SemaTemplate.cpp revision 14aba76042e041b2c5e439bf4ae353a0a3c7fd73
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
441                                             SourceLocation EllipsisLoc) const {
442  assert(Kind == Template &&
443         "Only template template arguments can be pack expansions here");
444  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
445         "Template template argument pack expansion without packs");
446  ParsedTemplateArgument Result(*this);
447  Result.EllipsisLoc = EllipsisLoc;
448  return Result;
449}
450
451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
452                                            const ParsedTemplateArgument &Arg) {
453
454  switch (Arg.getKind()) {
455  case ParsedTemplateArgument::Type: {
456    TypeSourceInfo *DI;
457    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
458    if (!DI)
459      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
460    return TemplateArgumentLoc(TemplateArgument(T), DI);
461  }
462
463  case ParsedTemplateArgument::NonType: {
464    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
465    return TemplateArgumentLoc(TemplateArgument(E), E);
466  }
467
468  case ParsedTemplateArgument::Template: {
469    TemplateName Template = Arg.getAsTemplate().get();
470    TemplateArgument TArg;
471    if (Arg.getEllipsisLoc().isValid())
472      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
473    else
474      TArg = Template;
475    return TemplateArgumentLoc(TArg,
476                               Arg.getScopeSpec().getRange(),
477                               Arg.getLocation(),
478                               Arg.getEllipsisLoc());
479  }
480  }
481
482  llvm_unreachable("Unhandled parsed template argument");
483  return TemplateArgumentLoc();
484}
485
486/// \brief Translates template arguments as provided by the parser
487/// into template arguments used by semantic analysis.
488void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
489                                      TemplateArgumentListInfo &TemplateArgs) {
490 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
491   TemplateArgs.addArgument(translateTemplateArgument(*this,
492                                                      TemplateArgsIn[I]));
493}
494
495/// ActOnTypeParameter - Called when a C++ template type parameter
496/// (e.g., "typename T") has been parsed. Typename specifies whether
497/// the keyword "typename" was used to declare the type parameter
498/// (otherwise, "class" was used), and KeyLoc is the location of the
499/// "class" or "typename" keyword. ParamName is the name of the
500/// parameter (NULL indicates an unnamed template parameter) and
501/// ParamName is the location of the parameter name (if any).
502/// If the type parameter has a default argument, it will be added
503/// later via ActOnTypeParameterDefault.
504Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
505                               SourceLocation EllipsisLoc,
506                               SourceLocation KeyLoc,
507                               IdentifierInfo *ParamName,
508                               SourceLocation ParamNameLoc,
509                               unsigned Depth, unsigned Position,
510                               SourceLocation EqualLoc,
511                               ParsedType DefaultArg) {
512  assert(S->isTemplateParamScope() &&
513         "Template type parameter not in template parameter scope!");
514  bool Invalid = false;
515
516  if (ParamName) {
517    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
518                                           LookupOrdinaryName,
519                                           ForRedeclaration);
520    if (PrevDecl && PrevDecl->isTemplateParameter())
521      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
522                                                           PrevDecl);
523  }
524
525  SourceLocation Loc = ParamNameLoc;
526  if (!ParamName)
527    Loc = KeyLoc;
528
529  TemplateTypeParmDecl *Param
530    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
531                                   Loc, Depth, Position, ParamName, Typename,
532                                   Ellipsis);
533  if (Invalid)
534    Param->setInvalidDecl();
535
536  if (ParamName) {
537    // Add the template parameter into the current scope.
538    S->AddDecl(Param);
539    IdResolver.AddDecl(Param);
540  }
541
542  // C++0x [temp.param]p9:
543  //   A default template-argument may be specified for any kind of
544  //   template-parameter that is not a template parameter pack.
545  if (DefaultArg && Ellipsis) {
546    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
547    DefaultArg = ParsedType();
548  }
549
550  // Handle the default argument, if provided.
551  if (DefaultArg) {
552    TypeSourceInfo *DefaultTInfo;
553    GetTypeFromParser(DefaultArg, &DefaultTInfo);
554
555    assert(DefaultTInfo && "expected source information for type");
556
557    // Check for unexpanded parameter packs.
558    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
559                                        UPPC_DefaultArgument))
560      return Param;
561
562    // Check the template argument itself.
563    if (CheckTemplateArgument(Param, DefaultTInfo)) {
564      Param->setInvalidDecl();
565      return Param;
566    }
567
568    Param->setDefaultArgument(DefaultTInfo, false);
569  }
570
571  return Param;
572}
573
574/// \brief Check that the type of a non-type template parameter is
575/// well-formed.
576///
577/// \returns the (possibly-promoted) parameter type if valid;
578/// otherwise, produces a diagnostic and returns a NULL type.
579QualType
580Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
581  // We don't allow variably-modified types as the type of non-type template
582  // parameters.
583  if (T->isVariablyModifiedType()) {
584    Diag(Loc, diag::err_variably_modified_nontype_template_param)
585      << T;
586    return QualType();
587  }
588
589  // C++ [temp.param]p4:
590  //
591  // A non-type template-parameter shall have one of the following
592  // (optionally cv-qualified) types:
593  //
594  //       -- integral or enumeration type,
595  if (T->isIntegralOrEnumerationType() ||
596      //   -- pointer to object or pointer to function,
597      T->isPointerType() ||
598      //   -- reference to object or reference to function,
599      T->isReferenceType() ||
600      //   -- pointer to member.
601      T->isMemberPointerType() ||
602      // If T is a dependent type, we can't do the check now, so we
603      // assume that it is well-formed.
604      T->isDependentType())
605    return T;
606  // C++ [temp.param]p8:
607  //
608  //   A non-type template-parameter of type "array of T" or
609  //   "function returning T" is adjusted to be of type "pointer to
610  //   T" or "pointer to function returning T", respectively.
611  else if (T->isArrayType())
612    // FIXME: Keep the type prior to promotion?
613    return Context.getArrayDecayedType(T);
614  else if (T->isFunctionType())
615    // FIXME: Keep the type prior to promotion?
616    return Context.getPointerType(T);
617
618  Diag(Loc, diag::err_template_nontype_parm_bad_type)
619    << T;
620
621  return QualType();
622}
623
624Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
625                                          unsigned Depth,
626                                          unsigned Position,
627                                          SourceLocation EqualLoc,
628                                          Expr *Default) {
629  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
630  QualType T = TInfo->getType();
631
632  assert(S->isTemplateParamScope() &&
633         "Non-type template parameter not in template parameter scope!");
634  bool Invalid = false;
635
636  IdentifierInfo *ParamName = D.getIdentifier();
637  if (ParamName) {
638    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
639                                           LookupOrdinaryName,
640                                           ForRedeclaration);
641    if (PrevDecl && PrevDecl->isTemplateParameter())
642      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
643                                                           PrevDecl);
644  }
645
646  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
647  if (T.isNull()) {
648    T = Context.IntTy; // Recover with an 'int' type.
649    Invalid = true;
650  }
651
652  bool IsParameterPack = D.hasEllipsis();
653  NonTypeTemplateParmDecl *Param
654    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
655                                      D.getIdentifierLoc(),
656                                      Depth, Position, ParamName, T,
657                                      IsParameterPack, TInfo);
658  if (Invalid)
659    Param->setInvalidDecl();
660
661  if (D.getIdentifier()) {
662    // Add the template parameter into the current scope.
663    S->AddDecl(Param);
664    IdResolver.AddDecl(Param);
665  }
666
667  // C++0x [temp.param]p9:
668  //   A default template-argument may be specified for any kind of
669  //   template-parameter that is not a template parameter pack.
670  if (Default && IsParameterPack) {
671    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
672    Default = 0;
673  }
674
675  // Check the well-formedness of the default template argument, if provided.
676  if (Default) {
677    // Check for unexpanded parameter packs.
678    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
679      return Param;
680
681    TemplateArgument Converted;
682    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
683      Param->setInvalidDecl();
684      return Param;
685    }
686
687    Param->setDefaultArgument(Default, false);
688  }
689
690  return Param;
691}
692
693/// ActOnTemplateTemplateParameter - Called when a C++ template template
694/// parameter (e.g. T in template <template <typename> class T> class array)
695/// has been parsed. S is the current scope.
696Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
697                                           SourceLocation TmpLoc,
698                                           TemplateParamsTy *Params,
699                                           SourceLocation EllipsisLoc,
700                                           IdentifierInfo *Name,
701                                           SourceLocation NameLoc,
702                                           unsigned Depth,
703                                           unsigned Position,
704                                           SourceLocation EqualLoc,
705                                           ParsedTemplateArgument Default) {
706  assert(S->isTemplateParamScope() &&
707         "Template template parameter not in template parameter scope!");
708
709  // Construct the parameter object.
710  bool IsParameterPack = EllipsisLoc.isValid();
711  // FIXME: Pack-ness is dropped
712  TemplateTemplateParmDecl *Param =
713    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
714                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
715                                     Depth, Position, IsParameterPack,
716                                     Name, Params);
717
718  // If the template template parameter has a name, then link the identifier
719  // into the scope and lookup mechanisms.
720  if (Name) {
721    S->AddDecl(Param);
722    IdResolver.AddDecl(Param);
723  }
724
725  if (Params->size() == 0) {
726    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
727    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
728    Param->setInvalidDecl();
729  }
730
731  // C++0x [temp.param]p9:
732  //   A default template-argument may be specified for any kind of
733  //   template-parameter that is not a template parameter pack.
734  if (IsParameterPack && !Default.isInvalid()) {
735    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
736    Default = ParsedTemplateArgument();
737  }
738
739  if (!Default.isInvalid()) {
740    // Check only that we have a template template argument. We don't want to
741    // try to check well-formedness now, because our template template parameter
742    // might have dependent types in its template parameters, which we wouldn't
743    // be able to match now.
744    //
745    // If none of the template template parameter's template arguments mention
746    // other template parameters, we could actually perform more checking here.
747    // However, it isn't worth doing.
748    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
749    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
750      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
751        << DefaultArg.getSourceRange();
752      return Param;
753    }
754
755    // Check for unexpanded parameter packs.
756    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
757                                        DefaultArg.getArgument().getAsTemplate(),
758                                        UPPC_DefaultArgument))
759      return Param;
760
761    Param->setDefaultArgument(DefaultArg, false);
762  }
763
764  return Param;
765}
766
767/// ActOnTemplateParameterList - Builds a TemplateParameterList that
768/// contains the template parameters in Params/NumParams.
769Sema::TemplateParamsTy *
770Sema::ActOnTemplateParameterList(unsigned Depth,
771                                 SourceLocation ExportLoc,
772                                 SourceLocation TemplateLoc,
773                                 SourceLocation LAngleLoc,
774                                 Decl **Params, unsigned NumParams,
775                                 SourceLocation RAngleLoc) {
776  if (ExportLoc.isValid())
777    Diag(ExportLoc, diag::warn_template_export_unsupported);
778
779  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
780                                       (NamedDecl**)Params, NumParams,
781                                       RAngleLoc);
782}
783
784static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
785  if (SS.isSet())
786    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
787                        SS.getRange());
788}
789
790DeclResult
791Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
792                         SourceLocation KWLoc, CXXScopeSpec &SS,
793                         IdentifierInfo *Name, SourceLocation NameLoc,
794                         AttributeList *Attr,
795                         TemplateParameterList *TemplateParams,
796                         AccessSpecifier AS) {
797  assert(TemplateParams && TemplateParams->size() > 0 &&
798         "No template parameters");
799  assert(TUK != TUK_Reference && "Can only declare or define class templates");
800  bool Invalid = false;
801
802  // Check that we can declare a template here.
803  if (CheckTemplateDeclScope(S, TemplateParams))
804    return true;
805
806  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
807  assert(Kind != TTK_Enum && "can't build template of enumerated type");
808
809  // There is no such thing as an unnamed class template.
810  if (!Name) {
811    Diag(KWLoc, diag::err_template_unnamed_class);
812    return true;
813  }
814
815  // Find any previous declaration with this name.
816  DeclContext *SemanticContext;
817  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
818                        ForRedeclaration);
819  if (SS.isNotEmpty() && !SS.isInvalid()) {
820    SemanticContext = computeDeclContext(SS, true);
821    if (!SemanticContext) {
822      // FIXME: Produce a reasonable diagnostic here
823      return true;
824    }
825
826    if (RequireCompleteDeclContext(SS, SemanticContext))
827      return true;
828
829    LookupQualifiedName(Previous, SemanticContext);
830  } else {
831    SemanticContext = CurContext;
832    LookupName(Previous, S);
833  }
834
835  if (Previous.isAmbiguous())
836    return true;
837
838  NamedDecl *PrevDecl = 0;
839  if (Previous.begin() != Previous.end())
840    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
841
842  // If there is a previous declaration with the same name, check
843  // whether this is a valid redeclaration.
844  ClassTemplateDecl *PrevClassTemplate
845    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
846
847  // We may have found the injected-class-name of a class template,
848  // class template partial specialization, or class template specialization.
849  // In these cases, grab the template that is being defined or specialized.
850  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
851      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
852    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
853    PrevClassTemplate
854      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
855    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
856      PrevClassTemplate
857        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
858            ->getSpecializedTemplate();
859    }
860  }
861
862  if (TUK == TUK_Friend) {
863    // C++ [namespace.memdef]p3:
864    //   [...] When looking for a prior declaration of a class or a function
865    //   declared as a friend, and when the name of the friend class or
866    //   function is neither a qualified name nor a template-id, scopes outside
867    //   the innermost enclosing namespace scope are not considered.
868    if (!SS.isSet()) {
869      DeclContext *OutermostContext = CurContext;
870      while (!OutermostContext->isFileContext())
871        OutermostContext = OutermostContext->getLookupParent();
872
873      if (PrevDecl &&
874          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
875           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
876        SemanticContext = PrevDecl->getDeclContext();
877      } else {
878        // Declarations in outer scopes don't matter. However, the outermost
879        // context we computed is the semantic context for our new
880        // declaration.
881        PrevDecl = PrevClassTemplate = 0;
882        SemanticContext = OutermostContext;
883      }
884    }
885
886    if (CurContext->isDependentContext()) {
887      // If this is a dependent context, we don't want to link the friend
888      // class template to the template in scope, because that would perform
889      // checking of the template parameter lists that can't be performed
890      // until the outer context is instantiated.
891      PrevDecl = PrevClassTemplate = 0;
892    }
893  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
894    PrevDecl = PrevClassTemplate = 0;
895
896  if (PrevClassTemplate) {
897    // Ensure that the template parameter lists are compatible.
898    if (!TemplateParameterListsAreEqual(TemplateParams,
899                                   PrevClassTemplate->getTemplateParameters(),
900                                        /*Complain=*/true,
901                                        TPL_TemplateMatch))
902      return true;
903
904    // C++ [temp.class]p4:
905    //   In a redeclaration, partial specialization, explicit
906    //   specialization or explicit instantiation of a class template,
907    //   the class-key shall agree in kind with the original class
908    //   template declaration (7.1.5.3).
909    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
910    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
911      Diag(KWLoc, diag::err_use_with_wrong_tag)
912        << Name
913        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
914      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
915      Kind = PrevRecordDecl->getTagKind();
916    }
917
918    // Check for redefinition of this class template.
919    if (TUK == TUK_Definition) {
920      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
921        Diag(NameLoc, diag::err_redefinition) << Name;
922        Diag(Def->getLocation(), diag::note_previous_definition);
923        // FIXME: Would it make sense to try to "forget" the previous
924        // definition, as part of error recovery?
925        return true;
926      }
927    }
928  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
929    // Maybe we will complain about the shadowed template parameter.
930    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
931    // Just pretend that we didn't see the previous declaration.
932    PrevDecl = 0;
933  } else if (PrevDecl) {
934    // C++ [temp]p5:
935    //   A class template shall not have the same name as any other
936    //   template, class, function, object, enumeration, enumerator,
937    //   namespace, or type in the same scope (3.3), except as specified
938    //   in (14.5.4).
939    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
940    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
941    return true;
942  }
943
944  // Check the template parameter list of this declaration, possibly
945  // merging in the template parameter list from the previous class
946  // template declaration.
947  if (CheckTemplateParameterList(TemplateParams,
948            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
949                                 (SS.isSet() && SemanticContext &&
950                                  SemanticContext->isRecord() &&
951                                  SemanticContext->isDependentContext())
952                                   ? TPC_ClassTemplateMember
953                                   : TPC_ClassTemplate))
954    Invalid = true;
955
956  if (SS.isSet()) {
957    // If the name of the template was qualified, we must be defining the
958    // template out-of-line.
959    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
960        !(TUK == TUK_Friend && CurContext->isDependentContext()))
961      Diag(NameLoc, diag::err_member_def_does_not_match)
962        << Name << SemanticContext << SS.getRange();
963  }
964
965  CXXRecordDecl *NewClass =
966    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
967                          PrevClassTemplate?
968                            PrevClassTemplate->getTemplatedDecl() : 0,
969                          /*DelayTypeCreation=*/true);
970  SetNestedNameSpecifier(NewClass, SS);
971
972  ClassTemplateDecl *NewTemplate
973    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
974                                DeclarationName(Name), TemplateParams,
975                                NewClass, PrevClassTemplate);
976  NewClass->setDescribedClassTemplate(NewTemplate);
977
978  // Build the type for the class template declaration now.
979  QualType T = NewTemplate->getInjectedClassNameSpecialization();
980  T = Context.getInjectedClassNameType(NewClass, T);
981  assert(T->isDependentType() && "Class template type is not dependent?");
982  (void)T;
983
984  // If we are providing an explicit specialization of a member that is a
985  // class template, make a note of that.
986  if (PrevClassTemplate &&
987      PrevClassTemplate->getInstantiatedFromMemberTemplate())
988    PrevClassTemplate->setMemberSpecialization();
989
990  // Set the access specifier.
991  if (!Invalid && TUK != TUK_Friend)
992    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
993
994  // Set the lexical context of these templates
995  NewClass->setLexicalDeclContext(CurContext);
996  NewTemplate->setLexicalDeclContext(CurContext);
997
998  if (TUK == TUK_Definition)
999    NewClass->startDefinition();
1000
1001  if (Attr)
1002    ProcessDeclAttributeList(S, NewClass, Attr);
1003
1004  if (TUK != TUK_Friend)
1005    PushOnScopeChains(NewTemplate, S);
1006  else {
1007    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1008      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1009      NewClass->setAccess(PrevClassTemplate->getAccess());
1010    }
1011
1012    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1013                                       PrevClassTemplate != NULL);
1014
1015    // Friend templates are visible in fairly strange ways.
1016    if (!CurContext->isDependentContext()) {
1017      DeclContext *DC = SemanticContext->getRedeclContext();
1018      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1019      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1020        PushOnScopeChains(NewTemplate, EnclosingScope,
1021                          /* AddToContext = */ false);
1022    }
1023
1024    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1025                                            NewClass->getLocation(),
1026                                            NewTemplate,
1027                                    /*FIXME:*/NewClass->getLocation());
1028    Friend->setAccess(AS_public);
1029    CurContext->addDecl(Friend);
1030  }
1031
1032  if (Invalid) {
1033    NewTemplate->setInvalidDecl();
1034    NewClass->setInvalidDecl();
1035  }
1036  return NewTemplate;
1037}
1038
1039/// \brief Diagnose the presence of a default template argument on a
1040/// template parameter, which is ill-formed in certain contexts.
1041///
1042/// \returns true if the default template argument should be dropped.
1043static bool DiagnoseDefaultTemplateArgument(Sema &S,
1044                                            Sema::TemplateParamListContext TPC,
1045                                            SourceLocation ParamLoc,
1046                                            SourceRange DefArgRange) {
1047  switch (TPC) {
1048  case Sema::TPC_ClassTemplate:
1049    return false;
1050
1051  case Sema::TPC_FunctionTemplate:
1052  case Sema::TPC_FriendFunctionTemplateDefinition:
1053    // C++ [temp.param]p9:
1054    //   A default template-argument shall not be specified in a
1055    //   function template declaration or a function template
1056    //   definition [...]
1057    //   If a friend function template declaration specifies a default
1058    //   template-argument, that declaration shall be a definition and shall be
1059    //   the only declaration of the function template in the translation unit.
1060    // (C++98/03 doesn't have this wording; see DR226).
1061    if (!S.getLangOptions().CPlusPlus0x)
1062      S.Diag(ParamLoc,
1063             diag::ext_template_parameter_default_in_function_template)
1064        << DefArgRange;
1065    return false;
1066
1067  case Sema::TPC_ClassTemplateMember:
1068    // C++0x [temp.param]p9:
1069    //   A default template-argument shall not be specified in the
1070    //   template-parameter-lists of the definition of a member of a
1071    //   class template that appears outside of the member's class.
1072    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1073      << DefArgRange;
1074    return true;
1075
1076  case Sema::TPC_FriendFunctionTemplate:
1077    // C++ [temp.param]p9:
1078    //   A default template-argument shall not be specified in a
1079    //   friend template declaration.
1080    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1081      << DefArgRange;
1082    return true;
1083
1084    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1085    // for friend function templates if there is only a single
1086    // declaration (and it is a definition). Strange!
1087  }
1088
1089  return false;
1090}
1091
1092/// \brief Check for unexpanded parameter packs within the template parameters
1093/// of a template template parameter, recursively.
1094bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1095  TemplateParameterList *Params = TTP->getTemplateParameters();
1096  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1097    NamedDecl *P = Params->getParam(I);
1098    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1099      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1100                                            NTTP->getTypeSourceInfo(),
1101                                      Sema::UPPC_NonTypeTemplateParameterType))
1102        return true;
1103
1104      continue;
1105    }
1106
1107    if (TemplateTemplateParmDecl *InnerTTP
1108                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1109      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1110        return true;
1111  }
1112
1113  return false;
1114}
1115
1116/// \brief Checks the validity of a template parameter list, possibly
1117/// considering the template parameter list from a previous
1118/// declaration.
1119///
1120/// If an "old" template parameter list is provided, it must be
1121/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1122/// template parameter list.
1123///
1124/// \param NewParams Template parameter list for a new template
1125/// declaration. This template parameter list will be updated with any
1126/// default arguments that are carried through from the previous
1127/// template parameter list.
1128///
1129/// \param OldParams If provided, template parameter list from a
1130/// previous declaration of the same template. Default template
1131/// arguments will be merged from the old template parameter list to
1132/// the new template parameter list.
1133///
1134/// \param TPC Describes the context in which we are checking the given
1135/// template parameter list.
1136///
1137/// \returns true if an error occurred, false otherwise.
1138bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1139                                      TemplateParameterList *OldParams,
1140                                      TemplateParamListContext TPC) {
1141  bool Invalid = false;
1142
1143  // C++ [temp.param]p10:
1144  //   The set of default template-arguments available for use with a
1145  //   template declaration or definition is obtained by merging the
1146  //   default arguments from the definition (if in scope) and all
1147  //   declarations in scope in the same way default function
1148  //   arguments are (8.3.6).
1149  bool SawDefaultArgument = false;
1150  SourceLocation PreviousDefaultArgLoc;
1151
1152  bool SawParameterPack = false;
1153  SourceLocation ParameterPackLoc;
1154
1155  // Dummy initialization to avoid warnings.
1156  TemplateParameterList::iterator OldParam = NewParams->end();
1157  if (OldParams)
1158    OldParam = OldParams->begin();
1159
1160  bool RemoveDefaultArguments = false;
1161  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1162                                    NewParamEnd = NewParams->end();
1163       NewParam != NewParamEnd; ++NewParam) {
1164    // Variables used to diagnose redundant default arguments
1165    bool RedundantDefaultArg = false;
1166    SourceLocation OldDefaultLoc;
1167    SourceLocation NewDefaultLoc;
1168
1169    // Variables used to diagnose missing default arguments
1170    bool MissingDefaultArg = false;
1171
1172    // C++0x [temp.param]p11:
1173    //   If a template parameter of a primary class template is a template
1174    //   parameter pack, it shall be the last template parameter.
1175    if (SawParameterPack && TPC == TPC_ClassTemplate) {
1176      Diag(ParameterPackLoc,
1177           diag::err_template_param_pack_must_be_last_template_parameter);
1178      Invalid = true;
1179    }
1180
1181    if (TemplateTypeParmDecl *NewTypeParm
1182          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1183      // Check the presence of a default argument here.
1184      if (NewTypeParm->hasDefaultArgument() &&
1185          DiagnoseDefaultTemplateArgument(*this, TPC,
1186                                          NewTypeParm->getLocation(),
1187               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1188                                                       .getSourceRange()))
1189        NewTypeParm->removeDefaultArgument();
1190
1191      // Merge default arguments for template type parameters.
1192      TemplateTypeParmDecl *OldTypeParm
1193          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1194
1195      if (NewTypeParm->isParameterPack()) {
1196        assert(!NewTypeParm->hasDefaultArgument() &&
1197               "Parameter packs can't have a default argument!");
1198        SawParameterPack = true;
1199        ParameterPackLoc = NewTypeParm->getLocation();
1200      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1201                 NewTypeParm->hasDefaultArgument()) {
1202        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1203        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1204        SawDefaultArgument = true;
1205        RedundantDefaultArg = true;
1206        PreviousDefaultArgLoc = NewDefaultLoc;
1207      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1208        // Merge the default argument from the old declaration to the
1209        // new declaration.
1210        SawDefaultArgument = true;
1211        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1212                                        true);
1213        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1214      } else if (NewTypeParm->hasDefaultArgument()) {
1215        SawDefaultArgument = true;
1216        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1217      } else if (SawDefaultArgument)
1218        MissingDefaultArg = true;
1219    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1220               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1221      // Check for unexpanded parameter packs.
1222      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1223                                          NewNonTypeParm->getTypeSourceInfo(),
1224                                          UPPC_NonTypeTemplateParameterType)) {
1225        Invalid = true;
1226        continue;
1227      }
1228
1229      // Check the presence of a default argument here.
1230      if (NewNonTypeParm->hasDefaultArgument() &&
1231          DiagnoseDefaultTemplateArgument(*this, TPC,
1232                                          NewNonTypeParm->getLocation(),
1233                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1234        NewNonTypeParm->removeDefaultArgument();
1235      }
1236
1237      // Merge default arguments for non-type template parameters
1238      NonTypeTemplateParmDecl *OldNonTypeParm
1239        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1240      if (NewNonTypeParm->isParameterPack()) {
1241        assert(!NewNonTypeParm->hasDefaultArgument() &&
1242               "Parameter packs can't have a default argument!");
1243        SawParameterPack = true;
1244        ParameterPackLoc = NewNonTypeParm->getLocation();
1245      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1246          NewNonTypeParm->hasDefaultArgument()) {
1247        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1248        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1249        SawDefaultArgument = true;
1250        RedundantDefaultArg = true;
1251        PreviousDefaultArgLoc = NewDefaultLoc;
1252      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1253        // Merge the default argument from the old declaration to the
1254        // new declaration.
1255        SawDefaultArgument = true;
1256        // FIXME: We need to create a new kind of "default argument"
1257        // expression that points to a previous non-type template
1258        // parameter.
1259        NewNonTypeParm->setDefaultArgument(
1260                                         OldNonTypeParm->getDefaultArgument(),
1261                                         /*Inherited=*/ true);
1262        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1263      } else if (NewNonTypeParm->hasDefaultArgument()) {
1264        SawDefaultArgument = true;
1265        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1266      } else if (SawDefaultArgument)
1267        MissingDefaultArg = true;
1268    } else {
1269      // Check the presence of a default argument here.
1270      TemplateTemplateParmDecl *NewTemplateParm
1271        = cast<TemplateTemplateParmDecl>(*NewParam);
1272
1273      // Check for unexpanded parameter packs, recursively.
1274      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1275        Invalid = true;
1276        continue;
1277      }
1278
1279      if (NewTemplateParm->hasDefaultArgument() &&
1280          DiagnoseDefaultTemplateArgument(*this, TPC,
1281                                          NewTemplateParm->getLocation(),
1282                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1283        NewTemplateParm->removeDefaultArgument();
1284
1285      // Merge default arguments for template template parameters
1286      TemplateTemplateParmDecl *OldTemplateParm
1287        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1288      if (NewTemplateParm->isParameterPack()) {
1289        assert(!NewTemplateParm->hasDefaultArgument() &&
1290               "Parameter packs can't have a default argument!");
1291        SawParameterPack = true;
1292        ParameterPackLoc = NewTemplateParm->getLocation();
1293      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1294          NewTemplateParm->hasDefaultArgument()) {
1295        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1296        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1297        SawDefaultArgument = true;
1298        RedundantDefaultArg = true;
1299        PreviousDefaultArgLoc = NewDefaultLoc;
1300      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1301        // Merge the default argument from the old declaration to the
1302        // new declaration.
1303        SawDefaultArgument = true;
1304        // FIXME: We need to create a new kind of "default argument" expression
1305        // that points to a previous template template parameter.
1306        NewTemplateParm->setDefaultArgument(
1307                                          OldTemplateParm->getDefaultArgument(),
1308                                          /*Inherited=*/ true);
1309        PreviousDefaultArgLoc
1310          = OldTemplateParm->getDefaultArgument().getLocation();
1311      } else if (NewTemplateParm->hasDefaultArgument()) {
1312        SawDefaultArgument = true;
1313        PreviousDefaultArgLoc
1314          = NewTemplateParm->getDefaultArgument().getLocation();
1315      } else if (SawDefaultArgument)
1316        MissingDefaultArg = true;
1317    }
1318
1319    if (RedundantDefaultArg) {
1320      // C++ [temp.param]p12:
1321      //   A template-parameter shall not be given default arguments
1322      //   by two different declarations in the same scope.
1323      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1324      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1325      Invalid = true;
1326    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1327      // C++ [temp.param]p11:
1328      //   If a template-parameter of a class template has a default
1329      //   template-argument, each subsequent template-parameter shall either
1330      //   have a default template-argument supplied or be a template parameter
1331      //   pack.
1332      Diag((*NewParam)->getLocation(),
1333           diag::err_template_param_default_arg_missing);
1334      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1335      Invalid = true;
1336      RemoveDefaultArguments = true;
1337    }
1338
1339    // If we have an old template parameter list that we're merging
1340    // in, move on to the next parameter.
1341    if (OldParams)
1342      ++OldParam;
1343  }
1344
1345  // We were missing some default arguments at the end of the list, so remove
1346  // all of the default arguments.
1347  if (RemoveDefaultArguments) {
1348    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1349                                      NewParamEnd = NewParams->end();
1350         NewParam != NewParamEnd; ++NewParam) {
1351      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1352        TTP->removeDefaultArgument();
1353      else if (NonTypeTemplateParmDecl *NTTP
1354                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1355        NTTP->removeDefaultArgument();
1356      else
1357        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1358    }
1359  }
1360
1361  return Invalid;
1362}
1363
1364namespace {
1365
1366/// A class which looks for a use of a certain level of template
1367/// parameter.
1368struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1369  typedef RecursiveASTVisitor<DependencyChecker> super;
1370
1371  unsigned Depth;
1372  bool Match;
1373
1374  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1375    NamedDecl *ND = Params->getParam(0);
1376    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1377      Depth = PD->getDepth();
1378    } else if (NonTypeTemplateParmDecl *PD =
1379                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1380      Depth = PD->getDepth();
1381    } else {
1382      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1383    }
1384  }
1385
1386  bool Matches(unsigned ParmDepth) {
1387    if (ParmDepth >= Depth) {
1388      Match = true;
1389      return true;
1390    }
1391    return false;
1392  }
1393
1394  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1395    return !Matches(T->getDepth());
1396  }
1397
1398  bool TraverseTemplateName(TemplateName N) {
1399    if (TemplateTemplateParmDecl *PD =
1400          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1401      if (Matches(PD->getDepth())) return false;
1402    return super::TraverseTemplateName(N);
1403  }
1404
1405  bool VisitDeclRefExpr(DeclRefExpr *E) {
1406    if (NonTypeTemplateParmDecl *PD =
1407          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1408      if (PD->getDepth() == Depth) {
1409        Match = true;
1410        return false;
1411      }
1412    }
1413    return super::VisitDeclRefExpr(E);
1414  }
1415};
1416}
1417
1418/// Determines whether a template-id depends on the given parameter
1419/// list.
1420static bool
1421DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1422                            TemplateParameterList *Params) {
1423  DependencyChecker Checker(Params);
1424  Checker.TraverseType(QualType(TemplateId, 0));
1425  return Checker.Match;
1426}
1427
1428/// \brief Match the given template parameter lists to the given scope
1429/// specifier, returning the template parameter list that applies to the
1430/// name.
1431///
1432/// \param DeclStartLoc the start of the declaration that has a scope
1433/// specifier or a template parameter list.
1434///
1435/// \param SS the scope specifier that will be matched to the given template
1436/// parameter lists. This scope specifier precedes a qualified name that is
1437/// being declared.
1438///
1439/// \param ParamLists the template parameter lists, from the outermost to the
1440/// innermost template parameter lists.
1441///
1442/// \param NumParamLists the number of template parameter lists in ParamLists.
1443///
1444/// \param IsFriend Whether to apply the slightly different rules for
1445/// matching template parameters to scope specifiers in friend
1446/// declarations.
1447///
1448/// \param IsExplicitSpecialization will be set true if the entity being
1449/// declared is an explicit specialization, false otherwise.
1450///
1451/// \returns the template parameter list, if any, that corresponds to the
1452/// name that is preceded by the scope specifier @p SS. This template
1453/// parameter list may be have template parameters (if we're declaring a
1454/// template) or may have no template parameters (if we're declaring a
1455/// template specialization), or may be NULL (if we were's declaring isn't
1456/// itself a template).
1457TemplateParameterList *
1458Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1459                                              const CXXScopeSpec &SS,
1460                                          TemplateParameterList **ParamLists,
1461                                              unsigned NumParamLists,
1462                                              bool IsFriend,
1463                                              bool &IsExplicitSpecialization,
1464                                              bool &Invalid) {
1465  IsExplicitSpecialization = false;
1466
1467  // Find the template-ids that occur within the nested-name-specifier. These
1468  // template-ids will match up with the template parameter lists.
1469  llvm::SmallVector<const TemplateSpecializationType *, 4>
1470    TemplateIdsInSpecifier;
1471  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1472    ExplicitSpecializationsInSpecifier;
1473  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1474       NNS; NNS = NNS->getPrefix()) {
1475    const Type *T = NNS->getAsType();
1476    if (!T) break;
1477
1478    // C++0x [temp.expl.spec]p17:
1479    //   A member or a member template may be nested within many
1480    //   enclosing class templates. In an explicit specialization for
1481    //   such a member, the member declaration shall be preceded by a
1482    //   template<> for each enclosing class template that is
1483    //   explicitly specialized.
1484    //
1485    // Following the existing practice of GNU and EDG, we allow a typedef of a
1486    // template specialization type.
1487    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1488      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1489
1490    if (const TemplateSpecializationType *SpecType
1491                                  = dyn_cast<TemplateSpecializationType>(T)) {
1492      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1493      if (!Template)
1494        continue; // FIXME: should this be an error? probably...
1495
1496      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1497        ClassTemplateSpecializationDecl *SpecDecl
1498          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1499        // If the nested name specifier refers to an explicit specialization,
1500        // we don't need a template<> header.
1501        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1502          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1503          continue;
1504        }
1505      }
1506
1507      TemplateIdsInSpecifier.push_back(SpecType);
1508    }
1509  }
1510
1511  // Reverse the list of template-ids in the scope specifier, so that we can
1512  // more easily match up the template-ids and the template parameter lists.
1513  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1514
1515  SourceLocation FirstTemplateLoc = DeclStartLoc;
1516  if (NumParamLists)
1517    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1518
1519  // Match the template-ids found in the specifier to the template parameter
1520  // lists.
1521  unsigned ParamIdx = 0, TemplateIdx = 0;
1522  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1523       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1524    const TemplateSpecializationType *TemplateId
1525      = TemplateIdsInSpecifier[TemplateIdx];
1526    bool DependentTemplateId = TemplateId->isDependentType();
1527
1528    // In friend declarations we can have template-ids which don't
1529    // depend on the corresponding template parameter lists.  But
1530    // assume that empty parameter lists are supposed to match this
1531    // template-id.
1532    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1533      if (!DependentTemplateId ||
1534          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1535        continue;
1536    }
1537
1538    if (ParamIdx >= NumParamLists) {
1539      // We have a template-id without a corresponding template parameter
1540      // list.
1541
1542      // ...which is fine if this is a friend declaration.
1543      if (IsFriend) {
1544        IsExplicitSpecialization = true;
1545        break;
1546      }
1547
1548      if (DependentTemplateId) {
1549        // FIXME: the location information here isn't great.
1550        Diag(SS.getRange().getBegin(),
1551             diag::err_template_spec_needs_template_parameters)
1552          << QualType(TemplateId, 0)
1553          << SS.getRange();
1554        Invalid = true;
1555      } else {
1556        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1557          << SS.getRange()
1558          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1559        IsExplicitSpecialization = true;
1560      }
1561      return 0;
1562    }
1563
1564    // Check the template parameter list against its corresponding template-id.
1565    if (DependentTemplateId) {
1566      TemplateParameterList *ExpectedTemplateParams = 0;
1567
1568      // Are there cases in (e.g.) friends where this won't match?
1569      if (const InjectedClassNameType *Injected
1570            = TemplateId->getAs<InjectedClassNameType>()) {
1571        CXXRecordDecl *Record = Injected->getDecl();
1572        if (ClassTemplatePartialSpecializationDecl *Partial =
1573              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1574          ExpectedTemplateParams = Partial->getTemplateParameters();
1575        else
1576          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1577            ->getTemplateParameters();
1578      }
1579
1580      if (ExpectedTemplateParams)
1581        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1582                                       ExpectedTemplateParams,
1583                                       true, TPL_TemplateMatch);
1584
1585      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1586                                 TPC_ClassTemplateMember);
1587    } else if (ParamLists[ParamIdx]->size() > 0)
1588      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1589           diag::err_template_param_list_matches_nontemplate)
1590        << TemplateId
1591        << ParamLists[ParamIdx]->getSourceRange();
1592    else
1593      IsExplicitSpecialization = true;
1594
1595    ++ParamIdx;
1596  }
1597
1598  // If there were at least as many template-ids as there were template
1599  // parameter lists, then there are no template parameter lists remaining for
1600  // the declaration itself.
1601  if (ParamIdx >= NumParamLists)
1602    return 0;
1603
1604  // If there were too many template parameter lists, complain about that now.
1605  if (ParamIdx != NumParamLists - 1) {
1606    while (ParamIdx < NumParamLists - 1) {
1607      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1608      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1609           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1610                               : diag::err_template_spec_extra_headers)
1611        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1612                       ParamLists[ParamIdx]->getRAngleLoc());
1613
1614      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1615        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1616             diag::note_explicit_template_spec_does_not_need_header)
1617          << ExplicitSpecializationsInSpecifier.back();
1618        ExplicitSpecializationsInSpecifier.pop_back();
1619      }
1620
1621      // We have a template parameter list with no corresponding scope, which
1622      // means that the resulting template declaration can't be instantiated
1623      // properly (we'll end up with dependent nodes when we shouldn't).
1624      if (!isExplicitSpecHeader)
1625        Invalid = true;
1626
1627      ++ParamIdx;
1628    }
1629  }
1630
1631  // Return the last template parameter list, which corresponds to the
1632  // entity being declared.
1633  return ParamLists[NumParamLists - 1];
1634}
1635
1636QualType Sema::CheckTemplateIdType(TemplateName Name,
1637                                   SourceLocation TemplateLoc,
1638                              const TemplateArgumentListInfo &TemplateArgs) {
1639  TemplateDecl *Template = Name.getAsTemplateDecl();
1640  if (!Template) {
1641    // The template name does not resolve to a template, so we just
1642    // build a dependent template-id type.
1643    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1644  }
1645
1646  // Check that the template argument list is well-formed for this
1647  // template.
1648  llvm::SmallVector<TemplateArgument, 4> Converted;
1649  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1650                                false, Converted))
1651    return QualType();
1652
1653  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1654         "Converted template argument list is too short!");
1655
1656  QualType CanonType;
1657
1658  if (Name.isDependent() ||
1659      TemplateSpecializationType::anyDependentTemplateArguments(
1660                                                      TemplateArgs)) {
1661    // This class template specialization is a dependent
1662    // type. Therefore, its canonical type is another class template
1663    // specialization type that contains all of the converted
1664    // arguments in canonical form. This ensures that, e.g., A<T> and
1665    // A<T, T> have identical types when A is declared as:
1666    //
1667    //   template<typename T, typename U = T> struct A;
1668    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1669    CanonType = Context.getTemplateSpecializationType(CanonName,
1670                                                      Converted.data(),
1671                                                      Converted.size());
1672
1673    // FIXME: CanonType is not actually the canonical type, and unfortunately
1674    // it is a TemplateSpecializationType that we will never use again.
1675    // In the future, we need to teach getTemplateSpecializationType to only
1676    // build the canonical type and return that to us.
1677    CanonType = Context.getCanonicalType(CanonType);
1678
1679    // This might work out to be a current instantiation, in which
1680    // case the canonical type needs to be the InjectedClassNameType.
1681    //
1682    // TODO: in theory this could be a simple hashtable lookup; most
1683    // changes to CurContext don't change the set of current
1684    // instantiations.
1685    if (isa<ClassTemplateDecl>(Template)) {
1686      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1687        // If we get out to a namespace, we're done.
1688        if (Ctx->isFileContext()) break;
1689
1690        // If this isn't a record, keep looking.
1691        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1692        if (!Record) continue;
1693
1694        // Look for one of the two cases with InjectedClassNameTypes
1695        // and check whether it's the same template.
1696        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1697            !Record->getDescribedClassTemplate())
1698          continue;
1699
1700        // Fetch the injected class name type and check whether its
1701        // injected type is equal to the type we just built.
1702        QualType ICNT = Context.getTypeDeclType(Record);
1703        QualType Injected = cast<InjectedClassNameType>(ICNT)
1704          ->getInjectedSpecializationType();
1705
1706        if (CanonType != Injected->getCanonicalTypeInternal())
1707          continue;
1708
1709        // If so, the canonical type of this TST is the injected
1710        // class name type of the record we just found.
1711        assert(ICNT.isCanonical());
1712        CanonType = ICNT;
1713        break;
1714      }
1715    }
1716  } else if (ClassTemplateDecl *ClassTemplate
1717               = dyn_cast<ClassTemplateDecl>(Template)) {
1718    // Find the class template specialization declaration that
1719    // corresponds to these arguments.
1720    void *InsertPos = 0;
1721    ClassTemplateSpecializationDecl *Decl
1722      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1723                                          InsertPos);
1724    if (!Decl) {
1725      // This is the first time we have referenced this class template
1726      // specialization. Create the canonical declaration and add it to
1727      // the set of specializations.
1728      Decl = ClassTemplateSpecializationDecl::Create(Context,
1729                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1730                                                ClassTemplate->getDeclContext(),
1731                                                ClassTemplate->getLocation(),
1732                                                     ClassTemplate,
1733                                                     Converted.data(),
1734                                                     Converted.size(), 0);
1735      ClassTemplate->AddSpecialization(Decl, InsertPos);
1736      Decl->setLexicalDeclContext(CurContext);
1737    }
1738
1739    CanonType = Context.getTypeDeclType(Decl);
1740    assert(isa<RecordType>(CanonType) &&
1741           "type of non-dependent specialization is not a RecordType");
1742  }
1743
1744  // Build the fully-sugared type for this class template
1745  // specialization, which refers back to the class template
1746  // specialization we created or found.
1747  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1748}
1749
1750TypeResult
1751Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1752                          SourceLocation LAngleLoc,
1753                          ASTTemplateArgsPtr TemplateArgsIn,
1754                          SourceLocation RAngleLoc) {
1755  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1756
1757  // Translate the parser's template argument list in our AST format.
1758  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1759  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1760
1761  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1762  TemplateArgsIn.release();
1763
1764  if (Result.isNull())
1765    return true;
1766
1767  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1768  TemplateSpecializationTypeLoc TL
1769    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1770  TL.setTemplateNameLoc(TemplateLoc);
1771  TL.setLAngleLoc(LAngleLoc);
1772  TL.setRAngleLoc(RAngleLoc);
1773  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1774    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1775
1776  return CreateParsedType(Result, DI);
1777}
1778
1779TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS,
1780                                        TypeResult TypeResult,
1781                                        TagUseKind TUK,
1782                                        TypeSpecifierType TagSpec,
1783                                        SourceLocation TagLoc) {
1784  if (TypeResult.isInvalid())
1785    return ::TypeResult();
1786
1787  TypeSourceInfo *DI;
1788  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1789
1790  // Verify the tag specifier.
1791  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1792
1793  if (const RecordType *RT = Type->getAs<RecordType>()) {
1794    RecordDecl *D = RT->getDecl();
1795
1796    IdentifierInfo *Id = D->getIdentifier();
1797    assert(Id && "templated class must have an identifier");
1798
1799    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1800      Diag(TagLoc, diag::err_use_with_wrong_tag)
1801        << Type
1802        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1803      Diag(D->getLocation(), diag::note_previous_use);
1804    }
1805  }
1806
1807  ElaboratedTypeKeyword Keyword
1808    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1809  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1810
1811  TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType);
1812  ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc());
1813  TL.setKeywordLoc(TagLoc);
1814  TL.setQualifierRange(SS.getRange());
1815  TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc());
1816  return CreateParsedType(ElabType, ElabDI);
1817}
1818
1819ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1820                                                 LookupResult &R,
1821                                                 bool RequiresADL,
1822                                 const TemplateArgumentListInfo &TemplateArgs) {
1823  // FIXME: Can we do any checking at this point? I guess we could check the
1824  // template arguments that we have against the template name, if the template
1825  // name refers to a single template. That's not a terribly common case,
1826  // though.
1827  // foo<int> could identify a single function unambiguously
1828  // This approach does NOT work, since f<int>(1);
1829  // gets resolved prior to resorting to overload resolution
1830  // i.e., template<class T> void f(double);
1831  //       vs template<class T, class U> void f(U);
1832
1833  // These should be filtered out by our callers.
1834  assert(!R.empty() && "empty lookup results when building templateid");
1835  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1836
1837  NestedNameSpecifier *Qualifier = 0;
1838  SourceRange QualifierRange;
1839  if (SS.isSet()) {
1840    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1841    QualifierRange = SS.getRange();
1842  }
1843
1844  // We don't want lookup warnings at this point.
1845  R.suppressDiagnostics();
1846
1847  UnresolvedLookupExpr *ULE
1848    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1849                                   Qualifier, QualifierRange,
1850                                   R.getLookupNameInfo(),
1851                                   RequiresADL, TemplateArgs,
1852                                   R.begin(), R.end());
1853
1854  return Owned(ULE);
1855}
1856
1857// We actually only call this from template instantiation.
1858ExprResult
1859Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1860                                   const DeclarationNameInfo &NameInfo,
1861                             const TemplateArgumentListInfo &TemplateArgs) {
1862  DeclContext *DC;
1863  if (!(DC = computeDeclContext(SS, false)) ||
1864      DC->isDependentContext() ||
1865      RequireCompleteDeclContext(SS, DC))
1866    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1867
1868  bool MemberOfUnknownSpecialization;
1869  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1870  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1871                     MemberOfUnknownSpecialization);
1872
1873  if (R.isAmbiguous())
1874    return ExprError();
1875
1876  if (R.empty()) {
1877    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1878      << NameInfo.getName() << SS.getRange();
1879    return ExprError();
1880  }
1881
1882  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1883    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1884      << (NestedNameSpecifier*) SS.getScopeRep()
1885      << NameInfo.getName() << SS.getRange();
1886    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1887    return ExprError();
1888  }
1889
1890  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1891}
1892
1893/// \brief Form a dependent template name.
1894///
1895/// This action forms a dependent template name given the template
1896/// name and its (presumably dependent) scope specifier. For
1897/// example, given "MetaFun::template apply", the scope specifier \p
1898/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1899/// of the "template" keyword, and "apply" is the \p Name.
1900TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1901                                                  SourceLocation TemplateKWLoc,
1902                                                  CXXScopeSpec &SS,
1903                                                  UnqualifiedId &Name,
1904                                                  ParsedType ObjectType,
1905                                                  bool EnteringContext,
1906                                                  TemplateTy &Result) {
1907  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1908      !getLangOptions().CPlusPlus0x)
1909    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1910      << FixItHint::CreateRemoval(TemplateKWLoc);
1911
1912  DeclContext *LookupCtx = 0;
1913  if (SS.isSet())
1914    LookupCtx = computeDeclContext(SS, EnteringContext);
1915  if (!LookupCtx && ObjectType)
1916    LookupCtx = computeDeclContext(ObjectType.get());
1917  if (LookupCtx) {
1918    // C++0x [temp.names]p5:
1919    //   If a name prefixed by the keyword template is not the name of
1920    //   a template, the program is ill-formed. [Note: the keyword
1921    //   template may not be applied to non-template members of class
1922    //   templates. -end note ] [ Note: as is the case with the
1923    //   typename prefix, the template prefix is allowed in cases
1924    //   where it is not strictly necessary; i.e., when the
1925    //   nested-name-specifier or the expression on the left of the ->
1926    //   or . is not dependent on a template-parameter, or the use
1927    //   does not appear in the scope of a template. -end note]
1928    //
1929    // Note: C++03 was more strict here, because it banned the use of
1930    // the "template" keyword prior to a template-name that was not a
1931    // dependent name. C++ DR468 relaxed this requirement (the
1932    // "template" keyword is now permitted). We follow the C++0x
1933    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1934    bool MemberOfUnknownSpecialization;
1935    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1936                                          ObjectType, EnteringContext, Result,
1937                                          MemberOfUnknownSpecialization);
1938    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1939        isa<CXXRecordDecl>(LookupCtx) &&
1940        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1941      // This is a dependent template. Handle it below.
1942    } else if (TNK == TNK_Non_template) {
1943      Diag(Name.getSourceRange().getBegin(),
1944           diag::err_template_kw_refers_to_non_template)
1945        << GetNameFromUnqualifiedId(Name).getName()
1946        << Name.getSourceRange()
1947        << TemplateKWLoc;
1948      return TNK_Non_template;
1949    } else {
1950      // We found something; return it.
1951      return TNK;
1952    }
1953  }
1954
1955  NestedNameSpecifier *Qualifier
1956    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1957
1958  switch (Name.getKind()) {
1959  case UnqualifiedId::IK_Identifier:
1960    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1961                                                              Name.Identifier));
1962    return TNK_Dependent_template_name;
1963
1964  case UnqualifiedId::IK_OperatorFunctionId:
1965    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1966                                             Name.OperatorFunctionId.Operator));
1967    return TNK_Dependent_template_name;
1968
1969  case UnqualifiedId::IK_LiteralOperatorId:
1970    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1971
1972  default:
1973    break;
1974  }
1975
1976  Diag(Name.getSourceRange().getBegin(),
1977       diag::err_template_kw_refers_to_non_template)
1978    << GetNameFromUnqualifiedId(Name).getName()
1979    << Name.getSourceRange()
1980    << TemplateKWLoc;
1981  return TNK_Non_template;
1982}
1983
1984bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1985                                     const TemplateArgumentLoc &AL,
1986                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1987  const TemplateArgument &Arg = AL.getArgument();
1988
1989  // Check template type parameter.
1990  switch(Arg.getKind()) {
1991  case TemplateArgument::Type:
1992    // C++ [temp.arg.type]p1:
1993    //   A template-argument for a template-parameter which is a
1994    //   type shall be a type-id.
1995    break;
1996  case TemplateArgument::Template: {
1997    // We have a template type parameter but the template argument
1998    // is a template without any arguments.
1999    SourceRange SR = AL.getSourceRange();
2000    TemplateName Name = Arg.getAsTemplate();
2001    Diag(SR.getBegin(), diag::err_template_missing_args)
2002      << Name << SR;
2003    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2004      Diag(Decl->getLocation(), diag::note_template_decl_here);
2005
2006    return true;
2007  }
2008  default: {
2009    // We have a template type parameter but the template argument
2010    // is not a type.
2011    SourceRange SR = AL.getSourceRange();
2012    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2013    Diag(Param->getLocation(), diag::note_template_param_here);
2014
2015    return true;
2016  }
2017  }
2018
2019  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2020    return true;
2021
2022  // Add the converted template type argument.
2023  Converted.push_back(
2024                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
2025  return false;
2026}
2027
2028/// \brief Substitute template arguments into the default template argument for
2029/// the given template type parameter.
2030///
2031/// \param SemaRef the semantic analysis object for which we are performing
2032/// the substitution.
2033///
2034/// \param Template the template that we are synthesizing template arguments
2035/// for.
2036///
2037/// \param TemplateLoc the location of the template name that started the
2038/// template-id we are checking.
2039///
2040/// \param RAngleLoc the location of the right angle bracket ('>') that
2041/// terminates the template-id.
2042///
2043/// \param Param the template template parameter whose default we are
2044/// substituting into.
2045///
2046/// \param Converted the list of template arguments provided for template
2047/// parameters that precede \p Param in the template parameter list.
2048///
2049/// \returns the substituted template argument, or NULL if an error occurred.
2050static TypeSourceInfo *
2051SubstDefaultTemplateArgument(Sema &SemaRef,
2052                             TemplateDecl *Template,
2053                             SourceLocation TemplateLoc,
2054                             SourceLocation RAngleLoc,
2055                             TemplateTypeParmDecl *Param,
2056                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2057  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2058
2059  // If the argument type is dependent, instantiate it now based
2060  // on the previously-computed template arguments.
2061  if (ArgType->getType()->isDependentType()) {
2062    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2063                                      Converted.data(), Converted.size());
2064
2065    MultiLevelTemplateArgumentList AllTemplateArgs
2066      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2067
2068    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2069                                     Template, Converted.data(),
2070                                     Converted.size(),
2071                                     SourceRange(TemplateLoc, RAngleLoc));
2072
2073    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2074                                Param->getDefaultArgumentLoc(),
2075                                Param->getDeclName());
2076  }
2077
2078  return ArgType;
2079}
2080
2081/// \brief Substitute template arguments into the default template argument for
2082/// the given non-type template parameter.
2083///
2084/// \param SemaRef the semantic analysis object for which we are performing
2085/// the substitution.
2086///
2087/// \param Template the template that we are synthesizing template arguments
2088/// for.
2089///
2090/// \param TemplateLoc the location of the template name that started the
2091/// template-id we are checking.
2092///
2093/// \param RAngleLoc the location of the right angle bracket ('>') that
2094/// terminates the template-id.
2095///
2096/// \param Param the non-type template parameter whose default we are
2097/// substituting into.
2098///
2099/// \param Converted the list of template arguments provided for template
2100/// parameters that precede \p Param in the template parameter list.
2101///
2102/// \returns the substituted template argument, or NULL if an error occurred.
2103static ExprResult
2104SubstDefaultTemplateArgument(Sema &SemaRef,
2105                             TemplateDecl *Template,
2106                             SourceLocation TemplateLoc,
2107                             SourceLocation RAngleLoc,
2108                             NonTypeTemplateParmDecl *Param,
2109                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2110  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2111                                    Converted.data(), Converted.size());
2112
2113  MultiLevelTemplateArgumentList AllTemplateArgs
2114    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2115
2116  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2117                                   Template, Converted.data(),
2118                                   Converted.size(),
2119                                   SourceRange(TemplateLoc, RAngleLoc));
2120
2121  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2122}
2123
2124/// \brief Substitute template arguments into the default template argument for
2125/// the given template template parameter.
2126///
2127/// \param SemaRef the semantic analysis object for which we are performing
2128/// the substitution.
2129///
2130/// \param Template the template that we are synthesizing template arguments
2131/// for.
2132///
2133/// \param TemplateLoc the location of the template name that started the
2134/// template-id we are checking.
2135///
2136/// \param RAngleLoc the location of the right angle bracket ('>') that
2137/// terminates the template-id.
2138///
2139/// \param Param the template template parameter whose default we are
2140/// substituting into.
2141///
2142/// \param Converted the list of template arguments provided for template
2143/// parameters that precede \p Param in the template parameter list.
2144///
2145/// \returns the substituted template argument, or NULL if an error occurred.
2146static TemplateName
2147SubstDefaultTemplateArgument(Sema &SemaRef,
2148                             TemplateDecl *Template,
2149                             SourceLocation TemplateLoc,
2150                             SourceLocation RAngleLoc,
2151                             TemplateTemplateParmDecl *Param,
2152                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2153  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2154                                    Converted.data(), Converted.size());
2155
2156  MultiLevelTemplateArgumentList AllTemplateArgs
2157    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2158
2159  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2160                                   Template, Converted.data(),
2161                                   Converted.size(),
2162                                   SourceRange(TemplateLoc, RAngleLoc));
2163
2164  return SemaRef.SubstTemplateName(
2165                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2166                              Param->getDefaultArgument().getTemplateNameLoc(),
2167                                   AllTemplateArgs);
2168}
2169
2170/// \brief If the given template parameter has a default template
2171/// argument, substitute into that default template argument and
2172/// return the corresponding template argument.
2173TemplateArgumentLoc
2174Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2175                                              SourceLocation TemplateLoc,
2176                                              SourceLocation RAngleLoc,
2177                                              Decl *Param,
2178                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2179   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2180    if (!TypeParm->hasDefaultArgument())
2181      return TemplateArgumentLoc();
2182
2183    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2184                                                      TemplateLoc,
2185                                                      RAngleLoc,
2186                                                      TypeParm,
2187                                                      Converted);
2188    if (DI)
2189      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2190
2191    return TemplateArgumentLoc();
2192  }
2193
2194  if (NonTypeTemplateParmDecl *NonTypeParm
2195        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2196    if (!NonTypeParm->hasDefaultArgument())
2197      return TemplateArgumentLoc();
2198
2199    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2200                                                        TemplateLoc,
2201                                                        RAngleLoc,
2202                                                        NonTypeParm,
2203                                                        Converted);
2204    if (Arg.isInvalid())
2205      return TemplateArgumentLoc();
2206
2207    Expr *ArgE = Arg.takeAs<Expr>();
2208    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2209  }
2210
2211  TemplateTemplateParmDecl *TempTempParm
2212    = cast<TemplateTemplateParmDecl>(Param);
2213  if (!TempTempParm->hasDefaultArgument())
2214    return TemplateArgumentLoc();
2215
2216  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2217                                                    TemplateLoc,
2218                                                    RAngleLoc,
2219                                                    TempTempParm,
2220                                                    Converted);
2221  if (TName.isNull())
2222    return TemplateArgumentLoc();
2223
2224  return TemplateArgumentLoc(TemplateArgument(TName),
2225                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2226                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2227}
2228
2229/// \brief Check that the given template argument corresponds to the given
2230/// template parameter.
2231///
2232/// \param Param The template parameter against which the argument will be
2233/// checked.
2234///
2235/// \param Arg The template argument.
2236///
2237/// \param Template The template in which the template argument resides.
2238///
2239/// \param TemplateLoc The location of the template name for the template
2240/// whose argument list we're matching.
2241///
2242/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2243/// the template argument list.
2244///
2245/// \param ArgumentPackIndex The index into the argument pack where this
2246/// argument will be placed. Only valid if the parameter is a parameter pack.
2247///
2248/// \param Converted The checked, converted argument will be added to the
2249/// end of this small vector.
2250///
2251/// \param CTAK Describes how we arrived at this particular template argument:
2252/// explicitly written, deduced, etc.
2253///
2254/// \returns true on error, false otherwise.
2255bool Sema::CheckTemplateArgument(NamedDecl *Param,
2256                                 const TemplateArgumentLoc &Arg,
2257                                 NamedDecl *Template,
2258                                 SourceLocation TemplateLoc,
2259                                 SourceLocation RAngleLoc,
2260                                 unsigned ArgumentPackIndex,
2261                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2262                                 CheckTemplateArgumentKind CTAK) {
2263  // Check template type parameters.
2264  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2265    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2266
2267  // Check non-type template parameters.
2268  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2269    // Do substitution on the type of the non-type template parameter
2270    // with the template arguments we've seen thus far.  But if the
2271    // template has a dependent context then we cannot substitute yet.
2272    QualType NTTPType = NTTP->getType();
2273    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2274      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2275
2276    if (NTTPType->isDependentType() &&
2277        !isa<TemplateTemplateParmDecl>(Template) &&
2278        !Template->getDeclContext()->isDependentContext()) {
2279      // Do substitution on the type of the non-type template parameter.
2280      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2281                                 NTTP, Converted.data(), Converted.size(),
2282                                 SourceRange(TemplateLoc, RAngleLoc));
2283
2284      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2285                                        Converted.data(), Converted.size());
2286      NTTPType = SubstType(NTTPType,
2287                           MultiLevelTemplateArgumentList(TemplateArgs),
2288                           NTTP->getLocation(),
2289                           NTTP->getDeclName());
2290      // If that worked, check the non-type template parameter type
2291      // for validity.
2292      if (!NTTPType.isNull())
2293        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2294                                                     NTTP->getLocation());
2295      if (NTTPType.isNull())
2296        return true;
2297    }
2298
2299    switch (Arg.getArgument().getKind()) {
2300    case TemplateArgument::Null:
2301      assert(false && "Should never see a NULL template argument here");
2302      return true;
2303
2304    case TemplateArgument::Expression: {
2305      Expr *E = Arg.getArgument().getAsExpr();
2306      TemplateArgument Result;
2307      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2308        return true;
2309
2310      Converted.push_back(Result);
2311      break;
2312    }
2313
2314    case TemplateArgument::Declaration:
2315    case TemplateArgument::Integral:
2316      // We've already checked this template argument, so just copy
2317      // it to the list of converted arguments.
2318      Converted.push_back(Arg.getArgument());
2319      break;
2320
2321    case TemplateArgument::Template:
2322    case TemplateArgument::TemplateExpansion:
2323      // We were given a template template argument. It may not be ill-formed;
2324      // see below.
2325      if (DependentTemplateName *DTN
2326            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2327                                              .getAsDependentTemplateName()) {
2328        // We have a template argument such as \c T::template X, which we
2329        // parsed as a template template argument. However, since we now
2330        // know that we need a non-type template argument, convert this
2331        // template name into an expression.
2332
2333        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2334                                     Arg.getTemplateNameLoc());
2335
2336        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2337                                                    DTN->getQualifier(),
2338                                               Arg.getTemplateQualifierRange(),
2339                                                    NameInfo);
2340
2341        // If we parsed the template argument as a pack expansion, create a
2342        // pack expansion expression.
2343        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2344          ExprResult Expansion = ActOnPackExpansion(E,
2345                                                  Arg.getTemplateEllipsisLoc());
2346          if (Expansion.isInvalid())
2347            return true;
2348
2349          E = Expansion.get();
2350        }
2351
2352        TemplateArgument Result;
2353        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2354          return true;
2355
2356        Converted.push_back(Result);
2357        break;
2358      }
2359
2360      // We have a template argument that actually does refer to a class
2361      // template, template alias, or template template parameter, and
2362      // therefore cannot be a non-type template argument.
2363      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2364        << Arg.getSourceRange();
2365
2366      Diag(Param->getLocation(), diag::note_template_param_here);
2367      return true;
2368
2369    case TemplateArgument::Type: {
2370      // We have a non-type template parameter but the template
2371      // argument is a type.
2372
2373      // C++ [temp.arg]p2:
2374      //   In a template-argument, an ambiguity between a type-id and
2375      //   an expression is resolved to a type-id, regardless of the
2376      //   form of the corresponding template-parameter.
2377      //
2378      // We warn specifically about this case, since it can be rather
2379      // confusing for users.
2380      QualType T = Arg.getArgument().getAsType();
2381      SourceRange SR = Arg.getSourceRange();
2382      if (T->isFunctionType())
2383        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2384      else
2385        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2386      Diag(Param->getLocation(), diag::note_template_param_here);
2387      return true;
2388    }
2389
2390    case TemplateArgument::Pack:
2391      llvm_unreachable("Caller must expand template argument packs");
2392      break;
2393    }
2394
2395    return false;
2396  }
2397
2398
2399  // Check template template parameters.
2400  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2401
2402  // Substitute into the template parameter list of the template
2403  // template parameter, since previously-supplied template arguments
2404  // may appear within the template template parameter.
2405  {
2406    // Set up a template instantiation context.
2407    LocalInstantiationScope Scope(*this);
2408    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2409                               TempParm, Converted.data(), Converted.size(),
2410                               SourceRange(TemplateLoc, RAngleLoc));
2411
2412    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2413                                      Converted.data(), Converted.size());
2414    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2415                      SubstDecl(TempParm, CurContext,
2416                                MultiLevelTemplateArgumentList(TemplateArgs)));
2417    if (!TempParm)
2418      return true;
2419  }
2420
2421  switch (Arg.getArgument().getKind()) {
2422  case TemplateArgument::Null:
2423    assert(false && "Should never see a NULL template argument here");
2424    return true;
2425
2426  case TemplateArgument::Template:
2427  case TemplateArgument::TemplateExpansion:
2428    if (CheckTemplateArgument(TempParm, Arg))
2429      return true;
2430
2431    Converted.push_back(Arg.getArgument());
2432    break;
2433
2434  case TemplateArgument::Expression:
2435  case TemplateArgument::Type:
2436    // We have a template template parameter but the template
2437    // argument does not refer to a template.
2438    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2439    return true;
2440
2441  case TemplateArgument::Declaration:
2442    llvm_unreachable(
2443                       "Declaration argument with template template parameter");
2444    break;
2445  case TemplateArgument::Integral:
2446    llvm_unreachable(
2447                          "Integral argument with template template parameter");
2448    break;
2449
2450  case TemplateArgument::Pack:
2451    llvm_unreachable("Caller must expand template argument packs");
2452    break;
2453  }
2454
2455  return false;
2456}
2457
2458/// \brief Check that the given template argument list is well-formed
2459/// for specializing the given template.
2460bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2461                                     SourceLocation TemplateLoc,
2462                                const TemplateArgumentListInfo &TemplateArgs,
2463                                     bool PartialTemplateArgs,
2464                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2465  TemplateParameterList *Params = Template->getTemplateParameters();
2466  unsigned NumParams = Params->size();
2467  unsigned NumArgs = TemplateArgs.size();
2468  bool Invalid = false;
2469
2470  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2471
2472  bool HasParameterPack =
2473    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2474
2475  if ((NumArgs > NumParams && !HasParameterPack) ||
2476      (NumArgs < Params->getMinRequiredArguments() &&
2477       !PartialTemplateArgs)) {
2478    // FIXME: point at either the first arg beyond what we can handle,
2479    // or the '>', depending on whether we have too many or too few
2480    // arguments.
2481    SourceRange Range;
2482    if (NumArgs > NumParams)
2483      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2484    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2485      << (NumArgs > NumParams)
2486      << (isa<ClassTemplateDecl>(Template)? 0 :
2487          isa<FunctionTemplateDecl>(Template)? 1 :
2488          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2489      << Template << Range;
2490    Diag(Template->getLocation(), diag::note_template_decl_here)
2491      << Params->getSourceRange();
2492    Invalid = true;
2493  }
2494
2495  // C++ [temp.arg]p1:
2496  //   [...] The type and form of each template-argument specified in
2497  //   a template-id shall match the type and form specified for the
2498  //   corresponding parameter declared by the template in its
2499  //   template-parameter-list.
2500  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2501  TemplateParameterList::iterator Param = Params->begin(),
2502                               ParamEnd = Params->end();
2503  unsigned ArgIdx = 0;
2504  LocalInstantiationScope InstScope(*this, true);
2505  while (Param != ParamEnd) {
2506    if (ArgIdx > NumArgs && PartialTemplateArgs)
2507      break;
2508
2509    if (ArgIdx < NumArgs) {
2510      // If we have an expanded parameter pack, make sure we don't have too
2511      // many arguments.
2512      if (NonTypeTemplateParmDecl *NTTP
2513                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2514        if (NTTP->isExpandedParameterPack() &&
2515            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2516          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2517            << true
2518            << (isa<ClassTemplateDecl>(Template)? 0 :
2519                isa<FunctionTemplateDecl>(Template)? 1 :
2520                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2521            << Template;
2522          Diag(Template->getLocation(), diag::note_template_decl_here)
2523            << Params->getSourceRange();
2524          return true;
2525        }
2526      }
2527
2528      // Check the template argument we were given.
2529      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2530                                TemplateLoc, RAngleLoc,
2531                                ArgumentPack.size(), Converted))
2532        return true;
2533
2534      if ((*Param)->isTemplateParameterPack()) {
2535        // The template parameter was a template parameter pack, so take the
2536        // deduced argument and place it on the argument pack. Note that we
2537        // stay on the same template parameter so that we can deduce more
2538        // arguments.
2539        ArgumentPack.push_back(Converted.back());
2540        Converted.pop_back();
2541      } else {
2542        // Move to the next template parameter.
2543        ++Param;
2544      }
2545      ++ArgIdx;
2546      continue;
2547    }
2548
2549    // If we have a template parameter pack with no more corresponding
2550    // arguments, just break out now and we'll fill in the argument pack below.
2551    if ((*Param)->isTemplateParameterPack())
2552      break;
2553
2554    // We have a default template argument that we will use.
2555    TemplateArgumentLoc Arg;
2556
2557    // Retrieve the default template argument from the template
2558    // parameter. For each kind of template parameter, we substitute the
2559    // template arguments provided thus far and any "outer" template arguments
2560    // (when the template parameter was part of a nested template) into
2561    // the default argument.
2562    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2563      if (!TTP->hasDefaultArgument()) {
2564        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2565        break;
2566      }
2567
2568      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2569                                                             Template,
2570                                                             TemplateLoc,
2571                                                             RAngleLoc,
2572                                                             TTP,
2573                                                             Converted);
2574      if (!ArgType)
2575        return true;
2576
2577      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2578                                ArgType);
2579    } else if (NonTypeTemplateParmDecl *NTTP
2580                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2581      if (!NTTP->hasDefaultArgument()) {
2582        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2583        break;
2584      }
2585
2586      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2587                                                              TemplateLoc,
2588                                                              RAngleLoc,
2589                                                              NTTP,
2590                                                              Converted);
2591      if (E.isInvalid())
2592        return true;
2593
2594      Expr *Ex = E.takeAs<Expr>();
2595      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2596    } else {
2597      TemplateTemplateParmDecl *TempParm
2598        = cast<TemplateTemplateParmDecl>(*Param);
2599
2600      if (!TempParm->hasDefaultArgument()) {
2601        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2602        break;
2603      }
2604
2605      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2606                                                       TemplateLoc,
2607                                                       RAngleLoc,
2608                                                       TempParm,
2609                                                       Converted);
2610      if (Name.isNull())
2611        return true;
2612
2613      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2614                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2615                  TempParm->getDefaultArgument().getTemplateNameLoc());
2616    }
2617
2618    // Introduce an instantiation record that describes where we are using
2619    // the default template argument.
2620    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2621                                        Converted.data(), Converted.size(),
2622                                        SourceRange(TemplateLoc, RAngleLoc));
2623
2624    // Check the default template argument.
2625    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2626                              RAngleLoc, 0, Converted))
2627      return true;
2628
2629    // Move to the next template parameter and argument.
2630    ++Param;
2631    ++ArgIdx;
2632  }
2633
2634  // Form argument packs for each of the parameter packs remaining.
2635  while (Param != ParamEnd) {
2636    // If we're checking a partial list of template arguments, don't fill
2637    // in arguments for non-template parameter packs.
2638
2639    if ((*Param)->isTemplateParameterPack()) {
2640      if (PartialTemplateArgs && ArgumentPack.empty()) {
2641        Converted.push_back(TemplateArgument());
2642      } else if (ArgumentPack.empty())
2643        Converted.push_back(TemplateArgument(0, 0));
2644      else {
2645        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2646                                                          ArgumentPack.data(),
2647                                                         ArgumentPack.size()));
2648        ArgumentPack.clear();
2649      }
2650    }
2651
2652    ++Param;
2653  }
2654
2655  return Invalid;
2656}
2657
2658namespace {
2659  class UnnamedLocalNoLinkageFinder
2660    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2661  {
2662    Sema &S;
2663    SourceRange SR;
2664
2665    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2666
2667  public:
2668    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2669
2670    bool Visit(QualType T) {
2671      return inherited::Visit(T.getTypePtr());
2672    }
2673
2674#define TYPE(Class, Parent) \
2675    bool Visit##Class##Type(const Class##Type *);
2676#define ABSTRACT_TYPE(Class, Parent) \
2677    bool Visit##Class##Type(const Class##Type *) { return false; }
2678#define NON_CANONICAL_TYPE(Class, Parent) \
2679    bool Visit##Class##Type(const Class##Type *) { return false; }
2680#include "clang/AST/TypeNodes.def"
2681
2682    bool VisitTagDecl(const TagDecl *Tag);
2683    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2684  };
2685}
2686
2687bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2688  return false;
2689}
2690
2691bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2692  return Visit(T->getElementType());
2693}
2694
2695bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2696  return Visit(T->getPointeeType());
2697}
2698
2699bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2700                                                    const BlockPointerType* T) {
2701  return Visit(T->getPointeeType());
2702}
2703
2704bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2705                                                const LValueReferenceType* T) {
2706  return Visit(T->getPointeeType());
2707}
2708
2709bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2710                                                const RValueReferenceType* T) {
2711  return Visit(T->getPointeeType());
2712}
2713
2714bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2715                                                  const MemberPointerType* T) {
2716  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2717}
2718
2719bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2720                                                  const ConstantArrayType* T) {
2721  return Visit(T->getElementType());
2722}
2723
2724bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2725                                                 const IncompleteArrayType* T) {
2726  return Visit(T->getElementType());
2727}
2728
2729bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2730                                                   const VariableArrayType* T) {
2731  return Visit(T->getElementType());
2732}
2733
2734bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2735                                            const DependentSizedArrayType* T) {
2736  return Visit(T->getElementType());
2737}
2738
2739bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2740                                         const DependentSizedExtVectorType* T) {
2741  return Visit(T->getElementType());
2742}
2743
2744bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2745  return Visit(T->getElementType());
2746}
2747
2748bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2749  return Visit(T->getElementType());
2750}
2751
2752bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2753                                                  const FunctionProtoType* T) {
2754  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2755                                         AEnd = T->arg_type_end();
2756       A != AEnd; ++A) {
2757    if (Visit(*A))
2758      return true;
2759  }
2760
2761  return Visit(T->getResultType());
2762}
2763
2764bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2765                                               const FunctionNoProtoType* T) {
2766  return Visit(T->getResultType());
2767}
2768
2769bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2770                                                  const UnresolvedUsingType*) {
2771  return false;
2772}
2773
2774bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2775  return false;
2776}
2777
2778bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2779  return Visit(T->getUnderlyingType());
2780}
2781
2782bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2783  return false;
2784}
2785
2786bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
2787  return Visit(T->getDeducedType());
2788}
2789
2790bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2791  return VisitTagDecl(T->getDecl());
2792}
2793
2794bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2795  return VisitTagDecl(T->getDecl());
2796}
2797
2798bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2799                                                 const TemplateTypeParmType*) {
2800  return false;
2801}
2802
2803bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
2804                                        const SubstTemplateTypeParmPackType *) {
2805  return false;
2806}
2807
2808bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2809                                            const TemplateSpecializationType*) {
2810  return false;
2811}
2812
2813bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2814                                              const InjectedClassNameType* T) {
2815  return VisitTagDecl(T->getDecl());
2816}
2817
2818bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2819                                                   const DependentNameType* T) {
2820  return VisitNestedNameSpecifier(T->getQualifier());
2821}
2822
2823bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2824                                 const DependentTemplateSpecializationType* T) {
2825  return VisitNestedNameSpecifier(T->getQualifier());
2826}
2827
2828bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2829                                                   const PackExpansionType* T) {
2830  return Visit(T->getPattern());
2831}
2832
2833bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2834  return false;
2835}
2836
2837bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2838                                                   const ObjCInterfaceType *) {
2839  return false;
2840}
2841
2842bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2843                                                const ObjCObjectPointerType *) {
2844  return false;
2845}
2846
2847bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2848  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2849    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2850      << S.Context.getTypeDeclType(Tag) << SR;
2851    return true;
2852  }
2853
2854  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2855    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2856    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2857    return true;
2858  }
2859
2860  return false;
2861}
2862
2863bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2864                                                    NestedNameSpecifier *NNS) {
2865  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2866    return true;
2867
2868  switch (NNS->getKind()) {
2869  case NestedNameSpecifier::Identifier:
2870  case NestedNameSpecifier::Namespace:
2871  case NestedNameSpecifier::NamespaceAlias:
2872  case NestedNameSpecifier::Global:
2873    return false;
2874
2875  case NestedNameSpecifier::TypeSpec:
2876  case NestedNameSpecifier::TypeSpecWithTemplate:
2877    return Visit(QualType(NNS->getAsType(), 0));
2878  }
2879  return false;
2880}
2881
2882
2883/// \brief Check a template argument against its corresponding
2884/// template type parameter.
2885///
2886/// This routine implements the semantics of C++ [temp.arg.type]. It
2887/// returns true if an error occurred, and false otherwise.
2888bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2889                                 TypeSourceInfo *ArgInfo) {
2890  assert(ArgInfo && "invalid TypeSourceInfo");
2891  QualType Arg = ArgInfo->getType();
2892  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2893
2894  if (Arg->isVariablyModifiedType()) {
2895    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2896  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2897    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2898  }
2899
2900  // C++03 [temp.arg.type]p2:
2901  //   A local type, a type with no linkage, an unnamed type or a type
2902  //   compounded from any of these types shall not be used as a
2903  //   template-argument for a template type-parameter.
2904  //
2905  // C++0x allows these, and even in C++03 we allow them as an extension with
2906  // a warning.
2907  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2908    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2909    (void)Finder.Visit(Context.getCanonicalType(Arg));
2910  }
2911
2912  return false;
2913}
2914
2915/// \brief Checks whether the given template argument is the address
2916/// of an object or function according to C++ [temp.arg.nontype]p1.
2917static bool
2918CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2919                                               NonTypeTemplateParmDecl *Param,
2920                                               QualType ParamType,
2921                                               Expr *ArgIn,
2922                                               TemplateArgument &Converted) {
2923  bool Invalid = false;
2924  Expr *Arg = ArgIn;
2925  QualType ArgType = Arg->getType();
2926
2927  // See through any implicit casts we added to fix the type.
2928  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2929    Arg = Cast->getSubExpr();
2930
2931  // C++ [temp.arg.nontype]p1:
2932  //
2933  //   A template-argument for a non-type, non-template
2934  //   template-parameter shall be one of: [...]
2935  //
2936  //     -- the address of an object or function with external
2937  //        linkage, including function templates and function
2938  //        template-ids but excluding non-static class members,
2939  //        expressed as & id-expression where the & is optional if
2940  //        the name refers to a function or array, or if the
2941  //        corresponding template-parameter is a reference; or
2942  DeclRefExpr *DRE = 0;
2943
2944  // In C++98/03 mode, give an extension warning on any extra parentheses.
2945  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2946  bool ExtraParens = false;
2947  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2948    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2949      S.Diag(Arg->getSourceRange().getBegin(),
2950             diag::ext_template_arg_extra_parens)
2951        << Arg->getSourceRange();
2952      ExtraParens = true;
2953    }
2954
2955    Arg = Parens->getSubExpr();
2956  }
2957
2958  bool AddressTaken = false;
2959  SourceLocation AddrOpLoc;
2960  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2961    if (UnOp->getOpcode() == UO_AddrOf) {
2962      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2963      AddressTaken = true;
2964      AddrOpLoc = UnOp->getOperatorLoc();
2965    }
2966  } else
2967    DRE = dyn_cast<DeclRefExpr>(Arg);
2968
2969  if (!DRE) {
2970    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2971      << Arg->getSourceRange();
2972    S.Diag(Param->getLocation(), diag::note_template_param_here);
2973    return true;
2974  }
2975
2976  // Stop checking the precise nature of the argument if it is value dependent,
2977  // it should be checked when instantiated.
2978  if (Arg->isValueDependent()) {
2979    Converted = TemplateArgument(ArgIn);
2980    return false;
2981  }
2982
2983  if (!isa<ValueDecl>(DRE->getDecl())) {
2984    S.Diag(Arg->getSourceRange().getBegin(),
2985           diag::err_template_arg_not_object_or_func_form)
2986      << Arg->getSourceRange();
2987    S.Diag(Param->getLocation(), diag::note_template_param_here);
2988    return true;
2989  }
2990
2991  NamedDecl *Entity = 0;
2992
2993  // Cannot refer to non-static data members
2994  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2995    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2996      << Field << Arg->getSourceRange();
2997    S.Diag(Param->getLocation(), diag::note_template_param_here);
2998    return true;
2999  }
3000
3001  // Cannot refer to non-static member functions
3002  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3003    if (!Method->isStatic()) {
3004      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3005        << Method << Arg->getSourceRange();
3006      S.Diag(Param->getLocation(), diag::note_template_param_here);
3007      return true;
3008    }
3009
3010  // Functions must have external linkage.
3011  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3012    if (!isExternalLinkage(Func->getLinkage())) {
3013      S.Diag(Arg->getSourceRange().getBegin(),
3014             diag::err_template_arg_function_not_extern)
3015        << Func << Arg->getSourceRange();
3016      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3017        << true;
3018      return true;
3019    }
3020
3021    // Okay: we've named a function with external linkage.
3022    Entity = Func;
3023
3024    // If the template parameter has pointer type, the function decays.
3025    if (ParamType->isPointerType() && !AddressTaken)
3026      ArgType = S.Context.getPointerType(Func->getType());
3027    else if (AddressTaken && ParamType->isReferenceType()) {
3028      // If we originally had an address-of operator, but the
3029      // parameter has reference type, complain and (if things look
3030      // like they will work) drop the address-of operator.
3031      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3032                                            ParamType.getNonReferenceType())) {
3033        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3034          << ParamType;
3035        S.Diag(Param->getLocation(), diag::note_template_param_here);
3036        return true;
3037      }
3038
3039      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3040        << ParamType
3041        << FixItHint::CreateRemoval(AddrOpLoc);
3042      S.Diag(Param->getLocation(), diag::note_template_param_here);
3043
3044      ArgType = Func->getType();
3045    }
3046  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3047    if (!isExternalLinkage(Var->getLinkage())) {
3048      S.Diag(Arg->getSourceRange().getBegin(),
3049             diag::err_template_arg_object_not_extern)
3050        << Var << Arg->getSourceRange();
3051      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3052        << true;
3053      return true;
3054    }
3055
3056    // A value of reference type is not an object.
3057    if (Var->getType()->isReferenceType()) {
3058      S.Diag(Arg->getSourceRange().getBegin(),
3059             diag::err_template_arg_reference_var)
3060        << Var->getType() << Arg->getSourceRange();
3061      S.Diag(Param->getLocation(), diag::note_template_param_here);
3062      return true;
3063    }
3064
3065    // Okay: we've named an object with external linkage
3066    Entity = Var;
3067
3068    // If the template parameter has pointer type, we must have taken
3069    // the address of this object.
3070    if (ParamType->isReferenceType()) {
3071      if (AddressTaken) {
3072        // If we originally had an address-of operator, but the
3073        // parameter has reference type, complain and (if things look
3074        // like they will work) drop the address-of operator.
3075        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3076                                            ParamType.getNonReferenceType())) {
3077          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3078            << ParamType;
3079          S.Diag(Param->getLocation(), diag::note_template_param_here);
3080          return true;
3081        }
3082
3083        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3084          << ParamType
3085          << FixItHint::CreateRemoval(AddrOpLoc);
3086        S.Diag(Param->getLocation(), diag::note_template_param_here);
3087
3088        ArgType = Var->getType();
3089      }
3090    } else if (!AddressTaken && ParamType->isPointerType()) {
3091      if (Var->getType()->isArrayType()) {
3092        // Array-to-pointer decay.
3093        ArgType = S.Context.getArrayDecayedType(Var->getType());
3094      } else {
3095        // If the template parameter has pointer type but the address of
3096        // this object was not taken, complain and (possibly) recover by
3097        // taking the address of the entity.
3098        ArgType = S.Context.getPointerType(Var->getType());
3099        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3100          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3101            << ParamType;
3102          S.Diag(Param->getLocation(), diag::note_template_param_here);
3103          return true;
3104        }
3105
3106        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3107          << ParamType
3108          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3109
3110        S.Diag(Param->getLocation(), diag::note_template_param_here);
3111      }
3112    }
3113  } else {
3114    // We found something else, but we don't know specifically what it is.
3115    S.Diag(Arg->getSourceRange().getBegin(),
3116           diag::err_template_arg_not_object_or_func)
3117      << Arg->getSourceRange();
3118    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3119    return true;
3120  }
3121
3122  if (ParamType->isPointerType() &&
3123      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3124      S.IsQualificationConversion(ArgType, ParamType, false)) {
3125    // For pointer-to-object types, qualification conversions are
3126    // permitted.
3127  } else {
3128    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3129      if (!ParamRef->getPointeeType()->isFunctionType()) {
3130        // C++ [temp.arg.nontype]p5b3:
3131        //   For a non-type template-parameter of type reference to
3132        //   object, no conversions apply. The type referred to by the
3133        //   reference may be more cv-qualified than the (otherwise
3134        //   identical) type of the template- argument. The
3135        //   template-parameter is bound directly to the
3136        //   template-argument, which shall be an lvalue.
3137
3138        // FIXME: Other qualifiers?
3139        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3140        unsigned ArgQuals = ArgType.getCVRQualifiers();
3141
3142        if ((ParamQuals | ArgQuals) != ParamQuals) {
3143          S.Diag(Arg->getSourceRange().getBegin(),
3144                 diag::err_template_arg_ref_bind_ignores_quals)
3145            << ParamType << Arg->getType()
3146            << Arg->getSourceRange();
3147          S.Diag(Param->getLocation(), diag::note_template_param_here);
3148          return true;
3149        }
3150      }
3151    }
3152
3153    // At this point, the template argument refers to an object or
3154    // function with external linkage. We now need to check whether the
3155    // argument and parameter types are compatible.
3156    if (!S.Context.hasSameUnqualifiedType(ArgType,
3157                                          ParamType.getNonReferenceType())) {
3158      // We can't perform this conversion or binding.
3159      if (ParamType->isReferenceType())
3160        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3161          << ParamType << Arg->getType() << Arg->getSourceRange();
3162      else
3163        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3164          << Arg->getType() << ParamType << Arg->getSourceRange();
3165      S.Diag(Param->getLocation(), diag::note_template_param_here);
3166      return true;
3167    }
3168  }
3169
3170  // Create the template argument.
3171  Converted = TemplateArgument(Entity->getCanonicalDecl());
3172  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3173  return false;
3174}
3175
3176/// \brief Checks whether the given template argument is a pointer to
3177/// member constant according to C++ [temp.arg.nontype]p1.
3178bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3179                                                TemplateArgument &Converted) {
3180  bool Invalid = false;
3181
3182  // See through any implicit casts we added to fix the type.
3183  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3184    Arg = Cast->getSubExpr();
3185
3186  // C++ [temp.arg.nontype]p1:
3187  //
3188  //   A template-argument for a non-type, non-template
3189  //   template-parameter shall be one of: [...]
3190  //
3191  //     -- a pointer to member expressed as described in 5.3.1.
3192  DeclRefExpr *DRE = 0;
3193
3194  // In C++98/03 mode, give an extension warning on any extra parentheses.
3195  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3196  bool ExtraParens = false;
3197  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3198    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3199      Diag(Arg->getSourceRange().getBegin(),
3200           diag::ext_template_arg_extra_parens)
3201        << Arg->getSourceRange();
3202      ExtraParens = true;
3203    }
3204
3205    Arg = Parens->getSubExpr();
3206  }
3207
3208  // A pointer-to-member constant written &Class::member.
3209  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3210    if (UnOp->getOpcode() == UO_AddrOf) {
3211      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3212      if (DRE && !DRE->getQualifier())
3213        DRE = 0;
3214    }
3215  }
3216  // A constant of pointer-to-member type.
3217  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3218    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3219      if (VD->getType()->isMemberPointerType()) {
3220        if (isa<NonTypeTemplateParmDecl>(VD) ||
3221            (isa<VarDecl>(VD) &&
3222             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3223          if (Arg->isTypeDependent() || Arg->isValueDependent())
3224            Converted = TemplateArgument(Arg);
3225          else
3226            Converted = TemplateArgument(VD->getCanonicalDecl());
3227          return Invalid;
3228        }
3229      }
3230    }
3231
3232    DRE = 0;
3233  }
3234
3235  if (!DRE)
3236    return Diag(Arg->getSourceRange().getBegin(),
3237                diag::err_template_arg_not_pointer_to_member_form)
3238      << Arg->getSourceRange();
3239
3240  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3241    assert((isa<FieldDecl>(DRE->getDecl()) ||
3242            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3243           "Only non-static member pointers can make it here");
3244
3245    // Okay: this is the address of a non-static member, and therefore
3246    // a member pointer constant.
3247    if (Arg->isTypeDependent() || Arg->isValueDependent())
3248      Converted = TemplateArgument(Arg);
3249    else
3250      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3251    return Invalid;
3252  }
3253
3254  // We found something else, but we don't know specifically what it is.
3255  Diag(Arg->getSourceRange().getBegin(),
3256       diag::err_template_arg_not_pointer_to_member_form)
3257      << Arg->getSourceRange();
3258  Diag(DRE->getDecl()->getLocation(),
3259       diag::note_template_arg_refers_here);
3260  return true;
3261}
3262
3263/// \brief Check a template argument against its corresponding
3264/// non-type template parameter.
3265///
3266/// This routine implements the semantics of C++ [temp.arg.nontype].
3267/// It returns true if an error occurred, and false otherwise. \p
3268/// InstantiatedParamType is the type of the non-type template
3269/// parameter after it has been instantiated.
3270///
3271/// If no error was detected, Converted receives the converted template argument.
3272bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3273                                 QualType InstantiatedParamType, Expr *&Arg,
3274                                 TemplateArgument &Converted,
3275                                 CheckTemplateArgumentKind CTAK) {
3276  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3277
3278  // If either the parameter has a dependent type or the argument is
3279  // type-dependent, there's nothing we can check now.
3280  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3281    // FIXME: Produce a cloned, canonical expression?
3282    Converted = TemplateArgument(Arg);
3283    return false;
3284  }
3285
3286  // C++ [temp.arg.nontype]p5:
3287  //   The following conversions are performed on each expression used
3288  //   as a non-type template-argument. If a non-type
3289  //   template-argument cannot be converted to the type of the
3290  //   corresponding template-parameter then the program is
3291  //   ill-formed.
3292  //
3293  //     -- for a non-type template-parameter of integral or
3294  //        enumeration type, integral promotions (4.5) and integral
3295  //        conversions (4.7) are applied.
3296  QualType ParamType = InstantiatedParamType;
3297  QualType ArgType = Arg->getType();
3298  if (ParamType->isIntegralOrEnumerationType()) {
3299    // C++ [temp.arg.nontype]p1:
3300    //   A template-argument for a non-type, non-template
3301    //   template-parameter shall be one of:
3302    //
3303    //     -- an integral constant-expression of integral or enumeration
3304    //        type; or
3305    //     -- the name of a non-type template-parameter; or
3306    SourceLocation NonConstantLoc;
3307    llvm::APSInt Value;
3308    if (!ArgType->isIntegralOrEnumerationType()) {
3309      Diag(Arg->getSourceRange().getBegin(),
3310           diag::err_template_arg_not_integral_or_enumeral)
3311        << ArgType << Arg->getSourceRange();
3312      Diag(Param->getLocation(), diag::note_template_param_here);
3313      return true;
3314    } else if (!Arg->isValueDependent() &&
3315               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3316      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3317        << ArgType << Arg->getSourceRange();
3318      return true;
3319    }
3320
3321    // From here on out, all we care about are the unqualified forms
3322    // of the parameter and argument types.
3323    ParamType = ParamType.getUnqualifiedType();
3324    ArgType = ArgType.getUnqualifiedType();
3325
3326    // Try to convert the argument to the parameter's type.
3327    if (Context.hasSameType(ParamType, ArgType)) {
3328      // Okay: no conversion necessary
3329    } else if (CTAK == CTAK_Deduced) {
3330      // C++ [temp.deduct.type]p17:
3331      //   If, in the declaration of a function template with a non-type
3332      //   template-parameter, the non-type template- parameter is used
3333      //   in an expression in the function parameter-list and, if the
3334      //   corresponding template-argument is deduced, the
3335      //   template-argument type shall match the type of the
3336      //   template-parameter exactly, except that a template-argument
3337      //   deduced from an array bound may be of any integral type.
3338      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3339        << ArgType << ParamType;
3340      Diag(Param->getLocation(), diag::note_template_param_here);
3341      return true;
3342    } else if (ParamType->isBooleanType()) {
3343      // This is an integral-to-boolean conversion.
3344      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3345    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3346               !ParamType->isEnumeralType()) {
3347      // This is an integral promotion or conversion.
3348      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3349    } else {
3350      // We can't perform this conversion.
3351      Diag(Arg->getSourceRange().getBegin(),
3352           diag::err_template_arg_not_convertible)
3353        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3354      Diag(Param->getLocation(), diag::note_template_param_here);
3355      return true;
3356    }
3357
3358    QualType IntegerType = Context.getCanonicalType(ParamType);
3359    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3360      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3361
3362    if (!Arg->isValueDependent()) {
3363      llvm::APSInt OldValue = Value;
3364
3365      // Coerce the template argument's value to the value it will have
3366      // based on the template parameter's type.
3367      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3368      if (Value.getBitWidth() != AllowedBits)
3369        Value = Value.extOrTrunc(AllowedBits);
3370      Value.setIsSigned(IntegerType->isSignedIntegerType());
3371
3372      // Complain if an unsigned parameter received a negative value.
3373      if (IntegerType->isUnsignedIntegerType()
3374          && (OldValue.isSigned() && OldValue.isNegative())) {
3375        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3376          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3377          << Arg->getSourceRange();
3378        Diag(Param->getLocation(), diag::note_template_param_here);
3379      }
3380
3381      // Complain if we overflowed the template parameter's type.
3382      unsigned RequiredBits;
3383      if (IntegerType->isUnsignedIntegerType())
3384        RequiredBits = OldValue.getActiveBits();
3385      else if (OldValue.isUnsigned())
3386        RequiredBits = OldValue.getActiveBits() + 1;
3387      else
3388        RequiredBits = OldValue.getMinSignedBits();
3389      if (RequiredBits > AllowedBits) {
3390        Diag(Arg->getSourceRange().getBegin(),
3391             diag::warn_template_arg_too_large)
3392          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3393          << Arg->getSourceRange();
3394        Diag(Param->getLocation(), diag::note_template_param_here);
3395      }
3396    }
3397
3398    // Add the value of this argument to the list of converted
3399    // arguments. We use the bitwidth and signedness of the template
3400    // parameter.
3401    if (Arg->isValueDependent()) {
3402      // The argument is value-dependent. Create a new
3403      // TemplateArgument with the converted expression.
3404      Converted = TemplateArgument(Arg);
3405      return false;
3406    }
3407
3408    Converted = TemplateArgument(Value,
3409                                 ParamType->isEnumeralType() ? ParamType
3410                                                             : IntegerType);
3411    return false;
3412  }
3413
3414  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3415
3416  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3417  // from a template argument of type std::nullptr_t to a non-type
3418  // template parameter of type pointer to object, pointer to
3419  // function, or pointer-to-member, respectively.
3420  if (ArgType->isNullPtrType() &&
3421      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3422    Converted = TemplateArgument((NamedDecl *)0);
3423    return false;
3424  }
3425
3426  // Handle pointer-to-function, reference-to-function, and
3427  // pointer-to-member-function all in (roughly) the same way.
3428  if (// -- For a non-type template-parameter of type pointer to
3429      //    function, only the function-to-pointer conversion (4.3) is
3430      //    applied. If the template-argument represents a set of
3431      //    overloaded functions (or a pointer to such), the matching
3432      //    function is selected from the set (13.4).
3433      (ParamType->isPointerType() &&
3434       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3435      // -- For a non-type template-parameter of type reference to
3436      //    function, no conversions apply. If the template-argument
3437      //    represents a set of overloaded functions, the matching
3438      //    function is selected from the set (13.4).
3439      (ParamType->isReferenceType() &&
3440       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3441      // -- For a non-type template-parameter of type pointer to
3442      //    member function, no conversions apply. If the
3443      //    template-argument represents a set of overloaded member
3444      //    functions, the matching member function is selected from
3445      //    the set (13.4).
3446      (ParamType->isMemberPointerType() &&
3447       ParamType->getAs<MemberPointerType>()->getPointeeType()
3448         ->isFunctionType())) {
3449
3450    if (Arg->getType() == Context.OverloadTy) {
3451      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3452                                                                true,
3453                                                                FoundResult)) {
3454        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3455          return true;
3456
3457        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3458        ArgType = Arg->getType();
3459      } else
3460        return true;
3461    }
3462
3463    if (!ParamType->isMemberPointerType())
3464      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3465                                                            ParamType,
3466                                                            Arg, Converted);
3467
3468    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3469                                  false)) {
3470      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3471    } else if (!Context.hasSameUnqualifiedType(ArgType,
3472                                           ParamType.getNonReferenceType())) {
3473      // We can't perform this conversion.
3474      Diag(Arg->getSourceRange().getBegin(),
3475           diag::err_template_arg_not_convertible)
3476        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3477      Diag(Param->getLocation(), diag::note_template_param_here);
3478      return true;
3479    }
3480
3481    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3482  }
3483
3484  if (ParamType->isPointerType()) {
3485    //   -- for a non-type template-parameter of type pointer to
3486    //      object, qualification conversions (4.4) and the
3487    //      array-to-pointer conversion (4.2) are applied.
3488    // C++0x also allows a value of std::nullptr_t.
3489    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3490           "Only object pointers allowed here");
3491
3492    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3493                                                          ParamType,
3494                                                          Arg, Converted);
3495  }
3496
3497  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3498    //   -- For a non-type template-parameter of type reference to
3499    //      object, no conversions apply. The type referred to by the
3500    //      reference may be more cv-qualified than the (otherwise
3501    //      identical) type of the template-argument. The
3502    //      template-parameter is bound directly to the
3503    //      template-argument, which must be an lvalue.
3504    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3505           "Only object references allowed here");
3506
3507    if (Arg->getType() == Context.OverloadTy) {
3508      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3509                                                 ParamRefType->getPointeeType(),
3510                                                                true,
3511                                                                FoundResult)) {
3512        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3513          return true;
3514
3515        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3516        ArgType = Arg->getType();
3517      } else
3518        return true;
3519    }
3520
3521    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3522                                                          ParamType,
3523                                                          Arg, Converted);
3524  }
3525
3526  //     -- For a non-type template-parameter of type pointer to data
3527  //        member, qualification conversions (4.4) are applied.
3528  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3529
3530  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3531    // Types match exactly: nothing more to do here.
3532  } else if (IsQualificationConversion(ArgType, ParamType, false)) {
3533    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3534  } else {
3535    // We can't perform this conversion.
3536    Diag(Arg->getSourceRange().getBegin(),
3537         diag::err_template_arg_not_convertible)
3538      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3539    Diag(Param->getLocation(), diag::note_template_param_here);
3540    return true;
3541  }
3542
3543  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3544}
3545
3546/// \brief Check a template argument against its corresponding
3547/// template template parameter.
3548///
3549/// This routine implements the semantics of C++ [temp.arg.template].
3550/// It returns true if an error occurred, and false otherwise.
3551bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3552                                 const TemplateArgumentLoc &Arg) {
3553  TemplateName Name = Arg.getArgument().getAsTemplate();
3554  TemplateDecl *Template = Name.getAsTemplateDecl();
3555  if (!Template) {
3556    // Any dependent template name is fine.
3557    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3558    return false;
3559  }
3560
3561  // C++ [temp.arg.template]p1:
3562  //   A template-argument for a template template-parameter shall be
3563  //   the name of a class template, expressed as id-expression. Only
3564  //   primary class templates are considered when matching the
3565  //   template template argument with the corresponding parameter;
3566  //   partial specializations are not considered even if their
3567  //   parameter lists match that of the template template parameter.
3568  //
3569  // Note that we also allow template template parameters here, which
3570  // will happen when we are dealing with, e.g., class template
3571  // partial specializations.
3572  if (!isa<ClassTemplateDecl>(Template) &&
3573      !isa<TemplateTemplateParmDecl>(Template)) {
3574    assert(isa<FunctionTemplateDecl>(Template) &&
3575           "Only function templates are possible here");
3576    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3577    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3578      << Template;
3579  }
3580
3581  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3582                                         Param->getTemplateParameters(),
3583                                         true,
3584                                         TPL_TemplateTemplateArgumentMatch,
3585                                         Arg.getLocation());
3586}
3587
3588/// \brief Given a non-type template argument that refers to a
3589/// declaration and the type of its corresponding non-type template
3590/// parameter, produce an expression that properly refers to that
3591/// declaration.
3592ExprResult
3593Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3594                                              QualType ParamType,
3595                                              SourceLocation Loc) {
3596  assert(Arg.getKind() == TemplateArgument::Declaration &&
3597         "Only declaration template arguments permitted here");
3598  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3599
3600  if (VD->getDeclContext()->isRecord() &&
3601      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3602    // If the value is a class member, we might have a pointer-to-member.
3603    // Determine whether the non-type template template parameter is of
3604    // pointer-to-member type. If so, we need to build an appropriate
3605    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3606    // would refer to the member itself.
3607    if (ParamType->isMemberPointerType()) {
3608      QualType ClassType
3609        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3610      NestedNameSpecifier *Qualifier
3611        = NestedNameSpecifier::Create(Context, 0, false,
3612                                      ClassType.getTypePtr());
3613      CXXScopeSpec SS;
3614      SS.Adopt(Qualifier, Loc);
3615
3616      // The actual value-ness of this is unimportant, but for
3617      // internal consistency's sake, references to instance methods
3618      // are r-values.
3619      ExprValueKind VK = VK_LValue;
3620      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3621        VK = VK_RValue;
3622
3623      ExprResult RefExpr = BuildDeclRefExpr(VD,
3624                                            VD->getType().getNonReferenceType(),
3625                                            VK,
3626                                            Loc,
3627                                            &SS);
3628      if (RefExpr.isInvalid())
3629        return ExprError();
3630
3631      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3632
3633      // We might need to perform a trailing qualification conversion, since
3634      // the element type on the parameter could be more qualified than the
3635      // element type in the expression we constructed.
3636      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3637                                    ParamType.getUnqualifiedType(), false)) {
3638        Expr *RefE = RefExpr.takeAs<Expr>();
3639        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3640        RefExpr = Owned(RefE);
3641      }
3642
3643      assert(!RefExpr.isInvalid() &&
3644             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3645                                 ParamType.getUnqualifiedType()));
3646      return move(RefExpr);
3647    }
3648  }
3649
3650  QualType T = VD->getType().getNonReferenceType();
3651  if (ParamType->isPointerType()) {
3652    // When the non-type template parameter is a pointer, take the
3653    // address of the declaration.
3654    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3655    if (RefExpr.isInvalid())
3656      return ExprError();
3657
3658    if (T->isFunctionType() || T->isArrayType()) {
3659      // Decay functions and arrays.
3660      Expr *RefE = (Expr *)RefExpr.get();
3661      DefaultFunctionArrayConversion(RefE);
3662      if (RefE != RefExpr.get()) {
3663        RefExpr.release();
3664        RefExpr = Owned(RefE);
3665      }
3666
3667      return move(RefExpr);
3668    }
3669
3670    // Take the address of everything else
3671    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3672  }
3673
3674  ExprValueKind VK = VK_RValue;
3675
3676  // If the non-type template parameter has reference type, qualify the
3677  // resulting declaration reference with the extra qualifiers on the
3678  // type that the reference refers to.
3679  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3680    VK = VK_LValue;
3681    T = Context.getQualifiedType(T,
3682                              TargetRef->getPointeeType().getQualifiers());
3683  }
3684
3685  return BuildDeclRefExpr(VD, T, VK, Loc);
3686}
3687
3688/// \brief Construct a new expression that refers to the given
3689/// integral template argument with the given source-location
3690/// information.
3691///
3692/// This routine takes care of the mapping from an integral template
3693/// argument (which may have any integral type) to the appropriate
3694/// literal value.
3695ExprResult
3696Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3697                                                  SourceLocation Loc) {
3698  assert(Arg.getKind() == TemplateArgument::Integral &&
3699         "Operation is only valid for integral template arguments");
3700  QualType T = Arg.getIntegralType();
3701  if (T->isCharType() || T->isWideCharType())
3702    return Owned(new (Context) CharacterLiteral(
3703                                             Arg.getAsIntegral()->getZExtValue(),
3704                                             T->isWideCharType(),
3705                                             T,
3706                                             Loc));
3707  if (T->isBooleanType())
3708    return Owned(new (Context) CXXBoolLiteralExpr(
3709                                            Arg.getAsIntegral()->getBoolValue(),
3710                                            T,
3711                                            Loc));
3712
3713  QualType BT;
3714  if (const EnumType *ET = T->getAs<EnumType>())
3715    BT = ET->getDecl()->getPromotionType();
3716  else
3717    BT = T;
3718
3719  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3720  if (T->isEnumeralType()) {
3721    // FIXME: This is a hack. We need a better way to handle substituted
3722    // non-type template parameters.
3723    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast,
3724                                      E, 0,
3725                                      Context.getTrivialTypeSourceInfo(T, Loc),
3726                                      Loc, Loc);
3727  }
3728
3729  return Owned(E);
3730}
3731
3732/// \brief Match two template parameters within template parameter lists.
3733static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
3734                                       bool Complain,
3735                                     Sema::TemplateParameterListEqualKind Kind,
3736                                       SourceLocation TemplateArgLoc) {
3737  // Check the actual kind (type, non-type, template).
3738  if (Old->getKind() != New->getKind()) {
3739    if (Complain) {
3740      unsigned NextDiag = diag::err_template_param_different_kind;
3741      if (TemplateArgLoc.isValid()) {
3742        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3743        NextDiag = diag::note_template_param_different_kind;
3744      }
3745      S.Diag(New->getLocation(), NextDiag)
3746        << (Kind != Sema::TPL_TemplateMatch);
3747      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
3748        << (Kind != Sema::TPL_TemplateMatch);
3749    }
3750
3751    return false;
3752  }
3753
3754  // Check that both are parameter packs are neither are parameter packs.
3755  // However, if we are matching a template template argument to a
3756  // template template parameter, the template template parameter can have
3757  // a parameter pack where the template template argument does not.
3758  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
3759      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3760        Old->isTemplateParameterPack())) {
3761    if (Complain) {
3762      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3763      if (TemplateArgLoc.isValid()) {
3764        S.Diag(TemplateArgLoc,
3765             diag::err_template_arg_template_params_mismatch);
3766        NextDiag = diag::note_template_parameter_pack_non_pack;
3767      }
3768
3769      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
3770                      : isa<NonTypeTemplateParmDecl>(New)? 1
3771                      : 2;
3772      S.Diag(New->getLocation(), NextDiag)
3773        << ParamKind << New->isParameterPack();
3774      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
3775        << ParamKind << Old->isParameterPack();
3776    }
3777
3778    return false;
3779  }
3780
3781  // For non-type template parameters, check the type of the parameter.
3782  if (NonTypeTemplateParmDecl *OldNTTP
3783                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
3784    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
3785
3786    // If we are matching a template template argument to a template
3787    // template parameter and one of the non-type template parameter types
3788    // is dependent, then we must wait until template instantiation time
3789    // to actually compare the arguments.
3790    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3791        (OldNTTP->getType()->isDependentType() ||
3792         NewNTTP->getType()->isDependentType()))
3793      return true;
3794
3795    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
3796      if (Complain) {
3797        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3798        if (TemplateArgLoc.isValid()) {
3799          S.Diag(TemplateArgLoc,
3800                 diag::err_template_arg_template_params_mismatch);
3801          NextDiag = diag::note_template_nontype_parm_different_type;
3802        }
3803        S.Diag(NewNTTP->getLocation(), NextDiag)
3804          << NewNTTP->getType()
3805          << (Kind != Sema::TPL_TemplateMatch);
3806        S.Diag(OldNTTP->getLocation(),
3807               diag::note_template_nontype_parm_prev_declaration)
3808          << OldNTTP->getType();
3809      }
3810
3811      return false;
3812    }
3813
3814    return true;
3815  }
3816
3817  // For template template parameters, check the template parameter types.
3818  // The template parameter lists of template template
3819  // parameters must agree.
3820  if (TemplateTemplateParmDecl *OldTTP
3821                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
3822    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
3823    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3824                                            OldTTP->getTemplateParameters(),
3825                                            Complain,
3826                                        (Kind == Sema::TPL_TemplateMatch
3827                                           ? Sema::TPL_TemplateTemplateParmMatch
3828                                           : Kind),
3829                                            TemplateArgLoc);
3830  }
3831
3832  return true;
3833}
3834
3835/// \brief Diagnose a known arity mismatch when comparing template argument
3836/// lists.
3837static
3838void DiagnoseTemplateParameterListArityMismatch(Sema &S,
3839                                                TemplateParameterList *New,
3840                                                TemplateParameterList *Old,
3841                                      Sema::TemplateParameterListEqualKind Kind,
3842                                                SourceLocation TemplateArgLoc) {
3843  unsigned NextDiag = diag::err_template_param_list_different_arity;
3844  if (TemplateArgLoc.isValid()) {
3845    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3846    NextDiag = diag::note_template_param_list_different_arity;
3847  }
3848  S.Diag(New->getTemplateLoc(), NextDiag)
3849    << (New->size() > Old->size())
3850    << (Kind != Sema::TPL_TemplateMatch)
3851    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3852  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3853    << (Kind != Sema::TPL_TemplateMatch)
3854    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3855}
3856
3857/// \brief Determine whether the given template parameter lists are
3858/// equivalent.
3859///
3860/// \param New  The new template parameter list, typically written in the
3861/// source code as part of a new template declaration.
3862///
3863/// \param Old  The old template parameter list, typically found via
3864/// name lookup of the template declared with this template parameter
3865/// list.
3866///
3867/// \param Complain  If true, this routine will produce a diagnostic if
3868/// the template parameter lists are not equivalent.
3869///
3870/// \param Kind describes how we are to match the template parameter lists.
3871///
3872/// \param TemplateArgLoc If this source location is valid, then we
3873/// are actually checking the template parameter list of a template
3874/// argument (New) against the template parameter list of its
3875/// corresponding template template parameter (Old). We produce
3876/// slightly different diagnostics in this scenario.
3877///
3878/// \returns True if the template parameter lists are equal, false
3879/// otherwise.
3880bool
3881Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3882                                     TemplateParameterList *Old,
3883                                     bool Complain,
3884                                     TemplateParameterListEqualKind Kind,
3885                                     SourceLocation TemplateArgLoc) {
3886  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
3887    if (Complain)
3888      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3889                                                 TemplateArgLoc);
3890
3891    return false;
3892  }
3893
3894  // C++0x [temp.arg.template]p3:
3895  //   A template-argument matches a template template-parameter (call it P)
3896  //   when each of the template parameters in the template-parameter-list of
3897  //   the template-argument's corresponding class template or template alias
3898  //   (call it A) matches the corresponding template parameter in the
3899  //   template-parameter-list of P. [...]
3900  TemplateParameterList::iterator NewParm = New->begin();
3901  TemplateParameterList::iterator NewParmEnd = New->end();
3902  for (TemplateParameterList::iterator OldParm = Old->begin(),
3903                                    OldParmEnd = Old->end();
3904       OldParm != OldParmEnd; ++OldParm) {
3905    if (Kind != TPL_TemplateTemplateArgumentMatch ||
3906        !(*OldParm)->isTemplateParameterPack()) {
3907      if (NewParm == NewParmEnd) {
3908        if (Complain)
3909          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3910                                                     TemplateArgLoc);
3911
3912        return false;
3913      }
3914
3915      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3916                                      Kind, TemplateArgLoc))
3917        return false;
3918
3919      ++NewParm;
3920      continue;
3921    }
3922
3923    // C++0x [temp.arg.template]p3:
3924    //   [...] When P's template- parameter-list contains a template parameter
3925    //   pack (14.5.3), the template parameter pack will match zero or more
3926    //   template parameters or template parameter packs in the
3927    //   template-parameter-list of A with the same type and form as the
3928    //   template parameter pack in P (ignoring whether those template
3929    //   parameters are template parameter packs).
3930    for (; NewParm != NewParmEnd; ++NewParm) {
3931      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3932                                      Kind, TemplateArgLoc))
3933        return false;
3934    }
3935  }
3936
3937  // Make sure we exhausted all of the arguments.
3938  if (NewParm != NewParmEnd) {
3939    if (Complain)
3940      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3941                                                 TemplateArgLoc);
3942
3943    return false;
3944  }
3945
3946  return true;
3947}
3948
3949/// \brief Check whether a template can be declared within this scope.
3950///
3951/// If the template declaration is valid in this scope, returns
3952/// false. Otherwise, issues a diagnostic and returns true.
3953bool
3954Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3955  // Find the nearest enclosing declaration scope.
3956  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3957         (S->getFlags() & Scope::TemplateParamScope) != 0)
3958    S = S->getParent();
3959
3960  // C++ [temp]p2:
3961  //   A template-declaration can appear only as a namespace scope or
3962  //   class scope declaration.
3963  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3964  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3965      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3966    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3967             << TemplateParams->getSourceRange();
3968
3969  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3970    Ctx = Ctx->getParent();
3971
3972  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3973    return false;
3974
3975  return Diag(TemplateParams->getTemplateLoc(),
3976              diag::err_template_outside_namespace_or_class_scope)
3977    << TemplateParams->getSourceRange();
3978}
3979
3980/// \brief Determine what kind of template specialization the given declaration
3981/// is.
3982static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3983  if (!D)
3984    return TSK_Undeclared;
3985
3986  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3987    return Record->getTemplateSpecializationKind();
3988  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3989    return Function->getTemplateSpecializationKind();
3990  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3991    return Var->getTemplateSpecializationKind();
3992
3993  return TSK_Undeclared;
3994}
3995
3996/// \brief Check whether a specialization is well-formed in the current
3997/// context.
3998///
3999/// This routine determines whether a template specialization can be declared
4000/// in the current context (C++ [temp.expl.spec]p2).
4001///
4002/// \param S the semantic analysis object for which this check is being
4003/// performed.
4004///
4005/// \param Specialized the entity being specialized or instantiated, which
4006/// may be a kind of template (class template, function template, etc.) or
4007/// a member of a class template (member function, static data member,
4008/// member class).
4009///
4010/// \param PrevDecl the previous declaration of this entity, if any.
4011///
4012/// \param Loc the location of the explicit specialization or instantiation of
4013/// this entity.
4014///
4015/// \param IsPartialSpecialization whether this is a partial specialization of
4016/// a class template.
4017///
4018/// \returns true if there was an error that we cannot recover from, false
4019/// otherwise.
4020static bool CheckTemplateSpecializationScope(Sema &S,
4021                                             NamedDecl *Specialized,
4022                                             NamedDecl *PrevDecl,
4023                                             SourceLocation Loc,
4024                                             bool IsPartialSpecialization) {
4025  // Keep these "kind" numbers in sync with the %select statements in the
4026  // various diagnostics emitted by this routine.
4027  int EntityKind = 0;
4028  if (isa<ClassTemplateDecl>(Specialized))
4029    EntityKind = IsPartialSpecialization? 1 : 0;
4030  else if (isa<FunctionTemplateDecl>(Specialized))
4031    EntityKind = 2;
4032  else if (isa<CXXMethodDecl>(Specialized))
4033    EntityKind = 3;
4034  else if (isa<VarDecl>(Specialized))
4035    EntityKind = 4;
4036  else if (isa<RecordDecl>(Specialized))
4037    EntityKind = 5;
4038  else {
4039    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4040    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4041    return true;
4042  }
4043
4044  // C++ [temp.expl.spec]p2:
4045  //   An explicit specialization shall be declared in the namespace
4046  //   of which the template is a member, or, for member templates, in
4047  //   the namespace of which the enclosing class or enclosing class
4048  //   template is a member. An explicit specialization of a member
4049  //   function, member class or static data member of a class
4050  //   template shall be declared in the namespace of which the class
4051  //   template is a member. Such a declaration may also be a
4052  //   definition. If the declaration is not a definition, the
4053  //   specialization may be defined later in the name- space in which
4054  //   the explicit specialization was declared, or in a namespace
4055  //   that encloses the one in which the explicit specialization was
4056  //   declared.
4057  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4058    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4059      << Specialized;
4060    return true;
4061  }
4062
4063  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4064    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4065      << Specialized;
4066    return true;
4067  }
4068
4069  // C++ [temp.class.spec]p6:
4070  //   A class template partial specialization may be declared or redeclared
4071  //   in any namespace scope in which its definition may be defined (14.5.1
4072  //   and 14.5.2).
4073  bool ComplainedAboutScope = false;
4074  DeclContext *SpecializedContext
4075    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4076  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4077  if ((!PrevDecl ||
4078       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4079       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4080    // C++ [temp.exp.spec]p2:
4081    //   An explicit specialization shall be declared in the namespace of which
4082    //   the template is a member, or, for member templates, in the namespace
4083    //   of which the enclosing class or enclosing class template is a member.
4084    //   An explicit specialization of a member function, member class or
4085    //   static data member of a class template shall be declared in the
4086    //   namespace of which the class template is a member.
4087    //
4088    // C++0x [temp.expl.spec]p2:
4089    //   An explicit specialization shall be declared in a namespace enclosing
4090    //   the specialized template.
4091    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4092        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4093      bool IsCPlusPlus0xExtension
4094        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4095      if (isa<TranslationUnitDecl>(SpecializedContext))
4096        S.Diag(Loc, IsCPlusPlus0xExtension
4097                      ? diag::ext_template_spec_decl_out_of_scope_global
4098                      : diag::err_template_spec_decl_out_of_scope_global)
4099          << EntityKind << Specialized;
4100      else if (isa<NamespaceDecl>(SpecializedContext))
4101        S.Diag(Loc, IsCPlusPlus0xExtension
4102                      ? diag::ext_template_spec_decl_out_of_scope
4103                      : diag::err_template_spec_decl_out_of_scope)
4104          << EntityKind << Specialized
4105          << cast<NamedDecl>(SpecializedContext);
4106
4107      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4108      ComplainedAboutScope = true;
4109    }
4110  }
4111
4112  // Make sure that this redeclaration (or definition) occurs in an enclosing
4113  // namespace.
4114  // Note that HandleDeclarator() performs this check for explicit
4115  // specializations of function templates, static data members, and member
4116  // functions, so we skip the check here for those kinds of entities.
4117  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4118  // Should we refactor that check, so that it occurs later?
4119  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4120      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4121        isa<FunctionDecl>(Specialized))) {
4122    if (isa<TranslationUnitDecl>(SpecializedContext))
4123      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4124        << EntityKind << Specialized;
4125    else if (isa<NamespaceDecl>(SpecializedContext))
4126      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4127        << EntityKind << Specialized
4128        << cast<NamedDecl>(SpecializedContext);
4129
4130    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4131  }
4132
4133  // FIXME: check for specialization-after-instantiation errors and such.
4134
4135  return false;
4136}
4137
4138/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4139/// that checks non-type template partial specialization arguments.
4140static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4141                                                NonTypeTemplateParmDecl *Param,
4142                                                  const TemplateArgument *Args,
4143                                                        unsigned NumArgs) {
4144  for (unsigned I = 0; I != NumArgs; ++I) {
4145    if (Args[I].getKind() == TemplateArgument::Pack) {
4146      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4147                                                           Args[I].pack_begin(),
4148                                                           Args[I].pack_size()))
4149        return true;
4150
4151      continue;
4152    }
4153
4154    Expr *ArgExpr = Args[I].getAsExpr();
4155    if (!ArgExpr) {
4156      continue;
4157    }
4158
4159    // We can have a pack expansion of any of the bullets below.
4160    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4161      ArgExpr = Expansion->getPattern();
4162
4163    // Strip off any implicit casts we added as part of type checking.
4164    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4165      ArgExpr = ICE->getSubExpr();
4166
4167    // C++ [temp.class.spec]p8:
4168    //   A non-type argument is non-specialized if it is the name of a
4169    //   non-type parameter. All other non-type arguments are
4170    //   specialized.
4171    //
4172    // Below, we check the two conditions that only apply to
4173    // specialized non-type arguments, so skip any non-specialized
4174    // arguments.
4175    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4176      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4177        continue;
4178
4179    // C++ [temp.class.spec]p9:
4180    //   Within the argument list of a class template partial
4181    //   specialization, the following restrictions apply:
4182    //     -- A partially specialized non-type argument expression
4183    //        shall not involve a template parameter of the partial
4184    //        specialization except when the argument expression is a
4185    //        simple identifier.
4186    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4187      S.Diag(ArgExpr->getLocStart(),
4188           diag::err_dependent_non_type_arg_in_partial_spec)
4189        << ArgExpr->getSourceRange();
4190      return true;
4191    }
4192
4193    //     -- The type of a template parameter corresponding to a
4194    //        specialized non-type argument shall not be dependent on a
4195    //        parameter of the specialization.
4196    if (Param->getType()->isDependentType()) {
4197      S.Diag(ArgExpr->getLocStart(),
4198           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4199        << Param->getType()
4200        << ArgExpr->getSourceRange();
4201      S.Diag(Param->getLocation(), diag::note_template_param_here);
4202      return true;
4203    }
4204  }
4205
4206  return false;
4207}
4208
4209/// \brief Check the non-type template arguments of a class template
4210/// partial specialization according to C++ [temp.class.spec]p9.
4211///
4212/// \param TemplateParams the template parameters of the primary class
4213/// template.
4214///
4215/// \param TemplateArg the template arguments of the class template
4216/// partial specialization.
4217///
4218/// \returns true if there was an error, false otherwise.
4219static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4220                                        TemplateParameterList *TemplateParams,
4221                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4222  const TemplateArgument *ArgList = TemplateArgs.data();
4223
4224  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4225    NonTypeTemplateParmDecl *Param
4226      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4227    if (!Param)
4228      continue;
4229
4230    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4231                                                           &ArgList[I], 1))
4232      return true;
4233  }
4234
4235  return false;
4236}
4237
4238/// \brief Retrieve the previous declaration of the given declaration.
4239static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4240  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4241    return VD->getPreviousDeclaration();
4242  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4243    return FD->getPreviousDeclaration();
4244  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4245    return TD->getPreviousDeclaration();
4246  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4247    return TD->getPreviousDeclaration();
4248  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4249    return FTD->getPreviousDeclaration();
4250  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4251    return CTD->getPreviousDeclaration();
4252  return 0;
4253}
4254
4255DeclResult
4256Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4257                                       TagUseKind TUK,
4258                                       SourceLocation KWLoc,
4259                                       CXXScopeSpec &SS,
4260                                       TemplateTy TemplateD,
4261                                       SourceLocation TemplateNameLoc,
4262                                       SourceLocation LAngleLoc,
4263                                       ASTTemplateArgsPtr TemplateArgsIn,
4264                                       SourceLocation RAngleLoc,
4265                                       AttributeList *Attr,
4266                               MultiTemplateParamsArg TemplateParameterLists) {
4267  assert(TUK != TUK_Reference && "References are not specializations");
4268
4269  // Find the class template we're specializing
4270  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4271  ClassTemplateDecl *ClassTemplate
4272    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4273
4274  if (!ClassTemplate) {
4275    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4276      << (Name.getAsTemplateDecl() &&
4277          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4278    return true;
4279  }
4280
4281  bool isExplicitSpecialization = false;
4282  bool isPartialSpecialization = false;
4283
4284  // Check the validity of the template headers that introduce this
4285  // template.
4286  // FIXME: We probably shouldn't complain about these headers for
4287  // friend declarations.
4288  bool Invalid = false;
4289  TemplateParameterList *TemplateParams
4290    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4291                        (TemplateParameterList**)TemplateParameterLists.get(),
4292                                              TemplateParameterLists.size(),
4293                                              TUK == TUK_Friend,
4294                                              isExplicitSpecialization,
4295                                              Invalid);
4296  if (Invalid)
4297    return true;
4298
4299  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4300  if (TemplateParams)
4301    --NumMatchedTemplateParamLists;
4302
4303  if (TemplateParams && TemplateParams->size() > 0) {
4304    isPartialSpecialization = true;
4305
4306    if (TUK == TUK_Friend) {
4307      Diag(KWLoc, diag::err_partial_specialization_friend)
4308        << SourceRange(LAngleLoc, RAngleLoc);
4309      return true;
4310    }
4311
4312    // C++ [temp.class.spec]p10:
4313    //   The template parameter list of a specialization shall not
4314    //   contain default template argument values.
4315    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4316      Decl *Param = TemplateParams->getParam(I);
4317      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4318        if (TTP->hasDefaultArgument()) {
4319          Diag(TTP->getDefaultArgumentLoc(),
4320               diag::err_default_arg_in_partial_spec);
4321          TTP->removeDefaultArgument();
4322        }
4323      } else if (NonTypeTemplateParmDecl *NTTP
4324                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4325        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4326          Diag(NTTP->getDefaultArgumentLoc(),
4327               diag::err_default_arg_in_partial_spec)
4328            << DefArg->getSourceRange();
4329          NTTP->removeDefaultArgument();
4330        }
4331      } else {
4332        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4333        if (TTP->hasDefaultArgument()) {
4334          Diag(TTP->getDefaultArgument().getLocation(),
4335               diag::err_default_arg_in_partial_spec)
4336            << TTP->getDefaultArgument().getSourceRange();
4337          TTP->removeDefaultArgument();
4338        }
4339      }
4340    }
4341  } else if (TemplateParams) {
4342    if (TUK == TUK_Friend)
4343      Diag(KWLoc, diag::err_template_spec_friend)
4344        << FixItHint::CreateRemoval(
4345                                SourceRange(TemplateParams->getTemplateLoc(),
4346                                            TemplateParams->getRAngleLoc()))
4347        << SourceRange(LAngleLoc, RAngleLoc);
4348    else
4349      isExplicitSpecialization = true;
4350  } else if (TUK != TUK_Friend) {
4351    Diag(KWLoc, diag::err_template_spec_needs_header)
4352      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4353    isExplicitSpecialization = true;
4354  }
4355
4356  // Check that the specialization uses the same tag kind as the
4357  // original template.
4358  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4359  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4360  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4361                                    Kind, KWLoc,
4362                                    *ClassTemplate->getIdentifier())) {
4363    Diag(KWLoc, diag::err_use_with_wrong_tag)
4364      << ClassTemplate
4365      << FixItHint::CreateReplacement(KWLoc,
4366                            ClassTemplate->getTemplatedDecl()->getKindName());
4367    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4368         diag::note_previous_use);
4369    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4370  }
4371
4372  // Translate the parser's template argument list in our AST format.
4373  TemplateArgumentListInfo TemplateArgs;
4374  TemplateArgs.setLAngleLoc(LAngleLoc);
4375  TemplateArgs.setRAngleLoc(RAngleLoc);
4376  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4377
4378  // Check for unexpanded parameter packs in any of the template arguments.
4379  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4380    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4381                                        UPPC_PartialSpecialization))
4382      return true;
4383
4384  // Check that the template argument list is well-formed for this
4385  // template.
4386  llvm::SmallVector<TemplateArgument, 4> Converted;
4387  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4388                                TemplateArgs, false, Converted))
4389    return true;
4390
4391  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4392         "Converted template argument list is too short!");
4393
4394  // Find the class template (partial) specialization declaration that
4395  // corresponds to these arguments.
4396  if (isPartialSpecialization) {
4397    if (CheckClassTemplatePartialSpecializationArgs(*this,
4398                                         ClassTemplate->getTemplateParameters(),
4399                                         Converted))
4400      return true;
4401
4402    if (!Name.isDependent() &&
4403        !TemplateSpecializationType::anyDependentTemplateArguments(
4404                                             TemplateArgs.getArgumentArray(),
4405                                                         TemplateArgs.size())) {
4406      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4407        << ClassTemplate->getDeclName();
4408      isPartialSpecialization = false;
4409    }
4410  }
4411
4412  void *InsertPos = 0;
4413  ClassTemplateSpecializationDecl *PrevDecl = 0;
4414
4415  if (isPartialSpecialization)
4416    // FIXME: Template parameter list matters, too
4417    PrevDecl
4418      = ClassTemplate->findPartialSpecialization(Converted.data(),
4419                                                 Converted.size(),
4420                                                 InsertPos);
4421  else
4422    PrevDecl
4423      = ClassTemplate->findSpecialization(Converted.data(),
4424                                          Converted.size(), InsertPos);
4425
4426  ClassTemplateSpecializationDecl *Specialization = 0;
4427
4428  // Check whether we can declare a class template specialization in
4429  // the current scope.
4430  if (TUK != TUK_Friend &&
4431      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4432                                       TemplateNameLoc,
4433                                       isPartialSpecialization))
4434    return true;
4435
4436  // The canonical type
4437  QualType CanonType;
4438  if (PrevDecl &&
4439      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4440               TUK == TUK_Friend)) {
4441    // Since the only prior class template specialization with these
4442    // arguments was referenced but not declared, or we're only
4443    // referencing this specialization as a friend, reuse that
4444    // declaration node as our own, updating its source location to
4445    // reflect our new declaration.
4446    Specialization = PrevDecl;
4447    Specialization->setLocation(TemplateNameLoc);
4448    PrevDecl = 0;
4449    CanonType = Context.getTypeDeclType(Specialization);
4450  } else if (isPartialSpecialization) {
4451    // Build the canonical type that describes the converted template
4452    // arguments of the class template partial specialization.
4453    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4454    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4455                                                      Converted.data(),
4456                                                      Converted.size());
4457
4458    if (Context.hasSameType(CanonType,
4459                        ClassTemplate->getInjectedClassNameSpecialization())) {
4460      // C++ [temp.class.spec]p9b3:
4461      //
4462      //   -- The argument list of the specialization shall not be identical
4463      //      to the implicit argument list of the primary template.
4464      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4465      << (TUK == TUK_Definition)
4466      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4467      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4468                                ClassTemplate->getIdentifier(),
4469                                TemplateNameLoc,
4470                                Attr,
4471                                TemplateParams,
4472                                AS_none);
4473    }
4474
4475    // Create a new class template partial specialization declaration node.
4476    ClassTemplatePartialSpecializationDecl *PrevPartial
4477      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4478    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4479                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4480    ClassTemplatePartialSpecializationDecl *Partial
4481      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4482                                             ClassTemplate->getDeclContext(),
4483                                                       TemplateNameLoc,
4484                                                       TemplateParams,
4485                                                       ClassTemplate,
4486                                                       Converted.data(),
4487                                                       Converted.size(),
4488                                                       TemplateArgs,
4489                                                       CanonType,
4490                                                       PrevPartial,
4491                                                       SequenceNumber);
4492    SetNestedNameSpecifier(Partial, SS);
4493    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4494      Partial->setTemplateParameterListsInfo(Context,
4495                                             NumMatchedTemplateParamLists,
4496                    (TemplateParameterList**) TemplateParameterLists.release());
4497    }
4498
4499    if (!PrevPartial)
4500      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4501    Specialization = Partial;
4502
4503    // If we are providing an explicit specialization of a member class
4504    // template specialization, make a note of that.
4505    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4506      PrevPartial->setMemberSpecialization();
4507
4508    // Check that all of the template parameters of the class template
4509    // partial specialization are deducible from the template
4510    // arguments. If not, this class template partial specialization
4511    // will never be used.
4512    llvm::SmallVector<bool, 8> DeducibleParams;
4513    DeducibleParams.resize(TemplateParams->size());
4514    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4515                               TemplateParams->getDepth(),
4516                               DeducibleParams);
4517    unsigned NumNonDeducible = 0;
4518    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4519      if (!DeducibleParams[I])
4520        ++NumNonDeducible;
4521
4522    if (NumNonDeducible) {
4523      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4524        << (NumNonDeducible > 1)
4525        << SourceRange(TemplateNameLoc, RAngleLoc);
4526      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4527        if (!DeducibleParams[I]) {
4528          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4529          if (Param->getDeclName())
4530            Diag(Param->getLocation(),
4531                 diag::note_partial_spec_unused_parameter)
4532              << Param->getDeclName();
4533          else
4534            Diag(Param->getLocation(),
4535                 diag::note_partial_spec_unused_parameter)
4536              << "<anonymous>";
4537        }
4538      }
4539    }
4540  } else {
4541    // Create a new class template specialization declaration node for
4542    // this explicit specialization or friend declaration.
4543    Specialization
4544      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4545                                             ClassTemplate->getDeclContext(),
4546                                                TemplateNameLoc,
4547                                                ClassTemplate,
4548                                                Converted.data(),
4549                                                Converted.size(),
4550                                                PrevDecl);
4551    SetNestedNameSpecifier(Specialization, SS);
4552    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4553      Specialization->setTemplateParameterListsInfo(Context,
4554                                                  NumMatchedTemplateParamLists,
4555                    (TemplateParameterList**) TemplateParameterLists.release());
4556    }
4557
4558    if (!PrevDecl)
4559      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4560
4561    CanonType = Context.getTypeDeclType(Specialization);
4562  }
4563
4564  // C++ [temp.expl.spec]p6:
4565  //   If a template, a member template or the member of a class template is
4566  //   explicitly specialized then that specialization shall be declared
4567  //   before the first use of that specialization that would cause an implicit
4568  //   instantiation to take place, in every translation unit in which such a
4569  //   use occurs; no diagnostic is required.
4570  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4571    bool Okay = false;
4572    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4573      // Is there any previous explicit specialization declaration?
4574      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4575        Okay = true;
4576        break;
4577      }
4578    }
4579
4580    if (!Okay) {
4581      SourceRange Range(TemplateNameLoc, RAngleLoc);
4582      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4583        << Context.getTypeDeclType(Specialization) << Range;
4584
4585      Diag(PrevDecl->getPointOfInstantiation(),
4586           diag::note_instantiation_required_here)
4587        << (PrevDecl->getTemplateSpecializationKind()
4588                                                != TSK_ImplicitInstantiation);
4589      return true;
4590    }
4591  }
4592
4593  // If this is not a friend, note that this is an explicit specialization.
4594  if (TUK != TUK_Friend)
4595    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4596
4597  // Check that this isn't a redefinition of this specialization.
4598  if (TUK == TUK_Definition) {
4599    if (RecordDecl *Def = Specialization->getDefinition()) {
4600      SourceRange Range(TemplateNameLoc, RAngleLoc);
4601      Diag(TemplateNameLoc, diag::err_redefinition)
4602        << Context.getTypeDeclType(Specialization) << Range;
4603      Diag(Def->getLocation(), diag::note_previous_definition);
4604      Specialization->setInvalidDecl();
4605      return true;
4606    }
4607  }
4608
4609  if (Attr)
4610    ProcessDeclAttributeList(S, Specialization, Attr);
4611
4612  // Build the fully-sugared type for this class template
4613  // specialization as the user wrote in the specialization
4614  // itself. This means that we'll pretty-print the type retrieved
4615  // from the specialization's declaration the way that the user
4616  // actually wrote the specialization, rather than formatting the
4617  // name based on the "canonical" representation used to store the
4618  // template arguments in the specialization.
4619  TypeSourceInfo *WrittenTy
4620    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4621                                                TemplateArgs, CanonType);
4622  if (TUK != TUK_Friend) {
4623    Specialization->setTypeAsWritten(WrittenTy);
4624    if (TemplateParams)
4625      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4626  }
4627  TemplateArgsIn.release();
4628
4629  // C++ [temp.expl.spec]p9:
4630  //   A template explicit specialization is in the scope of the
4631  //   namespace in which the template was defined.
4632  //
4633  // We actually implement this paragraph where we set the semantic
4634  // context (in the creation of the ClassTemplateSpecializationDecl),
4635  // but we also maintain the lexical context where the actual
4636  // definition occurs.
4637  Specialization->setLexicalDeclContext(CurContext);
4638
4639  // We may be starting the definition of this specialization.
4640  if (TUK == TUK_Definition)
4641    Specialization->startDefinition();
4642
4643  if (TUK == TUK_Friend) {
4644    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4645                                            TemplateNameLoc,
4646                                            WrittenTy,
4647                                            /*FIXME:*/KWLoc);
4648    Friend->setAccess(AS_public);
4649    CurContext->addDecl(Friend);
4650  } else {
4651    // Add the specialization into its lexical context, so that it can
4652    // be seen when iterating through the list of declarations in that
4653    // context. However, specializations are not found by name lookup.
4654    CurContext->addDecl(Specialization);
4655  }
4656  return Specialization;
4657}
4658
4659Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4660                              MultiTemplateParamsArg TemplateParameterLists,
4661                                    Declarator &D) {
4662  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4663}
4664
4665Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4666                               MultiTemplateParamsArg TemplateParameterLists,
4667                                            Declarator &D) {
4668  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4669  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4670
4671  if (FTI.hasPrototype) {
4672    // FIXME: Diagnose arguments without names in C.
4673  }
4674
4675  Scope *ParentScope = FnBodyScope->getParent();
4676
4677  Decl *DP = HandleDeclarator(ParentScope, D,
4678                              move(TemplateParameterLists),
4679                              /*IsFunctionDefinition=*/true);
4680  if (FunctionTemplateDecl *FunctionTemplate
4681        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4682    return ActOnStartOfFunctionDef(FnBodyScope,
4683                                   FunctionTemplate->getTemplatedDecl());
4684  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4685    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4686  return 0;
4687}
4688
4689/// \brief Strips various properties off an implicit instantiation
4690/// that has just been explicitly specialized.
4691static void StripImplicitInstantiation(NamedDecl *D) {
4692  D->dropAttrs();
4693
4694  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4695    FD->setInlineSpecified(false);
4696  }
4697}
4698
4699/// \brief Diagnose cases where we have an explicit template specialization
4700/// before/after an explicit template instantiation, producing diagnostics
4701/// for those cases where they are required and determining whether the
4702/// new specialization/instantiation will have any effect.
4703///
4704/// \param NewLoc the location of the new explicit specialization or
4705/// instantiation.
4706///
4707/// \param NewTSK the kind of the new explicit specialization or instantiation.
4708///
4709/// \param PrevDecl the previous declaration of the entity.
4710///
4711/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4712///
4713/// \param PrevPointOfInstantiation if valid, indicates where the previus
4714/// declaration was instantiated (either implicitly or explicitly).
4715///
4716/// \param HasNoEffect will be set to true to indicate that the new
4717/// specialization or instantiation has no effect and should be ignored.
4718///
4719/// \returns true if there was an error that should prevent the introduction of
4720/// the new declaration into the AST, false otherwise.
4721bool
4722Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4723                                             TemplateSpecializationKind NewTSK,
4724                                             NamedDecl *PrevDecl,
4725                                             TemplateSpecializationKind PrevTSK,
4726                                        SourceLocation PrevPointOfInstantiation,
4727                                             bool &HasNoEffect) {
4728  HasNoEffect = false;
4729
4730  switch (NewTSK) {
4731  case TSK_Undeclared:
4732  case TSK_ImplicitInstantiation:
4733    assert(false && "Don't check implicit instantiations here");
4734    return false;
4735
4736  case TSK_ExplicitSpecialization:
4737    switch (PrevTSK) {
4738    case TSK_Undeclared:
4739    case TSK_ExplicitSpecialization:
4740      // Okay, we're just specializing something that is either already
4741      // explicitly specialized or has merely been mentioned without any
4742      // instantiation.
4743      return false;
4744
4745    case TSK_ImplicitInstantiation:
4746      if (PrevPointOfInstantiation.isInvalid()) {
4747        // The declaration itself has not actually been instantiated, so it is
4748        // still okay to specialize it.
4749        StripImplicitInstantiation(PrevDecl);
4750        return false;
4751      }
4752      // Fall through
4753
4754    case TSK_ExplicitInstantiationDeclaration:
4755    case TSK_ExplicitInstantiationDefinition:
4756      assert((PrevTSK == TSK_ImplicitInstantiation ||
4757              PrevPointOfInstantiation.isValid()) &&
4758             "Explicit instantiation without point of instantiation?");
4759
4760      // C++ [temp.expl.spec]p6:
4761      //   If a template, a member template or the member of a class template
4762      //   is explicitly specialized then that specialization shall be declared
4763      //   before the first use of that specialization that would cause an
4764      //   implicit instantiation to take place, in every translation unit in
4765      //   which such a use occurs; no diagnostic is required.
4766      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4767        // Is there any previous explicit specialization declaration?
4768        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4769          return false;
4770      }
4771
4772      Diag(NewLoc, diag::err_specialization_after_instantiation)
4773        << PrevDecl;
4774      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4775        << (PrevTSK != TSK_ImplicitInstantiation);
4776
4777      return true;
4778    }
4779    break;
4780
4781  case TSK_ExplicitInstantiationDeclaration:
4782    switch (PrevTSK) {
4783    case TSK_ExplicitInstantiationDeclaration:
4784      // This explicit instantiation declaration is redundant (that's okay).
4785      HasNoEffect = true;
4786      return false;
4787
4788    case TSK_Undeclared:
4789    case TSK_ImplicitInstantiation:
4790      // We're explicitly instantiating something that may have already been
4791      // implicitly instantiated; that's fine.
4792      return false;
4793
4794    case TSK_ExplicitSpecialization:
4795      // C++0x [temp.explicit]p4:
4796      //   For a given set of template parameters, if an explicit instantiation
4797      //   of a template appears after a declaration of an explicit
4798      //   specialization for that template, the explicit instantiation has no
4799      //   effect.
4800      HasNoEffect = true;
4801      return false;
4802
4803    case TSK_ExplicitInstantiationDefinition:
4804      // C++0x [temp.explicit]p10:
4805      //   If an entity is the subject of both an explicit instantiation
4806      //   declaration and an explicit instantiation definition in the same
4807      //   translation unit, the definition shall follow the declaration.
4808      Diag(NewLoc,
4809           diag::err_explicit_instantiation_declaration_after_definition);
4810      Diag(PrevPointOfInstantiation,
4811           diag::note_explicit_instantiation_definition_here);
4812      assert(PrevPointOfInstantiation.isValid() &&
4813             "Explicit instantiation without point of instantiation?");
4814      HasNoEffect = true;
4815      return false;
4816    }
4817    break;
4818
4819  case TSK_ExplicitInstantiationDefinition:
4820    switch (PrevTSK) {
4821    case TSK_Undeclared:
4822    case TSK_ImplicitInstantiation:
4823      // We're explicitly instantiating something that may have already been
4824      // implicitly instantiated; that's fine.
4825      return false;
4826
4827    case TSK_ExplicitSpecialization:
4828      // C++ DR 259, C++0x [temp.explicit]p4:
4829      //   For a given set of template parameters, if an explicit
4830      //   instantiation of a template appears after a declaration of
4831      //   an explicit specialization for that template, the explicit
4832      //   instantiation has no effect.
4833      //
4834      // In C++98/03 mode, we only give an extension warning here, because it
4835      // is not harmful to try to explicitly instantiate something that
4836      // has been explicitly specialized.
4837      if (!getLangOptions().CPlusPlus0x) {
4838        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4839          << PrevDecl;
4840        Diag(PrevDecl->getLocation(),
4841             diag::note_previous_template_specialization);
4842      }
4843      HasNoEffect = true;
4844      return false;
4845
4846    case TSK_ExplicitInstantiationDeclaration:
4847      // We're explicity instantiating a definition for something for which we
4848      // were previously asked to suppress instantiations. That's fine.
4849      return false;
4850
4851    case TSK_ExplicitInstantiationDefinition:
4852      // C++0x [temp.spec]p5:
4853      //   For a given template and a given set of template-arguments,
4854      //     - an explicit instantiation definition shall appear at most once
4855      //       in a program,
4856      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4857        << PrevDecl;
4858      Diag(PrevPointOfInstantiation,
4859           diag::note_previous_explicit_instantiation);
4860      HasNoEffect = true;
4861      return false;
4862    }
4863    break;
4864  }
4865
4866  assert(false && "Missing specialization/instantiation case?");
4867
4868  return false;
4869}
4870
4871/// \brief Perform semantic analysis for the given dependent function
4872/// template specialization.  The only possible way to get a dependent
4873/// function template specialization is with a friend declaration,
4874/// like so:
4875///
4876///   template <class T> void foo(T);
4877///   template <class T> class A {
4878///     friend void foo<>(T);
4879///   };
4880///
4881/// There really isn't any useful analysis we can do here, so we
4882/// just store the information.
4883bool
4884Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4885                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4886                                                   LookupResult &Previous) {
4887  // Remove anything from Previous that isn't a function template in
4888  // the correct context.
4889  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4890  LookupResult::Filter F = Previous.makeFilter();
4891  while (F.hasNext()) {
4892    NamedDecl *D = F.next()->getUnderlyingDecl();
4893    if (!isa<FunctionTemplateDecl>(D) ||
4894        !FDLookupContext->InEnclosingNamespaceSetOf(
4895                              D->getDeclContext()->getRedeclContext()))
4896      F.erase();
4897  }
4898  F.done();
4899
4900  // Should this be diagnosed here?
4901  if (Previous.empty()) return true;
4902
4903  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4904                                         ExplicitTemplateArgs);
4905  return false;
4906}
4907
4908/// \brief Perform semantic analysis for the given function template
4909/// specialization.
4910///
4911/// This routine performs all of the semantic analysis required for an
4912/// explicit function template specialization. On successful completion,
4913/// the function declaration \p FD will become a function template
4914/// specialization.
4915///
4916/// \param FD the function declaration, which will be updated to become a
4917/// function template specialization.
4918///
4919/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4920/// if any. Note that this may be valid info even when 0 arguments are
4921/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4922/// as it anyway contains info on the angle brackets locations.
4923///
4924/// \param PrevDecl the set of declarations that may be specialized by
4925/// this function specialization.
4926bool
4927Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4928                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4929                                          LookupResult &Previous) {
4930  // The set of function template specializations that could match this
4931  // explicit function template specialization.
4932  UnresolvedSet<8> Candidates;
4933
4934  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4935  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4936         I != E; ++I) {
4937    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4938    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4939      // Only consider templates found within the same semantic lookup scope as
4940      // FD.
4941      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4942                                Ovl->getDeclContext()->getRedeclContext()))
4943        continue;
4944
4945      // C++ [temp.expl.spec]p11:
4946      //   A trailing template-argument can be left unspecified in the
4947      //   template-id naming an explicit function template specialization
4948      //   provided it can be deduced from the function argument type.
4949      // Perform template argument deduction to determine whether we may be
4950      // specializing this template.
4951      // FIXME: It is somewhat wasteful to build
4952      TemplateDeductionInfo Info(Context, FD->getLocation());
4953      FunctionDecl *Specialization = 0;
4954      if (TemplateDeductionResult TDK
4955            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4956                                      FD->getType(),
4957                                      Specialization,
4958                                      Info)) {
4959        // FIXME: Template argument deduction failed; record why it failed, so
4960        // that we can provide nifty diagnostics.
4961        (void)TDK;
4962        continue;
4963      }
4964
4965      // Record this candidate.
4966      Candidates.addDecl(Specialization, I.getAccess());
4967    }
4968  }
4969
4970  // Find the most specialized function template.
4971  UnresolvedSetIterator Result
4972    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4973                         TPOC_Other, 0, FD->getLocation(),
4974                  PDiag(diag::err_function_template_spec_no_match)
4975                    << FD->getDeclName(),
4976                  PDiag(diag::err_function_template_spec_ambiguous)
4977                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4978                  PDiag(diag::note_function_template_spec_matched));
4979  if (Result == Candidates.end())
4980    return true;
4981
4982  // Ignore access information;  it doesn't figure into redeclaration checking.
4983  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4984  Specialization->setLocation(FD->getLocation());
4985
4986  // FIXME: Check if the prior specialization has a point of instantiation.
4987  // If so, we have run afoul of .
4988
4989  // If this is a friend declaration, then we're not really declaring
4990  // an explicit specialization.
4991  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4992
4993  // Check the scope of this explicit specialization.
4994  if (!isFriend &&
4995      CheckTemplateSpecializationScope(*this,
4996                                       Specialization->getPrimaryTemplate(),
4997                                       Specialization, FD->getLocation(),
4998                                       false))
4999    return true;
5000
5001  // C++ [temp.expl.spec]p6:
5002  //   If a template, a member template or the member of a class template is
5003  //   explicitly specialized then that specialization shall be declared
5004  //   before the first use of that specialization that would cause an implicit
5005  //   instantiation to take place, in every translation unit in which such a
5006  //   use occurs; no diagnostic is required.
5007  FunctionTemplateSpecializationInfo *SpecInfo
5008    = Specialization->getTemplateSpecializationInfo();
5009  assert(SpecInfo && "Function template specialization info missing?");
5010
5011  bool HasNoEffect = false;
5012  if (!isFriend &&
5013      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5014                                             TSK_ExplicitSpecialization,
5015                                             Specialization,
5016                                   SpecInfo->getTemplateSpecializationKind(),
5017                                         SpecInfo->getPointOfInstantiation(),
5018                                             HasNoEffect))
5019    return true;
5020
5021  // Mark the prior declaration as an explicit specialization, so that later
5022  // clients know that this is an explicit specialization.
5023  if (!isFriend) {
5024    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5025    MarkUnusedFileScopedDecl(Specialization);
5026  }
5027
5028  // Turn the given function declaration into a function template
5029  // specialization, with the template arguments from the previous
5030  // specialization.
5031  // Take copies of (semantic and syntactic) template argument lists.
5032  const TemplateArgumentList* TemplArgs = new (Context)
5033    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5034  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5035    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5036  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5037                                        TemplArgs, /*InsertPos=*/0,
5038                                    SpecInfo->getTemplateSpecializationKind(),
5039                                        TemplArgsAsWritten);
5040
5041  // The "previous declaration" for this function template specialization is
5042  // the prior function template specialization.
5043  Previous.clear();
5044  Previous.addDecl(Specialization);
5045  return false;
5046}
5047
5048/// \brief Perform semantic analysis for the given non-template member
5049/// specialization.
5050///
5051/// This routine performs all of the semantic analysis required for an
5052/// explicit member function specialization. On successful completion,
5053/// the function declaration \p FD will become a member function
5054/// specialization.
5055///
5056/// \param Member the member declaration, which will be updated to become a
5057/// specialization.
5058///
5059/// \param Previous the set of declarations, one of which may be specialized
5060/// by this function specialization;  the set will be modified to contain the
5061/// redeclared member.
5062bool
5063Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5064  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5065
5066  // Try to find the member we are instantiating.
5067  NamedDecl *Instantiation = 0;
5068  NamedDecl *InstantiatedFrom = 0;
5069  MemberSpecializationInfo *MSInfo = 0;
5070
5071  if (Previous.empty()) {
5072    // Nowhere to look anyway.
5073  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5074    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5075           I != E; ++I) {
5076      NamedDecl *D = (*I)->getUnderlyingDecl();
5077      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5078        if (Context.hasSameType(Function->getType(), Method->getType())) {
5079          Instantiation = Method;
5080          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5081          MSInfo = Method->getMemberSpecializationInfo();
5082          break;
5083        }
5084      }
5085    }
5086  } else if (isa<VarDecl>(Member)) {
5087    VarDecl *PrevVar;
5088    if (Previous.isSingleResult() &&
5089        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5090      if (PrevVar->isStaticDataMember()) {
5091        Instantiation = PrevVar;
5092        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5093        MSInfo = PrevVar->getMemberSpecializationInfo();
5094      }
5095  } else if (isa<RecordDecl>(Member)) {
5096    CXXRecordDecl *PrevRecord;
5097    if (Previous.isSingleResult() &&
5098        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5099      Instantiation = PrevRecord;
5100      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5101      MSInfo = PrevRecord->getMemberSpecializationInfo();
5102    }
5103  }
5104
5105  if (!Instantiation) {
5106    // There is no previous declaration that matches. Since member
5107    // specializations are always out-of-line, the caller will complain about
5108    // this mismatch later.
5109    return false;
5110  }
5111
5112  // If this is a friend, just bail out here before we start turning
5113  // things into explicit specializations.
5114  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5115    // Preserve instantiation information.
5116    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5117      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5118                                      cast<CXXMethodDecl>(InstantiatedFrom),
5119        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5120    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5121      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5122                                      cast<CXXRecordDecl>(InstantiatedFrom),
5123        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5124    }
5125
5126    Previous.clear();
5127    Previous.addDecl(Instantiation);
5128    return false;
5129  }
5130
5131  // Make sure that this is a specialization of a member.
5132  if (!InstantiatedFrom) {
5133    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5134      << Member;
5135    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5136    return true;
5137  }
5138
5139  // C++ [temp.expl.spec]p6:
5140  //   If a template, a member template or the member of a class template is
5141  //   explicitly specialized then that spe- cialization shall be declared
5142  //   before the first use of that specialization that would cause an implicit
5143  //   instantiation to take place, in every translation unit in which such a
5144  //   use occurs; no diagnostic is required.
5145  assert(MSInfo && "Member specialization info missing?");
5146
5147  bool HasNoEffect = false;
5148  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5149                                             TSK_ExplicitSpecialization,
5150                                             Instantiation,
5151                                     MSInfo->getTemplateSpecializationKind(),
5152                                           MSInfo->getPointOfInstantiation(),
5153                                             HasNoEffect))
5154    return true;
5155
5156  // Check the scope of this explicit specialization.
5157  if (CheckTemplateSpecializationScope(*this,
5158                                       InstantiatedFrom,
5159                                       Instantiation, Member->getLocation(),
5160                                       false))
5161    return true;
5162
5163  // Note that this is an explicit instantiation of a member.
5164  // the original declaration to note that it is an explicit specialization
5165  // (if it was previously an implicit instantiation). This latter step
5166  // makes bookkeeping easier.
5167  if (isa<FunctionDecl>(Member)) {
5168    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5169    if (InstantiationFunction->getTemplateSpecializationKind() ==
5170          TSK_ImplicitInstantiation) {
5171      InstantiationFunction->setTemplateSpecializationKind(
5172                                                  TSK_ExplicitSpecialization);
5173      InstantiationFunction->setLocation(Member->getLocation());
5174    }
5175
5176    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5177                                        cast<CXXMethodDecl>(InstantiatedFrom),
5178                                                  TSK_ExplicitSpecialization);
5179    MarkUnusedFileScopedDecl(InstantiationFunction);
5180  } else if (isa<VarDecl>(Member)) {
5181    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5182    if (InstantiationVar->getTemplateSpecializationKind() ==
5183          TSK_ImplicitInstantiation) {
5184      InstantiationVar->setTemplateSpecializationKind(
5185                                                  TSK_ExplicitSpecialization);
5186      InstantiationVar->setLocation(Member->getLocation());
5187    }
5188
5189    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5190                                                cast<VarDecl>(InstantiatedFrom),
5191                                                TSK_ExplicitSpecialization);
5192    MarkUnusedFileScopedDecl(InstantiationVar);
5193  } else {
5194    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5195    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5196    if (InstantiationClass->getTemplateSpecializationKind() ==
5197          TSK_ImplicitInstantiation) {
5198      InstantiationClass->setTemplateSpecializationKind(
5199                                                   TSK_ExplicitSpecialization);
5200      InstantiationClass->setLocation(Member->getLocation());
5201    }
5202
5203    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5204                                        cast<CXXRecordDecl>(InstantiatedFrom),
5205                                                   TSK_ExplicitSpecialization);
5206  }
5207
5208  // Save the caller the trouble of having to figure out which declaration
5209  // this specialization matches.
5210  Previous.clear();
5211  Previous.addDecl(Instantiation);
5212  return false;
5213}
5214
5215/// \brief Check the scope of an explicit instantiation.
5216///
5217/// \returns true if a serious error occurs, false otherwise.
5218static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5219                                            SourceLocation InstLoc,
5220                                            bool WasQualifiedName) {
5221  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5222  DeclContext *CurContext = S.CurContext->getRedeclContext();
5223
5224  if (CurContext->isRecord()) {
5225    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5226      << D;
5227    return true;
5228  }
5229
5230  // C++0x [temp.explicit]p2:
5231  //   An explicit instantiation shall appear in an enclosing namespace of its
5232  //   template.
5233  //
5234  // This is DR275, which we do not retroactively apply to C++98/03.
5235  if (S.getLangOptions().CPlusPlus0x &&
5236      !CurContext->Encloses(OrigContext)) {
5237    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5238      S.Diag(InstLoc,
5239             S.getLangOptions().CPlusPlus0x?
5240                 diag::err_explicit_instantiation_out_of_scope
5241               : diag::warn_explicit_instantiation_out_of_scope_0x)
5242        << D << NS;
5243    else
5244      S.Diag(InstLoc,
5245             S.getLangOptions().CPlusPlus0x?
5246                 diag::err_explicit_instantiation_must_be_global
5247               : diag::warn_explicit_instantiation_out_of_scope_0x)
5248        << D;
5249    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5250    return false;
5251  }
5252
5253  // C++0x [temp.explicit]p2:
5254  //   If the name declared in the explicit instantiation is an unqualified
5255  //   name, the explicit instantiation shall appear in the namespace where
5256  //   its template is declared or, if that namespace is inline (7.3.1), any
5257  //   namespace from its enclosing namespace set.
5258  if (WasQualifiedName)
5259    return false;
5260
5261  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5262    return false;
5263
5264  S.Diag(InstLoc,
5265         S.getLangOptions().CPlusPlus0x?
5266             diag::err_explicit_instantiation_unqualified_wrong_namespace
5267           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5268    << D << OrigContext;
5269  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5270  return false;
5271}
5272
5273/// \brief Determine whether the given scope specifier has a template-id in it.
5274static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5275  if (!SS.isSet())
5276    return false;
5277
5278  // C++0x [temp.explicit]p2:
5279  //   If the explicit instantiation is for a member function, a member class
5280  //   or a static data member of a class template specialization, the name of
5281  //   the class template specialization in the qualified-id for the member
5282  //   name shall be a simple-template-id.
5283  //
5284  // C++98 has the same restriction, just worded differently.
5285  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5286       NNS; NNS = NNS->getPrefix())
5287    if (const Type *T = NNS->getAsType())
5288      if (isa<TemplateSpecializationType>(T))
5289        return true;
5290
5291  return false;
5292}
5293
5294// Explicit instantiation of a class template specialization
5295DeclResult
5296Sema::ActOnExplicitInstantiation(Scope *S,
5297                                 SourceLocation ExternLoc,
5298                                 SourceLocation TemplateLoc,
5299                                 unsigned TagSpec,
5300                                 SourceLocation KWLoc,
5301                                 const CXXScopeSpec &SS,
5302                                 TemplateTy TemplateD,
5303                                 SourceLocation TemplateNameLoc,
5304                                 SourceLocation LAngleLoc,
5305                                 ASTTemplateArgsPtr TemplateArgsIn,
5306                                 SourceLocation RAngleLoc,
5307                                 AttributeList *Attr) {
5308  // Find the class template we're specializing
5309  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5310  ClassTemplateDecl *ClassTemplate
5311    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5312
5313  // Check that the specialization uses the same tag kind as the
5314  // original template.
5315  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5316  assert(Kind != TTK_Enum &&
5317         "Invalid enum tag in class template explicit instantiation!");
5318  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5319                                    Kind, KWLoc,
5320                                    *ClassTemplate->getIdentifier())) {
5321    Diag(KWLoc, diag::err_use_with_wrong_tag)
5322      << ClassTemplate
5323      << FixItHint::CreateReplacement(KWLoc,
5324                            ClassTemplate->getTemplatedDecl()->getKindName());
5325    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5326         diag::note_previous_use);
5327    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5328  }
5329
5330  // C++0x [temp.explicit]p2:
5331  //   There are two forms of explicit instantiation: an explicit instantiation
5332  //   definition and an explicit instantiation declaration. An explicit
5333  //   instantiation declaration begins with the extern keyword. [...]
5334  TemplateSpecializationKind TSK
5335    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5336                           : TSK_ExplicitInstantiationDeclaration;
5337
5338  // Translate the parser's template argument list in our AST format.
5339  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5340  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5341
5342  // Check that the template argument list is well-formed for this
5343  // template.
5344  llvm::SmallVector<TemplateArgument, 4> Converted;
5345  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5346                                TemplateArgs, false, Converted))
5347    return true;
5348
5349  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5350         "Converted template argument list is too short!");
5351
5352  // Find the class template specialization declaration that
5353  // corresponds to these arguments.
5354  void *InsertPos = 0;
5355  ClassTemplateSpecializationDecl *PrevDecl
5356    = ClassTemplate->findSpecialization(Converted.data(),
5357                                        Converted.size(), InsertPos);
5358
5359  TemplateSpecializationKind PrevDecl_TSK
5360    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5361
5362  // C++0x [temp.explicit]p2:
5363  //   [...] An explicit instantiation shall appear in an enclosing
5364  //   namespace of its template. [...]
5365  //
5366  // This is C++ DR 275.
5367  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5368                                      SS.isSet()))
5369    return true;
5370
5371  ClassTemplateSpecializationDecl *Specialization = 0;
5372
5373  bool HasNoEffect = false;
5374  if (PrevDecl) {
5375    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5376                                               PrevDecl, PrevDecl_TSK,
5377                                            PrevDecl->getPointOfInstantiation(),
5378                                               HasNoEffect))
5379      return PrevDecl;
5380
5381    // Even though HasNoEffect == true means that this explicit instantiation
5382    // has no effect on semantics, we go on to put its syntax in the AST.
5383
5384    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5385        PrevDecl_TSK == TSK_Undeclared) {
5386      // Since the only prior class template specialization with these
5387      // arguments was referenced but not declared, reuse that
5388      // declaration node as our own, updating the source location
5389      // for the template name to reflect our new declaration.
5390      // (Other source locations will be updated later.)
5391      Specialization = PrevDecl;
5392      Specialization->setLocation(TemplateNameLoc);
5393      PrevDecl = 0;
5394    }
5395  }
5396
5397  if (!Specialization) {
5398    // Create a new class template specialization declaration node for
5399    // this explicit specialization.
5400    Specialization
5401      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5402                                             ClassTemplate->getDeclContext(),
5403                                                TemplateNameLoc,
5404                                                ClassTemplate,
5405                                                Converted.data(),
5406                                                Converted.size(),
5407                                                PrevDecl);
5408    SetNestedNameSpecifier(Specialization, SS);
5409
5410    if (!HasNoEffect && !PrevDecl) {
5411      // Insert the new specialization.
5412      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5413    }
5414  }
5415
5416  // Build the fully-sugared type for this explicit instantiation as
5417  // the user wrote in the explicit instantiation itself. This means
5418  // that we'll pretty-print the type retrieved from the
5419  // specialization's declaration the way that the user actually wrote
5420  // the explicit instantiation, rather than formatting the name based
5421  // on the "canonical" representation used to store the template
5422  // arguments in the specialization.
5423  TypeSourceInfo *WrittenTy
5424    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5425                                                TemplateArgs,
5426                                  Context.getTypeDeclType(Specialization));
5427  Specialization->setTypeAsWritten(WrittenTy);
5428  TemplateArgsIn.release();
5429
5430  // Set source locations for keywords.
5431  Specialization->setExternLoc(ExternLoc);
5432  Specialization->setTemplateKeywordLoc(TemplateLoc);
5433
5434  // Add the explicit instantiation into its lexical context. However,
5435  // since explicit instantiations are never found by name lookup, we
5436  // just put it into the declaration context directly.
5437  Specialization->setLexicalDeclContext(CurContext);
5438  CurContext->addDecl(Specialization);
5439
5440  // Syntax is now OK, so return if it has no other effect on semantics.
5441  if (HasNoEffect) {
5442    // Set the template specialization kind.
5443    Specialization->setTemplateSpecializationKind(TSK);
5444    return Specialization;
5445  }
5446
5447  // C++ [temp.explicit]p3:
5448  //   A definition of a class template or class member template
5449  //   shall be in scope at the point of the explicit instantiation of
5450  //   the class template or class member template.
5451  //
5452  // This check comes when we actually try to perform the
5453  // instantiation.
5454  ClassTemplateSpecializationDecl *Def
5455    = cast_or_null<ClassTemplateSpecializationDecl>(
5456                                              Specialization->getDefinition());
5457  if (!Def)
5458    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5459  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5460    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5461    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5462  }
5463
5464  // Instantiate the members of this class template specialization.
5465  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5466                                       Specialization->getDefinition());
5467  if (Def) {
5468    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5469
5470    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5471    // TSK_ExplicitInstantiationDefinition
5472    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5473        TSK == TSK_ExplicitInstantiationDefinition)
5474      Def->setTemplateSpecializationKind(TSK);
5475
5476    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5477  }
5478
5479  // Set the template specialization kind.
5480  Specialization->setTemplateSpecializationKind(TSK);
5481  return Specialization;
5482}
5483
5484// Explicit instantiation of a member class of a class template.
5485DeclResult
5486Sema::ActOnExplicitInstantiation(Scope *S,
5487                                 SourceLocation ExternLoc,
5488                                 SourceLocation TemplateLoc,
5489                                 unsigned TagSpec,
5490                                 SourceLocation KWLoc,
5491                                 CXXScopeSpec &SS,
5492                                 IdentifierInfo *Name,
5493                                 SourceLocation NameLoc,
5494                                 AttributeList *Attr) {
5495
5496  bool Owned = false;
5497  bool IsDependent = false;
5498  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5499                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5500                        MultiTemplateParamsArg(*this, 0, 0),
5501                        Owned, IsDependent, false, false,
5502                        TypeResult());
5503  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5504
5505  if (!TagD)
5506    return true;
5507
5508  TagDecl *Tag = cast<TagDecl>(TagD);
5509  if (Tag->isEnum()) {
5510    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5511      << Context.getTypeDeclType(Tag);
5512    return true;
5513  }
5514
5515  if (Tag->isInvalidDecl())
5516    return true;
5517
5518  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5519  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5520  if (!Pattern) {
5521    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5522      << Context.getTypeDeclType(Record);
5523    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5524    return true;
5525  }
5526
5527  // C++0x [temp.explicit]p2:
5528  //   If the explicit instantiation is for a class or member class, the
5529  //   elaborated-type-specifier in the declaration shall include a
5530  //   simple-template-id.
5531  //
5532  // C++98 has the same restriction, just worded differently.
5533  if (!ScopeSpecifierHasTemplateId(SS))
5534    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5535      << Record << SS.getRange();
5536
5537  // C++0x [temp.explicit]p2:
5538  //   There are two forms of explicit instantiation: an explicit instantiation
5539  //   definition and an explicit instantiation declaration. An explicit
5540  //   instantiation declaration begins with the extern keyword. [...]
5541  TemplateSpecializationKind TSK
5542    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5543                           : TSK_ExplicitInstantiationDeclaration;
5544
5545  // C++0x [temp.explicit]p2:
5546  //   [...] An explicit instantiation shall appear in an enclosing
5547  //   namespace of its template. [...]
5548  //
5549  // This is C++ DR 275.
5550  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5551
5552  // Verify that it is okay to explicitly instantiate here.
5553  CXXRecordDecl *PrevDecl
5554    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5555  if (!PrevDecl && Record->getDefinition())
5556    PrevDecl = Record;
5557  if (PrevDecl) {
5558    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5559    bool HasNoEffect = false;
5560    assert(MSInfo && "No member specialization information?");
5561    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5562                                               PrevDecl,
5563                                        MSInfo->getTemplateSpecializationKind(),
5564                                             MSInfo->getPointOfInstantiation(),
5565                                               HasNoEffect))
5566      return true;
5567    if (HasNoEffect)
5568      return TagD;
5569  }
5570
5571  CXXRecordDecl *RecordDef
5572    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5573  if (!RecordDef) {
5574    // C++ [temp.explicit]p3:
5575    //   A definition of a member class of a class template shall be in scope
5576    //   at the point of an explicit instantiation of the member class.
5577    CXXRecordDecl *Def
5578      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5579    if (!Def) {
5580      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5581        << 0 << Record->getDeclName() << Record->getDeclContext();
5582      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5583        << Pattern;
5584      return true;
5585    } else {
5586      if (InstantiateClass(NameLoc, Record, Def,
5587                           getTemplateInstantiationArgs(Record),
5588                           TSK))
5589        return true;
5590
5591      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5592      if (!RecordDef)
5593        return true;
5594    }
5595  }
5596
5597  // Instantiate all of the members of the class.
5598  InstantiateClassMembers(NameLoc, RecordDef,
5599                          getTemplateInstantiationArgs(Record), TSK);
5600
5601  if (TSK == TSK_ExplicitInstantiationDefinition)
5602    MarkVTableUsed(NameLoc, RecordDef, true);
5603
5604  // FIXME: We don't have any representation for explicit instantiations of
5605  // member classes. Such a representation is not needed for compilation, but it
5606  // should be available for clients that want to see all of the declarations in
5607  // the source code.
5608  return TagD;
5609}
5610
5611DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5612                                            SourceLocation ExternLoc,
5613                                            SourceLocation TemplateLoc,
5614                                            Declarator &D) {
5615  // Explicit instantiations always require a name.
5616  // TODO: check if/when DNInfo should replace Name.
5617  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5618  DeclarationName Name = NameInfo.getName();
5619  if (!Name) {
5620    if (!D.isInvalidType())
5621      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5622           diag::err_explicit_instantiation_requires_name)
5623        << D.getDeclSpec().getSourceRange()
5624        << D.getSourceRange();
5625
5626    return true;
5627  }
5628
5629  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5630  // we find one that is.
5631  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5632         (S->getFlags() & Scope::TemplateParamScope) != 0)
5633    S = S->getParent();
5634
5635  // Determine the type of the declaration.
5636  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5637  QualType R = T->getType();
5638  if (R.isNull())
5639    return true;
5640
5641  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5642    // Cannot explicitly instantiate a typedef.
5643    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5644      << Name;
5645    return true;
5646  }
5647
5648  // C++0x [temp.explicit]p1:
5649  //   [...] An explicit instantiation of a function template shall not use the
5650  //   inline or constexpr specifiers.
5651  // Presumably, this also applies to member functions of class templates as
5652  // well.
5653  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5654    Diag(D.getDeclSpec().getInlineSpecLoc(),
5655         diag::err_explicit_instantiation_inline)
5656      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5657
5658  // FIXME: check for constexpr specifier.
5659
5660  // C++0x [temp.explicit]p2:
5661  //   There are two forms of explicit instantiation: an explicit instantiation
5662  //   definition and an explicit instantiation declaration. An explicit
5663  //   instantiation declaration begins with the extern keyword. [...]
5664  TemplateSpecializationKind TSK
5665    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5666                           : TSK_ExplicitInstantiationDeclaration;
5667
5668  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5669  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5670
5671  if (!R->isFunctionType()) {
5672    // C++ [temp.explicit]p1:
5673    //   A [...] static data member of a class template can be explicitly
5674    //   instantiated from the member definition associated with its class
5675    //   template.
5676    if (Previous.isAmbiguous())
5677      return true;
5678
5679    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5680    if (!Prev || !Prev->isStaticDataMember()) {
5681      // We expect to see a data data member here.
5682      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5683        << Name;
5684      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5685           P != PEnd; ++P)
5686        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5687      return true;
5688    }
5689
5690    if (!Prev->getInstantiatedFromStaticDataMember()) {
5691      // FIXME: Check for explicit specialization?
5692      Diag(D.getIdentifierLoc(),
5693           diag::err_explicit_instantiation_data_member_not_instantiated)
5694        << Prev;
5695      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5696      // FIXME: Can we provide a note showing where this was declared?
5697      return true;
5698    }
5699
5700    // C++0x [temp.explicit]p2:
5701    //   If the explicit instantiation is for a member function, a member class
5702    //   or a static data member of a class template specialization, the name of
5703    //   the class template specialization in the qualified-id for the member
5704    //   name shall be a simple-template-id.
5705    //
5706    // C++98 has the same restriction, just worded differently.
5707    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5708      Diag(D.getIdentifierLoc(),
5709           diag::ext_explicit_instantiation_without_qualified_id)
5710        << Prev << D.getCXXScopeSpec().getRange();
5711
5712    // Check the scope of this explicit instantiation.
5713    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5714
5715    // Verify that it is okay to explicitly instantiate here.
5716    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5717    assert(MSInfo && "Missing static data member specialization info?");
5718    bool HasNoEffect = false;
5719    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5720                                        MSInfo->getTemplateSpecializationKind(),
5721                                              MSInfo->getPointOfInstantiation(),
5722                                               HasNoEffect))
5723      return true;
5724    if (HasNoEffect)
5725      return (Decl*) 0;
5726
5727    // Instantiate static data member.
5728    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5729    if (TSK == TSK_ExplicitInstantiationDefinition)
5730      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5731
5732    // FIXME: Create an ExplicitInstantiation node?
5733    return (Decl*) 0;
5734  }
5735
5736  // If the declarator is a template-id, translate the parser's template
5737  // argument list into our AST format.
5738  bool HasExplicitTemplateArgs = false;
5739  TemplateArgumentListInfo TemplateArgs;
5740  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5741    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5742    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5743    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5744    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5745                                       TemplateId->getTemplateArgs(),
5746                                       TemplateId->NumArgs);
5747    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5748    HasExplicitTemplateArgs = true;
5749    TemplateArgsPtr.release();
5750  }
5751
5752  // C++ [temp.explicit]p1:
5753  //   A [...] function [...] can be explicitly instantiated from its template.
5754  //   A member function [...] of a class template can be explicitly
5755  //  instantiated from the member definition associated with its class
5756  //  template.
5757  UnresolvedSet<8> Matches;
5758  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5759       P != PEnd; ++P) {
5760    NamedDecl *Prev = *P;
5761    if (!HasExplicitTemplateArgs) {
5762      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5763        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5764          Matches.clear();
5765
5766          Matches.addDecl(Method, P.getAccess());
5767          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5768            break;
5769        }
5770      }
5771    }
5772
5773    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5774    if (!FunTmpl)
5775      continue;
5776
5777    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5778    FunctionDecl *Specialization = 0;
5779    if (TemplateDeductionResult TDK
5780          = DeduceTemplateArguments(FunTmpl,
5781                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5782                                    R, Specialization, Info)) {
5783      // FIXME: Keep track of almost-matches?
5784      (void)TDK;
5785      continue;
5786    }
5787
5788    Matches.addDecl(Specialization, P.getAccess());
5789  }
5790
5791  // Find the most specialized function template specialization.
5792  UnresolvedSetIterator Result
5793    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5794                         D.getIdentifierLoc(),
5795                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5796                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5797                         PDiag(diag::note_explicit_instantiation_candidate));
5798
5799  if (Result == Matches.end())
5800    return true;
5801
5802  // Ignore access control bits, we don't need them for redeclaration checking.
5803  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5804
5805  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5806    Diag(D.getIdentifierLoc(),
5807         diag::err_explicit_instantiation_member_function_not_instantiated)
5808      << Specialization
5809      << (Specialization->getTemplateSpecializationKind() ==
5810          TSK_ExplicitSpecialization);
5811    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5812    return true;
5813  }
5814
5815  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5816  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5817    PrevDecl = Specialization;
5818
5819  if (PrevDecl) {
5820    bool HasNoEffect = false;
5821    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5822                                               PrevDecl,
5823                                     PrevDecl->getTemplateSpecializationKind(),
5824                                          PrevDecl->getPointOfInstantiation(),
5825                                               HasNoEffect))
5826      return true;
5827
5828    // FIXME: We may still want to build some representation of this
5829    // explicit specialization.
5830    if (HasNoEffect)
5831      return (Decl*) 0;
5832  }
5833
5834  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5835
5836  if (TSK == TSK_ExplicitInstantiationDefinition)
5837    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5838
5839  // C++0x [temp.explicit]p2:
5840  //   If the explicit instantiation is for a member function, a member class
5841  //   or a static data member of a class template specialization, the name of
5842  //   the class template specialization in the qualified-id for the member
5843  //   name shall be a simple-template-id.
5844  //
5845  // C++98 has the same restriction, just worded differently.
5846  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5847  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5848      D.getCXXScopeSpec().isSet() &&
5849      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5850    Diag(D.getIdentifierLoc(),
5851         diag::ext_explicit_instantiation_without_qualified_id)
5852    << Specialization << D.getCXXScopeSpec().getRange();
5853
5854  CheckExplicitInstantiationScope(*this,
5855                   FunTmpl? (NamedDecl *)FunTmpl
5856                          : Specialization->getInstantiatedFromMemberFunction(),
5857                                  D.getIdentifierLoc(),
5858                                  D.getCXXScopeSpec().isSet());
5859
5860  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5861  return (Decl*) 0;
5862}
5863
5864TypeResult
5865Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5866                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5867                        SourceLocation TagLoc, SourceLocation NameLoc) {
5868  // This has to hold, because SS is expected to be defined.
5869  assert(Name && "Expected a name in a dependent tag");
5870
5871  NestedNameSpecifier *NNS
5872    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5873  if (!NNS)
5874    return true;
5875
5876  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5877
5878  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5879    Diag(NameLoc, diag::err_dependent_tag_decl)
5880      << (TUK == TUK_Definition) << Kind << SS.getRange();
5881    return true;
5882  }
5883
5884  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5885  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5886}
5887
5888TypeResult
5889Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5890                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5891                        SourceLocation IdLoc) {
5892  NestedNameSpecifier *NNS
5893    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5894  if (!NNS)
5895    return true;
5896
5897  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5898      !getLangOptions().CPlusPlus0x)
5899    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5900      << FixItHint::CreateRemoval(TypenameLoc);
5901
5902  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5903                                 TypenameLoc, SS.getRange(), IdLoc);
5904  if (T.isNull())
5905    return true;
5906
5907  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5908  if (isa<DependentNameType>(T)) {
5909    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5910    TL.setKeywordLoc(TypenameLoc);
5911    TL.setQualifierRange(SS.getRange());
5912    TL.setNameLoc(IdLoc);
5913  } else {
5914    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5915    TL.setKeywordLoc(TypenameLoc);
5916    TL.setQualifierRange(SS.getRange());
5917    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5918  }
5919
5920  return CreateParsedType(T, TSI);
5921}
5922
5923TypeResult
5924Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5925                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5926                        ParsedType Ty) {
5927  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5928      !getLangOptions().CPlusPlus0x)
5929    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5930      << FixItHint::CreateRemoval(TypenameLoc);
5931
5932  TypeSourceInfo *InnerTSI = 0;
5933  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5934
5935  assert(isa<TemplateSpecializationType>(T) &&
5936         "Expected a template specialization type");
5937
5938  if (computeDeclContext(SS, false)) {
5939    // If we can compute a declaration context, then the "typename"
5940    // keyword was superfluous. Just build an ElaboratedType to keep
5941    // track of the nested-name-specifier.
5942
5943    // Push the inner type, preserving its source locations if possible.
5944    TypeLocBuilder Builder;
5945    if (InnerTSI)
5946      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5947    else
5948      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(Context,
5949                                                                TemplateLoc);
5950
5951    /* Note: NNS already embedded in template specialization type T. */
5952    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5953    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5954    TL.setKeywordLoc(TypenameLoc);
5955    TL.setQualifierRange(SS.getRange());
5956
5957    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5958    return CreateParsedType(T, TSI);
5959  }
5960
5961  // TODO: it's really silly that we make a template specialization
5962  // type earlier only to drop it again here.
5963  const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5964  DependentTemplateName *DTN =
5965    TST->getTemplateName().getAsDependentTemplateName();
5966  assert(DTN && "dependent template has non-dependent name?");
5967  assert(DTN->getQualifier()
5968         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5969  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5970                                                     DTN->getQualifier(),
5971                                                     DTN->getIdentifier(),
5972                                                     TST->getNumArgs(),
5973                                                     TST->getArgs());
5974  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5975  DependentTemplateSpecializationTypeLoc TL =
5976    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5977  if (InnerTSI) {
5978    TemplateSpecializationTypeLoc TSTL =
5979      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5980    TL.setLAngleLoc(TSTL.getLAngleLoc());
5981    TL.setRAngleLoc(TSTL.getRAngleLoc());
5982    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5983      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5984  } else {
5985    // FIXME: Poor source-location information here.
5986    TL.initializeLocal(Context, TemplateLoc);
5987  }
5988  TL.setKeywordLoc(TypenameLoc);
5989  TL.setQualifierRange(SS.getRange());
5990  return CreateParsedType(T, TSI);
5991}
5992
5993/// \brief Build the type that describes a C++ typename specifier,
5994/// e.g., "typename T::type".
5995QualType
5996Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5997                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5998                        SourceLocation KeywordLoc, SourceRange NNSRange,
5999                        SourceLocation IILoc) {
6000  CXXScopeSpec SS;
6001  SS.Adopt(NNS, NNSRange);
6002
6003  DeclContext *Ctx = computeDeclContext(SS);
6004  if (!Ctx) {
6005    // If the nested-name-specifier is dependent and couldn't be
6006    // resolved to a type, build a typename type.
6007    assert(NNS->isDependent());
6008    return Context.getDependentNameType(Keyword, NNS, &II);
6009  }
6010
6011  // If the nested-name-specifier refers to the current instantiation,
6012  // the "typename" keyword itself is superfluous. In C++03, the
6013  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6014  // allows such extraneous "typename" keywords, and we retroactively
6015  // apply this DR to C++03 code with only a warning. In any case we continue.
6016
6017  if (RequireCompleteDeclContext(SS, Ctx))
6018    return QualType();
6019
6020  DeclarationName Name(&II);
6021  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6022  LookupQualifiedName(Result, Ctx);
6023  unsigned DiagID = 0;
6024  Decl *Referenced = 0;
6025  switch (Result.getResultKind()) {
6026  case LookupResult::NotFound:
6027    DiagID = diag::err_typename_nested_not_found;
6028    break;
6029
6030  case LookupResult::FoundUnresolvedValue: {
6031    // We found a using declaration that is a value. Most likely, the using
6032    // declaration itself is meant to have the 'typename' keyword.
6033    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
6034                          IILoc);
6035    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6036      << Name << Ctx << FullRange;
6037    if (UnresolvedUsingValueDecl *Using
6038          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6039      SourceLocation Loc = Using->getTargetNestedNameRange().getBegin();
6040      Diag(Loc, diag::note_using_value_decl_missing_typename)
6041        << FixItHint::CreateInsertion(Loc, "typename ");
6042    }
6043  }
6044  // Fall through to create a dependent typename type, from which we can recover
6045  // better.
6046
6047  case LookupResult::NotFoundInCurrentInstantiation:
6048    // Okay, it's a member of an unknown instantiation.
6049    return Context.getDependentNameType(Keyword, NNS, &II);
6050
6051  case LookupResult::Found:
6052    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6053      // We found a type. Build an ElaboratedType, since the
6054      // typename-specifier was just sugar.
6055      return Context.getElaboratedType(ETK_Typename, NNS,
6056                                       Context.getTypeDeclType(Type));
6057    }
6058
6059    DiagID = diag::err_typename_nested_not_type;
6060    Referenced = Result.getFoundDecl();
6061    break;
6062
6063
6064    llvm_unreachable("unresolved using decl in non-dependent context");
6065    return QualType();
6066
6067  case LookupResult::FoundOverloaded:
6068    DiagID = diag::err_typename_nested_not_type;
6069    Referenced = *Result.begin();
6070    break;
6071
6072  case LookupResult::Ambiguous:
6073    return QualType();
6074  }
6075
6076  // If we get here, it's because name lookup did not find a
6077  // type. Emit an appropriate diagnostic and return an error.
6078  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
6079                        IILoc);
6080  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6081  if (Referenced)
6082    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6083      << Name;
6084  return QualType();
6085}
6086
6087namespace {
6088  // See Sema::RebuildTypeInCurrentInstantiation
6089  class CurrentInstantiationRebuilder
6090    : public TreeTransform<CurrentInstantiationRebuilder> {
6091    SourceLocation Loc;
6092    DeclarationName Entity;
6093
6094  public:
6095    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6096
6097    CurrentInstantiationRebuilder(Sema &SemaRef,
6098                                  SourceLocation Loc,
6099                                  DeclarationName Entity)
6100    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6101      Loc(Loc), Entity(Entity) { }
6102
6103    /// \brief Determine whether the given type \p T has already been
6104    /// transformed.
6105    ///
6106    /// For the purposes of type reconstruction, a type has already been
6107    /// transformed if it is NULL or if it is not dependent.
6108    bool AlreadyTransformed(QualType T) {
6109      return T.isNull() || !T->isDependentType();
6110    }
6111
6112    /// \brief Returns the location of the entity whose type is being
6113    /// rebuilt.
6114    SourceLocation getBaseLocation() { return Loc; }
6115
6116    /// \brief Returns the name of the entity whose type is being rebuilt.
6117    DeclarationName getBaseEntity() { return Entity; }
6118
6119    /// \brief Sets the "base" location and entity when that
6120    /// information is known based on another transformation.
6121    void setBase(SourceLocation Loc, DeclarationName Entity) {
6122      this->Loc = Loc;
6123      this->Entity = Entity;
6124    }
6125  };
6126}
6127
6128/// \brief Rebuilds a type within the context of the current instantiation.
6129///
6130/// The type \p T is part of the type of an out-of-line member definition of
6131/// a class template (or class template partial specialization) that was parsed
6132/// and constructed before we entered the scope of the class template (or
6133/// partial specialization thereof). This routine will rebuild that type now
6134/// that we have entered the declarator's scope, which may produce different
6135/// canonical types, e.g.,
6136///
6137/// \code
6138/// template<typename T>
6139/// struct X {
6140///   typedef T* pointer;
6141///   pointer data();
6142/// };
6143///
6144/// template<typename T>
6145/// typename X<T>::pointer X<T>::data() { ... }
6146/// \endcode
6147///
6148/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6149/// since we do not know that we can look into X<T> when we parsed the type.
6150/// This function will rebuild the type, performing the lookup of "pointer"
6151/// in X<T> and returning an ElaboratedType whose canonical type is the same
6152/// as the canonical type of T*, allowing the return types of the out-of-line
6153/// definition and the declaration to match.
6154TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6155                                                        SourceLocation Loc,
6156                                                        DeclarationName Name) {
6157  if (!T || !T->getType()->isDependentType())
6158    return T;
6159
6160  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6161  return Rebuilder.TransformType(T);
6162}
6163
6164ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6165  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6166                                          DeclarationName());
6167  return Rebuilder.TransformExpr(E);
6168}
6169
6170bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6171  if (SS.isInvalid()) return true;
6172
6173  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6174  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6175                                          DeclarationName());
6176  NestedNameSpecifier *Rebuilt =
6177    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
6178  if (!Rebuilt) return true;
6179
6180  SS.Adopt(Rebuilt, SS.getRange());
6181  return false;
6182}
6183
6184/// \brief Produces a formatted string that describes the binding of
6185/// template parameters to template arguments.
6186std::string
6187Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6188                                      const TemplateArgumentList &Args) {
6189  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6190}
6191
6192std::string
6193Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6194                                      const TemplateArgument *Args,
6195                                      unsigned NumArgs) {
6196  llvm::SmallString<128> Str;
6197  llvm::raw_svector_ostream Out(Str);
6198
6199  if (!Params || Params->size() == 0 || NumArgs == 0)
6200    return std::string();
6201
6202  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6203    if (I >= NumArgs)
6204      break;
6205
6206    if (I == 0)
6207      Out << "[with ";
6208    else
6209      Out << ", ";
6210
6211    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6212      Out << Id->getName();
6213    } else {
6214      Out << '$' << I;
6215    }
6216
6217    Out << " = ";
6218    Args[I].print(Context.PrintingPolicy, Out);
6219  }
6220
6221  Out << ']';
6222  return Out.str();
6223}
6224