SemaTemplate.cpp revision 14aba76042e041b2c5e439bf4ae353a0a3c7fd73
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/StringExtras.h" 30using namespace clang; 31using namespace sema; 32 33// Exported for use by Parser. 34SourceRange 35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 36 unsigned N) { 37 if (!N) return SourceRange(); 38 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 39} 40 41/// \brief Determine whether the declaration found is acceptable as the name 42/// of a template and, if so, return that template declaration. Otherwise, 43/// returns NULL. 44static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 45 NamedDecl *Orig) { 46 NamedDecl *D = Orig->getUnderlyingDecl(); 47 48 if (isa<TemplateDecl>(D)) 49 return Orig; 50 51 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 52 // C++ [temp.local]p1: 53 // Like normal (non-template) classes, class templates have an 54 // injected-class-name (Clause 9). The injected-class-name 55 // can be used with or without a template-argument-list. When 56 // it is used without a template-argument-list, it is 57 // equivalent to the injected-class-name followed by the 58 // template-parameters of the class template enclosed in 59 // <>. When it is used with a template-argument-list, it 60 // refers to the specified class template specialization, 61 // which could be the current specialization or another 62 // specialization. 63 if (Record->isInjectedClassName()) { 64 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 65 if (Record->getDescribedClassTemplate()) 66 return Record->getDescribedClassTemplate(); 67 68 if (ClassTemplateSpecializationDecl *Spec 69 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 70 return Spec->getSpecializedTemplate(); 71 } 72 73 return 0; 74 } 75 76 return 0; 77} 78 79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 80 // The set of class templates we've already seen. 81 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 82 LookupResult::Filter filter = R.makeFilter(); 83 while (filter.hasNext()) { 84 NamedDecl *Orig = filter.next(); 85 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 86 if (!Repl) 87 filter.erase(); 88 else if (Repl != Orig) { 89 90 // C++ [temp.local]p3: 91 // A lookup that finds an injected-class-name (10.2) can result in an 92 // ambiguity in certain cases (for example, if it is found in more than 93 // one base class). If all of the injected-class-names that are found 94 // refer to specializations of the same class template, and if the name 95 // is followed by a template-argument-list, the reference refers to the 96 // class template itself and not a specialization thereof, and is not 97 // ambiguous. 98 // 99 // FIXME: Will we eventually have to do the same for alias templates? 100 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 101 if (!ClassTemplates.insert(ClassTmpl)) { 102 filter.erase(); 103 continue; 104 } 105 106 // FIXME: we promote access to public here as a workaround to 107 // the fact that LookupResult doesn't let us remember that we 108 // found this template through a particular injected class name, 109 // which means we end up doing nasty things to the invariants. 110 // Pretending that access is public is *much* safer. 111 filter.replace(Repl, AS_public); 112 } 113 } 114 filter.done(); 115} 116 117TemplateNameKind Sema::isTemplateName(Scope *S, 118 CXXScopeSpec &SS, 119 bool hasTemplateKeyword, 120 UnqualifiedId &Name, 121 ParsedType ObjectTypePtr, 122 bool EnteringContext, 123 TemplateTy &TemplateResult, 124 bool &MemberOfUnknownSpecialization) { 125 assert(getLangOptions().CPlusPlus && "No template names in C!"); 126 127 DeclarationName TName; 128 MemberOfUnknownSpecialization = false; 129 130 switch (Name.getKind()) { 131 case UnqualifiedId::IK_Identifier: 132 TName = DeclarationName(Name.Identifier); 133 break; 134 135 case UnqualifiedId::IK_OperatorFunctionId: 136 TName = Context.DeclarationNames.getCXXOperatorName( 137 Name.OperatorFunctionId.Operator); 138 break; 139 140 case UnqualifiedId::IK_LiteralOperatorId: 141 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 142 break; 143 144 default: 145 return TNK_Non_template; 146 } 147 148 QualType ObjectType = ObjectTypePtr.get(); 149 150 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 151 LookupOrdinaryName); 152 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 153 MemberOfUnknownSpecialization); 154 if (R.empty()) return TNK_Non_template; 155 if (R.isAmbiguous()) { 156 // Suppress diagnostics; we'll redo this lookup later. 157 R.suppressDiagnostics(); 158 159 // FIXME: we might have ambiguous templates, in which case we 160 // should at least parse them properly! 161 return TNK_Non_template; 162 } 163 164 TemplateName Template; 165 TemplateNameKind TemplateKind; 166 167 unsigned ResultCount = R.end() - R.begin(); 168 if (ResultCount > 1) { 169 // We assume that we'll preserve the qualifier from a function 170 // template name in other ways. 171 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 172 TemplateKind = TNK_Function_template; 173 174 // We'll do this lookup again later. 175 R.suppressDiagnostics(); 176 } else { 177 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 178 179 if (SS.isSet() && !SS.isInvalid()) { 180 NestedNameSpecifier *Qualifier 181 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 182 Template = Context.getQualifiedTemplateName(Qualifier, 183 hasTemplateKeyword, TD); 184 } else { 185 Template = TemplateName(TD); 186 } 187 188 if (isa<FunctionTemplateDecl>(TD)) { 189 TemplateKind = TNK_Function_template; 190 191 // We'll do this lookup again later. 192 R.suppressDiagnostics(); 193 } else { 194 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 195 TemplateKind = TNK_Type_template; 196 } 197 } 198 199 TemplateResult = TemplateTy::make(Template); 200 return TemplateKind; 201} 202 203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 204 SourceLocation IILoc, 205 Scope *S, 206 const CXXScopeSpec *SS, 207 TemplateTy &SuggestedTemplate, 208 TemplateNameKind &SuggestedKind) { 209 // We can't recover unless there's a dependent scope specifier preceding the 210 // template name. 211 // FIXME: Typo correction? 212 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 213 computeDeclContext(*SS)) 214 return false; 215 216 // The code is missing a 'template' keyword prior to the dependent template 217 // name. 218 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 219 Diag(IILoc, diag::err_template_kw_missing) 220 << Qualifier << II.getName() 221 << FixItHint::CreateInsertion(IILoc, "template "); 222 SuggestedTemplate 223 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 224 SuggestedKind = TNK_Dependent_template_name; 225 return true; 226} 227 228void Sema::LookupTemplateName(LookupResult &Found, 229 Scope *S, CXXScopeSpec &SS, 230 QualType ObjectType, 231 bool EnteringContext, 232 bool &MemberOfUnknownSpecialization) { 233 // Determine where to perform name lookup 234 MemberOfUnknownSpecialization = false; 235 DeclContext *LookupCtx = 0; 236 bool isDependent = false; 237 if (!ObjectType.isNull()) { 238 // This nested-name-specifier occurs in a member access expression, e.g., 239 // x->B::f, and we are looking into the type of the object. 240 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 241 LookupCtx = computeDeclContext(ObjectType); 242 isDependent = ObjectType->isDependentType(); 243 assert((isDependent || !ObjectType->isIncompleteType()) && 244 "Caller should have completed object type"); 245 } else if (SS.isSet()) { 246 // This nested-name-specifier occurs after another nested-name-specifier, 247 // so long into the context associated with the prior nested-name-specifier. 248 LookupCtx = computeDeclContext(SS, EnteringContext); 249 isDependent = isDependentScopeSpecifier(SS); 250 251 // The declaration context must be complete. 252 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 253 return; 254 } 255 256 bool ObjectTypeSearchedInScope = false; 257 if (LookupCtx) { 258 // Perform "qualified" name lookup into the declaration context we 259 // computed, which is either the type of the base of a member access 260 // expression or the declaration context associated with a prior 261 // nested-name-specifier. 262 LookupQualifiedName(Found, LookupCtx); 263 264 if (!ObjectType.isNull() && Found.empty()) { 265 // C++ [basic.lookup.classref]p1: 266 // In a class member access expression (5.2.5), if the . or -> token is 267 // immediately followed by an identifier followed by a <, the 268 // identifier must be looked up to determine whether the < is the 269 // beginning of a template argument list (14.2) or a less-than operator. 270 // The identifier is first looked up in the class of the object 271 // expression. If the identifier is not found, it is then looked up in 272 // the context of the entire postfix-expression and shall name a class 273 // or function template. 274 if (S) LookupName(Found, S); 275 ObjectTypeSearchedInScope = true; 276 } 277 } else if (isDependent && (!S || ObjectType.isNull())) { 278 // We cannot look into a dependent object type or nested nme 279 // specifier. 280 MemberOfUnknownSpecialization = true; 281 return; 282 } else { 283 // Perform unqualified name lookup in the current scope. 284 LookupName(Found, S); 285 } 286 287 if (Found.empty() && !isDependent) { 288 // If we did not find any names, attempt to correct any typos. 289 DeclarationName Name = Found.getLookupName(); 290 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 291 false, CTC_CXXCasts)) { 292 FilterAcceptableTemplateNames(Context, Found); 293 if (!Found.empty()) { 294 if (LookupCtx) 295 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 296 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 297 << FixItHint::CreateReplacement(Found.getNameLoc(), 298 Found.getLookupName().getAsString()); 299 else 300 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 301 << Name << Found.getLookupName() 302 << FixItHint::CreateReplacement(Found.getNameLoc(), 303 Found.getLookupName().getAsString()); 304 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 305 Diag(Template->getLocation(), diag::note_previous_decl) 306 << Template->getDeclName(); 307 } 308 } else { 309 Found.clear(); 310 Found.setLookupName(Name); 311 } 312 } 313 314 FilterAcceptableTemplateNames(Context, Found); 315 if (Found.empty()) { 316 if (isDependent) 317 MemberOfUnknownSpecialization = true; 318 return; 319 } 320 321 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 322 // C++ [basic.lookup.classref]p1: 323 // [...] If the lookup in the class of the object expression finds a 324 // template, the name is also looked up in the context of the entire 325 // postfix-expression and [...] 326 // 327 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 328 LookupOrdinaryName); 329 LookupName(FoundOuter, S); 330 FilterAcceptableTemplateNames(Context, FoundOuter); 331 332 if (FoundOuter.empty()) { 333 // - if the name is not found, the name found in the class of the 334 // object expression is used, otherwise 335 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 336 // - if the name is found in the context of the entire 337 // postfix-expression and does not name a class template, the name 338 // found in the class of the object expression is used, otherwise 339 } else if (!Found.isSuppressingDiagnostics()) { 340 // - if the name found is a class template, it must refer to the same 341 // entity as the one found in the class of the object expression, 342 // otherwise the program is ill-formed. 343 if (!Found.isSingleResult() || 344 Found.getFoundDecl()->getCanonicalDecl() 345 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 346 Diag(Found.getNameLoc(), 347 diag::ext_nested_name_member_ref_lookup_ambiguous) 348 << Found.getLookupName() 349 << ObjectType; 350 Diag(Found.getRepresentativeDecl()->getLocation(), 351 diag::note_ambig_member_ref_object_type) 352 << ObjectType; 353 Diag(FoundOuter.getFoundDecl()->getLocation(), 354 diag::note_ambig_member_ref_scope); 355 356 // Recover by taking the template that we found in the object 357 // expression's type. 358 } 359 } 360 } 361} 362 363/// ActOnDependentIdExpression - Handle a dependent id-expression that 364/// was just parsed. This is only possible with an explicit scope 365/// specifier naming a dependent type. 366ExprResult 367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 368 const DeclarationNameInfo &NameInfo, 369 bool isAddressOfOperand, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 NestedNameSpecifier *Qualifier 372 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 373 374 DeclContext *DC = getFunctionLevelDeclContext(); 375 376 if (!isAddressOfOperand && 377 isa<CXXMethodDecl>(DC) && 378 cast<CXXMethodDecl>(DC)->isInstance()) { 379 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 380 381 // Since the 'this' expression is synthesized, we don't need to 382 // perform the double-lookup check. 383 NamedDecl *FirstQualifierInScope = 0; 384 385 return Owned(CXXDependentScopeMemberExpr::Create(Context, 386 /*This*/ 0, ThisType, 387 /*IsArrow*/ true, 388 /*Op*/ SourceLocation(), 389 Qualifier, SS.getRange(), 390 FirstQualifierInScope, 391 NameInfo, 392 TemplateArgs)); 393 } 394 395 return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs); 396} 397 398ExprResult 399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 400 const DeclarationNameInfo &NameInfo, 401 const TemplateArgumentListInfo *TemplateArgs) { 402 return Owned(DependentScopeDeclRefExpr::Create(Context, 403 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 404 SS.getRange(), 405 NameInfo, 406 TemplateArgs)); 407} 408 409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 410/// that the template parameter 'PrevDecl' is being shadowed by a new 411/// declaration at location Loc. Returns true to indicate that this is 412/// an error, and false otherwise. 413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 414 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 415 416 // Microsoft Visual C++ permits template parameters to be shadowed. 417 if (getLangOptions().Microsoft) 418 return false; 419 420 // C++ [temp.local]p4: 421 // A template-parameter shall not be redeclared within its 422 // scope (including nested scopes). 423 Diag(Loc, diag::err_template_param_shadow) 424 << cast<NamedDecl>(PrevDecl)->getDeclName(); 425 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 426 return true; 427} 428 429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 430/// the parameter D to reference the templated declaration and return a pointer 431/// to the template declaration. Otherwise, do nothing to D and return null. 432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 433 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 434 D = Temp->getTemplatedDecl(); 435 return Temp; 436 } 437 return 0; 438} 439 440ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 441 SourceLocation EllipsisLoc) const { 442 assert(Kind == Template && 443 "Only template template arguments can be pack expansions here"); 444 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 445 "Template template argument pack expansion without packs"); 446 ParsedTemplateArgument Result(*this); 447 Result.EllipsisLoc = EllipsisLoc; 448 return Result; 449} 450 451static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 452 const ParsedTemplateArgument &Arg) { 453 454 switch (Arg.getKind()) { 455 case ParsedTemplateArgument::Type: { 456 TypeSourceInfo *DI; 457 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 458 if (!DI) 459 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 460 return TemplateArgumentLoc(TemplateArgument(T), DI); 461 } 462 463 case ParsedTemplateArgument::NonType: { 464 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 465 return TemplateArgumentLoc(TemplateArgument(E), E); 466 } 467 468 case ParsedTemplateArgument::Template: { 469 TemplateName Template = Arg.getAsTemplate().get(); 470 TemplateArgument TArg; 471 if (Arg.getEllipsisLoc().isValid()) 472 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 473 else 474 TArg = Template; 475 return TemplateArgumentLoc(TArg, 476 Arg.getScopeSpec().getRange(), 477 Arg.getLocation(), 478 Arg.getEllipsisLoc()); 479 } 480 } 481 482 llvm_unreachable("Unhandled parsed template argument"); 483 return TemplateArgumentLoc(); 484} 485 486/// \brief Translates template arguments as provided by the parser 487/// into template arguments used by semantic analysis. 488void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 489 TemplateArgumentListInfo &TemplateArgs) { 490 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 491 TemplateArgs.addArgument(translateTemplateArgument(*this, 492 TemplateArgsIn[I])); 493} 494 495/// ActOnTypeParameter - Called when a C++ template type parameter 496/// (e.g., "typename T") has been parsed. Typename specifies whether 497/// the keyword "typename" was used to declare the type parameter 498/// (otherwise, "class" was used), and KeyLoc is the location of the 499/// "class" or "typename" keyword. ParamName is the name of the 500/// parameter (NULL indicates an unnamed template parameter) and 501/// ParamName is the location of the parameter name (if any). 502/// If the type parameter has a default argument, it will be added 503/// later via ActOnTypeParameterDefault. 504Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 505 SourceLocation EllipsisLoc, 506 SourceLocation KeyLoc, 507 IdentifierInfo *ParamName, 508 SourceLocation ParamNameLoc, 509 unsigned Depth, unsigned Position, 510 SourceLocation EqualLoc, 511 ParsedType DefaultArg) { 512 assert(S->isTemplateParamScope() && 513 "Template type parameter not in template parameter scope!"); 514 bool Invalid = false; 515 516 if (ParamName) { 517 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 518 LookupOrdinaryName, 519 ForRedeclaration); 520 if (PrevDecl && PrevDecl->isTemplateParameter()) 521 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 522 PrevDecl); 523 } 524 525 SourceLocation Loc = ParamNameLoc; 526 if (!ParamName) 527 Loc = KeyLoc; 528 529 TemplateTypeParmDecl *Param 530 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 531 Loc, Depth, Position, ParamName, Typename, 532 Ellipsis); 533 if (Invalid) 534 Param->setInvalidDecl(); 535 536 if (ParamName) { 537 // Add the template parameter into the current scope. 538 S->AddDecl(Param); 539 IdResolver.AddDecl(Param); 540 } 541 542 // C++0x [temp.param]p9: 543 // A default template-argument may be specified for any kind of 544 // template-parameter that is not a template parameter pack. 545 if (DefaultArg && Ellipsis) { 546 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 547 DefaultArg = ParsedType(); 548 } 549 550 // Handle the default argument, if provided. 551 if (DefaultArg) { 552 TypeSourceInfo *DefaultTInfo; 553 GetTypeFromParser(DefaultArg, &DefaultTInfo); 554 555 assert(DefaultTInfo && "expected source information for type"); 556 557 // Check for unexpanded parameter packs. 558 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 559 UPPC_DefaultArgument)) 560 return Param; 561 562 // Check the template argument itself. 563 if (CheckTemplateArgument(Param, DefaultTInfo)) { 564 Param->setInvalidDecl(); 565 return Param; 566 } 567 568 Param->setDefaultArgument(DefaultTInfo, false); 569 } 570 571 return Param; 572} 573 574/// \brief Check that the type of a non-type template parameter is 575/// well-formed. 576/// 577/// \returns the (possibly-promoted) parameter type if valid; 578/// otherwise, produces a diagnostic and returns a NULL type. 579QualType 580Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 581 // We don't allow variably-modified types as the type of non-type template 582 // parameters. 583 if (T->isVariablyModifiedType()) { 584 Diag(Loc, diag::err_variably_modified_nontype_template_param) 585 << T; 586 return QualType(); 587 } 588 589 // C++ [temp.param]p4: 590 // 591 // A non-type template-parameter shall have one of the following 592 // (optionally cv-qualified) types: 593 // 594 // -- integral or enumeration type, 595 if (T->isIntegralOrEnumerationType() || 596 // -- pointer to object or pointer to function, 597 T->isPointerType() || 598 // -- reference to object or reference to function, 599 T->isReferenceType() || 600 // -- pointer to member. 601 T->isMemberPointerType() || 602 // If T is a dependent type, we can't do the check now, so we 603 // assume that it is well-formed. 604 T->isDependentType()) 605 return T; 606 // C++ [temp.param]p8: 607 // 608 // A non-type template-parameter of type "array of T" or 609 // "function returning T" is adjusted to be of type "pointer to 610 // T" or "pointer to function returning T", respectively. 611 else if (T->isArrayType()) 612 // FIXME: Keep the type prior to promotion? 613 return Context.getArrayDecayedType(T); 614 else if (T->isFunctionType()) 615 // FIXME: Keep the type prior to promotion? 616 return Context.getPointerType(T); 617 618 Diag(Loc, diag::err_template_nontype_parm_bad_type) 619 << T; 620 621 return QualType(); 622} 623 624Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 625 unsigned Depth, 626 unsigned Position, 627 SourceLocation EqualLoc, 628 Expr *Default) { 629 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 630 QualType T = TInfo->getType(); 631 632 assert(S->isTemplateParamScope() && 633 "Non-type template parameter not in template parameter scope!"); 634 bool Invalid = false; 635 636 IdentifierInfo *ParamName = D.getIdentifier(); 637 if (ParamName) { 638 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 639 LookupOrdinaryName, 640 ForRedeclaration); 641 if (PrevDecl && PrevDecl->isTemplateParameter()) 642 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 643 PrevDecl); 644 } 645 646 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 647 if (T.isNull()) { 648 T = Context.IntTy; // Recover with an 'int' type. 649 Invalid = true; 650 } 651 652 bool IsParameterPack = D.hasEllipsis(); 653 NonTypeTemplateParmDecl *Param 654 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 655 D.getIdentifierLoc(), 656 Depth, Position, ParamName, T, 657 IsParameterPack, TInfo); 658 if (Invalid) 659 Param->setInvalidDecl(); 660 661 if (D.getIdentifier()) { 662 // Add the template parameter into the current scope. 663 S->AddDecl(Param); 664 IdResolver.AddDecl(Param); 665 } 666 667 // C++0x [temp.param]p9: 668 // A default template-argument may be specified for any kind of 669 // template-parameter that is not a template parameter pack. 670 if (Default && IsParameterPack) { 671 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 672 Default = 0; 673 } 674 675 // Check the well-formedness of the default template argument, if provided. 676 if (Default) { 677 // Check for unexpanded parameter packs. 678 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 679 return Param; 680 681 TemplateArgument Converted; 682 if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) { 683 Param->setInvalidDecl(); 684 return Param; 685 } 686 687 Param->setDefaultArgument(Default, false); 688 } 689 690 return Param; 691} 692 693/// ActOnTemplateTemplateParameter - Called when a C++ template template 694/// parameter (e.g. T in template <template <typename> class T> class array) 695/// has been parsed. S is the current scope. 696Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 697 SourceLocation TmpLoc, 698 TemplateParamsTy *Params, 699 SourceLocation EllipsisLoc, 700 IdentifierInfo *Name, 701 SourceLocation NameLoc, 702 unsigned Depth, 703 unsigned Position, 704 SourceLocation EqualLoc, 705 ParsedTemplateArgument Default) { 706 assert(S->isTemplateParamScope() && 707 "Template template parameter not in template parameter scope!"); 708 709 // Construct the parameter object. 710 bool IsParameterPack = EllipsisLoc.isValid(); 711 // FIXME: Pack-ness is dropped 712 TemplateTemplateParmDecl *Param = 713 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 714 NameLoc.isInvalid()? TmpLoc : NameLoc, 715 Depth, Position, IsParameterPack, 716 Name, Params); 717 718 // If the template template parameter has a name, then link the identifier 719 // into the scope and lookup mechanisms. 720 if (Name) { 721 S->AddDecl(Param); 722 IdResolver.AddDecl(Param); 723 } 724 725 if (Params->size() == 0) { 726 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 727 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 728 Param->setInvalidDecl(); 729 } 730 731 // C++0x [temp.param]p9: 732 // A default template-argument may be specified for any kind of 733 // template-parameter that is not a template parameter pack. 734 if (IsParameterPack && !Default.isInvalid()) { 735 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 736 Default = ParsedTemplateArgument(); 737 } 738 739 if (!Default.isInvalid()) { 740 // Check only that we have a template template argument. We don't want to 741 // try to check well-formedness now, because our template template parameter 742 // might have dependent types in its template parameters, which we wouldn't 743 // be able to match now. 744 // 745 // If none of the template template parameter's template arguments mention 746 // other template parameters, we could actually perform more checking here. 747 // However, it isn't worth doing. 748 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 749 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 750 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 751 << DefaultArg.getSourceRange(); 752 return Param; 753 } 754 755 // Check for unexpanded parameter packs. 756 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 757 DefaultArg.getArgument().getAsTemplate(), 758 UPPC_DefaultArgument)) 759 return Param; 760 761 Param->setDefaultArgument(DefaultArg, false); 762 } 763 764 return Param; 765} 766 767/// ActOnTemplateParameterList - Builds a TemplateParameterList that 768/// contains the template parameters in Params/NumParams. 769Sema::TemplateParamsTy * 770Sema::ActOnTemplateParameterList(unsigned Depth, 771 SourceLocation ExportLoc, 772 SourceLocation TemplateLoc, 773 SourceLocation LAngleLoc, 774 Decl **Params, unsigned NumParams, 775 SourceLocation RAngleLoc) { 776 if (ExportLoc.isValid()) 777 Diag(ExportLoc, diag::warn_template_export_unsupported); 778 779 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 780 (NamedDecl**)Params, NumParams, 781 RAngleLoc); 782} 783 784static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 785 if (SS.isSet()) 786 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 787 SS.getRange()); 788} 789 790DeclResult 791Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 792 SourceLocation KWLoc, CXXScopeSpec &SS, 793 IdentifierInfo *Name, SourceLocation NameLoc, 794 AttributeList *Attr, 795 TemplateParameterList *TemplateParams, 796 AccessSpecifier AS) { 797 assert(TemplateParams && TemplateParams->size() > 0 && 798 "No template parameters"); 799 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 800 bool Invalid = false; 801 802 // Check that we can declare a template here. 803 if (CheckTemplateDeclScope(S, TemplateParams)) 804 return true; 805 806 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 807 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 808 809 // There is no such thing as an unnamed class template. 810 if (!Name) { 811 Diag(KWLoc, diag::err_template_unnamed_class); 812 return true; 813 } 814 815 // Find any previous declaration with this name. 816 DeclContext *SemanticContext; 817 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 818 ForRedeclaration); 819 if (SS.isNotEmpty() && !SS.isInvalid()) { 820 SemanticContext = computeDeclContext(SS, true); 821 if (!SemanticContext) { 822 // FIXME: Produce a reasonable diagnostic here 823 return true; 824 } 825 826 if (RequireCompleteDeclContext(SS, SemanticContext)) 827 return true; 828 829 LookupQualifiedName(Previous, SemanticContext); 830 } else { 831 SemanticContext = CurContext; 832 LookupName(Previous, S); 833 } 834 835 if (Previous.isAmbiguous()) 836 return true; 837 838 NamedDecl *PrevDecl = 0; 839 if (Previous.begin() != Previous.end()) 840 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 841 842 // If there is a previous declaration with the same name, check 843 // whether this is a valid redeclaration. 844 ClassTemplateDecl *PrevClassTemplate 845 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 846 847 // We may have found the injected-class-name of a class template, 848 // class template partial specialization, or class template specialization. 849 // In these cases, grab the template that is being defined or specialized. 850 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 851 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 852 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 853 PrevClassTemplate 854 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 855 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 856 PrevClassTemplate 857 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 858 ->getSpecializedTemplate(); 859 } 860 } 861 862 if (TUK == TUK_Friend) { 863 // C++ [namespace.memdef]p3: 864 // [...] When looking for a prior declaration of a class or a function 865 // declared as a friend, and when the name of the friend class or 866 // function is neither a qualified name nor a template-id, scopes outside 867 // the innermost enclosing namespace scope are not considered. 868 if (!SS.isSet()) { 869 DeclContext *OutermostContext = CurContext; 870 while (!OutermostContext->isFileContext()) 871 OutermostContext = OutermostContext->getLookupParent(); 872 873 if (PrevDecl && 874 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 875 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 876 SemanticContext = PrevDecl->getDeclContext(); 877 } else { 878 // Declarations in outer scopes don't matter. However, the outermost 879 // context we computed is the semantic context for our new 880 // declaration. 881 PrevDecl = PrevClassTemplate = 0; 882 SemanticContext = OutermostContext; 883 } 884 } 885 886 if (CurContext->isDependentContext()) { 887 // If this is a dependent context, we don't want to link the friend 888 // class template to the template in scope, because that would perform 889 // checking of the template parameter lists that can't be performed 890 // until the outer context is instantiated. 891 PrevDecl = PrevClassTemplate = 0; 892 } 893 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 894 PrevDecl = PrevClassTemplate = 0; 895 896 if (PrevClassTemplate) { 897 // Ensure that the template parameter lists are compatible. 898 if (!TemplateParameterListsAreEqual(TemplateParams, 899 PrevClassTemplate->getTemplateParameters(), 900 /*Complain=*/true, 901 TPL_TemplateMatch)) 902 return true; 903 904 // C++ [temp.class]p4: 905 // In a redeclaration, partial specialization, explicit 906 // specialization or explicit instantiation of a class template, 907 // the class-key shall agree in kind with the original class 908 // template declaration (7.1.5.3). 909 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 910 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 911 Diag(KWLoc, diag::err_use_with_wrong_tag) 912 << Name 913 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 914 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 915 Kind = PrevRecordDecl->getTagKind(); 916 } 917 918 // Check for redefinition of this class template. 919 if (TUK == TUK_Definition) { 920 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 921 Diag(NameLoc, diag::err_redefinition) << Name; 922 Diag(Def->getLocation(), diag::note_previous_definition); 923 // FIXME: Would it make sense to try to "forget" the previous 924 // definition, as part of error recovery? 925 return true; 926 } 927 } 928 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 929 // Maybe we will complain about the shadowed template parameter. 930 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 931 // Just pretend that we didn't see the previous declaration. 932 PrevDecl = 0; 933 } else if (PrevDecl) { 934 // C++ [temp]p5: 935 // A class template shall not have the same name as any other 936 // template, class, function, object, enumeration, enumerator, 937 // namespace, or type in the same scope (3.3), except as specified 938 // in (14.5.4). 939 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 940 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 941 return true; 942 } 943 944 // Check the template parameter list of this declaration, possibly 945 // merging in the template parameter list from the previous class 946 // template declaration. 947 if (CheckTemplateParameterList(TemplateParams, 948 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 949 (SS.isSet() && SemanticContext && 950 SemanticContext->isRecord() && 951 SemanticContext->isDependentContext()) 952 ? TPC_ClassTemplateMember 953 : TPC_ClassTemplate)) 954 Invalid = true; 955 956 if (SS.isSet()) { 957 // If the name of the template was qualified, we must be defining the 958 // template out-of-line. 959 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 960 !(TUK == TUK_Friend && CurContext->isDependentContext())) 961 Diag(NameLoc, diag::err_member_def_does_not_match) 962 << Name << SemanticContext << SS.getRange(); 963 } 964 965 CXXRecordDecl *NewClass = 966 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 967 PrevClassTemplate? 968 PrevClassTemplate->getTemplatedDecl() : 0, 969 /*DelayTypeCreation=*/true); 970 SetNestedNameSpecifier(NewClass, SS); 971 972 ClassTemplateDecl *NewTemplate 973 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 974 DeclarationName(Name), TemplateParams, 975 NewClass, PrevClassTemplate); 976 NewClass->setDescribedClassTemplate(NewTemplate); 977 978 // Build the type for the class template declaration now. 979 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 980 T = Context.getInjectedClassNameType(NewClass, T); 981 assert(T->isDependentType() && "Class template type is not dependent?"); 982 (void)T; 983 984 // If we are providing an explicit specialization of a member that is a 985 // class template, make a note of that. 986 if (PrevClassTemplate && 987 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 988 PrevClassTemplate->setMemberSpecialization(); 989 990 // Set the access specifier. 991 if (!Invalid && TUK != TUK_Friend) 992 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 993 994 // Set the lexical context of these templates 995 NewClass->setLexicalDeclContext(CurContext); 996 NewTemplate->setLexicalDeclContext(CurContext); 997 998 if (TUK == TUK_Definition) 999 NewClass->startDefinition(); 1000 1001 if (Attr) 1002 ProcessDeclAttributeList(S, NewClass, Attr); 1003 1004 if (TUK != TUK_Friend) 1005 PushOnScopeChains(NewTemplate, S); 1006 else { 1007 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1008 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1009 NewClass->setAccess(PrevClassTemplate->getAccess()); 1010 } 1011 1012 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1013 PrevClassTemplate != NULL); 1014 1015 // Friend templates are visible in fairly strange ways. 1016 if (!CurContext->isDependentContext()) { 1017 DeclContext *DC = SemanticContext->getRedeclContext(); 1018 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 1019 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1020 PushOnScopeChains(NewTemplate, EnclosingScope, 1021 /* AddToContext = */ false); 1022 } 1023 1024 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1025 NewClass->getLocation(), 1026 NewTemplate, 1027 /*FIXME:*/NewClass->getLocation()); 1028 Friend->setAccess(AS_public); 1029 CurContext->addDecl(Friend); 1030 } 1031 1032 if (Invalid) { 1033 NewTemplate->setInvalidDecl(); 1034 NewClass->setInvalidDecl(); 1035 } 1036 return NewTemplate; 1037} 1038 1039/// \brief Diagnose the presence of a default template argument on a 1040/// template parameter, which is ill-formed in certain contexts. 1041/// 1042/// \returns true if the default template argument should be dropped. 1043static bool DiagnoseDefaultTemplateArgument(Sema &S, 1044 Sema::TemplateParamListContext TPC, 1045 SourceLocation ParamLoc, 1046 SourceRange DefArgRange) { 1047 switch (TPC) { 1048 case Sema::TPC_ClassTemplate: 1049 return false; 1050 1051 case Sema::TPC_FunctionTemplate: 1052 case Sema::TPC_FriendFunctionTemplateDefinition: 1053 // C++ [temp.param]p9: 1054 // A default template-argument shall not be specified in a 1055 // function template declaration or a function template 1056 // definition [...] 1057 // If a friend function template declaration specifies a default 1058 // template-argument, that declaration shall be a definition and shall be 1059 // the only declaration of the function template in the translation unit. 1060 // (C++98/03 doesn't have this wording; see DR226). 1061 if (!S.getLangOptions().CPlusPlus0x) 1062 S.Diag(ParamLoc, 1063 diag::ext_template_parameter_default_in_function_template) 1064 << DefArgRange; 1065 return false; 1066 1067 case Sema::TPC_ClassTemplateMember: 1068 // C++0x [temp.param]p9: 1069 // A default template-argument shall not be specified in the 1070 // template-parameter-lists of the definition of a member of a 1071 // class template that appears outside of the member's class. 1072 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1073 << DefArgRange; 1074 return true; 1075 1076 case Sema::TPC_FriendFunctionTemplate: 1077 // C++ [temp.param]p9: 1078 // A default template-argument shall not be specified in a 1079 // friend template declaration. 1080 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1081 << DefArgRange; 1082 return true; 1083 1084 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1085 // for friend function templates if there is only a single 1086 // declaration (and it is a definition). Strange! 1087 } 1088 1089 return false; 1090} 1091 1092/// \brief Check for unexpanded parameter packs within the template parameters 1093/// of a template template parameter, recursively. 1094bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){ 1095 TemplateParameterList *Params = TTP->getTemplateParameters(); 1096 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1097 NamedDecl *P = Params->getParam(I); 1098 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1099 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1100 NTTP->getTypeSourceInfo(), 1101 Sema::UPPC_NonTypeTemplateParameterType)) 1102 return true; 1103 1104 continue; 1105 } 1106 1107 if (TemplateTemplateParmDecl *InnerTTP 1108 = dyn_cast<TemplateTemplateParmDecl>(P)) 1109 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1110 return true; 1111 } 1112 1113 return false; 1114} 1115 1116/// \brief Checks the validity of a template parameter list, possibly 1117/// considering the template parameter list from a previous 1118/// declaration. 1119/// 1120/// If an "old" template parameter list is provided, it must be 1121/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1122/// template parameter list. 1123/// 1124/// \param NewParams Template parameter list for a new template 1125/// declaration. This template parameter list will be updated with any 1126/// default arguments that are carried through from the previous 1127/// template parameter list. 1128/// 1129/// \param OldParams If provided, template parameter list from a 1130/// previous declaration of the same template. Default template 1131/// arguments will be merged from the old template parameter list to 1132/// the new template parameter list. 1133/// 1134/// \param TPC Describes the context in which we are checking the given 1135/// template parameter list. 1136/// 1137/// \returns true if an error occurred, false otherwise. 1138bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1139 TemplateParameterList *OldParams, 1140 TemplateParamListContext TPC) { 1141 bool Invalid = false; 1142 1143 // C++ [temp.param]p10: 1144 // The set of default template-arguments available for use with a 1145 // template declaration or definition is obtained by merging the 1146 // default arguments from the definition (if in scope) and all 1147 // declarations in scope in the same way default function 1148 // arguments are (8.3.6). 1149 bool SawDefaultArgument = false; 1150 SourceLocation PreviousDefaultArgLoc; 1151 1152 bool SawParameterPack = false; 1153 SourceLocation ParameterPackLoc; 1154 1155 // Dummy initialization to avoid warnings. 1156 TemplateParameterList::iterator OldParam = NewParams->end(); 1157 if (OldParams) 1158 OldParam = OldParams->begin(); 1159 1160 bool RemoveDefaultArguments = false; 1161 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1162 NewParamEnd = NewParams->end(); 1163 NewParam != NewParamEnd; ++NewParam) { 1164 // Variables used to diagnose redundant default arguments 1165 bool RedundantDefaultArg = false; 1166 SourceLocation OldDefaultLoc; 1167 SourceLocation NewDefaultLoc; 1168 1169 // Variables used to diagnose missing default arguments 1170 bool MissingDefaultArg = false; 1171 1172 // C++0x [temp.param]p11: 1173 // If a template parameter of a primary class template is a template 1174 // parameter pack, it shall be the last template parameter. 1175 if (SawParameterPack && TPC == TPC_ClassTemplate) { 1176 Diag(ParameterPackLoc, 1177 diag::err_template_param_pack_must_be_last_template_parameter); 1178 Invalid = true; 1179 } 1180 1181 if (TemplateTypeParmDecl *NewTypeParm 1182 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1183 // Check the presence of a default argument here. 1184 if (NewTypeParm->hasDefaultArgument() && 1185 DiagnoseDefaultTemplateArgument(*this, TPC, 1186 NewTypeParm->getLocation(), 1187 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1188 .getSourceRange())) 1189 NewTypeParm->removeDefaultArgument(); 1190 1191 // Merge default arguments for template type parameters. 1192 TemplateTypeParmDecl *OldTypeParm 1193 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1194 1195 if (NewTypeParm->isParameterPack()) { 1196 assert(!NewTypeParm->hasDefaultArgument() && 1197 "Parameter packs can't have a default argument!"); 1198 SawParameterPack = true; 1199 ParameterPackLoc = NewTypeParm->getLocation(); 1200 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1201 NewTypeParm->hasDefaultArgument()) { 1202 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1203 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1204 SawDefaultArgument = true; 1205 RedundantDefaultArg = true; 1206 PreviousDefaultArgLoc = NewDefaultLoc; 1207 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1208 // Merge the default argument from the old declaration to the 1209 // new declaration. 1210 SawDefaultArgument = true; 1211 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1212 true); 1213 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1214 } else if (NewTypeParm->hasDefaultArgument()) { 1215 SawDefaultArgument = true; 1216 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1217 } else if (SawDefaultArgument) 1218 MissingDefaultArg = true; 1219 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1220 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1221 // Check for unexpanded parameter packs. 1222 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1223 NewNonTypeParm->getTypeSourceInfo(), 1224 UPPC_NonTypeTemplateParameterType)) { 1225 Invalid = true; 1226 continue; 1227 } 1228 1229 // Check the presence of a default argument here. 1230 if (NewNonTypeParm->hasDefaultArgument() && 1231 DiagnoseDefaultTemplateArgument(*this, TPC, 1232 NewNonTypeParm->getLocation(), 1233 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1234 NewNonTypeParm->removeDefaultArgument(); 1235 } 1236 1237 // Merge default arguments for non-type template parameters 1238 NonTypeTemplateParmDecl *OldNonTypeParm 1239 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1240 if (NewNonTypeParm->isParameterPack()) { 1241 assert(!NewNonTypeParm->hasDefaultArgument() && 1242 "Parameter packs can't have a default argument!"); 1243 SawParameterPack = true; 1244 ParameterPackLoc = NewNonTypeParm->getLocation(); 1245 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1246 NewNonTypeParm->hasDefaultArgument()) { 1247 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1248 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1249 SawDefaultArgument = true; 1250 RedundantDefaultArg = true; 1251 PreviousDefaultArgLoc = NewDefaultLoc; 1252 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1253 // Merge the default argument from the old declaration to the 1254 // new declaration. 1255 SawDefaultArgument = true; 1256 // FIXME: We need to create a new kind of "default argument" 1257 // expression that points to a previous non-type template 1258 // parameter. 1259 NewNonTypeParm->setDefaultArgument( 1260 OldNonTypeParm->getDefaultArgument(), 1261 /*Inherited=*/ true); 1262 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1263 } else if (NewNonTypeParm->hasDefaultArgument()) { 1264 SawDefaultArgument = true; 1265 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1266 } else if (SawDefaultArgument) 1267 MissingDefaultArg = true; 1268 } else { 1269 // Check the presence of a default argument here. 1270 TemplateTemplateParmDecl *NewTemplateParm 1271 = cast<TemplateTemplateParmDecl>(*NewParam); 1272 1273 // Check for unexpanded parameter packs, recursively. 1274 if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1275 Invalid = true; 1276 continue; 1277 } 1278 1279 if (NewTemplateParm->hasDefaultArgument() && 1280 DiagnoseDefaultTemplateArgument(*this, TPC, 1281 NewTemplateParm->getLocation(), 1282 NewTemplateParm->getDefaultArgument().getSourceRange())) 1283 NewTemplateParm->removeDefaultArgument(); 1284 1285 // Merge default arguments for template template parameters 1286 TemplateTemplateParmDecl *OldTemplateParm 1287 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1288 if (NewTemplateParm->isParameterPack()) { 1289 assert(!NewTemplateParm->hasDefaultArgument() && 1290 "Parameter packs can't have a default argument!"); 1291 SawParameterPack = true; 1292 ParameterPackLoc = NewTemplateParm->getLocation(); 1293 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1294 NewTemplateParm->hasDefaultArgument()) { 1295 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1296 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1297 SawDefaultArgument = true; 1298 RedundantDefaultArg = true; 1299 PreviousDefaultArgLoc = NewDefaultLoc; 1300 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1301 // Merge the default argument from the old declaration to the 1302 // new declaration. 1303 SawDefaultArgument = true; 1304 // FIXME: We need to create a new kind of "default argument" expression 1305 // that points to a previous template template parameter. 1306 NewTemplateParm->setDefaultArgument( 1307 OldTemplateParm->getDefaultArgument(), 1308 /*Inherited=*/ true); 1309 PreviousDefaultArgLoc 1310 = OldTemplateParm->getDefaultArgument().getLocation(); 1311 } else if (NewTemplateParm->hasDefaultArgument()) { 1312 SawDefaultArgument = true; 1313 PreviousDefaultArgLoc 1314 = NewTemplateParm->getDefaultArgument().getLocation(); 1315 } else if (SawDefaultArgument) 1316 MissingDefaultArg = true; 1317 } 1318 1319 if (RedundantDefaultArg) { 1320 // C++ [temp.param]p12: 1321 // A template-parameter shall not be given default arguments 1322 // by two different declarations in the same scope. 1323 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1324 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1325 Invalid = true; 1326 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1327 // C++ [temp.param]p11: 1328 // If a template-parameter of a class template has a default 1329 // template-argument, each subsequent template-parameter shall either 1330 // have a default template-argument supplied or be a template parameter 1331 // pack. 1332 Diag((*NewParam)->getLocation(), 1333 diag::err_template_param_default_arg_missing); 1334 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1335 Invalid = true; 1336 RemoveDefaultArguments = true; 1337 } 1338 1339 // If we have an old template parameter list that we're merging 1340 // in, move on to the next parameter. 1341 if (OldParams) 1342 ++OldParam; 1343 } 1344 1345 // We were missing some default arguments at the end of the list, so remove 1346 // all of the default arguments. 1347 if (RemoveDefaultArguments) { 1348 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1349 NewParamEnd = NewParams->end(); 1350 NewParam != NewParamEnd; ++NewParam) { 1351 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1352 TTP->removeDefaultArgument(); 1353 else if (NonTypeTemplateParmDecl *NTTP 1354 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1355 NTTP->removeDefaultArgument(); 1356 else 1357 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1358 } 1359 } 1360 1361 return Invalid; 1362} 1363 1364namespace { 1365 1366/// A class which looks for a use of a certain level of template 1367/// parameter. 1368struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1369 typedef RecursiveASTVisitor<DependencyChecker> super; 1370 1371 unsigned Depth; 1372 bool Match; 1373 1374 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1375 NamedDecl *ND = Params->getParam(0); 1376 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1377 Depth = PD->getDepth(); 1378 } else if (NonTypeTemplateParmDecl *PD = 1379 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1380 Depth = PD->getDepth(); 1381 } else { 1382 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1383 } 1384 } 1385 1386 bool Matches(unsigned ParmDepth) { 1387 if (ParmDepth >= Depth) { 1388 Match = true; 1389 return true; 1390 } 1391 return false; 1392 } 1393 1394 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1395 return !Matches(T->getDepth()); 1396 } 1397 1398 bool TraverseTemplateName(TemplateName N) { 1399 if (TemplateTemplateParmDecl *PD = 1400 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1401 if (Matches(PD->getDepth())) return false; 1402 return super::TraverseTemplateName(N); 1403 } 1404 1405 bool VisitDeclRefExpr(DeclRefExpr *E) { 1406 if (NonTypeTemplateParmDecl *PD = 1407 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1408 if (PD->getDepth() == Depth) { 1409 Match = true; 1410 return false; 1411 } 1412 } 1413 return super::VisitDeclRefExpr(E); 1414 } 1415}; 1416} 1417 1418/// Determines whether a template-id depends on the given parameter 1419/// list. 1420static bool 1421DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId, 1422 TemplateParameterList *Params) { 1423 DependencyChecker Checker(Params); 1424 Checker.TraverseType(QualType(TemplateId, 0)); 1425 return Checker.Match; 1426} 1427 1428/// \brief Match the given template parameter lists to the given scope 1429/// specifier, returning the template parameter list that applies to the 1430/// name. 1431/// 1432/// \param DeclStartLoc the start of the declaration that has a scope 1433/// specifier or a template parameter list. 1434/// 1435/// \param SS the scope specifier that will be matched to the given template 1436/// parameter lists. This scope specifier precedes a qualified name that is 1437/// being declared. 1438/// 1439/// \param ParamLists the template parameter lists, from the outermost to the 1440/// innermost template parameter lists. 1441/// 1442/// \param NumParamLists the number of template parameter lists in ParamLists. 1443/// 1444/// \param IsFriend Whether to apply the slightly different rules for 1445/// matching template parameters to scope specifiers in friend 1446/// declarations. 1447/// 1448/// \param IsExplicitSpecialization will be set true if the entity being 1449/// declared is an explicit specialization, false otherwise. 1450/// 1451/// \returns the template parameter list, if any, that corresponds to the 1452/// name that is preceded by the scope specifier @p SS. This template 1453/// parameter list may be have template parameters (if we're declaring a 1454/// template) or may have no template parameters (if we're declaring a 1455/// template specialization), or may be NULL (if we were's declaring isn't 1456/// itself a template). 1457TemplateParameterList * 1458Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1459 const CXXScopeSpec &SS, 1460 TemplateParameterList **ParamLists, 1461 unsigned NumParamLists, 1462 bool IsFriend, 1463 bool &IsExplicitSpecialization, 1464 bool &Invalid) { 1465 IsExplicitSpecialization = false; 1466 1467 // Find the template-ids that occur within the nested-name-specifier. These 1468 // template-ids will match up with the template parameter lists. 1469 llvm::SmallVector<const TemplateSpecializationType *, 4> 1470 TemplateIdsInSpecifier; 1471 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1472 ExplicitSpecializationsInSpecifier; 1473 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1474 NNS; NNS = NNS->getPrefix()) { 1475 const Type *T = NNS->getAsType(); 1476 if (!T) break; 1477 1478 // C++0x [temp.expl.spec]p17: 1479 // A member or a member template may be nested within many 1480 // enclosing class templates. In an explicit specialization for 1481 // such a member, the member declaration shall be preceded by a 1482 // template<> for each enclosing class template that is 1483 // explicitly specialized. 1484 // 1485 // Following the existing practice of GNU and EDG, we allow a typedef of a 1486 // template specialization type. 1487 while (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1488 T = TT->getDecl()->getUnderlyingType().getTypePtr(); 1489 1490 if (const TemplateSpecializationType *SpecType 1491 = dyn_cast<TemplateSpecializationType>(T)) { 1492 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1493 if (!Template) 1494 continue; // FIXME: should this be an error? probably... 1495 1496 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1497 ClassTemplateSpecializationDecl *SpecDecl 1498 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1499 // If the nested name specifier refers to an explicit specialization, 1500 // we don't need a template<> header. 1501 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1502 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1503 continue; 1504 } 1505 } 1506 1507 TemplateIdsInSpecifier.push_back(SpecType); 1508 } 1509 } 1510 1511 // Reverse the list of template-ids in the scope specifier, so that we can 1512 // more easily match up the template-ids and the template parameter lists. 1513 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1514 1515 SourceLocation FirstTemplateLoc = DeclStartLoc; 1516 if (NumParamLists) 1517 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1518 1519 // Match the template-ids found in the specifier to the template parameter 1520 // lists. 1521 unsigned ParamIdx = 0, TemplateIdx = 0; 1522 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1523 TemplateIdx != NumTemplateIds; ++TemplateIdx) { 1524 const TemplateSpecializationType *TemplateId 1525 = TemplateIdsInSpecifier[TemplateIdx]; 1526 bool DependentTemplateId = TemplateId->isDependentType(); 1527 1528 // In friend declarations we can have template-ids which don't 1529 // depend on the corresponding template parameter lists. But 1530 // assume that empty parameter lists are supposed to match this 1531 // template-id. 1532 if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) { 1533 if (!DependentTemplateId || 1534 !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx])) 1535 continue; 1536 } 1537 1538 if (ParamIdx >= NumParamLists) { 1539 // We have a template-id without a corresponding template parameter 1540 // list. 1541 1542 // ...which is fine if this is a friend declaration. 1543 if (IsFriend) { 1544 IsExplicitSpecialization = true; 1545 break; 1546 } 1547 1548 if (DependentTemplateId) { 1549 // FIXME: the location information here isn't great. 1550 Diag(SS.getRange().getBegin(), 1551 diag::err_template_spec_needs_template_parameters) 1552 << QualType(TemplateId, 0) 1553 << SS.getRange(); 1554 Invalid = true; 1555 } else { 1556 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1557 << SS.getRange() 1558 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1559 IsExplicitSpecialization = true; 1560 } 1561 return 0; 1562 } 1563 1564 // Check the template parameter list against its corresponding template-id. 1565 if (DependentTemplateId) { 1566 TemplateParameterList *ExpectedTemplateParams = 0; 1567 1568 // Are there cases in (e.g.) friends where this won't match? 1569 if (const InjectedClassNameType *Injected 1570 = TemplateId->getAs<InjectedClassNameType>()) { 1571 CXXRecordDecl *Record = Injected->getDecl(); 1572 if (ClassTemplatePartialSpecializationDecl *Partial = 1573 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1574 ExpectedTemplateParams = Partial->getTemplateParameters(); 1575 else 1576 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1577 ->getTemplateParameters(); 1578 } 1579 1580 if (ExpectedTemplateParams) 1581 TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1582 ExpectedTemplateParams, 1583 true, TPL_TemplateMatch); 1584 1585 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1586 TPC_ClassTemplateMember); 1587 } else if (ParamLists[ParamIdx]->size() > 0) 1588 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1589 diag::err_template_param_list_matches_nontemplate) 1590 << TemplateId 1591 << ParamLists[ParamIdx]->getSourceRange(); 1592 else 1593 IsExplicitSpecialization = true; 1594 1595 ++ParamIdx; 1596 } 1597 1598 // If there were at least as many template-ids as there were template 1599 // parameter lists, then there are no template parameter lists remaining for 1600 // the declaration itself. 1601 if (ParamIdx >= NumParamLists) 1602 return 0; 1603 1604 // If there were too many template parameter lists, complain about that now. 1605 if (ParamIdx != NumParamLists - 1) { 1606 while (ParamIdx < NumParamLists - 1) { 1607 bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0; 1608 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1609 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1610 : diag::err_template_spec_extra_headers) 1611 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1612 ParamLists[ParamIdx]->getRAngleLoc()); 1613 1614 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1615 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1616 diag::note_explicit_template_spec_does_not_need_header) 1617 << ExplicitSpecializationsInSpecifier.back(); 1618 ExplicitSpecializationsInSpecifier.pop_back(); 1619 } 1620 1621 // We have a template parameter list with no corresponding scope, which 1622 // means that the resulting template declaration can't be instantiated 1623 // properly (we'll end up with dependent nodes when we shouldn't). 1624 if (!isExplicitSpecHeader) 1625 Invalid = true; 1626 1627 ++ParamIdx; 1628 } 1629 } 1630 1631 // Return the last template parameter list, which corresponds to the 1632 // entity being declared. 1633 return ParamLists[NumParamLists - 1]; 1634} 1635 1636QualType Sema::CheckTemplateIdType(TemplateName Name, 1637 SourceLocation TemplateLoc, 1638 const TemplateArgumentListInfo &TemplateArgs) { 1639 TemplateDecl *Template = Name.getAsTemplateDecl(); 1640 if (!Template) { 1641 // The template name does not resolve to a template, so we just 1642 // build a dependent template-id type. 1643 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1644 } 1645 1646 // Check that the template argument list is well-formed for this 1647 // template. 1648 llvm::SmallVector<TemplateArgument, 4> Converted; 1649 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1650 false, Converted)) 1651 return QualType(); 1652 1653 assert((Converted.size() == Template->getTemplateParameters()->size()) && 1654 "Converted template argument list is too short!"); 1655 1656 QualType CanonType; 1657 1658 if (Name.isDependent() || 1659 TemplateSpecializationType::anyDependentTemplateArguments( 1660 TemplateArgs)) { 1661 // This class template specialization is a dependent 1662 // type. Therefore, its canonical type is another class template 1663 // specialization type that contains all of the converted 1664 // arguments in canonical form. This ensures that, e.g., A<T> and 1665 // A<T, T> have identical types when A is declared as: 1666 // 1667 // template<typename T, typename U = T> struct A; 1668 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1669 CanonType = Context.getTemplateSpecializationType(CanonName, 1670 Converted.data(), 1671 Converted.size()); 1672 1673 // FIXME: CanonType is not actually the canonical type, and unfortunately 1674 // it is a TemplateSpecializationType that we will never use again. 1675 // In the future, we need to teach getTemplateSpecializationType to only 1676 // build the canonical type and return that to us. 1677 CanonType = Context.getCanonicalType(CanonType); 1678 1679 // This might work out to be a current instantiation, in which 1680 // case the canonical type needs to be the InjectedClassNameType. 1681 // 1682 // TODO: in theory this could be a simple hashtable lookup; most 1683 // changes to CurContext don't change the set of current 1684 // instantiations. 1685 if (isa<ClassTemplateDecl>(Template)) { 1686 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1687 // If we get out to a namespace, we're done. 1688 if (Ctx->isFileContext()) break; 1689 1690 // If this isn't a record, keep looking. 1691 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1692 if (!Record) continue; 1693 1694 // Look for one of the two cases with InjectedClassNameTypes 1695 // and check whether it's the same template. 1696 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1697 !Record->getDescribedClassTemplate()) 1698 continue; 1699 1700 // Fetch the injected class name type and check whether its 1701 // injected type is equal to the type we just built. 1702 QualType ICNT = Context.getTypeDeclType(Record); 1703 QualType Injected = cast<InjectedClassNameType>(ICNT) 1704 ->getInjectedSpecializationType(); 1705 1706 if (CanonType != Injected->getCanonicalTypeInternal()) 1707 continue; 1708 1709 // If so, the canonical type of this TST is the injected 1710 // class name type of the record we just found. 1711 assert(ICNT.isCanonical()); 1712 CanonType = ICNT; 1713 break; 1714 } 1715 } 1716 } else if (ClassTemplateDecl *ClassTemplate 1717 = dyn_cast<ClassTemplateDecl>(Template)) { 1718 // Find the class template specialization declaration that 1719 // corresponds to these arguments. 1720 void *InsertPos = 0; 1721 ClassTemplateSpecializationDecl *Decl 1722 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 1723 InsertPos); 1724 if (!Decl) { 1725 // This is the first time we have referenced this class template 1726 // specialization. Create the canonical declaration and add it to 1727 // the set of specializations. 1728 Decl = ClassTemplateSpecializationDecl::Create(Context, 1729 ClassTemplate->getTemplatedDecl()->getTagKind(), 1730 ClassTemplate->getDeclContext(), 1731 ClassTemplate->getLocation(), 1732 ClassTemplate, 1733 Converted.data(), 1734 Converted.size(), 0); 1735 ClassTemplate->AddSpecialization(Decl, InsertPos); 1736 Decl->setLexicalDeclContext(CurContext); 1737 } 1738 1739 CanonType = Context.getTypeDeclType(Decl); 1740 assert(isa<RecordType>(CanonType) && 1741 "type of non-dependent specialization is not a RecordType"); 1742 } 1743 1744 // Build the fully-sugared type for this class template 1745 // specialization, which refers back to the class template 1746 // specialization we created or found. 1747 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1748} 1749 1750TypeResult 1751Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1752 SourceLocation LAngleLoc, 1753 ASTTemplateArgsPtr TemplateArgsIn, 1754 SourceLocation RAngleLoc) { 1755 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1756 1757 // Translate the parser's template argument list in our AST format. 1758 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1759 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1760 1761 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1762 TemplateArgsIn.release(); 1763 1764 if (Result.isNull()) 1765 return true; 1766 1767 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1768 TemplateSpecializationTypeLoc TL 1769 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1770 TL.setTemplateNameLoc(TemplateLoc); 1771 TL.setLAngleLoc(LAngleLoc); 1772 TL.setRAngleLoc(RAngleLoc); 1773 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1774 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1775 1776 return CreateParsedType(Result, DI); 1777} 1778 1779TypeResult Sema::ActOnTagTemplateIdType(CXXScopeSpec &SS, 1780 TypeResult TypeResult, 1781 TagUseKind TUK, 1782 TypeSpecifierType TagSpec, 1783 SourceLocation TagLoc) { 1784 if (TypeResult.isInvalid()) 1785 return ::TypeResult(); 1786 1787 TypeSourceInfo *DI; 1788 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1789 1790 // Verify the tag specifier. 1791 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1792 1793 if (const RecordType *RT = Type->getAs<RecordType>()) { 1794 RecordDecl *D = RT->getDecl(); 1795 1796 IdentifierInfo *Id = D->getIdentifier(); 1797 assert(Id && "templated class must have an identifier"); 1798 1799 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1800 Diag(TagLoc, diag::err_use_with_wrong_tag) 1801 << Type 1802 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1803 Diag(D->getLocation(), diag::note_previous_use); 1804 } 1805 } 1806 1807 ElaboratedTypeKeyword Keyword 1808 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1809 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1810 1811 TypeSourceInfo *ElabDI = Context.CreateTypeSourceInfo(ElabType); 1812 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(ElabDI->getTypeLoc()); 1813 TL.setKeywordLoc(TagLoc); 1814 TL.setQualifierRange(SS.getRange()); 1815 TL.getNamedTypeLoc().initializeFullCopy(DI->getTypeLoc()); 1816 return CreateParsedType(ElabType, ElabDI); 1817} 1818 1819ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1820 LookupResult &R, 1821 bool RequiresADL, 1822 const TemplateArgumentListInfo &TemplateArgs) { 1823 // FIXME: Can we do any checking at this point? I guess we could check the 1824 // template arguments that we have against the template name, if the template 1825 // name refers to a single template. That's not a terribly common case, 1826 // though. 1827 // foo<int> could identify a single function unambiguously 1828 // This approach does NOT work, since f<int>(1); 1829 // gets resolved prior to resorting to overload resolution 1830 // i.e., template<class T> void f(double); 1831 // vs template<class T, class U> void f(U); 1832 1833 // These should be filtered out by our callers. 1834 assert(!R.empty() && "empty lookup results when building templateid"); 1835 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1836 1837 NestedNameSpecifier *Qualifier = 0; 1838 SourceRange QualifierRange; 1839 if (SS.isSet()) { 1840 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1841 QualifierRange = SS.getRange(); 1842 } 1843 1844 // We don't want lookup warnings at this point. 1845 R.suppressDiagnostics(); 1846 1847 UnresolvedLookupExpr *ULE 1848 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 1849 Qualifier, QualifierRange, 1850 R.getLookupNameInfo(), 1851 RequiresADL, TemplateArgs, 1852 R.begin(), R.end()); 1853 1854 return Owned(ULE); 1855} 1856 1857// We actually only call this from template instantiation. 1858ExprResult 1859Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1860 const DeclarationNameInfo &NameInfo, 1861 const TemplateArgumentListInfo &TemplateArgs) { 1862 DeclContext *DC; 1863 if (!(DC = computeDeclContext(SS, false)) || 1864 DC->isDependentContext() || 1865 RequireCompleteDeclContext(SS, DC)) 1866 return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs); 1867 1868 bool MemberOfUnknownSpecialization; 1869 LookupResult R(*this, NameInfo, LookupOrdinaryName); 1870 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1871 MemberOfUnknownSpecialization); 1872 1873 if (R.isAmbiguous()) 1874 return ExprError(); 1875 1876 if (R.empty()) { 1877 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 1878 << NameInfo.getName() << SS.getRange(); 1879 return ExprError(); 1880 } 1881 1882 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1883 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 1884 << (NestedNameSpecifier*) SS.getScopeRep() 1885 << NameInfo.getName() << SS.getRange(); 1886 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1887 return ExprError(); 1888 } 1889 1890 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1891} 1892 1893/// \brief Form a dependent template name. 1894/// 1895/// This action forms a dependent template name given the template 1896/// name and its (presumably dependent) scope specifier. For 1897/// example, given "MetaFun::template apply", the scope specifier \p 1898/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1899/// of the "template" keyword, and "apply" is the \p Name. 1900TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 1901 SourceLocation TemplateKWLoc, 1902 CXXScopeSpec &SS, 1903 UnqualifiedId &Name, 1904 ParsedType ObjectType, 1905 bool EnteringContext, 1906 TemplateTy &Result) { 1907 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() && 1908 !getLangOptions().CPlusPlus0x) 1909 Diag(TemplateKWLoc, diag::ext_template_outside_of_template) 1910 << FixItHint::CreateRemoval(TemplateKWLoc); 1911 1912 DeclContext *LookupCtx = 0; 1913 if (SS.isSet()) 1914 LookupCtx = computeDeclContext(SS, EnteringContext); 1915 if (!LookupCtx && ObjectType) 1916 LookupCtx = computeDeclContext(ObjectType.get()); 1917 if (LookupCtx) { 1918 // C++0x [temp.names]p5: 1919 // If a name prefixed by the keyword template is not the name of 1920 // a template, the program is ill-formed. [Note: the keyword 1921 // template may not be applied to non-template members of class 1922 // templates. -end note ] [ Note: as is the case with the 1923 // typename prefix, the template prefix is allowed in cases 1924 // where it is not strictly necessary; i.e., when the 1925 // nested-name-specifier or the expression on the left of the -> 1926 // or . is not dependent on a template-parameter, or the use 1927 // does not appear in the scope of a template. -end note] 1928 // 1929 // Note: C++03 was more strict here, because it banned the use of 1930 // the "template" keyword prior to a template-name that was not a 1931 // dependent name. C++ DR468 relaxed this requirement (the 1932 // "template" keyword is now permitted). We follow the C++0x 1933 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1934 bool MemberOfUnknownSpecialization; 1935 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 1936 ObjectType, EnteringContext, Result, 1937 MemberOfUnknownSpecialization); 1938 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1939 isa<CXXRecordDecl>(LookupCtx) && 1940 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1941 // This is a dependent template. Handle it below. 1942 } else if (TNK == TNK_Non_template) { 1943 Diag(Name.getSourceRange().getBegin(), 1944 diag::err_template_kw_refers_to_non_template) 1945 << GetNameFromUnqualifiedId(Name).getName() 1946 << Name.getSourceRange() 1947 << TemplateKWLoc; 1948 return TNK_Non_template; 1949 } else { 1950 // We found something; return it. 1951 return TNK; 1952 } 1953 } 1954 1955 NestedNameSpecifier *Qualifier 1956 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1957 1958 switch (Name.getKind()) { 1959 case UnqualifiedId::IK_Identifier: 1960 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1961 Name.Identifier)); 1962 return TNK_Dependent_template_name; 1963 1964 case UnqualifiedId::IK_OperatorFunctionId: 1965 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1966 Name.OperatorFunctionId.Operator)); 1967 return TNK_Dependent_template_name; 1968 1969 case UnqualifiedId::IK_LiteralOperatorId: 1970 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1971 1972 default: 1973 break; 1974 } 1975 1976 Diag(Name.getSourceRange().getBegin(), 1977 diag::err_template_kw_refers_to_non_template) 1978 << GetNameFromUnqualifiedId(Name).getName() 1979 << Name.getSourceRange() 1980 << TemplateKWLoc; 1981 return TNK_Non_template; 1982} 1983 1984bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1985 const TemplateArgumentLoc &AL, 1986 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 1987 const TemplateArgument &Arg = AL.getArgument(); 1988 1989 // Check template type parameter. 1990 switch(Arg.getKind()) { 1991 case TemplateArgument::Type: 1992 // C++ [temp.arg.type]p1: 1993 // A template-argument for a template-parameter which is a 1994 // type shall be a type-id. 1995 break; 1996 case TemplateArgument::Template: { 1997 // We have a template type parameter but the template argument 1998 // is a template without any arguments. 1999 SourceRange SR = AL.getSourceRange(); 2000 TemplateName Name = Arg.getAsTemplate(); 2001 Diag(SR.getBegin(), diag::err_template_missing_args) 2002 << Name << SR; 2003 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2004 Diag(Decl->getLocation(), diag::note_template_decl_here); 2005 2006 return true; 2007 } 2008 default: { 2009 // We have a template type parameter but the template argument 2010 // is not a type. 2011 SourceRange SR = AL.getSourceRange(); 2012 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2013 Diag(Param->getLocation(), diag::note_template_param_here); 2014 2015 return true; 2016 } 2017 } 2018 2019 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2020 return true; 2021 2022 // Add the converted template type argument. 2023 Converted.push_back( 2024 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 2025 return false; 2026} 2027 2028/// \brief Substitute template arguments into the default template argument for 2029/// the given template type parameter. 2030/// 2031/// \param SemaRef the semantic analysis object for which we are performing 2032/// the substitution. 2033/// 2034/// \param Template the template that we are synthesizing template arguments 2035/// for. 2036/// 2037/// \param TemplateLoc the location of the template name that started the 2038/// template-id we are checking. 2039/// 2040/// \param RAngleLoc the location of the right angle bracket ('>') that 2041/// terminates the template-id. 2042/// 2043/// \param Param the template template parameter whose default we are 2044/// substituting into. 2045/// 2046/// \param Converted the list of template arguments provided for template 2047/// parameters that precede \p Param in the template parameter list. 2048/// 2049/// \returns the substituted template argument, or NULL if an error occurred. 2050static TypeSourceInfo * 2051SubstDefaultTemplateArgument(Sema &SemaRef, 2052 TemplateDecl *Template, 2053 SourceLocation TemplateLoc, 2054 SourceLocation RAngleLoc, 2055 TemplateTypeParmDecl *Param, 2056 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2057 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2058 2059 // If the argument type is dependent, instantiate it now based 2060 // on the previously-computed template arguments. 2061 if (ArgType->getType()->isDependentType()) { 2062 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2063 Converted.data(), Converted.size()); 2064 2065 MultiLevelTemplateArgumentList AllTemplateArgs 2066 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2067 2068 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2069 Template, Converted.data(), 2070 Converted.size(), 2071 SourceRange(TemplateLoc, RAngleLoc)); 2072 2073 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2074 Param->getDefaultArgumentLoc(), 2075 Param->getDeclName()); 2076 } 2077 2078 return ArgType; 2079} 2080 2081/// \brief Substitute template arguments into the default template argument for 2082/// the given non-type template parameter. 2083/// 2084/// \param SemaRef the semantic analysis object for which we are performing 2085/// the substitution. 2086/// 2087/// \param Template the template that we are synthesizing template arguments 2088/// for. 2089/// 2090/// \param TemplateLoc the location of the template name that started the 2091/// template-id we are checking. 2092/// 2093/// \param RAngleLoc the location of the right angle bracket ('>') that 2094/// terminates the template-id. 2095/// 2096/// \param Param the non-type template parameter whose default we are 2097/// substituting into. 2098/// 2099/// \param Converted the list of template arguments provided for template 2100/// parameters that precede \p Param in the template parameter list. 2101/// 2102/// \returns the substituted template argument, or NULL if an error occurred. 2103static ExprResult 2104SubstDefaultTemplateArgument(Sema &SemaRef, 2105 TemplateDecl *Template, 2106 SourceLocation TemplateLoc, 2107 SourceLocation RAngleLoc, 2108 NonTypeTemplateParmDecl *Param, 2109 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2110 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2111 Converted.data(), Converted.size()); 2112 2113 MultiLevelTemplateArgumentList AllTemplateArgs 2114 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2115 2116 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2117 Template, Converted.data(), 2118 Converted.size(), 2119 SourceRange(TemplateLoc, RAngleLoc)); 2120 2121 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2122} 2123 2124/// \brief Substitute template arguments into the default template argument for 2125/// the given template template parameter. 2126/// 2127/// \param SemaRef the semantic analysis object for which we are performing 2128/// the substitution. 2129/// 2130/// \param Template the template that we are synthesizing template arguments 2131/// for. 2132/// 2133/// \param TemplateLoc the location of the template name that started the 2134/// template-id we are checking. 2135/// 2136/// \param RAngleLoc the location of the right angle bracket ('>') that 2137/// terminates the template-id. 2138/// 2139/// \param Param the template template parameter whose default we are 2140/// substituting into. 2141/// 2142/// \param Converted the list of template arguments provided for template 2143/// parameters that precede \p Param in the template parameter list. 2144/// 2145/// \returns the substituted template argument, or NULL if an error occurred. 2146static TemplateName 2147SubstDefaultTemplateArgument(Sema &SemaRef, 2148 TemplateDecl *Template, 2149 SourceLocation TemplateLoc, 2150 SourceLocation RAngleLoc, 2151 TemplateTemplateParmDecl *Param, 2152 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2153 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2154 Converted.data(), Converted.size()); 2155 2156 MultiLevelTemplateArgumentList AllTemplateArgs 2157 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2158 2159 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2160 Template, Converted.data(), 2161 Converted.size(), 2162 SourceRange(TemplateLoc, RAngleLoc)); 2163 2164 return SemaRef.SubstTemplateName( 2165 Param->getDefaultArgument().getArgument().getAsTemplate(), 2166 Param->getDefaultArgument().getTemplateNameLoc(), 2167 AllTemplateArgs); 2168} 2169 2170/// \brief If the given template parameter has a default template 2171/// argument, substitute into that default template argument and 2172/// return the corresponding template argument. 2173TemplateArgumentLoc 2174Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2175 SourceLocation TemplateLoc, 2176 SourceLocation RAngleLoc, 2177 Decl *Param, 2178 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2179 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2180 if (!TypeParm->hasDefaultArgument()) 2181 return TemplateArgumentLoc(); 2182 2183 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2184 TemplateLoc, 2185 RAngleLoc, 2186 TypeParm, 2187 Converted); 2188 if (DI) 2189 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2190 2191 return TemplateArgumentLoc(); 2192 } 2193 2194 if (NonTypeTemplateParmDecl *NonTypeParm 2195 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2196 if (!NonTypeParm->hasDefaultArgument()) 2197 return TemplateArgumentLoc(); 2198 2199 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2200 TemplateLoc, 2201 RAngleLoc, 2202 NonTypeParm, 2203 Converted); 2204 if (Arg.isInvalid()) 2205 return TemplateArgumentLoc(); 2206 2207 Expr *ArgE = Arg.takeAs<Expr>(); 2208 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2209 } 2210 2211 TemplateTemplateParmDecl *TempTempParm 2212 = cast<TemplateTemplateParmDecl>(Param); 2213 if (!TempTempParm->hasDefaultArgument()) 2214 return TemplateArgumentLoc(); 2215 2216 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2217 TemplateLoc, 2218 RAngleLoc, 2219 TempTempParm, 2220 Converted); 2221 if (TName.isNull()) 2222 return TemplateArgumentLoc(); 2223 2224 return TemplateArgumentLoc(TemplateArgument(TName), 2225 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2226 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2227} 2228 2229/// \brief Check that the given template argument corresponds to the given 2230/// template parameter. 2231/// 2232/// \param Param The template parameter against which the argument will be 2233/// checked. 2234/// 2235/// \param Arg The template argument. 2236/// 2237/// \param Template The template in which the template argument resides. 2238/// 2239/// \param TemplateLoc The location of the template name for the template 2240/// whose argument list we're matching. 2241/// 2242/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2243/// the template argument list. 2244/// 2245/// \param ArgumentPackIndex The index into the argument pack where this 2246/// argument will be placed. Only valid if the parameter is a parameter pack. 2247/// 2248/// \param Converted The checked, converted argument will be added to the 2249/// end of this small vector. 2250/// 2251/// \param CTAK Describes how we arrived at this particular template argument: 2252/// explicitly written, deduced, etc. 2253/// 2254/// \returns true on error, false otherwise. 2255bool Sema::CheckTemplateArgument(NamedDecl *Param, 2256 const TemplateArgumentLoc &Arg, 2257 NamedDecl *Template, 2258 SourceLocation TemplateLoc, 2259 SourceLocation RAngleLoc, 2260 unsigned ArgumentPackIndex, 2261 llvm::SmallVectorImpl<TemplateArgument> &Converted, 2262 CheckTemplateArgumentKind CTAK) { 2263 // Check template type parameters. 2264 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2265 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2266 2267 // Check non-type template parameters. 2268 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2269 // Do substitution on the type of the non-type template parameter 2270 // with the template arguments we've seen thus far. But if the 2271 // template has a dependent context then we cannot substitute yet. 2272 QualType NTTPType = NTTP->getType(); 2273 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2274 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2275 2276 if (NTTPType->isDependentType() && 2277 !isa<TemplateTemplateParmDecl>(Template) && 2278 !Template->getDeclContext()->isDependentContext()) { 2279 // Do substitution on the type of the non-type template parameter. 2280 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2281 NTTP, Converted.data(), Converted.size(), 2282 SourceRange(TemplateLoc, RAngleLoc)); 2283 2284 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2285 Converted.data(), Converted.size()); 2286 NTTPType = SubstType(NTTPType, 2287 MultiLevelTemplateArgumentList(TemplateArgs), 2288 NTTP->getLocation(), 2289 NTTP->getDeclName()); 2290 // If that worked, check the non-type template parameter type 2291 // for validity. 2292 if (!NTTPType.isNull()) 2293 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2294 NTTP->getLocation()); 2295 if (NTTPType.isNull()) 2296 return true; 2297 } 2298 2299 switch (Arg.getArgument().getKind()) { 2300 case TemplateArgument::Null: 2301 assert(false && "Should never see a NULL template argument here"); 2302 return true; 2303 2304 case TemplateArgument::Expression: { 2305 Expr *E = Arg.getArgument().getAsExpr(); 2306 TemplateArgument Result; 2307 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2308 return true; 2309 2310 Converted.push_back(Result); 2311 break; 2312 } 2313 2314 case TemplateArgument::Declaration: 2315 case TemplateArgument::Integral: 2316 // We've already checked this template argument, so just copy 2317 // it to the list of converted arguments. 2318 Converted.push_back(Arg.getArgument()); 2319 break; 2320 2321 case TemplateArgument::Template: 2322 case TemplateArgument::TemplateExpansion: 2323 // We were given a template template argument. It may not be ill-formed; 2324 // see below. 2325 if (DependentTemplateName *DTN 2326 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2327 .getAsDependentTemplateName()) { 2328 // We have a template argument such as \c T::template X, which we 2329 // parsed as a template template argument. However, since we now 2330 // know that we need a non-type template argument, convert this 2331 // template name into an expression. 2332 2333 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2334 Arg.getTemplateNameLoc()); 2335 2336 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2337 DTN->getQualifier(), 2338 Arg.getTemplateQualifierRange(), 2339 NameInfo); 2340 2341 // If we parsed the template argument as a pack expansion, create a 2342 // pack expansion expression. 2343 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2344 ExprResult Expansion = ActOnPackExpansion(E, 2345 Arg.getTemplateEllipsisLoc()); 2346 if (Expansion.isInvalid()) 2347 return true; 2348 2349 E = Expansion.get(); 2350 } 2351 2352 TemplateArgument Result; 2353 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2354 return true; 2355 2356 Converted.push_back(Result); 2357 break; 2358 } 2359 2360 // We have a template argument that actually does refer to a class 2361 // template, template alias, or template template parameter, and 2362 // therefore cannot be a non-type template argument. 2363 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2364 << Arg.getSourceRange(); 2365 2366 Diag(Param->getLocation(), diag::note_template_param_here); 2367 return true; 2368 2369 case TemplateArgument::Type: { 2370 // We have a non-type template parameter but the template 2371 // argument is a type. 2372 2373 // C++ [temp.arg]p2: 2374 // In a template-argument, an ambiguity between a type-id and 2375 // an expression is resolved to a type-id, regardless of the 2376 // form of the corresponding template-parameter. 2377 // 2378 // We warn specifically about this case, since it can be rather 2379 // confusing for users. 2380 QualType T = Arg.getArgument().getAsType(); 2381 SourceRange SR = Arg.getSourceRange(); 2382 if (T->isFunctionType()) 2383 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2384 else 2385 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2386 Diag(Param->getLocation(), diag::note_template_param_here); 2387 return true; 2388 } 2389 2390 case TemplateArgument::Pack: 2391 llvm_unreachable("Caller must expand template argument packs"); 2392 break; 2393 } 2394 2395 return false; 2396 } 2397 2398 2399 // Check template template parameters. 2400 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2401 2402 // Substitute into the template parameter list of the template 2403 // template parameter, since previously-supplied template arguments 2404 // may appear within the template template parameter. 2405 { 2406 // Set up a template instantiation context. 2407 LocalInstantiationScope Scope(*this); 2408 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2409 TempParm, Converted.data(), Converted.size(), 2410 SourceRange(TemplateLoc, RAngleLoc)); 2411 2412 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2413 Converted.data(), Converted.size()); 2414 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2415 SubstDecl(TempParm, CurContext, 2416 MultiLevelTemplateArgumentList(TemplateArgs))); 2417 if (!TempParm) 2418 return true; 2419 } 2420 2421 switch (Arg.getArgument().getKind()) { 2422 case TemplateArgument::Null: 2423 assert(false && "Should never see a NULL template argument here"); 2424 return true; 2425 2426 case TemplateArgument::Template: 2427 case TemplateArgument::TemplateExpansion: 2428 if (CheckTemplateArgument(TempParm, Arg)) 2429 return true; 2430 2431 Converted.push_back(Arg.getArgument()); 2432 break; 2433 2434 case TemplateArgument::Expression: 2435 case TemplateArgument::Type: 2436 // We have a template template parameter but the template 2437 // argument does not refer to a template. 2438 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2439 return true; 2440 2441 case TemplateArgument::Declaration: 2442 llvm_unreachable( 2443 "Declaration argument with template template parameter"); 2444 break; 2445 case TemplateArgument::Integral: 2446 llvm_unreachable( 2447 "Integral argument with template template parameter"); 2448 break; 2449 2450 case TemplateArgument::Pack: 2451 llvm_unreachable("Caller must expand template argument packs"); 2452 break; 2453 } 2454 2455 return false; 2456} 2457 2458/// \brief Check that the given template argument list is well-formed 2459/// for specializing the given template. 2460bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2461 SourceLocation TemplateLoc, 2462 const TemplateArgumentListInfo &TemplateArgs, 2463 bool PartialTemplateArgs, 2464 llvm::SmallVectorImpl<TemplateArgument> &Converted) { 2465 TemplateParameterList *Params = Template->getTemplateParameters(); 2466 unsigned NumParams = Params->size(); 2467 unsigned NumArgs = TemplateArgs.size(); 2468 bool Invalid = false; 2469 2470 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2471 2472 bool HasParameterPack = 2473 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2474 2475 if ((NumArgs > NumParams && !HasParameterPack) || 2476 (NumArgs < Params->getMinRequiredArguments() && 2477 !PartialTemplateArgs)) { 2478 // FIXME: point at either the first arg beyond what we can handle, 2479 // or the '>', depending on whether we have too many or too few 2480 // arguments. 2481 SourceRange Range; 2482 if (NumArgs > NumParams) 2483 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2484 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2485 << (NumArgs > NumParams) 2486 << (isa<ClassTemplateDecl>(Template)? 0 : 2487 isa<FunctionTemplateDecl>(Template)? 1 : 2488 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2489 << Template << Range; 2490 Diag(Template->getLocation(), diag::note_template_decl_here) 2491 << Params->getSourceRange(); 2492 Invalid = true; 2493 } 2494 2495 // C++ [temp.arg]p1: 2496 // [...] The type and form of each template-argument specified in 2497 // a template-id shall match the type and form specified for the 2498 // corresponding parameter declared by the template in its 2499 // template-parameter-list. 2500 llvm::SmallVector<TemplateArgument, 2> ArgumentPack; 2501 TemplateParameterList::iterator Param = Params->begin(), 2502 ParamEnd = Params->end(); 2503 unsigned ArgIdx = 0; 2504 LocalInstantiationScope InstScope(*this, true); 2505 while (Param != ParamEnd) { 2506 if (ArgIdx > NumArgs && PartialTemplateArgs) 2507 break; 2508 2509 if (ArgIdx < NumArgs) { 2510 // If we have an expanded parameter pack, make sure we don't have too 2511 // many arguments. 2512 if (NonTypeTemplateParmDecl *NTTP 2513 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2514 if (NTTP->isExpandedParameterPack() && 2515 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 2516 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2517 << true 2518 << (isa<ClassTemplateDecl>(Template)? 0 : 2519 isa<FunctionTemplateDecl>(Template)? 1 : 2520 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2521 << Template; 2522 Diag(Template->getLocation(), diag::note_template_decl_here) 2523 << Params->getSourceRange(); 2524 return true; 2525 } 2526 } 2527 2528 // Check the template argument we were given. 2529 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2530 TemplateLoc, RAngleLoc, 2531 ArgumentPack.size(), Converted)) 2532 return true; 2533 2534 if ((*Param)->isTemplateParameterPack()) { 2535 // The template parameter was a template parameter pack, so take the 2536 // deduced argument and place it on the argument pack. Note that we 2537 // stay on the same template parameter so that we can deduce more 2538 // arguments. 2539 ArgumentPack.push_back(Converted.back()); 2540 Converted.pop_back(); 2541 } else { 2542 // Move to the next template parameter. 2543 ++Param; 2544 } 2545 ++ArgIdx; 2546 continue; 2547 } 2548 2549 // If we have a template parameter pack with no more corresponding 2550 // arguments, just break out now and we'll fill in the argument pack below. 2551 if ((*Param)->isTemplateParameterPack()) 2552 break; 2553 2554 // We have a default template argument that we will use. 2555 TemplateArgumentLoc Arg; 2556 2557 // Retrieve the default template argument from the template 2558 // parameter. For each kind of template parameter, we substitute the 2559 // template arguments provided thus far and any "outer" template arguments 2560 // (when the template parameter was part of a nested template) into 2561 // the default argument. 2562 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2563 if (!TTP->hasDefaultArgument()) { 2564 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2565 break; 2566 } 2567 2568 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2569 Template, 2570 TemplateLoc, 2571 RAngleLoc, 2572 TTP, 2573 Converted); 2574 if (!ArgType) 2575 return true; 2576 2577 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2578 ArgType); 2579 } else if (NonTypeTemplateParmDecl *NTTP 2580 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2581 if (!NTTP->hasDefaultArgument()) { 2582 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2583 break; 2584 } 2585 2586 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 2587 TemplateLoc, 2588 RAngleLoc, 2589 NTTP, 2590 Converted); 2591 if (E.isInvalid()) 2592 return true; 2593 2594 Expr *Ex = E.takeAs<Expr>(); 2595 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2596 } else { 2597 TemplateTemplateParmDecl *TempParm 2598 = cast<TemplateTemplateParmDecl>(*Param); 2599 2600 if (!TempParm->hasDefaultArgument()) { 2601 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2602 break; 2603 } 2604 2605 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2606 TemplateLoc, 2607 RAngleLoc, 2608 TempParm, 2609 Converted); 2610 if (Name.isNull()) 2611 return true; 2612 2613 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2614 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2615 TempParm->getDefaultArgument().getTemplateNameLoc()); 2616 } 2617 2618 // Introduce an instantiation record that describes where we are using 2619 // the default template argument. 2620 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2621 Converted.data(), Converted.size(), 2622 SourceRange(TemplateLoc, RAngleLoc)); 2623 2624 // Check the default template argument. 2625 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2626 RAngleLoc, 0, Converted)) 2627 return true; 2628 2629 // Move to the next template parameter and argument. 2630 ++Param; 2631 ++ArgIdx; 2632 } 2633 2634 // Form argument packs for each of the parameter packs remaining. 2635 while (Param != ParamEnd) { 2636 // If we're checking a partial list of template arguments, don't fill 2637 // in arguments for non-template parameter packs. 2638 2639 if ((*Param)->isTemplateParameterPack()) { 2640 if (PartialTemplateArgs && ArgumentPack.empty()) { 2641 Converted.push_back(TemplateArgument()); 2642 } else if (ArgumentPack.empty()) 2643 Converted.push_back(TemplateArgument(0, 0)); 2644 else { 2645 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 2646 ArgumentPack.data(), 2647 ArgumentPack.size())); 2648 ArgumentPack.clear(); 2649 } 2650 } 2651 2652 ++Param; 2653 } 2654 2655 return Invalid; 2656} 2657 2658namespace { 2659 class UnnamedLocalNoLinkageFinder 2660 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 2661 { 2662 Sema &S; 2663 SourceRange SR; 2664 2665 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 2666 2667 public: 2668 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 2669 2670 bool Visit(QualType T) { 2671 return inherited::Visit(T.getTypePtr()); 2672 } 2673 2674#define TYPE(Class, Parent) \ 2675 bool Visit##Class##Type(const Class##Type *); 2676#define ABSTRACT_TYPE(Class, Parent) \ 2677 bool Visit##Class##Type(const Class##Type *) { return false; } 2678#define NON_CANONICAL_TYPE(Class, Parent) \ 2679 bool Visit##Class##Type(const Class##Type *) { return false; } 2680#include "clang/AST/TypeNodes.def" 2681 2682 bool VisitTagDecl(const TagDecl *Tag); 2683 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 2684 }; 2685} 2686 2687bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 2688 return false; 2689} 2690 2691bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 2692 return Visit(T->getElementType()); 2693} 2694 2695bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 2696 return Visit(T->getPointeeType()); 2697} 2698 2699bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 2700 const BlockPointerType* T) { 2701 return Visit(T->getPointeeType()); 2702} 2703 2704bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 2705 const LValueReferenceType* T) { 2706 return Visit(T->getPointeeType()); 2707} 2708 2709bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 2710 const RValueReferenceType* T) { 2711 return Visit(T->getPointeeType()); 2712} 2713 2714bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 2715 const MemberPointerType* T) { 2716 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 2717} 2718 2719bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 2720 const ConstantArrayType* T) { 2721 return Visit(T->getElementType()); 2722} 2723 2724bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 2725 const IncompleteArrayType* T) { 2726 return Visit(T->getElementType()); 2727} 2728 2729bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 2730 const VariableArrayType* T) { 2731 return Visit(T->getElementType()); 2732} 2733 2734bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 2735 const DependentSizedArrayType* T) { 2736 return Visit(T->getElementType()); 2737} 2738 2739bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 2740 const DependentSizedExtVectorType* T) { 2741 return Visit(T->getElementType()); 2742} 2743 2744bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 2745 return Visit(T->getElementType()); 2746} 2747 2748bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 2749 return Visit(T->getElementType()); 2750} 2751 2752bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 2753 const FunctionProtoType* T) { 2754 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 2755 AEnd = T->arg_type_end(); 2756 A != AEnd; ++A) { 2757 if (Visit(*A)) 2758 return true; 2759 } 2760 2761 return Visit(T->getResultType()); 2762} 2763 2764bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 2765 const FunctionNoProtoType* T) { 2766 return Visit(T->getResultType()); 2767} 2768 2769bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 2770 const UnresolvedUsingType*) { 2771 return false; 2772} 2773 2774bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 2775 return false; 2776} 2777 2778bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 2779 return Visit(T->getUnderlyingType()); 2780} 2781 2782bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 2783 return false; 2784} 2785 2786bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 2787 return Visit(T->getDeducedType()); 2788} 2789 2790bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 2791 return VisitTagDecl(T->getDecl()); 2792} 2793 2794bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 2795 return VisitTagDecl(T->getDecl()); 2796} 2797 2798bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 2799 const TemplateTypeParmType*) { 2800 return false; 2801} 2802 2803bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 2804 const SubstTemplateTypeParmPackType *) { 2805 return false; 2806} 2807 2808bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 2809 const TemplateSpecializationType*) { 2810 return false; 2811} 2812 2813bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 2814 const InjectedClassNameType* T) { 2815 return VisitTagDecl(T->getDecl()); 2816} 2817 2818bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 2819 const DependentNameType* T) { 2820 return VisitNestedNameSpecifier(T->getQualifier()); 2821} 2822 2823bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 2824 const DependentTemplateSpecializationType* T) { 2825 return VisitNestedNameSpecifier(T->getQualifier()); 2826} 2827 2828bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 2829 const PackExpansionType* T) { 2830 return Visit(T->getPattern()); 2831} 2832 2833bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 2834 return false; 2835} 2836 2837bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 2838 const ObjCInterfaceType *) { 2839 return false; 2840} 2841 2842bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 2843 const ObjCObjectPointerType *) { 2844 return false; 2845} 2846 2847bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 2848 if (Tag->getDeclContext()->isFunctionOrMethod()) { 2849 S.Diag(SR.getBegin(), diag::ext_template_arg_local_type) 2850 << S.Context.getTypeDeclType(Tag) << SR; 2851 return true; 2852 } 2853 2854 if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) { 2855 S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR; 2856 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 2857 return true; 2858 } 2859 2860 return false; 2861} 2862 2863bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 2864 NestedNameSpecifier *NNS) { 2865 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 2866 return true; 2867 2868 switch (NNS->getKind()) { 2869 case NestedNameSpecifier::Identifier: 2870 case NestedNameSpecifier::Namespace: 2871 case NestedNameSpecifier::NamespaceAlias: 2872 case NestedNameSpecifier::Global: 2873 return false; 2874 2875 case NestedNameSpecifier::TypeSpec: 2876 case NestedNameSpecifier::TypeSpecWithTemplate: 2877 return Visit(QualType(NNS->getAsType(), 0)); 2878 } 2879 return false; 2880} 2881 2882 2883/// \brief Check a template argument against its corresponding 2884/// template type parameter. 2885/// 2886/// This routine implements the semantics of C++ [temp.arg.type]. It 2887/// returns true if an error occurred, and false otherwise. 2888bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2889 TypeSourceInfo *ArgInfo) { 2890 assert(ArgInfo && "invalid TypeSourceInfo"); 2891 QualType Arg = ArgInfo->getType(); 2892 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2893 2894 if (Arg->isVariablyModifiedType()) { 2895 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 2896 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2897 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2898 } 2899 2900 // C++03 [temp.arg.type]p2: 2901 // A local type, a type with no linkage, an unnamed type or a type 2902 // compounded from any of these types shall not be used as a 2903 // template-argument for a template type-parameter. 2904 // 2905 // C++0x allows these, and even in C++03 we allow them as an extension with 2906 // a warning. 2907 if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) { 2908 UnnamedLocalNoLinkageFinder Finder(*this, SR); 2909 (void)Finder.Visit(Context.getCanonicalType(Arg)); 2910 } 2911 2912 return false; 2913} 2914 2915/// \brief Checks whether the given template argument is the address 2916/// of an object or function according to C++ [temp.arg.nontype]p1. 2917static bool 2918CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2919 NonTypeTemplateParmDecl *Param, 2920 QualType ParamType, 2921 Expr *ArgIn, 2922 TemplateArgument &Converted) { 2923 bool Invalid = false; 2924 Expr *Arg = ArgIn; 2925 QualType ArgType = Arg->getType(); 2926 2927 // See through any implicit casts we added to fix the type. 2928 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2929 Arg = Cast->getSubExpr(); 2930 2931 // C++ [temp.arg.nontype]p1: 2932 // 2933 // A template-argument for a non-type, non-template 2934 // template-parameter shall be one of: [...] 2935 // 2936 // -- the address of an object or function with external 2937 // linkage, including function templates and function 2938 // template-ids but excluding non-static class members, 2939 // expressed as & id-expression where the & is optional if 2940 // the name refers to a function or array, or if the 2941 // corresponding template-parameter is a reference; or 2942 DeclRefExpr *DRE = 0; 2943 2944 // In C++98/03 mode, give an extension warning on any extra parentheses. 2945 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 2946 bool ExtraParens = false; 2947 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2948 if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) { 2949 S.Diag(Arg->getSourceRange().getBegin(), 2950 diag::ext_template_arg_extra_parens) 2951 << Arg->getSourceRange(); 2952 ExtraParens = true; 2953 } 2954 2955 Arg = Parens->getSubExpr(); 2956 } 2957 2958 bool AddressTaken = false; 2959 SourceLocation AddrOpLoc; 2960 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2961 if (UnOp->getOpcode() == UO_AddrOf) { 2962 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2963 AddressTaken = true; 2964 AddrOpLoc = UnOp->getOperatorLoc(); 2965 } 2966 } else 2967 DRE = dyn_cast<DeclRefExpr>(Arg); 2968 2969 if (!DRE) { 2970 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2971 << Arg->getSourceRange(); 2972 S.Diag(Param->getLocation(), diag::note_template_param_here); 2973 return true; 2974 } 2975 2976 // Stop checking the precise nature of the argument if it is value dependent, 2977 // it should be checked when instantiated. 2978 if (Arg->isValueDependent()) { 2979 Converted = TemplateArgument(ArgIn); 2980 return false; 2981 } 2982 2983 if (!isa<ValueDecl>(DRE->getDecl())) { 2984 S.Diag(Arg->getSourceRange().getBegin(), 2985 diag::err_template_arg_not_object_or_func_form) 2986 << Arg->getSourceRange(); 2987 S.Diag(Param->getLocation(), diag::note_template_param_here); 2988 return true; 2989 } 2990 2991 NamedDecl *Entity = 0; 2992 2993 // Cannot refer to non-static data members 2994 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2995 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2996 << Field << Arg->getSourceRange(); 2997 S.Diag(Param->getLocation(), diag::note_template_param_here); 2998 return true; 2999 } 3000 3001 // Cannot refer to non-static member functions 3002 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 3003 if (!Method->isStatic()) { 3004 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 3005 << Method << Arg->getSourceRange(); 3006 S.Diag(Param->getLocation(), diag::note_template_param_here); 3007 return true; 3008 } 3009 3010 // Functions must have external linkage. 3011 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3012 if (!isExternalLinkage(Func->getLinkage())) { 3013 S.Diag(Arg->getSourceRange().getBegin(), 3014 diag::err_template_arg_function_not_extern) 3015 << Func << Arg->getSourceRange(); 3016 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 3017 << true; 3018 return true; 3019 } 3020 3021 // Okay: we've named a function with external linkage. 3022 Entity = Func; 3023 3024 // If the template parameter has pointer type, the function decays. 3025 if (ParamType->isPointerType() && !AddressTaken) 3026 ArgType = S.Context.getPointerType(Func->getType()); 3027 else if (AddressTaken && ParamType->isReferenceType()) { 3028 // If we originally had an address-of operator, but the 3029 // parameter has reference type, complain and (if things look 3030 // like they will work) drop the address-of operator. 3031 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3032 ParamType.getNonReferenceType())) { 3033 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3034 << ParamType; 3035 S.Diag(Param->getLocation(), diag::note_template_param_here); 3036 return true; 3037 } 3038 3039 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3040 << ParamType 3041 << FixItHint::CreateRemoval(AddrOpLoc); 3042 S.Diag(Param->getLocation(), diag::note_template_param_here); 3043 3044 ArgType = Func->getType(); 3045 } 3046 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 3047 if (!isExternalLinkage(Var->getLinkage())) { 3048 S.Diag(Arg->getSourceRange().getBegin(), 3049 diag::err_template_arg_object_not_extern) 3050 << Var << Arg->getSourceRange(); 3051 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 3052 << true; 3053 return true; 3054 } 3055 3056 // A value of reference type is not an object. 3057 if (Var->getType()->isReferenceType()) { 3058 S.Diag(Arg->getSourceRange().getBegin(), 3059 diag::err_template_arg_reference_var) 3060 << Var->getType() << Arg->getSourceRange(); 3061 S.Diag(Param->getLocation(), diag::note_template_param_here); 3062 return true; 3063 } 3064 3065 // Okay: we've named an object with external linkage 3066 Entity = Var; 3067 3068 // If the template parameter has pointer type, we must have taken 3069 // the address of this object. 3070 if (ParamType->isReferenceType()) { 3071 if (AddressTaken) { 3072 // If we originally had an address-of operator, but the 3073 // parameter has reference type, complain and (if things look 3074 // like they will work) drop the address-of operator. 3075 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3076 ParamType.getNonReferenceType())) { 3077 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3078 << ParamType; 3079 S.Diag(Param->getLocation(), diag::note_template_param_here); 3080 return true; 3081 } 3082 3083 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3084 << ParamType 3085 << FixItHint::CreateRemoval(AddrOpLoc); 3086 S.Diag(Param->getLocation(), diag::note_template_param_here); 3087 3088 ArgType = Var->getType(); 3089 } 3090 } else if (!AddressTaken && ParamType->isPointerType()) { 3091 if (Var->getType()->isArrayType()) { 3092 // Array-to-pointer decay. 3093 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3094 } else { 3095 // If the template parameter has pointer type but the address of 3096 // this object was not taken, complain and (possibly) recover by 3097 // taking the address of the entity. 3098 ArgType = S.Context.getPointerType(Var->getType()); 3099 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3100 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3101 << ParamType; 3102 S.Diag(Param->getLocation(), diag::note_template_param_here); 3103 return true; 3104 } 3105 3106 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3107 << ParamType 3108 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3109 3110 S.Diag(Param->getLocation(), diag::note_template_param_here); 3111 } 3112 } 3113 } else { 3114 // We found something else, but we don't know specifically what it is. 3115 S.Diag(Arg->getSourceRange().getBegin(), 3116 diag::err_template_arg_not_object_or_func) 3117 << Arg->getSourceRange(); 3118 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3119 return true; 3120 } 3121 3122 if (ParamType->isPointerType() && 3123 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3124 S.IsQualificationConversion(ArgType, ParamType, false)) { 3125 // For pointer-to-object types, qualification conversions are 3126 // permitted. 3127 } else { 3128 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3129 if (!ParamRef->getPointeeType()->isFunctionType()) { 3130 // C++ [temp.arg.nontype]p5b3: 3131 // For a non-type template-parameter of type reference to 3132 // object, no conversions apply. The type referred to by the 3133 // reference may be more cv-qualified than the (otherwise 3134 // identical) type of the template- argument. The 3135 // template-parameter is bound directly to the 3136 // template-argument, which shall be an lvalue. 3137 3138 // FIXME: Other qualifiers? 3139 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3140 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3141 3142 if ((ParamQuals | ArgQuals) != ParamQuals) { 3143 S.Diag(Arg->getSourceRange().getBegin(), 3144 diag::err_template_arg_ref_bind_ignores_quals) 3145 << ParamType << Arg->getType() 3146 << Arg->getSourceRange(); 3147 S.Diag(Param->getLocation(), diag::note_template_param_here); 3148 return true; 3149 } 3150 } 3151 } 3152 3153 // At this point, the template argument refers to an object or 3154 // function with external linkage. We now need to check whether the 3155 // argument and parameter types are compatible. 3156 if (!S.Context.hasSameUnqualifiedType(ArgType, 3157 ParamType.getNonReferenceType())) { 3158 // We can't perform this conversion or binding. 3159 if (ParamType->isReferenceType()) 3160 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3161 << ParamType << Arg->getType() << Arg->getSourceRange(); 3162 else 3163 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3164 << Arg->getType() << ParamType << Arg->getSourceRange(); 3165 S.Diag(Param->getLocation(), diag::note_template_param_here); 3166 return true; 3167 } 3168 } 3169 3170 // Create the template argument. 3171 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3172 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 3173 return false; 3174} 3175 3176/// \brief Checks whether the given template argument is a pointer to 3177/// member constant according to C++ [temp.arg.nontype]p1. 3178bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 3179 TemplateArgument &Converted) { 3180 bool Invalid = false; 3181 3182 // See through any implicit casts we added to fix the type. 3183 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3184 Arg = Cast->getSubExpr(); 3185 3186 // C++ [temp.arg.nontype]p1: 3187 // 3188 // A template-argument for a non-type, non-template 3189 // template-parameter shall be one of: [...] 3190 // 3191 // -- a pointer to member expressed as described in 5.3.1. 3192 DeclRefExpr *DRE = 0; 3193 3194 // In C++98/03 mode, give an extension warning on any extra parentheses. 3195 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3196 bool ExtraParens = false; 3197 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3198 if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) { 3199 Diag(Arg->getSourceRange().getBegin(), 3200 diag::ext_template_arg_extra_parens) 3201 << Arg->getSourceRange(); 3202 ExtraParens = true; 3203 } 3204 3205 Arg = Parens->getSubExpr(); 3206 } 3207 3208 // A pointer-to-member constant written &Class::member. 3209 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3210 if (UnOp->getOpcode() == UO_AddrOf) { 3211 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 3212 if (DRE && !DRE->getQualifier()) 3213 DRE = 0; 3214 } 3215 } 3216 // A constant of pointer-to-member type. 3217 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 3218 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 3219 if (VD->getType()->isMemberPointerType()) { 3220 if (isa<NonTypeTemplateParmDecl>(VD) || 3221 (isa<VarDecl>(VD) && 3222 Context.getCanonicalType(VD->getType()).isConstQualified())) { 3223 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3224 Converted = TemplateArgument(Arg); 3225 else 3226 Converted = TemplateArgument(VD->getCanonicalDecl()); 3227 return Invalid; 3228 } 3229 } 3230 } 3231 3232 DRE = 0; 3233 } 3234 3235 if (!DRE) 3236 return Diag(Arg->getSourceRange().getBegin(), 3237 diag::err_template_arg_not_pointer_to_member_form) 3238 << Arg->getSourceRange(); 3239 3240 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 3241 assert((isa<FieldDecl>(DRE->getDecl()) || 3242 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 3243 "Only non-static member pointers can make it here"); 3244 3245 // Okay: this is the address of a non-static member, and therefore 3246 // a member pointer constant. 3247 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3248 Converted = TemplateArgument(Arg); 3249 else 3250 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 3251 return Invalid; 3252 } 3253 3254 // We found something else, but we don't know specifically what it is. 3255 Diag(Arg->getSourceRange().getBegin(), 3256 diag::err_template_arg_not_pointer_to_member_form) 3257 << Arg->getSourceRange(); 3258 Diag(DRE->getDecl()->getLocation(), 3259 diag::note_template_arg_refers_here); 3260 return true; 3261} 3262 3263/// \brief Check a template argument against its corresponding 3264/// non-type template parameter. 3265/// 3266/// This routine implements the semantics of C++ [temp.arg.nontype]. 3267/// It returns true if an error occurred, and false otherwise. \p 3268/// InstantiatedParamType is the type of the non-type template 3269/// parameter after it has been instantiated. 3270/// 3271/// If no error was detected, Converted receives the converted template argument. 3272bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 3273 QualType InstantiatedParamType, Expr *&Arg, 3274 TemplateArgument &Converted, 3275 CheckTemplateArgumentKind CTAK) { 3276 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 3277 3278 // If either the parameter has a dependent type or the argument is 3279 // type-dependent, there's nothing we can check now. 3280 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 3281 // FIXME: Produce a cloned, canonical expression? 3282 Converted = TemplateArgument(Arg); 3283 return false; 3284 } 3285 3286 // C++ [temp.arg.nontype]p5: 3287 // The following conversions are performed on each expression used 3288 // as a non-type template-argument. If a non-type 3289 // template-argument cannot be converted to the type of the 3290 // corresponding template-parameter then the program is 3291 // ill-formed. 3292 // 3293 // -- for a non-type template-parameter of integral or 3294 // enumeration type, integral promotions (4.5) and integral 3295 // conversions (4.7) are applied. 3296 QualType ParamType = InstantiatedParamType; 3297 QualType ArgType = Arg->getType(); 3298 if (ParamType->isIntegralOrEnumerationType()) { 3299 // C++ [temp.arg.nontype]p1: 3300 // A template-argument for a non-type, non-template 3301 // template-parameter shall be one of: 3302 // 3303 // -- an integral constant-expression of integral or enumeration 3304 // type; or 3305 // -- the name of a non-type template-parameter; or 3306 SourceLocation NonConstantLoc; 3307 llvm::APSInt Value; 3308 if (!ArgType->isIntegralOrEnumerationType()) { 3309 Diag(Arg->getSourceRange().getBegin(), 3310 diag::err_template_arg_not_integral_or_enumeral) 3311 << ArgType << Arg->getSourceRange(); 3312 Diag(Param->getLocation(), diag::note_template_param_here); 3313 return true; 3314 } else if (!Arg->isValueDependent() && 3315 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 3316 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 3317 << ArgType << Arg->getSourceRange(); 3318 return true; 3319 } 3320 3321 // From here on out, all we care about are the unqualified forms 3322 // of the parameter and argument types. 3323 ParamType = ParamType.getUnqualifiedType(); 3324 ArgType = ArgType.getUnqualifiedType(); 3325 3326 // Try to convert the argument to the parameter's type. 3327 if (Context.hasSameType(ParamType, ArgType)) { 3328 // Okay: no conversion necessary 3329 } else if (CTAK == CTAK_Deduced) { 3330 // C++ [temp.deduct.type]p17: 3331 // If, in the declaration of a function template with a non-type 3332 // template-parameter, the non-type template- parameter is used 3333 // in an expression in the function parameter-list and, if the 3334 // corresponding template-argument is deduced, the 3335 // template-argument type shall match the type of the 3336 // template-parameter exactly, except that a template-argument 3337 // deduced from an array bound may be of any integral type. 3338 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 3339 << ArgType << ParamType; 3340 Diag(Param->getLocation(), diag::note_template_param_here); 3341 return true; 3342 } else if (ParamType->isBooleanType()) { 3343 // This is an integral-to-boolean conversion. 3344 ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean); 3345 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 3346 !ParamType->isEnumeralType()) { 3347 // This is an integral promotion or conversion. 3348 ImpCastExprToType(Arg, ParamType, CK_IntegralCast); 3349 } else { 3350 // We can't perform this conversion. 3351 Diag(Arg->getSourceRange().getBegin(), 3352 diag::err_template_arg_not_convertible) 3353 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3354 Diag(Param->getLocation(), diag::note_template_param_here); 3355 return true; 3356 } 3357 3358 QualType IntegerType = Context.getCanonicalType(ParamType); 3359 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 3360 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 3361 3362 if (!Arg->isValueDependent()) { 3363 llvm::APSInt OldValue = Value; 3364 3365 // Coerce the template argument's value to the value it will have 3366 // based on the template parameter's type. 3367 unsigned AllowedBits = Context.getTypeSize(IntegerType); 3368 if (Value.getBitWidth() != AllowedBits) 3369 Value = Value.extOrTrunc(AllowedBits); 3370 Value.setIsSigned(IntegerType->isSignedIntegerType()); 3371 3372 // Complain if an unsigned parameter received a negative value. 3373 if (IntegerType->isUnsignedIntegerType() 3374 && (OldValue.isSigned() && OldValue.isNegative())) { 3375 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 3376 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3377 << Arg->getSourceRange(); 3378 Diag(Param->getLocation(), diag::note_template_param_here); 3379 } 3380 3381 // Complain if we overflowed the template parameter's type. 3382 unsigned RequiredBits; 3383 if (IntegerType->isUnsignedIntegerType()) 3384 RequiredBits = OldValue.getActiveBits(); 3385 else if (OldValue.isUnsigned()) 3386 RequiredBits = OldValue.getActiveBits() + 1; 3387 else 3388 RequiredBits = OldValue.getMinSignedBits(); 3389 if (RequiredBits > AllowedBits) { 3390 Diag(Arg->getSourceRange().getBegin(), 3391 diag::warn_template_arg_too_large) 3392 << OldValue.toString(10) << Value.toString(10) << Param->getType() 3393 << Arg->getSourceRange(); 3394 Diag(Param->getLocation(), diag::note_template_param_here); 3395 } 3396 } 3397 3398 // Add the value of this argument to the list of converted 3399 // arguments. We use the bitwidth and signedness of the template 3400 // parameter. 3401 if (Arg->isValueDependent()) { 3402 // The argument is value-dependent. Create a new 3403 // TemplateArgument with the converted expression. 3404 Converted = TemplateArgument(Arg); 3405 return false; 3406 } 3407 3408 Converted = TemplateArgument(Value, 3409 ParamType->isEnumeralType() ? ParamType 3410 : IntegerType); 3411 return false; 3412 } 3413 3414 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 3415 3416 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 3417 // from a template argument of type std::nullptr_t to a non-type 3418 // template parameter of type pointer to object, pointer to 3419 // function, or pointer-to-member, respectively. 3420 if (ArgType->isNullPtrType() && 3421 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 3422 Converted = TemplateArgument((NamedDecl *)0); 3423 return false; 3424 } 3425 3426 // Handle pointer-to-function, reference-to-function, and 3427 // pointer-to-member-function all in (roughly) the same way. 3428 if (// -- For a non-type template-parameter of type pointer to 3429 // function, only the function-to-pointer conversion (4.3) is 3430 // applied. If the template-argument represents a set of 3431 // overloaded functions (or a pointer to such), the matching 3432 // function is selected from the set (13.4). 3433 (ParamType->isPointerType() && 3434 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 3435 // -- For a non-type template-parameter of type reference to 3436 // function, no conversions apply. If the template-argument 3437 // represents a set of overloaded functions, the matching 3438 // function is selected from the set (13.4). 3439 (ParamType->isReferenceType() && 3440 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 3441 // -- For a non-type template-parameter of type pointer to 3442 // member function, no conversions apply. If the 3443 // template-argument represents a set of overloaded member 3444 // functions, the matching member function is selected from 3445 // the set (13.4). 3446 (ParamType->isMemberPointerType() && 3447 ParamType->getAs<MemberPointerType>()->getPointeeType() 3448 ->isFunctionType())) { 3449 3450 if (Arg->getType() == Context.OverloadTy) { 3451 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 3452 true, 3453 FoundResult)) { 3454 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3455 return true; 3456 3457 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3458 ArgType = Arg->getType(); 3459 } else 3460 return true; 3461 } 3462 3463 if (!ParamType->isMemberPointerType()) 3464 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3465 ParamType, 3466 Arg, Converted); 3467 3468 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(), 3469 false)) { 3470 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3471 } else if (!Context.hasSameUnqualifiedType(ArgType, 3472 ParamType.getNonReferenceType())) { 3473 // We can't perform this conversion. 3474 Diag(Arg->getSourceRange().getBegin(), 3475 diag::err_template_arg_not_convertible) 3476 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3477 Diag(Param->getLocation(), diag::note_template_param_here); 3478 return true; 3479 } 3480 3481 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3482 } 3483 3484 if (ParamType->isPointerType()) { 3485 // -- for a non-type template-parameter of type pointer to 3486 // object, qualification conversions (4.4) and the 3487 // array-to-pointer conversion (4.2) are applied. 3488 // C++0x also allows a value of std::nullptr_t. 3489 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 3490 "Only object pointers allowed here"); 3491 3492 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3493 ParamType, 3494 Arg, Converted); 3495 } 3496 3497 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 3498 // -- For a non-type template-parameter of type reference to 3499 // object, no conversions apply. The type referred to by the 3500 // reference may be more cv-qualified than the (otherwise 3501 // identical) type of the template-argument. The 3502 // template-parameter is bound directly to the 3503 // template-argument, which must be an lvalue. 3504 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 3505 "Only object references allowed here"); 3506 3507 if (Arg->getType() == Context.OverloadTy) { 3508 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 3509 ParamRefType->getPointeeType(), 3510 true, 3511 FoundResult)) { 3512 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 3513 return true; 3514 3515 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 3516 ArgType = Arg->getType(); 3517 } else 3518 return true; 3519 } 3520 3521 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3522 ParamType, 3523 Arg, Converted); 3524 } 3525 3526 // -- For a non-type template-parameter of type pointer to data 3527 // member, qualification conversions (4.4) are applied. 3528 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3529 3530 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3531 // Types match exactly: nothing more to do here. 3532 } else if (IsQualificationConversion(ArgType, ParamType, false)) { 3533 ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)); 3534 } else { 3535 // We can't perform this conversion. 3536 Diag(Arg->getSourceRange().getBegin(), 3537 diag::err_template_arg_not_convertible) 3538 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3539 Diag(Param->getLocation(), diag::note_template_param_here); 3540 return true; 3541 } 3542 3543 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3544} 3545 3546/// \brief Check a template argument against its corresponding 3547/// template template parameter. 3548/// 3549/// This routine implements the semantics of C++ [temp.arg.template]. 3550/// It returns true if an error occurred, and false otherwise. 3551bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3552 const TemplateArgumentLoc &Arg) { 3553 TemplateName Name = Arg.getArgument().getAsTemplate(); 3554 TemplateDecl *Template = Name.getAsTemplateDecl(); 3555 if (!Template) { 3556 // Any dependent template name is fine. 3557 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3558 return false; 3559 } 3560 3561 // C++ [temp.arg.template]p1: 3562 // A template-argument for a template template-parameter shall be 3563 // the name of a class template, expressed as id-expression. Only 3564 // primary class templates are considered when matching the 3565 // template template argument with the corresponding parameter; 3566 // partial specializations are not considered even if their 3567 // parameter lists match that of the template template parameter. 3568 // 3569 // Note that we also allow template template parameters here, which 3570 // will happen when we are dealing with, e.g., class template 3571 // partial specializations. 3572 if (!isa<ClassTemplateDecl>(Template) && 3573 !isa<TemplateTemplateParmDecl>(Template)) { 3574 assert(isa<FunctionTemplateDecl>(Template) && 3575 "Only function templates are possible here"); 3576 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3577 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3578 << Template; 3579 } 3580 3581 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3582 Param->getTemplateParameters(), 3583 true, 3584 TPL_TemplateTemplateArgumentMatch, 3585 Arg.getLocation()); 3586} 3587 3588/// \brief Given a non-type template argument that refers to a 3589/// declaration and the type of its corresponding non-type template 3590/// parameter, produce an expression that properly refers to that 3591/// declaration. 3592ExprResult 3593Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3594 QualType ParamType, 3595 SourceLocation Loc) { 3596 assert(Arg.getKind() == TemplateArgument::Declaration && 3597 "Only declaration template arguments permitted here"); 3598 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3599 3600 if (VD->getDeclContext()->isRecord() && 3601 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3602 // If the value is a class member, we might have a pointer-to-member. 3603 // Determine whether the non-type template template parameter is of 3604 // pointer-to-member type. If so, we need to build an appropriate 3605 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3606 // would refer to the member itself. 3607 if (ParamType->isMemberPointerType()) { 3608 QualType ClassType 3609 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3610 NestedNameSpecifier *Qualifier 3611 = NestedNameSpecifier::Create(Context, 0, false, 3612 ClassType.getTypePtr()); 3613 CXXScopeSpec SS; 3614 SS.Adopt(Qualifier, Loc); 3615 3616 // The actual value-ness of this is unimportant, but for 3617 // internal consistency's sake, references to instance methods 3618 // are r-values. 3619 ExprValueKind VK = VK_LValue; 3620 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 3621 VK = VK_RValue; 3622 3623 ExprResult RefExpr = BuildDeclRefExpr(VD, 3624 VD->getType().getNonReferenceType(), 3625 VK, 3626 Loc, 3627 &SS); 3628 if (RefExpr.isInvalid()) 3629 return ExprError(); 3630 3631 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3632 3633 // We might need to perform a trailing qualification conversion, since 3634 // the element type on the parameter could be more qualified than the 3635 // element type in the expression we constructed. 3636 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3637 ParamType.getUnqualifiedType(), false)) { 3638 Expr *RefE = RefExpr.takeAs<Expr>(); 3639 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp); 3640 RefExpr = Owned(RefE); 3641 } 3642 3643 assert(!RefExpr.isInvalid() && 3644 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3645 ParamType.getUnqualifiedType())); 3646 return move(RefExpr); 3647 } 3648 } 3649 3650 QualType T = VD->getType().getNonReferenceType(); 3651 if (ParamType->isPointerType()) { 3652 // When the non-type template parameter is a pointer, take the 3653 // address of the declaration. 3654 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 3655 if (RefExpr.isInvalid()) 3656 return ExprError(); 3657 3658 if (T->isFunctionType() || T->isArrayType()) { 3659 // Decay functions and arrays. 3660 Expr *RefE = (Expr *)RefExpr.get(); 3661 DefaultFunctionArrayConversion(RefE); 3662 if (RefE != RefExpr.get()) { 3663 RefExpr.release(); 3664 RefExpr = Owned(RefE); 3665 } 3666 3667 return move(RefExpr); 3668 } 3669 3670 // Take the address of everything else 3671 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 3672 } 3673 3674 ExprValueKind VK = VK_RValue; 3675 3676 // If the non-type template parameter has reference type, qualify the 3677 // resulting declaration reference with the extra qualifiers on the 3678 // type that the reference refers to. 3679 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 3680 VK = VK_LValue; 3681 T = Context.getQualifiedType(T, 3682 TargetRef->getPointeeType().getQualifiers()); 3683 } 3684 3685 return BuildDeclRefExpr(VD, T, VK, Loc); 3686} 3687 3688/// \brief Construct a new expression that refers to the given 3689/// integral template argument with the given source-location 3690/// information. 3691/// 3692/// This routine takes care of the mapping from an integral template 3693/// argument (which may have any integral type) to the appropriate 3694/// literal value. 3695ExprResult 3696Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3697 SourceLocation Loc) { 3698 assert(Arg.getKind() == TemplateArgument::Integral && 3699 "Operation is only valid for integral template arguments"); 3700 QualType T = Arg.getIntegralType(); 3701 if (T->isCharType() || T->isWideCharType()) 3702 return Owned(new (Context) CharacterLiteral( 3703 Arg.getAsIntegral()->getZExtValue(), 3704 T->isWideCharType(), 3705 T, 3706 Loc)); 3707 if (T->isBooleanType()) 3708 return Owned(new (Context) CXXBoolLiteralExpr( 3709 Arg.getAsIntegral()->getBoolValue(), 3710 T, 3711 Loc)); 3712 3713 QualType BT; 3714 if (const EnumType *ET = T->getAs<EnumType>()) 3715 BT = ET->getDecl()->getPromotionType(); 3716 else 3717 BT = T; 3718 3719 Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc); 3720 if (T->isEnumeralType()) { 3721 // FIXME: This is a hack. We need a better way to handle substituted 3722 // non-type template parameters. 3723 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, 3724 E, 0, 3725 Context.getTrivialTypeSourceInfo(T, Loc), 3726 Loc, Loc); 3727 } 3728 3729 return Owned(E); 3730} 3731 3732/// \brief Match two template parameters within template parameter lists. 3733static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 3734 bool Complain, 3735 Sema::TemplateParameterListEqualKind Kind, 3736 SourceLocation TemplateArgLoc) { 3737 // Check the actual kind (type, non-type, template). 3738 if (Old->getKind() != New->getKind()) { 3739 if (Complain) { 3740 unsigned NextDiag = diag::err_template_param_different_kind; 3741 if (TemplateArgLoc.isValid()) { 3742 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3743 NextDiag = diag::note_template_param_different_kind; 3744 } 3745 S.Diag(New->getLocation(), NextDiag) 3746 << (Kind != Sema::TPL_TemplateMatch); 3747 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 3748 << (Kind != Sema::TPL_TemplateMatch); 3749 } 3750 3751 return false; 3752 } 3753 3754 // Check that both are parameter packs are neither are parameter packs. 3755 // However, if we are matching a template template argument to a 3756 // template template parameter, the template template parameter can have 3757 // a parameter pack where the template template argument does not. 3758 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 3759 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3760 Old->isTemplateParameterPack())) { 3761 if (Complain) { 3762 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3763 if (TemplateArgLoc.isValid()) { 3764 S.Diag(TemplateArgLoc, 3765 diag::err_template_arg_template_params_mismatch); 3766 NextDiag = diag::note_template_parameter_pack_non_pack; 3767 } 3768 3769 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 3770 : isa<NonTypeTemplateParmDecl>(New)? 1 3771 : 2; 3772 S.Diag(New->getLocation(), NextDiag) 3773 << ParamKind << New->isParameterPack(); 3774 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 3775 << ParamKind << Old->isParameterPack(); 3776 } 3777 3778 return false; 3779 } 3780 3781 // For non-type template parameters, check the type of the parameter. 3782 if (NonTypeTemplateParmDecl *OldNTTP 3783 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 3784 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 3785 3786 // If we are matching a template template argument to a template 3787 // template parameter and one of the non-type template parameter types 3788 // is dependent, then we must wait until template instantiation time 3789 // to actually compare the arguments. 3790 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 3791 (OldNTTP->getType()->isDependentType() || 3792 NewNTTP->getType()->isDependentType())) 3793 return true; 3794 3795 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 3796 if (Complain) { 3797 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3798 if (TemplateArgLoc.isValid()) { 3799 S.Diag(TemplateArgLoc, 3800 diag::err_template_arg_template_params_mismatch); 3801 NextDiag = diag::note_template_nontype_parm_different_type; 3802 } 3803 S.Diag(NewNTTP->getLocation(), NextDiag) 3804 << NewNTTP->getType() 3805 << (Kind != Sema::TPL_TemplateMatch); 3806 S.Diag(OldNTTP->getLocation(), 3807 diag::note_template_nontype_parm_prev_declaration) 3808 << OldNTTP->getType(); 3809 } 3810 3811 return false; 3812 } 3813 3814 return true; 3815 } 3816 3817 // For template template parameters, check the template parameter types. 3818 // The template parameter lists of template template 3819 // parameters must agree. 3820 if (TemplateTemplateParmDecl *OldTTP 3821 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 3822 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 3823 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3824 OldTTP->getTemplateParameters(), 3825 Complain, 3826 (Kind == Sema::TPL_TemplateMatch 3827 ? Sema::TPL_TemplateTemplateParmMatch 3828 : Kind), 3829 TemplateArgLoc); 3830 } 3831 3832 return true; 3833} 3834 3835/// \brief Diagnose a known arity mismatch when comparing template argument 3836/// lists. 3837static 3838void DiagnoseTemplateParameterListArityMismatch(Sema &S, 3839 TemplateParameterList *New, 3840 TemplateParameterList *Old, 3841 Sema::TemplateParameterListEqualKind Kind, 3842 SourceLocation TemplateArgLoc) { 3843 unsigned NextDiag = diag::err_template_param_list_different_arity; 3844 if (TemplateArgLoc.isValid()) { 3845 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3846 NextDiag = diag::note_template_param_list_different_arity; 3847 } 3848 S.Diag(New->getTemplateLoc(), NextDiag) 3849 << (New->size() > Old->size()) 3850 << (Kind != Sema::TPL_TemplateMatch) 3851 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3852 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3853 << (Kind != Sema::TPL_TemplateMatch) 3854 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3855} 3856 3857/// \brief Determine whether the given template parameter lists are 3858/// equivalent. 3859/// 3860/// \param New The new template parameter list, typically written in the 3861/// source code as part of a new template declaration. 3862/// 3863/// \param Old The old template parameter list, typically found via 3864/// name lookup of the template declared with this template parameter 3865/// list. 3866/// 3867/// \param Complain If true, this routine will produce a diagnostic if 3868/// the template parameter lists are not equivalent. 3869/// 3870/// \param Kind describes how we are to match the template parameter lists. 3871/// 3872/// \param TemplateArgLoc If this source location is valid, then we 3873/// are actually checking the template parameter list of a template 3874/// argument (New) against the template parameter list of its 3875/// corresponding template template parameter (Old). We produce 3876/// slightly different diagnostics in this scenario. 3877/// 3878/// \returns True if the template parameter lists are equal, false 3879/// otherwise. 3880bool 3881Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3882 TemplateParameterList *Old, 3883 bool Complain, 3884 TemplateParameterListEqualKind Kind, 3885 SourceLocation TemplateArgLoc) { 3886 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 3887 if (Complain) 3888 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3889 TemplateArgLoc); 3890 3891 return false; 3892 } 3893 3894 // C++0x [temp.arg.template]p3: 3895 // A template-argument matches a template template-parameter (call it P) 3896 // when each of the template parameters in the template-parameter-list of 3897 // the template-argument's corresponding class template or template alias 3898 // (call it A) matches the corresponding template parameter in the 3899 // template-parameter-list of P. [...] 3900 TemplateParameterList::iterator NewParm = New->begin(); 3901 TemplateParameterList::iterator NewParmEnd = New->end(); 3902 for (TemplateParameterList::iterator OldParm = Old->begin(), 3903 OldParmEnd = Old->end(); 3904 OldParm != OldParmEnd; ++OldParm) { 3905 if (Kind != TPL_TemplateTemplateArgumentMatch || 3906 !(*OldParm)->isTemplateParameterPack()) { 3907 if (NewParm == NewParmEnd) { 3908 if (Complain) 3909 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3910 TemplateArgLoc); 3911 3912 return false; 3913 } 3914 3915 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3916 Kind, TemplateArgLoc)) 3917 return false; 3918 3919 ++NewParm; 3920 continue; 3921 } 3922 3923 // C++0x [temp.arg.template]p3: 3924 // [...] When P's template- parameter-list contains a template parameter 3925 // pack (14.5.3), the template parameter pack will match zero or more 3926 // template parameters or template parameter packs in the 3927 // template-parameter-list of A with the same type and form as the 3928 // template parameter pack in P (ignoring whether those template 3929 // parameters are template parameter packs). 3930 for (; NewParm != NewParmEnd; ++NewParm) { 3931 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 3932 Kind, TemplateArgLoc)) 3933 return false; 3934 } 3935 } 3936 3937 // Make sure we exhausted all of the arguments. 3938 if (NewParm != NewParmEnd) { 3939 if (Complain) 3940 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 3941 TemplateArgLoc); 3942 3943 return false; 3944 } 3945 3946 return true; 3947} 3948 3949/// \brief Check whether a template can be declared within this scope. 3950/// 3951/// If the template declaration is valid in this scope, returns 3952/// false. Otherwise, issues a diagnostic and returns true. 3953bool 3954Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3955 // Find the nearest enclosing declaration scope. 3956 while ((S->getFlags() & Scope::DeclScope) == 0 || 3957 (S->getFlags() & Scope::TemplateParamScope) != 0) 3958 S = S->getParent(); 3959 3960 // C++ [temp]p2: 3961 // A template-declaration can appear only as a namespace scope or 3962 // class scope declaration. 3963 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3964 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3965 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3966 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3967 << TemplateParams->getSourceRange(); 3968 3969 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3970 Ctx = Ctx->getParent(); 3971 3972 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3973 return false; 3974 3975 return Diag(TemplateParams->getTemplateLoc(), 3976 diag::err_template_outside_namespace_or_class_scope) 3977 << TemplateParams->getSourceRange(); 3978} 3979 3980/// \brief Determine what kind of template specialization the given declaration 3981/// is. 3982static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3983 if (!D) 3984 return TSK_Undeclared; 3985 3986 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3987 return Record->getTemplateSpecializationKind(); 3988 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3989 return Function->getTemplateSpecializationKind(); 3990 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3991 return Var->getTemplateSpecializationKind(); 3992 3993 return TSK_Undeclared; 3994} 3995 3996/// \brief Check whether a specialization is well-formed in the current 3997/// context. 3998/// 3999/// This routine determines whether a template specialization can be declared 4000/// in the current context (C++ [temp.expl.spec]p2). 4001/// 4002/// \param S the semantic analysis object for which this check is being 4003/// performed. 4004/// 4005/// \param Specialized the entity being specialized or instantiated, which 4006/// may be a kind of template (class template, function template, etc.) or 4007/// a member of a class template (member function, static data member, 4008/// member class). 4009/// 4010/// \param PrevDecl the previous declaration of this entity, if any. 4011/// 4012/// \param Loc the location of the explicit specialization or instantiation of 4013/// this entity. 4014/// 4015/// \param IsPartialSpecialization whether this is a partial specialization of 4016/// a class template. 4017/// 4018/// \returns true if there was an error that we cannot recover from, false 4019/// otherwise. 4020static bool CheckTemplateSpecializationScope(Sema &S, 4021 NamedDecl *Specialized, 4022 NamedDecl *PrevDecl, 4023 SourceLocation Loc, 4024 bool IsPartialSpecialization) { 4025 // Keep these "kind" numbers in sync with the %select statements in the 4026 // various diagnostics emitted by this routine. 4027 int EntityKind = 0; 4028 if (isa<ClassTemplateDecl>(Specialized)) 4029 EntityKind = IsPartialSpecialization? 1 : 0; 4030 else if (isa<FunctionTemplateDecl>(Specialized)) 4031 EntityKind = 2; 4032 else if (isa<CXXMethodDecl>(Specialized)) 4033 EntityKind = 3; 4034 else if (isa<VarDecl>(Specialized)) 4035 EntityKind = 4; 4036 else if (isa<RecordDecl>(Specialized)) 4037 EntityKind = 5; 4038 else { 4039 S.Diag(Loc, diag::err_template_spec_unknown_kind); 4040 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4041 return true; 4042 } 4043 4044 // C++ [temp.expl.spec]p2: 4045 // An explicit specialization shall be declared in the namespace 4046 // of which the template is a member, or, for member templates, in 4047 // the namespace of which the enclosing class or enclosing class 4048 // template is a member. An explicit specialization of a member 4049 // function, member class or static data member of a class 4050 // template shall be declared in the namespace of which the class 4051 // template is a member. Such a declaration may also be a 4052 // definition. If the declaration is not a definition, the 4053 // specialization may be defined later in the name- space in which 4054 // the explicit specialization was declared, or in a namespace 4055 // that encloses the one in which the explicit specialization was 4056 // declared. 4057 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4058 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4059 << Specialized; 4060 return true; 4061 } 4062 4063 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4064 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4065 << Specialized; 4066 return true; 4067 } 4068 4069 // C++ [temp.class.spec]p6: 4070 // A class template partial specialization may be declared or redeclared 4071 // in any namespace scope in which its definition may be defined (14.5.1 4072 // and 14.5.2). 4073 bool ComplainedAboutScope = false; 4074 DeclContext *SpecializedContext 4075 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4076 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4077 if ((!PrevDecl || 4078 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4079 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4080 // C++ [temp.exp.spec]p2: 4081 // An explicit specialization shall be declared in the namespace of which 4082 // the template is a member, or, for member templates, in the namespace 4083 // of which the enclosing class or enclosing class template is a member. 4084 // An explicit specialization of a member function, member class or 4085 // static data member of a class template shall be declared in the 4086 // namespace of which the class template is a member. 4087 // 4088 // C++0x [temp.expl.spec]p2: 4089 // An explicit specialization shall be declared in a namespace enclosing 4090 // the specialized template. 4091 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) && 4092 !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) { 4093 bool IsCPlusPlus0xExtension 4094 = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext); 4095 if (isa<TranslationUnitDecl>(SpecializedContext)) 4096 S.Diag(Loc, IsCPlusPlus0xExtension 4097 ? diag::ext_template_spec_decl_out_of_scope_global 4098 : diag::err_template_spec_decl_out_of_scope_global) 4099 << EntityKind << Specialized; 4100 else if (isa<NamespaceDecl>(SpecializedContext)) 4101 S.Diag(Loc, IsCPlusPlus0xExtension 4102 ? diag::ext_template_spec_decl_out_of_scope 4103 : diag::err_template_spec_decl_out_of_scope) 4104 << EntityKind << Specialized 4105 << cast<NamedDecl>(SpecializedContext); 4106 4107 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4108 ComplainedAboutScope = true; 4109 } 4110 } 4111 4112 // Make sure that this redeclaration (or definition) occurs in an enclosing 4113 // namespace. 4114 // Note that HandleDeclarator() performs this check for explicit 4115 // specializations of function templates, static data members, and member 4116 // functions, so we skip the check here for those kinds of entities. 4117 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 4118 // Should we refactor that check, so that it occurs later? 4119 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 4120 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 4121 isa<FunctionDecl>(Specialized))) { 4122 if (isa<TranslationUnitDecl>(SpecializedContext)) 4123 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 4124 << EntityKind << Specialized; 4125 else if (isa<NamespaceDecl>(SpecializedContext)) 4126 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 4127 << EntityKind << Specialized 4128 << cast<NamedDecl>(SpecializedContext); 4129 4130 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4131 } 4132 4133 // FIXME: check for specialization-after-instantiation errors and such. 4134 4135 return false; 4136} 4137 4138/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 4139/// that checks non-type template partial specialization arguments. 4140static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 4141 NonTypeTemplateParmDecl *Param, 4142 const TemplateArgument *Args, 4143 unsigned NumArgs) { 4144 for (unsigned I = 0; I != NumArgs; ++I) { 4145 if (Args[I].getKind() == TemplateArgument::Pack) { 4146 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4147 Args[I].pack_begin(), 4148 Args[I].pack_size())) 4149 return true; 4150 4151 continue; 4152 } 4153 4154 Expr *ArgExpr = Args[I].getAsExpr(); 4155 if (!ArgExpr) { 4156 continue; 4157 } 4158 4159 // We can have a pack expansion of any of the bullets below. 4160 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 4161 ArgExpr = Expansion->getPattern(); 4162 4163 // Strip off any implicit casts we added as part of type checking. 4164 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 4165 ArgExpr = ICE->getSubExpr(); 4166 4167 // C++ [temp.class.spec]p8: 4168 // A non-type argument is non-specialized if it is the name of a 4169 // non-type parameter. All other non-type arguments are 4170 // specialized. 4171 // 4172 // Below, we check the two conditions that only apply to 4173 // specialized non-type arguments, so skip any non-specialized 4174 // arguments. 4175 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 4176 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 4177 continue; 4178 4179 // C++ [temp.class.spec]p9: 4180 // Within the argument list of a class template partial 4181 // specialization, the following restrictions apply: 4182 // -- A partially specialized non-type argument expression 4183 // shall not involve a template parameter of the partial 4184 // specialization except when the argument expression is a 4185 // simple identifier. 4186 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 4187 S.Diag(ArgExpr->getLocStart(), 4188 diag::err_dependent_non_type_arg_in_partial_spec) 4189 << ArgExpr->getSourceRange(); 4190 return true; 4191 } 4192 4193 // -- The type of a template parameter corresponding to a 4194 // specialized non-type argument shall not be dependent on a 4195 // parameter of the specialization. 4196 if (Param->getType()->isDependentType()) { 4197 S.Diag(ArgExpr->getLocStart(), 4198 diag::err_dependent_typed_non_type_arg_in_partial_spec) 4199 << Param->getType() 4200 << ArgExpr->getSourceRange(); 4201 S.Diag(Param->getLocation(), diag::note_template_param_here); 4202 return true; 4203 } 4204 } 4205 4206 return false; 4207} 4208 4209/// \brief Check the non-type template arguments of a class template 4210/// partial specialization according to C++ [temp.class.spec]p9. 4211/// 4212/// \param TemplateParams the template parameters of the primary class 4213/// template. 4214/// 4215/// \param TemplateArg the template arguments of the class template 4216/// partial specialization. 4217/// 4218/// \returns true if there was an error, false otherwise. 4219static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 4220 TemplateParameterList *TemplateParams, 4221 llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) { 4222 const TemplateArgument *ArgList = TemplateArgs.data(); 4223 4224 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4225 NonTypeTemplateParmDecl *Param 4226 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 4227 if (!Param) 4228 continue; 4229 4230 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 4231 &ArgList[I], 1)) 4232 return true; 4233 } 4234 4235 return false; 4236} 4237 4238/// \brief Retrieve the previous declaration of the given declaration. 4239static NamedDecl *getPreviousDecl(NamedDecl *ND) { 4240 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 4241 return VD->getPreviousDeclaration(); 4242 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 4243 return FD->getPreviousDeclaration(); 4244 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 4245 return TD->getPreviousDeclaration(); 4246 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 4247 return TD->getPreviousDeclaration(); 4248 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 4249 return FTD->getPreviousDeclaration(); 4250 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 4251 return CTD->getPreviousDeclaration(); 4252 return 0; 4253} 4254 4255DeclResult 4256Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 4257 TagUseKind TUK, 4258 SourceLocation KWLoc, 4259 CXXScopeSpec &SS, 4260 TemplateTy TemplateD, 4261 SourceLocation TemplateNameLoc, 4262 SourceLocation LAngleLoc, 4263 ASTTemplateArgsPtr TemplateArgsIn, 4264 SourceLocation RAngleLoc, 4265 AttributeList *Attr, 4266 MultiTemplateParamsArg TemplateParameterLists) { 4267 assert(TUK != TUK_Reference && "References are not specializations"); 4268 4269 // Find the class template we're specializing 4270 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4271 ClassTemplateDecl *ClassTemplate 4272 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4273 4274 if (!ClassTemplate) { 4275 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 4276 << (Name.getAsTemplateDecl() && 4277 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 4278 return true; 4279 } 4280 4281 bool isExplicitSpecialization = false; 4282 bool isPartialSpecialization = false; 4283 4284 // Check the validity of the template headers that introduce this 4285 // template. 4286 // FIXME: We probably shouldn't complain about these headers for 4287 // friend declarations. 4288 bool Invalid = false; 4289 TemplateParameterList *TemplateParams 4290 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 4291 (TemplateParameterList**)TemplateParameterLists.get(), 4292 TemplateParameterLists.size(), 4293 TUK == TUK_Friend, 4294 isExplicitSpecialization, 4295 Invalid); 4296 if (Invalid) 4297 return true; 4298 4299 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 4300 if (TemplateParams) 4301 --NumMatchedTemplateParamLists; 4302 4303 if (TemplateParams && TemplateParams->size() > 0) { 4304 isPartialSpecialization = true; 4305 4306 if (TUK == TUK_Friend) { 4307 Diag(KWLoc, diag::err_partial_specialization_friend) 4308 << SourceRange(LAngleLoc, RAngleLoc); 4309 return true; 4310 } 4311 4312 // C++ [temp.class.spec]p10: 4313 // The template parameter list of a specialization shall not 4314 // contain default template argument values. 4315 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 4316 Decl *Param = TemplateParams->getParam(I); 4317 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 4318 if (TTP->hasDefaultArgument()) { 4319 Diag(TTP->getDefaultArgumentLoc(), 4320 diag::err_default_arg_in_partial_spec); 4321 TTP->removeDefaultArgument(); 4322 } 4323 } else if (NonTypeTemplateParmDecl *NTTP 4324 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 4325 if (Expr *DefArg = NTTP->getDefaultArgument()) { 4326 Diag(NTTP->getDefaultArgumentLoc(), 4327 diag::err_default_arg_in_partial_spec) 4328 << DefArg->getSourceRange(); 4329 NTTP->removeDefaultArgument(); 4330 } 4331 } else { 4332 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 4333 if (TTP->hasDefaultArgument()) { 4334 Diag(TTP->getDefaultArgument().getLocation(), 4335 diag::err_default_arg_in_partial_spec) 4336 << TTP->getDefaultArgument().getSourceRange(); 4337 TTP->removeDefaultArgument(); 4338 } 4339 } 4340 } 4341 } else if (TemplateParams) { 4342 if (TUK == TUK_Friend) 4343 Diag(KWLoc, diag::err_template_spec_friend) 4344 << FixItHint::CreateRemoval( 4345 SourceRange(TemplateParams->getTemplateLoc(), 4346 TemplateParams->getRAngleLoc())) 4347 << SourceRange(LAngleLoc, RAngleLoc); 4348 else 4349 isExplicitSpecialization = true; 4350 } else if (TUK != TUK_Friend) { 4351 Diag(KWLoc, diag::err_template_spec_needs_header) 4352 << FixItHint::CreateInsertion(KWLoc, "template<> "); 4353 isExplicitSpecialization = true; 4354 } 4355 4356 // Check that the specialization uses the same tag kind as the 4357 // original template. 4358 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4359 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 4360 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4361 Kind, KWLoc, 4362 *ClassTemplate->getIdentifier())) { 4363 Diag(KWLoc, diag::err_use_with_wrong_tag) 4364 << ClassTemplate 4365 << FixItHint::CreateReplacement(KWLoc, 4366 ClassTemplate->getTemplatedDecl()->getKindName()); 4367 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4368 diag::note_previous_use); 4369 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4370 } 4371 4372 // Translate the parser's template argument list in our AST format. 4373 TemplateArgumentListInfo TemplateArgs; 4374 TemplateArgs.setLAngleLoc(LAngleLoc); 4375 TemplateArgs.setRAngleLoc(RAngleLoc); 4376 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4377 4378 // Check for unexpanded parameter packs in any of the template arguments. 4379 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4380 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4381 UPPC_PartialSpecialization)) 4382 return true; 4383 4384 // Check that the template argument list is well-formed for this 4385 // template. 4386 llvm::SmallVector<TemplateArgument, 4> Converted; 4387 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4388 TemplateArgs, false, Converted)) 4389 return true; 4390 4391 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 4392 "Converted template argument list is too short!"); 4393 4394 // Find the class template (partial) specialization declaration that 4395 // corresponds to these arguments. 4396 if (isPartialSpecialization) { 4397 if (CheckClassTemplatePartialSpecializationArgs(*this, 4398 ClassTemplate->getTemplateParameters(), 4399 Converted)) 4400 return true; 4401 4402 if (!Name.isDependent() && 4403 !TemplateSpecializationType::anyDependentTemplateArguments( 4404 TemplateArgs.getArgumentArray(), 4405 TemplateArgs.size())) { 4406 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4407 << ClassTemplate->getDeclName(); 4408 isPartialSpecialization = false; 4409 } 4410 } 4411 4412 void *InsertPos = 0; 4413 ClassTemplateSpecializationDecl *PrevDecl = 0; 4414 4415 if (isPartialSpecialization) 4416 // FIXME: Template parameter list matters, too 4417 PrevDecl 4418 = ClassTemplate->findPartialSpecialization(Converted.data(), 4419 Converted.size(), 4420 InsertPos); 4421 else 4422 PrevDecl 4423 = ClassTemplate->findSpecialization(Converted.data(), 4424 Converted.size(), InsertPos); 4425 4426 ClassTemplateSpecializationDecl *Specialization = 0; 4427 4428 // Check whether we can declare a class template specialization in 4429 // the current scope. 4430 if (TUK != TUK_Friend && 4431 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 4432 TemplateNameLoc, 4433 isPartialSpecialization)) 4434 return true; 4435 4436 // The canonical type 4437 QualType CanonType; 4438 if (PrevDecl && 4439 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 4440 TUK == TUK_Friend)) { 4441 // Since the only prior class template specialization with these 4442 // arguments was referenced but not declared, or we're only 4443 // referencing this specialization as a friend, reuse that 4444 // declaration node as our own, updating its source location to 4445 // reflect our new declaration. 4446 Specialization = PrevDecl; 4447 Specialization->setLocation(TemplateNameLoc); 4448 PrevDecl = 0; 4449 CanonType = Context.getTypeDeclType(Specialization); 4450 } else if (isPartialSpecialization) { 4451 // Build the canonical type that describes the converted template 4452 // arguments of the class template partial specialization. 4453 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4454 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 4455 Converted.data(), 4456 Converted.size()); 4457 4458 if (Context.hasSameType(CanonType, 4459 ClassTemplate->getInjectedClassNameSpecialization())) { 4460 // C++ [temp.class.spec]p9b3: 4461 // 4462 // -- The argument list of the specialization shall not be identical 4463 // to the implicit argument list of the primary template. 4464 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4465 << (TUK == TUK_Definition) 4466 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4467 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 4468 ClassTemplate->getIdentifier(), 4469 TemplateNameLoc, 4470 Attr, 4471 TemplateParams, 4472 AS_none); 4473 } 4474 4475 // Create a new class template partial specialization declaration node. 4476 ClassTemplatePartialSpecializationDecl *PrevPartial 4477 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 4478 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 4479 : ClassTemplate->getNextPartialSpecSequenceNumber(); 4480 ClassTemplatePartialSpecializationDecl *Partial 4481 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 4482 ClassTemplate->getDeclContext(), 4483 TemplateNameLoc, 4484 TemplateParams, 4485 ClassTemplate, 4486 Converted.data(), 4487 Converted.size(), 4488 TemplateArgs, 4489 CanonType, 4490 PrevPartial, 4491 SequenceNumber); 4492 SetNestedNameSpecifier(Partial, SS); 4493 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4494 Partial->setTemplateParameterListsInfo(Context, 4495 NumMatchedTemplateParamLists, 4496 (TemplateParameterList**) TemplateParameterLists.release()); 4497 } 4498 4499 if (!PrevPartial) 4500 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 4501 Specialization = Partial; 4502 4503 // If we are providing an explicit specialization of a member class 4504 // template specialization, make a note of that. 4505 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4506 PrevPartial->setMemberSpecialization(); 4507 4508 // Check that all of the template parameters of the class template 4509 // partial specialization are deducible from the template 4510 // arguments. If not, this class template partial specialization 4511 // will never be used. 4512 llvm::SmallVector<bool, 8> DeducibleParams; 4513 DeducibleParams.resize(TemplateParams->size()); 4514 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4515 TemplateParams->getDepth(), 4516 DeducibleParams); 4517 unsigned NumNonDeducible = 0; 4518 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 4519 if (!DeducibleParams[I]) 4520 ++NumNonDeducible; 4521 4522 if (NumNonDeducible) { 4523 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 4524 << (NumNonDeducible > 1) 4525 << SourceRange(TemplateNameLoc, RAngleLoc); 4526 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4527 if (!DeducibleParams[I]) { 4528 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 4529 if (Param->getDeclName()) 4530 Diag(Param->getLocation(), 4531 diag::note_partial_spec_unused_parameter) 4532 << Param->getDeclName(); 4533 else 4534 Diag(Param->getLocation(), 4535 diag::note_partial_spec_unused_parameter) 4536 << "<anonymous>"; 4537 } 4538 } 4539 } 4540 } else { 4541 // Create a new class template specialization declaration node for 4542 // this explicit specialization or friend declaration. 4543 Specialization 4544 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4545 ClassTemplate->getDeclContext(), 4546 TemplateNameLoc, 4547 ClassTemplate, 4548 Converted.data(), 4549 Converted.size(), 4550 PrevDecl); 4551 SetNestedNameSpecifier(Specialization, SS); 4552 if (NumMatchedTemplateParamLists > 0 && SS.isSet()) { 4553 Specialization->setTemplateParameterListsInfo(Context, 4554 NumMatchedTemplateParamLists, 4555 (TemplateParameterList**) TemplateParameterLists.release()); 4556 } 4557 4558 if (!PrevDecl) 4559 ClassTemplate->AddSpecialization(Specialization, InsertPos); 4560 4561 CanonType = Context.getTypeDeclType(Specialization); 4562 } 4563 4564 // C++ [temp.expl.spec]p6: 4565 // If a template, a member template or the member of a class template is 4566 // explicitly specialized then that specialization shall be declared 4567 // before the first use of that specialization that would cause an implicit 4568 // instantiation to take place, in every translation unit in which such a 4569 // use occurs; no diagnostic is required. 4570 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4571 bool Okay = false; 4572 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4573 // Is there any previous explicit specialization declaration? 4574 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4575 Okay = true; 4576 break; 4577 } 4578 } 4579 4580 if (!Okay) { 4581 SourceRange Range(TemplateNameLoc, RAngleLoc); 4582 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4583 << Context.getTypeDeclType(Specialization) << Range; 4584 4585 Diag(PrevDecl->getPointOfInstantiation(), 4586 diag::note_instantiation_required_here) 4587 << (PrevDecl->getTemplateSpecializationKind() 4588 != TSK_ImplicitInstantiation); 4589 return true; 4590 } 4591 } 4592 4593 // If this is not a friend, note that this is an explicit specialization. 4594 if (TUK != TUK_Friend) 4595 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4596 4597 // Check that this isn't a redefinition of this specialization. 4598 if (TUK == TUK_Definition) { 4599 if (RecordDecl *Def = Specialization->getDefinition()) { 4600 SourceRange Range(TemplateNameLoc, RAngleLoc); 4601 Diag(TemplateNameLoc, diag::err_redefinition) 4602 << Context.getTypeDeclType(Specialization) << Range; 4603 Diag(Def->getLocation(), diag::note_previous_definition); 4604 Specialization->setInvalidDecl(); 4605 return true; 4606 } 4607 } 4608 4609 if (Attr) 4610 ProcessDeclAttributeList(S, Specialization, Attr); 4611 4612 // Build the fully-sugared type for this class template 4613 // specialization as the user wrote in the specialization 4614 // itself. This means that we'll pretty-print the type retrieved 4615 // from the specialization's declaration the way that the user 4616 // actually wrote the specialization, rather than formatting the 4617 // name based on the "canonical" representation used to store the 4618 // template arguments in the specialization. 4619 TypeSourceInfo *WrittenTy 4620 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4621 TemplateArgs, CanonType); 4622 if (TUK != TUK_Friend) { 4623 Specialization->setTypeAsWritten(WrittenTy); 4624 if (TemplateParams) 4625 Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc()); 4626 } 4627 TemplateArgsIn.release(); 4628 4629 // C++ [temp.expl.spec]p9: 4630 // A template explicit specialization is in the scope of the 4631 // namespace in which the template was defined. 4632 // 4633 // We actually implement this paragraph where we set the semantic 4634 // context (in the creation of the ClassTemplateSpecializationDecl), 4635 // but we also maintain the lexical context where the actual 4636 // definition occurs. 4637 Specialization->setLexicalDeclContext(CurContext); 4638 4639 // We may be starting the definition of this specialization. 4640 if (TUK == TUK_Definition) 4641 Specialization->startDefinition(); 4642 4643 if (TUK == TUK_Friend) { 4644 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4645 TemplateNameLoc, 4646 WrittenTy, 4647 /*FIXME:*/KWLoc); 4648 Friend->setAccess(AS_public); 4649 CurContext->addDecl(Friend); 4650 } else { 4651 // Add the specialization into its lexical context, so that it can 4652 // be seen when iterating through the list of declarations in that 4653 // context. However, specializations are not found by name lookup. 4654 CurContext->addDecl(Specialization); 4655 } 4656 return Specialization; 4657} 4658 4659Decl *Sema::ActOnTemplateDeclarator(Scope *S, 4660 MultiTemplateParamsArg TemplateParameterLists, 4661 Declarator &D) { 4662 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4663} 4664 4665Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4666 MultiTemplateParamsArg TemplateParameterLists, 4667 Declarator &D) { 4668 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4669 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 4670 4671 if (FTI.hasPrototype) { 4672 // FIXME: Diagnose arguments without names in C. 4673 } 4674 4675 Scope *ParentScope = FnBodyScope->getParent(); 4676 4677 Decl *DP = HandleDeclarator(ParentScope, D, 4678 move(TemplateParameterLists), 4679 /*IsFunctionDefinition=*/true); 4680 if (FunctionTemplateDecl *FunctionTemplate 4681 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 4682 return ActOnStartOfFunctionDef(FnBodyScope, 4683 FunctionTemplate->getTemplatedDecl()); 4684 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 4685 return ActOnStartOfFunctionDef(FnBodyScope, Function); 4686 return 0; 4687} 4688 4689/// \brief Strips various properties off an implicit instantiation 4690/// that has just been explicitly specialized. 4691static void StripImplicitInstantiation(NamedDecl *D) { 4692 D->dropAttrs(); 4693 4694 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4695 FD->setInlineSpecified(false); 4696 } 4697} 4698 4699/// \brief Diagnose cases where we have an explicit template specialization 4700/// before/after an explicit template instantiation, producing diagnostics 4701/// for those cases where they are required and determining whether the 4702/// new specialization/instantiation will have any effect. 4703/// 4704/// \param NewLoc the location of the new explicit specialization or 4705/// instantiation. 4706/// 4707/// \param NewTSK the kind of the new explicit specialization or instantiation. 4708/// 4709/// \param PrevDecl the previous declaration of the entity. 4710/// 4711/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4712/// 4713/// \param PrevPointOfInstantiation if valid, indicates where the previus 4714/// declaration was instantiated (either implicitly or explicitly). 4715/// 4716/// \param HasNoEffect will be set to true to indicate that the new 4717/// specialization or instantiation has no effect and should be ignored. 4718/// 4719/// \returns true if there was an error that should prevent the introduction of 4720/// the new declaration into the AST, false otherwise. 4721bool 4722Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4723 TemplateSpecializationKind NewTSK, 4724 NamedDecl *PrevDecl, 4725 TemplateSpecializationKind PrevTSK, 4726 SourceLocation PrevPointOfInstantiation, 4727 bool &HasNoEffect) { 4728 HasNoEffect = false; 4729 4730 switch (NewTSK) { 4731 case TSK_Undeclared: 4732 case TSK_ImplicitInstantiation: 4733 assert(false && "Don't check implicit instantiations here"); 4734 return false; 4735 4736 case TSK_ExplicitSpecialization: 4737 switch (PrevTSK) { 4738 case TSK_Undeclared: 4739 case TSK_ExplicitSpecialization: 4740 // Okay, we're just specializing something that is either already 4741 // explicitly specialized or has merely been mentioned without any 4742 // instantiation. 4743 return false; 4744 4745 case TSK_ImplicitInstantiation: 4746 if (PrevPointOfInstantiation.isInvalid()) { 4747 // The declaration itself has not actually been instantiated, so it is 4748 // still okay to specialize it. 4749 StripImplicitInstantiation(PrevDecl); 4750 return false; 4751 } 4752 // Fall through 4753 4754 case TSK_ExplicitInstantiationDeclaration: 4755 case TSK_ExplicitInstantiationDefinition: 4756 assert((PrevTSK == TSK_ImplicitInstantiation || 4757 PrevPointOfInstantiation.isValid()) && 4758 "Explicit instantiation without point of instantiation?"); 4759 4760 // C++ [temp.expl.spec]p6: 4761 // If a template, a member template or the member of a class template 4762 // is explicitly specialized then that specialization shall be declared 4763 // before the first use of that specialization that would cause an 4764 // implicit instantiation to take place, in every translation unit in 4765 // which such a use occurs; no diagnostic is required. 4766 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4767 // Is there any previous explicit specialization declaration? 4768 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4769 return false; 4770 } 4771 4772 Diag(NewLoc, diag::err_specialization_after_instantiation) 4773 << PrevDecl; 4774 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4775 << (PrevTSK != TSK_ImplicitInstantiation); 4776 4777 return true; 4778 } 4779 break; 4780 4781 case TSK_ExplicitInstantiationDeclaration: 4782 switch (PrevTSK) { 4783 case TSK_ExplicitInstantiationDeclaration: 4784 // This explicit instantiation declaration is redundant (that's okay). 4785 HasNoEffect = true; 4786 return false; 4787 4788 case TSK_Undeclared: 4789 case TSK_ImplicitInstantiation: 4790 // We're explicitly instantiating something that may have already been 4791 // implicitly instantiated; that's fine. 4792 return false; 4793 4794 case TSK_ExplicitSpecialization: 4795 // C++0x [temp.explicit]p4: 4796 // For a given set of template parameters, if an explicit instantiation 4797 // of a template appears after a declaration of an explicit 4798 // specialization for that template, the explicit instantiation has no 4799 // effect. 4800 HasNoEffect = true; 4801 return false; 4802 4803 case TSK_ExplicitInstantiationDefinition: 4804 // C++0x [temp.explicit]p10: 4805 // If an entity is the subject of both an explicit instantiation 4806 // declaration and an explicit instantiation definition in the same 4807 // translation unit, the definition shall follow the declaration. 4808 Diag(NewLoc, 4809 diag::err_explicit_instantiation_declaration_after_definition); 4810 Diag(PrevPointOfInstantiation, 4811 diag::note_explicit_instantiation_definition_here); 4812 assert(PrevPointOfInstantiation.isValid() && 4813 "Explicit instantiation without point of instantiation?"); 4814 HasNoEffect = true; 4815 return false; 4816 } 4817 break; 4818 4819 case TSK_ExplicitInstantiationDefinition: 4820 switch (PrevTSK) { 4821 case TSK_Undeclared: 4822 case TSK_ImplicitInstantiation: 4823 // We're explicitly instantiating something that may have already been 4824 // implicitly instantiated; that's fine. 4825 return false; 4826 4827 case TSK_ExplicitSpecialization: 4828 // C++ DR 259, C++0x [temp.explicit]p4: 4829 // For a given set of template parameters, if an explicit 4830 // instantiation of a template appears after a declaration of 4831 // an explicit specialization for that template, the explicit 4832 // instantiation has no effect. 4833 // 4834 // In C++98/03 mode, we only give an extension warning here, because it 4835 // is not harmful to try to explicitly instantiate something that 4836 // has been explicitly specialized. 4837 if (!getLangOptions().CPlusPlus0x) { 4838 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4839 << PrevDecl; 4840 Diag(PrevDecl->getLocation(), 4841 diag::note_previous_template_specialization); 4842 } 4843 HasNoEffect = true; 4844 return false; 4845 4846 case TSK_ExplicitInstantiationDeclaration: 4847 // We're explicity instantiating a definition for something for which we 4848 // were previously asked to suppress instantiations. That's fine. 4849 return false; 4850 4851 case TSK_ExplicitInstantiationDefinition: 4852 // C++0x [temp.spec]p5: 4853 // For a given template and a given set of template-arguments, 4854 // - an explicit instantiation definition shall appear at most once 4855 // in a program, 4856 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4857 << PrevDecl; 4858 Diag(PrevPointOfInstantiation, 4859 diag::note_previous_explicit_instantiation); 4860 HasNoEffect = true; 4861 return false; 4862 } 4863 break; 4864 } 4865 4866 assert(false && "Missing specialization/instantiation case?"); 4867 4868 return false; 4869} 4870 4871/// \brief Perform semantic analysis for the given dependent function 4872/// template specialization. The only possible way to get a dependent 4873/// function template specialization is with a friend declaration, 4874/// like so: 4875/// 4876/// template <class T> void foo(T); 4877/// template <class T> class A { 4878/// friend void foo<>(T); 4879/// }; 4880/// 4881/// There really isn't any useful analysis we can do here, so we 4882/// just store the information. 4883bool 4884Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4885 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4886 LookupResult &Previous) { 4887 // Remove anything from Previous that isn't a function template in 4888 // the correct context. 4889 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4890 LookupResult::Filter F = Previous.makeFilter(); 4891 while (F.hasNext()) { 4892 NamedDecl *D = F.next()->getUnderlyingDecl(); 4893 if (!isa<FunctionTemplateDecl>(D) || 4894 !FDLookupContext->InEnclosingNamespaceSetOf( 4895 D->getDeclContext()->getRedeclContext())) 4896 F.erase(); 4897 } 4898 F.done(); 4899 4900 // Should this be diagnosed here? 4901 if (Previous.empty()) return true; 4902 4903 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4904 ExplicitTemplateArgs); 4905 return false; 4906} 4907 4908/// \brief Perform semantic analysis for the given function template 4909/// specialization. 4910/// 4911/// This routine performs all of the semantic analysis required for an 4912/// explicit function template specialization. On successful completion, 4913/// the function declaration \p FD will become a function template 4914/// specialization. 4915/// 4916/// \param FD the function declaration, which will be updated to become a 4917/// function template specialization. 4918/// 4919/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4920/// if any. Note that this may be valid info even when 0 arguments are 4921/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4922/// as it anyway contains info on the angle brackets locations. 4923/// 4924/// \param PrevDecl the set of declarations that may be specialized by 4925/// this function specialization. 4926bool 4927Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4928 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4929 LookupResult &Previous) { 4930 // The set of function template specializations that could match this 4931 // explicit function template specialization. 4932 UnresolvedSet<8> Candidates; 4933 4934 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 4935 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4936 I != E; ++I) { 4937 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4938 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4939 // Only consider templates found within the same semantic lookup scope as 4940 // FD. 4941 if (!FDLookupContext->InEnclosingNamespaceSetOf( 4942 Ovl->getDeclContext()->getRedeclContext())) 4943 continue; 4944 4945 // C++ [temp.expl.spec]p11: 4946 // A trailing template-argument can be left unspecified in the 4947 // template-id naming an explicit function template specialization 4948 // provided it can be deduced from the function argument type. 4949 // Perform template argument deduction to determine whether we may be 4950 // specializing this template. 4951 // FIXME: It is somewhat wasteful to build 4952 TemplateDeductionInfo Info(Context, FD->getLocation()); 4953 FunctionDecl *Specialization = 0; 4954 if (TemplateDeductionResult TDK 4955 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4956 FD->getType(), 4957 Specialization, 4958 Info)) { 4959 // FIXME: Template argument deduction failed; record why it failed, so 4960 // that we can provide nifty diagnostics. 4961 (void)TDK; 4962 continue; 4963 } 4964 4965 // Record this candidate. 4966 Candidates.addDecl(Specialization, I.getAccess()); 4967 } 4968 } 4969 4970 // Find the most specialized function template. 4971 UnresolvedSetIterator Result 4972 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4973 TPOC_Other, 0, FD->getLocation(), 4974 PDiag(diag::err_function_template_spec_no_match) 4975 << FD->getDeclName(), 4976 PDiag(diag::err_function_template_spec_ambiguous) 4977 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4978 PDiag(diag::note_function_template_spec_matched)); 4979 if (Result == Candidates.end()) 4980 return true; 4981 4982 // Ignore access information; it doesn't figure into redeclaration checking. 4983 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4984 Specialization->setLocation(FD->getLocation()); 4985 4986 // FIXME: Check if the prior specialization has a point of instantiation. 4987 // If so, we have run afoul of . 4988 4989 // If this is a friend declaration, then we're not really declaring 4990 // an explicit specialization. 4991 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4992 4993 // Check the scope of this explicit specialization. 4994 if (!isFriend && 4995 CheckTemplateSpecializationScope(*this, 4996 Specialization->getPrimaryTemplate(), 4997 Specialization, FD->getLocation(), 4998 false)) 4999 return true; 5000 5001 // C++ [temp.expl.spec]p6: 5002 // If a template, a member template or the member of a class template is 5003 // explicitly specialized then that specialization shall be declared 5004 // before the first use of that specialization that would cause an implicit 5005 // instantiation to take place, in every translation unit in which such a 5006 // use occurs; no diagnostic is required. 5007 FunctionTemplateSpecializationInfo *SpecInfo 5008 = Specialization->getTemplateSpecializationInfo(); 5009 assert(SpecInfo && "Function template specialization info missing?"); 5010 5011 bool HasNoEffect = false; 5012 if (!isFriend && 5013 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5014 TSK_ExplicitSpecialization, 5015 Specialization, 5016 SpecInfo->getTemplateSpecializationKind(), 5017 SpecInfo->getPointOfInstantiation(), 5018 HasNoEffect)) 5019 return true; 5020 5021 // Mark the prior declaration as an explicit specialization, so that later 5022 // clients know that this is an explicit specialization. 5023 if (!isFriend) { 5024 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5025 MarkUnusedFileScopedDecl(Specialization); 5026 } 5027 5028 // Turn the given function declaration into a function template 5029 // specialization, with the template arguments from the previous 5030 // specialization. 5031 // Take copies of (semantic and syntactic) template argument lists. 5032 const TemplateArgumentList* TemplArgs = new (Context) 5033 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5034 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 5035 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 5036 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5037 TemplArgs, /*InsertPos=*/0, 5038 SpecInfo->getTemplateSpecializationKind(), 5039 TemplArgsAsWritten); 5040 5041 // The "previous declaration" for this function template specialization is 5042 // the prior function template specialization. 5043 Previous.clear(); 5044 Previous.addDecl(Specialization); 5045 return false; 5046} 5047 5048/// \brief Perform semantic analysis for the given non-template member 5049/// specialization. 5050/// 5051/// This routine performs all of the semantic analysis required for an 5052/// explicit member function specialization. On successful completion, 5053/// the function declaration \p FD will become a member function 5054/// specialization. 5055/// 5056/// \param Member the member declaration, which will be updated to become a 5057/// specialization. 5058/// 5059/// \param Previous the set of declarations, one of which may be specialized 5060/// by this function specialization; the set will be modified to contain the 5061/// redeclared member. 5062bool 5063Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 5064 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 5065 5066 // Try to find the member we are instantiating. 5067 NamedDecl *Instantiation = 0; 5068 NamedDecl *InstantiatedFrom = 0; 5069 MemberSpecializationInfo *MSInfo = 0; 5070 5071 if (Previous.empty()) { 5072 // Nowhere to look anyway. 5073 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 5074 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5075 I != E; ++I) { 5076 NamedDecl *D = (*I)->getUnderlyingDecl(); 5077 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5078 if (Context.hasSameType(Function->getType(), Method->getType())) { 5079 Instantiation = Method; 5080 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 5081 MSInfo = Method->getMemberSpecializationInfo(); 5082 break; 5083 } 5084 } 5085 } 5086 } else if (isa<VarDecl>(Member)) { 5087 VarDecl *PrevVar; 5088 if (Previous.isSingleResult() && 5089 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 5090 if (PrevVar->isStaticDataMember()) { 5091 Instantiation = PrevVar; 5092 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 5093 MSInfo = PrevVar->getMemberSpecializationInfo(); 5094 } 5095 } else if (isa<RecordDecl>(Member)) { 5096 CXXRecordDecl *PrevRecord; 5097 if (Previous.isSingleResult() && 5098 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 5099 Instantiation = PrevRecord; 5100 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 5101 MSInfo = PrevRecord->getMemberSpecializationInfo(); 5102 } 5103 } 5104 5105 if (!Instantiation) { 5106 // There is no previous declaration that matches. Since member 5107 // specializations are always out-of-line, the caller will complain about 5108 // this mismatch later. 5109 return false; 5110 } 5111 5112 // If this is a friend, just bail out here before we start turning 5113 // things into explicit specializations. 5114 if (Member->getFriendObjectKind() != Decl::FOK_None) { 5115 // Preserve instantiation information. 5116 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 5117 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 5118 cast<CXXMethodDecl>(InstantiatedFrom), 5119 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 5120 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 5121 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5122 cast<CXXRecordDecl>(InstantiatedFrom), 5123 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 5124 } 5125 5126 Previous.clear(); 5127 Previous.addDecl(Instantiation); 5128 return false; 5129 } 5130 5131 // Make sure that this is a specialization of a member. 5132 if (!InstantiatedFrom) { 5133 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 5134 << Member; 5135 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 5136 return true; 5137 } 5138 5139 // C++ [temp.expl.spec]p6: 5140 // If a template, a member template or the member of a class template is 5141 // explicitly specialized then that spe- cialization shall be declared 5142 // before the first use of that specialization that would cause an implicit 5143 // instantiation to take place, in every translation unit in which such a 5144 // use occurs; no diagnostic is required. 5145 assert(MSInfo && "Member specialization info missing?"); 5146 5147 bool HasNoEffect = false; 5148 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 5149 TSK_ExplicitSpecialization, 5150 Instantiation, 5151 MSInfo->getTemplateSpecializationKind(), 5152 MSInfo->getPointOfInstantiation(), 5153 HasNoEffect)) 5154 return true; 5155 5156 // Check the scope of this explicit specialization. 5157 if (CheckTemplateSpecializationScope(*this, 5158 InstantiatedFrom, 5159 Instantiation, Member->getLocation(), 5160 false)) 5161 return true; 5162 5163 // Note that this is an explicit instantiation of a member. 5164 // the original declaration to note that it is an explicit specialization 5165 // (if it was previously an implicit instantiation). This latter step 5166 // makes bookkeeping easier. 5167 if (isa<FunctionDecl>(Member)) { 5168 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 5169 if (InstantiationFunction->getTemplateSpecializationKind() == 5170 TSK_ImplicitInstantiation) { 5171 InstantiationFunction->setTemplateSpecializationKind( 5172 TSK_ExplicitSpecialization); 5173 InstantiationFunction->setLocation(Member->getLocation()); 5174 } 5175 5176 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 5177 cast<CXXMethodDecl>(InstantiatedFrom), 5178 TSK_ExplicitSpecialization); 5179 MarkUnusedFileScopedDecl(InstantiationFunction); 5180 } else if (isa<VarDecl>(Member)) { 5181 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 5182 if (InstantiationVar->getTemplateSpecializationKind() == 5183 TSK_ImplicitInstantiation) { 5184 InstantiationVar->setTemplateSpecializationKind( 5185 TSK_ExplicitSpecialization); 5186 InstantiationVar->setLocation(Member->getLocation()); 5187 } 5188 5189 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 5190 cast<VarDecl>(InstantiatedFrom), 5191 TSK_ExplicitSpecialization); 5192 MarkUnusedFileScopedDecl(InstantiationVar); 5193 } else { 5194 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 5195 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 5196 if (InstantiationClass->getTemplateSpecializationKind() == 5197 TSK_ImplicitInstantiation) { 5198 InstantiationClass->setTemplateSpecializationKind( 5199 TSK_ExplicitSpecialization); 5200 InstantiationClass->setLocation(Member->getLocation()); 5201 } 5202 5203 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 5204 cast<CXXRecordDecl>(InstantiatedFrom), 5205 TSK_ExplicitSpecialization); 5206 } 5207 5208 // Save the caller the trouble of having to figure out which declaration 5209 // this specialization matches. 5210 Previous.clear(); 5211 Previous.addDecl(Instantiation); 5212 return false; 5213} 5214 5215/// \brief Check the scope of an explicit instantiation. 5216/// 5217/// \returns true if a serious error occurs, false otherwise. 5218static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 5219 SourceLocation InstLoc, 5220 bool WasQualifiedName) { 5221 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 5222 DeclContext *CurContext = S.CurContext->getRedeclContext(); 5223 5224 if (CurContext->isRecord()) { 5225 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 5226 << D; 5227 return true; 5228 } 5229 5230 // C++0x [temp.explicit]p2: 5231 // An explicit instantiation shall appear in an enclosing namespace of its 5232 // template. 5233 // 5234 // This is DR275, which we do not retroactively apply to C++98/03. 5235 if (S.getLangOptions().CPlusPlus0x && 5236 !CurContext->Encloses(OrigContext)) { 5237 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) 5238 S.Diag(InstLoc, 5239 S.getLangOptions().CPlusPlus0x? 5240 diag::err_explicit_instantiation_out_of_scope 5241 : diag::warn_explicit_instantiation_out_of_scope_0x) 5242 << D << NS; 5243 else 5244 S.Diag(InstLoc, 5245 S.getLangOptions().CPlusPlus0x? 5246 diag::err_explicit_instantiation_must_be_global 5247 : diag::warn_explicit_instantiation_out_of_scope_0x) 5248 << D; 5249 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5250 return false; 5251 } 5252 5253 // C++0x [temp.explicit]p2: 5254 // If the name declared in the explicit instantiation is an unqualified 5255 // name, the explicit instantiation shall appear in the namespace where 5256 // its template is declared or, if that namespace is inline (7.3.1), any 5257 // namespace from its enclosing namespace set. 5258 if (WasQualifiedName) 5259 return false; 5260 5261 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 5262 return false; 5263 5264 S.Diag(InstLoc, 5265 S.getLangOptions().CPlusPlus0x? 5266 diag::err_explicit_instantiation_unqualified_wrong_namespace 5267 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 5268 << D << OrigContext; 5269 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 5270 return false; 5271} 5272 5273/// \brief Determine whether the given scope specifier has a template-id in it. 5274static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 5275 if (!SS.isSet()) 5276 return false; 5277 5278 // C++0x [temp.explicit]p2: 5279 // If the explicit instantiation is for a member function, a member class 5280 // or a static data member of a class template specialization, the name of 5281 // the class template specialization in the qualified-id for the member 5282 // name shall be a simple-template-id. 5283 // 5284 // C++98 has the same restriction, just worded differently. 5285 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 5286 NNS; NNS = NNS->getPrefix()) 5287 if (const Type *T = NNS->getAsType()) 5288 if (isa<TemplateSpecializationType>(T)) 5289 return true; 5290 5291 return false; 5292} 5293 5294// Explicit instantiation of a class template specialization 5295DeclResult 5296Sema::ActOnExplicitInstantiation(Scope *S, 5297 SourceLocation ExternLoc, 5298 SourceLocation TemplateLoc, 5299 unsigned TagSpec, 5300 SourceLocation KWLoc, 5301 const CXXScopeSpec &SS, 5302 TemplateTy TemplateD, 5303 SourceLocation TemplateNameLoc, 5304 SourceLocation LAngleLoc, 5305 ASTTemplateArgsPtr TemplateArgsIn, 5306 SourceLocation RAngleLoc, 5307 AttributeList *Attr) { 5308 // Find the class template we're specializing 5309 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5310 ClassTemplateDecl *ClassTemplate 5311 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5312 5313 // Check that the specialization uses the same tag kind as the 5314 // original template. 5315 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5316 assert(Kind != TTK_Enum && 5317 "Invalid enum tag in class template explicit instantiation!"); 5318 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5319 Kind, KWLoc, 5320 *ClassTemplate->getIdentifier())) { 5321 Diag(KWLoc, diag::err_use_with_wrong_tag) 5322 << ClassTemplate 5323 << FixItHint::CreateReplacement(KWLoc, 5324 ClassTemplate->getTemplatedDecl()->getKindName()); 5325 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5326 diag::note_previous_use); 5327 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5328 } 5329 5330 // C++0x [temp.explicit]p2: 5331 // There are two forms of explicit instantiation: an explicit instantiation 5332 // definition and an explicit instantiation declaration. An explicit 5333 // instantiation declaration begins with the extern keyword. [...] 5334 TemplateSpecializationKind TSK 5335 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5336 : TSK_ExplicitInstantiationDeclaration; 5337 5338 // Translate the parser's template argument list in our AST format. 5339 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 5340 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5341 5342 // Check that the template argument list is well-formed for this 5343 // template. 5344 llvm::SmallVector<TemplateArgument, 4> Converted; 5345 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5346 TemplateArgs, false, Converted)) 5347 return true; 5348 5349 assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) && 5350 "Converted template argument list is too short!"); 5351 5352 // Find the class template specialization declaration that 5353 // corresponds to these arguments. 5354 void *InsertPos = 0; 5355 ClassTemplateSpecializationDecl *PrevDecl 5356 = ClassTemplate->findSpecialization(Converted.data(), 5357 Converted.size(), InsertPos); 5358 5359 TemplateSpecializationKind PrevDecl_TSK 5360 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 5361 5362 // C++0x [temp.explicit]p2: 5363 // [...] An explicit instantiation shall appear in an enclosing 5364 // namespace of its template. [...] 5365 // 5366 // This is C++ DR 275. 5367 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 5368 SS.isSet())) 5369 return true; 5370 5371 ClassTemplateSpecializationDecl *Specialization = 0; 5372 5373 bool HasNoEffect = false; 5374 if (PrevDecl) { 5375 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 5376 PrevDecl, PrevDecl_TSK, 5377 PrevDecl->getPointOfInstantiation(), 5378 HasNoEffect)) 5379 return PrevDecl; 5380 5381 // Even though HasNoEffect == true means that this explicit instantiation 5382 // has no effect on semantics, we go on to put its syntax in the AST. 5383 5384 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 5385 PrevDecl_TSK == TSK_Undeclared) { 5386 // Since the only prior class template specialization with these 5387 // arguments was referenced but not declared, reuse that 5388 // declaration node as our own, updating the source location 5389 // for the template name to reflect our new declaration. 5390 // (Other source locations will be updated later.) 5391 Specialization = PrevDecl; 5392 Specialization->setLocation(TemplateNameLoc); 5393 PrevDecl = 0; 5394 } 5395 } 5396 5397 if (!Specialization) { 5398 // Create a new class template specialization declaration node for 5399 // this explicit specialization. 5400 Specialization 5401 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5402 ClassTemplate->getDeclContext(), 5403 TemplateNameLoc, 5404 ClassTemplate, 5405 Converted.data(), 5406 Converted.size(), 5407 PrevDecl); 5408 SetNestedNameSpecifier(Specialization, SS); 5409 5410 if (!HasNoEffect && !PrevDecl) { 5411 // Insert the new specialization. 5412 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5413 } 5414 } 5415 5416 // Build the fully-sugared type for this explicit instantiation as 5417 // the user wrote in the explicit instantiation itself. This means 5418 // that we'll pretty-print the type retrieved from the 5419 // specialization's declaration the way that the user actually wrote 5420 // the explicit instantiation, rather than formatting the name based 5421 // on the "canonical" representation used to store the template 5422 // arguments in the specialization. 5423 TypeSourceInfo *WrittenTy 5424 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5425 TemplateArgs, 5426 Context.getTypeDeclType(Specialization)); 5427 Specialization->setTypeAsWritten(WrittenTy); 5428 TemplateArgsIn.release(); 5429 5430 // Set source locations for keywords. 5431 Specialization->setExternLoc(ExternLoc); 5432 Specialization->setTemplateKeywordLoc(TemplateLoc); 5433 5434 // Add the explicit instantiation into its lexical context. However, 5435 // since explicit instantiations are never found by name lookup, we 5436 // just put it into the declaration context directly. 5437 Specialization->setLexicalDeclContext(CurContext); 5438 CurContext->addDecl(Specialization); 5439 5440 // Syntax is now OK, so return if it has no other effect on semantics. 5441 if (HasNoEffect) { 5442 // Set the template specialization kind. 5443 Specialization->setTemplateSpecializationKind(TSK); 5444 return Specialization; 5445 } 5446 5447 // C++ [temp.explicit]p3: 5448 // A definition of a class template or class member template 5449 // shall be in scope at the point of the explicit instantiation of 5450 // the class template or class member template. 5451 // 5452 // This check comes when we actually try to perform the 5453 // instantiation. 5454 ClassTemplateSpecializationDecl *Def 5455 = cast_or_null<ClassTemplateSpecializationDecl>( 5456 Specialization->getDefinition()); 5457 if (!Def) 5458 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 5459 else if (TSK == TSK_ExplicitInstantiationDefinition) { 5460 MarkVTableUsed(TemplateNameLoc, Specialization, true); 5461 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 5462 } 5463 5464 // Instantiate the members of this class template specialization. 5465 Def = cast_or_null<ClassTemplateSpecializationDecl>( 5466 Specialization->getDefinition()); 5467 if (Def) { 5468 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 5469 5470 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 5471 // TSK_ExplicitInstantiationDefinition 5472 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 5473 TSK == TSK_ExplicitInstantiationDefinition) 5474 Def->setTemplateSpecializationKind(TSK); 5475 5476 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 5477 } 5478 5479 // Set the template specialization kind. 5480 Specialization->setTemplateSpecializationKind(TSK); 5481 return Specialization; 5482} 5483 5484// Explicit instantiation of a member class of a class template. 5485DeclResult 5486Sema::ActOnExplicitInstantiation(Scope *S, 5487 SourceLocation ExternLoc, 5488 SourceLocation TemplateLoc, 5489 unsigned TagSpec, 5490 SourceLocation KWLoc, 5491 CXXScopeSpec &SS, 5492 IdentifierInfo *Name, 5493 SourceLocation NameLoc, 5494 AttributeList *Attr) { 5495 5496 bool Owned = false; 5497 bool IsDependent = false; 5498 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 5499 KWLoc, SS, Name, NameLoc, Attr, AS_none, 5500 MultiTemplateParamsArg(*this, 0, 0), 5501 Owned, IsDependent, false, false, 5502 TypeResult()); 5503 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 5504 5505 if (!TagD) 5506 return true; 5507 5508 TagDecl *Tag = cast<TagDecl>(TagD); 5509 if (Tag->isEnum()) { 5510 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 5511 << Context.getTypeDeclType(Tag); 5512 return true; 5513 } 5514 5515 if (Tag->isInvalidDecl()) 5516 return true; 5517 5518 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 5519 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 5520 if (!Pattern) { 5521 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 5522 << Context.getTypeDeclType(Record); 5523 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 5524 return true; 5525 } 5526 5527 // C++0x [temp.explicit]p2: 5528 // If the explicit instantiation is for a class or member class, the 5529 // elaborated-type-specifier in the declaration shall include a 5530 // simple-template-id. 5531 // 5532 // C++98 has the same restriction, just worded differently. 5533 if (!ScopeSpecifierHasTemplateId(SS)) 5534 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 5535 << Record << SS.getRange(); 5536 5537 // C++0x [temp.explicit]p2: 5538 // There are two forms of explicit instantiation: an explicit instantiation 5539 // definition and an explicit instantiation declaration. An explicit 5540 // instantiation declaration begins with the extern keyword. [...] 5541 TemplateSpecializationKind TSK 5542 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5543 : TSK_ExplicitInstantiationDeclaration; 5544 5545 // C++0x [temp.explicit]p2: 5546 // [...] An explicit instantiation shall appear in an enclosing 5547 // namespace of its template. [...] 5548 // 5549 // This is C++ DR 275. 5550 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 5551 5552 // Verify that it is okay to explicitly instantiate here. 5553 CXXRecordDecl *PrevDecl 5554 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 5555 if (!PrevDecl && Record->getDefinition()) 5556 PrevDecl = Record; 5557 if (PrevDecl) { 5558 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 5559 bool HasNoEffect = false; 5560 assert(MSInfo && "No member specialization information?"); 5561 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 5562 PrevDecl, 5563 MSInfo->getTemplateSpecializationKind(), 5564 MSInfo->getPointOfInstantiation(), 5565 HasNoEffect)) 5566 return true; 5567 if (HasNoEffect) 5568 return TagD; 5569 } 5570 5571 CXXRecordDecl *RecordDef 5572 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5573 if (!RecordDef) { 5574 // C++ [temp.explicit]p3: 5575 // A definition of a member class of a class template shall be in scope 5576 // at the point of an explicit instantiation of the member class. 5577 CXXRecordDecl *Def 5578 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 5579 if (!Def) { 5580 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 5581 << 0 << Record->getDeclName() << Record->getDeclContext(); 5582 Diag(Pattern->getLocation(), diag::note_forward_declaration) 5583 << Pattern; 5584 return true; 5585 } else { 5586 if (InstantiateClass(NameLoc, Record, Def, 5587 getTemplateInstantiationArgs(Record), 5588 TSK)) 5589 return true; 5590 5591 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 5592 if (!RecordDef) 5593 return true; 5594 } 5595 } 5596 5597 // Instantiate all of the members of the class. 5598 InstantiateClassMembers(NameLoc, RecordDef, 5599 getTemplateInstantiationArgs(Record), TSK); 5600 5601 if (TSK == TSK_ExplicitInstantiationDefinition) 5602 MarkVTableUsed(NameLoc, RecordDef, true); 5603 5604 // FIXME: We don't have any representation for explicit instantiations of 5605 // member classes. Such a representation is not needed for compilation, but it 5606 // should be available for clients that want to see all of the declarations in 5607 // the source code. 5608 return TagD; 5609} 5610 5611DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 5612 SourceLocation ExternLoc, 5613 SourceLocation TemplateLoc, 5614 Declarator &D) { 5615 // Explicit instantiations always require a name. 5616 // TODO: check if/when DNInfo should replace Name. 5617 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5618 DeclarationName Name = NameInfo.getName(); 5619 if (!Name) { 5620 if (!D.isInvalidType()) 5621 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5622 diag::err_explicit_instantiation_requires_name) 5623 << D.getDeclSpec().getSourceRange() 5624 << D.getSourceRange(); 5625 5626 return true; 5627 } 5628 5629 // The scope passed in may not be a decl scope. Zip up the scope tree until 5630 // we find one that is. 5631 while ((S->getFlags() & Scope::DeclScope) == 0 || 5632 (S->getFlags() & Scope::TemplateParamScope) != 0) 5633 S = S->getParent(); 5634 5635 // Determine the type of the declaration. 5636 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5637 QualType R = T->getType(); 5638 if (R.isNull()) 5639 return true; 5640 5641 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5642 // Cannot explicitly instantiate a typedef. 5643 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5644 << Name; 5645 return true; 5646 } 5647 5648 // C++0x [temp.explicit]p1: 5649 // [...] An explicit instantiation of a function template shall not use the 5650 // inline or constexpr specifiers. 5651 // Presumably, this also applies to member functions of class templates as 5652 // well. 5653 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5654 Diag(D.getDeclSpec().getInlineSpecLoc(), 5655 diag::err_explicit_instantiation_inline) 5656 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5657 5658 // FIXME: check for constexpr specifier. 5659 5660 // C++0x [temp.explicit]p2: 5661 // There are two forms of explicit instantiation: an explicit instantiation 5662 // definition and an explicit instantiation declaration. An explicit 5663 // instantiation declaration begins with the extern keyword. [...] 5664 TemplateSpecializationKind TSK 5665 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5666 : TSK_ExplicitInstantiationDeclaration; 5667 5668 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 5669 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5670 5671 if (!R->isFunctionType()) { 5672 // C++ [temp.explicit]p1: 5673 // A [...] static data member of a class template can be explicitly 5674 // instantiated from the member definition associated with its class 5675 // template. 5676 if (Previous.isAmbiguous()) 5677 return true; 5678 5679 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5680 if (!Prev || !Prev->isStaticDataMember()) { 5681 // We expect to see a data data member here. 5682 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5683 << Name; 5684 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5685 P != PEnd; ++P) 5686 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5687 return true; 5688 } 5689 5690 if (!Prev->getInstantiatedFromStaticDataMember()) { 5691 // FIXME: Check for explicit specialization? 5692 Diag(D.getIdentifierLoc(), 5693 diag::err_explicit_instantiation_data_member_not_instantiated) 5694 << Prev; 5695 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5696 // FIXME: Can we provide a note showing where this was declared? 5697 return true; 5698 } 5699 5700 // C++0x [temp.explicit]p2: 5701 // If the explicit instantiation is for a member function, a member class 5702 // or a static data member of a class template specialization, the name of 5703 // the class template specialization in the qualified-id for the member 5704 // name shall be a simple-template-id. 5705 // 5706 // C++98 has the same restriction, just worded differently. 5707 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5708 Diag(D.getIdentifierLoc(), 5709 diag::ext_explicit_instantiation_without_qualified_id) 5710 << Prev << D.getCXXScopeSpec().getRange(); 5711 5712 // Check the scope of this explicit instantiation. 5713 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5714 5715 // Verify that it is okay to explicitly instantiate here. 5716 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5717 assert(MSInfo && "Missing static data member specialization info?"); 5718 bool HasNoEffect = false; 5719 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5720 MSInfo->getTemplateSpecializationKind(), 5721 MSInfo->getPointOfInstantiation(), 5722 HasNoEffect)) 5723 return true; 5724 if (HasNoEffect) 5725 return (Decl*) 0; 5726 5727 // Instantiate static data member. 5728 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5729 if (TSK == TSK_ExplicitInstantiationDefinition) 5730 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 5731 5732 // FIXME: Create an ExplicitInstantiation node? 5733 return (Decl*) 0; 5734 } 5735 5736 // If the declarator is a template-id, translate the parser's template 5737 // argument list into our AST format. 5738 bool HasExplicitTemplateArgs = false; 5739 TemplateArgumentListInfo TemplateArgs; 5740 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5741 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5742 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5743 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5744 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5745 TemplateId->getTemplateArgs(), 5746 TemplateId->NumArgs); 5747 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5748 HasExplicitTemplateArgs = true; 5749 TemplateArgsPtr.release(); 5750 } 5751 5752 // C++ [temp.explicit]p1: 5753 // A [...] function [...] can be explicitly instantiated from its template. 5754 // A member function [...] of a class template can be explicitly 5755 // instantiated from the member definition associated with its class 5756 // template. 5757 UnresolvedSet<8> Matches; 5758 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5759 P != PEnd; ++P) { 5760 NamedDecl *Prev = *P; 5761 if (!HasExplicitTemplateArgs) { 5762 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5763 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5764 Matches.clear(); 5765 5766 Matches.addDecl(Method, P.getAccess()); 5767 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5768 break; 5769 } 5770 } 5771 } 5772 5773 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5774 if (!FunTmpl) 5775 continue; 5776 5777 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5778 FunctionDecl *Specialization = 0; 5779 if (TemplateDeductionResult TDK 5780 = DeduceTemplateArguments(FunTmpl, 5781 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5782 R, Specialization, Info)) { 5783 // FIXME: Keep track of almost-matches? 5784 (void)TDK; 5785 continue; 5786 } 5787 5788 Matches.addDecl(Specialization, P.getAccess()); 5789 } 5790 5791 // Find the most specialized function template specialization. 5792 UnresolvedSetIterator Result 5793 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 5794 D.getIdentifierLoc(), 5795 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5796 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5797 PDiag(diag::note_explicit_instantiation_candidate)); 5798 5799 if (Result == Matches.end()) 5800 return true; 5801 5802 // Ignore access control bits, we don't need them for redeclaration checking. 5803 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5804 5805 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5806 Diag(D.getIdentifierLoc(), 5807 diag::err_explicit_instantiation_member_function_not_instantiated) 5808 << Specialization 5809 << (Specialization->getTemplateSpecializationKind() == 5810 TSK_ExplicitSpecialization); 5811 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5812 return true; 5813 } 5814 5815 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5816 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5817 PrevDecl = Specialization; 5818 5819 if (PrevDecl) { 5820 bool HasNoEffect = false; 5821 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5822 PrevDecl, 5823 PrevDecl->getTemplateSpecializationKind(), 5824 PrevDecl->getPointOfInstantiation(), 5825 HasNoEffect)) 5826 return true; 5827 5828 // FIXME: We may still want to build some representation of this 5829 // explicit specialization. 5830 if (HasNoEffect) 5831 return (Decl*) 0; 5832 } 5833 5834 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5835 5836 if (TSK == TSK_ExplicitInstantiationDefinition) 5837 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 5838 5839 // C++0x [temp.explicit]p2: 5840 // If the explicit instantiation is for a member function, a member class 5841 // or a static data member of a class template specialization, the name of 5842 // the class template specialization in the qualified-id for the member 5843 // name shall be a simple-template-id. 5844 // 5845 // C++98 has the same restriction, just worded differently. 5846 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5847 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5848 D.getCXXScopeSpec().isSet() && 5849 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5850 Diag(D.getIdentifierLoc(), 5851 diag::ext_explicit_instantiation_without_qualified_id) 5852 << Specialization << D.getCXXScopeSpec().getRange(); 5853 5854 CheckExplicitInstantiationScope(*this, 5855 FunTmpl? (NamedDecl *)FunTmpl 5856 : Specialization->getInstantiatedFromMemberFunction(), 5857 D.getIdentifierLoc(), 5858 D.getCXXScopeSpec().isSet()); 5859 5860 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5861 return (Decl*) 0; 5862} 5863 5864TypeResult 5865Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5866 const CXXScopeSpec &SS, IdentifierInfo *Name, 5867 SourceLocation TagLoc, SourceLocation NameLoc) { 5868 // This has to hold, because SS is expected to be defined. 5869 assert(Name && "Expected a name in a dependent tag"); 5870 5871 NestedNameSpecifier *NNS 5872 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5873 if (!NNS) 5874 return true; 5875 5876 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5877 5878 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5879 Diag(NameLoc, diag::err_dependent_tag_decl) 5880 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5881 return true; 5882 } 5883 5884 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5885 return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name)); 5886} 5887 5888TypeResult 5889Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5890 const CXXScopeSpec &SS, const IdentifierInfo &II, 5891 SourceLocation IdLoc) { 5892 NestedNameSpecifier *NNS 5893 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5894 if (!NNS) 5895 return true; 5896 5897 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5898 !getLangOptions().CPlusPlus0x) 5899 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5900 << FixItHint::CreateRemoval(TypenameLoc); 5901 5902 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5903 TypenameLoc, SS.getRange(), IdLoc); 5904 if (T.isNull()) 5905 return true; 5906 5907 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5908 if (isa<DependentNameType>(T)) { 5909 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5910 TL.setKeywordLoc(TypenameLoc); 5911 TL.setQualifierRange(SS.getRange()); 5912 TL.setNameLoc(IdLoc); 5913 } else { 5914 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5915 TL.setKeywordLoc(TypenameLoc); 5916 TL.setQualifierRange(SS.getRange()); 5917 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5918 } 5919 5920 return CreateParsedType(T, TSI); 5921} 5922 5923TypeResult 5924Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 5925 const CXXScopeSpec &SS, SourceLocation TemplateLoc, 5926 ParsedType Ty) { 5927 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() && 5928 !getLangOptions().CPlusPlus0x) 5929 Diag(TypenameLoc, diag::ext_typename_outside_of_template) 5930 << FixItHint::CreateRemoval(TypenameLoc); 5931 5932 TypeSourceInfo *InnerTSI = 0; 5933 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5934 5935 assert(isa<TemplateSpecializationType>(T) && 5936 "Expected a template specialization type"); 5937 5938 if (computeDeclContext(SS, false)) { 5939 // If we can compute a declaration context, then the "typename" 5940 // keyword was superfluous. Just build an ElaboratedType to keep 5941 // track of the nested-name-specifier. 5942 5943 // Push the inner type, preserving its source locations if possible. 5944 TypeLocBuilder Builder; 5945 if (InnerTSI) 5946 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5947 else 5948 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(Context, 5949 TemplateLoc); 5950 5951 /* Note: NNS already embedded in template specialization type T. */ 5952 T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T); 5953 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5954 TL.setKeywordLoc(TypenameLoc); 5955 TL.setQualifierRange(SS.getRange()); 5956 5957 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5958 return CreateParsedType(T, TSI); 5959 } 5960 5961 // TODO: it's really silly that we make a template specialization 5962 // type earlier only to drop it again here. 5963 const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5964 DependentTemplateName *DTN = 5965 TST->getTemplateName().getAsDependentTemplateName(); 5966 assert(DTN && "dependent template has non-dependent name?"); 5967 assert(DTN->getQualifier() 5968 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 5969 T = Context.getDependentTemplateSpecializationType(ETK_Typename, 5970 DTN->getQualifier(), 5971 DTN->getIdentifier(), 5972 TST->getNumArgs(), 5973 TST->getArgs()); 5974 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5975 DependentTemplateSpecializationTypeLoc TL = 5976 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5977 if (InnerTSI) { 5978 TemplateSpecializationTypeLoc TSTL = 5979 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5980 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5981 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5982 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5983 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5984 } else { 5985 // FIXME: Poor source-location information here. 5986 TL.initializeLocal(Context, TemplateLoc); 5987 } 5988 TL.setKeywordLoc(TypenameLoc); 5989 TL.setQualifierRange(SS.getRange()); 5990 return CreateParsedType(T, TSI); 5991} 5992 5993/// \brief Build the type that describes a C++ typename specifier, 5994/// e.g., "typename T::type". 5995QualType 5996Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5997 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5998 SourceLocation KeywordLoc, SourceRange NNSRange, 5999 SourceLocation IILoc) { 6000 CXXScopeSpec SS; 6001 SS.Adopt(NNS, NNSRange); 6002 6003 DeclContext *Ctx = computeDeclContext(SS); 6004 if (!Ctx) { 6005 // If the nested-name-specifier is dependent and couldn't be 6006 // resolved to a type, build a typename type. 6007 assert(NNS->isDependent()); 6008 return Context.getDependentNameType(Keyword, NNS, &II); 6009 } 6010 6011 // If the nested-name-specifier refers to the current instantiation, 6012 // the "typename" keyword itself is superfluous. In C++03, the 6013 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 6014 // allows such extraneous "typename" keywords, and we retroactively 6015 // apply this DR to C++03 code with only a warning. In any case we continue. 6016 6017 if (RequireCompleteDeclContext(SS, Ctx)) 6018 return QualType(); 6019 6020 DeclarationName Name(&II); 6021 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 6022 LookupQualifiedName(Result, Ctx); 6023 unsigned DiagID = 0; 6024 Decl *Referenced = 0; 6025 switch (Result.getResultKind()) { 6026 case LookupResult::NotFound: 6027 DiagID = diag::err_typename_nested_not_found; 6028 break; 6029 6030 case LookupResult::FoundUnresolvedValue: { 6031 // We found a using declaration that is a value. Most likely, the using 6032 // declaration itself is meant to have the 'typename' keyword. 6033 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 6034 IILoc); 6035 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 6036 << Name << Ctx << FullRange; 6037 if (UnresolvedUsingValueDecl *Using 6038 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 6039 SourceLocation Loc = Using->getTargetNestedNameRange().getBegin(); 6040 Diag(Loc, diag::note_using_value_decl_missing_typename) 6041 << FixItHint::CreateInsertion(Loc, "typename "); 6042 } 6043 } 6044 // Fall through to create a dependent typename type, from which we can recover 6045 // better. 6046 6047 case LookupResult::NotFoundInCurrentInstantiation: 6048 // Okay, it's a member of an unknown instantiation. 6049 return Context.getDependentNameType(Keyword, NNS, &II); 6050 6051 case LookupResult::Found: 6052 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 6053 // We found a type. Build an ElaboratedType, since the 6054 // typename-specifier was just sugar. 6055 return Context.getElaboratedType(ETK_Typename, NNS, 6056 Context.getTypeDeclType(Type)); 6057 } 6058 6059 DiagID = diag::err_typename_nested_not_type; 6060 Referenced = Result.getFoundDecl(); 6061 break; 6062 6063 6064 llvm_unreachable("unresolved using decl in non-dependent context"); 6065 return QualType(); 6066 6067 case LookupResult::FoundOverloaded: 6068 DiagID = diag::err_typename_nested_not_type; 6069 Referenced = *Result.begin(); 6070 break; 6071 6072 case LookupResult::Ambiguous: 6073 return QualType(); 6074 } 6075 6076 // If we get here, it's because name lookup did not find a 6077 // type. Emit an appropriate diagnostic and return an error. 6078 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 6079 IILoc); 6080 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 6081 if (Referenced) 6082 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 6083 << Name; 6084 return QualType(); 6085} 6086 6087namespace { 6088 // See Sema::RebuildTypeInCurrentInstantiation 6089 class CurrentInstantiationRebuilder 6090 : public TreeTransform<CurrentInstantiationRebuilder> { 6091 SourceLocation Loc; 6092 DeclarationName Entity; 6093 6094 public: 6095 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 6096 6097 CurrentInstantiationRebuilder(Sema &SemaRef, 6098 SourceLocation Loc, 6099 DeclarationName Entity) 6100 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 6101 Loc(Loc), Entity(Entity) { } 6102 6103 /// \brief Determine whether the given type \p T has already been 6104 /// transformed. 6105 /// 6106 /// For the purposes of type reconstruction, a type has already been 6107 /// transformed if it is NULL or if it is not dependent. 6108 bool AlreadyTransformed(QualType T) { 6109 return T.isNull() || !T->isDependentType(); 6110 } 6111 6112 /// \brief Returns the location of the entity whose type is being 6113 /// rebuilt. 6114 SourceLocation getBaseLocation() { return Loc; } 6115 6116 /// \brief Returns the name of the entity whose type is being rebuilt. 6117 DeclarationName getBaseEntity() { return Entity; } 6118 6119 /// \brief Sets the "base" location and entity when that 6120 /// information is known based on another transformation. 6121 void setBase(SourceLocation Loc, DeclarationName Entity) { 6122 this->Loc = Loc; 6123 this->Entity = Entity; 6124 } 6125 }; 6126} 6127 6128/// \brief Rebuilds a type within the context of the current instantiation. 6129/// 6130/// The type \p T is part of the type of an out-of-line member definition of 6131/// a class template (or class template partial specialization) that was parsed 6132/// and constructed before we entered the scope of the class template (or 6133/// partial specialization thereof). This routine will rebuild that type now 6134/// that we have entered the declarator's scope, which may produce different 6135/// canonical types, e.g., 6136/// 6137/// \code 6138/// template<typename T> 6139/// struct X { 6140/// typedef T* pointer; 6141/// pointer data(); 6142/// }; 6143/// 6144/// template<typename T> 6145/// typename X<T>::pointer X<T>::data() { ... } 6146/// \endcode 6147/// 6148/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 6149/// since we do not know that we can look into X<T> when we parsed the type. 6150/// This function will rebuild the type, performing the lookup of "pointer" 6151/// in X<T> and returning an ElaboratedType whose canonical type is the same 6152/// as the canonical type of T*, allowing the return types of the out-of-line 6153/// definition and the declaration to match. 6154TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 6155 SourceLocation Loc, 6156 DeclarationName Name) { 6157 if (!T || !T->getType()->isDependentType()) 6158 return T; 6159 6160 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 6161 return Rebuilder.TransformType(T); 6162} 6163 6164ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 6165 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 6166 DeclarationName()); 6167 return Rebuilder.TransformExpr(E); 6168} 6169 6170bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 6171 if (SS.isInvalid()) return true; 6172 6173 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 6174 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 6175 DeclarationName()); 6176 NestedNameSpecifier *Rebuilt = 6177 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 6178 if (!Rebuilt) return true; 6179 6180 SS.Adopt(Rebuilt, SS.getRange()); 6181 return false; 6182} 6183 6184/// \brief Produces a formatted string that describes the binding of 6185/// template parameters to template arguments. 6186std::string 6187Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6188 const TemplateArgumentList &Args) { 6189 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 6190} 6191 6192std::string 6193Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 6194 const TemplateArgument *Args, 6195 unsigned NumArgs) { 6196 llvm::SmallString<128> Str; 6197 llvm::raw_svector_ostream Out(Str); 6198 6199 if (!Params || Params->size() == 0 || NumArgs == 0) 6200 return std::string(); 6201 6202 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 6203 if (I >= NumArgs) 6204 break; 6205 6206 if (I == 0) 6207 Out << "[with "; 6208 else 6209 Out << ", "; 6210 6211 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 6212 Out << Id->getName(); 6213 } else { 6214 Out << '$' << I; 6215 } 6216 6217 Out << " = "; 6218 Args[I].print(Context.PrintingPolicy, Out); 6219 } 6220 6221 Out << ']'; 6222 return Out.str(); 6223} 6224