306/// of an object or function according to C++ [temp.arg.nontype]p1. 2307static bool 2308CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2309 NonTypeTemplateParmDecl *Param, 2310 QualType ParamType, 2311 Expr *ArgIn, 2312 TemplateArgument &Converted) { 2313 bool Invalid = false; 2314 Expr *Arg = ArgIn; 2315 QualType ArgType = Arg->getType(); 2316 2317 // See through any implicit casts we added to fix the type. 2318 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2319 Arg = Cast->getSubExpr(); 2320 2321 // C++ [temp.arg.nontype]p1: 2322 // 2323 // A template-argument for a non-type, non-template 2324 // template-parameter shall be one of: [...] 2325 // 2326 // -- the address of an object or function with external 2327 // linkage, including function templates and function 2328 // template-ids but excluding non-static class members, 2329 // expressed as & id-expression where the & is optional if 2330 // the name refers to a function or array, or if the 2331 // corresponding template-parameter is a reference; or 2332 DeclRefExpr *DRE = 0; 2333 2334 // Ignore (and complain about) any excess parentheses. 2335 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2336 if (!Invalid) { 2337 S.Diag(Arg->getSourceRange().getBegin(), 2338 diag::err_template_arg_extra_parens) 2339 << Arg->getSourceRange(); 2340 Invalid = true; 2341 } 2342 2343 Arg = Parens->getSubExpr(); 2344 } 2345 2346 bool AddressTaken = false; 2347 SourceLocation AddrOpLoc; 2348 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2349 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2350 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2351 AddressTaken = true; 2352 AddrOpLoc = UnOp->getOperatorLoc(); 2353 } 2354 } else 2355 DRE = dyn_cast<DeclRefExpr>(Arg); 2356 2357 if (!DRE) { 2358 if (S.Context.hasSameUnqualifiedType(ArgType, S.Context.OverloadTy)) { 2359 S.Diag(Arg->getLocStart(), 2360 diag::err_template_arg_unresolved_overloaded_function) 2361 << ParamType << Arg->getSourceRange(); 2362 } else { 2363 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2364 << Arg->getSourceRange(); 2365 } 2366 S.Diag(Param->getLocation(), diag::note_template_param_here); 2367 return true; 2368 } 2369 2370 // Stop checking the precise nature of the argument if it is value dependent, 2371 // it should be checked when instantiated. 2372 if (Arg->isValueDependent()) { 2373 Converted = TemplateArgument(ArgIn->Retain()); 2374 return false; 2375 } 2376 2377 if (!isa<ValueDecl>(DRE->getDecl())) { 2378 S.Diag(Arg->getSourceRange().getBegin(), 2379 diag::err_template_arg_not_object_or_func_form) 2380 << Arg->getSourceRange(); 2381 S.Diag(Param->getLocation(), diag::note_template_param_here); 2382 return true; 2383 } 2384 2385 NamedDecl *Entity = 0; 2386 2387 // Cannot refer to non-static data members 2388 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2389 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2390 << Field << Arg->getSourceRange(); 2391 S.Diag(Param->getLocation(), diag::note_template_param_here); 2392 return true; 2393 } 2394 2395 // Cannot refer to non-static member functions 2396 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2397 if (!Method->isStatic()) { 2398 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2399 << Method << Arg->getSourceRange(); 2400 S.Diag(Param->getLocation(), diag::note_template_param_here); 2401 return true; 2402 } 2403 2404 // Functions must have external linkage. 2405 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2406 if (!isExternalLinkage(Func->getLinkage())) { 2407 S.Diag(Arg->getSourceRange().getBegin(), 2408 diag::err_template_arg_function_not_extern) 2409 << Func << Arg->getSourceRange(); 2410 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2411 << true; 2412 return true; 2413 } 2414 2415 // Okay: we've named a function with external linkage. 2416 Entity = Func; 2417 2418 // If the template parameter has pointer type, the function decays. 2419 if (ParamType->isPointerType() && !AddressTaken) 2420 ArgType = S.Context.getPointerType(Func->getType()); 2421 else if (AddressTaken && ParamType->isReferenceType()) { 2422 // If we originally had an address-of operator, but the 2423 // parameter has reference type, complain and (if things look 2424 // like they will work) drop the address-of operator. 2425 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2426 ParamType.getNonReferenceType())) { 2427 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2428 << ParamType; 2429 S.Diag(Param->getLocation(), diag::note_template_param_here); 2430 return true; 2431 } 2432 2433 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2434 << ParamType 2435 << FixItHint::CreateRemoval(AddrOpLoc); 2436 S.Diag(Param->getLocation(), diag::note_template_param_here); 2437 2438 ArgType = Func->getType(); 2439 } 2440 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2441 if (!isExternalLinkage(Var->getLinkage())) { 2442 S.Diag(Arg->getSourceRange().getBegin(), 2443 diag::err_template_arg_object_not_extern) 2444 << Var << Arg->getSourceRange(); 2445 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2446 << true; 2447 return true; 2448 } 2449 2450 // A value of reference type is not an object. 2451 if (Var->getType()->isReferenceType()) { 2452 S.Diag(Arg->getSourceRange().getBegin(), 2453 diag::err_template_arg_reference_var) 2454 << Var->getType() << Arg->getSourceRange(); 2455 S.Diag(Param->getLocation(), diag::note_template_param_here); 2456 return true; 2457 } 2458 2459 // Okay: we've named an object with external linkage 2460 Entity = Var; 2461 2462 // If the template parameter has pointer type, we must have taken 2463 // the address of this object. 2464 if (ParamType->isReferenceType()) { 2465 if (AddressTaken) { 2466 // If we originally had an address-of operator, but the 2467 // parameter has reference type, complain and (if things look 2468 // like they will work) drop the address-of operator. 2469 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2470 ParamType.getNonReferenceType())) { 2471 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2472 << ParamType; 2473 S.Diag(Param->getLocation(), diag::note_template_param_here); 2474 return true; 2475 } 2476 2477 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2478 << ParamType 2479 << FixItHint::CreateRemoval(AddrOpLoc); 2480 S.Diag(Param->getLocation(), diag::note_template_param_here); 2481 2482 ArgType = Var->getType(); 2483 } 2484 } else if (!AddressTaken && ParamType->isPointerType()) { 2485 if (Var->getType()->isArrayType()) { 2486 // Array-to-pointer decay. 2487 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2488 } else { 2489 // If the template parameter has pointer type but the address of 2490 // this object was not taken, complain and (possibly) recover by 2491 // taking the address of the entity. 2492 ArgType = S.Context.getPointerType(Var->getType()); 2493 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2494 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2495 << ParamType; 2496 S.Diag(Param->getLocation(), diag::note_template_param_here); 2497 return true; 2498 } 2499 2500 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2501 << ParamType 2502 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2503 2504 S.Diag(Param->getLocation(), diag::note_template_param_here); 2505 } 2506 } 2507 } else { 2508 // We found something else, but we don't know specifically what it is. 2509 S.Diag(Arg->getSourceRange().getBegin(), 2510 diag::err_template_arg_not_object_or_func) 2511 << Arg->getSourceRange(); 2512 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2513 return true; 2514 } 2515 2516 if (ParamType->isPointerType() && 2517 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2518 S.IsQualificationConversion(ArgType, ParamType)) { 2519 // For pointer-to-object types, qualification conversions are 2520 // permitted. 2521 } else { 2522 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2523 if (!ParamRef->getPointeeType()->isFunctionType()) { 2524 // C++ [temp.arg.nontype]p5b3: 2525 // For a non-type template-parameter of type reference to 2526 // object, no conversions apply. The type referred to by the 2527 // reference may be more cv-qualified than the (otherwise 2528 // identical) type of the template- argument. The 2529 // template-parameter is bound directly to the 2530 // template-argument, which shall be an lvalue. 2531 2532 // FIXME: Other qualifiers? 2533 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2534 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2535 2536 if ((ParamQuals | ArgQuals) != ParamQuals) { 2537 S.Diag(Arg->getSourceRange().getBegin(), 2538 diag::err_template_arg_ref_bind_ignores_quals) 2539 << ParamType << Arg->getType() 2540 << Arg->getSourceRange(); 2541 S.Diag(Param->getLocation(), diag::note_template_param_here); 2542 return true; 2543 } 2544 } 2545 } 2546 2547 // At this point, the template argument refers to an object or 2548 // function with external linkage. We now need to check whether the 2549 // argument and parameter types are compatible. 2550 if (!S.Context.hasSameUnqualifiedType(ArgType, 2551 ParamType.getNonReferenceType())) { 2552 // We can't perform this conversion or binding. 2553 if (ParamType->isReferenceType()) 2554 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2555 << ParamType << Arg->getType() << Arg->getSourceRange(); 2556 else 2557 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2558 << Arg->getType() << ParamType << Arg->getSourceRange(); 2559 S.Diag(Param->getLocation(), diag::note_template_param_here); 2560 return true; 2561 } 2562 } 2563 2564 // Create the template argument. 2565 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2566 return false; 2567} 2568 2569/// \brief Checks whether the given template argument is a pointer to 2570/// member constant according to C++ [temp.arg.nontype]p1. 2571bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2572 TemplateArgument &Converted) { 2573 bool Invalid = false; 2574 2575 // See through any implicit casts we added to fix the type. 2576 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2577 Arg = Cast->getSubExpr(); 2578 2579 // C++ [temp.arg.nontype]p1: 2580 // 2581 // A template-argument for a non-type, non-template 2582 // template-parameter shall be one of: [...] 2583 // 2584 // -- a pointer to member expressed as described in 5.3.1. 2585 DeclRefExpr *DRE = 0; 2586 2587 // Ignore (and complain about) any excess parentheses. 2588 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2589 if (!Invalid) { 2590 Diag(Arg->getSourceRange().getBegin(), 2591 diag::err_template_arg_extra_parens) 2592 << Arg->getSourceRange(); 2593 Invalid = true; 2594 } 2595 2596 Arg = Parens->getSubExpr(); 2597 } 2598 2599 // A pointer-to-member constant written &Class::member. 2600 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2601 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2602 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2603 if (DRE && !DRE->getQualifier()) 2604 DRE = 0; 2605 } 2606 } 2607 // A constant of pointer-to-member type. 2608 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2609 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2610 if (VD->getType()->isMemberPointerType()) { 2611 if (isa<NonTypeTemplateParmDecl>(VD) || 2612 (isa<VarDecl>(VD) && 2613 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2614 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2615 Converted = TemplateArgument(Arg->Retain()); 2616 else 2617 Converted = TemplateArgument(VD->getCanonicalDecl()); 2618 return Invalid; 2619 } 2620 } 2621 } 2622 2623 DRE = 0; 2624 } 2625 2626 if (!DRE) 2627 return Diag(Arg->getSourceRange().getBegin(), 2628 diag::err_template_arg_not_pointer_to_member_form) 2629 << Arg->getSourceRange(); 2630 2631 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2632 assert((isa<FieldDecl>(DRE->getDecl()) || 2633 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2634 "Only non-static member pointers can make it here"); 2635 2636 // Okay: this is the address of a non-static member, and therefore 2637 // a member pointer constant. 2638 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2639 Converted = TemplateArgument(Arg->Retain()); 2640 else 2641 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2642 return Invalid; 2643 } 2644 2645 // We found something else, but we don't know specifically what it is. 2646 Diag(Arg->getSourceRange().getBegin(), 2647 diag::err_template_arg_not_pointer_to_member_form) 2648 << Arg->getSourceRange(); 2649 Diag(DRE->getDecl()->getLocation(), 2650 diag::note_template_arg_refers_here); 2651 return true; 2652} 2653 2654/// \brief Check a template argument against its corresponding 2655/// non-type template parameter. 2656/// 2657/// This routine implements the semantics of C++ [temp.arg.nontype]. 2658/// It returns true if an error occurred, and false otherwise. \p 2659/// InstantiatedParamType is the type of the non-type template 2660/// parameter after it has been instantiated. 2661/// 2662/// If no error was detected, Converted receives the converted template argument. 2663bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2664 QualType InstantiatedParamType, Expr *&Arg, 2665 TemplateArgument &Converted, 2666 CheckTemplateArgumentKind CTAK) { 2667 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2668 2669 // If either the parameter has a dependent type or the argument is 2670 // type-dependent, there's nothing we can check now. 2671 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2672 // FIXME: Produce a cloned, canonical expression? 2673 Converted = TemplateArgument(Arg); 2674 return false; 2675 } 2676 2677 // C++ [temp.arg.nontype]p5: 2678 // The following conversions are performed on each expression used 2679 // as a non-type template-argument. If a non-type 2680 // template-argument cannot be converted to the type of the 2681 // corresponding template-parameter then the program is 2682 // ill-formed. 2683 // 2684 // -- for a non-type template-parameter of integral or 2685 // enumeration type, integral promotions (4.5) and integral 2686 // conversions (4.7) are applied. 2687 QualType ParamType = InstantiatedParamType; 2688 QualType ArgType = Arg->getType(); 2689 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2690 // C++ [temp.arg.nontype]p1: 2691 // A template-argument for a non-type, non-template 2692 // template-parameter shall be one of: 2693 // 2694 // -- an integral constant-expression of integral or enumeration 2695 // type; or 2696 // -- the name of a non-type template-parameter; or 2697 SourceLocation NonConstantLoc; 2698 llvm::APSInt Value; 2699 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2700 Diag(Arg->getSourceRange().getBegin(), 2701 diag::err_template_arg_not_integral_or_enumeral) 2702 << ArgType << Arg->getSourceRange(); 2703 Diag(Param->getLocation(), diag::note_template_param_here); 2704 return true; 2705 } else if (!Arg->isValueDependent() && 2706 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2707 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2708 << ArgType << Arg->getSourceRange(); 2709 return true; 2710 } 2711 2712 // From here on out, all we care about are the unqualified forms 2713 // of the parameter and argument types. 2714 ParamType = ParamType.getUnqualifiedType(); 2715 ArgType = ArgType.getUnqualifiedType(); 2716 2717 // Try to convert the argument to the parameter's type. 2718 if (Context.hasSameType(ParamType, ArgType)) { 2719 // Okay: no conversion necessary 2720 } else if (CTAK == CTAK_Deduced) { 2721 // C++ [temp.deduct.type]p17: 2722 // If, in the declaration of a function template with a non-type 2723 // template-parameter, the non-type template- parameter is used 2724 // in an expression in the function parameter-list and, if the 2725 // corresponding template-argument is deduced, the 2726 // template-argument type shall match the type of the 2727 // template-parameter exactly, except that a template-argument 2728 // deduced from an array bound may be of any integral type. 2729 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2730 << ArgType << ParamType; 2731 Diag(Param->getLocation(), diag::note_template_param_here); 2732 return true; 2733 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2734 !ParamType->isEnumeralType()) { 2735 // This is an integral promotion or conversion. 2736 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2737 } else { 2738 // We can't perform this conversion. 2739 Diag(Arg->getSourceRange().getBegin(), 2740 diag::err_template_arg_not_convertible) 2741 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2742 Diag(Param->getLocation(), diag::note_template_param_here); 2743 return true; 2744 } 2745 2746 QualType IntegerType = Context.getCanonicalType(ParamType); 2747 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2748 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2749 2750 if (!Arg->isValueDependent()) { 2751 llvm::APSInt OldValue = Value; 2752 2753 // Coerce the template argument's value to the value it will have 2754 // based on the template parameter's type. 2755 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2756 if (Value.getBitWidth() != AllowedBits) 2757 Value.extOrTrunc(AllowedBits); 2758 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2759 2760 // Complain if an unsigned parameter received a negative value. 2761 if (IntegerType->isUnsignedIntegerType() 2762 && (OldValue.isSigned() && OldValue.isNegative())) { 2763 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2764 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2765 << Arg->getSourceRange(); 2766 Diag(Param->getLocation(), diag::note_template_param_here); 2767 } 2768 2769 // Complain if we overflowed the template parameter's type. 2770 unsigned RequiredBits; 2771 if (IntegerType->isUnsignedIntegerType()) 2772 RequiredBits = OldValue.getActiveBits(); 2773 else if (OldValue.isUnsigned()) 2774 RequiredBits = OldValue.getActiveBits() + 1; 2775 else 2776 RequiredBits = OldValue.getMinSignedBits(); 2777 if (RequiredBits > AllowedBits) { 2778 Diag(Arg->getSourceRange().getBegin(), 2779 diag::warn_template_arg_too_large) 2780 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2781 << Arg->getSourceRange(); 2782 Diag(Param->getLocation(), diag::note_template_param_here); 2783 } 2784 } 2785 2786 // Add the value of this argument to the list of converted 2787 // arguments. We use the bitwidth and signedness of the template 2788 // parameter. 2789 if (Arg->isValueDependent()) { 2790 // The argument is value-dependent. Create a new 2791 // TemplateArgument with the converted expression. 2792 Converted = TemplateArgument(Arg); 2793 return false; 2794 } 2795 2796 Converted = TemplateArgument(Value, 2797 ParamType->isEnumeralType() ? ParamType 2798 : IntegerType); 2799 return false; 2800 } 2801 2802 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2803 2804 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2805 // from a template argument of type std::nullptr_t to a non-type 2806 // template parameter of type pointer to object, pointer to 2807 // function, or pointer-to-member, respectively. 2808 if (ArgType->isNullPtrType() && 2809 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2810 Converted = TemplateArgument((NamedDecl *)0); 2811 return false; 2812 } 2813 2814 // Handle pointer-to-function, reference-to-function, and 2815 // pointer-to-member-function all in (roughly) the same way. 2816 if (// -- For a non-type template-parameter of type pointer to 2817 // function, only the function-to-pointer conversion (4.3) is 2818 // applied. If the template-argument represents a set of 2819 // overloaded functions (or a pointer to such), the matching 2820 // function is selected from the set (13.4). 2821 (ParamType->isPointerType() && 2822 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2823 // -- For a non-type template-parameter of type reference to 2824 // function, no conversions apply. If the template-argument 2825 // represents a set of overloaded functions, the matching 2826 // function is selected from the set (13.4). 2827 (ParamType->isReferenceType() && 2828 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2829 // -- For a non-type template-parameter of type pointer to 2830 // member function, no conversions apply. If the 2831 // template-argument represents a set of overloaded member 2832 // functions, the matching member function is selected from 2833 // the set (13.4). 2834 (ParamType->isMemberPointerType() && 2835 ParamType->getAs<MemberPointerType>()->getPointeeType() 2836 ->isFunctionType())) { 2837 2838 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2839 true, 2840 FoundResult)) { 2841 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2842 return true; 2843 2844 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2845 ArgType = Arg->getType(); 2846 } 2847 2848 if (!ParamType->isMemberPointerType()) 2849 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2850 ParamType, 2851 Arg, Converted); 2852 2853 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2854 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2855 Arg->isLvalue(Context) == Expr::LV_Valid); 2856 } else if (!Context.hasSameUnqualifiedType(ArgType, 2857 ParamType.getNonReferenceType())) { 2858 // We can't perform this conversion. 2859 Diag(Arg->getSourceRange().getBegin(), 2860 diag::err_template_arg_not_convertible) 2861 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2862 Diag(Param->getLocation(), diag::note_template_param_here); 2863 return true; 2864 } 2865 2866 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2867 } 2868 2869 if (ParamType->isPointerType()) { 2870 // -- for a non-type template-parameter of type pointer to 2871 // object, qualification conversions (4.4) and the 2872 // array-to-pointer conversion (4.2) are applied. 2873 // C++0x also allows a value of std::nullptr_t. 2874 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2875 "Only object pointers allowed here"); 2876 2877 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2878 ParamType, 2879 Arg, Converted); 2880 } 2881 2882 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2883 // -- For a non-type template-parameter of type reference to 2884 // object, no conversions apply. The type referred to by the 2885 // reference may be more cv-qualified than the (otherwise 2886 // identical) type of the template-argument. The 2887 // template-parameter is bound directly to the 2888 // template-argument, which must be an lvalue. 2889 assert(ParamRefType->getPointeeType()->isObjectType() && 2890 "Only object references allowed here"); 2891 2892 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2893 ParamRefType->getPointeeType(), 2894 true, 2895 FoundResult)) { 2896 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2897 return true; 2898 2899 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2900 ArgType = Arg->getType(); 2901 } 2902 2903 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2904 ParamType, 2905 Arg, Converted); 2906 } 2907 2908 // -- For a non-type template-parameter of type pointer to data 2909 // member, qualification conversions (4.4) are applied. 2910 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2911 2912 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2913 // Types match exactly: nothing more to do here. 2914 } else if (IsQualificationConversion(ArgType, ParamType)) { 2915 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2916 Arg->isLvalue(Context) == Expr::LV_Valid); 2917 } else { 2918 // We can't perform this conversion. 2919 Diag(Arg->getSourceRange().getBegin(), 2920 diag::err_template_arg_not_convertible) 2921 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2922 Diag(Param->getLocation(), diag::note_template_param_here); 2923 return true; 2924 } 2925 2926 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2927} 2928 2929/// \brief Check a template argument against its corresponding 2930/// template template parameter. 2931/// 2932/// This routine implements the semantics of C++ [temp.arg.template]. 2933/// It returns true if an error occurred, and false otherwise. 2934bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2935 const TemplateArgumentLoc &Arg) { 2936 TemplateName Name = Arg.getArgument().getAsTemplate(); 2937 TemplateDecl *Template = Name.getAsTemplateDecl(); 2938 if (!Template) { 2939 // Any dependent template name is fine. 2940 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2941 return false; 2942 } 2943 2944 // C++ [temp.arg.template]p1: 2945 // A template-argument for a template template-parameter shall be 2946 // the name of a class template, expressed as id-expression. Only 2947 // primary class templates are considered when matching the 2948 // template template argument with the corresponding parameter; 2949 // partial specializations are not considered even if their 2950 // parameter lists match that of the template template parameter. 2951 // 2952 // Note that we also allow template template parameters here, which 2953 // will happen when we are dealing with, e.g., class template 2954 // partial specializations. 2955 if (!isa<ClassTemplateDecl>(Template) && 2956 !isa<TemplateTemplateParmDecl>(Template)) { 2957 assert(isa<FunctionTemplateDecl>(Template) && 2958 "Only function templates are possible here"); 2959 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2960 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2961 << Template; 2962 } 2963 2964 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2965 Param->getTemplateParameters(), 2966 true, 2967 TPL_TemplateTemplateArgumentMatch, 2968 Arg.getLocation()); 2969} 2970 2971/// \brief Given a non-type template argument that refers to a 2972/// declaration and the type of its corresponding non-type template 2973/// parameter, produce an expression that properly refers to that 2974/// declaration. 2975Sema::OwningExprResult 2976Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 2977 QualType ParamType, 2978 SourceLocation Loc) { 2979 assert(Arg.getKind() == TemplateArgument::Declaration && 2980 "Only declaration template arguments permitted here"); 2981 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 2982 2983 if (VD->getDeclContext()->isRecord() && 2984 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 2985 // If the value is a class member, we might have a pointer-to-member. 2986 // Determine whether the non-type template template parameter is of 2987 // pointer-to-member type. If so, we need to build an appropriate 2988 // expression for a pointer-to-member, since a "normal" DeclRefExpr 2989 // would refer to the member itself. 2990 if (ParamType->isMemberPointerType()) { 2991 QualType ClassType 2992 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 2993 NestedNameSpecifier *Qualifier 2994 = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr()); 2995 CXXScopeSpec SS; 2996 SS.setScopeRep(Qualifier); 2997 OwningExprResult RefExpr = BuildDeclRefExpr(VD, 2998 VD->getType().getNonReferenceType(), 2999 Loc, 3000 &SS); 3001 if (RefExpr.isInvalid()) 3002 return ExprError(); 3003 3004 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3005 assert(!RefExpr.isInvalid() && 3006 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3007 ParamType)); 3008 return move(RefExpr); 3009 } 3010 } 3011 3012 QualType T = VD->getType().getNonReferenceType(); 3013 if (ParamType->isPointerType()) { 3014 // When the non-type template parameter is a pointer, take the 3015 // address of the declaration. 3016 OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3017 if (RefExpr.isInvalid()) 3018 return ExprError(); 3019 3020 if (T->isFunctionType() || T->isArrayType()) { 3021 // Decay functions and arrays. 3022 Expr *RefE = (Expr *)RefExpr.get(); 3023 DefaultFunctionArrayConversion(RefE); 3024 if (RefE != RefExpr.get()) { 3025 RefExpr.release(); 3026 RefExpr = Owned(RefE); 3027 } 3028 3029 return move(RefExpr); 3030 } 3031 3032 // Take the address of everything else 3033 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3034 } 3035 3036 // If the non-type template parameter has reference type, qualify the 3037 // resulting declaration reference with the extra qualifiers on the 3038 // type that the reference refers to. 3039 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3040 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3041 3042 return BuildDeclRefExpr(VD, T, Loc); 3043} 3044 3045/// \brief Construct a new expression that refers to the given 3046/// integral template argument with the given source-location 3047/// information. 3048/// 3049/// This routine takes care of the mapping from an integral template 3050/// argument (which may have any integral type) to the appropriate 3051/// literal value. 3052Sema::OwningExprResult 3053Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3054 SourceLocation Loc) { 3055 assert(Arg.getKind() == TemplateArgument::Integral && 3056 "Operation is only value for integral template arguments"); 3057 QualType T = Arg.getIntegralType(); 3058 if (T->isCharType() || T->isWideCharType()) 3059 return Owned(new (Context) CharacterLiteral( 3060 Arg.getAsIntegral()->getZExtValue(), 3061 T->isWideCharType(), 3062 T, 3063 Loc)); 3064 if (T->isBooleanType()) 3065 return Owned(new (Context) CXXBoolLiteralExpr( 3066 Arg.getAsIntegral()->getBoolValue(), 3067 T, 3068 Loc)); 3069 3070 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3071} 3072 3073 3074/// \brief Determine whether the given template parameter lists are 3075/// equivalent. 3076/// 3077/// \param New The new template parameter list, typically written in the 3078/// source code as part of a new template declaration. 3079/// 3080/// \param Old The old template parameter list, typically found via 3081/// name lookup of the template declared with this template parameter 3082/// list. 3083/// 3084/// \param Complain If true, this routine will produce a diagnostic if 3085/// the template parameter lists are not equivalent. 3086/// 3087/// \param Kind describes how we are to match the template parameter lists. 3088/// 3089/// \param TemplateArgLoc If this source location is valid, then we 3090/// are actually checking the template parameter list of a template 3091/// argument (New) against the template parameter list of its 3092/// corresponding template template parameter (Old). We produce 3093/// slightly different diagnostics in this scenario. 3094/// 3095/// \returns True if the template parameter lists are equal, false 3096/// otherwise. 3097bool 3098Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3099 TemplateParameterList *Old, 3100 bool Complain, 3101 TemplateParameterListEqualKind Kind, 3102 SourceLocation TemplateArgLoc) { 3103 if (Old->size() != New->size()) { 3104 if (Complain) { 3105 unsigned NextDiag = diag::err_template_param_list_different_arity; 3106 if (TemplateArgLoc.isValid()) { 3107 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3108 NextDiag = diag::note_template_param_list_different_arity; 3109 } 3110 Diag(New->getTemplateLoc(), NextDiag) 3111 << (New->size() > Old->size()) 3112 << (Kind != TPL_TemplateMatch) 3113 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3114 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3115 << (Kind != TPL_TemplateMatch) 3116 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3117 } 3118 3119 return false; 3120 } 3121 3122 for (TemplateParameterList::iterator OldParm = Old->begin(), 3123 OldParmEnd = Old->end(), NewParm = New->begin(); 3124 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3125 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3126 if (Complain) { 3127 unsigned NextDiag = diag::err_template_param_different_kind; 3128 if (TemplateArgLoc.isValid()) { 3129 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3130 NextDiag = diag::note_template_param_different_kind; 3131 } 3132 Diag((*NewParm)->getLocation(), NextDiag) 3133 << (Kind != TPL_TemplateMatch); 3134 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3135 << (Kind != TPL_TemplateMatch); 3136 } 3137 return false; 3138 } 3139 3140 if (isa<TemplateTypeParmDecl>(*OldParm)) { 3141 // Okay; all template type parameters are equivalent (since we 3142 // know we're at the same index). 3143 } else if (NonTypeTemplateParmDecl *OldNTTP 3144 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3145 // The types of non-type template parameters must agree. 3146 NonTypeTemplateParmDecl *NewNTTP 3147 = cast<NonTypeTemplateParmDecl>(*NewParm); 3148 3149 // If we are matching a template template argument to a template 3150 // template parameter and one of the non-type template parameter types 3151 // is dependent, then we must wait until template instantiation time 3152 // to actually compare the arguments. 3153 if (Kind == TPL_TemplateTemplateArgumentMatch && 3154 (OldNTTP->getType()->isDependentType() || 3155 NewNTTP->getType()->isDependentType())) 3156 continue; 3157 3158 if (Context.getCanonicalType(OldNTTP->getType()) != 3159 Context.getCanonicalType(NewNTTP->getType())) { 3160 if (Complain) { 3161 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3162 if (TemplateArgLoc.isValid()) { 3163 Diag(TemplateArgLoc, 3164 diag::err_template_arg_template_params_mismatch); 3165 NextDiag = diag::note_template_nontype_parm_different_type; 3166 } 3167 Diag(NewNTTP->getLocation(), NextDiag) 3168 << NewNTTP->getType() 3169 << (Kind != TPL_TemplateMatch); 3170 Diag(OldNTTP->getLocation(), 3171 diag::note_template_nontype_parm_prev_declaration) 3172 << OldNTTP->getType(); 3173 } 3174 return false; 3175 } 3176 } else { 3177 // The template parameter lists of template template 3178 // parameters must agree. 3179 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3180 "Only template template parameters handled here"); 3181 TemplateTemplateParmDecl *OldTTP 3182 = cast<TemplateTemplateParmDecl>(*OldParm); 3183 TemplateTemplateParmDecl *NewTTP 3184 = cast<TemplateTemplateParmDecl>(*NewParm); 3185 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3186 OldTTP->getTemplateParameters(), 3187 Complain, 3188 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3189 TemplateArgLoc)) 3190 return false; 3191 } 3192 } 3193 3194 return true; 3195} 3196 3197/// \brief Check whether a template can be declared within this scope. 3198/// 3199/// If the template declaration is valid in this scope, returns 3200/// false. Otherwise, issues a diagnostic and returns true. 3201bool 3202Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3203 // Find the nearest enclosing declaration scope. 3204 while ((S->getFlags() & Scope::DeclScope) == 0 || 3205 (S->getFlags() & Scope::TemplateParamScope) != 0) 3206 S = S->getParent(); 3207 3208 // C++ [temp]p2: 3209 // A template-declaration can appear only as a namespace scope or 3210 // class scope declaration. 3211 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3212 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3213 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3214 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3215 << TemplateParams->getSourceRange(); 3216 3217 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3218 Ctx = Ctx->getParent(); 3219 3220 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3221 return false; 3222 3223 return Diag(TemplateParams->getTemplateLoc(), 3224 diag::err_template_outside_namespace_or_class_scope) 3225 << TemplateParams->getSourceRange(); 3226} 3227 3228/// \brief Determine what kind of template specialization the given declaration 3229/// is. 3230static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3231 if (!D) 3232 return TSK_Undeclared; 3233 3234 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3235 return Record->getTemplateSpecializationKind(); 3236 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3237 return Function->getTemplateSpecializationKind(); 3238 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3239 return Var->getTemplateSpecializationKind(); 3240 3241 return TSK_Undeclared; 3242} 3243 3244/// \brief Check whether a specialization is well-formed in the current 3245/// context. 3246/// 3247/// This routine determines whether a template specialization can be declared 3248/// in the current context (C++ [temp.expl.spec]p2). 3249/// 3250/// \param S the semantic analysis object for which this check is being 3251/// performed. 3252/// 3253/// \param Specialized the entity being specialized or instantiated, which 3254/// may be a kind of template (class template, function template, etc.) or 3255/// a member of a class template (member function, static data member, 3256/// member class). 3257/// 3258/// \param PrevDecl the previous declaration of this entity, if any. 3259/// 3260/// \param Loc the location of the explicit specialization or instantiation of 3261/// this entity. 3262/// 3263/// \param IsPartialSpecialization whether this is a partial specialization of 3264/// a class template. 3265/// 3266/// \returns true if there was an error that we cannot recover from, false 3267/// otherwise. 3268static bool CheckTemplateSpecializationScope(Sema &S, 3269 NamedDecl *Specialized, 3270 NamedDecl *PrevDecl, 3271 SourceLocation Loc, 3272 bool IsPartialSpecialization) { 3273 // Keep these "kind" numbers in sync with the %select statements in the 3274 // various diagnostics emitted by this routine. 3275 int EntityKind = 0; 3276 bool isTemplateSpecialization = false; 3277 if (isa<ClassTemplateDecl>(Specialized)) { 3278 EntityKind = IsPartialSpecialization? 1 : 0; 3279 isTemplateSpecialization = true; 3280 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3281 EntityKind = 2; 3282 isTemplateSpecialization = true; 3283 } else if (isa<CXXMethodDecl>(Specialized)) 3284 EntityKind = 3; 3285 else if (isa<VarDecl>(Specialized)) 3286 EntityKind = 4; 3287 else if (isa<RecordDecl>(Specialized)) 3288 EntityKind = 5; 3289 else { 3290 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3291 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3292 return true; 3293 } 3294 3295 // C++ [temp.expl.spec]p2: 3296 // An explicit specialization shall be declared in the namespace 3297 // of which the template is a member, or, for member templates, in 3298 // the namespace of which the enclosing class or enclosing class 3299 // template is a member. An explicit specialization of a member 3300 // function, member class or static data member of a class 3301 // template shall be declared in the namespace of which the class 3302 // template is a member. Such a declaration may also be a 3303 // definition. If the declaration is not a definition, the 3304 // specialization may be defined later in the name- space in which 3305 // the explicit specialization was declared, or in a namespace 3306 // that encloses the one in which the explicit specialization was 3307 // declared. 3308 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3309 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3310 << Specialized; 3311 return true; 3312 } 3313 3314 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3315 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3316 << Specialized; 3317 return true; 3318 } 3319 3320 // C++ [temp.class.spec]p6: 3321 // A class template partial specialization may be declared or redeclared 3322 // in any namespace scope in which its definition may be defined (14.5.1 3323 // and 14.5.2). 3324 bool ComplainedAboutScope = false; 3325 DeclContext *SpecializedContext 3326 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3327 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3328 if ((!PrevDecl || 3329 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3330 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3331 // There is no prior declaration of this entity, so this 3332 // specialization must be in the same context as the template 3333 // itself. 3334 if (!DC->Equals(SpecializedContext)) { 3335 if (isa<TranslationUnitDecl>(SpecializedContext)) 3336 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3337 << EntityKind << Specialized; 3338 else if (isa<NamespaceDecl>(SpecializedContext)) 3339 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3340 << EntityKind << Specialized 3341 << cast<NamedDecl>(SpecializedContext); 3342 3343 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3344 ComplainedAboutScope = true; 3345 } 3346 } 3347 3348 // Make sure that this redeclaration (or definition) occurs in an enclosing 3349 // namespace. 3350 // Note that HandleDeclarator() performs this check for explicit 3351 // specializations of function templates, static data members, and member 3352 // functions, so we skip the check here for those kinds of entities. 3353 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3354 // Should we refactor that check, so that it occurs later? 3355 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3356 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3357 isa<FunctionDecl>(Specialized))) { 3358 if (isa<TranslationUnitDecl>(SpecializedContext)) 3359 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3360 << EntityKind << Specialized; 3361 else if (isa<NamespaceDecl>(SpecializedContext)) 3362 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3363 << EntityKind << Specialized 3364 << cast<NamedDecl>(SpecializedContext); 3365 3366 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3367 } 3368 3369 // FIXME: check for specialization-after-instantiation errors and such. 3370 3371 return false; 3372} 3373 3374/// \brief Check the non-type template arguments of a class template 3375/// partial specialization according to C++ [temp.class.spec]p9. 3376/// 3377/// \param TemplateParams the template parameters of the primary class 3378/// template. 3379/// 3380/// \param TemplateArg the template arguments of the class template 3381/// partial specialization. 3382/// 3383/// \param MirrorsPrimaryTemplate will be set true if the class 3384/// template partial specialization arguments are identical to the 3385/// implicit template arguments of the primary template. This is not 3386/// necessarily an error (C++0x), and it is left to the caller to diagnose 3387/// this condition when it is an error. 3388/// 3389/// \returns true if there was an error, false otherwise. 3390bool Sema::CheckClassTemplatePartialSpecializationArgs( 3391 TemplateParameterList *TemplateParams, 3392 const TemplateArgumentListBuilder &TemplateArgs, 3393 bool &MirrorsPrimaryTemplate) { 3394 // FIXME: the interface to this function will have to change to 3395 // accommodate variadic templates. 3396 MirrorsPrimaryTemplate = true; 3397 3398 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3399 3400 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3401 // Determine whether the template argument list of the partial 3402 // specialization is identical to the implicit argument list of 3403 // the primary template. The caller may need to diagnostic this as 3404 // an error per C++ [temp.class.spec]p9b3. 3405 if (MirrorsPrimaryTemplate) { 3406 if (TemplateTypeParmDecl *TTP 3407 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3408 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3409 Context.getCanonicalType(ArgList[I].getAsType())) 3410 MirrorsPrimaryTemplate = false; 3411 } else if (TemplateTemplateParmDecl *TTP 3412 = dyn_cast<TemplateTemplateParmDecl>( 3413 TemplateParams->getParam(I))) { 3414 TemplateName Name = ArgList[I].getAsTemplate(); 3415 TemplateTemplateParmDecl *ArgDecl 3416 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3417 if (!ArgDecl || 3418 ArgDecl->getIndex() != TTP->getIndex() || 3419 ArgDecl->getDepth() != TTP->getDepth()) 3420 MirrorsPrimaryTemplate = false; 3421 } 3422 } 3423 3424 NonTypeTemplateParmDecl *Param 3425 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3426 if (!Param) { 3427 continue; 3428 } 3429 3430 Expr *ArgExpr = ArgList[I].getAsExpr(); 3431 if (!ArgExpr) { 3432 MirrorsPrimaryTemplate = false; 3433 continue; 3434 } 3435 3436 // C++ [temp.class.spec]p8: 3437 // A non-type argument is non-specialized if it is the name of a 3438 // non-type parameter. All other non-type arguments are 3439 // specialized. 3440 // 3441 // Below, we check the two conditions that only apply to 3442 // specialized non-type arguments, so skip any non-specialized 3443 // arguments. 3444 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3445 if (NonTypeTemplateParmDecl *NTTP 3446 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3447 if (MirrorsPrimaryTemplate && 3448 (Param->getIndex() != NTTP->getIndex() || 3449 Param->getDepth() != NTTP->getDepth())) 3450 MirrorsPrimaryTemplate = false; 3451 3452 continue; 3453 } 3454 3455 // C++ [temp.class.spec]p9: 3456 // Within the argument list of a class template partial 3457 // specialization, the following restrictions apply: 3458 // -- A partially specialized non-type argument expression 3459 // shall not involve a template parameter of the partial 3460 // specialization except when the argument expression is a 3461 // simple identifier. 3462 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3463 Diag(ArgExpr->getLocStart(), 3464 diag::err_dependent_non_type_arg_in_partial_spec) 3465 << ArgExpr->getSourceRange(); 3466 return true; 3467 } 3468 3469 // -- The type of a template parameter corresponding to a 3470 // specialized non-type argument shall not be dependent on a 3471 // parameter of the specialization. 3472 if (Param->getType()->isDependentType()) { 3473 Diag(ArgExpr->getLocStart(), 3474 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3475 << Param->getType() 3476 << ArgExpr->getSourceRange(); 3477 Diag(Param->getLocation(), diag::note_template_param_here); 3478 return true; 3479 } 3480 3481 MirrorsPrimaryTemplate = false; 3482 } 3483 3484 return false; 3485} 3486 3487/// \brief Retrieve the previous declaration of the given declaration. 3488static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3489 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3490 return VD->getPreviousDeclaration(); 3491 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3492 return FD->getPreviousDeclaration(); 3493 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3494 return TD->getPreviousDeclaration(); 3495 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3496 return TD->getPreviousDeclaration(); 3497 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3498 return FTD->getPreviousDeclaration(); 3499 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3500 return CTD->getPreviousDeclaration(); 3501 return 0; 3502} 3503 3504Sema::DeclResult 3505Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3506 TagUseKind TUK, 3507 SourceLocation KWLoc, 3508 CXXScopeSpec &SS, 3509 TemplateTy TemplateD, 3510 SourceLocation TemplateNameLoc, 3511 SourceLocation LAngleLoc, 3512 ASTTemplateArgsPtr TemplateArgsIn, 3513 SourceLocation RAngleLoc, 3514 AttributeList *Attr, 3515 MultiTemplateParamsArg TemplateParameterLists) { 3516 assert(TUK != TUK_Reference && "References are not specializations"); 3517 3518 // Find the class template we're specializing 3519 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3520 ClassTemplateDecl *ClassTemplate 3521 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3522 3523 if (!ClassTemplate) { 3524 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3525 << (Name.getAsTemplateDecl() && 3526 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3527 return true; 3528 } 3529 3530 bool isExplicitSpecialization = false; 3531 bool isPartialSpecialization = false; 3532 3533 // Check the validity of the template headers that introduce this 3534 // template. 3535 // FIXME: We probably shouldn't complain about these headers for 3536 // friend declarations. 3537 TemplateParameterList *TemplateParams 3538 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3539 (TemplateParameterList**)TemplateParameterLists.get(), 3540 TemplateParameterLists.size(), 3541 isExplicitSpecialization); 3542 if (TemplateParams && TemplateParams->size() > 0) { 3543 isPartialSpecialization = true; 3544 3545 // C++ [temp.class.spec]p10: 3546 // The template parameter list of a specialization shall not 3547 // contain default template argument values. 3548 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3549 Decl *Param = TemplateParams->getParam(I); 3550 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3551 if (TTP->hasDefaultArgument()) { 3552 Diag(TTP->getDefaultArgumentLoc(), 3553 diag::err_default_arg_in_partial_spec); 3554 TTP->removeDefaultArgument(); 3555 } 3556 } else if (NonTypeTemplateParmDecl *NTTP 3557 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3558 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3559 Diag(NTTP->getDefaultArgumentLoc(), 3560 diag::err_default_arg_in_partial_spec) 3561 << DefArg->getSourceRange(); 3562 NTTP->setDefaultArgument(0); 3563 DefArg->Destroy(Context); 3564 } 3565 } else { 3566 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3567 if (TTP->hasDefaultArgument()) { 3568 Diag(TTP->getDefaultArgument().getLocation(), 3569 diag::err_default_arg_in_partial_spec) 3570 << TTP->getDefaultArgument().getSourceRange(); 3571 TTP->setDefaultArgument(TemplateArgumentLoc()); 3572 } 3573 } 3574 } 3575 } else if (TemplateParams) { 3576 if (TUK == TUK_Friend) 3577 Diag(KWLoc, diag::err_template_spec_friend) 3578 << FixItHint::CreateRemoval( 3579 SourceRange(TemplateParams->getTemplateLoc(), 3580 TemplateParams->getRAngleLoc())) 3581 << SourceRange(LAngleLoc, RAngleLoc); 3582 else 3583 isExplicitSpecialization = true; 3584 } else if (TUK != TUK_Friend) { 3585 Diag(KWLoc, diag::err_template_spec_needs_header) 3586 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3587 isExplicitSpecialization = true; 3588 } 3589 3590 // Check that the specialization uses the same tag kind as the 3591 // original template. 3592 TagDecl::TagKind Kind; 3593 switch (TagSpec) { 3594 default: assert(0 && "Unknown tag type!"); 3595 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3596 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3597 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3598 } 3599 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3600 Kind, KWLoc, 3601 *ClassTemplate->getIdentifier())) { 3602 Diag(KWLoc, diag::err_use_with_wrong_tag) 3603 << ClassTemplate 3604 << FixItHint::CreateReplacement(KWLoc, 3605 ClassTemplate->getTemplatedDecl()->getKindName()); 3606 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3607 diag::note_previous_use); 3608 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3609 } 3610 3611 // Translate the parser's template argument list in our AST format. 3612 TemplateArgumentListInfo TemplateArgs; 3613 TemplateArgs.setLAngleLoc(LAngleLoc); 3614 TemplateArgs.setRAngleLoc(RAngleLoc); 3615 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3616 3617 // Check that the template argument list is well-formed for this 3618 // template. 3619 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3620 TemplateArgs.size()); 3621 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3622 TemplateArgs, false, Converted)) 3623 return true; 3624 3625 assert((Converted.structuredSize() == 3626 ClassTemplate->getTemplateParameters()->size()) && 3627 "Converted template argument list is too short!"); 3628 3629 // Find the class template (partial) specialization declaration that 3630 // corresponds to these arguments. 3631 llvm::FoldingSetNodeID ID; 3632 if (isPartialSpecialization) { 3633 bool MirrorsPrimaryTemplate; 3634 if (CheckClassTemplatePartialSpecializationArgs( 3635 ClassTemplate->getTemplateParameters(), 3636 Converted, MirrorsPrimaryTemplate)) 3637 return true; 3638 3639 if (MirrorsPrimaryTemplate) { 3640 // C++ [temp.class.spec]p9b3: 3641 // 3642 // -- The argument list of the specialization shall not be identical 3643 // to the implicit argument list of the primary template. 3644 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3645 << (TUK == TUK_Definition) 3646 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3647 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3648 ClassTemplate->getIdentifier(), 3649 TemplateNameLoc, 3650 Attr, 3651 TemplateParams, 3652 AS_none); 3653 } 3654 3655 // FIXME: Diagnose friend partial specializations 3656 3657 if (!Name.isDependent() && 3658 !TemplateSpecializationType::anyDependentTemplateArguments( 3659 TemplateArgs.getArgumentArray(), 3660 TemplateArgs.size())) { 3661 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3662 << ClassTemplate->getDeclName(); 3663 isPartialSpecialization = false; 3664 } else { 3665 // FIXME: Template parameter list matters, too 3666 ClassTemplatePartialSpecializationDecl::Profile(ID, 3667 Converted.getFlatArguments(), 3668 Converted.flatSize(), 3669 Context); 3670 } 3671 } 3672 3673 if (!isPartialSpecialization) 3674 ClassTemplateSpecializationDecl::Profile(ID, 3675 Converted.getFlatArguments(), 3676 Converted.flatSize(), 3677 Context); 3678 void *InsertPos = 0; 3679 ClassTemplateSpecializationDecl *PrevDecl = 0; 3680 3681 if (isPartialSpecialization) 3682 PrevDecl 3683 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3684 InsertPos); 3685 else 3686 PrevDecl 3687 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3688 3689 ClassTemplateSpecializationDecl *Specialization = 0; 3690 3691 // Check whether we can declare a class template specialization in 3692 // the current scope. 3693 if (TUK != TUK_Friend && 3694 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3695 TemplateNameLoc, 3696 isPartialSpecialization)) 3697 return true; 3698 3699 // The canonical type 3700 QualType CanonType; 3701 if (PrevDecl && 3702 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3703 TUK == TUK_Friend)) { 3704 // Since the only prior class template specialization with these 3705 // arguments was referenced but not declared, or we're only 3706 // referencing this specialization as a friend, reuse that 3707 // declaration node as our own, updating its source location to 3708 // reflect our new declaration. 3709 Specialization = PrevDecl; 3710 Specialization->setLocation(TemplateNameLoc); 3711 PrevDecl = 0; 3712 CanonType = Context.getTypeDeclType(Specialization); 3713 } else if (isPartialSpecialization) { 3714 // Build the canonical type that describes the converted template 3715 // arguments of the class template partial specialization. 3716 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3717 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3718 Converted.getFlatArguments(), 3719 Converted.flatSize()); 3720 3721 // Create a new class template partial specialization declaration node. 3722 ClassTemplatePartialSpecializationDecl *PrevPartial 3723 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3724 ClassTemplatePartialSpecializationDecl *Partial 3725 = ClassTemplatePartialSpecializationDecl::Create(Context, 3726 ClassTemplate->getDeclContext(), 3727 TemplateNameLoc, 3728 TemplateParams, 3729 ClassTemplate, 3730 Converted, 3731 TemplateArgs, 3732 CanonType, 3733 PrevPartial); 3734 SetNestedNameSpecifier(Partial, SS); 3735 3736 if (PrevPartial) { 3737 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3738 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3739 } else { 3740 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3741 } 3742 Specialization = Partial; 3743 3744 // If we are providing an explicit specialization of a member class 3745 // template specialization, make a note of that. 3746 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3747 PrevPartial->setMemberSpecialization(); 3748 3749 // Check that all of the template parameters of the class template 3750 // partial specialization are deducible from the template 3751 // arguments. If not, this class template partial specialization 3752 // will never be used. 3753 llvm::SmallVector<bool, 8> DeducibleParams; 3754 DeducibleParams.resize(TemplateParams->size()); 3755 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3756 TemplateParams->getDepth(), 3757 DeducibleParams); 3758 unsigned NumNonDeducible = 0; 3759 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3760 if (!DeducibleParams[I]) 3761 ++NumNonDeducible; 3762 3763 if (NumNonDeducible) { 3764 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3765 << (NumNonDeducible > 1) 3766 << SourceRange(TemplateNameLoc, RAngleLoc); 3767 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3768 if (!DeducibleParams[I]) { 3769 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3770 if (Param->getDeclName()) 3771 Diag(Param->getLocation(), 3772 diag::note_partial_spec_unused_parameter) 3773 << Param->getDeclName(); 3774 else 3775 Diag(Param->getLocation(), 3776 diag::note_partial_spec_unused_parameter) 3777 << std::string("<anonymous>"); 3778 } 3779 } 3780 } 3781 } else { 3782 // Create a new class template specialization declaration node for 3783 // this explicit specialization or friend declaration. 3784 Specialization 3785 = ClassTemplateSpecializationDecl::Create(Context, 3786 ClassTemplate->getDeclContext(), 3787 TemplateNameLoc, 3788 ClassTemplate, 3789 Converted, 3790 PrevDecl); 3791 SetNestedNameSpecifier(Specialization, SS); 3792 3793 if (PrevDecl) { 3794 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3795 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3796 } else { 3797 ClassTemplate->getSpecializations().InsertNode(Specialization, 3798 InsertPos); 3799 } 3800 3801 CanonType = Context.getTypeDeclType(Specialization); 3802 } 3803 3804 // C++ [temp.expl.spec]p6: 3805 // If a template, a member template or the member of a class template is 3806 // explicitly specialized then that specialization shall be declared 3807 // before the first use of that specialization that would cause an implicit 3808 // instantiation to take place, in every translation unit in which such a 3809 // use occurs; no diagnostic is required. 3810 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3811 bool Okay = false; 3812 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3813 // Is there any previous explicit specialization declaration? 3814 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3815 Okay = true; 3816 break; 3817 } 3818 } 3819 3820 if (!Okay) { 3821 SourceRange Range(TemplateNameLoc, RAngleLoc); 3822 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3823 << Context.getTypeDeclType(Specialization) << Range; 3824 3825 Diag(PrevDecl->getPointOfInstantiation(), 3826 diag::note_instantiation_required_here) 3827 << (PrevDecl->getTemplateSpecializationKind() 3828 != TSK_ImplicitInstantiation); 3829 return true; 3830 } 3831 } 3832 3833 // If this is not a friend, note that this is an explicit specialization. 3834 if (TUK != TUK_Friend) 3835 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3836 3837 // Check that this isn't a redefinition of this specialization. 3838 if (TUK == TUK_Definition) { 3839 if (RecordDecl *Def = Specialization->getDefinition()) { 3840 SourceRange Range(TemplateNameLoc, RAngleLoc); 3841 Diag(TemplateNameLoc, diag::err_redefinition) 3842 << Context.getTypeDeclType(Specialization) << Range; 3843 Diag(Def->getLocation(), diag::note_previous_definition); 3844 Specialization->setInvalidDecl(); 3845 return true; 3846 } 3847 } 3848 3849 // Build the fully-sugared type for this class template 3850 // specialization as the user wrote in the specialization 3851 // itself. This means that we'll pretty-print the type retrieved 3852 // from the specialization's declaration the way that the user 3853 // actually wrote the specialization, rather than formatting the 3854 // name based on the "canonical" representation used to store the 3855 // template arguments in the specialization. 3856 TypeSourceInfo *WrittenTy 3857 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3858 TemplateArgs, CanonType); 3859 if (TUK != TUK_Friend) 3860 Specialization->setTypeAsWritten(WrittenTy); 3861 TemplateArgsIn.release(); 3862 3863 // C++ [temp.expl.spec]p9: 3864 // A template explicit specialization is in the scope of the 3865 // namespace in which the template was defined. 3866 // 3867 // We actually implement this paragraph where we set the semantic 3868 // context (in the creation of the ClassTemplateSpecializationDecl), 3869 // but we also maintain the lexical context where the actual 3870 // definition occurs. 3871 Specialization->setLexicalDeclContext(CurContext); 3872 3873 // We may be starting the definition of this specialization. 3874 if (TUK == TUK_Definition) 3875 Specialization->startDefinition(); 3876 3877 if (TUK == TUK_Friend) { 3878 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3879 TemplateNameLoc, 3880 WrittenTy, 3881 /*FIXME:*/KWLoc); 3882 Friend->setAccess(AS_public); 3883 CurContext->addDecl(Friend); 3884 } else { 3885 // Add the specialization into its lexical context, so that it can 3886 // be seen when iterating through the list of declarations in that 3887 // context. However, specializations are not found by name lookup. 3888 CurContext->addDecl(Specialization); 3889 } 3890 return DeclPtrTy::make(Specialization); 3891} 3892 3893Sema::DeclPtrTy 3894Sema::ActOnTemplateDeclarator(Scope *S, 3895 MultiTemplateParamsArg TemplateParameterLists, 3896 Declarator &D) { 3897 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3898} 3899 3900Sema::DeclPtrTy 3901Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3902 MultiTemplateParamsArg TemplateParameterLists, 3903 Declarator &D) { 3904 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3905 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3906 "Not a function declarator!"); 3907 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3908 3909 if (FTI.hasPrototype) { 3910 // FIXME: Diagnose arguments without names in C. 3911 } 3912 3913 Scope *ParentScope = FnBodyScope->getParent(); 3914 3915 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3916 move(TemplateParameterLists), 3917 /*IsFunctionDefinition=*/true); 3918 if (FunctionTemplateDecl *FunctionTemplate 3919 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3920 return ActOnStartOfFunctionDef(FnBodyScope, 3921 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3922 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3923 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3924 return DeclPtrTy(); 3925} 3926 3927/// \brief Strips various properties off an implicit instantiation 3928/// that has just been explicitly specialized. 3929static void StripImplicitInstantiation(NamedDecl *D) { 3930 D->invalidateAttrs(); 3931 3932 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3933 FD->setInlineSpecified(false); 3934 } 3935} 3936 3937/// \brief Diagnose cases where we have an explicit template specialization 3938/// before/after an explicit template instantiation, producing diagnostics 3939/// for those cases where they are required and determining whether the 3940/// new specialization/instantiation will have any effect. 3941/// 3942/// \param NewLoc the location of the new explicit specialization or 3943/// instantiation. 3944/// 3945/// \param NewTSK the kind of the new explicit specialization or instantiation. 3946/// 3947/// \param PrevDecl the previous declaration of the entity. 3948/// 3949/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3950/// 3951/// \param PrevPointOfInstantiation if valid, indicates where the previus 3952/// declaration was instantiated (either implicitly or explicitly). 3953/// 3954/// \param SuppressNew will be set to true to indicate that the new 3955/// specialization or instantiation has no effect and should be ignored. 3956/// 3957/// \returns true if there was an error that should prevent the introduction of 3958/// the new declaration into the AST, false otherwise. 3959bool 3960Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3961 TemplateSpecializationKind NewTSK, 3962 NamedDecl *PrevDecl, 3963 TemplateSpecializationKind PrevTSK, 3964 SourceLocation PrevPointOfInstantiation, 3965 bool &SuppressNew) { 3966 SuppressNew = false; 3967 3968 switch (NewTSK) { 3969 case TSK_Undeclared: 3970 case TSK_ImplicitInstantiation: 3971 assert(false && "Don't check implicit instantiations here"); 3972 return false; 3973 3974 case TSK_ExplicitSpecialization: 3975 switch (PrevTSK) { 3976 case TSK_Undeclared: 3977 case TSK_ExplicitSpecialization: 3978 // Okay, we're just specializing something that is either already 3979 // explicitly specialized or has merely been mentioned without any 3980 // instantiation. 3981 return false; 3982 3983 case TSK_ImplicitInstantiation: 3984 if (PrevPointOfInstantiation.isInvalid()) { 3985 // The declaration itself has not actually been instantiated, so it is 3986 // still okay to specialize it. 3987 StripImplicitInstantiation(PrevDecl); 3988 return false; 3989 } 3990 // Fall through 3991 3992 case TSK_ExplicitInstantiationDeclaration: 3993 case TSK_ExplicitInstantiationDefinition: 3994 assert((PrevTSK == TSK_ImplicitInstantiation || 3995 PrevPointOfInstantiation.isValid()) && 3996 "Explicit instantiation without point of instantiation?"); 3997 3998 // C++ [temp.expl.spec]p6: 3999 // If a template, a member template or the member of a class template 4000 // is explicitly specialized then that specialization shall be declared 4001 // before the first use of that specialization that would cause an 4002 // implicit instantiation to take place, in every translation unit in 4003 // which such a use occurs; no diagnostic is required. 4004 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4005 // Is there any previous explicit specialization declaration? 4006 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4007 return false; 4008 } 4009 4010 Diag(NewLoc, diag::err_specialization_after_instantiation) 4011 << PrevDecl; 4012 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4013 << (PrevTSK != TSK_ImplicitInstantiation); 4014 4015 return true; 4016 } 4017 break; 4018 4019 case TSK_ExplicitInstantiationDeclaration: 4020 switch (PrevTSK) { 4021 case TSK_ExplicitInstantiationDeclaration: 4022 // This explicit instantiation declaration is redundant (that's okay). 4023 SuppressNew = true; 4024 return false; 4025 4026 case TSK_Undeclared: 4027 case TSK_ImplicitInstantiation: 4028 // We're explicitly instantiating something that may have already been 4029 // implicitly instantiated; that's fine. 4030 return false; 4031 4032 case TSK_ExplicitSpecialization: 4033 // C++0x [temp.explicit]p4: 4034 // For a given set of template parameters, if an explicit instantiation 4035 // of a template appears after a declaration of an explicit 4036 // specialization for that template, the explicit instantiation has no 4037 // effect. 4038 SuppressNew = true; 4039 return false; 4040 4041 case TSK_ExplicitInstantiationDefinition: 4042 // C++0x [temp.explicit]p10: 4043 // If an entity is the subject of both an explicit instantiation 4044 // declaration and an explicit instantiation definition in the same 4045 // translation unit, the definition shall follow the declaration. 4046 Diag(NewLoc, 4047 diag::err_explicit_instantiation_declaration_after_definition); 4048 Diag(PrevPointOfInstantiation, 4049 diag::note_explicit_instantiation_definition_here); 4050 assert(PrevPointOfInstantiation.isValid() && 4051 "Explicit instantiation without point of instantiation?"); 4052 SuppressNew = true; 4053 return false; 4054 } 4055 break; 4056 4057 case TSK_ExplicitInstantiationDefinition: 4058 switch (PrevTSK) { 4059 case TSK_Undeclared: 4060 case TSK_ImplicitInstantiation: 4061 // We're explicitly instantiating something that may have already been 4062 // implicitly instantiated; that's fine. 4063 return false; 4064 4065 case TSK_ExplicitSpecialization: 4066 // C++ DR 259, C++0x [temp.explicit]p4: 4067 // For a given set of template parameters, if an explicit 4068 // instantiation of a template appears after a declaration of 4069 // an explicit specialization for that template, the explicit 4070 // instantiation has no effect. 4071 // 4072 // In C++98/03 mode, we only give an extension warning here, because it 4073 // is not harmful to try to explicitly instantiate something that 4074 // has been explicitly specialized. 4075 if (!getLangOptions().CPlusPlus0x) { 4076 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4077 << PrevDecl; 4078 Diag(PrevDecl->getLocation(), 4079 diag::note_previous_template_specialization); 4080 } 4081 SuppressNew = true; 4082 return false; 4083 4084 case TSK_ExplicitInstantiationDeclaration: 4085 // We're explicity instantiating a definition for something for which we 4086 // were previously asked to suppress instantiations. That's fine. 4087 return false; 4088 4089 case TSK_ExplicitInstantiationDefinition: 4090 // C++0x [temp.spec]p5: 4091 // For a given template and a given set of template-arguments, 4092 // - an explicit instantiation definition shall appear at most once 4093 // in a program, 4094 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4095 << PrevDecl; 4096 Diag(PrevPointOfInstantiation, 4097 diag::note_previous_explicit_instantiation); 4098 SuppressNew = true; 4099 return false; 4100 } 4101 break; 4102 } 4103 4104 assert(false && "Missing specialization/instantiation case?"); 4105 4106 return false; 4107} 4108 4109/// \brief Perform semantic analysis for the given dependent function 4110/// template specialization. The only possible way to get a dependent 4111/// function template specialization is with a friend declaration, 4112/// like so: 4113/// 4114/// template <class T> void foo(T); 4115/// template <class T> class A { 4116/// friend void foo<>(T); 4117/// }; 4118/// 4119/// There really isn't any useful analysis we can do here, so we 4120/// just store the information. 4121bool 4122Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4123 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4124 LookupResult &Previous) { 4125 // Remove anything from Previous that isn't a function template in 4126 // the correct context. 4127 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4128 LookupResult::Filter F = Previous.makeFilter(); 4129 while (F.hasNext()) { 4130 NamedDecl *D = F.next()->getUnderlyingDecl(); 4131 if (!isa<FunctionTemplateDecl>(D) || 4132 !FDLookupContext->Equals(D->getDeclContext()->getLookupContext())) 4133 F.erase(); 4134 } 4135 F.done(); 4136 4137 // Should this be diagnosed here? 4138 if (Previous.empty()) return true; 4139 4140 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4141 ExplicitTemplateArgs); 4142 return false; 4143} 4144 4145/// \brief Perform semantic analysis for the given function template 4146/// specialization. 4147/// 4148/// This routine performs all of the semantic analysis required for an 4149/// explicit function template specialization. On successful completion, 4150/// the function declaration \p FD will become a function template 4151/// specialization. 4152/// 4153/// \param FD the function declaration, which will be updated to become a 4154/// function template specialization. 4155/// 4156/// \param HasExplicitTemplateArgs whether any template arguments were 4157/// explicitly provided. 4158/// 4159/// \param LAngleLoc the location of the left angle bracket ('<'), if 4160/// template arguments were explicitly provided. 4161/// 4162/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4163/// if any. 4164/// 4165/// \param NumExplicitTemplateArgs the number of explicitly-provided template 4166/// arguments. This number may be zero even when HasExplicitTemplateArgs is 4167/// true as in, e.g., \c void sort<>(char*, char*); 4168/// 4169/// \param RAngleLoc the location of the right angle bracket ('>'), if 4170/// template arguments were explicitly provided. 4171/// 4172/// \param PrevDecl the set of declarations that 4173bool 4174Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4175 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4176 LookupResult &Previous) { 4177 // The set of function template specializations that could match this 4178 // explicit function template specialization. 4179 UnresolvedSet<8> Candidates; 4180 4181 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4182 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4183 I != E; ++I) { 4184 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4185 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4186 // Only consider templates found within the same semantic lookup scope as 4187 // FD. 4188 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4189 continue; 4190 4191 // C++ [temp.expl.spec]p11: 4192 // A trailing template-argument can be left unspecified in the 4193 // template-id naming an explicit function template specialization 4194 // provided it can be deduced from the function argument type. 4195 // Perform template argument deduction to determine whether we may be 4196 // specializing this template. 4197 // FIXME: It is somewhat wasteful to build 4198 TemplateDeductionInfo Info(Context, FD->getLocation()); 4199 FunctionDecl *Specialization = 0; 4200 if (TemplateDeductionResult TDK 4201 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4202 FD->getType(), 4203 Specialization, 4204 Info)) { 4205 // FIXME: Template argument deduction failed; record why it failed, so 4206 // that we can provide nifty diagnostics. 4207 (void)TDK; 4208 continue; 4209 } 4210 4211 // Record this candidate. 4212 Candidates.addDecl(Specialization, I.getAccess()); 4213 } 4214 } 4215 4216 // Find the most specialized function template. 4217 UnresolvedSetIterator Result 4218 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4219 TPOC_Other, FD->getLocation(), 4220 PDiag(diag::err_function_template_spec_no_match) 4221 << FD->getDeclName(), 4222 PDiag(diag::err_function_template_spec_ambiguous) 4223 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4224 PDiag(diag::note_function_template_spec_matched)); 4225 if (Result == Candidates.end()) 4226 return true; 4227 4228 // Ignore access information; it doesn't figure into redeclaration checking. 4229 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4230 Specialization->setLocation(FD->getLocation()); 4231 4232 // FIXME: Check if the prior specialization has a point of instantiation. 4233 // If so, we have run afoul of . 4234 4235 // If this is a friend declaration, then we're not really declaring 4236 // an explicit specialization. 4237 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4238 4239 // Check the scope of this explicit specialization. 4240 if (!isFriend && 4241 CheckTemplateSpecializationScope(*this, 4242 Specialization->getPrimaryTemplate(), 4243 Specialization, FD->getLocation(), 4244 false)) 4245 return true; 4246 4247 // C++ [temp.expl.spec]p6: 4248 // If a template, a member template or the member of a class template is 4249 // explicitly specialized then that specialization shall be declared 4250 // before the first use of that specialization that would cause an implicit 4251 // instantiation to take place, in every translation unit in which such a 4252 // use occurs; no diagnostic is required. 4253 FunctionTemplateSpecializationInfo *SpecInfo 4254 = Specialization->getTemplateSpecializationInfo(); 4255 assert(SpecInfo && "Function template specialization info missing?"); 4256 4257 bool SuppressNew = false; 4258 if (!isFriend && 4259 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4260 TSK_ExplicitSpecialization, 4261 Specialization, 4262 SpecInfo->getTemplateSpecializationKind(), 4263 SpecInfo->getPointOfInstantiation(), 4264 SuppressNew)) 4265 return true; 4266 4267 // Mark the prior declaration as an explicit specialization, so that later 4268 // clients know that this is an explicit specialization. 4269 if (!isFriend) 4270 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4271 4272 // Turn the given function declaration into a function template 4273 // specialization, with the template arguments from the previous 4274 // specialization. 4275 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4276 new (Context) TemplateArgumentList( 4277 *Specialization->getTemplateSpecializationArgs()), 4278 /*InsertPos=*/0, 4279 SpecInfo->getTemplateSpecializationKind()); 4280 4281 // The "previous declaration" for this function template specialization is 4282 // the prior function template specialization. 4283 Previous.clear(); 4284 Previous.addDecl(Specialization); 4285 return false; 4286} 4287 4288/// \brief Perform semantic analysis for the given non-template member 4289/// specialization. 4290/// 4291/// This routine performs all of the semantic analysis required for an 4292/// explicit member function specialization. On successful completion, 4293/// the function declaration \p FD will become a member function 4294/// specialization. 4295/// 4296/// \param Member the member declaration, which will be updated to become a 4297/// specialization. 4298/// 4299/// \param Previous the set of declarations, one of which may be specialized 4300/// by this function specialization; the set will be modified to contain the 4301/// redeclared member. 4302bool 4303Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4304 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4305 4306 // Try to find the member we are instantiating. 4307 NamedDecl *Instantiation = 0; 4308 NamedDecl *InstantiatedFrom = 0; 4309 MemberSpecializationInfo *MSInfo = 0; 4310 4311 if (Previous.empty()) { 4312 // Nowhere to look anyway. 4313 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4314 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4315 I != E; ++I) { 4316 NamedDecl *D = (*I)->getUnderlyingDecl(); 4317 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4318 if (Context.hasSameType(Function->getType(), Method->getType())) { 4319 Instantiation = Method; 4320 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4321 MSInfo = Method->getMemberSpecializationInfo(); 4322 break; 4323 } 4324 } 4325 } 4326 } else if (isa<VarDecl>(Member)) { 4327 VarDecl *PrevVar; 4328 if (Previous.isSingleResult() && 4329 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4330 if (PrevVar->isStaticDataMember()) { 4331 Instantiation = PrevVar; 4332 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4333 MSInfo = PrevVar->getMemberSpecializationInfo(); 4334 } 4335 } else if (isa<RecordDecl>(Member)) { 4336 CXXRecordDecl *PrevRecord; 4337 if (Previous.isSingleResult() && 4338 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4339 Instantiation = PrevRecord; 4340 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4341 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4342 } 4343 } 4344 4345 if (!Instantiation) { 4346 // There is no previous declaration that matches. Since member 4347 // specializations are always out-of-line, the caller will complain about 4348 // this mismatch later. 4349 return false; 4350 } 4351 4352 // Make sure that this is a specialization of a member. 4353 if (!InstantiatedFrom) { 4354 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4355 << Member; 4356 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4357 return true; 4358 } 4359 4360 // C++ [temp.expl.spec]p6: 4361 // If a template, a member template or the member of a class template is 4362 // explicitly specialized then that spe- cialization shall be declared 4363 // before the first use of that specialization that would cause an implicit 4364 // instantiation to take place, in every translation unit in which such a 4365 // use occurs; no diagnostic is required. 4366 assert(MSInfo && "Member specialization info missing?"); 4367 4368 bool SuppressNew = false; 4369 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4370 TSK_ExplicitSpecialization, 4371 Instantiation, 4372 MSInfo->getTemplateSpecializationKind(), 4373 MSInfo->getPointOfInstantiation(), 4374 SuppressNew)) 4375 return true; 4376 4377 // Check the scope of this explicit specialization. 4378 if (CheckTemplateSpecializationScope(*this, 4379 InstantiatedFrom, 4380 Instantiation, Member->getLocation(), 4381 false)) 4382 return true; 4383 4384 // Note that this is an explicit instantiation of a member. 4385 // the original declaration to note that it is an explicit specialization 4386 // (if it was previously an implicit instantiation). This latter step 4387 // makes bookkeeping easier. 4388 if (isa<FunctionDecl>(Member)) { 4389 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4390 if (InstantiationFunction->getTemplateSpecializationKind() == 4391 TSK_ImplicitInstantiation) { 4392 InstantiationFunction->setTemplateSpecializationKind( 4393 TSK_ExplicitSpecialization); 4394 InstantiationFunction->setLocation(Member->getLocation()); 4395 } 4396 4397 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4398 cast<CXXMethodDecl>(InstantiatedFrom), 4399 TSK_ExplicitSpecialization); 4400 } else if (isa<VarDecl>(Member)) { 4401 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4402 if (InstantiationVar->getTemplateSpecializationKind() == 4403 TSK_ImplicitInstantiation) { 4404 InstantiationVar->setTemplateSpecializationKind( 4405 TSK_ExplicitSpecialization); 4406 InstantiationVar->setLocation(Member->getLocation()); 4407 } 4408 4409 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4410 cast<VarDecl>(InstantiatedFrom), 4411 TSK_ExplicitSpecialization); 4412 } else { 4413 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4414 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4415 if (InstantiationClass->getTemplateSpecializationKind() == 4416 TSK_ImplicitInstantiation) { 4417 InstantiationClass->setTemplateSpecializationKind( 4418 TSK_ExplicitSpecialization); 4419 InstantiationClass->setLocation(Member->getLocation()); 4420 } 4421 4422 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4423 cast<CXXRecordDecl>(InstantiatedFrom), 4424 TSK_ExplicitSpecialization); 4425 } 4426 4427 // Save the caller the trouble of having to figure out which declaration 4428 // this specialization matches. 4429 Previous.clear(); 4430 Previous.addDecl(Instantiation); 4431 return false; 4432} 4433 4434/// \brief Check the scope of an explicit instantiation. 4435static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4436 SourceLocation InstLoc, 4437 bool WasQualifiedName) { 4438 DeclContext *ExpectedContext 4439 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4440 DeclContext *CurContext = S.CurContext->getLookupContext(); 4441 4442 // C++0x [temp.explicit]p2: 4443 // An explicit instantiation shall appear in an enclosing namespace of its 4444 // template. 4445 // 4446 // This is DR275, which we do not retroactively apply to C++98/03. 4447 if (S.getLangOptions().CPlusPlus0x && 4448 !CurContext->Encloses(ExpectedContext)) { 4449 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4450 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 4451 << D << NS; 4452 else 4453 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 4454 << D; 4455 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4456 return; 4457 } 4458 4459 // C++0x [temp.explicit]p2: 4460 // If the name declared in the explicit instantiation is an unqualified 4461 // name, the explicit instantiation shall appear in the namespace where 4462 // its template is declared or, if that namespace is inline (7.3.1), any 4463 // namespace from its enclosing namespace set. 4464 if (WasQualifiedName) 4465 return; 4466 4467 if (CurContext->Equals(ExpectedContext)) 4468 return; 4469 4470 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4471 << D << ExpectedContext; 4472 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4473} 4474 4475/// \brief Determine whether the given scope specifier has a template-id in it. 4476static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4477 if (!SS.isSet()) 4478 return false; 4479 4480 // C++0x [temp.explicit]p2: 4481 // If the explicit instantiation is for a member function, a member class 4482 // or a static data member of a class template specialization, the name of 4483 // the class template specialization in the qualified-id for the member 4484 // name shall be a simple-template-id. 4485 // 4486 // C++98 has the same restriction, just worded differently. 4487 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4488 NNS; NNS = NNS->getPrefix()) 4489 if (Type *T = NNS->getAsType()) 4490 if (isa<TemplateSpecializationType>(T)) 4491 return true; 4492 4493 return false; 4494} 4495 4496// Explicit instantiation of a class template specialization 4497// FIXME: Implement extern template semantics 4498Sema::DeclResult 4499Sema::ActOnExplicitInstantiation(Scope *S, 4500 SourceLocation ExternLoc, 4501 SourceLocation TemplateLoc, 4502 unsigned TagSpec, 4503 SourceLocation KWLoc, 4504 const CXXScopeSpec &SS, 4505 TemplateTy TemplateD, 4506 SourceLocation TemplateNameLoc, 4507 SourceLocation LAngleLoc, 4508 ASTTemplateArgsPtr TemplateArgsIn, 4509 SourceLocation RAngleLoc, 4510 AttributeList *Attr) { 4511 // Find the class template we're specializing 4512 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4513 ClassTemplateDecl *ClassTemplate 4514 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4515 4516 // Check that the specialization uses the same tag kind as the 4517 // original template. 4518 TagDecl::TagKind Kind; 4519 switch (TagSpec) { 4520 default: assert(0 && "Unknown tag type!"); 4521 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4522 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4523 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4524 } 4525 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4526 Kind, KWLoc, 4527 *ClassTemplate->getIdentifier())) { 4528 Diag(KWLoc, diag::err_use_with_wrong_tag) 4529 << ClassTemplate 4530 << FixItHint::CreateReplacement(KWLoc, 4531 ClassTemplate->getTemplatedDecl()->getKindName()); 4532 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4533 diag::note_previous_use); 4534 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4535 } 4536 4537 // C++0x [temp.explicit]p2: 4538 // There are two forms of explicit instantiation: an explicit instantiation 4539 // definition and an explicit instantiation declaration. An explicit 4540 // instantiation declaration begins with the extern keyword. [...] 4541 TemplateSpecializationKind TSK 4542 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4543 : TSK_ExplicitInstantiationDeclaration; 4544 4545 // Translate the parser's template argument list in our AST format. 4546 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4547 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4548 4549 // Check that the template argument list is well-formed for this 4550 // template. 4551 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4552 TemplateArgs.size()); 4553 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4554 TemplateArgs, false, Converted)) 4555 return true; 4556 4557 assert((Converted.structuredSize() == 4558 ClassTemplate->getTemplateParameters()->size()) && 4559 "Converted template argument list is too short!"); 4560 4561 // Find the class template specialization declaration that 4562 // corresponds to these arguments. 4563 llvm::FoldingSetNodeID ID; 4564 ClassTemplateSpecializationDecl::Profile(ID, 4565 Converted.getFlatArguments(), 4566 Converted.flatSize(), 4567 Context); 4568 void *InsertPos = 0; 4569 ClassTemplateSpecializationDecl *PrevDecl 4570 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4571 4572 // C++0x [temp.explicit]p2: 4573 // [...] An explicit instantiation shall appear in an enclosing 4574 // namespace of its template. [...] 4575 // 4576 // This is C++ DR 275. 4577 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4578 SS.isSet()); 4579 4580 ClassTemplateSpecializationDecl *Specialization = 0; 4581 4582 bool ReusedDecl = false; 4583 if (PrevDecl) { 4584 bool SuppressNew = false; 4585 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4586 PrevDecl, 4587 PrevDecl->getSpecializationKind(), 4588 PrevDecl->getPointOfInstantiation(), 4589 SuppressNew)) 4590 return DeclPtrTy::make(PrevDecl); 4591 4592 if (SuppressNew) 4593 return DeclPtrTy::make(PrevDecl); 4594 4595 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4596 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4597 // Since the only prior class template specialization with these 4598 // arguments was referenced but not declared, reuse that 4599 // declaration node as our own, updating its source location to 4600 // reflect our new declaration. 4601 Specialization = PrevDecl; 4602 Specialization->setLocation(TemplateNameLoc); 4603 PrevDecl = 0; 4604 ReusedDecl = true; 4605 } 4606 } 4607 4608 if (!Specialization) { 4609 // Create a new class template specialization declaration node for 4610 // this explicit specialization. 4611 Specialization 4612 = ClassTemplateSpecializationDecl::Create(Context, 4613 ClassTemplate->getDeclContext(), 4614 TemplateNameLoc, 4615 ClassTemplate, 4616 Converted, PrevDecl); 4617 SetNestedNameSpecifier(Specialization, SS); 4618 4619 if (PrevDecl) { 4620 // Remove the previous declaration from the folding set, since we want 4621 // to introduce a new declaration. 4622 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4623 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4624 } 4625 4626 // Insert the new specialization. 4627 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4628 } 4629 4630 // Build the fully-sugared type for this explicit instantiation as 4631 // the user wrote in the explicit instantiation itself. This means 4632 // that we'll pretty-print the type retrieved from the 4633 // specialization's declaration the way that the user actually wrote 4634 // the explicit instantiation, rather than formatting the name based 4635 // on the "canonical" representation used to store the template 4636 // arguments in the specialization. 4637 TypeSourceInfo *WrittenTy 4638 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4639 TemplateArgs, 4640 Context.getTypeDeclType(Specialization)); 4641 Specialization->setTypeAsWritten(WrittenTy); 4642 TemplateArgsIn.release(); 4643 4644 if (!ReusedDecl) { 4645 // Add the explicit instantiation into its lexical context. However, 4646 // since explicit instantiations are never found by name lookup, we 4647 // just put it into the declaration context directly. 4648 Specialization->setLexicalDeclContext(CurContext); 4649 CurContext->addDecl(Specialization); 4650 } 4651 4652 // C++ [temp.explicit]p3: 4653 // A definition of a class template or class member template 4654 // shall be in scope at the point of the explicit instantiation of 4655 // the class template or class member template. 4656 // 4657 // This check comes when we actually try to perform the 4658 // instantiation. 4659 ClassTemplateSpecializationDecl *Def 4660 = cast_or_null<ClassTemplateSpecializationDecl>( 4661 Specialization->getDefinition()); 4662 if (!Def) 4663 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4664 4665 // Instantiate the members of this class template specialization. 4666 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4667 Specialization->getDefinition()); 4668 if (Def) { 4669 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4670 4671 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4672 // TSK_ExplicitInstantiationDefinition 4673 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4674 TSK == TSK_ExplicitInstantiationDefinition) 4675 Def->setTemplateSpecializationKind(TSK); 4676 4677 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4678 } 4679 4680 return DeclPtrTy::make(Specialization); 4681} 4682 4683// Explicit instantiation of a member class of a class template. 4684Sema::DeclResult 4685Sema::ActOnExplicitInstantiation(Scope *S, 4686 SourceLocation ExternLoc, 4687 SourceLocation TemplateLoc, 4688 unsigned TagSpec, 4689 SourceLocation KWLoc, 4690 CXXScopeSpec &SS, 4691 IdentifierInfo *Name, 4692 SourceLocation NameLoc, 4693 AttributeList *Attr) { 4694 4695 bool Owned = false; 4696 bool IsDependent = false; 4697 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4698 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4699 MultiTemplateParamsArg(*this, 0, 0), 4700 Owned, IsDependent); 4701 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4702 4703 if (!TagD) 4704 return true; 4705 4706 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4707 if (Tag->isEnum()) { 4708 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4709 << Context.getTypeDeclType(Tag); 4710 return true; 4711 } 4712 4713 if (Tag->isInvalidDecl()) 4714 return true; 4715 4716 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4717 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4718 if (!Pattern) { 4719 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4720 << Context.getTypeDeclType(Record); 4721 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4722 return true; 4723 } 4724 4725 // C++0x [temp.explicit]p2: 4726 // If the explicit instantiation is for a class or member class, the 4727 // elaborated-type-specifier in the declaration shall include a 4728 // simple-template-id. 4729 // 4730 // C++98 has the same restriction, just worded differently. 4731 if (!ScopeSpecifierHasTemplateId(SS)) 4732 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4733 << Record << SS.getRange(); 4734 4735 // C++0x [temp.explicit]p2: 4736 // There are two forms of explicit instantiation: an explicit instantiation 4737 // definition and an explicit instantiation declaration. An explicit 4738 // instantiation declaration begins with the extern keyword. [...] 4739 TemplateSpecializationKind TSK 4740 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4741 : TSK_ExplicitInstantiationDeclaration; 4742 4743 // C++0x [temp.explicit]p2: 4744 // [...] An explicit instantiation shall appear in an enclosing 4745 // namespace of its template. [...] 4746 // 4747 // This is C++ DR 275. 4748 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4749 4750 // Verify that it is okay to explicitly instantiate here. 4751 CXXRecordDecl *PrevDecl 4752 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4753 if (!PrevDecl && Record->getDefinition()) 4754 PrevDecl = Record; 4755 if (PrevDecl) { 4756 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4757 bool SuppressNew = false; 4758 assert(MSInfo && "No member specialization information?"); 4759 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4760 PrevDecl, 4761 MSInfo->getTemplateSpecializationKind(), 4762 MSInfo->getPointOfInstantiation(), 4763 SuppressNew)) 4764 return true; 4765 if (SuppressNew) 4766 return TagD; 4767 } 4768 4769 CXXRecordDecl *RecordDef 4770 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4771 if (!RecordDef) { 4772 // C++ [temp.explicit]p3: 4773 // A definition of a member class of a class template shall be in scope 4774 // at the point of an explicit instantiation of the member class. 4775 CXXRecordDecl *Def 4776 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4777 if (!Def) { 4778 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4779 << 0 << Record->getDeclName() << Record->getDeclContext(); 4780 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4781 << Pattern; 4782 return true; 4783 } else { 4784 if (InstantiateClass(NameLoc, Record, Def, 4785 getTemplateInstantiationArgs(Record), 4786 TSK)) 4787 return true; 4788 4789 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4790 if (!RecordDef) 4791 return true; 4792 } 4793 } 4794 4795 // Instantiate all of the members of the class. 4796 InstantiateClassMembers(NameLoc, RecordDef, 4797 getTemplateInstantiationArgs(Record), TSK); 4798 4799 // FIXME: We don't have any representation for explicit instantiations of 4800 // member classes. Such a representation is not needed for compilation, but it 4801 // should be available for clients that want to see all of the declarations in 4802 // the source code. 4803 return TagD; 4804} 4805 4806Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4807 SourceLocation ExternLoc, 4808 SourceLocation TemplateLoc, 4809 Declarator &D) { 4810 // Explicit instantiations always require a name. 4811 DeclarationName Name = GetNameForDeclarator(D); 4812 if (!Name) { 4813 if (!D.isInvalidType()) 4814 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4815 diag::err_explicit_instantiation_requires_name) 4816 << D.getDeclSpec().getSourceRange() 4817 << D.getSourceRange(); 4818 4819 return true; 4820 } 4821 4822 // The scope passed in may not be a decl scope. Zip up the scope tree until 4823 // we find one that is. 4824 while ((S->getFlags() & Scope::DeclScope) == 0 || 4825 (S->getFlags() & Scope::TemplateParamScope) != 0) 4826 S = S->getParent(); 4827 4828 // Determine the type of the declaration. 4829 QualType R = GetTypeForDeclarator(D, S, 0); 4830 if (R.isNull()) 4831 return true; 4832 4833 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4834 // Cannot explicitly instantiate a typedef. 4835 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4836 << Name; 4837 return true; 4838 } 4839 4840 // C++0x [temp.explicit]p1: 4841 // [...] An explicit instantiation of a function template shall not use the 4842 // inline or constexpr specifiers. 4843 // Presumably, this also applies to member functions of class templates as 4844 // well. 4845 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4846 Diag(D.getDeclSpec().getInlineSpecLoc(), 4847 diag::err_explicit_instantiation_inline) 4848 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4849 4850 // FIXME: check for constexpr specifier. 4851 4852 // C++0x [temp.explicit]p2: 4853 // There are two forms of explicit instantiation: an explicit instantiation 4854 // definition and an explicit instantiation declaration. An explicit 4855 // instantiation declaration begins with the extern keyword. [...] 4856 TemplateSpecializationKind TSK 4857 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4858 : TSK_ExplicitInstantiationDeclaration; 4859 4860 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4861 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4862 4863 if (!R->isFunctionType()) { 4864 // C++ [temp.explicit]p1: 4865 // A [...] static data member of a class template can be explicitly 4866 // instantiated from the member definition associated with its class 4867 // template. 4868 if (Previous.isAmbiguous()) 4869 return true; 4870 4871 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4872 if (!Prev || !Prev->isStaticDataMember()) { 4873 // We expect to see a data data member here. 4874 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4875 << Name; 4876 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4877 P != PEnd; ++P) 4878 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4879 return true; 4880 } 4881 4882 if (!Prev->getInstantiatedFromStaticDataMember()) { 4883 // FIXME: Check for explicit specialization? 4884 Diag(D.getIdentifierLoc(), 4885 diag::err_explicit_instantiation_data_member_not_instantiated) 4886 << Prev; 4887 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4888 // FIXME: Can we provide a note showing where this was declared? 4889 return true; 4890 } 4891 4892 // C++0x [temp.explicit]p2: 4893 // If the explicit instantiation is for a member function, a member class 4894 // or a static data member of a class template specialization, the name of 4895 // the class template specialization in the qualified-id for the member 4896 // name shall be a simple-template-id. 4897 // 4898 // C++98 has the same restriction, just worded differently. 4899 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4900 Diag(D.getIdentifierLoc(), 4901 diag::err_explicit_instantiation_without_qualified_id) 4902 << Prev << D.getCXXScopeSpec().getRange(); 4903 4904 // Check the scope of this explicit instantiation. 4905 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4906 4907 // Verify that it is okay to explicitly instantiate here. 4908 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4909 assert(MSInfo && "Missing static data member specialization info?"); 4910 bool SuppressNew = false; 4911 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4912 MSInfo->getTemplateSpecializationKind(), 4913 MSInfo->getPointOfInstantiation(), 4914 SuppressNew)) 4915 return true; 4916 if (SuppressNew) 4917 return DeclPtrTy(); 4918 4919 // Instantiate static data member. 4920 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4921 if (TSK == TSK_ExplicitInstantiationDefinition) 4922 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4923 /*DefinitionRequired=*/true); 4924 4925 // FIXME: Create an ExplicitInstantiation node? 4926 return DeclPtrTy(); 4927 } 4928 4929 // If the declarator is a template-id, translate the parser's template 4930 // argument list into our AST format. 4931 bool HasExplicitTemplateArgs = false; 4932 TemplateArgumentListInfo TemplateArgs; 4933 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4934 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4935 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 4936 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 4937 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4938 TemplateId->getTemplateArgs(), 4939 TemplateId->NumArgs); 4940 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 4941 HasExplicitTemplateArgs = true; 4942 TemplateArgsPtr.release(); 4943 } 4944 4945 // C++ [temp.explicit]p1: 4946 // A [...] function [...] can be explicitly instantiated from its template. 4947 // A member function [...] of a class template can be explicitly 4948 // instantiated from the member definition associated with its class 4949 // template. 4950 UnresolvedSet<8> Matches; 4951 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4952 P != PEnd; ++P) { 4953 NamedDecl *Prev = *P; 4954 if (!HasExplicitTemplateArgs) { 4955 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4956 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4957 Matches.clear(); 4958 4959 Matches.addDecl(Method, P.getAccess()); 4960 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 4961 break; 4962 } 4963 } 4964 } 4965 4966 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4967 if (!FunTmpl) 4968 continue; 4969 4970 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 4971 FunctionDecl *Specialization = 0; 4972 if (TemplateDeductionResult TDK 4973 = DeduceTemplateArguments(FunTmpl, 4974 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 4975 R, Specialization, Info)) { 4976 // FIXME: Keep track of almost-matches? 4977 (void)TDK; 4978 continue; 4979 } 4980 4981 Matches.addDecl(Specialization, P.getAccess()); 4982 } 4983 4984 // Find the most specialized function template specialization. 4985 UnresolvedSetIterator Result 4986 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 4987 D.getIdentifierLoc(), 4988 PDiag(diag::err_explicit_instantiation_not_known) << Name, 4989 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 4990 PDiag(diag::note_explicit_instantiation_candidate)); 4991 4992 if (Result == Matches.end()) 4993 return true; 4994 4995 // Ignore access control bits, we don't need them for redeclaration checking. 4996 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4997 4998 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4999 Diag(D.getIdentifierLoc(), 5000 diag::err_explicit_instantiation_member_function_not_instantiated) 5001 << Specialization 5002 << (Specialization->getTemplateSpecializationKind() == 5003 TSK_ExplicitSpecialization); 5004 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5005 return true; 5006 } 5007 5008 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5009 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5010 PrevDecl = Specialization; 5011 5012 if (PrevDecl) { 5013 bool SuppressNew = false; 5014 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5015 PrevDecl, 5016 PrevDecl->getTemplateSpecializationKind(), 5017 PrevDecl->getPointOfInstantiation(), 5018 SuppressNew)) 5019 return true; 5020 5021 // FIXME: We may still want to build some representation of this 5022 // explicit specialization. 5023 if (SuppressNew) 5024 return DeclPtrTy(); 5025 } 5026 5027 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5028 5029 if (TSK == TSK_ExplicitInstantiationDefinition) 5030 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 5031 false, /*DefinitionRequired=*/true); 5032 5033 // C++0x [temp.explicit]p2: 5034 // If the explicit instantiation is for a member function, a member class 5035 // or a static data member of a class template specialization, the name of 5036 // the class template specialization in the qualified-id for the member 5037 // name shall be a simple-template-id. 5038 // 5039 // C++98 has the same restriction, just worded differently. 5040 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5041 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5042 D.getCXXScopeSpec().isSet() && 5043 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5044 Diag(D.getIdentifierLoc(), 5045 diag::err_explicit_instantiation_without_qualified_id) 5046 << Specialization << D.getCXXScopeSpec().getRange(); 5047 5048 CheckExplicitInstantiationScope(*this, 5049 FunTmpl? (NamedDecl *)FunTmpl 5050 : Specialization->getInstantiatedFromMemberFunction(), 5051 D.getIdentifierLoc(), 5052 D.getCXXScopeSpec().isSet()); 5053 5054 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5055 return DeclPtrTy(); 5056} 5057 5058Sema::TypeResult 5059Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5060 const CXXScopeSpec &SS, IdentifierInfo *Name, 5061 SourceLocation TagLoc, SourceLocation NameLoc) { 5062 // This has to hold, because SS is expected to be defined. 5063 assert(Name && "Expected a name in a dependent tag"); 5064 5065 NestedNameSpecifier *NNS 5066 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5067 if (!NNS) 5068 return true; 5069 5070 ElaboratedTypeKeyword Keyword = ETK_None; 5071 switch (TagDecl::getTagKindForTypeSpec(TagSpec)) { 5072 case TagDecl::TK_struct: Keyword = ETK_Struct; break; 5073 case TagDecl::TK_class: Keyword = ETK_Class; break; 5074 case TagDecl::TK_union: Keyword = ETK_Union; break; 5075 case TagDecl::TK_enum: Keyword = ETK_Enum; break; 5076 } 5077 assert(Keyword != ETK_None && "Invalid tag kind!"); 5078 5079 return Context.getDependentNameType(Keyword, NNS, Name).getAsOpaquePtr(); 5080} 5081 5082Sema::TypeResult 5083Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5084 const IdentifierInfo &II, SourceLocation IdLoc) { 5085 NestedNameSpecifier *NNS 5086 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5087 if (!NNS) 5088 return true; 5089 5090 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 5091 if (T.isNull()) 5092 return true; 5093 return T.getAsOpaquePtr(); 5094} 5095 5096Sema::TypeResult 5097Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5098 SourceLocation TemplateLoc, TypeTy *Ty) { 5099 QualType T = GetTypeFromParser(Ty); 5100 NestedNameSpecifier *NNS 5101 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5102 const TemplateSpecializationType *TemplateId 5103 = T->getAs<TemplateSpecializationType>(); 5104 assert(TemplateId && "Expected a template specialization type"); 5105 5106 if (computeDeclContext(SS, false)) { 5107 // If we can compute a declaration context, then the "typename" 5108 // keyword was superfluous. Just build a QualifiedNameType to keep 5109 // track of the nested-name-specifier. 5110 5111 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 5112 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 5113 } 5114 5115 return Context.getDependentNameType(ETK_Typename, NNS, TemplateId) 5116 .getAsOpaquePtr(); 5117} 5118 5119/// \brief Build the type that describes a C++ typename specifier, 5120/// e.g., "typename T::type". 5121QualType 5122Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 5123 SourceRange Range) { 5124 CXXRecordDecl *CurrentInstantiation = 0; 5125 if (NNS->isDependent()) { 5126 CurrentInstantiation = getCurrentInstantiationOf(NNS); 5127 5128 // If the nested-name-specifier does not refer to the current 5129 // instantiation, then build a typename type. 5130 if (!CurrentInstantiation) 5131 return Context.getDependentNameType(ETK_Typename, NNS, &II); 5132 5133 // The nested-name-specifier refers to the current instantiation, so the 5134 // "typename" keyword itself is superfluous. In C++03, the program is 5135 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 5136 // extraneous "typename" keywords, and we retroactively apply this DR to 5137 // C++03 code. 5138 } 5139 5140 DeclContext *Ctx = 0; 5141 5142 if (CurrentInstantiation) 5143 Ctx = CurrentInstantiation; 5144 else { 5145 CXXScopeSpec SS; 5146 SS.setScopeRep(NNS); 5147 SS.setRange(Range); 5148 if (RequireCompleteDeclContext(SS)) 5149 return QualType(); 5150 5151 Ctx = computeDeclContext(SS); 5152 } 5153 assert(Ctx && "No declaration context?"); 5154 5155 DeclarationName Name(&II); 5156 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 5157 LookupQualifiedName(Result, Ctx); 5158 unsigned DiagID = 0; 5159 Decl *Referenced = 0; 5160 switch (Result.getResultKind()) { 5161 case LookupResult::NotFound: 5162 DiagID = diag::err_typename_nested_not_found; 5163 break; 5164 5165 case LookupResult::NotFoundInCurrentInstantiation: 5166 // Okay, it's a member of an unknown instantiation. 5167 return Context.getDependentNameType(ETK_Typename, NNS, &II); 5168 5169 case LookupResult::Found: 5170 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5171 // We found a type. Build a QualifiedNameType, since the 5172 // typename-specifier was just sugar. FIXME: Tell 5173 // QualifiedNameType that it has a "typename" prefix. 5174 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 5175 } 5176 5177 DiagID = diag::err_typename_nested_not_type; 5178 Referenced = Result.getFoundDecl(); 5179 break; 5180 5181 case LookupResult::FoundUnresolvedValue: 5182 llvm_unreachable("unresolved using decl in non-dependent context"); 5183 return QualType(); 5184 5185 case LookupResult::FoundOverloaded: 5186 DiagID = diag::err_typename_nested_not_type; 5187 Referenced = *Result.begin(); 5188 break; 5189 5190 case LookupResult::Ambiguous: 5191 return QualType(); 5192 } 5193 5194 // If we get here, it's because name lookup did not find a 5195 // type. Emit an appropriate diagnostic and return an error. 5196 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 5197 if (Referenced) 5198 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5199 << Name; 5200 return QualType(); 5201} 5202 5203namespace { 5204 // See Sema::RebuildTypeInCurrentInstantiation 5205 class CurrentInstantiationRebuilder 5206 : public TreeTransform<CurrentInstantiationRebuilder> { 5207 SourceLocation Loc; 5208 DeclarationName Entity; 5209 5210 public: 5211 CurrentInstantiationRebuilder(Sema &SemaRef, 5212 SourceLocation Loc, 5213 DeclarationName Entity) 5214 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5215 Loc(Loc), Entity(Entity) { } 5216 5217 /// \brief Determine whether the given type \p T has already been 5218 /// transformed. 5219 /// 5220 /// For the purposes of type reconstruction, a type has already been 5221 /// transformed if it is NULL or if it is not dependent. 5222 bool AlreadyTransformed(QualType T) { 5223 return T.isNull() || !T->isDependentType(); 5224 } 5225 5226 /// \brief Returns the location of the entity whose type is being 5227 /// rebuilt. 5228 SourceLocation getBaseLocation() { return Loc; } 5229 5230 /// \brief Returns the name of the entity whose type is being rebuilt. 5231 DeclarationName getBaseEntity() { return Entity; } 5232 5233 /// \brief Sets the "base" location and entity when that 5234 /// information is known based on another transformation. 5235 void setBase(SourceLocation Loc, DeclarationName Entity) { 5236 this->Loc = Loc; 5237 this->Entity = Entity; 5238 } 5239 5240 /// \brief Transforms an expression by returning the expression itself 5241 /// (an identity function). 5242 /// 5243 /// FIXME: This is completely unsafe; we will need to actually clone the 5244 /// expressions. 5245 Sema::OwningExprResult TransformExpr(Expr *E) { 5246 return getSema().Owned(E); 5247 } 5248 5249 /// \brief Transforms a typename type by determining whether the type now 5250 /// refers to a member of the current instantiation, and then 5251 /// type-checking and building a QualifiedNameType (when possible). 5252 QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL, 5253 QualType ObjectType); 5254 }; 5255} 5256 5257QualType 5258CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB, 5259 DependentNameTypeLoc TL, 5260 QualType ObjectType) { 5261 DependentNameType *T = TL.getTypePtr(); 5262 5263 NestedNameSpecifier *NNS 5264 = TransformNestedNameSpecifier(T->getQualifier(), 5265 /*FIXME:*/SourceRange(getBaseLocation()), 5266 ObjectType); 5267 if (!NNS) 5268 return QualType(); 5269 5270 // If the nested-name-specifier did not change, and we cannot compute the 5271 // context corresponding to the nested-name-specifier, then this 5272 // typename type will not change; exit early. 5273 CXXScopeSpec SS; 5274 SS.setRange(SourceRange(getBaseLocation())); 5275 SS.setScopeRep(NNS); 5276 5277 QualType Result; 5278 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 5279 Result = QualType(T, 0); 5280 5281 // Rebuild the typename type, which will probably turn into a 5282 // QualifiedNameType. 5283 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 5284 QualType NewTemplateId 5285 = TransformType(QualType(TemplateId, 0)); 5286 if (NewTemplateId.isNull()) 5287 return QualType(); 5288 5289 if (NNS == T->getQualifier() && 5290 NewTemplateId == QualType(TemplateId, 0)) 5291 Result = QualType(T, 0); 5292 else 5293 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5294 NNS, NewTemplateId); 5295 } else 5296 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5297 NNS, T->getIdentifier(), 5298 SourceRange(TL.getNameLoc())); 5299 5300 if (Result.isNull()) 5301 return QualType(); 5302 5303 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result); 5304 NewTL.setNameLoc(TL.getNameLoc()); 5305 return Result; 5306} 5307 5308/// \brief Rebuilds a type within the context of the current instantiation. 5309/// 5310/// The type \p T is part of the type of an out-of-line member definition of 5311/// a class template (or class template partial specialization) that was parsed 5312/// and constructed before we entered the scope of the class template (or 5313/// partial specialization thereof). This routine will rebuild that type now 5314/// that we have entered the declarator's scope, which may produce different 5315/// canonical types, e.g., 5316/// 5317/// \code 5318/// template<typename T> 5319/// struct X { 5320/// typedef T* pointer; 5321/// pointer data(); 5322/// }; 5323/// 5324/// template<typename T> 5325/// typename X<T>::pointer X<T>::data() { ... } 5326/// \endcode 5327/// 5328/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5329/// since we do not know that we can look into X<T> when we parsed the type. 5330/// This function will rebuild the type, performing the lookup of "pointer" 5331/// in X<T> and returning a QualifiedNameType whose canonical type is the same 5332/// as the canonical type of T*, allowing the return types of the out-of-line 5333/// definition and the declaration to match. 5334QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 5335 DeclarationName Name) { 5336 if (T.isNull() || !T->isDependentType()) 5337 return T; 5338 5339 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5340 return Rebuilder.TransformType(T); 5341} 5342 5343/// \brief Produces a formatted string that describes the binding of 5344/// template parameters to template arguments. 5345std::string 5346Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5347 const TemplateArgumentList &Args) { 5348 // FIXME: For variadic templates, we'll need to get the structured list. 5349 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5350 Args.flat_size()); 5351} 5352 5353std::string 5354Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5355 const TemplateArgument *Args, 5356 unsigned NumArgs) { 5357 std::string Result; 5358 5359 if (!Params || Params->size() == 0 || NumArgs == 0) 5360 return Result; 5361 5362 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5363 if (I >= NumArgs) 5364 break; 5365 5366 if (I == 0) 5367 Result += "[with "; 5368 else 5369 Result += ", "; 5370 5371 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5372 Result += Id->getName(); 5373 } else { 5374 Result += '$'; 5375 Result += llvm::utostr(I); 5376 } 5377 5378 Result += " = "; 5379 5380 switch (Args[I].getKind()) { 5381 case TemplateArgument::Null: 5382 Result += "<no value>"; 5383 break; 5384 5385 case TemplateArgument::Type: { 5386 std::string TypeStr; 5387 Args[I].getAsType().getAsStringInternal(TypeStr, 5388 Context.PrintingPolicy); 5389 Result += TypeStr; 5390 break; 5391 } 5392 5393 case TemplateArgument::Declaration: { 5394 bool Unnamed = true; 5395 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5396 if (ND->getDeclName()) { 5397 Unnamed = false; 5398 Result += ND->getNameAsString(); 5399 } 5400 } 5401 5402 if (Unnamed) { 5403 Result += "<anonymous>"; 5404 } 5405 break; 5406 } 5407 5408 case TemplateArgument::Template: { 5409 std::string Str; 5410 llvm::raw_string_ostream OS(Str); 5411 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5412 Result += OS.str(); 5413 break; 5414 } 5415 5416 case TemplateArgument::Integral: { 5417 Result += Args[I].getAsIntegral()->toString(10); 5418 break; 5419 } 5420 5421 case TemplateArgument::Expression: { 5422 assert(false && "No expressions in deduced template arguments!"); 5423 Result += "<expression>"; 5424 break; 5425 } 5426 5427 case TemplateArgument::Pack: 5428 // FIXME: Format template argument packs 5429 Result += "<template argument pack>"; 5430 break; 5431 } 5432 } 5433 5434 Result += ']'; 5435 return Result; 5436} 5437