SemaTemplate.cpp revision 1bcee0a5a29981f8c78a8620d1c78841dbc5c348
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclTemplate.h" 19#include "clang/Parse/DeclSpec.h" 20#include "clang/Parse/Template.h" 21#include "clang/Basic/LangOptions.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/StringExtras.h" 24using namespace clang; 25 26/// \brief Determine whether the declaration found is acceptable as the name 27/// of a template and, if so, return that template declaration. Otherwise, 28/// returns NULL. 29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 30 if (!D) 31 return 0; 32 33 if (isa<TemplateDecl>(D)) 34 return D; 35 36 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 37 // C++ [temp.local]p1: 38 // Like normal (non-template) classes, class templates have an 39 // injected-class-name (Clause 9). The injected-class-name 40 // can be used with or without a template-argument-list. When 41 // it is used without a template-argument-list, it is 42 // equivalent to the injected-class-name followed by the 43 // template-parameters of the class template enclosed in 44 // <>. When it is used with a template-argument-list, it 45 // refers to the specified class template specialization, 46 // which could be the current specialization or another 47 // specialization. 48 if (Record->isInjectedClassName()) { 49 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 50 if (Record->getDescribedClassTemplate()) 51 return Record->getDescribedClassTemplate(); 52 53 if (ClassTemplateSpecializationDecl *Spec 54 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 55 return Spec->getSpecializedTemplate(); 56 } 57 58 return 0; 59 } 60 61 return 0; 62} 63 64static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 65 LookupResult::Filter filter = R.makeFilter(); 66 while (filter.hasNext()) { 67 NamedDecl *Orig = filter.next(); 68 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 69 if (!Repl) 70 filter.erase(); 71 else if (Repl != Orig) 72 filter.replace(Repl); 73 } 74 filter.done(); 75} 76 77TemplateNameKind Sema::isTemplateName(Scope *S, 78 const CXXScopeSpec &SS, 79 UnqualifiedId &Name, 80 TypeTy *ObjectTypePtr, 81 bool EnteringContext, 82 TemplateTy &TemplateResult) { 83 DeclarationName TName; 84 85 switch (Name.getKind()) { 86 case UnqualifiedId::IK_Identifier: 87 TName = DeclarationName(Name.Identifier); 88 break; 89 90 case UnqualifiedId::IK_OperatorFunctionId: 91 TName = Context.DeclarationNames.getCXXOperatorName( 92 Name.OperatorFunctionId.Operator); 93 break; 94 95 case UnqualifiedId::IK_LiteralOperatorId: 96 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 97 break; 98 99 default: 100 return TNK_Non_template; 101 } 102 103 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 104 105 LookupResult R(*this, TName, SourceLocation(), LookupOrdinaryName); 106 R.suppressDiagnostics(); 107 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 108 if (R.empty()) 109 return TNK_Non_template; 110 111 TemplateName Template; 112 TemplateNameKind TemplateKind; 113 114 unsigned ResultCount = R.end() - R.begin(); 115 if (ResultCount > 1) { 116 // We assume that we'll preserve the qualifier from a function 117 // template name in other ways. 118 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 119 TemplateKind = TNK_Function_template; 120 } else { 121 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 122 123 if (SS.isSet() && !SS.isInvalid()) { 124 NestedNameSpecifier *Qualifier 125 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 126 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 127 } else { 128 Template = TemplateName(TD); 129 } 130 131 if (isa<FunctionTemplateDecl>(TD)) 132 TemplateKind = TNK_Function_template; 133 else { 134 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 135 TemplateKind = TNK_Type_template; 136 } 137 } 138 139 TemplateResult = TemplateTy::make(Template); 140 return TemplateKind; 141} 142 143void Sema::LookupTemplateName(LookupResult &Found, 144 Scope *S, const CXXScopeSpec &SS, 145 QualType ObjectType, 146 bool EnteringContext) { 147 // Determine where to perform name lookup 148 DeclContext *LookupCtx = 0; 149 bool isDependent = false; 150 if (!ObjectType.isNull()) { 151 // This nested-name-specifier occurs in a member access expression, e.g., 152 // x->B::f, and we are looking into the type of the object. 153 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 154 LookupCtx = computeDeclContext(ObjectType); 155 isDependent = ObjectType->isDependentType(); 156 assert((isDependent || !ObjectType->isIncompleteType()) && 157 "Caller should have completed object type"); 158 } else if (SS.isSet()) { 159 // This nested-name-specifier occurs after another nested-name-specifier, 160 // so long into the context associated with the prior nested-name-specifier. 161 LookupCtx = computeDeclContext(SS, EnteringContext); 162 isDependent = isDependentScopeSpecifier(SS); 163 164 // The declaration context must be complete. 165 if (LookupCtx && RequireCompleteDeclContext(SS)) 166 return; 167 } 168 169 bool ObjectTypeSearchedInScope = false; 170 if (LookupCtx) { 171 // Perform "qualified" name lookup into the declaration context we 172 // computed, which is either the type of the base of a member access 173 // expression or the declaration context associated with a prior 174 // nested-name-specifier. 175 LookupQualifiedName(Found, LookupCtx); 176 177 if (!ObjectType.isNull() && Found.empty()) { 178 // C++ [basic.lookup.classref]p1: 179 // In a class member access expression (5.2.5), if the . or -> token is 180 // immediately followed by an identifier followed by a <, the 181 // identifier must be looked up to determine whether the < is the 182 // beginning of a template argument list (14.2) or a less-than operator. 183 // The identifier is first looked up in the class of the object 184 // expression. If the identifier is not found, it is then looked up in 185 // the context of the entire postfix-expression and shall name a class 186 // or function template. 187 // 188 // FIXME: When we're instantiating a template, do we actually have to 189 // look in the scope of the template? Seems fishy... 190 if (S) LookupName(Found, S); 191 ObjectTypeSearchedInScope = true; 192 } 193 } else if (isDependent) { 194 // We cannot look into a dependent object type or 195 return; 196 } else { 197 // Perform unqualified name lookup in the current scope. 198 LookupName(Found, S); 199 } 200 201 // FIXME: Cope with ambiguous name-lookup results. 202 assert(!Found.isAmbiguous() && 203 "Cannot handle template name-lookup ambiguities"); 204 205 FilterAcceptableTemplateNames(Context, Found); 206 if (Found.empty()) 207 return; 208 209 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 210 // C++ [basic.lookup.classref]p1: 211 // [...] If the lookup in the class of the object expression finds a 212 // template, the name is also looked up in the context of the entire 213 // postfix-expression and [...] 214 // 215 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 216 LookupOrdinaryName); 217 LookupName(FoundOuter, S); 218 FilterAcceptableTemplateNames(Context, FoundOuter); 219 // FIXME: Handle ambiguities in this lookup better 220 221 if (FoundOuter.empty()) { 222 // - if the name is not found, the name found in the class of the 223 // object expression is used, otherwise 224 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 225 // - if the name is found in the context of the entire 226 // postfix-expression and does not name a class template, the name 227 // found in the class of the object expression is used, otherwise 228 } else { 229 // - if the name found is a class template, it must refer to the same 230 // entity as the one found in the class of the object expression, 231 // otherwise the program is ill-formed. 232 if (!Found.isSingleResult() || 233 Found.getFoundDecl()->getCanonicalDecl() 234 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 235 Diag(Found.getNameLoc(), 236 diag::err_nested_name_member_ref_lookup_ambiguous) 237 << Found.getLookupName(); 238 Diag(Found.getRepresentativeDecl()->getLocation(), 239 diag::note_ambig_member_ref_object_type) 240 << ObjectType; 241 Diag(FoundOuter.getFoundDecl()->getLocation(), 242 diag::note_ambig_member_ref_scope); 243 244 // Recover by taking the template that we found in the object 245 // expression's type. 246 } 247 } 248 } 249} 250 251/// ActOnDependentIdExpression - Handle a dependent id-expression that 252/// was just parsed. This is only possible with an explicit scope 253/// specifier naming a dependent type. 254Sema::OwningExprResult 255Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 256 DeclarationName Name, 257 SourceLocation NameLoc, 258 bool isAddressOfOperand, 259 const TemplateArgumentListInfo *TemplateArgs) { 260 NestedNameSpecifier *Qualifier 261 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 262 263 if (!isAddressOfOperand && 264 isa<CXXMethodDecl>(CurContext) && 265 cast<CXXMethodDecl>(CurContext)->isInstance()) { 266 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 267 268 // Since the 'this' expression is synthesized, we don't need to 269 // perform the double-lookup check. 270 NamedDecl *FirstQualifierInScope = 0; 271 272 return Owned(CXXDependentScopeMemberExpr::Create(Context, 273 /*This*/ 0, ThisType, 274 /*IsArrow*/ true, 275 /*Op*/ SourceLocation(), 276 Qualifier, SS.getRange(), 277 FirstQualifierInScope, 278 Name, NameLoc, 279 TemplateArgs)); 280 } 281 282 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 283} 284 285Sema::OwningExprResult 286Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 287 DeclarationName Name, 288 SourceLocation NameLoc, 289 const TemplateArgumentListInfo *TemplateArgs) { 290 return Owned(DependentScopeDeclRefExpr::Create(Context, 291 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 292 SS.getRange(), 293 Name, NameLoc, 294 TemplateArgs)); 295} 296 297/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 298/// that the template parameter 'PrevDecl' is being shadowed by a new 299/// declaration at location Loc. Returns true to indicate that this is 300/// an error, and false otherwise. 301bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 302 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 303 304 // Microsoft Visual C++ permits template parameters to be shadowed. 305 if (getLangOptions().Microsoft) 306 return false; 307 308 // C++ [temp.local]p4: 309 // A template-parameter shall not be redeclared within its 310 // scope (including nested scopes). 311 Diag(Loc, diag::err_template_param_shadow) 312 << cast<NamedDecl>(PrevDecl)->getDeclName(); 313 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 314 return true; 315} 316 317/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 318/// the parameter D to reference the templated declaration and return a pointer 319/// to the template declaration. Otherwise, do nothing to D and return null. 320TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 321 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 322 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 323 return Temp; 324 } 325 return 0; 326} 327 328static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 329 const ParsedTemplateArgument &Arg) { 330 331 switch (Arg.getKind()) { 332 case ParsedTemplateArgument::Type: { 333 DeclaratorInfo *DI; 334 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 335 if (!DI) 336 DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation()); 337 return TemplateArgumentLoc(TemplateArgument(T), DI); 338 } 339 340 case ParsedTemplateArgument::NonType: { 341 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 342 return TemplateArgumentLoc(TemplateArgument(E), E); 343 } 344 345 case ParsedTemplateArgument::Template: { 346 TemplateName Template 347 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 348 return TemplateArgumentLoc(TemplateArgument(Template), 349 Arg.getScopeSpec().getRange(), 350 Arg.getLocation()); 351 } 352 } 353 354 llvm::llvm_unreachable("Unhandled parsed template argument"); 355 return TemplateArgumentLoc(); 356} 357 358/// \brief Translates template arguments as provided by the parser 359/// into template arguments used by semantic analysis. 360void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 361 TemplateArgumentListInfo &TemplateArgs) { 362 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 363 TemplateArgs.addArgument(translateTemplateArgument(*this, 364 TemplateArgsIn[I])); 365} 366 367/// ActOnTypeParameter - Called when a C++ template type parameter 368/// (e.g., "typename T") has been parsed. Typename specifies whether 369/// the keyword "typename" was used to declare the type parameter 370/// (otherwise, "class" was used), and KeyLoc is the location of the 371/// "class" or "typename" keyword. ParamName is the name of the 372/// parameter (NULL indicates an unnamed template parameter) and 373/// ParamName is the location of the parameter name (if any). 374/// If the type parameter has a default argument, it will be added 375/// later via ActOnTypeParameterDefault. 376Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 377 SourceLocation EllipsisLoc, 378 SourceLocation KeyLoc, 379 IdentifierInfo *ParamName, 380 SourceLocation ParamNameLoc, 381 unsigned Depth, unsigned Position) { 382 assert(S->isTemplateParamScope() && 383 "Template type parameter not in template parameter scope!"); 384 bool Invalid = false; 385 386 if (ParamName) { 387 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 388 if (PrevDecl && PrevDecl->isTemplateParameter()) 389 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 390 PrevDecl); 391 } 392 393 SourceLocation Loc = ParamNameLoc; 394 if (!ParamName) 395 Loc = KeyLoc; 396 397 TemplateTypeParmDecl *Param 398 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 399 Depth, Position, ParamName, Typename, 400 Ellipsis); 401 if (Invalid) 402 Param->setInvalidDecl(); 403 404 if (ParamName) { 405 // Add the template parameter into the current scope. 406 S->AddDecl(DeclPtrTy::make(Param)); 407 IdResolver.AddDecl(Param); 408 } 409 410 return DeclPtrTy::make(Param); 411} 412 413/// ActOnTypeParameterDefault - Adds a default argument (the type 414/// Default) to the given template type parameter (TypeParam). 415void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 416 SourceLocation EqualLoc, 417 SourceLocation DefaultLoc, 418 TypeTy *DefaultT) { 419 TemplateTypeParmDecl *Parm 420 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 421 422 DeclaratorInfo *DefaultDInfo; 423 GetTypeFromParser(DefaultT, &DefaultDInfo); 424 425 assert(DefaultDInfo && "expected source information for type"); 426 427 // C++0x [temp.param]p9: 428 // A default template-argument may be specified for any kind of 429 // template-parameter that is not a template parameter pack. 430 if (Parm->isParameterPack()) { 431 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 432 return; 433 } 434 435 // C++ [temp.param]p14: 436 // A template-parameter shall not be used in its own default argument. 437 // FIXME: Implement this check! Needs a recursive walk over the types. 438 439 // Check the template argument itself. 440 if (CheckTemplateArgument(Parm, DefaultDInfo)) { 441 Parm->setInvalidDecl(); 442 return; 443 } 444 445 Parm->setDefaultArgument(DefaultDInfo, false); 446} 447 448/// \brief Check that the type of a non-type template parameter is 449/// well-formed. 450/// 451/// \returns the (possibly-promoted) parameter type if valid; 452/// otherwise, produces a diagnostic and returns a NULL type. 453QualType 454Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 455 // C++ [temp.param]p4: 456 // 457 // A non-type template-parameter shall have one of the following 458 // (optionally cv-qualified) types: 459 // 460 // -- integral or enumeration type, 461 if (T->isIntegralType() || T->isEnumeralType() || 462 // -- pointer to object or pointer to function, 463 (T->isPointerType() && 464 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 465 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 466 // -- reference to object or reference to function, 467 T->isReferenceType() || 468 // -- pointer to member. 469 T->isMemberPointerType() || 470 // If T is a dependent type, we can't do the check now, so we 471 // assume that it is well-formed. 472 T->isDependentType()) 473 return T; 474 // C++ [temp.param]p8: 475 // 476 // A non-type template-parameter of type "array of T" or 477 // "function returning T" is adjusted to be of type "pointer to 478 // T" or "pointer to function returning T", respectively. 479 else if (T->isArrayType()) 480 // FIXME: Keep the type prior to promotion? 481 return Context.getArrayDecayedType(T); 482 else if (T->isFunctionType()) 483 // FIXME: Keep the type prior to promotion? 484 return Context.getPointerType(T); 485 486 Diag(Loc, diag::err_template_nontype_parm_bad_type) 487 << T; 488 489 return QualType(); 490} 491 492/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 493/// template parameter (e.g., "int Size" in "template<int Size> 494/// class Array") has been parsed. S is the current scope and D is 495/// the parsed declarator. 496Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 497 unsigned Depth, 498 unsigned Position) { 499 DeclaratorInfo *DInfo = 0; 500 QualType T = GetTypeForDeclarator(D, S, &DInfo); 501 502 assert(S->isTemplateParamScope() && 503 "Non-type template parameter not in template parameter scope!"); 504 bool Invalid = false; 505 506 IdentifierInfo *ParamName = D.getIdentifier(); 507 if (ParamName) { 508 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 509 if (PrevDecl && PrevDecl->isTemplateParameter()) 510 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 511 PrevDecl); 512 } 513 514 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 515 if (T.isNull()) { 516 T = Context.IntTy; // Recover with an 'int' type. 517 Invalid = true; 518 } 519 520 NonTypeTemplateParmDecl *Param 521 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 522 Depth, Position, ParamName, T, DInfo); 523 if (Invalid) 524 Param->setInvalidDecl(); 525 526 if (D.getIdentifier()) { 527 // Add the template parameter into the current scope. 528 S->AddDecl(DeclPtrTy::make(Param)); 529 IdResolver.AddDecl(Param); 530 } 531 return DeclPtrTy::make(Param); 532} 533 534/// \brief Adds a default argument to the given non-type template 535/// parameter. 536void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 537 SourceLocation EqualLoc, 538 ExprArg DefaultE) { 539 NonTypeTemplateParmDecl *TemplateParm 540 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 541 Expr *Default = static_cast<Expr *>(DefaultE.get()); 542 543 // C++ [temp.param]p14: 544 // A template-parameter shall not be used in its own default argument. 545 // FIXME: Implement this check! Needs a recursive walk over the types. 546 547 // Check the well-formedness of the default template argument. 548 TemplateArgument Converted; 549 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 550 Converted)) { 551 TemplateParm->setInvalidDecl(); 552 return; 553 } 554 555 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 556} 557 558 559/// ActOnTemplateTemplateParameter - Called when a C++ template template 560/// parameter (e.g. T in template <template <typename> class T> class array) 561/// has been parsed. S is the current scope. 562Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 563 SourceLocation TmpLoc, 564 TemplateParamsTy *Params, 565 IdentifierInfo *Name, 566 SourceLocation NameLoc, 567 unsigned Depth, 568 unsigned Position) { 569 assert(S->isTemplateParamScope() && 570 "Template template parameter not in template parameter scope!"); 571 572 // Construct the parameter object. 573 TemplateTemplateParmDecl *Param = 574 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 575 Position, Name, 576 (TemplateParameterList*)Params); 577 578 // Make sure the parameter is valid. 579 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 580 // do anything yet. However, if the template parameter list or (eventual) 581 // default value is ever invalidated, that will propagate here. 582 bool Invalid = false; 583 if (Invalid) { 584 Param->setInvalidDecl(); 585 } 586 587 // If the tt-param has a name, then link the identifier into the scope 588 // and lookup mechanisms. 589 if (Name) { 590 S->AddDecl(DeclPtrTy::make(Param)); 591 IdResolver.AddDecl(Param); 592 } 593 594 return DeclPtrTy::make(Param); 595} 596 597/// \brief Adds a default argument to the given template template 598/// parameter. 599void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 600 SourceLocation EqualLoc, 601 const ParsedTemplateArgument &Default) { 602 TemplateTemplateParmDecl *TemplateParm 603 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 604 605 // C++ [temp.param]p14: 606 // A template-parameter shall not be used in its own default argument. 607 // FIXME: Implement this check! Needs a recursive walk over the types. 608 609 // Check only that we have a template template argument. We don't want to 610 // try to check well-formedness now, because our template template parameter 611 // might have dependent types in its template parameters, which we wouldn't 612 // be able to match now. 613 // 614 // If none of the template template parameter's template arguments mention 615 // other template parameters, we could actually perform more checking here. 616 // However, it isn't worth doing. 617 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 618 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 619 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 620 << DefaultArg.getSourceRange(); 621 return; 622 } 623 624 TemplateParm->setDefaultArgument(DefaultArg); 625} 626 627/// ActOnTemplateParameterList - Builds a TemplateParameterList that 628/// contains the template parameters in Params/NumParams. 629Sema::TemplateParamsTy * 630Sema::ActOnTemplateParameterList(unsigned Depth, 631 SourceLocation ExportLoc, 632 SourceLocation TemplateLoc, 633 SourceLocation LAngleLoc, 634 DeclPtrTy *Params, unsigned NumParams, 635 SourceLocation RAngleLoc) { 636 if (ExportLoc.isValid()) 637 Diag(ExportLoc, diag::warn_template_export_unsupported); 638 639 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 640 (NamedDecl**)Params, NumParams, 641 RAngleLoc); 642} 643 644Sema::DeclResult 645Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 646 SourceLocation KWLoc, const CXXScopeSpec &SS, 647 IdentifierInfo *Name, SourceLocation NameLoc, 648 AttributeList *Attr, 649 TemplateParameterList *TemplateParams, 650 AccessSpecifier AS) { 651 assert(TemplateParams && TemplateParams->size() > 0 && 652 "No template parameters"); 653 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 654 bool Invalid = false; 655 656 // Check that we can declare a template here. 657 if (CheckTemplateDeclScope(S, TemplateParams)) 658 return true; 659 660 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 661 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 662 663 // There is no such thing as an unnamed class template. 664 if (!Name) { 665 Diag(KWLoc, diag::err_template_unnamed_class); 666 return true; 667 } 668 669 // Find any previous declaration with this name. 670 DeclContext *SemanticContext; 671 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 672 ForRedeclaration); 673 if (SS.isNotEmpty() && !SS.isInvalid()) { 674 if (RequireCompleteDeclContext(SS)) 675 return true; 676 677 SemanticContext = computeDeclContext(SS, true); 678 if (!SemanticContext) { 679 // FIXME: Produce a reasonable diagnostic here 680 return true; 681 } 682 683 LookupQualifiedName(Previous, SemanticContext); 684 } else { 685 SemanticContext = CurContext; 686 LookupName(Previous, S); 687 } 688 689 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 690 NamedDecl *PrevDecl = 0; 691 if (Previous.begin() != Previous.end()) 692 PrevDecl = *Previous.begin(); 693 694 if (PrevDecl && TUK == TUK_Friend) { 695 // C++ [namespace.memdef]p3: 696 // [...] When looking for a prior declaration of a class or a function 697 // declared as a friend, and when the name of the friend class or 698 // function is neither a qualified name nor a template-id, scopes outside 699 // the innermost enclosing namespace scope are not considered. 700 DeclContext *OutermostContext = CurContext; 701 while (!OutermostContext->isFileContext()) 702 OutermostContext = OutermostContext->getLookupParent(); 703 704 if (OutermostContext->Equals(PrevDecl->getDeclContext()) || 705 OutermostContext->Encloses(PrevDecl->getDeclContext())) { 706 SemanticContext = PrevDecl->getDeclContext(); 707 } else { 708 // Declarations in outer scopes don't matter. However, the outermost 709 // context we computed is the semantic context for our new 710 // declaration. 711 PrevDecl = 0; 712 SemanticContext = OutermostContext; 713 } 714 715 if (CurContext->isDependentContext()) { 716 // If this is a dependent context, we don't want to link the friend 717 // class template to the template in scope, because that would perform 718 // checking of the template parameter lists that can't be performed 719 // until the outer context is instantiated. 720 PrevDecl = 0; 721 } 722 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 723 PrevDecl = 0; 724 725 // If there is a previous declaration with the same name, check 726 // whether this is a valid redeclaration. 727 ClassTemplateDecl *PrevClassTemplate 728 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 729 730 // We may have found the injected-class-name of a class template, 731 // class template partial specialization, or class template specialization. 732 // In these cases, grab the template that is being defined or specialized. 733 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 734 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 735 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 736 PrevClassTemplate 737 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 738 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 739 PrevClassTemplate 740 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 741 ->getSpecializedTemplate(); 742 } 743 } 744 745 if (PrevClassTemplate) { 746 // Ensure that the template parameter lists are compatible. 747 if (!TemplateParameterListsAreEqual(TemplateParams, 748 PrevClassTemplate->getTemplateParameters(), 749 /*Complain=*/true, 750 TPL_TemplateMatch)) 751 return true; 752 753 // C++ [temp.class]p4: 754 // In a redeclaration, partial specialization, explicit 755 // specialization or explicit instantiation of a class template, 756 // the class-key shall agree in kind with the original class 757 // template declaration (7.1.5.3). 758 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 759 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 760 Diag(KWLoc, diag::err_use_with_wrong_tag) 761 << Name 762 << CodeModificationHint::CreateReplacement(KWLoc, 763 PrevRecordDecl->getKindName()); 764 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 765 Kind = PrevRecordDecl->getTagKind(); 766 } 767 768 // Check for redefinition of this class template. 769 if (TUK == TUK_Definition) { 770 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 771 Diag(NameLoc, diag::err_redefinition) << Name; 772 Diag(Def->getLocation(), diag::note_previous_definition); 773 // FIXME: Would it make sense to try to "forget" the previous 774 // definition, as part of error recovery? 775 return true; 776 } 777 } 778 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 779 // Maybe we will complain about the shadowed template parameter. 780 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 781 // Just pretend that we didn't see the previous declaration. 782 PrevDecl = 0; 783 } else if (PrevDecl) { 784 // C++ [temp]p5: 785 // A class template shall not have the same name as any other 786 // template, class, function, object, enumeration, enumerator, 787 // namespace, or type in the same scope (3.3), except as specified 788 // in (14.5.4). 789 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 790 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 791 return true; 792 } 793 794 // Check the template parameter list of this declaration, possibly 795 // merging in the template parameter list from the previous class 796 // template declaration. 797 if (CheckTemplateParameterList(TemplateParams, 798 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 799 TPC_ClassTemplate)) 800 Invalid = true; 801 802 // FIXME: If we had a scope specifier, we better have a previous template 803 // declaration! 804 805 CXXRecordDecl *NewClass = 806 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 807 PrevClassTemplate? 808 PrevClassTemplate->getTemplatedDecl() : 0, 809 /*DelayTypeCreation=*/true); 810 811 ClassTemplateDecl *NewTemplate 812 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 813 DeclarationName(Name), TemplateParams, 814 NewClass, PrevClassTemplate); 815 NewClass->setDescribedClassTemplate(NewTemplate); 816 817 // Build the type for the class template declaration now. 818 QualType T = 819 Context.getTypeDeclType(NewClass, 820 PrevClassTemplate? 821 PrevClassTemplate->getTemplatedDecl() : 0); 822 assert(T->isDependentType() && "Class template type is not dependent?"); 823 (void)T; 824 825 // If we are providing an explicit specialization of a member that is a 826 // class template, make a note of that. 827 if (PrevClassTemplate && 828 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 829 PrevClassTemplate->setMemberSpecialization(); 830 831 // Set the access specifier. 832 if (!Invalid && TUK != TUK_Friend) 833 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 834 835 // Set the lexical context of these templates 836 NewClass->setLexicalDeclContext(CurContext); 837 NewTemplate->setLexicalDeclContext(CurContext); 838 839 if (TUK == TUK_Definition) 840 NewClass->startDefinition(); 841 842 if (Attr) 843 ProcessDeclAttributeList(S, NewClass, Attr); 844 845 if (TUK != TUK_Friend) 846 PushOnScopeChains(NewTemplate, S); 847 else { 848 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 849 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 850 NewClass->setAccess(PrevClassTemplate->getAccess()); 851 } 852 853 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 854 PrevClassTemplate != NULL); 855 856 // Friend templates are visible in fairly strange ways. 857 if (!CurContext->isDependentContext()) { 858 DeclContext *DC = SemanticContext->getLookupContext(); 859 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 860 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 861 PushOnScopeChains(NewTemplate, EnclosingScope, 862 /* AddToContext = */ false); 863 } 864 865 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 866 NewClass->getLocation(), 867 NewTemplate, 868 /*FIXME:*/NewClass->getLocation()); 869 Friend->setAccess(AS_public); 870 CurContext->addDecl(Friend); 871 } 872 873 if (Invalid) { 874 NewTemplate->setInvalidDecl(); 875 NewClass->setInvalidDecl(); 876 } 877 return DeclPtrTy::make(NewTemplate); 878} 879 880/// \brief Diagnose the presence of a default template argument on a 881/// template parameter, which is ill-formed in certain contexts. 882/// 883/// \returns true if the default template argument should be dropped. 884static bool DiagnoseDefaultTemplateArgument(Sema &S, 885 Sema::TemplateParamListContext TPC, 886 SourceLocation ParamLoc, 887 SourceRange DefArgRange) { 888 switch (TPC) { 889 case Sema::TPC_ClassTemplate: 890 return false; 891 892 case Sema::TPC_FunctionTemplate: 893 // C++ [temp.param]p9: 894 // A default template-argument shall not be specified in a 895 // function template declaration or a function template 896 // definition [...] 897 // (This sentence is not in C++0x, per DR226). 898 if (!S.getLangOptions().CPlusPlus0x) 899 S.Diag(ParamLoc, 900 diag::err_template_parameter_default_in_function_template) 901 << DefArgRange; 902 return false; 903 904 case Sema::TPC_ClassTemplateMember: 905 // C++0x [temp.param]p9: 906 // A default template-argument shall not be specified in the 907 // template-parameter-lists of the definition of a member of a 908 // class template that appears outside of the member's class. 909 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 910 << DefArgRange; 911 return true; 912 913 case Sema::TPC_FriendFunctionTemplate: 914 // C++ [temp.param]p9: 915 // A default template-argument shall not be specified in a 916 // friend template declaration. 917 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 918 << DefArgRange; 919 return true; 920 921 // FIXME: C++0x [temp.param]p9 allows default template-arguments 922 // for friend function templates if there is only a single 923 // declaration (and it is a definition). Strange! 924 } 925 926 return false; 927} 928 929/// \brief Checks the validity of a template parameter list, possibly 930/// considering the template parameter list from a previous 931/// declaration. 932/// 933/// If an "old" template parameter list is provided, it must be 934/// equivalent (per TemplateParameterListsAreEqual) to the "new" 935/// template parameter list. 936/// 937/// \param NewParams Template parameter list for a new template 938/// declaration. This template parameter list will be updated with any 939/// default arguments that are carried through from the previous 940/// template parameter list. 941/// 942/// \param OldParams If provided, template parameter list from a 943/// previous declaration of the same template. Default template 944/// arguments will be merged from the old template parameter list to 945/// the new template parameter list. 946/// 947/// \param TPC Describes the context in which we are checking the given 948/// template parameter list. 949/// 950/// \returns true if an error occurred, false otherwise. 951bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 952 TemplateParameterList *OldParams, 953 TemplateParamListContext TPC) { 954 bool Invalid = false; 955 956 // C++ [temp.param]p10: 957 // The set of default template-arguments available for use with a 958 // template declaration or definition is obtained by merging the 959 // default arguments from the definition (if in scope) and all 960 // declarations in scope in the same way default function 961 // arguments are (8.3.6). 962 bool SawDefaultArgument = false; 963 SourceLocation PreviousDefaultArgLoc; 964 965 bool SawParameterPack = false; 966 SourceLocation ParameterPackLoc; 967 968 // Dummy initialization to avoid warnings. 969 TemplateParameterList::iterator OldParam = NewParams->end(); 970 if (OldParams) 971 OldParam = OldParams->begin(); 972 973 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 974 NewParamEnd = NewParams->end(); 975 NewParam != NewParamEnd; ++NewParam) { 976 // Variables used to diagnose redundant default arguments 977 bool RedundantDefaultArg = false; 978 SourceLocation OldDefaultLoc; 979 SourceLocation NewDefaultLoc; 980 981 // Variables used to diagnose missing default arguments 982 bool MissingDefaultArg = false; 983 984 // C++0x [temp.param]p11: 985 // If a template parameter of a class template is a template parameter pack, 986 // it must be the last template parameter. 987 if (SawParameterPack) { 988 Diag(ParameterPackLoc, 989 diag::err_template_param_pack_must_be_last_template_parameter); 990 Invalid = true; 991 } 992 993 if (TemplateTypeParmDecl *NewTypeParm 994 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 995 // Check the presence of a default argument here. 996 if (NewTypeParm->hasDefaultArgument() && 997 DiagnoseDefaultTemplateArgument(*this, TPC, 998 NewTypeParm->getLocation(), 999 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1000 .getFullSourceRange())) 1001 NewTypeParm->removeDefaultArgument(); 1002 1003 // Merge default arguments for template type parameters. 1004 TemplateTypeParmDecl *OldTypeParm 1005 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1006 1007 if (NewTypeParm->isParameterPack()) { 1008 assert(!NewTypeParm->hasDefaultArgument() && 1009 "Parameter packs can't have a default argument!"); 1010 SawParameterPack = true; 1011 ParameterPackLoc = NewTypeParm->getLocation(); 1012 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1013 NewTypeParm->hasDefaultArgument()) { 1014 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1015 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1016 SawDefaultArgument = true; 1017 RedundantDefaultArg = true; 1018 PreviousDefaultArgLoc = NewDefaultLoc; 1019 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1020 // Merge the default argument from the old declaration to the 1021 // new declaration. 1022 SawDefaultArgument = true; 1023 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1024 true); 1025 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1026 } else if (NewTypeParm->hasDefaultArgument()) { 1027 SawDefaultArgument = true; 1028 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1029 } else if (SawDefaultArgument) 1030 MissingDefaultArg = true; 1031 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1032 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1033 // Check the presence of a default argument here. 1034 if (NewNonTypeParm->hasDefaultArgument() && 1035 DiagnoseDefaultTemplateArgument(*this, TPC, 1036 NewNonTypeParm->getLocation(), 1037 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1038 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1039 NewNonTypeParm->setDefaultArgument(0); 1040 } 1041 1042 // Merge default arguments for non-type template parameters 1043 NonTypeTemplateParmDecl *OldNonTypeParm 1044 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1045 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1046 NewNonTypeParm->hasDefaultArgument()) { 1047 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1048 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1049 SawDefaultArgument = true; 1050 RedundantDefaultArg = true; 1051 PreviousDefaultArgLoc = NewDefaultLoc; 1052 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1053 // Merge the default argument from the old declaration to the 1054 // new declaration. 1055 SawDefaultArgument = true; 1056 // FIXME: We need to create a new kind of "default argument" 1057 // expression that points to a previous template template 1058 // parameter. 1059 NewNonTypeParm->setDefaultArgument( 1060 OldNonTypeParm->getDefaultArgument()); 1061 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1062 } else if (NewNonTypeParm->hasDefaultArgument()) { 1063 SawDefaultArgument = true; 1064 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1065 } else if (SawDefaultArgument) 1066 MissingDefaultArg = true; 1067 } else { 1068 // Check the presence of a default argument here. 1069 TemplateTemplateParmDecl *NewTemplateParm 1070 = cast<TemplateTemplateParmDecl>(*NewParam); 1071 if (NewTemplateParm->hasDefaultArgument() && 1072 DiagnoseDefaultTemplateArgument(*this, TPC, 1073 NewTemplateParm->getLocation(), 1074 NewTemplateParm->getDefaultArgument().getSourceRange())) 1075 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1076 1077 // Merge default arguments for template template parameters 1078 TemplateTemplateParmDecl *OldTemplateParm 1079 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1080 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1081 NewTemplateParm->hasDefaultArgument()) { 1082 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1083 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1084 SawDefaultArgument = true; 1085 RedundantDefaultArg = true; 1086 PreviousDefaultArgLoc = NewDefaultLoc; 1087 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1088 // Merge the default argument from the old declaration to the 1089 // new declaration. 1090 SawDefaultArgument = true; 1091 // FIXME: We need to create a new kind of "default argument" expression 1092 // that points to a previous template template parameter. 1093 NewTemplateParm->setDefaultArgument( 1094 OldTemplateParm->getDefaultArgument()); 1095 PreviousDefaultArgLoc 1096 = OldTemplateParm->getDefaultArgument().getLocation(); 1097 } else if (NewTemplateParm->hasDefaultArgument()) { 1098 SawDefaultArgument = true; 1099 PreviousDefaultArgLoc 1100 = NewTemplateParm->getDefaultArgument().getLocation(); 1101 } else if (SawDefaultArgument) 1102 MissingDefaultArg = true; 1103 } 1104 1105 if (RedundantDefaultArg) { 1106 // C++ [temp.param]p12: 1107 // A template-parameter shall not be given default arguments 1108 // by two different declarations in the same scope. 1109 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1110 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1111 Invalid = true; 1112 } else if (MissingDefaultArg) { 1113 // C++ [temp.param]p11: 1114 // If a template-parameter has a default template-argument, 1115 // all subsequent template-parameters shall have a default 1116 // template-argument supplied. 1117 Diag((*NewParam)->getLocation(), 1118 diag::err_template_param_default_arg_missing); 1119 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1120 Invalid = true; 1121 } 1122 1123 // If we have an old template parameter list that we're merging 1124 // in, move on to the next parameter. 1125 if (OldParams) 1126 ++OldParam; 1127 } 1128 1129 return Invalid; 1130} 1131 1132/// \brief Match the given template parameter lists to the given scope 1133/// specifier, returning the template parameter list that applies to the 1134/// name. 1135/// 1136/// \param DeclStartLoc the start of the declaration that has a scope 1137/// specifier or a template parameter list. 1138/// 1139/// \param SS the scope specifier that will be matched to the given template 1140/// parameter lists. This scope specifier precedes a qualified name that is 1141/// being declared. 1142/// 1143/// \param ParamLists the template parameter lists, from the outermost to the 1144/// innermost template parameter lists. 1145/// 1146/// \param NumParamLists the number of template parameter lists in ParamLists. 1147/// 1148/// \param IsExplicitSpecialization will be set true if the entity being 1149/// declared is an explicit specialization, false otherwise. 1150/// 1151/// \returns the template parameter list, if any, that corresponds to the 1152/// name that is preceded by the scope specifier @p SS. This template 1153/// parameter list may be have template parameters (if we're declaring a 1154/// template) or may have no template parameters (if we're declaring a 1155/// template specialization), or may be NULL (if we were's declaring isn't 1156/// itself a template). 1157TemplateParameterList * 1158Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1159 const CXXScopeSpec &SS, 1160 TemplateParameterList **ParamLists, 1161 unsigned NumParamLists, 1162 bool &IsExplicitSpecialization) { 1163 IsExplicitSpecialization = false; 1164 1165 // Find the template-ids that occur within the nested-name-specifier. These 1166 // template-ids will match up with the template parameter lists. 1167 llvm::SmallVector<const TemplateSpecializationType *, 4> 1168 TemplateIdsInSpecifier; 1169 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1170 ExplicitSpecializationsInSpecifier; 1171 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1172 NNS; NNS = NNS->getPrefix()) { 1173 if (const TemplateSpecializationType *SpecType 1174 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 1175 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1176 if (!Template) 1177 continue; // FIXME: should this be an error? probably... 1178 1179 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1180 ClassTemplateSpecializationDecl *SpecDecl 1181 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1182 // If the nested name specifier refers to an explicit specialization, 1183 // we don't need a template<> header. 1184 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1185 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1186 continue; 1187 } 1188 } 1189 1190 TemplateIdsInSpecifier.push_back(SpecType); 1191 } 1192 } 1193 1194 // Reverse the list of template-ids in the scope specifier, so that we can 1195 // more easily match up the template-ids and the template parameter lists. 1196 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1197 1198 SourceLocation FirstTemplateLoc = DeclStartLoc; 1199 if (NumParamLists) 1200 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1201 1202 // Match the template-ids found in the specifier to the template parameter 1203 // lists. 1204 unsigned Idx = 0; 1205 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1206 Idx != NumTemplateIds; ++Idx) { 1207 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1208 bool DependentTemplateId = TemplateId->isDependentType(); 1209 if (Idx >= NumParamLists) { 1210 // We have a template-id without a corresponding template parameter 1211 // list. 1212 if (DependentTemplateId) { 1213 // FIXME: the location information here isn't great. 1214 Diag(SS.getRange().getBegin(), 1215 diag::err_template_spec_needs_template_parameters) 1216 << TemplateId 1217 << SS.getRange(); 1218 } else { 1219 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1220 << SS.getRange() 1221 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1222 "template<> "); 1223 IsExplicitSpecialization = true; 1224 } 1225 return 0; 1226 } 1227 1228 // Check the template parameter list against its corresponding template-id. 1229 if (DependentTemplateId) { 1230 TemplateDecl *Template 1231 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1232 1233 if (ClassTemplateDecl *ClassTemplate 1234 = dyn_cast<ClassTemplateDecl>(Template)) { 1235 TemplateParameterList *ExpectedTemplateParams = 0; 1236 // Is this template-id naming the primary template? 1237 if (Context.hasSameType(TemplateId, 1238 ClassTemplate->getInjectedClassNameType(Context))) 1239 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1240 // ... or a partial specialization? 1241 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1242 = ClassTemplate->findPartialSpecialization(TemplateId)) 1243 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1244 1245 if (ExpectedTemplateParams) 1246 TemplateParameterListsAreEqual(ParamLists[Idx], 1247 ExpectedTemplateParams, 1248 true, TPL_TemplateMatch); 1249 } 1250 1251 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1252 } else if (ParamLists[Idx]->size() > 0) 1253 Diag(ParamLists[Idx]->getTemplateLoc(), 1254 diag::err_template_param_list_matches_nontemplate) 1255 << TemplateId 1256 << ParamLists[Idx]->getSourceRange(); 1257 else 1258 IsExplicitSpecialization = true; 1259 } 1260 1261 // If there were at least as many template-ids as there were template 1262 // parameter lists, then there are no template parameter lists remaining for 1263 // the declaration itself. 1264 if (Idx >= NumParamLists) 1265 return 0; 1266 1267 // If there were too many template parameter lists, complain about that now. 1268 if (Idx != NumParamLists - 1) { 1269 while (Idx < NumParamLists - 1) { 1270 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1271 Diag(ParamLists[Idx]->getTemplateLoc(), 1272 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1273 : diag::err_template_spec_extra_headers) 1274 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1275 ParamLists[Idx]->getRAngleLoc()); 1276 1277 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1278 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1279 diag::note_explicit_template_spec_does_not_need_header) 1280 << ExplicitSpecializationsInSpecifier.back(); 1281 ExplicitSpecializationsInSpecifier.pop_back(); 1282 } 1283 1284 ++Idx; 1285 } 1286 } 1287 1288 // Return the last template parameter list, which corresponds to the 1289 // entity being declared. 1290 return ParamLists[NumParamLists - 1]; 1291} 1292 1293QualType Sema::CheckTemplateIdType(TemplateName Name, 1294 SourceLocation TemplateLoc, 1295 const TemplateArgumentListInfo &TemplateArgs) { 1296 TemplateDecl *Template = Name.getAsTemplateDecl(); 1297 if (!Template) { 1298 // The template name does not resolve to a template, so we just 1299 // build a dependent template-id type. 1300 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1301 } 1302 1303 // Check that the template argument list is well-formed for this 1304 // template. 1305 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1306 TemplateArgs.size()); 1307 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1308 false, Converted)) 1309 return QualType(); 1310 1311 assert((Converted.structuredSize() == 1312 Template->getTemplateParameters()->size()) && 1313 "Converted template argument list is too short!"); 1314 1315 QualType CanonType; 1316 1317 if (Name.isDependent() || 1318 TemplateSpecializationType::anyDependentTemplateArguments( 1319 TemplateArgs)) { 1320 // This class template specialization is a dependent 1321 // type. Therefore, its canonical type is another class template 1322 // specialization type that contains all of the converted 1323 // arguments in canonical form. This ensures that, e.g., A<T> and 1324 // A<T, T> have identical types when A is declared as: 1325 // 1326 // template<typename T, typename U = T> struct A; 1327 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1328 CanonType = Context.getTemplateSpecializationType(CanonName, 1329 Converted.getFlatArguments(), 1330 Converted.flatSize()); 1331 1332 // FIXME: CanonType is not actually the canonical type, and unfortunately 1333 // it is a TemplateSpecializationType that we will never use again. 1334 // In the future, we need to teach getTemplateSpecializationType to only 1335 // build the canonical type and return that to us. 1336 CanonType = Context.getCanonicalType(CanonType); 1337 } else if (ClassTemplateDecl *ClassTemplate 1338 = dyn_cast<ClassTemplateDecl>(Template)) { 1339 // Find the class template specialization declaration that 1340 // corresponds to these arguments. 1341 llvm::FoldingSetNodeID ID; 1342 ClassTemplateSpecializationDecl::Profile(ID, 1343 Converted.getFlatArguments(), 1344 Converted.flatSize(), 1345 Context); 1346 void *InsertPos = 0; 1347 ClassTemplateSpecializationDecl *Decl 1348 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1349 if (!Decl) { 1350 // This is the first time we have referenced this class template 1351 // specialization. Create the canonical declaration and add it to 1352 // the set of specializations. 1353 Decl = ClassTemplateSpecializationDecl::Create(Context, 1354 ClassTemplate->getDeclContext(), 1355 ClassTemplate->getLocation(), 1356 ClassTemplate, 1357 Converted, 0); 1358 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1359 Decl->setLexicalDeclContext(CurContext); 1360 } 1361 1362 CanonType = Context.getTypeDeclType(Decl); 1363 } 1364 1365 // Build the fully-sugared type for this class template 1366 // specialization, which refers back to the class template 1367 // specialization we created or found. 1368 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1369} 1370 1371Action::TypeResult 1372Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1373 SourceLocation LAngleLoc, 1374 ASTTemplateArgsPtr TemplateArgsIn, 1375 SourceLocation RAngleLoc) { 1376 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1377 1378 // Translate the parser's template argument list in our AST format. 1379 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1380 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1381 1382 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1383 TemplateArgsIn.release(); 1384 1385 if (Result.isNull()) 1386 return true; 1387 1388 DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result); 1389 TemplateSpecializationTypeLoc TL 1390 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1391 TL.setTemplateNameLoc(TemplateLoc); 1392 TL.setLAngleLoc(LAngleLoc); 1393 TL.setRAngleLoc(RAngleLoc); 1394 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1395 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1396 1397 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1398} 1399 1400Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1401 TagUseKind TUK, 1402 DeclSpec::TST TagSpec, 1403 SourceLocation TagLoc) { 1404 if (TypeResult.isInvalid()) 1405 return Sema::TypeResult(); 1406 1407 // FIXME: preserve source info, ideally without copying the DI. 1408 DeclaratorInfo *DI; 1409 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1410 1411 // Verify the tag specifier. 1412 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1413 1414 if (const RecordType *RT = Type->getAs<RecordType>()) { 1415 RecordDecl *D = RT->getDecl(); 1416 1417 IdentifierInfo *Id = D->getIdentifier(); 1418 assert(Id && "templated class must have an identifier"); 1419 1420 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1421 Diag(TagLoc, diag::err_use_with_wrong_tag) 1422 << Type 1423 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1424 D->getKindName()); 1425 Diag(D->getLocation(), diag::note_previous_use); 1426 } 1427 } 1428 1429 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1430 1431 return ElabType.getAsOpaquePtr(); 1432} 1433 1434Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1435 LookupResult &R, 1436 bool RequiresADL, 1437 const TemplateArgumentListInfo &TemplateArgs) { 1438 // FIXME: Can we do any checking at this point? I guess we could check the 1439 // template arguments that we have against the template name, if the template 1440 // name refers to a single template. That's not a terribly common case, 1441 // though. 1442 1443 // These should be filtered out by our callers. 1444 assert(!R.empty() && "empty lookup results when building templateid"); 1445 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1446 1447 NestedNameSpecifier *Qualifier = 0; 1448 SourceRange QualifierRange; 1449 if (SS.isSet()) { 1450 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1451 QualifierRange = SS.getRange(); 1452 } 1453 1454 bool Dependent 1455 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1456 &TemplateArgs); 1457 UnresolvedLookupExpr *ULE 1458 = UnresolvedLookupExpr::Create(Context, Dependent, 1459 Qualifier, QualifierRange, 1460 R.getLookupName(), R.getNameLoc(), 1461 RequiresADL, TemplateArgs); 1462 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 1463 ULE->addDecl(*I); 1464 1465 return Owned(ULE); 1466} 1467 1468// We actually only call this from template instantiation. 1469Sema::OwningExprResult 1470Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS, 1471 DeclarationName Name, 1472 SourceLocation NameLoc, 1473 const TemplateArgumentListInfo &TemplateArgs) { 1474 DeclContext *DC; 1475 if (!(DC = computeDeclContext(SS, false)) || 1476 DC->isDependentContext() || 1477 RequireCompleteDeclContext(SS)) 1478 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1479 1480 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1481 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1482 1483 if (R.isAmbiguous()) 1484 return ExprError(); 1485 1486 if (R.empty()) { 1487 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1488 << Name << SS.getRange(); 1489 return ExprError(); 1490 } 1491 1492 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1493 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1494 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1495 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1496 return ExprError(); 1497 } 1498 1499 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1500} 1501 1502/// \brief Form a dependent template name. 1503/// 1504/// This action forms a dependent template name given the template 1505/// name and its (presumably dependent) scope specifier. For 1506/// example, given "MetaFun::template apply", the scope specifier \p 1507/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1508/// of the "template" keyword, and "apply" is the \p Name. 1509Sema::TemplateTy 1510Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1511 const CXXScopeSpec &SS, 1512 UnqualifiedId &Name, 1513 TypeTy *ObjectType, 1514 bool EnteringContext) { 1515 if ((ObjectType && 1516 computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) || 1517 (SS.isSet() && computeDeclContext(SS, EnteringContext))) { 1518 // C++0x [temp.names]p5: 1519 // If a name prefixed by the keyword template is not the name of 1520 // a template, the program is ill-formed. [Note: the keyword 1521 // template may not be applied to non-template members of class 1522 // templates. -end note ] [ Note: as is the case with the 1523 // typename prefix, the template prefix is allowed in cases 1524 // where it is not strictly necessary; i.e., when the 1525 // nested-name-specifier or the expression on the left of the -> 1526 // or . is not dependent on a template-parameter, or the use 1527 // does not appear in the scope of a template. -end note] 1528 // 1529 // Note: C++03 was more strict here, because it banned the use of 1530 // the "template" keyword prior to a template-name that was not a 1531 // dependent name. C++ DR468 relaxed this requirement (the 1532 // "template" keyword is now permitted). We follow the C++0x 1533 // rules, even in C++03 mode, retroactively applying the DR. 1534 TemplateTy Template; 1535 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1536 EnteringContext, Template); 1537 if (TNK == TNK_Non_template) { 1538 Diag(Name.getSourceRange().getBegin(), 1539 diag::err_template_kw_refers_to_non_template) 1540 << GetNameFromUnqualifiedId(Name) 1541 << Name.getSourceRange(); 1542 return TemplateTy(); 1543 } 1544 1545 return Template; 1546 } 1547 1548 NestedNameSpecifier *Qualifier 1549 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1550 1551 switch (Name.getKind()) { 1552 case UnqualifiedId::IK_Identifier: 1553 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1554 Name.Identifier)); 1555 1556 case UnqualifiedId::IK_OperatorFunctionId: 1557 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1558 Name.OperatorFunctionId.Operator)); 1559 1560 case UnqualifiedId::IK_LiteralOperatorId: 1561 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1562 1563 default: 1564 break; 1565 } 1566 1567 Diag(Name.getSourceRange().getBegin(), 1568 diag::err_template_kw_refers_to_non_template) 1569 << GetNameFromUnqualifiedId(Name) 1570 << Name.getSourceRange(); 1571 return TemplateTy(); 1572} 1573 1574bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1575 const TemplateArgumentLoc &AL, 1576 TemplateArgumentListBuilder &Converted) { 1577 const TemplateArgument &Arg = AL.getArgument(); 1578 1579 // Check template type parameter. 1580 if (Arg.getKind() != TemplateArgument::Type) { 1581 // C++ [temp.arg.type]p1: 1582 // A template-argument for a template-parameter which is a 1583 // type shall be a type-id. 1584 1585 // We have a template type parameter but the template argument 1586 // is not a type. 1587 SourceRange SR = AL.getSourceRange(); 1588 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1589 Diag(Param->getLocation(), diag::note_template_param_here); 1590 1591 return true; 1592 } 1593 1594 if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo())) 1595 return true; 1596 1597 // Add the converted template type argument. 1598 Converted.Append( 1599 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1600 return false; 1601} 1602 1603/// \brief Substitute template arguments into the default template argument for 1604/// the given template type parameter. 1605/// 1606/// \param SemaRef the semantic analysis object for which we are performing 1607/// the substitution. 1608/// 1609/// \param Template the template that we are synthesizing template arguments 1610/// for. 1611/// 1612/// \param TemplateLoc the location of the template name that started the 1613/// template-id we are checking. 1614/// 1615/// \param RAngleLoc the location of the right angle bracket ('>') that 1616/// terminates the template-id. 1617/// 1618/// \param Param the template template parameter whose default we are 1619/// substituting into. 1620/// 1621/// \param Converted the list of template arguments provided for template 1622/// parameters that precede \p Param in the template parameter list. 1623/// 1624/// \returns the substituted template argument, or NULL if an error occurred. 1625static DeclaratorInfo * 1626SubstDefaultTemplateArgument(Sema &SemaRef, 1627 TemplateDecl *Template, 1628 SourceLocation TemplateLoc, 1629 SourceLocation RAngleLoc, 1630 TemplateTypeParmDecl *Param, 1631 TemplateArgumentListBuilder &Converted) { 1632 DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo(); 1633 1634 // If the argument type is dependent, instantiate it now based 1635 // on the previously-computed template arguments. 1636 if (ArgType->getType()->isDependentType()) { 1637 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1638 /*TakeArgs=*/false); 1639 1640 MultiLevelTemplateArgumentList AllTemplateArgs 1641 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1642 1643 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1644 Template, Converted.getFlatArguments(), 1645 Converted.flatSize(), 1646 SourceRange(TemplateLoc, RAngleLoc)); 1647 1648 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1649 Param->getDefaultArgumentLoc(), 1650 Param->getDeclName()); 1651 } 1652 1653 return ArgType; 1654} 1655 1656/// \brief Substitute template arguments into the default template argument for 1657/// the given non-type template parameter. 1658/// 1659/// \param SemaRef the semantic analysis object for which we are performing 1660/// the substitution. 1661/// 1662/// \param Template the template that we are synthesizing template arguments 1663/// for. 1664/// 1665/// \param TemplateLoc the location of the template name that started the 1666/// template-id we are checking. 1667/// 1668/// \param RAngleLoc the location of the right angle bracket ('>') that 1669/// terminates the template-id. 1670/// 1671/// \param Param the non-type template parameter whose default we are 1672/// substituting into. 1673/// 1674/// \param Converted the list of template arguments provided for template 1675/// parameters that precede \p Param in the template parameter list. 1676/// 1677/// \returns the substituted template argument, or NULL if an error occurred. 1678static Sema::OwningExprResult 1679SubstDefaultTemplateArgument(Sema &SemaRef, 1680 TemplateDecl *Template, 1681 SourceLocation TemplateLoc, 1682 SourceLocation RAngleLoc, 1683 NonTypeTemplateParmDecl *Param, 1684 TemplateArgumentListBuilder &Converted) { 1685 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1686 /*TakeArgs=*/false); 1687 1688 MultiLevelTemplateArgumentList AllTemplateArgs 1689 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1690 1691 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1692 Template, Converted.getFlatArguments(), 1693 Converted.flatSize(), 1694 SourceRange(TemplateLoc, RAngleLoc)); 1695 1696 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1697} 1698 1699/// \brief Substitute template arguments into the default template argument for 1700/// the given template template parameter. 1701/// 1702/// \param SemaRef the semantic analysis object for which we are performing 1703/// the substitution. 1704/// 1705/// \param Template the template that we are synthesizing template arguments 1706/// for. 1707/// 1708/// \param TemplateLoc the location of the template name that started the 1709/// template-id we are checking. 1710/// 1711/// \param RAngleLoc the location of the right angle bracket ('>') that 1712/// terminates the template-id. 1713/// 1714/// \param Param the template template parameter whose default we are 1715/// substituting into. 1716/// 1717/// \param Converted the list of template arguments provided for template 1718/// parameters that precede \p Param in the template parameter list. 1719/// 1720/// \returns the substituted template argument, or NULL if an error occurred. 1721static TemplateName 1722SubstDefaultTemplateArgument(Sema &SemaRef, 1723 TemplateDecl *Template, 1724 SourceLocation TemplateLoc, 1725 SourceLocation RAngleLoc, 1726 TemplateTemplateParmDecl *Param, 1727 TemplateArgumentListBuilder &Converted) { 1728 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1729 /*TakeArgs=*/false); 1730 1731 MultiLevelTemplateArgumentList AllTemplateArgs 1732 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1733 1734 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1735 Template, Converted.getFlatArguments(), 1736 Converted.flatSize(), 1737 SourceRange(TemplateLoc, RAngleLoc)); 1738 1739 return SemaRef.SubstTemplateName( 1740 Param->getDefaultArgument().getArgument().getAsTemplate(), 1741 Param->getDefaultArgument().getTemplateNameLoc(), 1742 AllTemplateArgs); 1743} 1744 1745/// \brief If the given template parameter has a default template 1746/// argument, substitute into that default template argument and 1747/// return the corresponding template argument. 1748TemplateArgumentLoc 1749Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1750 SourceLocation TemplateLoc, 1751 SourceLocation RAngleLoc, 1752 Decl *Param, 1753 TemplateArgumentListBuilder &Converted) { 1754 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1755 if (!TypeParm->hasDefaultArgument()) 1756 return TemplateArgumentLoc(); 1757 1758 DeclaratorInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1759 TemplateLoc, 1760 RAngleLoc, 1761 TypeParm, 1762 Converted); 1763 if (DI) 1764 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1765 1766 return TemplateArgumentLoc(); 1767 } 1768 1769 if (NonTypeTemplateParmDecl *NonTypeParm 1770 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1771 if (!NonTypeParm->hasDefaultArgument()) 1772 return TemplateArgumentLoc(); 1773 1774 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1775 TemplateLoc, 1776 RAngleLoc, 1777 NonTypeParm, 1778 Converted); 1779 if (Arg.isInvalid()) 1780 return TemplateArgumentLoc(); 1781 1782 Expr *ArgE = Arg.takeAs<Expr>(); 1783 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1784 } 1785 1786 TemplateTemplateParmDecl *TempTempParm 1787 = cast<TemplateTemplateParmDecl>(Param); 1788 if (!TempTempParm->hasDefaultArgument()) 1789 return TemplateArgumentLoc(); 1790 1791 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1792 TemplateLoc, 1793 RAngleLoc, 1794 TempTempParm, 1795 Converted); 1796 if (TName.isNull()) 1797 return TemplateArgumentLoc(); 1798 1799 return TemplateArgumentLoc(TemplateArgument(TName), 1800 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1801 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1802} 1803 1804/// \brief Check that the given template argument corresponds to the given 1805/// template parameter. 1806bool Sema::CheckTemplateArgument(NamedDecl *Param, 1807 const TemplateArgumentLoc &Arg, 1808 TemplateDecl *Template, 1809 SourceLocation TemplateLoc, 1810 SourceLocation RAngleLoc, 1811 TemplateArgumentListBuilder &Converted) { 1812 // Check template type parameters. 1813 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1814 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1815 1816 // Check non-type template parameters. 1817 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1818 // Do substitution on the type of the non-type template parameter 1819 // with the template arguments we've seen thus far. 1820 QualType NTTPType = NTTP->getType(); 1821 if (NTTPType->isDependentType()) { 1822 // Do substitution on the type of the non-type template parameter. 1823 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1824 NTTP, Converted.getFlatArguments(), 1825 Converted.flatSize(), 1826 SourceRange(TemplateLoc, RAngleLoc)); 1827 1828 TemplateArgumentList TemplateArgs(Context, Converted, 1829 /*TakeArgs=*/false); 1830 NTTPType = SubstType(NTTPType, 1831 MultiLevelTemplateArgumentList(TemplateArgs), 1832 NTTP->getLocation(), 1833 NTTP->getDeclName()); 1834 // If that worked, check the non-type template parameter type 1835 // for validity. 1836 if (!NTTPType.isNull()) 1837 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1838 NTTP->getLocation()); 1839 if (NTTPType.isNull()) 1840 return true; 1841 } 1842 1843 switch (Arg.getArgument().getKind()) { 1844 case TemplateArgument::Null: 1845 assert(false && "Should never see a NULL template argument here"); 1846 return true; 1847 1848 case TemplateArgument::Expression: { 1849 Expr *E = Arg.getArgument().getAsExpr(); 1850 TemplateArgument Result; 1851 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1852 return true; 1853 1854 Converted.Append(Result); 1855 break; 1856 } 1857 1858 case TemplateArgument::Declaration: 1859 case TemplateArgument::Integral: 1860 // We've already checked this template argument, so just copy 1861 // it to the list of converted arguments. 1862 Converted.Append(Arg.getArgument()); 1863 break; 1864 1865 case TemplateArgument::Template: 1866 // We were given a template template argument. It may not be ill-formed; 1867 // see below. 1868 if (DependentTemplateName *DTN 1869 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 1870 // We have a template argument such as \c T::template X, which we 1871 // parsed as a template template argument. However, since we now 1872 // know that we need a non-type template argument, convert this 1873 // template name into an expression. 1874 Expr *E = DependentScopeDeclRefExpr::Create(Context, 1875 DTN->getQualifier(), 1876 Arg.getTemplateQualifierRange(), 1877 DTN->getIdentifier(), 1878 Arg.getTemplateNameLoc()); 1879 1880 TemplateArgument Result; 1881 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1882 return true; 1883 1884 Converted.Append(Result); 1885 break; 1886 } 1887 1888 // We have a template argument that actually does refer to a class 1889 // template, template alias, or template template parameter, and 1890 // therefore cannot be a non-type template argument. 1891 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 1892 << Arg.getSourceRange(); 1893 1894 Diag(Param->getLocation(), diag::note_template_param_here); 1895 return true; 1896 1897 case TemplateArgument::Type: { 1898 // We have a non-type template parameter but the template 1899 // argument is a type. 1900 1901 // C++ [temp.arg]p2: 1902 // In a template-argument, an ambiguity between a type-id and 1903 // an expression is resolved to a type-id, regardless of the 1904 // form of the corresponding template-parameter. 1905 // 1906 // We warn specifically about this case, since it can be rather 1907 // confusing for users. 1908 QualType T = Arg.getArgument().getAsType(); 1909 SourceRange SR = Arg.getSourceRange(); 1910 if (T->isFunctionType()) 1911 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 1912 else 1913 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 1914 Diag(Param->getLocation(), diag::note_template_param_here); 1915 return true; 1916 } 1917 1918 case TemplateArgument::Pack: 1919 llvm::llvm_unreachable("Caller must expand template argument packs"); 1920 break; 1921 } 1922 1923 return false; 1924 } 1925 1926 1927 // Check template template parameters. 1928 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 1929 1930 // Substitute into the template parameter list of the template 1931 // template parameter, since previously-supplied template arguments 1932 // may appear within the template template parameter. 1933 { 1934 // Set up a template instantiation context. 1935 LocalInstantiationScope Scope(*this); 1936 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1937 TempParm, Converted.getFlatArguments(), 1938 Converted.flatSize(), 1939 SourceRange(TemplateLoc, RAngleLoc)); 1940 1941 TemplateArgumentList TemplateArgs(Context, Converted, 1942 /*TakeArgs=*/false); 1943 TempParm = cast_or_null<TemplateTemplateParmDecl>( 1944 SubstDecl(TempParm, CurContext, 1945 MultiLevelTemplateArgumentList(TemplateArgs))); 1946 if (!TempParm) 1947 return true; 1948 1949 // FIXME: TempParam is leaked. 1950 } 1951 1952 switch (Arg.getArgument().getKind()) { 1953 case TemplateArgument::Null: 1954 assert(false && "Should never see a NULL template argument here"); 1955 return true; 1956 1957 case TemplateArgument::Template: 1958 if (CheckTemplateArgument(TempParm, Arg)) 1959 return true; 1960 1961 Converted.Append(Arg.getArgument()); 1962 break; 1963 1964 case TemplateArgument::Expression: 1965 case TemplateArgument::Type: 1966 // We have a template template parameter but the template 1967 // argument does not refer to a template. 1968 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1969 return true; 1970 1971 case TemplateArgument::Declaration: 1972 llvm::llvm_unreachable( 1973 "Declaration argument with template template parameter"); 1974 break; 1975 case TemplateArgument::Integral: 1976 llvm::llvm_unreachable( 1977 "Integral argument with template template parameter"); 1978 break; 1979 1980 case TemplateArgument::Pack: 1981 llvm::llvm_unreachable("Caller must expand template argument packs"); 1982 break; 1983 } 1984 1985 return false; 1986} 1987 1988/// \brief Check that the given template argument list is well-formed 1989/// for specializing the given template. 1990bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1991 SourceLocation TemplateLoc, 1992 const TemplateArgumentListInfo &TemplateArgs, 1993 bool PartialTemplateArgs, 1994 TemplateArgumentListBuilder &Converted) { 1995 TemplateParameterList *Params = Template->getTemplateParameters(); 1996 unsigned NumParams = Params->size(); 1997 unsigned NumArgs = TemplateArgs.size(); 1998 bool Invalid = false; 1999 2000 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2001 2002 bool HasParameterPack = 2003 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2004 2005 if ((NumArgs > NumParams && !HasParameterPack) || 2006 (NumArgs < Params->getMinRequiredArguments() && 2007 !PartialTemplateArgs)) { 2008 // FIXME: point at either the first arg beyond what we can handle, 2009 // or the '>', depending on whether we have too many or too few 2010 // arguments. 2011 SourceRange Range; 2012 if (NumArgs > NumParams) 2013 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2014 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2015 << (NumArgs > NumParams) 2016 << (isa<ClassTemplateDecl>(Template)? 0 : 2017 isa<FunctionTemplateDecl>(Template)? 1 : 2018 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2019 << Template << Range; 2020 Diag(Template->getLocation(), diag::note_template_decl_here) 2021 << Params->getSourceRange(); 2022 Invalid = true; 2023 } 2024 2025 // C++ [temp.arg]p1: 2026 // [...] The type and form of each template-argument specified in 2027 // a template-id shall match the type and form specified for the 2028 // corresponding parameter declared by the template in its 2029 // template-parameter-list. 2030 unsigned ArgIdx = 0; 2031 for (TemplateParameterList::iterator Param = Params->begin(), 2032 ParamEnd = Params->end(); 2033 Param != ParamEnd; ++Param, ++ArgIdx) { 2034 if (ArgIdx > NumArgs && PartialTemplateArgs) 2035 break; 2036 2037 // If we have a template parameter pack, check every remaining template 2038 // argument against that template parameter pack. 2039 if ((*Param)->isTemplateParameterPack()) { 2040 Converted.BeginPack(); 2041 for (; ArgIdx < NumArgs; ++ArgIdx) { 2042 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2043 TemplateLoc, RAngleLoc, Converted)) { 2044 Invalid = true; 2045 break; 2046 } 2047 } 2048 Converted.EndPack(); 2049 continue; 2050 } 2051 2052 if (ArgIdx < NumArgs) { 2053 // Check the template argument we were given. 2054 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2055 TemplateLoc, RAngleLoc, Converted)) 2056 return true; 2057 2058 continue; 2059 } 2060 2061 // We have a default template argument that we will use. 2062 TemplateArgumentLoc Arg; 2063 2064 // Retrieve the default template argument from the template 2065 // parameter. For each kind of template parameter, we substitute the 2066 // template arguments provided thus far and any "outer" template arguments 2067 // (when the template parameter was part of a nested template) into 2068 // the default argument. 2069 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2070 if (!TTP->hasDefaultArgument()) { 2071 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2072 break; 2073 } 2074 2075 DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this, 2076 Template, 2077 TemplateLoc, 2078 RAngleLoc, 2079 TTP, 2080 Converted); 2081 if (!ArgType) 2082 return true; 2083 2084 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2085 ArgType); 2086 } else if (NonTypeTemplateParmDecl *NTTP 2087 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2088 if (!NTTP->hasDefaultArgument()) { 2089 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2090 break; 2091 } 2092 2093 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2094 TemplateLoc, 2095 RAngleLoc, 2096 NTTP, 2097 Converted); 2098 if (E.isInvalid()) 2099 return true; 2100 2101 Expr *Ex = E.takeAs<Expr>(); 2102 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2103 } else { 2104 TemplateTemplateParmDecl *TempParm 2105 = cast<TemplateTemplateParmDecl>(*Param); 2106 2107 if (!TempParm->hasDefaultArgument()) { 2108 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2109 break; 2110 } 2111 2112 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2113 TemplateLoc, 2114 RAngleLoc, 2115 TempParm, 2116 Converted); 2117 if (Name.isNull()) 2118 return true; 2119 2120 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2121 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2122 TempParm->getDefaultArgument().getTemplateNameLoc()); 2123 } 2124 2125 // Introduce an instantiation record that describes where we are using 2126 // the default template argument. 2127 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2128 Converted.getFlatArguments(), 2129 Converted.flatSize(), 2130 SourceRange(TemplateLoc, RAngleLoc)); 2131 2132 // Check the default template argument. 2133 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2134 RAngleLoc, Converted)) 2135 return true; 2136 } 2137 2138 return Invalid; 2139} 2140 2141/// \brief Check a template argument against its corresponding 2142/// template type parameter. 2143/// 2144/// This routine implements the semantics of C++ [temp.arg.type]. It 2145/// returns true if an error occurred, and false otherwise. 2146bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2147 DeclaratorInfo *ArgInfo) { 2148 assert(ArgInfo && "invalid DeclaratorInfo"); 2149 QualType Arg = ArgInfo->getType(); 2150 2151 // C++ [temp.arg.type]p2: 2152 // A local type, a type with no linkage, an unnamed type or a type 2153 // compounded from any of these types shall not be used as a 2154 // template-argument for a template type-parameter. 2155 // 2156 // FIXME: Perform the recursive and no-linkage type checks. 2157 const TagType *Tag = 0; 2158 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2159 Tag = EnumT; 2160 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2161 Tag = RecordT; 2162 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2163 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2164 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2165 << QualType(Tag, 0) << SR; 2166 } else if (Tag && !Tag->getDecl()->getDeclName() && 2167 !Tag->getDecl()->getTypedefForAnonDecl()) { 2168 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2169 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2170 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2171 return true; 2172 } 2173 2174 return false; 2175} 2176 2177/// \brief Checks whether the given template argument is the address 2178/// of an object or function according to C++ [temp.arg.nontype]p1. 2179bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 2180 NamedDecl *&Entity) { 2181 bool Invalid = false; 2182 2183 // See through any implicit casts we added to fix the type. 2184 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2185 Arg = Cast->getSubExpr(); 2186 2187 // C++0x allows nullptr, and there's no further checking to be done for that. 2188 if (Arg->getType()->isNullPtrType()) 2189 return false; 2190 2191 // C++ [temp.arg.nontype]p1: 2192 // 2193 // A template-argument for a non-type, non-template 2194 // template-parameter shall be one of: [...] 2195 // 2196 // -- the address of an object or function with external 2197 // linkage, including function templates and function 2198 // template-ids but excluding non-static class members, 2199 // expressed as & id-expression where the & is optional if 2200 // the name refers to a function or array, or if the 2201 // corresponding template-parameter is a reference; or 2202 DeclRefExpr *DRE = 0; 2203 2204 // Ignore (and complain about) any excess parentheses. 2205 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2206 if (!Invalid) { 2207 Diag(Arg->getSourceRange().getBegin(), 2208 diag::err_template_arg_extra_parens) 2209 << Arg->getSourceRange(); 2210 Invalid = true; 2211 } 2212 2213 Arg = Parens->getSubExpr(); 2214 } 2215 2216 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2217 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 2218 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2219 } else 2220 DRE = dyn_cast<DeclRefExpr>(Arg); 2221 2222 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 2223 return Diag(Arg->getSourceRange().getBegin(), 2224 diag::err_template_arg_not_object_or_func_form) 2225 << Arg->getSourceRange(); 2226 2227 // Cannot refer to non-static data members 2228 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 2229 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2230 << Field << Arg->getSourceRange(); 2231 2232 // Cannot refer to non-static member functions 2233 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2234 if (!Method->isStatic()) 2235 return Diag(Arg->getSourceRange().getBegin(), 2236 diag::err_template_arg_method) 2237 << Method << Arg->getSourceRange(); 2238 2239 // Functions must have external linkage. 2240 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2241 if (Func->getLinkage() != NamedDecl::ExternalLinkage) { 2242 Diag(Arg->getSourceRange().getBegin(), 2243 diag::err_template_arg_function_not_extern) 2244 << Func << Arg->getSourceRange(); 2245 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2246 << true; 2247 return true; 2248 } 2249 2250 // Okay: we've named a function with external linkage. 2251 Entity = Func; 2252 return Invalid; 2253 } 2254 2255 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2256 if (Var->getLinkage() != NamedDecl::ExternalLinkage) { 2257 Diag(Arg->getSourceRange().getBegin(), 2258 diag::err_template_arg_object_not_extern) 2259 << Var << Arg->getSourceRange(); 2260 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2261 << true; 2262 return true; 2263 } 2264 2265 // Okay: we've named an object with external linkage 2266 Entity = Var; 2267 return Invalid; 2268 } 2269 2270 // We found something else, but we don't know specifically what it is. 2271 Diag(Arg->getSourceRange().getBegin(), 2272 diag::err_template_arg_not_object_or_func) 2273 << Arg->getSourceRange(); 2274 Diag(DRE->getDecl()->getLocation(), 2275 diag::note_template_arg_refers_here); 2276 return true; 2277} 2278 2279/// \brief Checks whether the given template argument is a pointer to 2280/// member constant according to C++ [temp.arg.nontype]p1. 2281bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2282 TemplateArgument &Converted) { 2283 bool Invalid = false; 2284 2285 // See through any implicit casts we added to fix the type. 2286 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2287 Arg = Cast->getSubExpr(); 2288 2289 // C++0x allows nullptr, and there's no further checking to be done for that. 2290 if (Arg->getType()->isNullPtrType()) 2291 return false; 2292 2293 // C++ [temp.arg.nontype]p1: 2294 // 2295 // A template-argument for a non-type, non-template 2296 // template-parameter shall be one of: [...] 2297 // 2298 // -- a pointer to member expressed as described in 5.3.1. 2299 DeclRefExpr *DRE = 0; 2300 2301 // Ignore (and complain about) any excess parentheses. 2302 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2303 if (!Invalid) { 2304 Diag(Arg->getSourceRange().getBegin(), 2305 diag::err_template_arg_extra_parens) 2306 << Arg->getSourceRange(); 2307 Invalid = true; 2308 } 2309 2310 Arg = Parens->getSubExpr(); 2311 } 2312 2313 // A pointer-to-member constant written &Class::member. 2314 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2315 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2316 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2317 if (DRE && !DRE->getQualifier()) 2318 DRE = 0; 2319 } 2320 } 2321 // A constant of pointer-to-member type. 2322 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2323 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2324 if (VD->getType()->isMemberPointerType()) { 2325 if (isa<NonTypeTemplateParmDecl>(VD) || 2326 (isa<VarDecl>(VD) && 2327 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2328 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2329 Converted = TemplateArgument(Arg->Retain()); 2330 else 2331 Converted = TemplateArgument(VD->getCanonicalDecl()); 2332 return Invalid; 2333 } 2334 } 2335 } 2336 2337 DRE = 0; 2338 } 2339 2340 if (!DRE) 2341 return Diag(Arg->getSourceRange().getBegin(), 2342 diag::err_template_arg_not_pointer_to_member_form) 2343 << Arg->getSourceRange(); 2344 2345 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2346 assert((isa<FieldDecl>(DRE->getDecl()) || 2347 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2348 "Only non-static member pointers can make it here"); 2349 2350 // Okay: this is the address of a non-static member, and therefore 2351 // a member pointer constant. 2352 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2353 Converted = TemplateArgument(Arg->Retain()); 2354 else 2355 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2356 return Invalid; 2357 } 2358 2359 // We found something else, but we don't know specifically what it is. 2360 Diag(Arg->getSourceRange().getBegin(), 2361 diag::err_template_arg_not_pointer_to_member_form) 2362 << Arg->getSourceRange(); 2363 Diag(DRE->getDecl()->getLocation(), 2364 diag::note_template_arg_refers_here); 2365 return true; 2366} 2367 2368/// \brief Check a template argument against its corresponding 2369/// non-type template parameter. 2370/// 2371/// This routine implements the semantics of C++ [temp.arg.nontype]. 2372/// It returns true if an error occurred, and false otherwise. \p 2373/// InstantiatedParamType is the type of the non-type template 2374/// parameter after it has been instantiated. 2375/// 2376/// If no error was detected, Converted receives the converted template argument. 2377bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2378 QualType InstantiatedParamType, Expr *&Arg, 2379 TemplateArgument &Converted) { 2380 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2381 2382 // If either the parameter has a dependent type or the argument is 2383 // type-dependent, there's nothing we can check now. 2384 // FIXME: Add template argument to Converted! 2385 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2386 // FIXME: Produce a cloned, canonical expression? 2387 Converted = TemplateArgument(Arg); 2388 return false; 2389 } 2390 2391 // C++ [temp.arg.nontype]p5: 2392 // The following conversions are performed on each expression used 2393 // as a non-type template-argument. If a non-type 2394 // template-argument cannot be converted to the type of the 2395 // corresponding template-parameter then the program is 2396 // ill-formed. 2397 // 2398 // -- for a non-type template-parameter of integral or 2399 // enumeration type, integral promotions (4.5) and integral 2400 // conversions (4.7) are applied. 2401 QualType ParamType = InstantiatedParamType; 2402 QualType ArgType = Arg->getType(); 2403 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2404 // C++ [temp.arg.nontype]p1: 2405 // A template-argument for a non-type, non-template 2406 // template-parameter shall be one of: 2407 // 2408 // -- an integral constant-expression of integral or enumeration 2409 // type; or 2410 // -- the name of a non-type template-parameter; or 2411 SourceLocation NonConstantLoc; 2412 llvm::APSInt Value; 2413 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2414 Diag(Arg->getSourceRange().getBegin(), 2415 diag::err_template_arg_not_integral_or_enumeral) 2416 << ArgType << Arg->getSourceRange(); 2417 Diag(Param->getLocation(), diag::note_template_param_here); 2418 return true; 2419 } else if (!Arg->isValueDependent() && 2420 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2421 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2422 << ArgType << Arg->getSourceRange(); 2423 return true; 2424 } 2425 2426 // FIXME: We need some way to more easily get the unqualified form 2427 // of the types without going all the way to the 2428 // canonical type. 2429 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 2430 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 2431 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 2432 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 2433 2434 // Try to convert the argument to the parameter's type. 2435 if (Context.hasSameType(ParamType, ArgType)) { 2436 // Okay: no conversion necessary 2437 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2438 !ParamType->isEnumeralType()) { 2439 // This is an integral promotion or conversion. 2440 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2441 } else { 2442 // We can't perform this conversion. 2443 Diag(Arg->getSourceRange().getBegin(), 2444 diag::err_template_arg_not_convertible) 2445 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2446 Diag(Param->getLocation(), diag::note_template_param_here); 2447 return true; 2448 } 2449 2450 QualType IntegerType = Context.getCanonicalType(ParamType); 2451 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2452 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2453 2454 if (!Arg->isValueDependent()) { 2455 // Check that an unsigned parameter does not receive a negative 2456 // value. 2457 if (IntegerType->isUnsignedIntegerType() 2458 && (Value.isSigned() && Value.isNegative())) { 2459 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 2460 << Value.toString(10) << Param->getType() 2461 << Arg->getSourceRange(); 2462 Diag(Param->getLocation(), diag::note_template_param_here); 2463 return true; 2464 } 2465 2466 // Check that we don't overflow the template parameter type. 2467 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2468 if (Value.getActiveBits() > AllowedBits) { 2469 Diag(Arg->getSourceRange().getBegin(), 2470 diag::err_template_arg_too_large) 2471 << Value.toString(10) << Param->getType() 2472 << Arg->getSourceRange(); 2473 Diag(Param->getLocation(), diag::note_template_param_here); 2474 return true; 2475 } 2476 2477 if (Value.getBitWidth() != AllowedBits) 2478 Value.extOrTrunc(AllowedBits); 2479 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2480 } 2481 2482 // Add the value of this argument to the list of converted 2483 // arguments. We use the bitwidth and signedness of the template 2484 // parameter. 2485 if (Arg->isValueDependent()) { 2486 // The argument is value-dependent. Create a new 2487 // TemplateArgument with the converted expression. 2488 Converted = TemplateArgument(Arg); 2489 return false; 2490 } 2491 2492 Converted = TemplateArgument(Value, 2493 ParamType->isEnumeralType() ? ParamType 2494 : IntegerType); 2495 return false; 2496 } 2497 2498 // Handle pointer-to-function, reference-to-function, and 2499 // pointer-to-member-function all in (roughly) the same way. 2500 if (// -- For a non-type template-parameter of type pointer to 2501 // function, only the function-to-pointer conversion (4.3) is 2502 // applied. If the template-argument represents a set of 2503 // overloaded functions (or a pointer to such), the matching 2504 // function is selected from the set (13.4). 2505 // In C++0x, any std::nullptr_t value can be converted. 2506 (ParamType->isPointerType() && 2507 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2508 // -- For a non-type template-parameter of type reference to 2509 // function, no conversions apply. If the template-argument 2510 // represents a set of overloaded functions, the matching 2511 // function is selected from the set (13.4). 2512 (ParamType->isReferenceType() && 2513 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2514 // -- For a non-type template-parameter of type pointer to 2515 // member function, no conversions apply. If the 2516 // template-argument represents a set of overloaded member 2517 // functions, the matching member function is selected from 2518 // the set (13.4). 2519 // Again, C++0x allows a std::nullptr_t value. 2520 (ParamType->isMemberPointerType() && 2521 ParamType->getAs<MemberPointerType>()->getPointeeType() 2522 ->isFunctionType())) { 2523 if (Context.hasSameUnqualifiedType(ArgType, 2524 ParamType.getNonReferenceType())) { 2525 // We don't have to do anything: the types already match. 2526 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2527 ParamType->isMemberPointerType())) { 2528 ArgType = ParamType; 2529 if (ParamType->isMemberPointerType()) 2530 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2531 else 2532 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2533 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2534 ArgType = Context.getPointerType(ArgType); 2535 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2536 } else if (FunctionDecl *Fn 2537 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2538 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2539 return true; 2540 2541 Arg = FixOverloadedFunctionReference(Arg, Fn); 2542 ArgType = Arg->getType(); 2543 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2544 ArgType = Context.getPointerType(Arg->getType()); 2545 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2546 } 2547 } 2548 2549 if (!Context.hasSameUnqualifiedType(ArgType, 2550 ParamType.getNonReferenceType())) { 2551 // We can't perform this conversion. 2552 Diag(Arg->getSourceRange().getBegin(), 2553 diag::err_template_arg_not_convertible) 2554 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2555 Diag(Param->getLocation(), diag::note_template_param_here); 2556 return true; 2557 } 2558 2559 if (ParamType->isMemberPointerType()) 2560 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2561 2562 NamedDecl *Entity = 0; 2563 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2564 return true; 2565 2566 if (Entity) 2567 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2568 Converted = TemplateArgument(Entity); 2569 return false; 2570 } 2571 2572 if (ParamType->isPointerType()) { 2573 // -- for a non-type template-parameter of type pointer to 2574 // object, qualification conversions (4.4) and the 2575 // array-to-pointer conversion (4.2) are applied. 2576 // C++0x also allows a value of std::nullptr_t. 2577 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2578 "Only object pointers allowed here"); 2579 2580 if (ArgType->isNullPtrType()) { 2581 ArgType = ParamType; 2582 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2583 } else if (ArgType->isArrayType()) { 2584 ArgType = Context.getArrayDecayedType(ArgType); 2585 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2586 } 2587 2588 if (IsQualificationConversion(ArgType, ParamType)) { 2589 ArgType = ParamType; 2590 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2591 } 2592 2593 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2594 // We can't perform this conversion. 2595 Diag(Arg->getSourceRange().getBegin(), 2596 diag::err_template_arg_not_convertible) 2597 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2598 Diag(Param->getLocation(), diag::note_template_param_here); 2599 return true; 2600 } 2601 2602 NamedDecl *Entity = 0; 2603 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2604 return true; 2605 2606 if (Entity) 2607 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2608 Converted = TemplateArgument(Entity); 2609 return false; 2610 } 2611 2612 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2613 // -- For a non-type template-parameter of type reference to 2614 // object, no conversions apply. The type referred to by the 2615 // reference may be more cv-qualified than the (otherwise 2616 // identical) type of the template-argument. The 2617 // template-parameter is bound directly to the 2618 // template-argument, which must be an lvalue. 2619 assert(ParamRefType->getPointeeType()->isObjectType() && 2620 "Only object references allowed here"); 2621 2622 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 2623 Diag(Arg->getSourceRange().getBegin(), 2624 diag::err_template_arg_no_ref_bind) 2625 << InstantiatedParamType << Arg->getType() 2626 << Arg->getSourceRange(); 2627 Diag(Param->getLocation(), diag::note_template_param_here); 2628 return true; 2629 } 2630 2631 unsigned ParamQuals 2632 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 2633 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2634 2635 if ((ParamQuals | ArgQuals) != ParamQuals) { 2636 Diag(Arg->getSourceRange().getBegin(), 2637 diag::err_template_arg_ref_bind_ignores_quals) 2638 << InstantiatedParamType << Arg->getType() 2639 << Arg->getSourceRange(); 2640 Diag(Param->getLocation(), diag::note_template_param_here); 2641 return true; 2642 } 2643 2644 NamedDecl *Entity = 0; 2645 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2646 return true; 2647 2648 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2649 Converted = TemplateArgument(Entity); 2650 return false; 2651 } 2652 2653 // -- For a non-type template-parameter of type pointer to data 2654 // member, qualification conversions (4.4) are applied. 2655 // C++0x allows std::nullptr_t values. 2656 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2657 2658 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2659 // Types match exactly: nothing more to do here. 2660 } else if (ArgType->isNullPtrType()) { 2661 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2662 } else if (IsQualificationConversion(ArgType, ParamType)) { 2663 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2664 } else { 2665 // We can't perform this conversion. 2666 Diag(Arg->getSourceRange().getBegin(), 2667 diag::err_template_arg_not_convertible) 2668 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2669 Diag(Param->getLocation(), diag::note_template_param_here); 2670 return true; 2671 } 2672 2673 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2674} 2675 2676/// \brief Check a template argument against its corresponding 2677/// template template parameter. 2678/// 2679/// This routine implements the semantics of C++ [temp.arg.template]. 2680/// It returns true if an error occurred, and false otherwise. 2681bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2682 const TemplateArgumentLoc &Arg) { 2683 TemplateName Name = Arg.getArgument().getAsTemplate(); 2684 TemplateDecl *Template = Name.getAsTemplateDecl(); 2685 if (!Template) { 2686 // Any dependent template name is fine. 2687 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2688 return false; 2689 } 2690 2691 // C++ [temp.arg.template]p1: 2692 // A template-argument for a template template-parameter shall be 2693 // the name of a class template, expressed as id-expression. Only 2694 // primary class templates are considered when matching the 2695 // template template argument with the corresponding parameter; 2696 // partial specializations are not considered even if their 2697 // parameter lists match that of the template template parameter. 2698 // 2699 // Note that we also allow template template parameters here, which 2700 // will happen when we are dealing with, e.g., class template 2701 // partial specializations. 2702 if (!isa<ClassTemplateDecl>(Template) && 2703 !isa<TemplateTemplateParmDecl>(Template)) { 2704 assert(isa<FunctionTemplateDecl>(Template) && 2705 "Only function templates are possible here"); 2706 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2707 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2708 << Template; 2709 } 2710 2711 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2712 Param->getTemplateParameters(), 2713 true, 2714 TPL_TemplateTemplateArgumentMatch, 2715 Arg.getLocation()); 2716} 2717 2718/// \brief Determine whether the given template parameter lists are 2719/// equivalent. 2720/// 2721/// \param New The new template parameter list, typically written in the 2722/// source code as part of a new template declaration. 2723/// 2724/// \param Old The old template parameter list, typically found via 2725/// name lookup of the template declared with this template parameter 2726/// list. 2727/// 2728/// \param Complain If true, this routine will produce a diagnostic if 2729/// the template parameter lists are not equivalent. 2730/// 2731/// \param Kind describes how we are to match the template parameter lists. 2732/// 2733/// \param TemplateArgLoc If this source location is valid, then we 2734/// are actually checking the template parameter list of a template 2735/// argument (New) against the template parameter list of its 2736/// corresponding template template parameter (Old). We produce 2737/// slightly different diagnostics in this scenario. 2738/// 2739/// \returns True if the template parameter lists are equal, false 2740/// otherwise. 2741bool 2742Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2743 TemplateParameterList *Old, 2744 bool Complain, 2745 TemplateParameterListEqualKind Kind, 2746 SourceLocation TemplateArgLoc) { 2747 if (Old->size() != New->size()) { 2748 if (Complain) { 2749 unsigned NextDiag = diag::err_template_param_list_different_arity; 2750 if (TemplateArgLoc.isValid()) { 2751 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2752 NextDiag = diag::note_template_param_list_different_arity; 2753 } 2754 Diag(New->getTemplateLoc(), NextDiag) 2755 << (New->size() > Old->size()) 2756 << (Kind != TPL_TemplateMatch) 2757 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2758 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2759 << (Kind != TPL_TemplateMatch) 2760 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2761 } 2762 2763 return false; 2764 } 2765 2766 for (TemplateParameterList::iterator OldParm = Old->begin(), 2767 OldParmEnd = Old->end(), NewParm = New->begin(); 2768 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2769 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2770 if (Complain) { 2771 unsigned NextDiag = diag::err_template_param_different_kind; 2772 if (TemplateArgLoc.isValid()) { 2773 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2774 NextDiag = diag::note_template_param_different_kind; 2775 } 2776 Diag((*NewParm)->getLocation(), NextDiag) 2777 << (Kind != TPL_TemplateMatch); 2778 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2779 << (Kind != TPL_TemplateMatch); 2780 } 2781 return false; 2782 } 2783 2784 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2785 // Okay; all template type parameters are equivalent (since we 2786 // know we're at the same index). 2787 } else if (NonTypeTemplateParmDecl *OldNTTP 2788 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2789 // The types of non-type template parameters must agree. 2790 NonTypeTemplateParmDecl *NewNTTP 2791 = cast<NonTypeTemplateParmDecl>(*NewParm); 2792 2793 // If we are matching a template template argument to a template 2794 // template parameter and one of the non-type template parameter types 2795 // is dependent, then we must wait until template instantiation time 2796 // to actually compare the arguments. 2797 if (Kind == TPL_TemplateTemplateArgumentMatch && 2798 (OldNTTP->getType()->isDependentType() || 2799 NewNTTP->getType()->isDependentType())) 2800 continue; 2801 2802 if (Context.getCanonicalType(OldNTTP->getType()) != 2803 Context.getCanonicalType(NewNTTP->getType())) { 2804 if (Complain) { 2805 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2806 if (TemplateArgLoc.isValid()) { 2807 Diag(TemplateArgLoc, 2808 diag::err_template_arg_template_params_mismatch); 2809 NextDiag = diag::note_template_nontype_parm_different_type; 2810 } 2811 Diag(NewNTTP->getLocation(), NextDiag) 2812 << NewNTTP->getType() 2813 << (Kind != TPL_TemplateMatch); 2814 Diag(OldNTTP->getLocation(), 2815 diag::note_template_nontype_parm_prev_declaration) 2816 << OldNTTP->getType(); 2817 } 2818 return false; 2819 } 2820 } else { 2821 // The template parameter lists of template template 2822 // parameters must agree. 2823 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2824 "Only template template parameters handled here"); 2825 TemplateTemplateParmDecl *OldTTP 2826 = cast<TemplateTemplateParmDecl>(*OldParm); 2827 TemplateTemplateParmDecl *NewTTP 2828 = cast<TemplateTemplateParmDecl>(*NewParm); 2829 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2830 OldTTP->getTemplateParameters(), 2831 Complain, 2832 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 2833 TemplateArgLoc)) 2834 return false; 2835 } 2836 } 2837 2838 return true; 2839} 2840 2841/// \brief Check whether a template can be declared within this scope. 2842/// 2843/// If the template declaration is valid in this scope, returns 2844/// false. Otherwise, issues a diagnostic and returns true. 2845bool 2846Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2847 // Find the nearest enclosing declaration scope. 2848 while ((S->getFlags() & Scope::DeclScope) == 0 || 2849 (S->getFlags() & Scope::TemplateParamScope) != 0) 2850 S = S->getParent(); 2851 2852 // C++ [temp]p2: 2853 // A template-declaration can appear only as a namespace scope or 2854 // class scope declaration. 2855 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2856 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2857 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2858 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2859 << TemplateParams->getSourceRange(); 2860 2861 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2862 Ctx = Ctx->getParent(); 2863 2864 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2865 return false; 2866 2867 return Diag(TemplateParams->getTemplateLoc(), 2868 diag::err_template_outside_namespace_or_class_scope) 2869 << TemplateParams->getSourceRange(); 2870} 2871 2872/// \brief Determine what kind of template specialization the given declaration 2873/// is. 2874static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2875 if (!D) 2876 return TSK_Undeclared; 2877 2878 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 2879 return Record->getTemplateSpecializationKind(); 2880 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2881 return Function->getTemplateSpecializationKind(); 2882 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 2883 return Var->getTemplateSpecializationKind(); 2884 2885 return TSK_Undeclared; 2886} 2887 2888/// \brief Check whether a specialization is well-formed in the current 2889/// context. 2890/// 2891/// This routine determines whether a template specialization can be declared 2892/// in the current context (C++ [temp.expl.spec]p2). 2893/// 2894/// \param S the semantic analysis object for which this check is being 2895/// performed. 2896/// 2897/// \param Specialized the entity being specialized or instantiated, which 2898/// may be a kind of template (class template, function template, etc.) or 2899/// a member of a class template (member function, static data member, 2900/// member class). 2901/// 2902/// \param PrevDecl the previous declaration of this entity, if any. 2903/// 2904/// \param Loc the location of the explicit specialization or instantiation of 2905/// this entity. 2906/// 2907/// \param IsPartialSpecialization whether this is a partial specialization of 2908/// a class template. 2909/// 2910/// \returns true if there was an error that we cannot recover from, false 2911/// otherwise. 2912static bool CheckTemplateSpecializationScope(Sema &S, 2913 NamedDecl *Specialized, 2914 NamedDecl *PrevDecl, 2915 SourceLocation Loc, 2916 bool IsPartialSpecialization) { 2917 // Keep these "kind" numbers in sync with the %select statements in the 2918 // various diagnostics emitted by this routine. 2919 int EntityKind = 0; 2920 bool isTemplateSpecialization = false; 2921 if (isa<ClassTemplateDecl>(Specialized)) { 2922 EntityKind = IsPartialSpecialization? 1 : 0; 2923 isTemplateSpecialization = true; 2924 } else if (isa<FunctionTemplateDecl>(Specialized)) { 2925 EntityKind = 2; 2926 isTemplateSpecialization = true; 2927 } else if (isa<CXXMethodDecl>(Specialized)) 2928 EntityKind = 3; 2929 else if (isa<VarDecl>(Specialized)) 2930 EntityKind = 4; 2931 else if (isa<RecordDecl>(Specialized)) 2932 EntityKind = 5; 2933 else { 2934 S.Diag(Loc, diag::err_template_spec_unknown_kind); 2935 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2936 return true; 2937 } 2938 2939 // C++ [temp.expl.spec]p2: 2940 // An explicit specialization shall be declared in the namespace 2941 // of which the template is a member, or, for member templates, in 2942 // the namespace of which the enclosing class or enclosing class 2943 // template is a member. An explicit specialization of a member 2944 // function, member class or static data member of a class 2945 // template shall be declared in the namespace of which the class 2946 // template is a member. Such a declaration may also be a 2947 // definition. If the declaration is not a definition, the 2948 // specialization may be defined later in the name- space in which 2949 // the explicit specialization was declared, or in a namespace 2950 // that encloses the one in which the explicit specialization was 2951 // declared. 2952 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 2953 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 2954 << Specialized; 2955 return true; 2956 } 2957 2958 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 2959 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 2960 << Specialized; 2961 return true; 2962 } 2963 2964 // C++ [temp.class.spec]p6: 2965 // A class template partial specialization may be declared or redeclared 2966 // in any namespace scope in which its definition may be defined (14.5.1 2967 // and 14.5.2). 2968 bool ComplainedAboutScope = false; 2969 DeclContext *SpecializedContext 2970 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 2971 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 2972 if ((!PrevDecl || 2973 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 2974 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 2975 // There is no prior declaration of this entity, so this 2976 // specialization must be in the same context as the template 2977 // itself. 2978 if (!DC->Equals(SpecializedContext)) { 2979 if (isa<TranslationUnitDecl>(SpecializedContext)) 2980 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 2981 << EntityKind << Specialized; 2982 else if (isa<NamespaceDecl>(SpecializedContext)) 2983 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 2984 << EntityKind << Specialized 2985 << cast<NamedDecl>(SpecializedContext); 2986 2987 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 2988 ComplainedAboutScope = true; 2989 } 2990 } 2991 2992 // Make sure that this redeclaration (or definition) occurs in an enclosing 2993 // namespace. 2994 // Note that HandleDeclarator() performs this check for explicit 2995 // specializations of function templates, static data members, and member 2996 // functions, so we skip the check here for those kinds of entities. 2997 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 2998 // Should we refactor that check, so that it occurs later? 2999 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3000 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3001 isa<FunctionDecl>(Specialized))) { 3002 if (isa<TranslationUnitDecl>(SpecializedContext)) 3003 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3004 << EntityKind << Specialized; 3005 else if (isa<NamespaceDecl>(SpecializedContext)) 3006 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3007 << EntityKind << Specialized 3008 << cast<NamedDecl>(SpecializedContext); 3009 3010 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3011 } 3012 3013 // FIXME: check for specialization-after-instantiation errors and such. 3014 3015 return false; 3016} 3017 3018/// \brief Check the non-type template arguments of a class template 3019/// partial specialization according to C++ [temp.class.spec]p9. 3020/// 3021/// \param TemplateParams the template parameters of the primary class 3022/// template. 3023/// 3024/// \param TemplateArg the template arguments of the class template 3025/// partial specialization. 3026/// 3027/// \param MirrorsPrimaryTemplate will be set true if the class 3028/// template partial specialization arguments are identical to the 3029/// implicit template arguments of the primary template. This is not 3030/// necessarily an error (C++0x), and it is left to the caller to diagnose 3031/// this condition when it is an error. 3032/// 3033/// \returns true if there was an error, false otherwise. 3034bool Sema::CheckClassTemplatePartialSpecializationArgs( 3035 TemplateParameterList *TemplateParams, 3036 const TemplateArgumentListBuilder &TemplateArgs, 3037 bool &MirrorsPrimaryTemplate) { 3038 // FIXME: the interface to this function will have to change to 3039 // accommodate variadic templates. 3040 MirrorsPrimaryTemplate = true; 3041 3042 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3043 3044 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3045 // Determine whether the template argument list of the partial 3046 // specialization is identical to the implicit argument list of 3047 // the primary template. The caller may need to diagnostic this as 3048 // an error per C++ [temp.class.spec]p9b3. 3049 if (MirrorsPrimaryTemplate) { 3050 if (TemplateTypeParmDecl *TTP 3051 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3052 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3053 Context.getCanonicalType(ArgList[I].getAsType())) 3054 MirrorsPrimaryTemplate = false; 3055 } else if (TemplateTemplateParmDecl *TTP 3056 = dyn_cast<TemplateTemplateParmDecl>( 3057 TemplateParams->getParam(I))) { 3058 TemplateName Name = ArgList[I].getAsTemplate(); 3059 TemplateTemplateParmDecl *ArgDecl 3060 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3061 if (!ArgDecl || 3062 ArgDecl->getIndex() != TTP->getIndex() || 3063 ArgDecl->getDepth() != TTP->getDepth()) 3064 MirrorsPrimaryTemplate = false; 3065 } 3066 } 3067 3068 NonTypeTemplateParmDecl *Param 3069 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3070 if (!Param) { 3071 continue; 3072 } 3073 3074 Expr *ArgExpr = ArgList[I].getAsExpr(); 3075 if (!ArgExpr) { 3076 MirrorsPrimaryTemplate = false; 3077 continue; 3078 } 3079 3080 // C++ [temp.class.spec]p8: 3081 // A non-type argument is non-specialized if it is the name of a 3082 // non-type parameter. All other non-type arguments are 3083 // specialized. 3084 // 3085 // Below, we check the two conditions that only apply to 3086 // specialized non-type arguments, so skip any non-specialized 3087 // arguments. 3088 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3089 if (NonTypeTemplateParmDecl *NTTP 3090 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3091 if (MirrorsPrimaryTemplate && 3092 (Param->getIndex() != NTTP->getIndex() || 3093 Param->getDepth() != NTTP->getDepth())) 3094 MirrorsPrimaryTemplate = false; 3095 3096 continue; 3097 } 3098 3099 // C++ [temp.class.spec]p9: 3100 // Within the argument list of a class template partial 3101 // specialization, the following restrictions apply: 3102 // -- A partially specialized non-type argument expression 3103 // shall not involve a template parameter of the partial 3104 // specialization except when the argument expression is a 3105 // simple identifier. 3106 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3107 Diag(ArgExpr->getLocStart(), 3108 diag::err_dependent_non_type_arg_in_partial_spec) 3109 << ArgExpr->getSourceRange(); 3110 return true; 3111 } 3112 3113 // -- The type of a template parameter corresponding to a 3114 // specialized non-type argument shall not be dependent on a 3115 // parameter of the specialization. 3116 if (Param->getType()->isDependentType()) { 3117 Diag(ArgExpr->getLocStart(), 3118 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3119 << Param->getType() 3120 << ArgExpr->getSourceRange(); 3121 Diag(Param->getLocation(), diag::note_template_param_here); 3122 return true; 3123 } 3124 3125 MirrorsPrimaryTemplate = false; 3126 } 3127 3128 return false; 3129} 3130 3131Sema::DeclResult 3132Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3133 TagUseKind TUK, 3134 SourceLocation KWLoc, 3135 const CXXScopeSpec &SS, 3136 TemplateTy TemplateD, 3137 SourceLocation TemplateNameLoc, 3138 SourceLocation LAngleLoc, 3139 ASTTemplateArgsPtr TemplateArgsIn, 3140 SourceLocation RAngleLoc, 3141 AttributeList *Attr, 3142 MultiTemplateParamsArg TemplateParameterLists) { 3143 assert(TUK != TUK_Reference && "References are not specializations"); 3144 3145 // Find the class template we're specializing 3146 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3147 ClassTemplateDecl *ClassTemplate 3148 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3149 3150 if (!ClassTemplate) { 3151 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3152 << (Name.getAsTemplateDecl() && 3153 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3154 return true; 3155 } 3156 3157 bool isExplicitSpecialization = false; 3158 bool isPartialSpecialization = false; 3159 3160 // Check the validity of the template headers that introduce this 3161 // template. 3162 // FIXME: We probably shouldn't complain about these headers for 3163 // friend declarations. 3164 TemplateParameterList *TemplateParams 3165 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3166 (TemplateParameterList**)TemplateParameterLists.get(), 3167 TemplateParameterLists.size(), 3168 isExplicitSpecialization); 3169 if (TemplateParams && TemplateParams->size() > 0) { 3170 isPartialSpecialization = true; 3171 3172 // C++ [temp.class.spec]p10: 3173 // The template parameter list of a specialization shall not 3174 // contain default template argument values. 3175 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3176 Decl *Param = TemplateParams->getParam(I); 3177 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3178 if (TTP->hasDefaultArgument()) { 3179 Diag(TTP->getDefaultArgumentLoc(), 3180 diag::err_default_arg_in_partial_spec); 3181 TTP->removeDefaultArgument(); 3182 } 3183 } else if (NonTypeTemplateParmDecl *NTTP 3184 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3185 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3186 Diag(NTTP->getDefaultArgumentLoc(), 3187 diag::err_default_arg_in_partial_spec) 3188 << DefArg->getSourceRange(); 3189 NTTP->setDefaultArgument(0); 3190 DefArg->Destroy(Context); 3191 } 3192 } else { 3193 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3194 if (TTP->hasDefaultArgument()) { 3195 Diag(TTP->getDefaultArgument().getLocation(), 3196 diag::err_default_arg_in_partial_spec) 3197 << TTP->getDefaultArgument().getSourceRange(); 3198 TTP->setDefaultArgument(TemplateArgumentLoc()); 3199 } 3200 } 3201 } 3202 } else if (TemplateParams) { 3203 if (TUK == TUK_Friend) 3204 Diag(KWLoc, diag::err_template_spec_friend) 3205 << CodeModificationHint::CreateRemoval( 3206 SourceRange(TemplateParams->getTemplateLoc(), 3207 TemplateParams->getRAngleLoc())) 3208 << SourceRange(LAngleLoc, RAngleLoc); 3209 else 3210 isExplicitSpecialization = true; 3211 } else if (TUK != TUK_Friend) { 3212 Diag(KWLoc, diag::err_template_spec_needs_header) 3213 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 3214 isExplicitSpecialization = true; 3215 } 3216 3217 // Check that the specialization uses the same tag kind as the 3218 // original template. 3219 TagDecl::TagKind Kind; 3220 switch (TagSpec) { 3221 default: assert(0 && "Unknown tag type!"); 3222 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3223 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3224 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3225 } 3226 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3227 Kind, KWLoc, 3228 *ClassTemplate->getIdentifier())) { 3229 Diag(KWLoc, diag::err_use_with_wrong_tag) 3230 << ClassTemplate 3231 << CodeModificationHint::CreateReplacement(KWLoc, 3232 ClassTemplate->getTemplatedDecl()->getKindName()); 3233 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3234 diag::note_previous_use); 3235 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3236 } 3237 3238 // Translate the parser's template argument list in our AST format. 3239 TemplateArgumentListInfo TemplateArgs; 3240 TemplateArgs.setLAngleLoc(LAngleLoc); 3241 TemplateArgs.setRAngleLoc(RAngleLoc); 3242 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3243 3244 // Check that the template argument list is well-formed for this 3245 // template. 3246 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3247 TemplateArgs.size()); 3248 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3249 TemplateArgs, false, Converted)) 3250 return true; 3251 3252 assert((Converted.structuredSize() == 3253 ClassTemplate->getTemplateParameters()->size()) && 3254 "Converted template argument list is too short!"); 3255 3256 // Find the class template (partial) specialization declaration that 3257 // corresponds to these arguments. 3258 llvm::FoldingSetNodeID ID; 3259 if (isPartialSpecialization) { 3260 bool MirrorsPrimaryTemplate; 3261 if (CheckClassTemplatePartialSpecializationArgs( 3262 ClassTemplate->getTemplateParameters(), 3263 Converted, MirrorsPrimaryTemplate)) 3264 return true; 3265 3266 if (MirrorsPrimaryTemplate) { 3267 // C++ [temp.class.spec]p9b3: 3268 // 3269 // -- The argument list of the specialization shall not be identical 3270 // to the implicit argument list of the primary template. 3271 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3272 << (TUK == TUK_Definition) 3273 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 3274 RAngleLoc)); 3275 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3276 ClassTemplate->getIdentifier(), 3277 TemplateNameLoc, 3278 Attr, 3279 TemplateParams, 3280 AS_none); 3281 } 3282 3283 // FIXME: Diagnose friend partial specializations 3284 3285 // FIXME: Template parameter list matters, too 3286 ClassTemplatePartialSpecializationDecl::Profile(ID, 3287 Converted.getFlatArguments(), 3288 Converted.flatSize(), 3289 Context); 3290 } else 3291 ClassTemplateSpecializationDecl::Profile(ID, 3292 Converted.getFlatArguments(), 3293 Converted.flatSize(), 3294 Context); 3295 void *InsertPos = 0; 3296 ClassTemplateSpecializationDecl *PrevDecl = 0; 3297 3298 if (isPartialSpecialization) 3299 PrevDecl 3300 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3301 InsertPos); 3302 else 3303 PrevDecl 3304 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3305 3306 ClassTemplateSpecializationDecl *Specialization = 0; 3307 3308 // Check whether we can declare a class template specialization in 3309 // the current scope. 3310 if (TUK != TUK_Friend && 3311 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3312 TemplateNameLoc, 3313 isPartialSpecialization)) 3314 return true; 3315 3316 // The canonical type 3317 QualType CanonType; 3318 if (PrevDecl && 3319 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3320 TUK == TUK_Friend)) { 3321 // Since the only prior class template specialization with these 3322 // arguments was referenced but not declared, or we're only 3323 // referencing this specialization as a friend, reuse that 3324 // declaration node as our own, updating its source location to 3325 // reflect our new declaration. 3326 Specialization = PrevDecl; 3327 Specialization->setLocation(TemplateNameLoc); 3328 PrevDecl = 0; 3329 CanonType = Context.getTypeDeclType(Specialization); 3330 } else if (isPartialSpecialization) { 3331 // Build the canonical type that describes the converted template 3332 // arguments of the class template partial specialization. 3333 CanonType = Context.getTemplateSpecializationType( 3334 TemplateName(ClassTemplate), 3335 Converted.getFlatArguments(), 3336 Converted.flatSize()); 3337 3338 // Create a new class template partial specialization declaration node. 3339 ClassTemplatePartialSpecializationDecl *PrevPartial 3340 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3341 ClassTemplatePartialSpecializationDecl *Partial 3342 = ClassTemplatePartialSpecializationDecl::Create(Context, 3343 ClassTemplate->getDeclContext(), 3344 TemplateNameLoc, 3345 TemplateParams, 3346 ClassTemplate, 3347 Converted, 3348 TemplateArgs, 3349 PrevPartial); 3350 3351 if (PrevPartial) { 3352 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3353 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3354 } else { 3355 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3356 } 3357 Specialization = Partial; 3358 3359 // If we are providing an explicit specialization of a member class 3360 // template specialization, make a note of that. 3361 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3362 PrevPartial->setMemberSpecialization(); 3363 3364 // Check that all of the template parameters of the class template 3365 // partial specialization are deducible from the template 3366 // arguments. If not, this class template partial specialization 3367 // will never be used. 3368 llvm::SmallVector<bool, 8> DeducibleParams; 3369 DeducibleParams.resize(TemplateParams->size()); 3370 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3371 TemplateParams->getDepth(), 3372 DeducibleParams); 3373 unsigned NumNonDeducible = 0; 3374 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3375 if (!DeducibleParams[I]) 3376 ++NumNonDeducible; 3377 3378 if (NumNonDeducible) { 3379 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3380 << (NumNonDeducible > 1) 3381 << SourceRange(TemplateNameLoc, RAngleLoc); 3382 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3383 if (!DeducibleParams[I]) { 3384 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3385 if (Param->getDeclName()) 3386 Diag(Param->getLocation(), 3387 diag::note_partial_spec_unused_parameter) 3388 << Param->getDeclName(); 3389 else 3390 Diag(Param->getLocation(), 3391 diag::note_partial_spec_unused_parameter) 3392 << std::string("<anonymous>"); 3393 } 3394 } 3395 } 3396 } else { 3397 // Create a new class template specialization declaration node for 3398 // this explicit specialization or friend declaration. 3399 Specialization 3400 = ClassTemplateSpecializationDecl::Create(Context, 3401 ClassTemplate->getDeclContext(), 3402 TemplateNameLoc, 3403 ClassTemplate, 3404 Converted, 3405 PrevDecl); 3406 3407 if (PrevDecl) { 3408 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3409 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3410 } else { 3411 ClassTemplate->getSpecializations().InsertNode(Specialization, 3412 InsertPos); 3413 } 3414 3415 CanonType = Context.getTypeDeclType(Specialization); 3416 } 3417 3418 // C++ [temp.expl.spec]p6: 3419 // If a template, a member template or the member of a class template is 3420 // explicitly specialized then that specialization shall be declared 3421 // before the first use of that specialization that would cause an implicit 3422 // instantiation to take place, in every translation unit in which such a 3423 // use occurs; no diagnostic is required. 3424 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3425 SourceRange Range(TemplateNameLoc, RAngleLoc); 3426 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3427 << Context.getTypeDeclType(Specialization) << Range; 3428 3429 Diag(PrevDecl->getPointOfInstantiation(), 3430 diag::note_instantiation_required_here) 3431 << (PrevDecl->getTemplateSpecializationKind() 3432 != TSK_ImplicitInstantiation); 3433 return true; 3434 } 3435 3436 // If this is not a friend, note that this is an explicit specialization. 3437 if (TUK != TUK_Friend) 3438 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3439 3440 // Check that this isn't a redefinition of this specialization. 3441 if (TUK == TUK_Definition) { 3442 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 3443 SourceRange Range(TemplateNameLoc, RAngleLoc); 3444 Diag(TemplateNameLoc, diag::err_redefinition) 3445 << Context.getTypeDeclType(Specialization) << Range; 3446 Diag(Def->getLocation(), diag::note_previous_definition); 3447 Specialization->setInvalidDecl(); 3448 return true; 3449 } 3450 } 3451 3452 // Build the fully-sugared type for this class template 3453 // specialization as the user wrote in the specialization 3454 // itself. This means that we'll pretty-print the type retrieved 3455 // from the specialization's declaration the way that the user 3456 // actually wrote the specialization, rather than formatting the 3457 // name based on the "canonical" representation used to store the 3458 // template arguments in the specialization. 3459 QualType WrittenTy 3460 = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3461 if (TUK != TUK_Friend) 3462 Specialization->setTypeAsWritten(WrittenTy); 3463 TemplateArgsIn.release(); 3464 3465 // C++ [temp.expl.spec]p9: 3466 // A template explicit specialization is in the scope of the 3467 // namespace in which the template was defined. 3468 // 3469 // We actually implement this paragraph where we set the semantic 3470 // context (in the creation of the ClassTemplateSpecializationDecl), 3471 // but we also maintain the lexical context where the actual 3472 // definition occurs. 3473 Specialization->setLexicalDeclContext(CurContext); 3474 3475 // We may be starting the definition of this specialization. 3476 if (TUK == TUK_Definition) 3477 Specialization->startDefinition(); 3478 3479 if (TUK == TUK_Friend) { 3480 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3481 TemplateNameLoc, 3482 WrittenTy.getTypePtr(), 3483 /*FIXME:*/KWLoc); 3484 Friend->setAccess(AS_public); 3485 CurContext->addDecl(Friend); 3486 } else { 3487 // Add the specialization into its lexical context, so that it can 3488 // be seen when iterating through the list of declarations in that 3489 // context. However, specializations are not found by name lookup. 3490 CurContext->addDecl(Specialization); 3491 } 3492 return DeclPtrTy::make(Specialization); 3493} 3494 3495Sema::DeclPtrTy 3496Sema::ActOnTemplateDeclarator(Scope *S, 3497 MultiTemplateParamsArg TemplateParameterLists, 3498 Declarator &D) { 3499 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3500} 3501 3502Sema::DeclPtrTy 3503Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3504 MultiTemplateParamsArg TemplateParameterLists, 3505 Declarator &D) { 3506 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3507 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3508 "Not a function declarator!"); 3509 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3510 3511 if (FTI.hasPrototype) { 3512 // FIXME: Diagnose arguments without names in C. 3513 } 3514 3515 Scope *ParentScope = FnBodyScope->getParent(); 3516 3517 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3518 move(TemplateParameterLists), 3519 /*IsFunctionDefinition=*/true); 3520 if (FunctionTemplateDecl *FunctionTemplate 3521 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3522 return ActOnStartOfFunctionDef(FnBodyScope, 3523 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3524 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3525 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3526 return DeclPtrTy(); 3527} 3528 3529/// \brief Diagnose cases where we have an explicit template specialization 3530/// before/after an explicit template instantiation, producing diagnostics 3531/// for those cases where they are required and determining whether the 3532/// new specialization/instantiation will have any effect. 3533/// 3534/// \param NewLoc the location of the new explicit specialization or 3535/// instantiation. 3536/// 3537/// \param NewTSK the kind of the new explicit specialization or instantiation. 3538/// 3539/// \param PrevDecl the previous declaration of the entity. 3540/// 3541/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3542/// 3543/// \param PrevPointOfInstantiation if valid, indicates where the previus 3544/// declaration was instantiated (either implicitly or explicitly). 3545/// 3546/// \param SuppressNew will be set to true to indicate that the new 3547/// specialization or instantiation has no effect and should be ignored. 3548/// 3549/// \returns true if there was an error that should prevent the introduction of 3550/// the new declaration into the AST, false otherwise. 3551bool 3552Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3553 TemplateSpecializationKind NewTSK, 3554 NamedDecl *PrevDecl, 3555 TemplateSpecializationKind PrevTSK, 3556 SourceLocation PrevPointOfInstantiation, 3557 bool &SuppressNew) { 3558 SuppressNew = false; 3559 3560 switch (NewTSK) { 3561 case TSK_Undeclared: 3562 case TSK_ImplicitInstantiation: 3563 assert(false && "Don't check implicit instantiations here"); 3564 return false; 3565 3566 case TSK_ExplicitSpecialization: 3567 switch (PrevTSK) { 3568 case TSK_Undeclared: 3569 case TSK_ExplicitSpecialization: 3570 // Okay, we're just specializing something that is either already 3571 // explicitly specialized or has merely been mentioned without any 3572 // instantiation. 3573 return false; 3574 3575 case TSK_ImplicitInstantiation: 3576 if (PrevPointOfInstantiation.isInvalid()) { 3577 // The declaration itself has not actually been instantiated, so it is 3578 // still okay to specialize it. 3579 return false; 3580 } 3581 // Fall through 3582 3583 case TSK_ExplicitInstantiationDeclaration: 3584 case TSK_ExplicitInstantiationDefinition: 3585 assert((PrevTSK == TSK_ImplicitInstantiation || 3586 PrevPointOfInstantiation.isValid()) && 3587 "Explicit instantiation without point of instantiation?"); 3588 3589 // C++ [temp.expl.spec]p6: 3590 // If a template, a member template or the member of a class template 3591 // is explicitly specialized then that specialization shall be declared 3592 // before the first use of that specialization that would cause an 3593 // implicit instantiation to take place, in every translation unit in 3594 // which such a use occurs; no diagnostic is required. 3595 Diag(NewLoc, diag::err_specialization_after_instantiation) 3596 << PrevDecl; 3597 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3598 << (PrevTSK != TSK_ImplicitInstantiation); 3599 3600 return true; 3601 } 3602 break; 3603 3604 case TSK_ExplicitInstantiationDeclaration: 3605 switch (PrevTSK) { 3606 case TSK_ExplicitInstantiationDeclaration: 3607 // This explicit instantiation declaration is redundant (that's okay). 3608 SuppressNew = true; 3609 return false; 3610 3611 case TSK_Undeclared: 3612 case TSK_ImplicitInstantiation: 3613 // We're explicitly instantiating something that may have already been 3614 // implicitly instantiated; that's fine. 3615 return false; 3616 3617 case TSK_ExplicitSpecialization: 3618 // C++0x [temp.explicit]p4: 3619 // For a given set of template parameters, if an explicit instantiation 3620 // of a template appears after a declaration of an explicit 3621 // specialization for that template, the explicit instantiation has no 3622 // effect. 3623 return false; 3624 3625 case TSK_ExplicitInstantiationDefinition: 3626 // C++0x [temp.explicit]p10: 3627 // If an entity is the subject of both an explicit instantiation 3628 // declaration and an explicit instantiation definition in the same 3629 // translation unit, the definition shall follow the declaration. 3630 Diag(NewLoc, 3631 diag::err_explicit_instantiation_declaration_after_definition); 3632 Diag(PrevPointOfInstantiation, 3633 diag::note_explicit_instantiation_definition_here); 3634 assert(PrevPointOfInstantiation.isValid() && 3635 "Explicit instantiation without point of instantiation?"); 3636 SuppressNew = true; 3637 return false; 3638 } 3639 break; 3640 3641 case TSK_ExplicitInstantiationDefinition: 3642 switch (PrevTSK) { 3643 case TSK_Undeclared: 3644 case TSK_ImplicitInstantiation: 3645 // We're explicitly instantiating something that may have already been 3646 // implicitly instantiated; that's fine. 3647 return false; 3648 3649 case TSK_ExplicitSpecialization: 3650 // C++ DR 259, C++0x [temp.explicit]p4: 3651 // For a given set of template parameters, if an explicit 3652 // instantiation of a template appears after a declaration of 3653 // an explicit specialization for that template, the explicit 3654 // instantiation has no effect. 3655 // 3656 // In C++98/03 mode, we only give an extension warning here, because it 3657 // is not not harmful to try to explicitly instantiate something that 3658 // has been explicitly specialized. 3659 if (!getLangOptions().CPlusPlus0x) { 3660 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3661 << PrevDecl; 3662 Diag(PrevDecl->getLocation(), 3663 diag::note_previous_template_specialization); 3664 } 3665 SuppressNew = true; 3666 return false; 3667 3668 case TSK_ExplicitInstantiationDeclaration: 3669 // We're explicity instantiating a definition for something for which we 3670 // were previously asked to suppress instantiations. That's fine. 3671 return false; 3672 3673 case TSK_ExplicitInstantiationDefinition: 3674 // C++0x [temp.spec]p5: 3675 // For a given template and a given set of template-arguments, 3676 // - an explicit instantiation definition shall appear at most once 3677 // in a program, 3678 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3679 << PrevDecl; 3680 Diag(PrevPointOfInstantiation, 3681 diag::note_previous_explicit_instantiation); 3682 SuppressNew = true; 3683 return false; 3684 } 3685 break; 3686 } 3687 3688 assert(false && "Missing specialization/instantiation case?"); 3689 3690 return false; 3691} 3692 3693/// \brief Perform semantic analysis for the given function template 3694/// specialization. 3695/// 3696/// This routine performs all of the semantic analysis required for an 3697/// explicit function template specialization. On successful completion, 3698/// the function declaration \p FD will become a function template 3699/// specialization. 3700/// 3701/// \param FD the function declaration, which will be updated to become a 3702/// function template specialization. 3703/// 3704/// \param HasExplicitTemplateArgs whether any template arguments were 3705/// explicitly provided. 3706/// 3707/// \param LAngleLoc the location of the left angle bracket ('<'), if 3708/// template arguments were explicitly provided. 3709/// 3710/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3711/// if any. 3712/// 3713/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3714/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3715/// true as in, e.g., \c void sort<>(char*, char*); 3716/// 3717/// \param RAngleLoc the location of the right angle bracket ('>'), if 3718/// template arguments were explicitly provided. 3719/// 3720/// \param PrevDecl the set of declarations that 3721bool 3722Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3723 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3724 LookupResult &Previous) { 3725 // The set of function template specializations that could match this 3726 // explicit function template specialization. 3727 typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet; 3728 CandidateSet Candidates; 3729 3730 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3731 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3732 I != E; ++I) { 3733 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 3734 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 3735 // Only consider templates found within the same semantic lookup scope as 3736 // FD. 3737 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3738 continue; 3739 3740 // C++ [temp.expl.spec]p11: 3741 // A trailing template-argument can be left unspecified in the 3742 // template-id naming an explicit function template specialization 3743 // provided it can be deduced from the function argument type. 3744 // Perform template argument deduction to determine whether we may be 3745 // specializing this template. 3746 // FIXME: It is somewhat wasteful to build 3747 TemplateDeductionInfo Info(Context); 3748 FunctionDecl *Specialization = 0; 3749 if (TemplateDeductionResult TDK 3750 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 3751 FD->getType(), 3752 Specialization, 3753 Info)) { 3754 // FIXME: Template argument deduction failed; record why it failed, so 3755 // that we can provide nifty diagnostics. 3756 (void)TDK; 3757 continue; 3758 } 3759 3760 // Record this candidate. 3761 Candidates.push_back(Specialization); 3762 } 3763 } 3764 3765 // Find the most specialized function template. 3766 FunctionDecl *Specialization = getMostSpecialized(Candidates.data(), 3767 Candidates.size(), 3768 TPOC_Other, 3769 FD->getLocation(), 3770 PartialDiagnostic(diag::err_function_template_spec_no_match) 3771 << FD->getDeclName(), 3772 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3773 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 3774 PartialDiagnostic(diag::note_function_template_spec_matched)); 3775 if (!Specialization) 3776 return true; 3777 3778 // FIXME: Check if the prior specialization has a point of instantiation. 3779 // If so, we have run afoul of . 3780 3781 // Check the scope of this explicit specialization. 3782 if (CheckTemplateSpecializationScope(*this, 3783 Specialization->getPrimaryTemplate(), 3784 Specialization, FD->getLocation(), 3785 false)) 3786 return true; 3787 3788 // C++ [temp.expl.spec]p6: 3789 // If a template, a member template or the member of a class template is 3790 // explicitly specialized then that specialization shall be declared 3791 // before the first use of that specialization that would cause an implicit 3792 // instantiation to take place, in every translation unit in which such a 3793 // use occurs; no diagnostic is required. 3794 FunctionTemplateSpecializationInfo *SpecInfo 3795 = Specialization->getTemplateSpecializationInfo(); 3796 assert(SpecInfo && "Function template specialization info missing?"); 3797 if (SpecInfo->getPointOfInstantiation().isValid()) { 3798 Diag(FD->getLocation(), diag::err_specialization_after_instantiation) 3799 << FD; 3800 Diag(SpecInfo->getPointOfInstantiation(), 3801 diag::note_instantiation_required_here) 3802 << (Specialization->getTemplateSpecializationKind() 3803 != TSK_ImplicitInstantiation); 3804 return true; 3805 } 3806 3807 // Mark the prior declaration as an explicit specialization, so that later 3808 // clients know that this is an explicit specialization. 3809 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3810 3811 // Turn the given function declaration into a function template 3812 // specialization, with the template arguments from the previous 3813 // specialization. 3814 FD->setFunctionTemplateSpecialization(Context, 3815 Specialization->getPrimaryTemplate(), 3816 new (Context) TemplateArgumentList( 3817 *Specialization->getTemplateSpecializationArgs()), 3818 /*InsertPos=*/0, 3819 TSK_ExplicitSpecialization); 3820 3821 // The "previous declaration" for this function template specialization is 3822 // the prior function template specialization. 3823 Previous.clear(); 3824 Previous.addDecl(Specialization); 3825 return false; 3826} 3827 3828/// \brief Perform semantic analysis for the given non-template member 3829/// specialization. 3830/// 3831/// This routine performs all of the semantic analysis required for an 3832/// explicit member function specialization. On successful completion, 3833/// the function declaration \p FD will become a member function 3834/// specialization. 3835/// 3836/// \param Member the member declaration, which will be updated to become a 3837/// specialization. 3838/// 3839/// \param Previous the set of declarations, one of which may be specialized 3840/// by this function specialization; the set will be modified to contain the 3841/// redeclared member. 3842bool 3843Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 3844 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 3845 3846 // Try to find the member we are instantiating. 3847 NamedDecl *Instantiation = 0; 3848 NamedDecl *InstantiatedFrom = 0; 3849 MemberSpecializationInfo *MSInfo = 0; 3850 3851 if (Previous.empty()) { 3852 // Nowhere to look anyway. 3853 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 3854 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3855 I != E; ++I) { 3856 NamedDecl *D = (*I)->getUnderlyingDecl(); 3857 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 3858 if (Context.hasSameType(Function->getType(), Method->getType())) { 3859 Instantiation = Method; 3860 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 3861 MSInfo = Method->getMemberSpecializationInfo(); 3862 break; 3863 } 3864 } 3865 } 3866 } else if (isa<VarDecl>(Member)) { 3867 VarDecl *PrevVar; 3868 if (Previous.isSingleResult() && 3869 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 3870 if (PrevVar->isStaticDataMember()) { 3871 Instantiation = PrevVar; 3872 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 3873 MSInfo = PrevVar->getMemberSpecializationInfo(); 3874 } 3875 } else if (isa<RecordDecl>(Member)) { 3876 CXXRecordDecl *PrevRecord; 3877 if (Previous.isSingleResult() && 3878 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 3879 Instantiation = PrevRecord; 3880 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 3881 MSInfo = PrevRecord->getMemberSpecializationInfo(); 3882 } 3883 } 3884 3885 if (!Instantiation) { 3886 // There is no previous declaration that matches. Since member 3887 // specializations are always out-of-line, the caller will complain about 3888 // this mismatch later. 3889 return false; 3890 } 3891 3892 // Make sure that this is a specialization of a member. 3893 if (!InstantiatedFrom) { 3894 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 3895 << Member; 3896 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 3897 return true; 3898 } 3899 3900 // C++ [temp.expl.spec]p6: 3901 // If a template, a member template or the member of a class template is 3902 // explicitly specialized then that spe- cialization shall be declared 3903 // before the first use of that specialization that would cause an implicit 3904 // instantiation to take place, in every translation unit in which such a 3905 // use occurs; no diagnostic is required. 3906 assert(MSInfo && "Member specialization info missing?"); 3907 if (MSInfo->getPointOfInstantiation().isValid()) { 3908 Diag(Member->getLocation(), diag::err_specialization_after_instantiation) 3909 << Member; 3910 Diag(MSInfo->getPointOfInstantiation(), 3911 diag::note_instantiation_required_here) 3912 << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation); 3913 return true; 3914 } 3915 3916 // Check the scope of this explicit specialization. 3917 if (CheckTemplateSpecializationScope(*this, 3918 InstantiatedFrom, 3919 Instantiation, Member->getLocation(), 3920 false)) 3921 return true; 3922 3923 // Note that this is an explicit instantiation of a member. 3924 // the original declaration to note that it is an explicit specialization 3925 // (if it was previously an implicit instantiation). This latter step 3926 // makes bookkeeping easier. 3927 if (isa<FunctionDecl>(Member)) { 3928 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 3929 if (InstantiationFunction->getTemplateSpecializationKind() == 3930 TSK_ImplicitInstantiation) { 3931 InstantiationFunction->setTemplateSpecializationKind( 3932 TSK_ExplicitSpecialization); 3933 InstantiationFunction->setLocation(Member->getLocation()); 3934 } 3935 3936 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 3937 cast<CXXMethodDecl>(InstantiatedFrom), 3938 TSK_ExplicitSpecialization); 3939 } else if (isa<VarDecl>(Member)) { 3940 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 3941 if (InstantiationVar->getTemplateSpecializationKind() == 3942 TSK_ImplicitInstantiation) { 3943 InstantiationVar->setTemplateSpecializationKind( 3944 TSK_ExplicitSpecialization); 3945 InstantiationVar->setLocation(Member->getLocation()); 3946 } 3947 3948 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 3949 cast<VarDecl>(InstantiatedFrom), 3950 TSK_ExplicitSpecialization); 3951 } else { 3952 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 3953 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 3954 if (InstantiationClass->getTemplateSpecializationKind() == 3955 TSK_ImplicitInstantiation) { 3956 InstantiationClass->setTemplateSpecializationKind( 3957 TSK_ExplicitSpecialization); 3958 InstantiationClass->setLocation(Member->getLocation()); 3959 } 3960 3961 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 3962 cast<CXXRecordDecl>(InstantiatedFrom), 3963 TSK_ExplicitSpecialization); 3964 } 3965 3966 // Save the caller the trouble of having to figure out which declaration 3967 // this specialization matches. 3968 Previous.clear(); 3969 Previous.addDecl(Instantiation); 3970 return false; 3971} 3972 3973/// \brief Check the scope of an explicit instantiation. 3974static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 3975 SourceLocation InstLoc, 3976 bool WasQualifiedName) { 3977 DeclContext *ExpectedContext 3978 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 3979 DeclContext *CurContext = S.CurContext->getLookupContext(); 3980 3981 // C++0x [temp.explicit]p2: 3982 // An explicit instantiation shall appear in an enclosing namespace of its 3983 // template. 3984 // 3985 // This is DR275, which we do not retroactively apply to C++98/03. 3986 if (S.getLangOptions().CPlusPlus0x && 3987 !CurContext->Encloses(ExpectedContext)) { 3988 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 3989 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 3990 << D << NS; 3991 else 3992 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 3993 << D; 3994 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 3995 return; 3996 } 3997 3998 // C++0x [temp.explicit]p2: 3999 // If the name declared in the explicit instantiation is an unqualified 4000 // name, the explicit instantiation shall appear in the namespace where 4001 // its template is declared or, if that namespace is inline (7.3.1), any 4002 // namespace from its enclosing namespace set. 4003 if (WasQualifiedName) 4004 return; 4005 4006 if (CurContext->Equals(ExpectedContext)) 4007 return; 4008 4009 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4010 << D << ExpectedContext; 4011 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4012} 4013 4014/// \brief Determine whether the given scope specifier has a template-id in it. 4015static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4016 if (!SS.isSet()) 4017 return false; 4018 4019 // C++0x [temp.explicit]p2: 4020 // If the explicit instantiation is for a member function, a member class 4021 // or a static data member of a class template specialization, the name of 4022 // the class template specialization in the qualified-id for the member 4023 // name shall be a simple-template-id. 4024 // 4025 // C++98 has the same restriction, just worded differently. 4026 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4027 NNS; NNS = NNS->getPrefix()) 4028 if (Type *T = NNS->getAsType()) 4029 if (isa<TemplateSpecializationType>(T)) 4030 return true; 4031 4032 return false; 4033} 4034 4035// Explicit instantiation of a class template specialization 4036// FIXME: Implement extern template semantics 4037Sema::DeclResult 4038Sema::ActOnExplicitInstantiation(Scope *S, 4039 SourceLocation ExternLoc, 4040 SourceLocation TemplateLoc, 4041 unsigned TagSpec, 4042 SourceLocation KWLoc, 4043 const CXXScopeSpec &SS, 4044 TemplateTy TemplateD, 4045 SourceLocation TemplateNameLoc, 4046 SourceLocation LAngleLoc, 4047 ASTTemplateArgsPtr TemplateArgsIn, 4048 SourceLocation RAngleLoc, 4049 AttributeList *Attr) { 4050 // Find the class template we're specializing 4051 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4052 ClassTemplateDecl *ClassTemplate 4053 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4054 4055 // Check that the specialization uses the same tag kind as the 4056 // original template. 4057 TagDecl::TagKind Kind; 4058 switch (TagSpec) { 4059 default: assert(0 && "Unknown tag type!"); 4060 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4061 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4062 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4063 } 4064 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4065 Kind, KWLoc, 4066 *ClassTemplate->getIdentifier())) { 4067 Diag(KWLoc, diag::err_use_with_wrong_tag) 4068 << ClassTemplate 4069 << CodeModificationHint::CreateReplacement(KWLoc, 4070 ClassTemplate->getTemplatedDecl()->getKindName()); 4071 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4072 diag::note_previous_use); 4073 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4074 } 4075 4076 // C++0x [temp.explicit]p2: 4077 // There are two forms of explicit instantiation: an explicit instantiation 4078 // definition and an explicit instantiation declaration. An explicit 4079 // instantiation declaration begins with the extern keyword. [...] 4080 TemplateSpecializationKind TSK 4081 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4082 : TSK_ExplicitInstantiationDeclaration; 4083 4084 // Translate the parser's template argument list in our AST format. 4085 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4086 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4087 4088 // Check that the template argument list is well-formed for this 4089 // template. 4090 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4091 TemplateArgs.size()); 4092 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4093 TemplateArgs, false, Converted)) 4094 return true; 4095 4096 assert((Converted.structuredSize() == 4097 ClassTemplate->getTemplateParameters()->size()) && 4098 "Converted template argument list is too short!"); 4099 4100 // Find the class template specialization declaration that 4101 // corresponds to these arguments. 4102 llvm::FoldingSetNodeID ID; 4103 ClassTemplateSpecializationDecl::Profile(ID, 4104 Converted.getFlatArguments(), 4105 Converted.flatSize(), 4106 Context); 4107 void *InsertPos = 0; 4108 ClassTemplateSpecializationDecl *PrevDecl 4109 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4110 4111 // C++0x [temp.explicit]p2: 4112 // [...] An explicit instantiation shall appear in an enclosing 4113 // namespace of its template. [...] 4114 // 4115 // This is C++ DR 275. 4116 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4117 SS.isSet()); 4118 4119 ClassTemplateSpecializationDecl *Specialization = 0; 4120 4121 bool ReusedDecl = false; 4122 if (PrevDecl) { 4123 bool SuppressNew = false; 4124 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4125 PrevDecl, 4126 PrevDecl->getSpecializationKind(), 4127 PrevDecl->getPointOfInstantiation(), 4128 SuppressNew)) 4129 return DeclPtrTy::make(PrevDecl); 4130 4131 if (SuppressNew) 4132 return DeclPtrTy::make(PrevDecl); 4133 4134 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4135 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4136 // Since the only prior class template specialization with these 4137 // arguments was referenced but not declared, reuse that 4138 // declaration node as our own, updating its source location to 4139 // reflect our new declaration. 4140 Specialization = PrevDecl; 4141 Specialization->setLocation(TemplateNameLoc); 4142 PrevDecl = 0; 4143 ReusedDecl = true; 4144 } 4145 } 4146 4147 if (!Specialization) { 4148 // Create a new class template specialization declaration node for 4149 // this explicit specialization. 4150 Specialization 4151 = ClassTemplateSpecializationDecl::Create(Context, 4152 ClassTemplate->getDeclContext(), 4153 TemplateNameLoc, 4154 ClassTemplate, 4155 Converted, PrevDecl); 4156 4157 if (PrevDecl) { 4158 // Remove the previous declaration from the folding set, since we want 4159 // to introduce a new declaration. 4160 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4161 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4162 } 4163 4164 // Insert the new specialization. 4165 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4166 } 4167 4168 // Build the fully-sugared type for this explicit instantiation as 4169 // the user wrote in the explicit instantiation itself. This means 4170 // that we'll pretty-print the type retrieved from the 4171 // specialization's declaration the way that the user actually wrote 4172 // the explicit instantiation, rather than formatting the name based 4173 // on the "canonical" representation used to store the template 4174 // arguments in the specialization. 4175 QualType WrittenTy 4176 = Context.getTemplateSpecializationType(Name, TemplateArgs, 4177 Context.getTypeDeclType(Specialization)); 4178 Specialization->setTypeAsWritten(WrittenTy); 4179 TemplateArgsIn.release(); 4180 4181 if (!ReusedDecl) { 4182 // Add the explicit instantiation into its lexical context. However, 4183 // since explicit instantiations are never found by name lookup, we 4184 // just put it into the declaration context directly. 4185 Specialization->setLexicalDeclContext(CurContext); 4186 CurContext->addDecl(Specialization); 4187 } 4188 4189 // C++ [temp.explicit]p3: 4190 // A definition of a class template or class member template 4191 // shall be in scope at the point of the explicit instantiation of 4192 // the class template or class member template. 4193 // 4194 // This check comes when we actually try to perform the 4195 // instantiation. 4196 ClassTemplateSpecializationDecl *Def 4197 = cast_or_null<ClassTemplateSpecializationDecl>( 4198 Specialization->getDefinition(Context)); 4199 if (!Def) 4200 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4201 4202 // Instantiate the members of this class template specialization. 4203 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4204 Specialization->getDefinition(Context)); 4205 if (Def) 4206 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4207 4208 return DeclPtrTy::make(Specialization); 4209} 4210 4211// Explicit instantiation of a member class of a class template. 4212Sema::DeclResult 4213Sema::ActOnExplicitInstantiation(Scope *S, 4214 SourceLocation ExternLoc, 4215 SourceLocation TemplateLoc, 4216 unsigned TagSpec, 4217 SourceLocation KWLoc, 4218 const CXXScopeSpec &SS, 4219 IdentifierInfo *Name, 4220 SourceLocation NameLoc, 4221 AttributeList *Attr) { 4222 4223 bool Owned = false; 4224 bool IsDependent = false; 4225 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4226 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4227 MultiTemplateParamsArg(*this, 0, 0), 4228 Owned, IsDependent); 4229 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4230 4231 if (!TagD) 4232 return true; 4233 4234 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4235 if (Tag->isEnum()) { 4236 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4237 << Context.getTypeDeclType(Tag); 4238 return true; 4239 } 4240 4241 if (Tag->isInvalidDecl()) 4242 return true; 4243 4244 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4245 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4246 if (!Pattern) { 4247 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4248 << Context.getTypeDeclType(Record); 4249 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4250 return true; 4251 } 4252 4253 // C++0x [temp.explicit]p2: 4254 // If the explicit instantiation is for a class or member class, the 4255 // elaborated-type-specifier in the declaration shall include a 4256 // simple-template-id. 4257 // 4258 // C++98 has the same restriction, just worded differently. 4259 if (!ScopeSpecifierHasTemplateId(SS)) 4260 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4261 << Record << SS.getRange(); 4262 4263 // C++0x [temp.explicit]p2: 4264 // There are two forms of explicit instantiation: an explicit instantiation 4265 // definition and an explicit instantiation declaration. An explicit 4266 // instantiation declaration begins with the extern keyword. [...] 4267 TemplateSpecializationKind TSK 4268 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4269 : TSK_ExplicitInstantiationDeclaration; 4270 4271 // C++0x [temp.explicit]p2: 4272 // [...] An explicit instantiation shall appear in an enclosing 4273 // namespace of its template. [...] 4274 // 4275 // This is C++ DR 275. 4276 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4277 4278 // Verify that it is okay to explicitly instantiate here. 4279 CXXRecordDecl *PrevDecl 4280 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4281 if (!PrevDecl && Record->getDefinition(Context)) 4282 PrevDecl = Record; 4283 if (PrevDecl) { 4284 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4285 bool SuppressNew = false; 4286 assert(MSInfo && "No member specialization information?"); 4287 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4288 PrevDecl, 4289 MSInfo->getTemplateSpecializationKind(), 4290 MSInfo->getPointOfInstantiation(), 4291 SuppressNew)) 4292 return true; 4293 if (SuppressNew) 4294 return TagD; 4295 } 4296 4297 CXXRecordDecl *RecordDef 4298 = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 4299 if (!RecordDef) { 4300 // C++ [temp.explicit]p3: 4301 // A definition of a member class of a class template shall be in scope 4302 // at the point of an explicit instantiation of the member class. 4303 CXXRecordDecl *Def 4304 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 4305 if (!Def) { 4306 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4307 << 0 << Record->getDeclName() << Record->getDeclContext(); 4308 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4309 << Pattern; 4310 return true; 4311 } else { 4312 if (InstantiateClass(NameLoc, Record, Def, 4313 getTemplateInstantiationArgs(Record), 4314 TSK)) 4315 return true; 4316 4317 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 4318 if (!RecordDef) 4319 return true; 4320 } 4321 } 4322 4323 // Instantiate all of the members of the class. 4324 InstantiateClassMembers(NameLoc, RecordDef, 4325 getTemplateInstantiationArgs(Record), TSK); 4326 4327 // FIXME: We don't have any representation for explicit instantiations of 4328 // member classes. Such a representation is not needed for compilation, but it 4329 // should be available for clients that want to see all of the declarations in 4330 // the source code. 4331 return TagD; 4332} 4333 4334Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4335 SourceLocation ExternLoc, 4336 SourceLocation TemplateLoc, 4337 Declarator &D) { 4338 // Explicit instantiations always require a name. 4339 DeclarationName Name = GetNameForDeclarator(D); 4340 if (!Name) { 4341 if (!D.isInvalidType()) 4342 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4343 diag::err_explicit_instantiation_requires_name) 4344 << D.getDeclSpec().getSourceRange() 4345 << D.getSourceRange(); 4346 4347 return true; 4348 } 4349 4350 // The scope passed in may not be a decl scope. Zip up the scope tree until 4351 // we find one that is. 4352 while ((S->getFlags() & Scope::DeclScope) == 0 || 4353 (S->getFlags() & Scope::TemplateParamScope) != 0) 4354 S = S->getParent(); 4355 4356 // Determine the type of the declaration. 4357 QualType R = GetTypeForDeclarator(D, S, 0); 4358 if (R.isNull()) 4359 return true; 4360 4361 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4362 // Cannot explicitly instantiate a typedef. 4363 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4364 << Name; 4365 return true; 4366 } 4367 4368 // C++0x [temp.explicit]p1: 4369 // [...] An explicit instantiation of a function template shall not use the 4370 // inline or constexpr specifiers. 4371 // Presumably, this also applies to member functions of class templates as 4372 // well. 4373 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4374 Diag(D.getDeclSpec().getInlineSpecLoc(), 4375 diag::err_explicit_instantiation_inline) 4376 << CodeModificationHint::CreateRemoval( 4377 SourceRange(D.getDeclSpec().getInlineSpecLoc())); 4378 4379 // FIXME: check for constexpr specifier. 4380 4381 // C++0x [temp.explicit]p2: 4382 // There are two forms of explicit instantiation: an explicit instantiation 4383 // definition and an explicit instantiation declaration. An explicit 4384 // instantiation declaration begins with the extern keyword. [...] 4385 TemplateSpecializationKind TSK 4386 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4387 : TSK_ExplicitInstantiationDeclaration; 4388 4389 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4390 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4391 4392 if (!R->isFunctionType()) { 4393 // C++ [temp.explicit]p1: 4394 // A [...] static data member of a class template can be explicitly 4395 // instantiated from the member definition associated with its class 4396 // template. 4397 if (Previous.isAmbiguous()) 4398 return true; 4399 4400 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4401 if (!Prev || !Prev->isStaticDataMember()) { 4402 // We expect to see a data data member here. 4403 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4404 << Name; 4405 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4406 P != PEnd; ++P) 4407 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4408 return true; 4409 } 4410 4411 if (!Prev->getInstantiatedFromStaticDataMember()) { 4412 // FIXME: Check for explicit specialization? 4413 Diag(D.getIdentifierLoc(), 4414 diag::err_explicit_instantiation_data_member_not_instantiated) 4415 << Prev; 4416 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4417 // FIXME: Can we provide a note showing where this was declared? 4418 return true; 4419 } 4420 4421 // C++0x [temp.explicit]p2: 4422 // If the explicit instantiation is for a member function, a member class 4423 // or a static data member of a class template specialization, the name of 4424 // the class template specialization in the qualified-id for the member 4425 // name shall be a simple-template-id. 4426 // 4427 // C++98 has the same restriction, just worded differently. 4428 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4429 Diag(D.getIdentifierLoc(), 4430 diag::err_explicit_instantiation_without_qualified_id) 4431 << Prev << D.getCXXScopeSpec().getRange(); 4432 4433 // Check the scope of this explicit instantiation. 4434 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4435 4436 // Verify that it is okay to explicitly instantiate here. 4437 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4438 assert(MSInfo && "Missing static data member specialization info?"); 4439 bool SuppressNew = false; 4440 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4441 MSInfo->getTemplateSpecializationKind(), 4442 MSInfo->getPointOfInstantiation(), 4443 SuppressNew)) 4444 return true; 4445 if (SuppressNew) 4446 return DeclPtrTy(); 4447 4448 // Instantiate static data member. 4449 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4450 if (TSK == TSK_ExplicitInstantiationDefinition) 4451 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4452 /*DefinitionRequired=*/true); 4453 4454 // FIXME: Create an ExplicitInstantiation node? 4455 return DeclPtrTy(); 4456 } 4457 4458 // If the declarator is a template-id, translate the parser's template 4459 // argument list into our AST format. 4460 bool HasExplicitTemplateArgs = false; 4461 TemplateArgumentListInfo TemplateArgs; 4462 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4463 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4464 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 4465 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 4466 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4467 TemplateId->getTemplateArgs(), 4468 TemplateId->NumArgs); 4469 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 4470 HasExplicitTemplateArgs = true; 4471 TemplateArgsPtr.release(); 4472 } 4473 4474 // C++ [temp.explicit]p1: 4475 // A [...] function [...] can be explicitly instantiated from its template. 4476 // A member function [...] of a class template can be explicitly 4477 // instantiated from the member definition associated with its class 4478 // template. 4479 llvm::SmallVector<FunctionDecl *, 8> Matches; 4480 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4481 P != PEnd; ++P) { 4482 NamedDecl *Prev = *P; 4483 if (!HasExplicitTemplateArgs) { 4484 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4485 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4486 Matches.clear(); 4487 Matches.push_back(Method); 4488 break; 4489 } 4490 } 4491 } 4492 4493 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4494 if (!FunTmpl) 4495 continue; 4496 4497 TemplateDeductionInfo Info(Context); 4498 FunctionDecl *Specialization = 0; 4499 if (TemplateDeductionResult TDK 4500 = DeduceTemplateArguments(FunTmpl, 4501 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 4502 R, Specialization, Info)) { 4503 // FIXME: Keep track of almost-matches? 4504 (void)TDK; 4505 continue; 4506 } 4507 4508 Matches.push_back(Specialization); 4509 } 4510 4511 // Find the most specialized function template specialization. 4512 FunctionDecl *Specialization 4513 = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other, 4514 D.getIdentifierLoc(), 4515 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4516 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4517 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4518 4519 if (!Specialization) 4520 return true; 4521 4522 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4523 Diag(D.getIdentifierLoc(), 4524 diag::err_explicit_instantiation_member_function_not_instantiated) 4525 << Specialization 4526 << (Specialization->getTemplateSpecializationKind() == 4527 TSK_ExplicitSpecialization); 4528 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4529 return true; 4530 } 4531 4532 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4533 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4534 PrevDecl = Specialization; 4535 4536 if (PrevDecl) { 4537 bool SuppressNew = false; 4538 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4539 PrevDecl, 4540 PrevDecl->getTemplateSpecializationKind(), 4541 PrevDecl->getPointOfInstantiation(), 4542 SuppressNew)) 4543 return true; 4544 4545 // FIXME: We may still want to build some representation of this 4546 // explicit specialization. 4547 if (SuppressNew) 4548 return DeclPtrTy(); 4549 } 4550 4551 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4552 4553 if (TSK == TSK_ExplicitInstantiationDefinition) 4554 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4555 false, /*DefinitionRequired=*/true); 4556 4557 // C++0x [temp.explicit]p2: 4558 // If the explicit instantiation is for a member function, a member class 4559 // or a static data member of a class template specialization, the name of 4560 // the class template specialization in the qualified-id for the member 4561 // name shall be a simple-template-id. 4562 // 4563 // C++98 has the same restriction, just worded differently. 4564 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4565 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4566 D.getCXXScopeSpec().isSet() && 4567 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4568 Diag(D.getIdentifierLoc(), 4569 diag::err_explicit_instantiation_without_qualified_id) 4570 << Specialization << D.getCXXScopeSpec().getRange(); 4571 4572 CheckExplicitInstantiationScope(*this, 4573 FunTmpl? (NamedDecl *)FunTmpl 4574 : Specialization->getInstantiatedFromMemberFunction(), 4575 D.getIdentifierLoc(), 4576 D.getCXXScopeSpec().isSet()); 4577 4578 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4579 return DeclPtrTy(); 4580} 4581 4582Sema::TypeResult 4583Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4584 const CXXScopeSpec &SS, IdentifierInfo *Name, 4585 SourceLocation TagLoc, SourceLocation NameLoc) { 4586 // This has to hold, because SS is expected to be defined. 4587 assert(Name && "Expected a name in a dependent tag"); 4588 4589 NestedNameSpecifier *NNS 4590 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4591 if (!NNS) 4592 return true; 4593 4594 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4595 if (T.isNull()) 4596 return true; 4597 4598 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4599 QualType ElabType = Context.getElaboratedType(T, TagKind); 4600 4601 return ElabType.getAsOpaquePtr(); 4602} 4603 4604Sema::TypeResult 4605Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4606 const IdentifierInfo &II, SourceLocation IdLoc) { 4607 NestedNameSpecifier *NNS 4608 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4609 if (!NNS) 4610 return true; 4611 4612 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4613 if (T.isNull()) 4614 return true; 4615 return T.getAsOpaquePtr(); 4616} 4617 4618Sema::TypeResult 4619Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4620 SourceLocation TemplateLoc, TypeTy *Ty) { 4621 QualType T = GetTypeFromParser(Ty); 4622 NestedNameSpecifier *NNS 4623 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4624 const TemplateSpecializationType *TemplateId 4625 = T->getAs<TemplateSpecializationType>(); 4626 assert(TemplateId && "Expected a template specialization type"); 4627 4628 if (computeDeclContext(SS, false)) { 4629 // If we can compute a declaration context, then the "typename" 4630 // keyword was superfluous. Just build a QualifiedNameType to keep 4631 // track of the nested-name-specifier. 4632 4633 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4634 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4635 } 4636 4637 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4638} 4639 4640/// \brief Build the type that describes a C++ typename specifier, 4641/// e.g., "typename T::type". 4642QualType 4643Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4644 SourceRange Range) { 4645 CXXRecordDecl *CurrentInstantiation = 0; 4646 if (NNS->isDependent()) { 4647 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4648 4649 // If the nested-name-specifier does not refer to the current 4650 // instantiation, then build a typename type. 4651 if (!CurrentInstantiation) 4652 return Context.getTypenameType(NNS, &II); 4653 4654 // The nested-name-specifier refers to the current instantiation, so the 4655 // "typename" keyword itself is superfluous. In C++03, the program is 4656 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4657 // extraneous "typename" keywords, and we retroactively apply this DR to 4658 // C++03 code. 4659 } 4660 4661 DeclContext *Ctx = 0; 4662 4663 if (CurrentInstantiation) 4664 Ctx = CurrentInstantiation; 4665 else { 4666 CXXScopeSpec SS; 4667 SS.setScopeRep(NNS); 4668 SS.setRange(Range); 4669 if (RequireCompleteDeclContext(SS)) 4670 return QualType(); 4671 4672 Ctx = computeDeclContext(SS); 4673 } 4674 assert(Ctx && "No declaration context?"); 4675 4676 DeclarationName Name(&II); 4677 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 4678 LookupQualifiedName(Result, Ctx); 4679 unsigned DiagID = 0; 4680 Decl *Referenced = 0; 4681 switch (Result.getResultKind()) { 4682 case LookupResult::NotFound: 4683 DiagID = diag::err_typename_nested_not_found; 4684 break; 4685 4686 case LookupResult::Found: 4687 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4688 // We found a type. Build a QualifiedNameType, since the 4689 // typename-specifier was just sugar. FIXME: Tell 4690 // QualifiedNameType that it has a "typename" prefix. 4691 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4692 } 4693 4694 DiagID = diag::err_typename_nested_not_type; 4695 Referenced = Result.getFoundDecl(); 4696 break; 4697 4698 case LookupResult::FoundUnresolvedValue: 4699 llvm::llvm_unreachable("unresolved using decl in non-dependent context"); 4700 return QualType(); 4701 4702 case LookupResult::FoundOverloaded: 4703 DiagID = diag::err_typename_nested_not_type; 4704 Referenced = *Result.begin(); 4705 break; 4706 4707 case LookupResult::Ambiguous: 4708 return QualType(); 4709 } 4710 4711 // If we get here, it's because name lookup did not find a 4712 // type. Emit an appropriate diagnostic and return an error. 4713 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4714 if (Referenced) 4715 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4716 << Name; 4717 return QualType(); 4718} 4719 4720namespace { 4721 // See Sema::RebuildTypeInCurrentInstantiation 4722 class CurrentInstantiationRebuilder 4723 : public TreeTransform<CurrentInstantiationRebuilder> { 4724 SourceLocation Loc; 4725 DeclarationName Entity; 4726 4727 public: 4728 CurrentInstantiationRebuilder(Sema &SemaRef, 4729 SourceLocation Loc, 4730 DeclarationName Entity) 4731 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4732 Loc(Loc), Entity(Entity) { } 4733 4734 /// \brief Determine whether the given type \p T has already been 4735 /// transformed. 4736 /// 4737 /// For the purposes of type reconstruction, a type has already been 4738 /// transformed if it is NULL or if it is not dependent. 4739 bool AlreadyTransformed(QualType T) { 4740 return T.isNull() || !T->isDependentType(); 4741 } 4742 4743 /// \brief Returns the location of the entity whose type is being 4744 /// rebuilt. 4745 SourceLocation getBaseLocation() { return Loc; } 4746 4747 /// \brief Returns the name of the entity whose type is being rebuilt. 4748 DeclarationName getBaseEntity() { return Entity; } 4749 4750 /// \brief Sets the "base" location and entity when that 4751 /// information is known based on another transformation. 4752 void setBase(SourceLocation Loc, DeclarationName Entity) { 4753 this->Loc = Loc; 4754 this->Entity = Entity; 4755 } 4756 4757 /// \brief Transforms an expression by returning the expression itself 4758 /// (an identity function). 4759 /// 4760 /// FIXME: This is completely unsafe; we will need to actually clone the 4761 /// expressions. 4762 Sema::OwningExprResult TransformExpr(Expr *E) { 4763 return getSema().Owned(E); 4764 } 4765 4766 /// \brief Transforms a typename type by determining whether the type now 4767 /// refers to a member of the current instantiation, and then 4768 /// type-checking and building a QualifiedNameType (when possible). 4769 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL); 4770 }; 4771} 4772 4773QualType 4774CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4775 TypenameTypeLoc TL) { 4776 TypenameType *T = TL.getTypePtr(); 4777 4778 NestedNameSpecifier *NNS 4779 = TransformNestedNameSpecifier(T->getQualifier(), 4780 /*FIXME:*/SourceRange(getBaseLocation())); 4781 if (!NNS) 4782 return QualType(); 4783 4784 // If the nested-name-specifier did not change, and we cannot compute the 4785 // context corresponding to the nested-name-specifier, then this 4786 // typename type will not change; exit early. 4787 CXXScopeSpec SS; 4788 SS.setRange(SourceRange(getBaseLocation())); 4789 SS.setScopeRep(NNS); 4790 4791 QualType Result; 4792 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4793 Result = QualType(T, 0); 4794 4795 // Rebuild the typename type, which will probably turn into a 4796 // QualifiedNameType. 4797 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4798 QualType NewTemplateId 4799 = TransformType(QualType(TemplateId, 0)); 4800 if (NewTemplateId.isNull()) 4801 return QualType(); 4802 4803 if (NNS == T->getQualifier() && 4804 NewTemplateId == QualType(TemplateId, 0)) 4805 Result = QualType(T, 0); 4806 else 4807 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); 4808 } else 4809 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), 4810 SourceRange(TL.getNameLoc())); 4811 4812 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 4813 NewTL.setNameLoc(TL.getNameLoc()); 4814 return Result; 4815} 4816 4817/// \brief Rebuilds a type within the context of the current instantiation. 4818/// 4819/// The type \p T is part of the type of an out-of-line member definition of 4820/// a class template (or class template partial specialization) that was parsed 4821/// and constructed before we entered the scope of the class template (or 4822/// partial specialization thereof). This routine will rebuild that type now 4823/// that we have entered the declarator's scope, which may produce different 4824/// canonical types, e.g., 4825/// 4826/// \code 4827/// template<typename T> 4828/// struct X { 4829/// typedef T* pointer; 4830/// pointer data(); 4831/// }; 4832/// 4833/// template<typename T> 4834/// typename X<T>::pointer X<T>::data() { ... } 4835/// \endcode 4836/// 4837/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 4838/// since we do not know that we can look into X<T> when we parsed the type. 4839/// This function will rebuild the type, performing the lookup of "pointer" 4840/// in X<T> and returning a QualifiedNameType whose canonical type is the same 4841/// as the canonical type of T*, allowing the return types of the out-of-line 4842/// definition and the declaration to match. 4843QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 4844 DeclarationName Name) { 4845 if (T.isNull() || !T->isDependentType()) 4846 return T; 4847 4848 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 4849 return Rebuilder.TransformType(T); 4850} 4851 4852/// \brief Produces a formatted string that describes the binding of 4853/// template parameters to template arguments. 4854std::string 4855Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4856 const TemplateArgumentList &Args) { 4857 // FIXME: For variadic templates, we'll need to get the structured list. 4858 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 4859 Args.flat_size()); 4860} 4861 4862std::string 4863Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4864 const TemplateArgument *Args, 4865 unsigned NumArgs) { 4866 std::string Result; 4867 4868 if (!Params || Params->size() == 0 || NumArgs == 0) 4869 return Result; 4870 4871 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 4872 if (I >= NumArgs) 4873 break; 4874 4875 if (I == 0) 4876 Result += "[with "; 4877 else 4878 Result += ", "; 4879 4880 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 4881 Result += Id->getName(); 4882 } else { 4883 Result += '$'; 4884 Result += llvm::utostr(I); 4885 } 4886 4887 Result += " = "; 4888 4889 switch (Args[I].getKind()) { 4890 case TemplateArgument::Null: 4891 Result += "<no value>"; 4892 break; 4893 4894 case TemplateArgument::Type: { 4895 std::string TypeStr; 4896 Args[I].getAsType().getAsStringInternal(TypeStr, 4897 Context.PrintingPolicy); 4898 Result += TypeStr; 4899 break; 4900 } 4901 4902 case TemplateArgument::Declaration: { 4903 bool Unnamed = true; 4904 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 4905 if (ND->getDeclName()) { 4906 Unnamed = false; 4907 Result += ND->getNameAsString(); 4908 } 4909 } 4910 4911 if (Unnamed) { 4912 Result += "<anonymous>"; 4913 } 4914 break; 4915 } 4916 4917 case TemplateArgument::Template: { 4918 std::string Str; 4919 llvm::raw_string_ostream OS(Str); 4920 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 4921 Result += OS.str(); 4922 break; 4923 } 4924 4925 case TemplateArgument::Integral: { 4926 Result += Args[I].getAsIntegral()->toString(10); 4927 break; 4928 } 4929 4930 case TemplateArgument::Expression: { 4931 assert(false && "No expressions in deduced template arguments!"); 4932 Result += "<expression>"; 4933 break; 4934 } 4935 4936 case TemplateArgument::Pack: 4937 // FIXME: Format template argument packs 4938 Result += "<template argument pack>"; 4939 break; 4940 } 4941 } 4942 4943 Result += ']'; 4944 return Result; 4945} 4946