SemaTemplate.cpp revision 1d752d7d68359fd8f7701585d4658aa70e129261
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  DeclContext *DC = getFunctionLevelDeclContext();
372
373  if (!isAddressOfOperand &&
374      isa<CXXMethodDecl>(DC) &&
375      cast<CXXMethodDecl>(DC)->isInstance()) {
376    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
377
378    // Since the 'this' expression is synthesized, we don't need to
379    // perform the double-lookup check.
380    NamedDecl *FirstQualifierInScope = 0;
381
382    return Owned(CXXDependentScopeMemberExpr::Create(Context,
383                                                     /*This*/ 0, ThisType,
384                                                     /*IsArrow*/ true,
385                                                     /*Op*/ SourceLocation(),
386                                               SS.getWithLocInContext(Context),
387                                                     FirstQualifierInScope,
388                                                     NameInfo,
389                                                     TemplateArgs));
390  }
391
392  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
393}
394
395ExprResult
396Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
397                                const DeclarationNameInfo &NameInfo,
398                                const TemplateArgumentListInfo *TemplateArgs) {
399  return Owned(DependentScopeDeclRefExpr::Create(Context,
400                                               SS.getWithLocInContext(Context),
401                                                 NameInfo,
402                                                 TemplateArgs));
403}
404
405/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
406/// that the template parameter 'PrevDecl' is being shadowed by a new
407/// declaration at location Loc. Returns true to indicate that this is
408/// an error, and false otherwise.
409bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
410  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
411
412  // Microsoft Visual C++ permits template parameters to be shadowed.
413  if (getLangOptions().Microsoft)
414    return false;
415
416  // C++ [temp.local]p4:
417  //   A template-parameter shall not be redeclared within its
418  //   scope (including nested scopes).
419  Diag(Loc, diag::err_template_param_shadow)
420    << cast<NamedDecl>(PrevDecl)->getDeclName();
421  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
422  return true;
423}
424
425/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
426/// the parameter D to reference the templated declaration and return a pointer
427/// to the template declaration. Otherwise, do nothing to D and return null.
428TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
429  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
430    D = Temp->getTemplatedDecl();
431    return Temp;
432  }
433  return 0;
434}
435
436ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
437                                             SourceLocation EllipsisLoc) const {
438  assert(Kind == Template &&
439         "Only template template arguments can be pack expansions here");
440  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
441         "Template template argument pack expansion without packs");
442  ParsedTemplateArgument Result(*this);
443  Result.EllipsisLoc = EllipsisLoc;
444  return Result;
445}
446
447static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
448                                            const ParsedTemplateArgument &Arg) {
449
450  switch (Arg.getKind()) {
451  case ParsedTemplateArgument::Type: {
452    TypeSourceInfo *DI;
453    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
454    if (!DI)
455      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
456    return TemplateArgumentLoc(TemplateArgument(T), DI);
457  }
458
459  case ParsedTemplateArgument::NonType: {
460    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
461    return TemplateArgumentLoc(TemplateArgument(E), E);
462  }
463
464  case ParsedTemplateArgument::Template: {
465    TemplateName Template = Arg.getAsTemplate().get();
466    TemplateArgument TArg;
467    if (Arg.getEllipsisLoc().isValid())
468      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
469    else
470      TArg = Template;
471    return TemplateArgumentLoc(TArg,
472                               Arg.getScopeSpec().getWithLocInContext(
473                                                              SemaRef.Context),
474                               Arg.getLocation(),
475                               Arg.getEllipsisLoc());
476  }
477  }
478
479  llvm_unreachable("Unhandled parsed template argument");
480  return TemplateArgumentLoc();
481}
482
483/// \brief Translates template arguments as provided by the parser
484/// into template arguments used by semantic analysis.
485void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
486                                      TemplateArgumentListInfo &TemplateArgs) {
487 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
488   TemplateArgs.addArgument(translateTemplateArgument(*this,
489                                                      TemplateArgsIn[I]));
490}
491
492/// ActOnTypeParameter - Called when a C++ template type parameter
493/// (e.g., "typename T") has been parsed. Typename specifies whether
494/// the keyword "typename" was used to declare the type parameter
495/// (otherwise, "class" was used), and KeyLoc is the location of the
496/// "class" or "typename" keyword. ParamName is the name of the
497/// parameter (NULL indicates an unnamed template parameter) and
498/// ParamName is the location of the parameter name (if any).
499/// If the type parameter has a default argument, it will be added
500/// later via ActOnTypeParameterDefault.
501Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
502                               SourceLocation EllipsisLoc,
503                               SourceLocation KeyLoc,
504                               IdentifierInfo *ParamName,
505                               SourceLocation ParamNameLoc,
506                               unsigned Depth, unsigned Position,
507                               SourceLocation EqualLoc,
508                               ParsedType DefaultArg) {
509  assert(S->isTemplateParamScope() &&
510         "Template type parameter not in template parameter scope!");
511  bool Invalid = false;
512
513  if (ParamName) {
514    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
515                                           LookupOrdinaryName,
516                                           ForRedeclaration);
517    if (PrevDecl && PrevDecl->isTemplateParameter())
518      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
519                                                           PrevDecl);
520  }
521
522  SourceLocation Loc = ParamNameLoc;
523  if (!ParamName)
524    Loc = KeyLoc;
525
526  TemplateTypeParmDecl *Param
527    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
528                                   Loc, Depth, Position, ParamName, Typename,
529                                   Ellipsis);
530  if (Invalid)
531    Param->setInvalidDecl();
532
533  if (ParamName) {
534    // Add the template parameter into the current scope.
535    S->AddDecl(Param);
536    IdResolver.AddDecl(Param);
537  }
538
539  // C++0x [temp.param]p9:
540  //   A default template-argument may be specified for any kind of
541  //   template-parameter that is not a template parameter pack.
542  if (DefaultArg && Ellipsis) {
543    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
544    DefaultArg = ParsedType();
545  }
546
547  // Handle the default argument, if provided.
548  if (DefaultArg) {
549    TypeSourceInfo *DefaultTInfo;
550    GetTypeFromParser(DefaultArg, &DefaultTInfo);
551
552    assert(DefaultTInfo && "expected source information for type");
553
554    // Check for unexpanded parameter packs.
555    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
556                                        UPPC_DefaultArgument))
557      return Param;
558
559    // Check the template argument itself.
560    if (CheckTemplateArgument(Param, DefaultTInfo)) {
561      Param->setInvalidDecl();
562      return Param;
563    }
564
565    Param->setDefaultArgument(DefaultTInfo, false);
566  }
567
568  return Param;
569}
570
571/// \brief Check that the type of a non-type template parameter is
572/// well-formed.
573///
574/// \returns the (possibly-promoted) parameter type if valid;
575/// otherwise, produces a diagnostic and returns a NULL type.
576QualType
577Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
578  // We don't allow variably-modified types as the type of non-type template
579  // parameters.
580  if (T->isVariablyModifiedType()) {
581    Diag(Loc, diag::err_variably_modified_nontype_template_param)
582      << T;
583    return QualType();
584  }
585
586  // C++ [temp.param]p4:
587  //
588  // A non-type template-parameter shall have one of the following
589  // (optionally cv-qualified) types:
590  //
591  //       -- integral or enumeration type,
592  if (T->isIntegralOrEnumerationType() ||
593      //   -- pointer to object or pointer to function,
594      T->isPointerType() ||
595      //   -- reference to object or reference to function,
596      T->isReferenceType() ||
597      //   -- pointer to member.
598      T->isMemberPointerType() ||
599      // If T is a dependent type, we can't do the check now, so we
600      // assume that it is well-formed.
601      T->isDependentType())
602    return T;
603  // C++ [temp.param]p8:
604  //
605  //   A non-type template-parameter of type "array of T" or
606  //   "function returning T" is adjusted to be of type "pointer to
607  //   T" or "pointer to function returning T", respectively.
608  else if (T->isArrayType())
609    // FIXME: Keep the type prior to promotion?
610    return Context.getArrayDecayedType(T);
611  else if (T->isFunctionType())
612    // FIXME: Keep the type prior to promotion?
613    return Context.getPointerType(T);
614
615  Diag(Loc, diag::err_template_nontype_parm_bad_type)
616    << T;
617
618  return QualType();
619}
620
621Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
622                                          unsigned Depth,
623                                          unsigned Position,
624                                          SourceLocation EqualLoc,
625                                          Expr *Default) {
626  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
627  QualType T = TInfo->getType();
628
629  assert(S->isTemplateParamScope() &&
630         "Non-type template parameter not in template parameter scope!");
631  bool Invalid = false;
632
633  IdentifierInfo *ParamName = D.getIdentifier();
634  if (ParamName) {
635    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
636                                           LookupOrdinaryName,
637                                           ForRedeclaration);
638    if (PrevDecl && PrevDecl->isTemplateParameter())
639      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
640                                                           PrevDecl);
641  }
642
643  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
644  if (T.isNull()) {
645    T = Context.IntTy; // Recover with an 'int' type.
646    Invalid = true;
647  }
648
649  bool IsParameterPack = D.hasEllipsis();
650  NonTypeTemplateParmDecl *Param
651    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
652                                      D.getIdentifierLoc(),
653                                      Depth, Position, ParamName, T,
654                                      IsParameterPack, TInfo);
655  if (Invalid)
656    Param->setInvalidDecl();
657
658  if (D.getIdentifier()) {
659    // Add the template parameter into the current scope.
660    S->AddDecl(Param);
661    IdResolver.AddDecl(Param);
662  }
663
664  // C++0x [temp.param]p9:
665  //   A default template-argument may be specified for any kind of
666  //   template-parameter that is not a template parameter pack.
667  if (Default && IsParameterPack) {
668    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
669    Default = 0;
670  }
671
672  // Check the well-formedness of the default template argument, if provided.
673  if (Default) {
674    // Check for unexpanded parameter packs.
675    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
676      return Param;
677
678    TemplateArgument Converted;
679    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
680      Param->setInvalidDecl();
681      return Param;
682    }
683
684    Param->setDefaultArgument(Default, false);
685  }
686
687  return Param;
688}
689
690/// ActOnTemplateTemplateParameter - Called when a C++ template template
691/// parameter (e.g. T in template <template <typename> class T> class array)
692/// has been parsed. S is the current scope.
693Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
694                                           SourceLocation TmpLoc,
695                                           TemplateParamsTy *Params,
696                                           SourceLocation EllipsisLoc,
697                                           IdentifierInfo *Name,
698                                           SourceLocation NameLoc,
699                                           unsigned Depth,
700                                           unsigned Position,
701                                           SourceLocation EqualLoc,
702                                           ParsedTemplateArgument Default) {
703  assert(S->isTemplateParamScope() &&
704         "Template template parameter not in template parameter scope!");
705
706  // Construct the parameter object.
707  bool IsParameterPack = EllipsisLoc.isValid();
708  // FIXME: Pack-ness is dropped
709  TemplateTemplateParmDecl *Param =
710    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
711                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
712                                     Depth, Position, IsParameterPack,
713                                     Name, Params);
714
715  // If the template template parameter has a name, then link the identifier
716  // into the scope and lookup mechanisms.
717  if (Name) {
718    S->AddDecl(Param);
719    IdResolver.AddDecl(Param);
720  }
721
722  if (Params->size() == 0) {
723    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
724    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
725    Param->setInvalidDecl();
726  }
727
728  // C++0x [temp.param]p9:
729  //   A default template-argument may be specified for any kind of
730  //   template-parameter that is not a template parameter pack.
731  if (IsParameterPack && !Default.isInvalid()) {
732    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
733    Default = ParsedTemplateArgument();
734  }
735
736  if (!Default.isInvalid()) {
737    // Check only that we have a template template argument. We don't want to
738    // try to check well-formedness now, because our template template parameter
739    // might have dependent types in its template parameters, which we wouldn't
740    // be able to match now.
741    //
742    // If none of the template template parameter's template arguments mention
743    // other template parameters, we could actually perform more checking here.
744    // However, it isn't worth doing.
745    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
746    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
747      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
748        << DefaultArg.getSourceRange();
749      return Param;
750    }
751
752    // Check for unexpanded parameter packs.
753    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
754                                        DefaultArg.getArgument().getAsTemplate(),
755                                        UPPC_DefaultArgument))
756      return Param;
757
758    Param->setDefaultArgument(DefaultArg, false);
759  }
760
761  return Param;
762}
763
764/// ActOnTemplateParameterList - Builds a TemplateParameterList that
765/// contains the template parameters in Params/NumParams.
766Sema::TemplateParamsTy *
767Sema::ActOnTemplateParameterList(unsigned Depth,
768                                 SourceLocation ExportLoc,
769                                 SourceLocation TemplateLoc,
770                                 SourceLocation LAngleLoc,
771                                 Decl **Params, unsigned NumParams,
772                                 SourceLocation RAngleLoc) {
773  if (ExportLoc.isValid())
774    Diag(ExportLoc, diag::warn_template_export_unsupported);
775
776  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
777                                       (NamedDecl**)Params, NumParams,
778                                       RAngleLoc);
779}
780
781static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
782  if (SS.isSet())
783    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
784}
785
786DeclResult
787Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
788                         SourceLocation KWLoc, CXXScopeSpec &SS,
789                         IdentifierInfo *Name, SourceLocation NameLoc,
790                         AttributeList *Attr,
791                         TemplateParameterList *TemplateParams,
792                         AccessSpecifier AS) {
793  assert(TemplateParams && TemplateParams->size() > 0 &&
794         "No template parameters");
795  assert(TUK != TUK_Reference && "Can only declare or define class templates");
796  bool Invalid = false;
797
798  // Check that we can declare a template here.
799  if (CheckTemplateDeclScope(S, TemplateParams))
800    return true;
801
802  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
803  assert(Kind != TTK_Enum && "can't build template of enumerated type");
804
805  // There is no such thing as an unnamed class template.
806  if (!Name) {
807    Diag(KWLoc, diag::err_template_unnamed_class);
808    return true;
809  }
810
811  // Find any previous declaration with this name.
812  DeclContext *SemanticContext;
813  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
814                        ForRedeclaration);
815  if (SS.isNotEmpty() && !SS.isInvalid()) {
816    SemanticContext = computeDeclContext(SS, true);
817    if (!SemanticContext) {
818      // FIXME: Produce a reasonable diagnostic here
819      return true;
820    }
821
822    if (RequireCompleteDeclContext(SS, SemanticContext))
823      return true;
824
825    LookupQualifiedName(Previous, SemanticContext);
826  } else {
827    SemanticContext = CurContext;
828    LookupName(Previous, S);
829  }
830
831  if (Previous.isAmbiguous())
832    return true;
833
834  NamedDecl *PrevDecl = 0;
835  if (Previous.begin() != Previous.end())
836    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
837
838  // If there is a previous declaration with the same name, check
839  // whether this is a valid redeclaration.
840  ClassTemplateDecl *PrevClassTemplate
841    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
842
843  // We may have found the injected-class-name of a class template,
844  // class template partial specialization, or class template specialization.
845  // In these cases, grab the template that is being defined or specialized.
846  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
847      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
848    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
849    PrevClassTemplate
850      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
851    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
852      PrevClassTemplate
853        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
854            ->getSpecializedTemplate();
855    }
856  }
857
858  if (TUK == TUK_Friend) {
859    // C++ [namespace.memdef]p3:
860    //   [...] When looking for a prior declaration of a class or a function
861    //   declared as a friend, and when the name of the friend class or
862    //   function is neither a qualified name nor a template-id, scopes outside
863    //   the innermost enclosing namespace scope are not considered.
864    if (!SS.isSet()) {
865      DeclContext *OutermostContext = CurContext;
866      while (!OutermostContext->isFileContext())
867        OutermostContext = OutermostContext->getLookupParent();
868
869      if (PrevDecl &&
870          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
871           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
872        SemanticContext = PrevDecl->getDeclContext();
873      } else {
874        // Declarations in outer scopes don't matter. However, the outermost
875        // context we computed is the semantic context for our new
876        // declaration.
877        PrevDecl = PrevClassTemplate = 0;
878        SemanticContext = OutermostContext;
879      }
880    }
881
882    if (CurContext->isDependentContext()) {
883      // If this is a dependent context, we don't want to link the friend
884      // class template to the template in scope, because that would perform
885      // checking of the template parameter lists that can't be performed
886      // until the outer context is instantiated.
887      PrevDecl = PrevClassTemplate = 0;
888    }
889  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
890    PrevDecl = PrevClassTemplate = 0;
891
892  if (PrevClassTemplate) {
893    // Ensure that the template parameter lists are compatible.
894    if (!TemplateParameterListsAreEqual(TemplateParams,
895                                   PrevClassTemplate->getTemplateParameters(),
896                                        /*Complain=*/true,
897                                        TPL_TemplateMatch))
898      return true;
899
900    // C++ [temp.class]p4:
901    //   In a redeclaration, partial specialization, explicit
902    //   specialization or explicit instantiation of a class template,
903    //   the class-key shall agree in kind with the original class
904    //   template declaration (7.1.5.3).
905    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
906    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
907      Diag(KWLoc, diag::err_use_with_wrong_tag)
908        << Name
909        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
910      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
911      Kind = PrevRecordDecl->getTagKind();
912    }
913
914    // Check for redefinition of this class template.
915    if (TUK == TUK_Definition) {
916      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
917        Diag(NameLoc, diag::err_redefinition) << Name;
918        Diag(Def->getLocation(), diag::note_previous_definition);
919        // FIXME: Would it make sense to try to "forget" the previous
920        // definition, as part of error recovery?
921        return true;
922      }
923    }
924  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
925    // Maybe we will complain about the shadowed template parameter.
926    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
927    // Just pretend that we didn't see the previous declaration.
928    PrevDecl = 0;
929  } else if (PrevDecl) {
930    // C++ [temp]p5:
931    //   A class template shall not have the same name as any other
932    //   template, class, function, object, enumeration, enumerator,
933    //   namespace, or type in the same scope (3.3), except as specified
934    //   in (14.5.4).
935    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
936    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
937    return true;
938  }
939
940  // Check the template parameter list of this declaration, possibly
941  // merging in the template parameter list from the previous class
942  // template declaration.
943  if (CheckTemplateParameterList(TemplateParams,
944            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
945                                 (SS.isSet() && SemanticContext &&
946                                  SemanticContext->isRecord() &&
947                                  SemanticContext->isDependentContext())
948                                   ? TPC_ClassTemplateMember
949                                   : TPC_ClassTemplate))
950    Invalid = true;
951
952  if (SS.isSet()) {
953    // If the name of the template was qualified, we must be defining the
954    // template out-of-line.
955    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
956        !(TUK == TUK_Friend && CurContext->isDependentContext()))
957      Diag(NameLoc, diag::err_member_def_does_not_match)
958        << Name << SemanticContext << SS.getRange();
959  }
960
961  CXXRecordDecl *NewClass =
962    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
963                          PrevClassTemplate?
964                            PrevClassTemplate->getTemplatedDecl() : 0,
965                          /*DelayTypeCreation=*/true);
966  SetNestedNameSpecifier(NewClass, SS);
967
968  ClassTemplateDecl *NewTemplate
969    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
970                                DeclarationName(Name), TemplateParams,
971                                NewClass, PrevClassTemplate);
972  NewClass->setDescribedClassTemplate(NewTemplate);
973
974  // Build the type for the class template declaration now.
975  QualType T = NewTemplate->getInjectedClassNameSpecialization();
976  T = Context.getInjectedClassNameType(NewClass, T);
977  assert(T->isDependentType() && "Class template type is not dependent?");
978  (void)T;
979
980  // If we are providing an explicit specialization of a member that is a
981  // class template, make a note of that.
982  if (PrevClassTemplate &&
983      PrevClassTemplate->getInstantiatedFromMemberTemplate())
984    PrevClassTemplate->setMemberSpecialization();
985
986  // Set the access specifier.
987  if (!Invalid && TUK != TUK_Friend)
988    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
989
990  // Set the lexical context of these templates
991  NewClass->setLexicalDeclContext(CurContext);
992  NewTemplate->setLexicalDeclContext(CurContext);
993
994  if (TUK == TUK_Definition)
995    NewClass->startDefinition();
996
997  if (Attr)
998    ProcessDeclAttributeList(S, NewClass, Attr);
999
1000  if (TUK != TUK_Friend)
1001    PushOnScopeChains(NewTemplate, S);
1002  else {
1003    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1004      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1005      NewClass->setAccess(PrevClassTemplate->getAccess());
1006    }
1007
1008    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1009                                       PrevClassTemplate != NULL);
1010
1011    // Friend templates are visible in fairly strange ways.
1012    if (!CurContext->isDependentContext()) {
1013      DeclContext *DC = SemanticContext->getRedeclContext();
1014      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1015      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1016        PushOnScopeChains(NewTemplate, EnclosingScope,
1017                          /* AddToContext = */ false);
1018    }
1019
1020    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1021                                            NewClass->getLocation(),
1022                                            NewTemplate,
1023                                    /*FIXME:*/NewClass->getLocation());
1024    Friend->setAccess(AS_public);
1025    CurContext->addDecl(Friend);
1026  }
1027
1028  if (Invalid) {
1029    NewTemplate->setInvalidDecl();
1030    NewClass->setInvalidDecl();
1031  }
1032  return NewTemplate;
1033}
1034
1035/// \brief Diagnose the presence of a default template argument on a
1036/// template parameter, which is ill-formed in certain contexts.
1037///
1038/// \returns true if the default template argument should be dropped.
1039static bool DiagnoseDefaultTemplateArgument(Sema &S,
1040                                            Sema::TemplateParamListContext TPC,
1041                                            SourceLocation ParamLoc,
1042                                            SourceRange DefArgRange) {
1043  switch (TPC) {
1044  case Sema::TPC_ClassTemplate:
1045    return false;
1046
1047  case Sema::TPC_FunctionTemplate:
1048  case Sema::TPC_FriendFunctionTemplateDefinition:
1049    // C++ [temp.param]p9:
1050    //   A default template-argument shall not be specified in a
1051    //   function template declaration or a function template
1052    //   definition [...]
1053    //   If a friend function template declaration specifies a default
1054    //   template-argument, that declaration shall be a definition and shall be
1055    //   the only declaration of the function template in the translation unit.
1056    // (C++98/03 doesn't have this wording; see DR226).
1057    if (!S.getLangOptions().CPlusPlus0x)
1058      S.Diag(ParamLoc,
1059             diag::ext_template_parameter_default_in_function_template)
1060        << DefArgRange;
1061    return false;
1062
1063  case Sema::TPC_ClassTemplateMember:
1064    // C++0x [temp.param]p9:
1065    //   A default template-argument shall not be specified in the
1066    //   template-parameter-lists of the definition of a member of a
1067    //   class template that appears outside of the member's class.
1068    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1069      << DefArgRange;
1070    return true;
1071
1072  case Sema::TPC_FriendFunctionTemplate:
1073    // C++ [temp.param]p9:
1074    //   A default template-argument shall not be specified in a
1075    //   friend template declaration.
1076    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1077      << DefArgRange;
1078    return true;
1079
1080    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1081    // for friend function templates if there is only a single
1082    // declaration (and it is a definition). Strange!
1083  }
1084
1085  return false;
1086}
1087
1088/// \brief Check for unexpanded parameter packs within the template parameters
1089/// of a template template parameter, recursively.
1090bool DiagnoseUnexpandedParameterPacks(Sema &S, TemplateTemplateParmDecl *TTP){
1091  TemplateParameterList *Params = TTP->getTemplateParameters();
1092  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1093    NamedDecl *P = Params->getParam(I);
1094    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1095      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1096                                            NTTP->getTypeSourceInfo(),
1097                                      Sema::UPPC_NonTypeTemplateParameterType))
1098        return true;
1099
1100      continue;
1101    }
1102
1103    if (TemplateTemplateParmDecl *InnerTTP
1104                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1105      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1106        return true;
1107  }
1108
1109  return false;
1110}
1111
1112/// \brief Checks the validity of a template parameter list, possibly
1113/// considering the template parameter list from a previous
1114/// declaration.
1115///
1116/// If an "old" template parameter list is provided, it must be
1117/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1118/// template parameter list.
1119///
1120/// \param NewParams Template parameter list for a new template
1121/// declaration. This template parameter list will be updated with any
1122/// default arguments that are carried through from the previous
1123/// template parameter list.
1124///
1125/// \param OldParams If provided, template parameter list from a
1126/// previous declaration of the same template. Default template
1127/// arguments will be merged from the old template parameter list to
1128/// the new template parameter list.
1129///
1130/// \param TPC Describes the context in which we are checking the given
1131/// template parameter list.
1132///
1133/// \returns true if an error occurred, false otherwise.
1134bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1135                                      TemplateParameterList *OldParams,
1136                                      TemplateParamListContext TPC) {
1137  bool Invalid = false;
1138
1139  // C++ [temp.param]p10:
1140  //   The set of default template-arguments available for use with a
1141  //   template declaration or definition is obtained by merging the
1142  //   default arguments from the definition (if in scope) and all
1143  //   declarations in scope in the same way default function
1144  //   arguments are (8.3.6).
1145  bool SawDefaultArgument = false;
1146  SourceLocation PreviousDefaultArgLoc;
1147
1148  bool SawParameterPack = false;
1149  SourceLocation ParameterPackLoc;
1150
1151  // Dummy initialization to avoid warnings.
1152  TemplateParameterList::iterator OldParam = NewParams->end();
1153  if (OldParams)
1154    OldParam = OldParams->begin();
1155
1156  bool RemoveDefaultArguments = false;
1157  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1158                                    NewParamEnd = NewParams->end();
1159       NewParam != NewParamEnd; ++NewParam) {
1160    // Variables used to diagnose redundant default arguments
1161    bool RedundantDefaultArg = false;
1162    SourceLocation OldDefaultLoc;
1163    SourceLocation NewDefaultLoc;
1164
1165    // Variables used to diagnose missing default arguments
1166    bool MissingDefaultArg = false;
1167
1168    // C++0x [temp.param]p11:
1169    //   If a template parameter of a primary class template is a template
1170    //   parameter pack, it shall be the last template parameter.
1171    if (SawParameterPack && TPC == TPC_ClassTemplate) {
1172      Diag(ParameterPackLoc,
1173           diag::err_template_param_pack_must_be_last_template_parameter);
1174      Invalid = true;
1175    }
1176
1177    if (TemplateTypeParmDecl *NewTypeParm
1178          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1179      // Check the presence of a default argument here.
1180      if (NewTypeParm->hasDefaultArgument() &&
1181          DiagnoseDefaultTemplateArgument(*this, TPC,
1182                                          NewTypeParm->getLocation(),
1183               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1184                                                       .getSourceRange()))
1185        NewTypeParm->removeDefaultArgument();
1186
1187      // Merge default arguments for template type parameters.
1188      TemplateTypeParmDecl *OldTypeParm
1189          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1190
1191      if (NewTypeParm->isParameterPack()) {
1192        assert(!NewTypeParm->hasDefaultArgument() &&
1193               "Parameter packs can't have a default argument!");
1194        SawParameterPack = true;
1195        ParameterPackLoc = NewTypeParm->getLocation();
1196      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1197                 NewTypeParm->hasDefaultArgument()) {
1198        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1199        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1200        SawDefaultArgument = true;
1201        RedundantDefaultArg = true;
1202        PreviousDefaultArgLoc = NewDefaultLoc;
1203      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1204        // Merge the default argument from the old declaration to the
1205        // new declaration.
1206        SawDefaultArgument = true;
1207        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1208                                        true);
1209        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1210      } else if (NewTypeParm->hasDefaultArgument()) {
1211        SawDefaultArgument = true;
1212        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1213      } else if (SawDefaultArgument)
1214        MissingDefaultArg = true;
1215    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1216               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1217      // Check for unexpanded parameter packs.
1218      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1219                                          NewNonTypeParm->getTypeSourceInfo(),
1220                                          UPPC_NonTypeTemplateParameterType)) {
1221        Invalid = true;
1222        continue;
1223      }
1224
1225      // Check the presence of a default argument here.
1226      if (NewNonTypeParm->hasDefaultArgument() &&
1227          DiagnoseDefaultTemplateArgument(*this, TPC,
1228                                          NewNonTypeParm->getLocation(),
1229                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1230        NewNonTypeParm->removeDefaultArgument();
1231      }
1232
1233      // Merge default arguments for non-type template parameters
1234      NonTypeTemplateParmDecl *OldNonTypeParm
1235        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1236      if (NewNonTypeParm->isParameterPack()) {
1237        assert(!NewNonTypeParm->hasDefaultArgument() &&
1238               "Parameter packs can't have a default argument!");
1239        SawParameterPack = true;
1240        ParameterPackLoc = NewNonTypeParm->getLocation();
1241      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1242          NewNonTypeParm->hasDefaultArgument()) {
1243        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1244        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1245        SawDefaultArgument = true;
1246        RedundantDefaultArg = true;
1247        PreviousDefaultArgLoc = NewDefaultLoc;
1248      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1249        // Merge the default argument from the old declaration to the
1250        // new declaration.
1251        SawDefaultArgument = true;
1252        // FIXME: We need to create a new kind of "default argument"
1253        // expression that points to a previous non-type template
1254        // parameter.
1255        NewNonTypeParm->setDefaultArgument(
1256                                         OldNonTypeParm->getDefaultArgument(),
1257                                         /*Inherited=*/ true);
1258        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1259      } else if (NewNonTypeParm->hasDefaultArgument()) {
1260        SawDefaultArgument = true;
1261        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1262      } else if (SawDefaultArgument)
1263        MissingDefaultArg = true;
1264    } else {
1265      // Check the presence of a default argument here.
1266      TemplateTemplateParmDecl *NewTemplateParm
1267        = cast<TemplateTemplateParmDecl>(*NewParam);
1268
1269      // Check for unexpanded parameter packs, recursively.
1270      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1271        Invalid = true;
1272        continue;
1273      }
1274
1275      if (NewTemplateParm->hasDefaultArgument() &&
1276          DiagnoseDefaultTemplateArgument(*this, TPC,
1277                                          NewTemplateParm->getLocation(),
1278                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1279        NewTemplateParm->removeDefaultArgument();
1280
1281      // Merge default arguments for template template parameters
1282      TemplateTemplateParmDecl *OldTemplateParm
1283        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1284      if (NewTemplateParm->isParameterPack()) {
1285        assert(!NewTemplateParm->hasDefaultArgument() &&
1286               "Parameter packs can't have a default argument!");
1287        SawParameterPack = true;
1288        ParameterPackLoc = NewTemplateParm->getLocation();
1289      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1290          NewTemplateParm->hasDefaultArgument()) {
1291        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1292        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1293        SawDefaultArgument = true;
1294        RedundantDefaultArg = true;
1295        PreviousDefaultArgLoc = NewDefaultLoc;
1296      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1297        // Merge the default argument from the old declaration to the
1298        // new declaration.
1299        SawDefaultArgument = true;
1300        // FIXME: We need to create a new kind of "default argument" expression
1301        // that points to a previous template template parameter.
1302        NewTemplateParm->setDefaultArgument(
1303                                          OldTemplateParm->getDefaultArgument(),
1304                                          /*Inherited=*/ true);
1305        PreviousDefaultArgLoc
1306          = OldTemplateParm->getDefaultArgument().getLocation();
1307      } else if (NewTemplateParm->hasDefaultArgument()) {
1308        SawDefaultArgument = true;
1309        PreviousDefaultArgLoc
1310          = NewTemplateParm->getDefaultArgument().getLocation();
1311      } else if (SawDefaultArgument)
1312        MissingDefaultArg = true;
1313    }
1314
1315    if (RedundantDefaultArg) {
1316      // C++ [temp.param]p12:
1317      //   A template-parameter shall not be given default arguments
1318      //   by two different declarations in the same scope.
1319      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1320      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1321      Invalid = true;
1322    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1323      // C++ [temp.param]p11:
1324      //   If a template-parameter of a class template has a default
1325      //   template-argument, each subsequent template-parameter shall either
1326      //   have a default template-argument supplied or be a template parameter
1327      //   pack.
1328      Diag((*NewParam)->getLocation(),
1329           diag::err_template_param_default_arg_missing);
1330      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1331      Invalid = true;
1332      RemoveDefaultArguments = true;
1333    }
1334
1335    // If we have an old template parameter list that we're merging
1336    // in, move on to the next parameter.
1337    if (OldParams)
1338      ++OldParam;
1339  }
1340
1341  // We were missing some default arguments at the end of the list, so remove
1342  // all of the default arguments.
1343  if (RemoveDefaultArguments) {
1344    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1345                                      NewParamEnd = NewParams->end();
1346         NewParam != NewParamEnd; ++NewParam) {
1347      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1348        TTP->removeDefaultArgument();
1349      else if (NonTypeTemplateParmDecl *NTTP
1350                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1351        NTTP->removeDefaultArgument();
1352      else
1353        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1354    }
1355  }
1356
1357  return Invalid;
1358}
1359
1360namespace {
1361
1362/// A class which looks for a use of a certain level of template
1363/// parameter.
1364struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1365  typedef RecursiveASTVisitor<DependencyChecker> super;
1366
1367  unsigned Depth;
1368  bool Match;
1369
1370  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1371    NamedDecl *ND = Params->getParam(0);
1372    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1373      Depth = PD->getDepth();
1374    } else if (NonTypeTemplateParmDecl *PD =
1375                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1376      Depth = PD->getDepth();
1377    } else {
1378      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1379    }
1380  }
1381
1382  bool Matches(unsigned ParmDepth) {
1383    if (ParmDepth >= Depth) {
1384      Match = true;
1385      return true;
1386    }
1387    return false;
1388  }
1389
1390  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1391    return !Matches(T->getDepth());
1392  }
1393
1394  bool TraverseTemplateName(TemplateName N) {
1395    if (TemplateTemplateParmDecl *PD =
1396          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1397      if (Matches(PD->getDepth())) return false;
1398    return super::TraverseTemplateName(N);
1399  }
1400
1401  bool VisitDeclRefExpr(DeclRefExpr *E) {
1402    if (NonTypeTemplateParmDecl *PD =
1403          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1404      if (PD->getDepth() == Depth) {
1405        Match = true;
1406        return false;
1407      }
1408    }
1409    return super::VisitDeclRefExpr(E);
1410  }
1411};
1412}
1413
1414/// Determines whether a template-id depends on the given parameter
1415/// list.
1416static bool
1417DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1418                            TemplateParameterList *Params) {
1419  DependencyChecker Checker(Params);
1420  Checker.TraverseType(QualType(TemplateId, 0));
1421  return Checker.Match;
1422}
1423
1424/// \brief Match the given template parameter lists to the given scope
1425/// specifier, returning the template parameter list that applies to the
1426/// name.
1427///
1428/// \param DeclStartLoc the start of the declaration that has a scope
1429/// specifier or a template parameter list.
1430///
1431/// \param SS the scope specifier that will be matched to the given template
1432/// parameter lists. This scope specifier precedes a qualified name that is
1433/// being declared.
1434///
1435/// \param ParamLists the template parameter lists, from the outermost to the
1436/// innermost template parameter lists.
1437///
1438/// \param NumParamLists the number of template parameter lists in ParamLists.
1439///
1440/// \param IsFriend Whether to apply the slightly different rules for
1441/// matching template parameters to scope specifiers in friend
1442/// declarations.
1443///
1444/// \param IsExplicitSpecialization will be set true if the entity being
1445/// declared is an explicit specialization, false otherwise.
1446///
1447/// \returns the template parameter list, if any, that corresponds to the
1448/// name that is preceded by the scope specifier @p SS. This template
1449/// parameter list may be have template parameters (if we're declaring a
1450/// template) or may have no template parameters (if we're declaring a
1451/// template specialization), or may be NULL (if we were's declaring isn't
1452/// itself a template).
1453TemplateParameterList *
1454Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1455                                              const CXXScopeSpec &SS,
1456                                          TemplateParameterList **ParamLists,
1457                                              unsigned NumParamLists,
1458                                              bool IsFriend,
1459                                              bool &IsExplicitSpecialization,
1460                                              bool &Invalid) {
1461  IsExplicitSpecialization = false;
1462
1463  // Find the template-ids that occur within the nested-name-specifier. These
1464  // template-ids will match up with the template parameter lists.
1465  llvm::SmallVector<const TemplateSpecializationType *, 4>
1466    TemplateIdsInSpecifier;
1467  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1468    ExplicitSpecializationsInSpecifier;
1469  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1470       NNS; NNS = NNS->getPrefix()) {
1471    const Type *T = NNS->getAsType();
1472    if (!T) break;
1473
1474    // C++0x [temp.expl.spec]p17:
1475    //   A member or a member template may be nested within many
1476    //   enclosing class templates. In an explicit specialization for
1477    //   such a member, the member declaration shall be preceded by a
1478    //   template<> for each enclosing class template that is
1479    //   explicitly specialized.
1480    //
1481    // Following the existing practice of GNU and EDG, we allow a typedef of a
1482    // template specialization type.
1483    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1484      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1485
1486    if (const TemplateSpecializationType *SpecType
1487                                  = dyn_cast<TemplateSpecializationType>(T)) {
1488      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1489      if (!Template)
1490        continue; // FIXME: should this be an error? probably...
1491
1492      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1493        ClassTemplateSpecializationDecl *SpecDecl
1494          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1495        // If the nested name specifier refers to an explicit specialization,
1496        // we don't need a template<> header.
1497        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1498          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1499          continue;
1500        }
1501      }
1502
1503      TemplateIdsInSpecifier.push_back(SpecType);
1504    }
1505  }
1506
1507  // Reverse the list of template-ids in the scope specifier, so that we can
1508  // more easily match up the template-ids and the template parameter lists.
1509  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1510
1511  SourceLocation FirstTemplateLoc = DeclStartLoc;
1512  if (NumParamLists)
1513    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1514
1515  // Match the template-ids found in the specifier to the template parameter
1516  // lists.
1517  unsigned ParamIdx = 0, TemplateIdx = 0;
1518  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1519       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1520    const TemplateSpecializationType *TemplateId
1521      = TemplateIdsInSpecifier[TemplateIdx];
1522    bool DependentTemplateId = TemplateId->isDependentType();
1523
1524    // In friend declarations we can have template-ids which don't
1525    // depend on the corresponding template parameter lists.  But
1526    // assume that empty parameter lists are supposed to match this
1527    // template-id.
1528    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1529      if (!DependentTemplateId ||
1530          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1531        continue;
1532    }
1533
1534    if (ParamIdx >= NumParamLists) {
1535      // We have a template-id without a corresponding template parameter
1536      // list.
1537
1538      // ...which is fine if this is a friend declaration.
1539      if (IsFriend) {
1540        IsExplicitSpecialization = true;
1541        break;
1542      }
1543
1544      if (DependentTemplateId) {
1545        // FIXME: the location information here isn't great.
1546        Diag(SS.getRange().getBegin(),
1547             diag::err_template_spec_needs_template_parameters)
1548          << QualType(TemplateId, 0)
1549          << SS.getRange();
1550        Invalid = true;
1551      } else {
1552        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1553          << SS.getRange()
1554          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1555        IsExplicitSpecialization = true;
1556      }
1557      return 0;
1558    }
1559
1560    // Check the template parameter list against its corresponding template-id.
1561    if (DependentTemplateId) {
1562      TemplateParameterList *ExpectedTemplateParams = 0;
1563
1564      // Are there cases in (e.g.) friends where this won't match?
1565      if (const InjectedClassNameType *Injected
1566            = TemplateId->getAs<InjectedClassNameType>()) {
1567        CXXRecordDecl *Record = Injected->getDecl();
1568        if (ClassTemplatePartialSpecializationDecl *Partial =
1569              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1570          ExpectedTemplateParams = Partial->getTemplateParameters();
1571        else
1572          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1573            ->getTemplateParameters();
1574      }
1575
1576      if (ExpectedTemplateParams)
1577        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1578                                       ExpectedTemplateParams,
1579                                       true, TPL_TemplateMatch);
1580
1581      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1582                                 TPC_ClassTemplateMember);
1583    } else if (ParamLists[ParamIdx]->size() > 0)
1584      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1585           diag::err_template_param_list_matches_nontemplate)
1586        << TemplateId
1587        << ParamLists[ParamIdx]->getSourceRange();
1588    else
1589      IsExplicitSpecialization = true;
1590
1591    ++ParamIdx;
1592  }
1593
1594  // If there were at least as many template-ids as there were template
1595  // parameter lists, then there are no template parameter lists remaining for
1596  // the declaration itself.
1597  if (ParamIdx >= NumParamLists)
1598    return 0;
1599
1600  // If there were too many template parameter lists, complain about that now.
1601  if (ParamIdx != NumParamLists - 1) {
1602    while (ParamIdx < NumParamLists - 1) {
1603      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1604      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1605           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1606                               : diag::err_template_spec_extra_headers)
1607        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1608                       ParamLists[ParamIdx]->getRAngleLoc());
1609
1610      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1611        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1612             diag::note_explicit_template_spec_does_not_need_header)
1613          << ExplicitSpecializationsInSpecifier.back();
1614        ExplicitSpecializationsInSpecifier.pop_back();
1615      }
1616
1617      // We have a template parameter list with no corresponding scope, which
1618      // means that the resulting template declaration can't be instantiated
1619      // properly (we'll end up with dependent nodes when we shouldn't).
1620      if (!isExplicitSpecHeader)
1621        Invalid = true;
1622
1623      ++ParamIdx;
1624    }
1625  }
1626
1627  // Return the last template parameter list, which corresponds to the
1628  // entity being declared.
1629  return ParamLists[NumParamLists - 1];
1630}
1631
1632QualType Sema::CheckTemplateIdType(TemplateName Name,
1633                                   SourceLocation TemplateLoc,
1634                              const TemplateArgumentListInfo &TemplateArgs) {
1635  TemplateDecl *Template = Name.getAsTemplateDecl();
1636  if (!Template) {
1637    // The template name does not resolve to a template, so we just
1638    // build a dependent template-id type.
1639    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1640  }
1641
1642  // Check that the template argument list is well-formed for this
1643  // template.
1644  llvm::SmallVector<TemplateArgument, 4> Converted;
1645  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1646                                false, Converted))
1647    return QualType();
1648
1649  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1650         "Converted template argument list is too short!");
1651
1652  QualType CanonType;
1653
1654  if (Name.isDependent() ||
1655      TemplateSpecializationType::anyDependentTemplateArguments(
1656                                                      TemplateArgs)) {
1657    // This class template specialization is a dependent
1658    // type. Therefore, its canonical type is another class template
1659    // specialization type that contains all of the converted
1660    // arguments in canonical form. This ensures that, e.g., A<T> and
1661    // A<T, T> have identical types when A is declared as:
1662    //
1663    //   template<typename T, typename U = T> struct A;
1664    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1665    CanonType = Context.getTemplateSpecializationType(CanonName,
1666                                                      Converted.data(),
1667                                                      Converted.size());
1668
1669    // FIXME: CanonType is not actually the canonical type, and unfortunately
1670    // it is a TemplateSpecializationType that we will never use again.
1671    // In the future, we need to teach getTemplateSpecializationType to only
1672    // build the canonical type and return that to us.
1673    CanonType = Context.getCanonicalType(CanonType);
1674
1675    // This might work out to be a current instantiation, in which
1676    // case the canonical type needs to be the InjectedClassNameType.
1677    //
1678    // TODO: in theory this could be a simple hashtable lookup; most
1679    // changes to CurContext don't change the set of current
1680    // instantiations.
1681    if (isa<ClassTemplateDecl>(Template)) {
1682      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1683        // If we get out to a namespace, we're done.
1684        if (Ctx->isFileContext()) break;
1685
1686        // If this isn't a record, keep looking.
1687        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1688        if (!Record) continue;
1689
1690        // Look for one of the two cases with InjectedClassNameTypes
1691        // and check whether it's the same template.
1692        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1693            !Record->getDescribedClassTemplate())
1694          continue;
1695
1696        // Fetch the injected class name type and check whether its
1697        // injected type is equal to the type we just built.
1698        QualType ICNT = Context.getTypeDeclType(Record);
1699        QualType Injected = cast<InjectedClassNameType>(ICNT)
1700          ->getInjectedSpecializationType();
1701
1702        if (CanonType != Injected->getCanonicalTypeInternal())
1703          continue;
1704
1705        // If so, the canonical type of this TST is the injected
1706        // class name type of the record we just found.
1707        assert(ICNT.isCanonical());
1708        CanonType = ICNT;
1709        break;
1710      }
1711    }
1712  } else if (ClassTemplateDecl *ClassTemplate
1713               = dyn_cast<ClassTemplateDecl>(Template)) {
1714    // Find the class template specialization declaration that
1715    // corresponds to these arguments.
1716    void *InsertPos = 0;
1717    ClassTemplateSpecializationDecl *Decl
1718      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1719                                          InsertPos);
1720    if (!Decl) {
1721      // This is the first time we have referenced this class template
1722      // specialization. Create the canonical declaration and add it to
1723      // the set of specializations.
1724      Decl = ClassTemplateSpecializationDecl::Create(Context,
1725                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1726                                                ClassTemplate->getDeclContext(),
1727                                                ClassTemplate->getLocation(),
1728                                                     ClassTemplate,
1729                                                     Converted.data(),
1730                                                     Converted.size(), 0);
1731      ClassTemplate->AddSpecialization(Decl, InsertPos);
1732      Decl->setLexicalDeclContext(CurContext);
1733    }
1734
1735    CanonType = Context.getTypeDeclType(Decl);
1736    assert(isa<RecordType>(CanonType) &&
1737           "type of non-dependent specialization is not a RecordType");
1738  }
1739
1740  // Build the fully-sugared type for this class template
1741  // specialization, which refers back to the class template
1742  // specialization we created or found.
1743  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1744}
1745
1746TypeResult
1747Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
1748                          TemplateTy TemplateD, SourceLocation TemplateLoc,
1749                          SourceLocation LAngleLoc,
1750                          ASTTemplateArgsPtr TemplateArgsIn,
1751                          SourceLocation RAngleLoc) {
1752  if (SS.isInvalid())
1753    return true;
1754
1755  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1756
1757  // Translate the parser's template argument list in our AST format.
1758  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1759  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1760
1761  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
1762    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
1763                                                           DTN->getQualifier(),
1764                                                           DTN->getIdentifier(),
1765                                                                TemplateArgs);
1766
1767    // Build type-source information.
1768    TypeLocBuilder TLB;
1769    DependentTemplateSpecializationTypeLoc SpecTL
1770      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
1771    SpecTL.setKeywordLoc(SourceLocation());
1772    SpecTL.setNameLoc(TemplateLoc);
1773    SpecTL.setLAngleLoc(LAngleLoc);
1774    SpecTL.setRAngleLoc(RAngleLoc);
1775    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
1776    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
1777      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
1778    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
1779  }
1780
1781  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1782  TemplateArgsIn.release();
1783
1784  if (Result.isNull())
1785    return true;
1786
1787  // Build type-source information.
1788  TypeLocBuilder TLB;
1789  TemplateSpecializationTypeLoc SpecTL
1790    = TLB.push<TemplateSpecializationTypeLoc>(Result);
1791  SpecTL.setTemplateNameLoc(TemplateLoc);
1792  SpecTL.setLAngleLoc(LAngleLoc);
1793  SpecTL.setRAngleLoc(RAngleLoc);
1794  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
1795    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1796
1797  if (SS.isNotEmpty()) {
1798    // Create an elaborated-type-specifier containing the nested-name-specifier.
1799    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
1800    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
1801    ElabTL.setKeywordLoc(SourceLocation());
1802    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
1803  }
1804
1805  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
1806}
1807
1808TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
1809                                        TypeSpecifierType TagSpec,
1810                                        SourceLocation TagLoc,
1811                                        CXXScopeSpec &SS,
1812                                        TemplateTy TemplateD,
1813                                        SourceLocation TemplateLoc,
1814                                        SourceLocation LAngleLoc,
1815                                        ASTTemplateArgsPtr TemplateArgsIn,
1816                                        SourceLocation RAngleLoc) {
1817  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1818
1819  // Translate the parser's template argument list in our AST format.
1820  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1821  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1822
1823  // Determine the tag kind
1824  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1825  ElaboratedTypeKeyword Keyword
1826    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1827
1828  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
1829    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
1830                                                          DTN->getQualifier(),
1831                                                          DTN->getIdentifier(),
1832                                                                TemplateArgs);
1833
1834    // Build type-source information.
1835    TypeLocBuilder TLB;
1836    DependentTemplateSpecializationTypeLoc SpecTL
1837    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
1838    SpecTL.setKeywordLoc(TagLoc);
1839    SpecTL.setNameLoc(TemplateLoc);
1840    SpecTL.setLAngleLoc(LAngleLoc);
1841    SpecTL.setRAngleLoc(RAngleLoc);
1842    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
1843    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
1844      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
1845    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
1846  }
1847
1848  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1849  if (Result.isNull())
1850    return TypeResult();
1851
1852  // Check the tag kind
1853  if (const RecordType *RT = Result->getAs<RecordType>()) {
1854    RecordDecl *D = RT->getDecl();
1855
1856    IdentifierInfo *Id = D->getIdentifier();
1857    assert(Id && "templated class must have an identifier");
1858
1859    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1860      Diag(TagLoc, diag::err_use_with_wrong_tag)
1861        << Result
1862        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1863      Diag(D->getLocation(), diag::note_previous_use);
1864    }
1865  }
1866
1867  // Provide source-location information for the template specialization.
1868  TypeLocBuilder TLB;
1869  TemplateSpecializationTypeLoc SpecTL
1870    = TLB.push<TemplateSpecializationTypeLoc>(Result);
1871  SpecTL.setTemplateNameLoc(TemplateLoc);
1872  SpecTL.setLAngleLoc(LAngleLoc);
1873  SpecTL.setRAngleLoc(RAngleLoc);
1874  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
1875    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1876
1877  // Construct an elaborated type containing the nested-name-specifier (if any)
1878  // and keyword.
1879  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
1880  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
1881  ElabTL.setKeywordLoc(TagLoc);
1882  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
1883  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
1884}
1885
1886ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1887                                     LookupResult &R,
1888                                     bool RequiresADL,
1889                                 const TemplateArgumentListInfo &TemplateArgs) {
1890  // FIXME: Can we do any checking at this point? I guess we could check the
1891  // template arguments that we have against the template name, if the template
1892  // name refers to a single template. That's not a terribly common case,
1893  // though.
1894  // foo<int> could identify a single function unambiguously
1895  // This approach does NOT work, since f<int>(1);
1896  // gets resolved prior to resorting to overload resolution
1897  // i.e., template<class T> void f(double);
1898  //       vs template<class T, class U> void f(U);
1899
1900  // These should be filtered out by our callers.
1901  assert(!R.empty() && "empty lookup results when building templateid");
1902  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1903
1904  // We don't want lookup warnings at this point.
1905  R.suppressDiagnostics();
1906
1907  UnresolvedLookupExpr *ULE
1908    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1909                                   SS.getWithLocInContext(Context),
1910                                   R.getLookupNameInfo(),
1911                                   RequiresADL, TemplateArgs,
1912                                   R.begin(), R.end());
1913
1914  return Owned(ULE);
1915}
1916
1917// We actually only call this from template instantiation.
1918ExprResult
1919Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1920                                   const DeclarationNameInfo &NameInfo,
1921                             const TemplateArgumentListInfo &TemplateArgs) {
1922  DeclContext *DC;
1923  if (!(DC = computeDeclContext(SS, false)) ||
1924      DC->isDependentContext() ||
1925      RequireCompleteDeclContext(SS, DC))
1926    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1927
1928  bool MemberOfUnknownSpecialization;
1929  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1930  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1931                     MemberOfUnknownSpecialization);
1932
1933  if (R.isAmbiguous())
1934    return ExprError();
1935
1936  if (R.empty()) {
1937    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1938      << NameInfo.getName() << SS.getRange();
1939    return ExprError();
1940  }
1941
1942  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1943    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1944      << (NestedNameSpecifier*) SS.getScopeRep()
1945      << NameInfo.getName() << SS.getRange();
1946    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1947    return ExprError();
1948  }
1949
1950  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1951}
1952
1953/// \brief Form a dependent template name.
1954///
1955/// This action forms a dependent template name given the template
1956/// name and its (presumably dependent) scope specifier. For
1957/// example, given "MetaFun::template apply", the scope specifier \p
1958/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1959/// of the "template" keyword, and "apply" is the \p Name.
1960TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1961                                                  SourceLocation TemplateKWLoc,
1962                                                  CXXScopeSpec &SS,
1963                                                  UnqualifiedId &Name,
1964                                                  ParsedType ObjectType,
1965                                                  bool EnteringContext,
1966                                                  TemplateTy &Result) {
1967  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1968      !getLangOptions().CPlusPlus0x)
1969    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1970      << FixItHint::CreateRemoval(TemplateKWLoc);
1971
1972  DeclContext *LookupCtx = 0;
1973  if (SS.isSet())
1974    LookupCtx = computeDeclContext(SS, EnteringContext);
1975  if (!LookupCtx && ObjectType)
1976    LookupCtx = computeDeclContext(ObjectType.get());
1977  if (LookupCtx) {
1978    // C++0x [temp.names]p5:
1979    //   If a name prefixed by the keyword template is not the name of
1980    //   a template, the program is ill-formed. [Note: the keyword
1981    //   template may not be applied to non-template members of class
1982    //   templates. -end note ] [ Note: as is the case with the
1983    //   typename prefix, the template prefix is allowed in cases
1984    //   where it is not strictly necessary; i.e., when the
1985    //   nested-name-specifier or the expression on the left of the ->
1986    //   or . is not dependent on a template-parameter, or the use
1987    //   does not appear in the scope of a template. -end note]
1988    //
1989    // Note: C++03 was more strict here, because it banned the use of
1990    // the "template" keyword prior to a template-name that was not a
1991    // dependent name. C++ DR468 relaxed this requirement (the
1992    // "template" keyword is now permitted). We follow the C++0x
1993    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1994    bool MemberOfUnknownSpecialization;
1995    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1996                                          ObjectType, EnteringContext, Result,
1997                                          MemberOfUnknownSpecialization);
1998    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1999        isa<CXXRecordDecl>(LookupCtx) &&
2000        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
2001      // This is a dependent template. Handle it below.
2002    } else if (TNK == TNK_Non_template) {
2003      Diag(Name.getSourceRange().getBegin(),
2004           diag::err_template_kw_refers_to_non_template)
2005        << GetNameFromUnqualifiedId(Name).getName()
2006        << Name.getSourceRange()
2007        << TemplateKWLoc;
2008      return TNK_Non_template;
2009    } else {
2010      // We found something; return it.
2011      return TNK;
2012    }
2013  }
2014
2015  NestedNameSpecifier *Qualifier
2016    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2017
2018  switch (Name.getKind()) {
2019  case UnqualifiedId::IK_Identifier:
2020    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2021                                                              Name.Identifier));
2022    return TNK_Dependent_template_name;
2023
2024  case UnqualifiedId::IK_OperatorFunctionId:
2025    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2026                                             Name.OperatorFunctionId.Operator));
2027    return TNK_Dependent_template_name;
2028
2029  case UnqualifiedId::IK_LiteralOperatorId:
2030    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
2031
2032  default:
2033    break;
2034  }
2035
2036  Diag(Name.getSourceRange().getBegin(),
2037       diag::err_template_kw_refers_to_non_template)
2038    << GetNameFromUnqualifiedId(Name).getName()
2039    << Name.getSourceRange()
2040    << TemplateKWLoc;
2041  return TNK_Non_template;
2042}
2043
2044bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2045                                     const TemplateArgumentLoc &AL,
2046                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2047  const TemplateArgument &Arg = AL.getArgument();
2048
2049  // Check template type parameter.
2050  switch(Arg.getKind()) {
2051  case TemplateArgument::Type:
2052    // C++ [temp.arg.type]p1:
2053    //   A template-argument for a template-parameter which is a
2054    //   type shall be a type-id.
2055    break;
2056  case TemplateArgument::Template: {
2057    // We have a template type parameter but the template argument
2058    // is a template without any arguments.
2059    SourceRange SR = AL.getSourceRange();
2060    TemplateName Name = Arg.getAsTemplate();
2061    Diag(SR.getBegin(), diag::err_template_missing_args)
2062      << Name << SR;
2063    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2064      Diag(Decl->getLocation(), diag::note_template_decl_here);
2065
2066    return true;
2067  }
2068  default: {
2069    // We have a template type parameter but the template argument
2070    // is not a type.
2071    SourceRange SR = AL.getSourceRange();
2072    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2073    Diag(Param->getLocation(), diag::note_template_param_here);
2074
2075    return true;
2076  }
2077  }
2078
2079  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2080    return true;
2081
2082  // Add the converted template type argument.
2083  Converted.push_back(
2084                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
2085  return false;
2086}
2087
2088/// \brief Substitute template arguments into the default template argument for
2089/// the given template type parameter.
2090///
2091/// \param SemaRef the semantic analysis object for which we are performing
2092/// the substitution.
2093///
2094/// \param Template the template that we are synthesizing template arguments
2095/// for.
2096///
2097/// \param TemplateLoc the location of the template name that started the
2098/// template-id we are checking.
2099///
2100/// \param RAngleLoc the location of the right angle bracket ('>') that
2101/// terminates the template-id.
2102///
2103/// \param Param the template template parameter whose default we are
2104/// substituting into.
2105///
2106/// \param Converted the list of template arguments provided for template
2107/// parameters that precede \p Param in the template parameter list.
2108/// \returns the substituted template argument, or NULL if an error occurred.
2109static TypeSourceInfo *
2110SubstDefaultTemplateArgument(Sema &SemaRef,
2111                             TemplateDecl *Template,
2112                             SourceLocation TemplateLoc,
2113                             SourceLocation RAngleLoc,
2114                             TemplateTypeParmDecl *Param,
2115                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2116  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2117
2118  // If the argument type is dependent, instantiate it now based
2119  // on the previously-computed template arguments.
2120  if (ArgType->getType()->isDependentType()) {
2121    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2122                                      Converted.data(), Converted.size());
2123
2124    MultiLevelTemplateArgumentList AllTemplateArgs
2125      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2126
2127    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2128                                     Template, Converted.data(),
2129                                     Converted.size(),
2130                                     SourceRange(TemplateLoc, RAngleLoc));
2131
2132    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2133                                Param->getDefaultArgumentLoc(),
2134                                Param->getDeclName());
2135  }
2136
2137  return ArgType;
2138}
2139
2140/// \brief Substitute template arguments into the default template argument for
2141/// the given non-type template parameter.
2142///
2143/// \param SemaRef the semantic analysis object for which we are performing
2144/// the substitution.
2145///
2146/// \param Template the template that we are synthesizing template arguments
2147/// for.
2148///
2149/// \param TemplateLoc the location of the template name that started the
2150/// template-id we are checking.
2151///
2152/// \param RAngleLoc the location of the right angle bracket ('>') that
2153/// terminates the template-id.
2154///
2155/// \param Param the non-type template parameter whose default we are
2156/// substituting into.
2157///
2158/// \param Converted the list of template arguments provided for template
2159/// parameters that precede \p Param in the template parameter list.
2160///
2161/// \returns the substituted template argument, or NULL if an error occurred.
2162static ExprResult
2163SubstDefaultTemplateArgument(Sema &SemaRef,
2164                             TemplateDecl *Template,
2165                             SourceLocation TemplateLoc,
2166                             SourceLocation RAngleLoc,
2167                             NonTypeTemplateParmDecl *Param,
2168                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2169  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2170                                    Converted.data(), Converted.size());
2171
2172  MultiLevelTemplateArgumentList AllTemplateArgs
2173    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2174
2175  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2176                                   Template, Converted.data(),
2177                                   Converted.size(),
2178                                   SourceRange(TemplateLoc, RAngleLoc));
2179
2180  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2181}
2182
2183/// \brief Substitute template arguments into the default template argument for
2184/// the given template template parameter.
2185///
2186/// \param SemaRef the semantic analysis object for which we are performing
2187/// the substitution.
2188///
2189/// \param Template the template that we are synthesizing template arguments
2190/// for.
2191///
2192/// \param TemplateLoc the location of the template name that started the
2193/// template-id we are checking.
2194///
2195/// \param RAngleLoc the location of the right angle bracket ('>') that
2196/// terminates the template-id.
2197///
2198/// \param Param the template template parameter whose default we are
2199/// substituting into.
2200///
2201/// \param Converted the list of template arguments provided for template
2202/// parameters that precede \p Param in the template parameter list.
2203///
2204/// \param QualifierLoc Will be set to the nested-name-specifier (with
2205/// source-location information) that precedes the template name.
2206///
2207/// \returns the substituted template argument, or NULL if an error occurred.
2208static TemplateName
2209SubstDefaultTemplateArgument(Sema &SemaRef,
2210                             TemplateDecl *Template,
2211                             SourceLocation TemplateLoc,
2212                             SourceLocation RAngleLoc,
2213                             TemplateTemplateParmDecl *Param,
2214                       llvm::SmallVectorImpl<TemplateArgument> &Converted,
2215                             NestedNameSpecifierLoc &QualifierLoc) {
2216  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2217                                    Converted.data(), Converted.size());
2218
2219  MultiLevelTemplateArgumentList AllTemplateArgs
2220    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2221
2222  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2223                                   Template, Converted.data(),
2224                                   Converted.size(),
2225                                   SourceRange(TemplateLoc, RAngleLoc));
2226
2227  // Substitute into the nested-name-specifier first,
2228  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2229  if (QualifierLoc) {
2230    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2231                                                       AllTemplateArgs);
2232    if (!QualifierLoc)
2233      return TemplateName();
2234  }
2235
2236  return SemaRef.SubstTemplateName(QualifierLoc,
2237                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2238                              Param->getDefaultArgument().getTemplateNameLoc(),
2239                                   AllTemplateArgs);
2240}
2241
2242/// \brief If the given template parameter has a default template
2243/// argument, substitute into that default template argument and
2244/// return the corresponding template argument.
2245TemplateArgumentLoc
2246Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2247                                              SourceLocation TemplateLoc,
2248                                              SourceLocation RAngleLoc,
2249                                              Decl *Param,
2250                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2251   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2252    if (!TypeParm->hasDefaultArgument())
2253      return TemplateArgumentLoc();
2254
2255    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2256                                                      TemplateLoc,
2257                                                      RAngleLoc,
2258                                                      TypeParm,
2259                                                      Converted);
2260    if (DI)
2261      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2262
2263    return TemplateArgumentLoc();
2264  }
2265
2266  if (NonTypeTemplateParmDecl *NonTypeParm
2267        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2268    if (!NonTypeParm->hasDefaultArgument())
2269      return TemplateArgumentLoc();
2270
2271    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2272                                                  TemplateLoc,
2273                                                  RAngleLoc,
2274                                                  NonTypeParm,
2275                                                  Converted);
2276    if (Arg.isInvalid())
2277      return TemplateArgumentLoc();
2278
2279    Expr *ArgE = Arg.takeAs<Expr>();
2280    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2281  }
2282
2283  TemplateTemplateParmDecl *TempTempParm
2284    = cast<TemplateTemplateParmDecl>(Param);
2285  if (!TempTempParm->hasDefaultArgument())
2286    return TemplateArgumentLoc();
2287
2288
2289  NestedNameSpecifierLoc QualifierLoc;
2290  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2291                                                    TemplateLoc,
2292                                                    RAngleLoc,
2293                                                    TempTempParm,
2294                                                    Converted,
2295                                                    QualifierLoc);
2296  if (TName.isNull())
2297    return TemplateArgumentLoc();
2298
2299  return TemplateArgumentLoc(TemplateArgument(TName),
2300                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2301                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2302}
2303
2304/// \brief Check that the given template argument corresponds to the given
2305/// template parameter.
2306///
2307/// \param Param The template parameter against which the argument will be
2308/// checked.
2309///
2310/// \param Arg The template argument.
2311///
2312/// \param Template The template in which the template argument resides.
2313///
2314/// \param TemplateLoc The location of the template name for the template
2315/// whose argument list we're matching.
2316///
2317/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2318/// the template argument list.
2319///
2320/// \param ArgumentPackIndex The index into the argument pack where this
2321/// argument will be placed. Only valid if the parameter is a parameter pack.
2322///
2323/// \param Converted The checked, converted argument will be added to the
2324/// end of this small vector.
2325///
2326/// \param CTAK Describes how we arrived at this particular template argument:
2327/// explicitly written, deduced, etc.
2328///
2329/// \returns true on error, false otherwise.
2330bool Sema::CheckTemplateArgument(NamedDecl *Param,
2331                                 const TemplateArgumentLoc &Arg,
2332                                 NamedDecl *Template,
2333                                 SourceLocation TemplateLoc,
2334                                 SourceLocation RAngleLoc,
2335                                 unsigned ArgumentPackIndex,
2336                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2337                                 CheckTemplateArgumentKind CTAK) {
2338  // Check template type parameters.
2339  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2340    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2341
2342  // Check non-type template parameters.
2343  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2344    // Do substitution on the type of the non-type template parameter
2345    // with the template arguments we've seen thus far.  But if the
2346    // template has a dependent context then we cannot substitute yet.
2347    QualType NTTPType = NTTP->getType();
2348    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2349      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2350
2351    if (NTTPType->isDependentType() &&
2352        !isa<TemplateTemplateParmDecl>(Template) &&
2353        !Template->getDeclContext()->isDependentContext()) {
2354      // Do substitution on the type of the non-type template parameter.
2355      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2356                                 NTTP, Converted.data(), Converted.size(),
2357                                 SourceRange(TemplateLoc, RAngleLoc));
2358
2359      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2360                                        Converted.data(), Converted.size());
2361      NTTPType = SubstType(NTTPType,
2362                           MultiLevelTemplateArgumentList(TemplateArgs),
2363                           NTTP->getLocation(),
2364                           NTTP->getDeclName());
2365      // If that worked, check the non-type template parameter type
2366      // for validity.
2367      if (!NTTPType.isNull())
2368        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2369                                                     NTTP->getLocation());
2370      if (NTTPType.isNull())
2371        return true;
2372    }
2373
2374    switch (Arg.getArgument().getKind()) {
2375    case TemplateArgument::Null:
2376      assert(false && "Should never see a NULL template argument here");
2377      return true;
2378
2379    case TemplateArgument::Expression: {
2380      Expr *E = Arg.getArgument().getAsExpr();
2381      TemplateArgument Result;
2382      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2383        return true;
2384
2385      Converted.push_back(Result);
2386      break;
2387    }
2388
2389    case TemplateArgument::Declaration:
2390    case TemplateArgument::Integral:
2391      // We've already checked this template argument, so just copy
2392      // it to the list of converted arguments.
2393      Converted.push_back(Arg.getArgument());
2394      break;
2395
2396    case TemplateArgument::Template:
2397    case TemplateArgument::TemplateExpansion:
2398      // We were given a template template argument. It may not be ill-formed;
2399      // see below.
2400      if (DependentTemplateName *DTN
2401            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2402                                              .getAsDependentTemplateName()) {
2403        // We have a template argument such as \c T::template X, which we
2404        // parsed as a template template argument. However, since we now
2405        // know that we need a non-type template argument, convert this
2406        // template name into an expression.
2407
2408        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2409                                     Arg.getTemplateNameLoc());
2410
2411        CXXScopeSpec SS;
2412        SS.Adopt(Arg.getTemplateQualifierLoc());
2413        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2414                                                SS.getWithLocInContext(Context),
2415                                                    NameInfo);
2416
2417        // If we parsed the template argument as a pack expansion, create a
2418        // pack expansion expression.
2419        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2420          ExprResult Expansion = ActOnPackExpansion(E,
2421                                                  Arg.getTemplateEllipsisLoc());
2422          if (Expansion.isInvalid())
2423            return true;
2424
2425          E = Expansion.get();
2426        }
2427
2428        TemplateArgument Result;
2429        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2430          return true;
2431
2432        Converted.push_back(Result);
2433        break;
2434      }
2435
2436      // We have a template argument that actually does refer to a class
2437      // template, template alias, or template template parameter, and
2438      // therefore cannot be a non-type template argument.
2439      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2440        << Arg.getSourceRange();
2441
2442      Diag(Param->getLocation(), diag::note_template_param_here);
2443      return true;
2444
2445    case TemplateArgument::Type: {
2446      // We have a non-type template parameter but the template
2447      // argument is a type.
2448
2449      // C++ [temp.arg]p2:
2450      //   In a template-argument, an ambiguity between a type-id and
2451      //   an expression is resolved to a type-id, regardless of the
2452      //   form of the corresponding template-parameter.
2453      //
2454      // We warn specifically about this case, since it can be rather
2455      // confusing for users.
2456      QualType T = Arg.getArgument().getAsType();
2457      SourceRange SR = Arg.getSourceRange();
2458      if (T->isFunctionType())
2459        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2460      else
2461        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2462      Diag(Param->getLocation(), diag::note_template_param_here);
2463      return true;
2464    }
2465
2466    case TemplateArgument::Pack:
2467      llvm_unreachable("Caller must expand template argument packs");
2468      break;
2469    }
2470
2471    return false;
2472  }
2473
2474
2475  // Check template template parameters.
2476  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2477
2478  // Substitute into the template parameter list of the template
2479  // template parameter, since previously-supplied template arguments
2480  // may appear within the template template parameter.
2481  {
2482    // Set up a template instantiation context.
2483    LocalInstantiationScope Scope(*this);
2484    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2485                               TempParm, Converted.data(), Converted.size(),
2486                               SourceRange(TemplateLoc, RAngleLoc));
2487
2488    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2489                                      Converted.data(), Converted.size());
2490    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2491                      SubstDecl(TempParm, CurContext,
2492                                MultiLevelTemplateArgumentList(TemplateArgs)));
2493    if (!TempParm)
2494      return true;
2495  }
2496
2497  switch (Arg.getArgument().getKind()) {
2498  case TemplateArgument::Null:
2499    assert(false && "Should never see a NULL template argument here");
2500    return true;
2501
2502  case TemplateArgument::Template:
2503  case TemplateArgument::TemplateExpansion:
2504    if (CheckTemplateArgument(TempParm, Arg))
2505      return true;
2506
2507    Converted.push_back(Arg.getArgument());
2508    break;
2509
2510  case TemplateArgument::Expression:
2511  case TemplateArgument::Type:
2512    // We have a template template parameter but the template
2513    // argument does not refer to a template.
2514    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2515    return true;
2516
2517  case TemplateArgument::Declaration:
2518    llvm_unreachable(
2519                       "Declaration argument with template template parameter");
2520    break;
2521  case TemplateArgument::Integral:
2522    llvm_unreachable(
2523                          "Integral argument with template template parameter");
2524    break;
2525
2526  case TemplateArgument::Pack:
2527    llvm_unreachable("Caller must expand template argument packs");
2528    break;
2529  }
2530
2531  return false;
2532}
2533
2534/// \brief Check that the given template argument list is well-formed
2535/// for specializing the given template.
2536bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2537                                     SourceLocation TemplateLoc,
2538                                const TemplateArgumentListInfo &TemplateArgs,
2539                                     bool PartialTemplateArgs,
2540                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2541  TemplateParameterList *Params = Template->getTemplateParameters();
2542  unsigned NumParams = Params->size();
2543  unsigned NumArgs = TemplateArgs.size();
2544  bool Invalid = false;
2545
2546  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2547
2548  bool HasParameterPack =
2549    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2550
2551  if ((NumArgs > NumParams && !HasParameterPack) ||
2552      (NumArgs < Params->getMinRequiredArguments() &&
2553       !PartialTemplateArgs)) {
2554    // FIXME: point at either the first arg beyond what we can handle,
2555    // or the '>', depending on whether we have too many or too few
2556    // arguments.
2557    SourceRange Range;
2558    if (NumArgs > NumParams)
2559      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2560    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2561      << (NumArgs > NumParams)
2562      << (isa<ClassTemplateDecl>(Template)? 0 :
2563          isa<FunctionTemplateDecl>(Template)? 1 :
2564          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2565      << Template << Range;
2566    Diag(Template->getLocation(), diag::note_template_decl_here)
2567      << Params->getSourceRange();
2568    Invalid = true;
2569  }
2570
2571  // C++ [temp.arg]p1:
2572  //   [...] The type and form of each template-argument specified in
2573  //   a template-id shall match the type and form specified for the
2574  //   corresponding parameter declared by the template in its
2575  //   template-parameter-list.
2576  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2577  TemplateParameterList::iterator Param = Params->begin(),
2578                               ParamEnd = Params->end();
2579  unsigned ArgIdx = 0;
2580  LocalInstantiationScope InstScope(*this, true);
2581  while (Param != ParamEnd) {
2582    if (ArgIdx > NumArgs && PartialTemplateArgs)
2583      break;
2584
2585    if (ArgIdx < NumArgs) {
2586      // If we have an expanded parameter pack, make sure we don't have too
2587      // many arguments.
2588      if (NonTypeTemplateParmDecl *NTTP
2589                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2590        if (NTTP->isExpandedParameterPack() &&
2591            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2592          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2593            << true
2594            << (isa<ClassTemplateDecl>(Template)? 0 :
2595                isa<FunctionTemplateDecl>(Template)? 1 :
2596                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2597            << Template;
2598          Diag(Template->getLocation(), diag::note_template_decl_here)
2599            << Params->getSourceRange();
2600          return true;
2601        }
2602      }
2603
2604      // Check the template argument we were given.
2605      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2606                                TemplateLoc, RAngleLoc,
2607                                ArgumentPack.size(), Converted))
2608        return true;
2609
2610      if ((*Param)->isTemplateParameterPack()) {
2611        // The template parameter was a template parameter pack, so take the
2612        // deduced argument and place it on the argument pack. Note that we
2613        // stay on the same template parameter so that we can deduce more
2614        // arguments.
2615        ArgumentPack.push_back(Converted.back());
2616        Converted.pop_back();
2617      } else {
2618        // Move to the next template parameter.
2619        ++Param;
2620      }
2621      ++ArgIdx;
2622      continue;
2623    }
2624
2625    // If we have a template parameter pack with no more corresponding
2626    // arguments, just break out now and we'll fill in the argument pack below.
2627    if ((*Param)->isTemplateParameterPack())
2628      break;
2629
2630    // We have a default template argument that we will use.
2631    TemplateArgumentLoc Arg;
2632
2633    // Retrieve the default template argument from the template
2634    // parameter. For each kind of template parameter, we substitute the
2635    // template arguments provided thus far and any "outer" template arguments
2636    // (when the template parameter was part of a nested template) into
2637    // the default argument.
2638    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2639      if (!TTP->hasDefaultArgument()) {
2640        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2641        break;
2642      }
2643
2644      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2645                                                             Template,
2646                                                             TemplateLoc,
2647                                                             RAngleLoc,
2648                                                             TTP,
2649                                                             Converted);
2650      if (!ArgType)
2651        return true;
2652
2653      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2654                                ArgType);
2655    } else if (NonTypeTemplateParmDecl *NTTP
2656                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2657      if (!NTTP->hasDefaultArgument()) {
2658        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2659        break;
2660      }
2661
2662      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2663                                                              TemplateLoc,
2664                                                              RAngleLoc,
2665                                                              NTTP,
2666                                                              Converted);
2667      if (E.isInvalid())
2668        return true;
2669
2670      Expr *Ex = E.takeAs<Expr>();
2671      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2672    } else {
2673      TemplateTemplateParmDecl *TempParm
2674        = cast<TemplateTemplateParmDecl>(*Param);
2675
2676      if (!TempParm->hasDefaultArgument()) {
2677        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2678        break;
2679      }
2680
2681      NestedNameSpecifierLoc QualifierLoc;
2682      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2683                                                       TemplateLoc,
2684                                                       RAngleLoc,
2685                                                       TempParm,
2686                                                       Converted,
2687                                                       QualifierLoc);
2688      if (Name.isNull())
2689        return true;
2690
2691      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
2692                           TempParm->getDefaultArgument().getTemplateNameLoc());
2693    }
2694
2695    // Introduce an instantiation record that describes where we are using
2696    // the default template argument.
2697    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2698                                        Converted.data(), Converted.size(),
2699                                        SourceRange(TemplateLoc, RAngleLoc));
2700
2701    // Check the default template argument.
2702    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2703                              RAngleLoc, 0, Converted))
2704      return true;
2705
2706    // Move to the next template parameter and argument.
2707    ++Param;
2708    ++ArgIdx;
2709  }
2710
2711  // Form argument packs for each of the parameter packs remaining.
2712  while (Param != ParamEnd) {
2713    // If we're checking a partial list of template arguments, don't fill
2714    // in arguments for non-template parameter packs.
2715
2716    if ((*Param)->isTemplateParameterPack()) {
2717      if (PartialTemplateArgs && ArgumentPack.empty()) {
2718        Converted.push_back(TemplateArgument());
2719      } else if (ArgumentPack.empty())
2720        Converted.push_back(TemplateArgument(0, 0));
2721      else {
2722        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2723                                                          ArgumentPack.data(),
2724                                                         ArgumentPack.size()));
2725        ArgumentPack.clear();
2726      }
2727    }
2728
2729    ++Param;
2730  }
2731
2732  return Invalid;
2733}
2734
2735namespace {
2736  class UnnamedLocalNoLinkageFinder
2737    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2738  {
2739    Sema &S;
2740    SourceRange SR;
2741
2742    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2743
2744  public:
2745    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2746
2747    bool Visit(QualType T) {
2748      return inherited::Visit(T.getTypePtr());
2749    }
2750
2751#define TYPE(Class, Parent) \
2752    bool Visit##Class##Type(const Class##Type *);
2753#define ABSTRACT_TYPE(Class, Parent) \
2754    bool Visit##Class##Type(const Class##Type *) { return false; }
2755#define NON_CANONICAL_TYPE(Class, Parent) \
2756    bool Visit##Class##Type(const Class##Type *) { return false; }
2757#include "clang/AST/TypeNodes.def"
2758
2759    bool VisitTagDecl(const TagDecl *Tag);
2760    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2761  };
2762}
2763
2764bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2765  return false;
2766}
2767
2768bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2769  return Visit(T->getElementType());
2770}
2771
2772bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2773  return Visit(T->getPointeeType());
2774}
2775
2776bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2777                                                    const BlockPointerType* T) {
2778  return Visit(T->getPointeeType());
2779}
2780
2781bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2782                                                const LValueReferenceType* T) {
2783  return Visit(T->getPointeeType());
2784}
2785
2786bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2787                                                const RValueReferenceType* T) {
2788  return Visit(T->getPointeeType());
2789}
2790
2791bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2792                                                  const MemberPointerType* T) {
2793  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2794}
2795
2796bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2797                                                  const ConstantArrayType* T) {
2798  return Visit(T->getElementType());
2799}
2800
2801bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2802                                                 const IncompleteArrayType* T) {
2803  return Visit(T->getElementType());
2804}
2805
2806bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2807                                                   const VariableArrayType* T) {
2808  return Visit(T->getElementType());
2809}
2810
2811bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2812                                            const DependentSizedArrayType* T) {
2813  return Visit(T->getElementType());
2814}
2815
2816bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2817                                         const DependentSizedExtVectorType* T) {
2818  return Visit(T->getElementType());
2819}
2820
2821bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2822  return Visit(T->getElementType());
2823}
2824
2825bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2826  return Visit(T->getElementType());
2827}
2828
2829bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2830                                                  const FunctionProtoType* T) {
2831  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2832                                         AEnd = T->arg_type_end();
2833       A != AEnd; ++A) {
2834    if (Visit(*A))
2835      return true;
2836  }
2837
2838  return Visit(T->getResultType());
2839}
2840
2841bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2842                                               const FunctionNoProtoType* T) {
2843  return Visit(T->getResultType());
2844}
2845
2846bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2847                                                  const UnresolvedUsingType*) {
2848  return false;
2849}
2850
2851bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2852  return false;
2853}
2854
2855bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2856  return Visit(T->getUnderlyingType());
2857}
2858
2859bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2860  return false;
2861}
2862
2863bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
2864  return Visit(T->getDeducedType());
2865}
2866
2867bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2868  return VisitTagDecl(T->getDecl());
2869}
2870
2871bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2872  return VisitTagDecl(T->getDecl());
2873}
2874
2875bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2876                                                 const TemplateTypeParmType*) {
2877  return false;
2878}
2879
2880bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
2881                                        const SubstTemplateTypeParmPackType *) {
2882  return false;
2883}
2884
2885bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2886                                            const TemplateSpecializationType*) {
2887  return false;
2888}
2889
2890bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2891                                              const InjectedClassNameType* T) {
2892  return VisitTagDecl(T->getDecl());
2893}
2894
2895bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2896                                                   const DependentNameType* T) {
2897  return VisitNestedNameSpecifier(T->getQualifier());
2898}
2899
2900bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2901                                 const DependentTemplateSpecializationType* T) {
2902  return VisitNestedNameSpecifier(T->getQualifier());
2903}
2904
2905bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2906                                                   const PackExpansionType* T) {
2907  return Visit(T->getPattern());
2908}
2909
2910bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2911  return false;
2912}
2913
2914bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2915                                                   const ObjCInterfaceType *) {
2916  return false;
2917}
2918
2919bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2920                                                const ObjCObjectPointerType *) {
2921  return false;
2922}
2923
2924bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2925  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2926    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2927      << S.Context.getTypeDeclType(Tag) << SR;
2928    return true;
2929  }
2930
2931  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2932    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2933    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2934    return true;
2935  }
2936
2937  return false;
2938}
2939
2940bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2941                                                    NestedNameSpecifier *NNS) {
2942  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2943    return true;
2944
2945  switch (NNS->getKind()) {
2946  case NestedNameSpecifier::Identifier:
2947  case NestedNameSpecifier::Namespace:
2948  case NestedNameSpecifier::NamespaceAlias:
2949  case NestedNameSpecifier::Global:
2950    return false;
2951
2952  case NestedNameSpecifier::TypeSpec:
2953  case NestedNameSpecifier::TypeSpecWithTemplate:
2954    return Visit(QualType(NNS->getAsType(), 0));
2955  }
2956  return false;
2957}
2958
2959
2960/// \brief Check a template argument against its corresponding
2961/// template type parameter.
2962///
2963/// This routine implements the semantics of C++ [temp.arg.type]. It
2964/// returns true if an error occurred, and false otherwise.
2965bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2966                                 TypeSourceInfo *ArgInfo) {
2967  assert(ArgInfo && "invalid TypeSourceInfo");
2968  QualType Arg = ArgInfo->getType();
2969  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2970
2971  if (Arg->isVariablyModifiedType()) {
2972    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2973  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2974    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2975  }
2976
2977  // C++03 [temp.arg.type]p2:
2978  //   A local type, a type with no linkage, an unnamed type or a type
2979  //   compounded from any of these types shall not be used as a
2980  //   template-argument for a template type-parameter.
2981  //
2982  // C++0x allows these, and even in C++03 we allow them as an extension with
2983  // a warning.
2984  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2985    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2986    (void)Finder.Visit(Context.getCanonicalType(Arg));
2987  }
2988
2989  return false;
2990}
2991
2992/// \brief Checks whether the given template argument is the address
2993/// of an object or function according to C++ [temp.arg.nontype]p1.
2994static bool
2995CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2996                                               NonTypeTemplateParmDecl *Param,
2997                                               QualType ParamType,
2998                                               Expr *ArgIn,
2999                                               TemplateArgument &Converted) {
3000  bool Invalid = false;
3001  Expr *Arg = ArgIn;
3002  QualType ArgType = Arg->getType();
3003
3004  // See through any implicit casts we added to fix the type.
3005  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3006    Arg = Cast->getSubExpr();
3007
3008  // C++ [temp.arg.nontype]p1:
3009  //
3010  //   A template-argument for a non-type, non-template
3011  //   template-parameter shall be one of: [...]
3012  //
3013  //     -- the address of an object or function with external
3014  //        linkage, including function templates and function
3015  //        template-ids but excluding non-static class members,
3016  //        expressed as & id-expression where the & is optional if
3017  //        the name refers to a function or array, or if the
3018  //        corresponding template-parameter is a reference; or
3019  DeclRefExpr *DRE = 0;
3020
3021  // In C++98/03 mode, give an extension warning on any extra parentheses.
3022  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3023  bool ExtraParens = false;
3024  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3025    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
3026      S.Diag(Arg->getSourceRange().getBegin(),
3027             diag::ext_template_arg_extra_parens)
3028        << Arg->getSourceRange();
3029      ExtraParens = true;
3030    }
3031
3032    Arg = Parens->getSubExpr();
3033  }
3034
3035  bool AddressTaken = false;
3036  SourceLocation AddrOpLoc;
3037  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3038    if (UnOp->getOpcode() == UO_AddrOf) {
3039      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3040      AddressTaken = true;
3041      AddrOpLoc = UnOp->getOperatorLoc();
3042    }
3043  } else
3044    DRE = dyn_cast<DeclRefExpr>(Arg);
3045
3046  if (!DRE) {
3047    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3048      << Arg->getSourceRange();
3049    S.Diag(Param->getLocation(), diag::note_template_param_here);
3050    return true;
3051  }
3052
3053  // Stop checking the precise nature of the argument if it is value dependent,
3054  // it should be checked when instantiated.
3055  if (Arg->isValueDependent()) {
3056    Converted = TemplateArgument(ArgIn);
3057    return false;
3058  }
3059
3060  if (!isa<ValueDecl>(DRE->getDecl())) {
3061    S.Diag(Arg->getSourceRange().getBegin(),
3062           diag::err_template_arg_not_object_or_func_form)
3063      << Arg->getSourceRange();
3064    S.Diag(Param->getLocation(), diag::note_template_param_here);
3065    return true;
3066  }
3067
3068  NamedDecl *Entity = 0;
3069
3070  // Cannot refer to non-static data members
3071  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3072    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3073      << Field << Arg->getSourceRange();
3074    S.Diag(Param->getLocation(), diag::note_template_param_here);
3075    return true;
3076  }
3077
3078  // Cannot refer to non-static member functions
3079  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3080    if (!Method->isStatic()) {
3081      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3082        << Method << Arg->getSourceRange();
3083      S.Diag(Param->getLocation(), diag::note_template_param_here);
3084      return true;
3085    }
3086
3087  // Functions must have external linkage.
3088  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3089    if (!isExternalLinkage(Func->getLinkage())) {
3090      S.Diag(Arg->getSourceRange().getBegin(),
3091             diag::err_template_arg_function_not_extern)
3092        << Func << Arg->getSourceRange();
3093      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3094        << true;
3095      return true;
3096    }
3097
3098    // Okay: we've named a function with external linkage.
3099    Entity = Func;
3100
3101    // If the template parameter has pointer type, the function decays.
3102    if (ParamType->isPointerType() && !AddressTaken)
3103      ArgType = S.Context.getPointerType(Func->getType());
3104    else if (AddressTaken && ParamType->isReferenceType()) {
3105      // If we originally had an address-of operator, but the
3106      // parameter has reference type, complain and (if things look
3107      // like they will work) drop the address-of operator.
3108      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3109                                            ParamType.getNonReferenceType())) {
3110        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3111          << ParamType;
3112        S.Diag(Param->getLocation(), diag::note_template_param_here);
3113        return true;
3114      }
3115
3116      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3117        << ParamType
3118        << FixItHint::CreateRemoval(AddrOpLoc);
3119      S.Diag(Param->getLocation(), diag::note_template_param_here);
3120
3121      ArgType = Func->getType();
3122    }
3123  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3124    if (!isExternalLinkage(Var->getLinkage())) {
3125      S.Diag(Arg->getSourceRange().getBegin(),
3126             diag::err_template_arg_object_not_extern)
3127        << Var << Arg->getSourceRange();
3128      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3129        << true;
3130      return true;
3131    }
3132
3133    // A value of reference type is not an object.
3134    if (Var->getType()->isReferenceType()) {
3135      S.Diag(Arg->getSourceRange().getBegin(),
3136             diag::err_template_arg_reference_var)
3137        << Var->getType() << Arg->getSourceRange();
3138      S.Diag(Param->getLocation(), diag::note_template_param_here);
3139      return true;
3140    }
3141
3142    // Okay: we've named an object with external linkage
3143    Entity = Var;
3144
3145    // If the template parameter has pointer type, we must have taken
3146    // the address of this object.
3147    if (ParamType->isReferenceType()) {
3148      if (AddressTaken) {
3149        // If we originally had an address-of operator, but the
3150        // parameter has reference type, complain and (if things look
3151        // like they will work) drop the address-of operator.
3152        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3153                                            ParamType.getNonReferenceType())) {
3154          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3155            << ParamType;
3156          S.Diag(Param->getLocation(), diag::note_template_param_here);
3157          return true;
3158        }
3159
3160        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3161          << ParamType
3162          << FixItHint::CreateRemoval(AddrOpLoc);
3163        S.Diag(Param->getLocation(), diag::note_template_param_here);
3164
3165        ArgType = Var->getType();
3166      }
3167    } else if (!AddressTaken && ParamType->isPointerType()) {
3168      if (Var->getType()->isArrayType()) {
3169        // Array-to-pointer decay.
3170        ArgType = S.Context.getArrayDecayedType(Var->getType());
3171      } else {
3172        // If the template parameter has pointer type but the address of
3173        // this object was not taken, complain and (possibly) recover by
3174        // taking the address of the entity.
3175        ArgType = S.Context.getPointerType(Var->getType());
3176        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3177          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3178            << ParamType;
3179          S.Diag(Param->getLocation(), diag::note_template_param_here);
3180          return true;
3181        }
3182
3183        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3184          << ParamType
3185          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3186
3187        S.Diag(Param->getLocation(), diag::note_template_param_here);
3188      }
3189    }
3190  } else {
3191    // We found something else, but we don't know specifically what it is.
3192    S.Diag(Arg->getSourceRange().getBegin(),
3193           diag::err_template_arg_not_object_or_func)
3194      << Arg->getSourceRange();
3195    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3196    return true;
3197  }
3198
3199  if (ParamType->isPointerType() &&
3200      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3201      S.IsQualificationConversion(ArgType, ParamType, false)) {
3202    // For pointer-to-object types, qualification conversions are
3203    // permitted.
3204  } else {
3205    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3206      if (!ParamRef->getPointeeType()->isFunctionType()) {
3207        // C++ [temp.arg.nontype]p5b3:
3208        //   For a non-type template-parameter of type reference to
3209        //   object, no conversions apply. The type referred to by the
3210        //   reference may be more cv-qualified than the (otherwise
3211        //   identical) type of the template- argument. The
3212        //   template-parameter is bound directly to the
3213        //   template-argument, which shall be an lvalue.
3214
3215        // FIXME: Other qualifiers?
3216        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3217        unsigned ArgQuals = ArgType.getCVRQualifiers();
3218
3219        if ((ParamQuals | ArgQuals) != ParamQuals) {
3220          S.Diag(Arg->getSourceRange().getBegin(),
3221                 diag::err_template_arg_ref_bind_ignores_quals)
3222            << ParamType << Arg->getType()
3223            << Arg->getSourceRange();
3224          S.Diag(Param->getLocation(), diag::note_template_param_here);
3225          return true;
3226        }
3227      }
3228    }
3229
3230    // At this point, the template argument refers to an object or
3231    // function with external linkage. We now need to check whether the
3232    // argument and parameter types are compatible.
3233    if (!S.Context.hasSameUnqualifiedType(ArgType,
3234                                          ParamType.getNonReferenceType())) {
3235      // We can't perform this conversion or binding.
3236      if (ParamType->isReferenceType())
3237        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3238          << ParamType << Arg->getType() << Arg->getSourceRange();
3239      else
3240        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3241          << Arg->getType() << ParamType << Arg->getSourceRange();
3242      S.Diag(Param->getLocation(), diag::note_template_param_here);
3243      return true;
3244    }
3245  }
3246
3247  // Create the template argument.
3248  Converted = TemplateArgument(Entity->getCanonicalDecl());
3249  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3250  return false;
3251}
3252
3253/// \brief Checks whether the given template argument is a pointer to
3254/// member constant according to C++ [temp.arg.nontype]p1.
3255bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3256                                                TemplateArgument &Converted) {
3257  bool Invalid = false;
3258
3259  // See through any implicit casts we added to fix the type.
3260  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3261    Arg = Cast->getSubExpr();
3262
3263  // C++ [temp.arg.nontype]p1:
3264  //
3265  //   A template-argument for a non-type, non-template
3266  //   template-parameter shall be one of: [...]
3267  //
3268  //     -- a pointer to member expressed as described in 5.3.1.
3269  DeclRefExpr *DRE = 0;
3270
3271  // In C++98/03 mode, give an extension warning on any extra parentheses.
3272  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3273  bool ExtraParens = false;
3274  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3275    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3276      Diag(Arg->getSourceRange().getBegin(),
3277           diag::ext_template_arg_extra_parens)
3278        << Arg->getSourceRange();
3279      ExtraParens = true;
3280    }
3281
3282    Arg = Parens->getSubExpr();
3283  }
3284
3285  // A pointer-to-member constant written &Class::member.
3286  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3287    if (UnOp->getOpcode() == UO_AddrOf) {
3288      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3289      if (DRE && !DRE->getQualifier())
3290        DRE = 0;
3291    }
3292  }
3293  // A constant of pointer-to-member type.
3294  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3295    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3296      if (VD->getType()->isMemberPointerType()) {
3297        if (isa<NonTypeTemplateParmDecl>(VD) ||
3298            (isa<VarDecl>(VD) &&
3299             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3300          if (Arg->isTypeDependent() || Arg->isValueDependent())
3301            Converted = TemplateArgument(Arg);
3302          else
3303            Converted = TemplateArgument(VD->getCanonicalDecl());
3304          return Invalid;
3305        }
3306      }
3307    }
3308
3309    DRE = 0;
3310  }
3311
3312  if (!DRE)
3313    return Diag(Arg->getSourceRange().getBegin(),
3314                diag::err_template_arg_not_pointer_to_member_form)
3315      << Arg->getSourceRange();
3316
3317  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3318    assert((isa<FieldDecl>(DRE->getDecl()) ||
3319            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3320           "Only non-static member pointers can make it here");
3321
3322    // Okay: this is the address of a non-static member, and therefore
3323    // a member pointer constant.
3324    if (Arg->isTypeDependent() || Arg->isValueDependent())
3325      Converted = TemplateArgument(Arg);
3326    else
3327      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3328    return Invalid;
3329  }
3330
3331  // We found something else, but we don't know specifically what it is.
3332  Diag(Arg->getSourceRange().getBegin(),
3333       diag::err_template_arg_not_pointer_to_member_form)
3334      << Arg->getSourceRange();
3335  Diag(DRE->getDecl()->getLocation(),
3336       diag::note_template_arg_refers_here);
3337  return true;
3338}
3339
3340/// \brief Check a template argument against its corresponding
3341/// non-type template parameter.
3342///
3343/// This routine implements the semantics of C++ [temp.arg.nontype].
3344/// It returns true if an error occurred, and false otherwise. \p
3345/// InstantiatedParamType is the type of the non-type template
3346/// parameter after it has been instantiated.
3347///
3348/// If no error was detected, Converted receives the converted template argument.
3349bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3350                                 QualType InstantiatedParamType, Expr *&Arg,
3351                                 TemplateArgument &Converted,
3352                                 CheckTemplateArgumentKind CTAK) {
3353  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3354
3355  // If either the parameter has a dependent type or the argument is
3356  // type-dependent, there's nothing we can check now.
3357  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3358    // FIXME: Produce a cloned, canonical expression?
3359    Converted = TemplateArgument(Arg);
3360    return false;
3361  }
3362
3363  // C++ [temp.arg.nontype]p5:
3364  //   The following conversions are performed on each expression used
3365  //   as a non-type template-argument. If a non-type
3366  //   template-argument cannot be converted to the type of the
3367  //   corresponding template-parameter then the program is
3368  //   ill-formed.
3369  //
3370  //     -- for a non-type template-parameter of integral or
3371  //        enumeration type, integral promotions (4.5) and integral
3372  //        conversions (4.7) are applied.
3373  QualType ParamType = InstantiatedParamType;
3374  QualType ArgType = Arg->getType();
3375  if (ParamType->isIntegralOrEnumerationType()) {
3376    // C++ [temp.arg.nontype]p1:
3377    //   A template-argument for a non-type, non-template
3378    //   template-parameter shall be one of:
3379    //
3380    //     -- an integral constant-expression of integral or enumeration
3381    //        type; or
3382    //     -- the name of a non-type template-parameter; or
3383    SourceLocation NonConstantLoc;
3384    llvm::APSInt Value;
3385    if (!ArgType->isIntegralOrEnumerationType()) {
3386      Diag(Arg->getSourceRange().getBegin(),
3387           diag::err_template_arg_not_integral_or_enumeral)
3388        << ArgType << Arg->getSourceRange();
3389      Diag(Param->getLocation(), diag::note_template_param_here);
3390      return true;
3391    } else if (!Arg->isValueDependent() &&
3392               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3393      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3394        << ArgType << Arg->getSourceRange();
3395      return true;
3396    }
3397
3398    // From here on out, all we care about are the unqualified forms
3399    // of the parameter and argument types.
3400    ParamType = ParamType.getUnqualifiedType();
3401    ArgType = ArgType.getUnqualifiedType();
3402
3403    // Try to convert the argument to the parameter's type.
3404    if (Context.hasSameType(ParamType, ArgType)) {
3405      // Okay: no conversion necessary
3406    } else if (CTAK == CTAK_Deduced) {
3407      // C++ [temp.deduct.type]p17:
3408      //   If, in the declaration of a function template with a non-type
3409      //   template-parameter, the non-type template- parameter is used
3410      //   in an expression in the function parameter-list and, if the
3411      //   corresponding template-argument is deduced, the
3412      //   template-argument type shall match the type of the
3413      //   template-parameter exactly, except that a template-argument
3414      //   deduced from an array bound may be of any integral type.
3415      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3416        << ArgType << ParamType;
3417      Diag(Param->getLocation(), diag::note_template_param_here);
3418      return true;
3419    } else if (ParamType->isBooleanType()) {
3420      // This is an integral-to-boolean conversion.
3421      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3422    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3423               !ParamType->isEnumeralType()) {
3424      // This is an integral promotion or conversion.
3425      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3426    } else {
3427      // We can't perform this conversion.
3428      Diag(Arg->getSourceRange().getBegin(),
3429           diag::err_template_arg_not_convertible)
3430        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3431      Diag(Param->getLocation(), diag::note_template_param_here);
3432      return true;
3433    }
3434
3435    QualType IntegerType = Context.getCanonicalType(ParamType);
3436    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3437      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3438
3439    if (!Arg->isValueDependent()) {
3440      llvm::APSInt OldValue = Value;
3441
3442      // Coerce the template argument's value to the value it will have
3443      // based on the template parameter's type.
3444      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3445      if (Value.getBitWidth() != AllowedBits)
3446        Value = Value.extOrTrunc(AllowedBits);
3447      Value.setIsSigned(IntegerType->isSignedIntegerType());
3448
3449      // Complain if an unsigned parameter received a negative value.
3450      if (IntegerType->isUnsignedIntegerType()
3451          && (OldValue.isSigned() && OldValue.isNegative())) {
3452        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3453          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3454          << Arg->getSourceRange();
3455        Diag(Param->getLocation(), diag::note_template_param_here);
3456      }
3457
3458      // Complain if we overflowed the template parameter's type.
3459      unsigned RequiredBits;
3460      if (IntegerType->isUnsignedIntegerType())
3461        RequiredBits = OldValue.getActiveBits();
3462      else if (OldValue.isUnsigned())
3463        RequiredBits = OldValue.getActiveBits() + 1;
3464      else
3465        RequiredBits = OldValue.getMinSignedBits();
3466      if (RequiredBits > AllowedBits) {
3467        Diag(Arg->getSourceRange().getBegin(),
3468             diag::warn_template_arg_too_large)
3469          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3470          << Arg->getSourceRange();
3471        Diag(Param->getLocation(), diag::note_template_param_here);
3472      }
3473    }
3474
3475    // Add the value of this argument to the list of converted
3476    // arguments. We use the bitwidth and signedness of the template
3477    // parameter.
3478    if (Arg->isValueDependent()) {
3479      // The argument is value-dependent. Create a new
3480      // TemplateArgument with the converted expression.
3481      Converted = TemplateArgument(Arg);
3482      return false;
3483    }
3484
3485    Converted = TemplateArgument(Value,
3486                                 ParamType->isEnumeralType() ? ParamType
3487                                                             : IntegerType);
3488    return false;
3489  }
3490
3491  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3492
3493  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3494  // from a template argument of type std::nullptr_t to a non-type
3495  // template parameter of type pointer to object, pointer to
3496  // function, or pointer-to-member, respectively.
3497  if (ArgType->isNullPtrType() &&
3498      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3499    Converted = TemplateArgument((NamedDecl *)0);
3500    return false;
3501  }
3502
3503  // Handle pointer-to-function, reference-to-function, and
3504  // pointer-to-member-function all in (roughly) the same way.
3505  if (// -- For a non-type template-parameter of type pointer to
3506      //    function, only the function-to-pointer conversion (4.3) is
3507      //    applied. If the template-argument represents a set of
3508      //    overloaded functions (or a pointer to such), the matching
3509      //    function is selected from the set (13.4).
3510      (ParamType->isPointerType() &&
3511       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3512      // -- For a non-type template-parameter of type reference to
3513      //    function, no conversions apply. If the template-argument
3514      //    represents a set of overloaded functions, the matching
3515      //    function is selected from the set (13.4).
3516      (ParamType->isReferenceType() &&
3517       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3518      // -- For a non-type template-parameter of type pointer to
3519      //    member function, no conversions apply. If the
3520      //    template-argument represents a set of overloaded member
3521      //    functions, the matching member function is selected from
3522      //    the set (13.4).
3523      (ParamType->isMemberPointerType() &&
3524       ParamType->getAs<MemberPointerType>()->getPointeeType()
3525         ->isFunctionType())) {
3526
3527    if (Arg->getType() == Context.OverloadTy) {
3528      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3529                                                                true,
3530                                                                FoundResult)) {
3531        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3532          return true;
3533
3534        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3535        ArgType = Arg->getType();
3536      } else
3537        return true;
3538    }
3539
3540    if (!ParamType->isMemberPointerType())
3541      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3542                                                            ParamType,
3543                                                            Arg, Converted);
3544
3545    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3546                                  false)) {
3547      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3548    } else if (!Context.hasSameUnqualifiedType(ArgType,
3549                                           ParamType.getNonReferenceType())) {
3550      // We can't perform this conversion.
3551      Diag(Arg->getSourceRange().getBegin(),
3552           diag::err_template_arg_not_convertible)
3553        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3554      Diag(Param->getLocation(), diag::note_template_param_here);
3555      return true;
3556    }
3557
3558    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3559  }
3560
3561  if (ParamType->isPointerType()) {
3562    //   -- for a non-type template-parameter of type pointer to
3563    //      object, qualification conversions (4.4) and the
3564    //      array-to-pointer conversion (4.2) are applied.
3565    // C++0x also allows a value of std::nullptr_t.
3566    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3567           "Only object pointers allowed here");
3568
3569    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3570                                                          ParamType,
3571                                                          Arg, Converted);
3572  }
3573
3574  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3575    //   -- For a non-type template-parameter of type reference to
3576    //      object, no conversions apply. The type referred to by the
3577    //      reference may be more cv-qualified than the (otherwise
3578    //      identical) type of the template-argument. The
3579    //      template-parameter is bound directly to the
3580    //      template-argument, which must be an lvalue.
3581    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3582           "Only object references allowed here");
3583
3584    if (Arg->getType() == Context.OverloadTy) {
3585      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3586                                                 ParamRefType->getPointeeType(),
3587                                                                true,
3588                                                                FoundResult)) {
3589        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3590          return true;
3591
3592        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3593        ArgType = Arg->getType();
3594      } else
3595        return true;
3596    }
3597
3598    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3599                                                          ParamType,
3600                                                          Arg, Converted);
3601  }
3602
3603  //     -- For a non-type template-parameter of type pointer to data
3604  //        member, qualification conversions (4.4) are applied.
3605  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3606
3607  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3608    // Types match exactly: nothing more to do here.
3609  } else if (IsQualificationConversion(ArgType, ParamType, false)) {
3610    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3611  } else {
3612    // We can't perform this conversion.
3613    Diag(Arg->getSourceRange().getBegin(),
3614         diag::err_template_arg_not_convertible)
3615      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3616    Diag(Param->getLocation(), diag::note_template_param_here);
3617    return true;
3618  }
3619
3620  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3621}
3622
3623/// \brief Check a template argument against its corresponding
3624/// template template parameter.
3625///
3626/// This routine implements the semantics of C++ [temp.arg.template].
3627/// It returns true if an error occurred, and false otherwise.
3628bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3629                                 const TemplateArgumentLoc &Arg) {
3630  TemplateName Name = Arg.getArgument().getAsTemplate();
3631  TemplateDecl *Template = Name.getAsTemplateDecl();
3632  if (!Template) {
3633    // Any dependent template name is fine.
3634    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3635    return false;
3636  }
3637
3638  // C++ [temp.arg.template]p1:
3639  //   A template-argument for a template template-parameter shall be
3640  //   the name of a class template, expressed as id-expression. Only
3641  //   primary class templates are considered when matching the
3642  //   template template argument with the corresponding parameter;
3643  //   partial specializations are not considered even if their
3644  //   parameter lists match that of the template template parameter.
3645  //
3646  // Note that we also allow template template parameters here, which
3647  // will happen when we are dealing with, e.g., class template
3648  // partial specializations.
3649  if (!isa<ClassTemplateDecl>(Template) &&
3650      !isa<TemplateTemplateParmDecl>(Template)) {
3651    assert(isa<FunctionTemplateDecl>(Template) &&
3652           "Only function templates are possible here");
3653    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3654    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3655      << Template;
3656  }
3657
3658  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3659                                         Param->getTemplateParameters(),
3660                                         true,
3661                                         TPL_TemplateTemplateArgumentMatch,
3662                                         Arg.getLocation());
3663}
3664
3665/// \brief Given a non-type template argument that refers to a
3666/// declaration and the type of its corresponding non-type template
3667/// parameter, produce an expression that properly refers to that
3668/// declaration.
3669ExprResult
3670Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3671                                              QualType ParamType,
3672                                              SourceLocation Loc) {
3673  assert(Arg.getKind() == TemplateArgument::Declaration &&
3674         "Only declaration template arguments permitted here");
3675  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3676
3677  if (VD->getDeclContext()->isRecord() &&
3678      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3679    // If the value is a class member, we might have a pointer-to-member.
3680    // Determine whether the non-type template template parameter is of
3681    // pointer-to-member type. If so, we need to build an appropriate
3682    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3683    // would refer to the member itself.
3684    if (ParamType->isMemberPointerType()) {
3685      QualType ClassType
3686        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3687      NestedNameSpecifier *Qualifier
3688        = NestedNameSpecifier::Create(Context, 0, false,
3689                                      ClassType.getTypePtr());
3690      CXXScopeSpec SS;
3691      SS.MakeTrivial(Context, Qualifier, Loc);
3692
3693      // The actual value-ness of this is unimportant, but for
3694      // internal consistency's sake, references to instance methods
3695      // are r-values.
3696      ExprValueKind VK = VK_LValue;
3697      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3698        VK = VK_RValue;
3699
3700      ExprResult RefExpr = BuildDeclRefExpr(VD,
3701                                            VD->getType().getNonReferenceType(),
3702                                            VK,
3703                                            Loc,
3704                                            &SS);
3705      if (RefExpr.isInvalid())
3706        return ExprError();
3707
3708      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3709
3710      // We might need to perform a trailing qualification conversion, since
3711      // the element type on the parameter could be more qualified than the
3712      // element type in the expression we constructed.
3713      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3714                                    ParamType.getUnqualifiedType(), false)) {
3715        Expr *RefE = RefExpr.takeAs<Expr>();
3716        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3717        RefExpr = Owned(RefE);
3718      }
3719
3720      assert(!RefExpr.isInvalid() &&
3721             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3722                                 ParamType.getUnqualifiedType()));
3723      return move(RefExpr);
3724    }
3725  }
3726
3727  QualType T = VD->getType().getNonReferenceType();
3728  if (ParamType->isPointerType()) {
3729    // When the non-type template parameter is a pointer, take the
3730    // address of the declaration.
3731    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3732    if (RefExpr.isInvalid())
3733      return ExprError();
3734
3735    if (T->isFunctionType() || T->isArrayType()) {
3736      // Decay functions and arrays.
3737      Expr *RefE = (Expr *)RefExpr.get();
3738      DefaultFunctionArrayConversion(RefE);
3739      if (RefE != RefExpr.get()) {
3740        RefExpr.release();
3741        RefExpr = Owned(RefE);
3742      }
3743
3744      return move(RefExpr);
3745    }
3746
3747    // Take the address of everything else
3748    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3749  }
3750
3751  ExprValueKind VK = VK_RValue;
3752
3753  // If the non-type template parameter has reference type, qualify the
3754  // resulting declaration reference with the extra qualifiers on the
3755  // type that the reference refers to.
3756  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3757    VK = VK_LValue;
3758    T = Context.getQualifiedType(T,
3759                              TargetRef->getPointeeType().getQualifiers());
3760  }
3761
3762  return BuildDeclRefExpr(VD, T, VK, Loc);
3763}
3764
3765/// \brief Construct a new expression that refers to the given
3766/// integral template argument with the given source-location
3767/// information.
3768///
3769/// This routine takes care of the mapping from an integral template
3770/// argument (which may have any integral type) to the appropriate
3771/// literal value.
3772ExprResult
3773Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3774                                                  SourceLocation Loc) {
3775  assert(Arg.getKind() == TemplateArgument::Integral &&
3776         "Operation is only valid for integral template arguments");
3777  QualType T = Arg.getIntegralType();
3778  if (T->isCharType() || T->isWideCharType())
3779    return Owned(new (Context) CharacterLiteral(
3780                                             Arg.getAsIntegral()->getZExtValue(),
3781                                             T->isWideCharType(),
3782                                             T,
3783                                             Loc));
3784  if (T->isBooleanType())
3785    return Owned(new (Context) CXXBoolLiteralExpr(
3786                                            Arg.getAsIntegral()->getBoolValue(),
3787                                            T,
3788                                            Loc));
3789
3790  QualType BT;
3791  if (const EnumType *ET = T->getAs<EnumType>())
3792    BT = ET->getDecl()->getPromotionType();
3793  else
3794    BT = T;
3795
3796  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3797  if (T->isEnumeralType()) {
3798    // FIXME: This is a hack. We need a better way to handle substituted
3799    // non-type template parameters.
3800    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast,
3801                                      E, 0,
3802                                      Context.getTrivialTypeSourceInfo(T, Loc),
3803                                      Loc, Loc);
3804  }
3805
3806  return Owned(E);
3807}
3808
3809/// \brief Match two template parameters within template parameter lists.
3810static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
3811                                       bool Complain,
3812                                     Sema::TemplateParameterListEqualKind Kind,
3813                                       SourceLocation TemplateArgLoc) {
3814  // Check the actual kind (type, non-type, template).
3815  if (Old->getKind() != New->getKind()) {
3816    if (Complain) {
3817      unsigned NextDiag = diag::err_template_param_different_kind;
3818      if (TemplateArgLoc.isValid()) {
3819        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3820        NextDiag = diag::note_template_param_different_kind;
3821      }
3822      S.Diag(New->getLocation(), NextDiag)
3823        << (Kind != Sema::TPL_TemplateMatch);
3824      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
3825        << (Kind != Sema::TPL_TemplateMatch);
3826    }
3827
3828    return false;
3829  }
3830
3831  // Check that both are parameter packs are neither are parameter packs.
3832  // However, if we are matching a template template argument to a
3833  // template template parameter, the template template parameter can have
3834  // a parameter pack where the template template argument does not.
3835  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
3836      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3837        Old->isTemplateParameterPack())) {
3838    if (Complain) {
3839      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3840      if (TemplateArgLoc.isValid()) {
3841        S.Diag(TemplateArgLoc,
3842             diag::err_template_arg_template_params_mismatch);
3843        NextDiag = diag::note_template_parameter_pack_non_pack;
3844      }
3845
3846      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
3847                      : isa<NonTypeTemplateParmDecl>(New)? 1
3848                      : 2;
3849      S.Diag(New->getLocation(), NextDiag)
3850        << ParamKind << New->isParameterPack();
3851      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
3852        << ParamKind << Old->isParameterPack();
3853    }
3854
3855    return false;
3856  }
3857
3858  // For non-type template parameters, check the type of the parameter.
3859  if (NonTypeTemplateParmDecl *OldNTTP
3860                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
3861    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
3862
3863    // If we are matching a template template argument to a template
3864    // template parameter and one of the non-type template parameter types
3865    // is dependent, then we must wait until template instantiation time
3866    // to actually compare the arguments.
3867    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3868        (OldNTTP->getType()->isDependentType() ||
3869         NewNTTP->getType()->isDependentType()))
3870      return true;
3871
3872    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
3873      if (Complain) {
3874        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3875        if (TemplateArgLoc.isValid()) {
3876          S.Diag(TemplateArgLoc,
3877                 diag::err_template_arg_template_params_mismatch);
3878          NextDiag = diag::note_template_nontype_parm_different_type;
3879        }
3880        S.Diag(NewNTTP->getLocation(), NextDiag)
3881          << NewNTTP->getType()
3882          << (Kind != Sema::TPL_TemplateMatch);
3883        S.Diag(OldNTTP->getLocation(),
3884               diag::note_template_nontype_parm_prev_declaration)
3885          << OldNTTP->getType();
3886      }
3887
3888      return false;
3889    }
3890
3891    return true;
3892  }
3893
3894  // For template template parameters, check the template parameter types.
3895  // The template parameter lists of template template
3896  // parameters must agree.
3897  if (TemplateTemplateParmDecl *OldTTP
3898                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
3899    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
3900    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3901                                            OldTTP->getTemplateParameters(),
3902                                            Complain,
3903                                        (Kind == Sema::TPL_TemplateMatch
3904                                           ? Sema::TPL_TemplateTemplateParmMatch
3905                                           : Kind),
3906                                            TemplateArgLoc);
3907  }
3908
3909  return true;
3910}
3911
3912/// \brief Diagnose a known arity mismatch when comparing template argument
3913/// lists.
3914static
3915void DiagnoseTemplateParameterListArityMismatch(Sema &S,
3916                                                TemplateParameterList *New,
3917                                                TemplateParameterList *Old,
3918                                      Sema::TemplateParameterListEqualKind Kind,
3919                                                SourceLocation TemplateArgLoc) {
3920  unsigned NextDiag = diag::err_template_param_list_different_arity;
3921  if (TemplateArgLoc.isValid()) {
3922    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3923    NextDiag = diag::note_template_param_list_different_arity;
3924  }
3925  S.Diag(New->getTemplateLoc(), NextDiag)
3926    << (New->size() > Old->size())
3927    << (Kind != Sema::TPL_TemplateMatch)
3928    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3929  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3930    << (Kind != Sema::TPL_TemplateMatch)
3931    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3932}
3933
3934/// \brief Determine whether the given template parameter lists are
3935/// equivalent.
3936///
3937/// \param New  The new template parameter list, typically written in the
3938/// source code as part of a new template declaration.
3939///
3940/// \param Old  The old template parameter list, typically found via
3941/// name lookup of the template declared with this template parameter
3942/// list.
3943///
3944/// \param Complain  If true, this routine will produce a diagnostic if
3945/// the template parameter lists are not equivalent.
3946///
3947/// \param Kind describes how we are to match the template parameter lists.
3948///
3949/// \param TemplateArgLoc If this source location is valid, then we
3950/// are actually checking the template parameter list of a template
3951/// argument (New) against the template parameter list of its
3952/// corresponding template template parameter (Old). We produce
3953/// slightly different diagnostics in this scenario.
3954///
3955/// \returns True if the template parameter lists are equal, false
3956/// otherwise.
3957bool
3958Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3959                                     TemplateParameterList *Old,
3960                                     bool Complain,
3961                                     TemplateParameterListEqualKind Kind,
3962                                     SourceLocation TemplateArgLoc) {
3963  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
3964    if (Complain)
3965      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3966                                                 TemplateArgLoc);
3967
3968    return false;
3969  }
3970
3971  // C++0x [temp.arg.template]p3:
3972  //   A template-argument matches a template template-parameter (call it P)
3973  //   when each of the template parameters in the template-parameter-list of
3974  //   the template-argument's corresponding class template or template alias
3975  //   (call it A) matches the corresponding template parameter in the
3976  //   template-parameter-list of P. [...]
3977  TemplateParameterList::iterator NewParm = New->begin();
3978  TemplateParameterList::iterator NewParmEnd = New->end();
3979  for (TemplateParameterList::iterator OldParm = Old->begin(),
3980                                    OldParmEnd = Old->end();
3981       OldParm != OldParmEnd; ++OldParm) {
3982    if (Kind != TPL_TemplateTemplateArgumentMatch ||
3983        !(*OldParm)->isTemplateParameterPack()) {
3984      if (NewParm == NewParmEnd) {
3985        if (Complain)
3986          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
3987                                                     TemplateArgLoc);
3988
3989        return false;
3990      }
3991
3992      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
3993                                      Kind, TemplateArgLoc))
3994        return false;
3995
3996      ++NewParm;
3997      continue;
3998    }
3999
4000    // C++0x [temp.arg.template]p3:
4001    //   [...] When P's template- parameter-list contains a template parameter
4002    //   pack (14.5.3), the template parameter pack will match zero or more
4003    //   template parameters or template parameter packs in the
4004    //   template-parameter-list of A with the same type and form as the
4005    //   template parameter pack in P (ignoring whether those template
4006    //   parameters are template parameter packs).
4007    for (; NewParm != NewParmEnd; ++NewParm) {
4008      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4009                                      Kind, TemplateArgLoc))
4010        return false;
4011    }
4012  }
4013
4014  // Make sure we exhausted all of the arguments.
4015  if (NewParm != NewParmEnd) {
4016    if (Complain)
4017      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4018                                                 TemplateArgLoc);
4019
4020    return false;
4021  }
4022
4023  return true;
4024}
4025
4026/// \brief Check whether a template can be declared within this scope.
4027///
4028/// If the template declaration is valid in this scope, returns
4029/// false. Otherwise, issues a diagnostic and returns true.
4030bool
4031Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4032  // Find the nearest enclosing declaration scope.
4033  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4034         (S->getFlags() & Scope::TemplateParamScope) != 0)
4035    S = S->getParent();
4036
4037  // C++ [temp]p2:
4038  //   A template-declaration can appear only as a namespace scope or
4039  //   class scope declaration.
4040  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4041  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4042      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4043    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4044             << TemplateParams->getSourceRange();
4045
4046  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4047    Ctx = Ctx->getParent();
4048
4049  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4050    return false;
4051
4052  return Diag(TemplateParams->getTemplateLoc(),
4053              diag::err_template_outside_namespace_or_class_scope)
4054    << TemplateParams->getSourceRange();
4055}
4056
4057/// \brief Determine what kind of template specialization the given declaration
4058/// is.
4059static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4060  if (!D)
4061    return TSK_Undeclared;
4062
4063  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4064    return Record->getTemplateSpecializationKind();
4065  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4066    return Function->getTemplateSpecializationKind();
4067  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4068    return Var->getTemplateSpecializationKind();
4069
4070  return TSK_Undeclared;
4071}
4072
4073/// \brief Check whether a specialization is well-formed in the current
4074/// context.
4075///
4076/// This routine determines whether a template specialization can be declared
4077/// in the current context (C++ [temp.expl.spec]p2).
4078///
4079/// \param S the semantic analysis object for which this check is being
4080/// performed.
4081///
4082/// \param Specialized the entity being specialized or instantiated, which
4083/// may be a kind of template (class template, function template, etc.) or
4084/// a member of a class template (member function, static data member,
4085/// member class).
4086///
4087/// \param PrevDecl the previous declaration of this entity, if any.
4088///
4089/// \param Loc the location of the explicit specialization or instantiation of
4090/// this entity.
4091///
4092/// \param IsPartialSpecialization whether this is a partial specialization of
4093/// a class template.
4094///
4095/// \returns true if there was an error that we cannot recover from, false
4096/// otherwise.
4097static bool CheckTemplateSpecializationScope(Sema &S,
4098                                             NamedDecl *Specialized,
4099                                             NamedDecl *PrevDecl,
4100                                             SourceLocation Loc,
4101                                             bool IsPartialSpecialization) {
4102  // Keep these "kind" numbers in sync with the %select statements in the
4103  // various diagnostics emitted by this routine.
4104  int EntityKind = 0;
4105  if (isa<ClassTemplateDecl>(Specialized))
4106    EntityKind = IsPartialSpecialization? 1 : 0;
4107  else if (isa<FunctionTemplateDecl>(Specialized))
4108    EntityKind = 2;
4109  else if (isa<CXXMethodDecl>(Specialized))
4110    EntityKind = 3;
4111  else if (isa<VarDecl>(Specialized))
4112    EntityKind = 4;
4113  else if (isa<RecordDecl>(Specialized))
4114    EntityKind = 5;
4115  else {
4116    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4117    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4118    return true;
4119  }
4120
4121  // C++ [temp.expl.spec]p2:
4122  //   An explicit specialization shall be declared in the namespace
4123  //   of which the template is a member, or, for member templates, in
4124  //   the namespace of which the enclosing class or enclosing class
4125  //   template is a member. An explicit specialization of a member
4126  //   function, member class or static data member of a class
4127  //   template shall be declared in the namespace of which the class
4128  //   template is a member. Such a declaration may also be a
4129  //   definition. If the declaration is not a definition, the
4130  //   specialization may be defined later in the name- space in which
4131  //   the explicit specialization was declared, or in a namespace
4132  //   that encloses the one in which the explicit specialization was
4133  //   declared.
4134  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4135    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4136      << Specialized;
4137    return true;
4138  }
4139
4140  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4141    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4142      << Specialized;
4143    return true;
4144  }
4145
4146  // C++ [temp.class.spec]p6:
4147  //   A class template partial specialization may be declared or redeclared
4148  //   in any namespace scope in which its definition may be defined (14.5.1
4149  //   and 14.5.2).
4150  bool ComplainedAboutScope = false;
4151  DeclContext *SpecializedContext
4152    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4153  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4154  if ((!PrevDecl ||
4155       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4156       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4157    // C++ [temp.exp.spec]p2:
4158    //   An explicit specialization shall be declared in the namespace of which
4159    //   the template is a member, or, for member templates, in the namespace
4160    //   of which the enclosing class or enclosing class template is a member.
4161    //   An explicit specialization of a member function, member class or
4162    //   static data member of a class template shall be declared in the
4163    //   namespace of which the class template is a member.
4164    //
4165    // C++0x [temp.expl.spec]p2:
4166    //   An explicit specialization shall be declared in a namespace enclosing
4167    //   the specialized template.
4168    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4169        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4170      bool IsCPlusPlus0xExtension
4171        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4172      if (isa<TranslationUnitDecl>(SpecializedContext))
4173        S.Diag(Loc, IsCPlusPlus0xExtension
4174                      ? diag::ext_template_spec_decl_out_of_scope_global
4175                      : diag::err_template_spec_decl_out_of_scope_global)
4176          << EntityKind << Specialized;
4177      else if (isa<NamespaceDecl>(SpecializedContext))
4178        S.Diag(Loc, IsCPlusPlus0xExtension
4179                      ? diag::ext_template_spec_decl_out_of_scope
4180                      : diag::err_template_spec_decl_out_of_scope)
4181          << EntityKind << Specialized
4182          << cast<NamedDecl>(SpecializedContext);
4183
4184      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4185      ComplainedAboutScope = true;
4186    }
4187  }
4188
4189  // Make sure that this redeclaration (or definition) occurs in an enclosing
4190  // namespace.
4191  // Note that HandleDeclarator() performs this check for explicit
4192  // specializations of function templates, static data members, and member
4193  // functions, so we skip the check here for those kinds of entities.
4194  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4195  // Should we refactor that check, so that it occurs later?
4196  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4197      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4198        isa<FunctionDecl>(Specialized))) {
4199    if (isa<TranslationUnitDecl>(SpecializedContext))
4200      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4201        << EntityKind << Specialized;
4202    else if (isa<NamespaceDecl>(SpecializedContext))
4203      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4204        << EntityKind << Specialized
4205        << cast<NamedDecl>(SpecializedContext);
4206
4207    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4208  }
4209
4210  // FIXME: check for specialization-after-instantiation errors and such.
4211
4212  return false;
4213}
4214
4215/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4216/// that checks non-type template partial specialization arguments.
4217static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4218                                                NonTypeTemplateParmDecl *Param,
4219                                                  const TemplateArgument *Args,
4220                                                        unsigned NumArgs) {
4221  for (unsigned I = 0; I != NumArgs; ++I) {
4222    if (Args[I].getKind() == TemplateArgument::Pack) {
4223      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4224                                                           Args[I].pack_begin(),
4225                                                           Args[I].pack_size()))
4226        return true;
4227
4228      continue;
4229    }
4230
4231    Expr *ArgExpr = Args[I].getAsExpr();
4232    if (!ArgExpr) {
4233      continue;
4234    }
4235
4236    // We can have a pack expansion of any of the bullets below.
4237    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4238      ArgExpr = Expansion->getPattern();
4239
4240    // Strip off any implicit casts we added as part of type checking.
4241    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4242      ArgExpr = ICE->getSubExpr();
4243
4244    // C++ [temp.class.spec]p8:
4245    //   A non-type argument is non-specialized if it is the name of a
4246    //   non-type parameter. All other non-type arguments are
4247    //   specialized.
4248    //
4249    // Below, we check the two conditions that only apply to
4250    // specialized non-type arguments, so skip any non-specialized
4251    // arguments.
4252    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4253      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4254        continue;
4255
4256    // C++ [temp.class.spec]p9:
4257    //   Within the argument list of a class template partial
4258    //   specialization, the following restrictions apply:
4259    //     -- A partially specialized non-type argument expression
4260    //        shall not involve a template parameter of the partial
4261    //        specialization except when the argument expression is a
4262    //        simple identifier.
4263    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4264      S.Diag(ArgExpr->getLocStart(),
4265           diag::err_dependent_non_type_arg_in_partial_spec)
4266        << ArgExpr->getSourceRange();
4267      return true;
4268    }
4269
4270    //     -- The type of a template parameter corresponding to a
4271    //        specialized non-type argument shall not be dependent on a
4272    //        parameter of the specialization.
4273    if (Param->getType()->isDependentType()) {
4274      S.Diag(ArgExpr->getLocStart(),
4275           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4276        << Param->getType()
4277        << ArgExpr->getSourceRange();
4278      S.Diag(Param->getLocation(), diag::note_template_param_here);
4279      return true;
4280    }
4281  }
4282
4283  return false;
4284}
4285
4286/// \brief Check the non-type template arguments of a class template
4287/// partial specialization according to C++ [temp.class.spec]p9.
4288///
4289/// \param TemplateParams the template parameters of the primary class
4290/// template.
4291///
4292/// \param TemplateArg the template arguments of the class template
4293/// partial specialization.
4294///
4295/// \returns true if there was an error, false otherwise.
4296static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4297                                        TemplateParameterList *TemplateParams,
4298                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4299  const TemplateArgument *ArgList = TemplateArgs.data();
4300
4301  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4302    NonTypeTemplateParmDecl *Param
4303      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4304    if (!Param)
4305      continue;
4306
4307    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4308                                                           &ArgList[I], 1))
4309      return true;
4310  }
4311
4312  return false;
4313}
4314
4315/// \brief Retrieve the previous declaration of the given declaration.
4316static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4317  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4318    return VD->getPreviousDeclaration();
4319  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4320    return FD->getPreviousDeclaration();
4321  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4322    return TD->getPreviousDeclaration();
4323  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4324    return TD->getPreviousDeclaration();
4325  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4326    return FTD->getPreviousDeclaration();
4327  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4328    return CTD->getPreviousDeclaration();
4329  return 0;
4330}
4331
4332DeclResult
4333Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4334                                       TagUseKind TUK,
4335                                       SourceLocation KWLoc,
4336                                       CXXScopeSpec &SS,
4337                                       TemplateTy TemplateD,
4338                                       SourceLocation TemplateNameLoc,
4339                                       SourceLocation LAngleLoc,
4340                                       ASTTemplateArgsPtr TemplateArgsIn,
4341                                       SourceLocation RAngleLoc,
4342                                       AttributeList *Attr,
4343                               MultiTemplateParamsArg TemplateParameterLists) {
4344  assert(TUK != TUK_Reference && "References are not specializations");
4345
4346  // Find the class template we're specializing
4347  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4348  ClassTemplateDecl *ClassTemplate
4349    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4350
4351  if (!ClassTemplate) {
4352    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4353      << (Name.getAsTemplateDecl() &&
4354          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4355    return true;
4356  }
4357
4358  bool isExplicitSpecialization = false;
4359  bool isPartialSpecialization = false;
4360
4361  // Check the validity of the template headers that introduce this
4362  // template.
4363  // FIXME: We probably shouldn't complain about these headers for
4364  // friend declarations.
4365  bool Invalid = false;
4366  TemplateParameterList *TemplateParams
4367    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4368                        (TemplateParameterList**)TemplateParameterLists.get(),
4369                                              TemplateParameterLists.size(),
4370                                              TUK == TUK_Friend,
4371                                              isExplicitSpecialization,
4372                                              Invalid);
4373  if (Invalid)
4374    return true;
4375
4376  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
4377  if (TemplateParams)
4378    --NumMatchedTemplateParamLists;
4379
4380  if (TemplateParams && TemplateParams->size() > 0) {
4381    isPartialSpecialization = true;
4382
4383    if (TUK == TUK_Friend) {
4384      Diag(KWLoc, diag::err_partial_specialization_friend)
4385        << SourceRange(LAngleLoc, RAngleLoc);
4386      return true;
4387    }
4388
4389    // C++ [temp.class.spec]p10:
4390    //   The template parameter list of a specialization shall not
4391    //   contain default template argument values.
4392    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4393      Decl *Param = TemplateParams->getParam(I);
4394      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4395        if (TTP->hasDefaultArgument()) {
4396          Diag(TTP->getDefaultArgumentLoc(),
4397               diag::err_default_arg_in_partial_spec);
4398          TTP->removeDefaultArgument();
4399        }
4400      } else if (NonTypeTemplateParmDecl *NTTP
4401                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4402        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4403          Diag(NTTP->getDefaultArgumentLoc(),
4404               diag::err_default_arg_in_partial_spec)
4405            << DefArg->getSourceRange();
4406          NTTP->removeDefaultArgument();
4407        }
4408      } else {
4409        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4410        if (TTP->hasDefaultArgument()) {
4411          Diag(TTP->getDefaultArgument().getLocation(),
4412               diag::err_default_arg_in_partial_spec)
4413            << TTP->getDefaultArgument().getSourceRange();
4414          TTP->removeDefaultArgument();
4415        }
4416      }
4417    }
4418  } else if (TemplateParams) {
4419    if (TUK == TUK_Friend)
4420      Diag(KWLoc, diag::err_template_spec_friend)
4421        << FixItHint::CreateRemoval(
4422                                SourceRange(TemplateParams->getTemplateLoc(),
4423                                            TemplateParams->getRAngleLoc()))
4424        << SourceRange(LAngleLoc, RAngleLoc);
4425    else
4426      isExplicitSpecialization = true;
4427  } else if (TUK != TUK_Friend) {
4428    Diag(KWLoc, diag::err_template_spec_needs_header)
4429      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4430    isExplicitSpecialization = true;
4431  }
4432
4433  // Check that the specialization uses the same tag kind as the
4434  // original template.
4435  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4436  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4437  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4438                                    Kind, KWLoc,
4439                                    *ClassTemplate->getIdentifier())) {
4440    Diag(KWLoc, diag::err_use_with_wrong_tag)
4441      << ClassTemplate
4442      << FixItHint::CreateReplacement(KWLoc,
4443                            ClassTemplate->getTemplatedDecl()->getKindName());
4444    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4445         diag::note_previous_use);
4446    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4447  }
4448
4449  // Translate the parser's template argument list in our AST format.
4450  TemplateArgumentListInfo TemplateArgs;
4451  TemplateArgs.setLAngleLoc(LAngleLoc);
4452  TemplateArgs.setRAngleLoc(RAngleLoc);
4453  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4454
4455  // Check for unexpanded parameter packs in any of the template arguments.
4456  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4457    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4458                                        UPPC_PartialSpecialization))
4459      return true;
4460
4461  // Check that the template argument list is well-formed for this
4462  // template.
4463  llvm::SmallVector<TemplateArgument, 4> Converted;
4464  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4465                                TemplateArgs, false, Converted))
4466    return true;
4467
4468  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4469         "Converted template argument list is too short!");
4470
4471  // Find the class template (partial) specialization declaration that
4472  // corresponds to these arguments.
4473  if (isPartialSpecialization) {
4474    if (CheckClassTemplatePartialSpecializationArgs(*this,
4475                                         ClassTemplate->getTemplateParameters(),
4476                                         Converted))
4477      return true;
4478
4479    if (!Name.isDependent() &&
4480        !TemplateSpecializationType::anyDependentTemplateArguments(
4481                                             TemplateArgs.getArgumentArray(),
4482                                                         TemplateArgs.size())) {
4483      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4484        << ClassTemplate->getDeclName();
4485      isPartialSpecialization = false;
4486    }
4487  }
4488
4489  void *InsertPos = 0;
4490  ClassTemplateSpecializationDecl *PrevDecl = 0;
4491
4492  if (isPartialSpecialization)
4493    // FIXME: Template parameter list matters, too
4494    PrevDecl
4495      = ClassTemplate->findPartialSpecialization(Converted.data(),
4496                                                 Converted.size(),
4497                                                 InsertPos);
4498  else
4499    PrevDecl
4500      = ClassTemplate->findSpecialization(Converted.data(),
4501                                          Converted.size(), InsertPos);
4502
4503  ClassTemplateSpecializationDecl *Specialization = 0;
4504
4505  // Check whether we can declare a class template specialization in
4506  // the current scope.
4507  if (TUK != TUK_Friend &&
4508      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4509                                       TemplateNameLoc,
4510                                       isPartialSpecialization))
4511    return true;
4512
4513  // The canonical type
4514  QualType CanonType;
4515  if (PrevDecl &&
4516      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4517               TUK == TUK_Friend)) {
4518    // Since the only prior class template specialization with these
4519    // arguments was referenced but not declared, or we're only
4520    // referencing this specialization as a friend, reuse that
4521    // declaration node as our own, updating its source location to
4522    // reflect our new declaration.
4523    Specialization = PrevDecl;
4524    Specialization->setLocation(TemplateNameLoc);
4525    PrevDecl = 0;
4526    CanonType = Context.getTypeDeclType(Specialization);
4527  } else if (isPartialSpecialization) {
4528    // Build the canonical type that describes the converted template
4529    // arguments of the class template partial specialization.
4530    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4531    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4532                                                      Converted.data(),
4533                                                      Converted.size());
4534
4535    if (Context.hasSameType(CanonType,
4536                        ClassTemplate->getInjectedClassNameSpecialization())) {
4537      // C++ [temp.class.spec]p9b3:
4538      //
4539      //   -- The argument list of the specialization shall not be identical
4540      //      to the implicit argument list of the primary template.
4541      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4542      << (TUK == TUK_Definition)
4543      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4544      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4545                                ClassTemplate->getIdentifier(),
4546                                TemplateNameLoc,
4547                                Attr,
4548                                TemplateParams,
4549                                AS_none);
4550    }
4551
4552    // Create a new class template partial specialization declaration node.
4553    ClassTemplatePartialSpecializationDecl *PrevPartial
4554      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4555    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4556                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4557    ClassTemplatePartialSpecializationDecl *Partial
4558      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4559                                             ClassTemplate->getDeclContext(),
4560                                                       TemplateNameLoc,
4561                                                       TemplateParams,
4562                                                       ClassTemplate,
4563                                                       Converted.data(),
4564                                                       Converted.size(),
4565                                                       TemplateArgs,
4566                                                       CanonType,
4567                                                       PrevPartial,
4568                                                       SequenceNumber);
4569    SetNestedNameSpecifier(Partial, SS);
4570    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4571      Partial->setTemplateParameterListsInfo(Context,
4572                                             NumMatchedTemplateParamLists,
4573                    (TemplateParameterList**) TemplateParameterLists.release());
4574    }
4575
4576    if (!PrevPartial)
4577      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4578    Specialization = Partial;
4579
4580    // If we are providing an explicit specialization of a member class
4581    // template specialization, make a note of that.
4582    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4583      PrevPartial->setMemberSpecialization();
4584
4585    // Check that all of the template parameters of the class template
4586    // partial specialization are deducible from the template
4587    // arguments. If not, this class template partial specialization
4588    // will never be used.
4589    llvm::SmallVector<bool, 8> DeducibleParams;
4590    DeducibleParams.resize(TemplateParams->size());
4591    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4592                               TemplateParams->getDepth(),
4593                               DeducibleParams);
4594    unsigned NumNonDeducible = 0;
4595    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4596      if (!DeducibleParams[I])
4597        ++NumNonDeducible;
4598
4599    if (NumNonDeducible) {
4600      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4601        << (NumNonDeducible > 1)
4602        << SourceRange(TemplateNameLoc, RAngleLoc);
4603      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4604        if (!DeducibleParams[I]) {
4605          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4606          if (Param->getDeclName())
4607            Diag(Param->getLocation(),
4608                 diag::note_partial_spec_unused_parameter)
4609              << Param->getDeclName();
4610          else
4611            Diag(Param->getLocation(),
4612                 diag::note_partial_spec_unused_parameter)
4613              << "<anonymous>";
4614        }
4615      }
4616    }
4617  } else {
4618    // Create a new class template specialization declaration node for
4619    // this explicit specialization or friend declaration.
4620    Specialization
4621      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4622                                             ClassTemplate->getDeclContext(),
4623                                                TemplateNameLoc,
4624                                                ClassTemplate,
4625                                                Converted.data(),
4626                                                Converted.size(),
4627                                                PrevDecl);
4628    SetNestedNameSpecifier(Specialization, SS);
4629    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4630      Specialization->setTemplateParameterListsInfo(Context,
4631                                                  NumMatchedTemplateParamLists,
4632                    (TemplateParameterList**) TemplateParameterLists.release());
4633    }
4634
4635    if (!PrevDecl)
4636      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4637
4638    CanonType = Context.getTypeDeclType(Specialization);
4639  }
4640
4641  // C++ [temp.expl.spec]p6:
4642  //   If a template, a member template or the member of a class template is
4643  //   explicitly specialized then that specialization shall be declared
4644  //   before the first use of that specialization that would cause an implicit
4645  //   instantiation to take place, in every translation unit in which such a
4646  //   use occurs; no diagnostic is required.
4647  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4648    bool Okay = false;
4649    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4650      // Is there any previous explicit specialization declaration?
4651      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4652        Okay = true;
4653        break;
4654      }
4655    }
4656
4657    if (!Okay) {
4658      SourceRange Range(TemplateNameLoc, RAngleLoc);
4659      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4660        << Context.getTypeDeclType(Specialization) << Range;
4661
4662      Diag(PrevDecl->getPointOfInstantiation(),
4663           diag::note_instantiation_required_here)
4664        << (PrevDecl->getTemplateSpecializationKind()
4665                                                != TSK_ImplicitInstantiation);
4666      return true;
4667    }
4668  }
4669
4670  // If this is not a friend, note that this is an explicit specialization.
4671  if (TUK != TUK_Friend)
4672    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4673
4674  // Check that this isn't a redefinition of this specialization.
4675  if (TUK == TUK_Definition) {
4676    if (RecordDecl *Def = Specialization->getDefinition()) {
4677      SourceRange Range(TemplateNameLoc, RAngleLoc);
4678      Diag(TemplateNameLoc, diag::err_redefinition)
4679        << Context.getTypeDeclType(Specialization) << Range;
4680      Diag(Def->getLocation(), diag::note_previous_definition);
4681      Specialization->setInvalidDecl();
4682      return true;
4683    }
4684  }
4685
4686  if (Attr)
4687    ProcessDeclAttributeList(S, Specialization, Attr);
4688
4689  // Build the fully-sugared type for this class template
4690  // specialization as the user wrote in the specialization
4691  // itself. This means that we'll pretty-print the type retrieved
4692  // from the specialization's declaration the way that the user
4693  // actually wrote the specialization, rather than formatting the
4694  // name based on the "canonical" representation used to store the
4695  // template arguments in the specialization.
4696  TypeSourceInfo *WrittenTy
4697    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4698                                                TemplateArgs, CanonType);
4699  if (TUK != TUK_Friend) {
4700    Specialization->setTypeAsWritten(WrittenTy);
4701    if (TemplateParams)
4702      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4703  }
4704  TemplateArgsIn.release();
4705
4706  // C++ [temp.expl.spec]p9:
4707  //   A template explicit specialization is in the scope of the
4708  //   namespace in which the template was defined.
4709  //
4710  // We actually implement this paragraph where we set the semantic
4711  // context (in the creation of the ClassTemplateSpecializationDecl),
4712  // but we also maintain the lexical context where the actual
4713  // definition occurs.
4714  Specialization->setLexicalDeclContext(CurContext);
4715
4716  // We may be starting the definition of this specialization.
4717  if (TUK == TUK_Definition)
4718    Specialization->startDefinition();
4719
4720  if (TUK == TUK_Friend) {
4721    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4722                                            TemplateNameLoc,
4723                                            WrittenTy,
4724                                            /*FIXME:*/KWLoc);
4725    Friend->setAccess(AS_public);
4726    CurContext->addDecl(Friend);
4727  } else {
4728    // Add the specialization into its lexical context, so that it can
4729    // be seen when iterating through the list of declarations in that
4730    // context. However, specializations are not found by name lookup.
4731    CurContext->addDecl(Specialization);
4732  }
4733  return Specialization;
4734}
4735
4736Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4737                              MultiTemplateParamsArg TemplateParameterLists,
4738                                    Declarator &D) {
4739  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4740}
4741
4742Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4743                               MultiTemplateParamsArg TemplateParameterLists,
4744                                            Declarator &D) {
4745  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4746  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4747
4748  if (FTI.hasPrototype) {
4749    // FIXME: Diagnose arguments without names in C.
4750  }
4751
4752  Scope *ParentScope = FnBodyScope->getParent();
4753
4754  Decl *DP = HandleDeclarator(ParentScope, D,
4755                              move(TemplateParameterLists),
4756                              /*IsFunctionDefinition=*/true);
4757  if (FunctionTemplateDecl *FunctionTemplate
4758        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4759    return ActOnStartOfFunctionDef(FnBodyScope,
4760                                   FunctionTemplate->getTemplatedDecl());
4761  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4762    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4763  return 0;
4764}
4765
4766/// \brief Strips various properties off an implicit instantiation
4767/// that has just been explicitly specialized.
4768static void StripImplicitInstantiation(NamedDecl *D) {
4769  D->dropAttrs();
4770
4771  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4772    FD->setInlineSpecified(false);
4773  }
4774}
4775
4776/// \brief Diagnose cases where we have an explicit template specialization
4777/// before/after an explicit template instantiation, producing diagnostics
4778/// for those cases where they are required and determining whether the
4779/// new specialization/instantiation will have any effect.
4780///
4781/// \param NewLoc the location of the new explicit specialization or
4782/// instantiation.
4783///
4784/// \param NewTSK the kind of the new explicit specialization or instantiation.
4785///
4786/// \param PrevDecl the previous declaration of the entity.
4787///
4788/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4789///
4790/// \param PrevPointOfInstantiation if valid, indicates where the previus
4791/// declaration was instantiated (either implicitly or explicitly).
4792///
4793/// \param HasNoEffect will be set to true to indicate that the new
4794/// specialization or instantiation has no effect and should be ignored.
4795///
4796/// \returns true if there was an error that should prevent the introduction of
4797/// the new declaration into the AST, false otherwise.
4798bool
4799Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4800                                             TemplateSpecializationKind NewTSK,
4801                                             NamedDecl *PrevDecl,
4802                                             TemplateSpecializationKind PrevTSK,
4803                                        SourceLocation PrevPointOfInstantiation,
4804                                             bool &HasNoEffect) {
4805  HasNoEffect = false;
4806
4807  switch (NewTSK) {
4808  case TSK_Undeclared:
4809  case TSK_ImplicitInstantiation:
4810    assert(false && "Don't check implicit instantiations here");
4811    return false;
4812
4813  case TSK_ExplicitSpecialization:
4814    switch (PrevTSK) {
4815    case TSK_Undeclared:
4816    case TSK_ExplicitSpecialization:
4817      // Okay, we're just specializing something that is either already
4818      // explicitly specialized or has merely been mentioned without any
4819      // instantiation.
4820      return false;
4821
4822    case TSK_ImplicitInstantiation:
4823      if (PrevPointOfInstantiation.isInvalid()) {
4824        // The declaration itself has not actually been instantiated, so it is
4825        // still okay to specialize it.
4826        StripImplicitInstantiation(PrevDecl);
4827        return false;
4828      }
4829      // Fall through
4830
4831    case TSK_ExplicitInstantiationDeclaration:
4832    case TSK_ExplicitInstantiationDefinition:
4833      assert((PrevTSK == TSK_ImplicitInstantiation ||
4834              PrevPointOfInstantiation.isValid()) &&
4835             "Explicit instantiation without point of instantiation?");
4836
4837      // C++ [temp.expl.spec]p6:
4838      //   If a template, a member template or the member of a class template
4839      //   is explicitly specialized then that specialization shall be declared
4840      //   before the first use of that specialization that would cause an
4841      //   implicit instantiation to take place, in every translation unit in
4842      //   which such a use occurs; no diagnostic is required.
4843      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4844        // Is there any previous explicit specialization declaration?
4845        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4846          return false;
4847      }
4848
4849      Diag(NewLoc, diag::err_specialization_after_instantiation)
4850        << PrevDecl;
4851      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4852        << (PrevTSK != TSK_ImplicitInstantiation);
4853
4854      return true;
4855    }
4856    break;
4857
4858  case TSK_ExplicitInstantiationDeclaration:
4859    switch (PrevTSK) {
4860    case TSK_ExplicitInstantiationDeclaration:
4861      // This explicit instantiation declaration is redundant (that's okay).
4862      HasNoEffect = true;
4863      return false;
4864
4865    case TSK_Undeclared:
4866    case TSK_ImplicitInstantiation:
4867      // We're explicitly instantiating something that may have already been
4868      // implicitly instantiated; that's fine.
4869      return false;
4870
4871    case TSK_ExplicitSpecialization:
4872      // C++0x [temp.explicit]p4:
4873      //   For a given set of template parameters, if an explicit instantiation
4874      //   of a template appears after a declaration of an explicit
4875      //   specialization for that template, the explicit instantiation has no
4876      //   effect.
4877      HasNoEffect = true;
4878      return false;
4879
4880    case TSK_ExplicitInstantiationDefinition:
4881      // C++0x [temp.explicit]p10:
4882      //   If an entity is the subject of both an explicit instantiation
4883      //   declaration and an explicit instantiation definition in the same
4884      //   translation unit, the definition shall follow the declaration.
4885      Diag(NewLoc,
4886           diag::err_explicit_instantiation_declaration_after_definition);
4887      Diag(PrevPointOfInstantiation,
4888           diag::note_explicit_instantiation_definition_here);
4889      assert(PrevPointOfInstantiation.isValid() &&
4890             "Explicit instantiation without point of instantiation?");
4891      HasNoEffect = true;
4892      return false;
4893    }
4894    break;
4895
4896  case TSK_ExplicitInstantiationDefinition:
4897    switch (PrevTSK) {
4898    case TSK_Undeclared:
4899    case TSK_ImplicitInstantiation:
4900      // We're explicitly instantiating something that may have already been
4901      // implicitly instantiated; that's fine.
4902      return false;
4903
4904    case TSK_ExplicitSpecialization:
4905      // C++ DR 259, C++0x [temp.explicit]p4:
4906      //   For a given set of template parameters, if an explicit
4907      //   instantiation of a template appears after a declaration of
4908      //   an explicit specialization for that template, the explicit
4909      //   instantiation has no effect.
4910      //
4911      // In C++98/03 mode, we only give an extension warning here, because it
4912      // is not harmful to try to explicitly instantiate something that
4913      // has been explicitly specialized.
4914      if (!getLangOptions().CPlusPlus0x) {
4915        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4916          << PrevDecl;
4917        Diag(PrevDecl->getLocation(),
4918             diag::note_previous_template_specialization);
4919      }
4920      HasNoEffect = true;
4921      return false;
4922
4923    case TSK_ExplicitInstantiationDeclaration:
4924      // We're explicity instantiating a definition for something for which we
4925      // were previously asked to suppress instantiations. That's fine.
4926      return false;
4927
4928    case TSK_ExplicitInstantiationDefinition:
4929      // C++0x [temp.spec]p5:
4930      //   For a given template and a given set of template-arguments,
4931      //     - an explicit instantiation definition shall appear at most once
4932      //       in a program,
4933      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4934        << PrevDecl;
4935      Diag(PrevPointOfInstantiation,
4936           diag::note_previous_explicit_instantiation);
4937      HasNoEffect = true;
4938      return false;
4939    }
4940    break;
4941  }
4942
4943  assert(false && "Missing specialization/instantiation case?");
4944
4945  return false;
4946}
4947
4948/// \brief Perform semantic analysis for the given dependent function
4949/// template specialization.  The only possible way to get a dependent
4950/// function template specialization is with a friend declaration,
4951/// like so:
4952///
4953///   template <class T> void foo(T);
4954///   template <class T> class A {
4955///     friend void foo<>(T);
4956///   };
4957///
4958/// There really isn't any useful analysis we can do here, so we
4959/// just store the information.
4960bool
4961Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4962                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4963                                                   LookupResult &Previous) {
4964  // Remove anything from Previous that isn't a function template in
4965  // the correct context.
4966  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4967  LookupResult::Filter F = Previous.makeFilter();
4968  while (F.hasNext()) {
4969    NamedDecl *D = F.next()->getUnderlyingDecl();
4970    if (!isa<FunctionTemplateDecl>(D) ||
4971        !FDLookupContext->InEnclosingNamespaceSetOf(
4972                              D->getDeclContext()->getRedeclContext()))
4973      F.erase();
4974  }
4975  F.done();
4976
4977  // Should this be diagnosed here?
4978  if (Previous.empty()) return true;
4979
4980  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4981                                         ExplicitTemplateArgs);
4982  return false;
4983}
4984
4985/// \brief Perform semantic analysis for the given function template
4986/// specialization.
4987///
4988/// This routine performs all of the semantic analysis required for an
4989/// explicit function template specialization. On successful completion,
4990/// the function declaration \p FD will become a function template
4991/// specialization.
4992///
4993/// \param FD the function declaration, which will be updated to become a
4994/// function template specialization.
4995///
4996/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4997/// if any. Note that this may be valid info even when 0 arguments are
4998/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4999/// as it anyway contains info on the angle brackets locations.
5000///
5001/// \param PrevDecl the set of declarations that may be specialized by
5002/// this function specialization.
5003bool
5004Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5005                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
5006                                          LookupResult &Previous) {
5007  // The set of function template specializations that could match this
5008  // explicit function template specialization.
5009  UnresolvedSet<8> Candidates;
5010
5011  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5012  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5013         I != E; ++I) {
5014    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5015    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5016      // Only consider templates found within the same semantic lookup scope as
5017      // FD.
5018      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5019                                Ovl->getDeclContext()->getRedeclContext()))
5020        continue;
5021
5022      // C++ [temp.expl.spec]p11:
5023      //   A trailing template-argument can be left unspecified in the
5024      //   template-id naming an explicit function template specialization
5025      //   provided it can be deduced from the function argument type.
5026      // Perform template argument deduction to determine whether we may be
5027      // specializing this template.
5028      // FIXME: It is somewhat wasteful to build
5029      TemplateDeductionInfo Info(Context, FD->getLocation());
5030      FunctionDecl *Specialization = 0;
5031      if (TemplateDeductionResult TDK
5032            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5033                                      FD->getType(),
5034                                      Specialization,
5035                                      Info)) {
5036        // FIXME: Template argument deduction failed; record why it failed, so
5037        // that we can provide nifty diagnostics.
5038        (void)TDK;
5039        continue;
5040      }
5041
5042      // Record this candidate.
5043      Candidates.addDecl(Specialization, I.getAccess());
5044    }
5045  }
5046
5047  // Find the most specialized function template.
5048  UnresolvedSetIterator Result
5049    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5050                         TPOC_Other, 0, FD->getLocation(),
5051                  PDiag(diag::err_function_template_spec_no_match)
5052                    << FD->getDeclName(),
5053                  PDiag(diag::err_function_template_spec_ambiguous)
5054                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5055                  PDiag(diag::note_function_template_spec_matched));
5056  if (Result == Candidates.end())
5057    return true;
5058
5059  // Ignore access information;  it doesn't figure into redeclaration checking.
5060  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5061  Specialization->setLocation(FD->getLocation());
5062
5063  // FIXME: Check if the prior specialization has a point of instantiation.
5064  // If so, we have run afoul of .
5065
5066  // If this is a friend declaration, then we're not really declaring
5067  // an explicit specialization.
5068  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5069
5070  // Check the scope of this explicit specialization.
5071  if (!isFriend &&
5072      CheckTemplateSpecializationScope(*this,
5073                                       Specialization->getPrimaryTemplate(),
5074                                       Specialization, FD->getLocation(),
5075                                       false))
5076    return true;
5077
5078  // C++ [temp.expl.spec]p6:
5079  //   If a template, a member template or the member of a class template is
5080  //   explicitly specialized then that specialization shall be declared
5081  //   before the first use of that specialization that would cause an implicit
5082  //   instantiation to take place, in every translation unit in which such a
5083  //   use occurs; no diagnostic is required.
5084  FunctionTemplateSpecializationInfo *SpecInfo
5085    = Specialization->getTemplateSpecializationInfo();
5086  assert(SpecInfo && "Function template specialization info missing?");
5087
5088  bool HasNoEffect = false;
5089  if (!isFriend &&
5090      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5091                                             TSK_ExplicitSpecialization,
5092                                             Specialization,
5093                                   SpecInfo->getTemplateSpecializationKind(),
5094                                         SpecInfo->getPointOfInstantiation(),
5095                                             HasNoEffect))
5096    return true;
5097
5098  // Mark the prior declaration as an explicit specialization, so that later
5099  // clients know that this is an explicit specialization.
5100  if (!isFriend) {
5101    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5102    MarkUnusedFileScopedDecl(Specialization);
5103  }
5104
5105  // Turn the given function declaration into a function template
5106  // specialization, with the template arguments from the previous
5107  // specialization.
5108  // Take copies of (semantic and syntactic) template argument lists.
5109  const TemplateArgumentList* TemplArgs = new (Context)
5110    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5111  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5112    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5113  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5114                                        TemplArgs, /*InsertPos=*/0,
5115                                    SpecInfo->getTemplateSpecializationKind(),
5116                                        TemplArgsAsWritten);
5117
5118  // The "previous declaration" for this function template specialization is
5119  // the prior function template specialization.
5120  Previous.clear();
5121  Previous.addDecl(Specialization);
5122  return false;
5123}
5124
5125/// \brief Perform semantic analysis for the given non-template member
5126/// specialization.
5127///
5128/// This routine performs all of the semantic analysis required for an
5129/// explicit member function specialization. On successful completion,
5130/// the function declaration \p FD will become a member function
5131/// specialization.
5132///
5133/// \param Member the member declaration, which will be updated to become a
5134/// specialization.
5135///
5136/// \param Previous the set of declarations, one of which may be specialized
5137/// by this function specialization;  the set will be modified to contain the
5138/// redeclared member.
5139bool
5140Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5141  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5142
5143  // Try to find the member we are instantiating.
5144  NamedDecl *Instantiation = 0;
5145  NamedDecl *InstantiatedFrom = 0;
5146  MemberSpecializationInfo *MSInfo = 0;
5147
5148  if (Previous.empty()) {
5149    // Nowhere to look anyway.
5150  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5151    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5152           I != E; ++I) {
5153      NamedDecl *D = (*I)->getUnderlyingDecl();
5154      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5155        if (Context.hasSameType(Function->getType(), Method->getType())) {
5156          Instantiation = Method;
5157          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5158          MSInfo = Method->getMemberSpecializationInfo();
5159          break;
5160        }
5161      }
5162    }
5163  } else if (isa<VarDecl>(Member)) {
5164    VarDecl *PrevVar;
5165    if (Previous.isSingleResult() &&
5166        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5167      if (PrevVar->isStaticDataMember()) {
5168        Instantiation = PrevVar;
5169        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5170        MSInfo = PrevVar->getMemberSpecializationInfo();
5171      }
5172  } else if (isa<RecordDecl>(Member)) {
5173    CXXRecordDecl *PrevRecord;
5174    if (Previous.isSingleResult() &&
5175        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5176      Instantiation = PrevRecord;
5177      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5178      MSInfo = PrevRecord->getMemberSpecializationInfo();
5179    }
5180  }
5181
5182  if (!Instantiation) {
5183    // There is no previous declaration that matches. Since member
5184    // specializations are always out-of-line, the caller will complain about
5185    // this mismatch later.
5186    return false;
5187  }
5188
5189  // If this is a friend, just bail out here before we start turning
5190  // things into explicit specializations.
5191  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5192    // Preserve instantiation information.
5193    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5194      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5195                                      cast<CXXMethodDecl>(InstantiatedFrom),
5196        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5197    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5198      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5199                                      cast<CXXRecordDecl>(InstantiatedFrom),
5200        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5201    }
5202
5203    Previous.clear();
5204    Previous.addDecl(Instantiation);
5205    return false;
5206  }
5207
5208  // Make sure that this is a specialization of a member.
5209  if (!InstantiatedFrom) {
5210    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5211      << Member;
5212    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5213    return true;
5214  }
5215
5216  // C++ [temp.expl.spec]p6:
5217  //   If a template, a member template or the member of a class template is
5218  //   explicitly specialized then that spe- cialization shall be declared
5219  //   before the first use of that specialization that would cause an implicit
5220  //   instantiation to take place, in every translation unit in which such a
5221  //   use occurs; no diagnostic is required.
5222  assert(MSInfo && "Member specialization info missing?");
5223
5224  bool HasNoEffect = false;
5225  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5226                                             TSK_ExplicitSpecialization,
5227                                             Instantiation,
5228                                     MSInfo->getTemplateSpecializationKind(),
5229                                           MSInfo->getPointOfInstantiation(),
5230                                             HasNoEffect))
5231    return true;
5232
5233  // Check the scope of this explicit specialization.
5234  if (CheckTemplateSpecializationScope(*this,
5235                                       InstantiatedFrom,
5236                                       Instantiation, Member->getLocation(),
5237                                       false))
5238    return true;
5239
5240  // Note that this is an explicit instantiation of a member.
5241  // the original declaration to note that it is an explicit specialization
5242  // (if it was previously an implicit instantiation). This latter step
5243  // makes bookkeeping easier.
5244  if (isa<FunctionDecl>(Member)) {
5245    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5246    if (InstantiationFunction->getTemplateSpecializationKind() ==
5247          TSK_ImplicitInstantiation) {
5248      InstantiationFunction->setTemplateSpecializationKind(
5249                                                  TSK_ExplicitSpecialization);
5250      InstantiationFunction->setLocation(Member->getLocation());
5251    }
5252
5253    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5254                                        cast<CXXMethodDecl>(InstantiatedFrom),
5255                                                  TSK_ExplicitSpecialization);
5256    MarkUnusedFileScopedDecl(InstantiationFunction);
5257  } else if (isa<VarDecl>(Member)) {
5258    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5259    if (InstantiationVar->getTemplateSpecializationKind() ==
5260          TSK_ImplicitInstantiation) {
5261      InstantiationVar->setTemplateSpecializationKind(
5262                                                  TSK_ExplicitSpecialization);
5263      InstantiationVar->setLocation(Member->getLocation());
5264    }
5265
5266    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5267                                                cast<VarDecl>(InstantiatedFrom),
5268                                                TSK_ExplicitSpecialization);
5269    MarkUnusedFileScopedDecl(InstantiationVar);
5270  } else {
5271    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5272    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5273    if (InstantiationClass->getTemplateSpecializationKind() ==
5274          TSK_ImplicitInstantiation) {
5275      InstantiationClass->setTemplateSpecializationKind(
5276                                                   TSK_ExplicitSpecialization);
5277      InstantiationClass->setLocation(Member->getLocation());
5278    }
5279
5280    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5281                                        cast<CXXRecordDecl>(InstantiatedFrom),
5282                                                   TSK_ExplicitSpecialization);
5283  }
5284
5285  // Save the caller the trouble of having to figure out which declaration
5286  // this specialization matches.
5287  Previous.clear();
5288  Previous.addDecl(Instantiation);
5289  return false;
5290}
5291
5292/// \brief Check the scope of an explicit instantiation.
5293///
5294/// \returns true if a serious error occurs, false otherwise.
5295static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5296                                            SourceLocation InstLoc,
5297                                            bool WasQualifiedName) {
5298  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5299  DeclContext *CurContext = S.CurContext->getRedeclContext();
5300
5301  if (CurContext->isRecord()) {
5302    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5303      << D;
5304    return true;
5305  }
5306
5307  // C++0x [temp.explicit]p2:
5308  //   An explicit instantiation shall appear in an enclosing namespace of its
5309  //   template.
5310  //
5311  // This is DR275, which we do not retroactively apply to C++98/03.
5312  if (S.getLangOptions().CPlusPlus0x &&
5313      !CurContext->Encloses(OrigContext)) {
5314    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5315      S.Diag(InstLoc,
5316             S.getLangOptions().CPlusPlus0x?
5317                 diag::err_explicit_instantiation_out_of_scope
5318               : diag::warn_explicit_instantiation_out_of_scope_0x)
5319        << D << NS;
5320    else
5321      S.Diag(InstLoc,
5322             S.getLangOptions().CPlusPlus0x?
5323                 diag::err_explicit_instantiation_must_be_global
5324               : diag::warn_explicit_instantiation_out_of_scope_0x)
5325        << D;
5326    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5327    return false;
5328  }
5329
5330  // C++0x [temp.explicit]p2:
5331  //   If the name declared in the explicit instantiation is an unqualified
5332  //   name, the explicit instantiation shall appear in the namespace where
5333  //   its template is declared or, if that namespace is inline (7.3.1), any
5334  //   namespace from its enclosing namespace set.
5335  if (WasQualifiedName)
5336    return false;
5337
5338  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5339    return false;
5340
5341  S.Diag(InstLoc,
5342         S.getLangOptions().CPlusPlus0x?
5343             diag::err_explicit_instantiation_unqualified_wrong_namespace
5344           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5345    << D << OrigContext;
5346  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5347  return false;
5348}
5349
5350/// \brief Determine whether the given scope specifier has a template-id in it.
5351static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5352  if (!SS.isSet())
5353    return false;
5354
5355  // C++0x [temp.explicit]p2:
5356  //   If the explicit instantiation is for a member function, a member class
5357  //   or a static data member of a class template specialization, the name of
5358  //   the class template specialization in the qualified-id for the member
5359  //   name shall be a simple-template-id.
5360  //
5361  // C++98 has the same restriction, just worded differently.
5362  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5363       NNS; NNS = NNS->getPrefix())
5364    if (const Type *T = NNS->getAsType())
5365      if (isa<TemplateSpecializationType>(T))
5366        return true;
5367
5368  return false;
5369}
5370
5371// Explicit instantiation of a class template specialization
5372DeclResult
5373Sema::ActOnExplicitInstantiation(Scope *S,
5374                                 SourceLocation ExternLoc,
5375                                 SourceLocation TemplateLoc,
5376                                 unsigned TagSpec,
5377                                 SourceLocation KWLoc,
5378                                 const CXXScopeSpec &SS,
5379                                 TemplateTy TemplateD,
5380                                 SourceLocation TemplateNameLoc,
5381                                 SourceLocation LAngleLoc,
5382                                 ASTTemplateArgsPtr TemplateArgsIn,
5383                                 SourceLocation RAngleLoc,
5384                                 AttributeList *Attr) {
5385  // Find the class template we're specializing
5386  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5387  ClassTemplateDecl *ClassTemplate
5388    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5389
5390  // Check that the specialization uses the same tag kind as the
5391  // original template.
5392  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5393  assert(Kind != TTK_Enum &&
5394         "Invalid enum tag in class template explicit instantiation!");
5395  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5396                                    Kind, KWLoc,
5397                                    *ClassTemplate->getIdentifier())) {
5398    Diag(KWLoc, diag::err_use_with_wrong_tag)
5399      << ClassTemplate
5400      << FixItHint::CreateReplacement(KWLoc,
5401                            ClassTemplate->getTemplatedDecl()->getKindName());
5402    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5403         diag::note_previous_use);
5404    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5405  }
5406
5407  // C++0x [temp.explicit]p2:
5408  //   There are two forms of explicit instantiation: an explicit instantiation
5409  //   definition and an explicit instantiation declaration. An explicit
5410  //   instantiation declaration begins with the extern keyword. [...]
5411  TemplateSpecializationKind TSK
5412    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5413                           : TSK_ExplicitInstantiationDeclaration;
5414
5415  // Translate the parser's template argument list in our AST format.
5416  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5417  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5418
5419  // Check that the template argument list is well-formed for this
5420  // template.
5421  llvm::SmallVector<TemplateArgument, 4> Converted;
5422  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5423                                TemplateArgs, false, Converted))
5424    return true;
5425
5426  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5427         "Converted template argument list is too short!");
5428
5429  // Find the class template specialization declaration that
5430  // corresponds to these arguments.
5431  void *InsertPos = 0;
5432  ClassTemplateSpecializationDecl *PrevDecl
5433    = ClassTemplate->findSpecialization(Converted.data(),
5434                                        Converted.size(), InsertPos);
5435
5436  TemplateSpecializationKind PrevDecl_TSK
5437    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5438
5439  // C++0x [temp.explicit]p2:
5440  //   [...] An explicit instantiation shall appear in an enclosing
5441  //   namespace of its template. [...]
5442  //
5443  // This is C++ DR 275.
5444  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5445                                      SS.isSet()))
5446    return true;
5447
5448  ClassTemplateSpecializationDecl *Specialization = 0;
5449
5450  bool HasNoEffect = false;
5451  if (PrevDecl) {
5452    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5453                                               PrevDecl, PrevDecl_TSK,
5454                                            PrevDecl->getPointOfInstantiation(),
5455                                               HasNoEffect))
5456      return PrevDecl;
5457
5458    // Even though HasNoEffect == true means that this explicit instantiation
5459    // has no effect on semantics, we go on to put its syntax in the AST.
5460
5461    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5462        PrevDecl_TSK == TSK_Undeclared) {
5463      // Since the only prior class template specialization with these
5464      // arguments was referenced but not declared, reuse that
5465      // declaration node as our own, updating the source location
5466      // for the template name to reflect our new declaration.
5467      // (Other source locations will be updated later.)
5468      Specialization = PrevDecl;
5469      Specialization->setLocation(TemplateNameLoc);
5470      PrevDecl = 0;
5471    }
5472  }
5473
5474  if (!Specialization) {
5475    // Create a new class template specialization declaration node for
5476    // this explicit specialization.
5477    Specialization
5478      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5479                                             ClassTemplate->getDeclContext(),
5480                                                TemplateNameLoc,
5481                                                ClassTemplate,
5482                                                Converted.data(),
5483                                                Converted.size(),
5484                                                PrevDecl);
5485    SetNestedNameSpecifier(Specialization, SS);
5486
5487    if (!HasNoEffect && !PrevDecl) {
5488      // Insert the new specialization.
5489      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5490    }
5491  }
5492
5493  // Build the fully-sugared type for this explicit instantiation as
5494  // the user wrote in the explicit instantiation itself. This means
5495  // that we'll pretty-print the type retrieved from the
5496  // specialization's declaration the way that the user actually wrote
5497  // the explicit instantiation, rather than formatting the name based
5498  // on the "canonical" representation used to store the template
5499  // arguments in the specialization.
5500  TypeSourceInfo *WrittenTy
5501    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5502                                                TemplateArgs,
5503                                  Context.getTypeDeclType(Specialization));
5504  Specialization->setTypeAsWritten(WrittenTy);
5505  TemplateArgsIn.release();
5506
5507  // Set source locations for keywords.
5508  Specialization->setExternLoc(ExternLoc);
5509  Specialization->setTemplateKeywordLoc(TemplateLoc);
5510
5511  // Add the explicit instantiation into its lexical context. However,
5512  // since explicit instantiations are never found by name lookup, we
5513  // just put it into the declaration context directly.
5514  Specialization->setLexicalDeclContext(CurContext);
5515  CurContext->addDecl(Specialization);
5516
5517  // Syntax is now OK, so return if it has no other effect on semantics.
5518  if (HasNoEffect) {
5519    // Set the template specialization kind.
5520    Specialization->setTemplateSpecializationKind(TSK);
5521    return Specialization;
5522  }
5523
5524  // C++ [temp.explicit]p3:
5525  //   A definition of a class template or class member template
5526  //   shall be in scope at the point of the explicit instantiation of
5527  //   the class template or class member template.
5528  //
5529  // This check comes when we actually try to perform the
5530  // instantiation.
5531  ClassTemplateSpecializationDecl *Def
5532    = cast_or_null<ClassTemplateSpecializationDecl>(
5533                                              Specialization->getDefinition());
5534  if (!Def)
5535    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5536  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5537    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5538    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5539  }
5540
5541  // Instantiate the members of this class template specialization.
5542  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5543                                       Specialization->getDefinition());
5544  if (Def) {
5545    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5546
5547    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5548    // TSK_ExplicitInstantiationDefinition
5549    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5550        TSK == TSK_ExplicitInstantiationDefinition)
5551      Def->setTemplateSpecializationKind(TSK);
5552
5553    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5554  }
5555
5556  // Set the template specialization kind.
5557  Specialization->setTemplateSpecializationKind(TSK);
5558  return Specialization;
5559}
5560
5561// Explicit instantiation of a member class of a class template.
5562DeclResult
5563Sema::ActOnExplicitInstantiation(Scope *S,
5564                                 SourceLocation ExternLoc,
5565                                 SourceLocation TemplateLoc,
5566                                 unsigned TagSpec,
5567                                 SourceLocation KWLoc,
5568                                 CXXScopeSpec &SS,
5569                                 IdentifierInfo *Name,
5570                                 SourceLocation NameLoc,
5571                                 AttributeList *Attr) {
5572
5573  bool Owned = false;
5574  bool IsDependent = false;
5575  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5576                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5577                        MultiTemplateParamsArg(*this, 0, 0),
5578                        Owned, IsDependent, false, false,
5579                        TypeResult());
5580  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5581
5582  if (!TagD)
5583    return true;
5584
5585  TagDecl *Tag = cast<TagDecl>(TagD);
5586  if (Tag->isEnum()) {
5587    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5588      << Context.getTypeDeclType(Tag);
5589    return true;
5590  }
5591
5592  if (Tag->isInvalidDecl())
5593    return true;
5594
5595  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5596  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5597  if (!Pattern) {
5598    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5599      << Context.getTypeDeclType(Record);
5600    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5601    return true;
5602  }
5603
5604  // C++0x [temp.explicit]p2:
5605  //   If the explicit instantiation is for a class or member class, the
5606  //   elaborated-type-specifier in the declaration shall include a
5607  //   simple-template-id.
5608  //
5609  // C++98 has the same restriction, just worded differently.
5610  if (!ScopeSpecifierHasTemplateId(SS))
5611    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5612      << Record << SS.getRange();
5613
5614  // C++0x [temp.explicit]p2:
5615  //   There are two forms of explicit instantiation: an explicit instantiation
5616  //   definition and an explicit instantiation declaration. An explicit
5617  //   instantiation declaration begins with the extern keyword. [...]
5618  TemplateSpecializationKind TSK
5619    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5620                           : TSK_ExplicitInstantiationDeclaration;
5621
5622  // C++0x [temp.explicit]p2:
5623  //   [...] An explicit instantiation shall appear in an enclosing
5624  //   namespace of its template. [...]
5625  //
5626  // This is C++ DR 275.
5627  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5628
5629  // Verify that it is okay to explicitly instantiate here.
5630  CXXRecordDecl *PrevDecl
5631    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5632  if (!PrevDecl && Record->getDefinition())
5633    PrevDecl = Record;
5634  if (PrevDecl) {
5635    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5636    bool HasNoEffect = false;
5637    assert(MSInfo && "No member specialization information?");
5638    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5639                                               PrevDecl,
5640                                        MSInfo->getTemplateSpecializationKind(),
5641                                             MSInfo->getPointOfInstantiation(),
5642                                               HasNoEffect))
5643      return true;
5644    if (HasNoEffect)
5645      return TagD;
5646  }
5647
5648  CXXRecordDecl *RecordDef
5649    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5650  if (!RecordDef) {
5651    // C++ [temp.explicit]p3:
5652    //   A definition of a member class of a class template shall be in scope
5653    //   at the point of an explicit instantiation of the member class.
5654    CXXRecordDecl *Def
5655      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5656    if (!Def) {
5657      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5658        << 0 << Record->getDeclName() << Record->getDeclContext();
5659      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5660        << Pattern;
5661      return true;
5662    } else {
5663      if (InstantiateClass(NameLoc, Record, Def,
5664                           getTemplateInstantiationArgs(Record),
5665                           TSK))
5666        return true;
5667
5668      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5669      if (!RecordDef)
5670        return true;
5671    }
5672  }
5673
5674  // Instantiate all of the members of the class.
5675  InstantiateClassMembers(NameLoc, RecordDef,
5676                          getTemplateInstantiationArgs(Record), TSK);
5677
5678  if (TSK == TSK_ExplicitInstantiationDefinition)
5679    MarkVTableUsed(NameLoc, RecordDef, true);
5680
5681  // FIXME: We don't have any representation for explicit instantiations of
5682  // member classes. Such a representation is not needed for compilation, but it
5683  // should be available for clients that want to see all of the declarations in
5684  // the source code.
5685  return TagD;
5686}
5687
5688DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5689                                            SourceLocation ExternLoc,
5690                                            SourceLocation TemplateLoc,
5691                                            Declarator &D) {
5692  // Explicit instantiations always require a name.
5693  // TODO: check if/when DNInfo should replace Name.
5694  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5695  DeclarationName Name = NameInfo.getName();
5696  if (!Name) {
5697    if (!D.isInvalidType())
5698      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5699           diag::err_explicit_instantiation_requires_name)
5700        << D.getDeclSpec().getSourceRange()
5701        << D.getSourceRange();
5702
5703    return true;
5704  }
5705
5706  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5707  // we find one that is.
5708  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5709         (S->getFlags() & Scope::TemplateParamScope) != 0)
5710    S = S->getParent();
5711
5712  // Determine the type of the declaration.
5713  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5714  QualType R = T->getType();
5715  if (R.isNull())
5716    return true;
5717
5718  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5719    // Cannot explicitly instantiate a typedef.
5720    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5721      << Name;
5722    return true;
5723  }
5724
5725  // C++0x [temp.explicit]p1:
5726  //   [...] An explicit instantiation of a function template shall not use the
5727  //   inline or constexpr specifiers.
5728  // Presumably, this also applies to member functions of class templates as
5729  // well.
5730  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5731    Diag(D.getDeclSpec().getInlineSpecLoc(),
5732         diag::err_explicit_instantiation_inline)
5733      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5734
5735  // FIXME: check for constexpr specifier.
5736
5737  // C++0x [temp.explicit]p2:
5738  //   There are two forms of explicit instantiation: an explicit instantiation
5739  //   definition and an explicit instantiation declaration. An explicit
5740  //   instantiation declaration begins with the extern keyword. [...]
5741  TemplateSpecializationKind TSK
5742    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5743                           : TSK_ExplicitInstantiationDeclaration;
5744
5745  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5746  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5747
5748  if (!R->isFunctionType()) {
5749    // C++ [temp.explicit]p1:
5750    //   A [...] static data member of a class template can be explicitly
5751    //   instantiated from the member definition associated with its class
5752    //   template.
5753    if (Previous.isAmbiguous())
5754      return true;
5755
5756    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5757    if (!Prev || !Prev->isStaticDataMember()) {
5758      // We expect to see a data data member here.
5759      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5760        << Name;
5761      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5762           P != PEnd; ++P)
5763        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5764      return true;
5765    }
5766
5767    if (!Prev->getInstantiatedFromStaticDataMember()) {
5768      // FIXME: Check for explicit specialization?
5769      Diag(D.getIdentifierLoc(),
5770           diag::err_explicit_instantiation_data_member_not_instantiated)
5771        << Prev;
5772      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5773      // FIXME: Can we provide a note showing where this was declared?
5774      return true;
5775    }
5776
5777    // C++0x [temp.explicit]p2:
5778    //   If the explicit instantiation is for a member function, a member class
5779    //   or a static data member of a class template specialization, the name of
5780    //   the class template specialization in the qualified-id for the member
5781    //   name shall be a simple-template-id.
5782    //
5783    // C++98 has the same restriction, just worded differently.
5784    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5785      Diag(D.getIdentifierLoc(),
5786           diag::ext_explicit_instantiation_without_qualified_id)
5787        << Prev << D.getCXXScopeSpec().getRange();
5788
5789    // Check the scope of this explicit instantiation.
5790    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5791
5792    // Verify that it is okay to explicitly instantiate here.
5793    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5794    assert(MSInfo && "Missing static data member specialization info?");
5795    bool HasNoEffect = false;
5796    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5797                                        MSInfo->getTemplateSpecializationKind(),
5798                                              MSInfo->getPointOfInstantiation(),
5799                                               HasNoEffect))
5800      return true;
5801    if (HasNoEffect)
5802      return (Decl*) 0;
5803
5804    // Instantiate static data member.
5805    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5806    if (TSK == TSK_ExplicitInstantiationDefinition)
5807      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5808
5809    // FIXME: Create an ExplicitInstantiation node?
5810    return (Decl*) 0;
5811  }
5812
5813  // If the declarator is a template-id, translate the parser's template
5814  // argument list into our AST format.
5815  bool HasExplicitTemplateArgs = false;
5816  TemplateArgumentListInfo TemplateArgs;
5817  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5818    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5819    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5820    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5821    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5822                                       TemplateId->getTemplateArgs(),
5823                                       TemplateId->NumArgs);
5824    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5825    HasExplicitTemplateArgs = true;
5826    TemplateArgsPtr.release();
5827  }
5828
5829  // C++ [temp.explicit]p1:
5830  //   A [...] function [...] can be explicitly instantiated from its template.
5831  //   A member function [...] of a class template can be explicitly
5832  //  instantiated from the member definition associated with its class
5833  //  template.
5834  UnresolvedSet<8> Matches;
5835  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5836       P != PEnd; ++P) {
5837    NamedDecl *Prev = *P;
5838    if (!HasExplicitTemplateArgs) {
5839      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5840        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5841          Matches.clear();
5842
5843          Matches.addDecl(Method, P.getAccess());
5844          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5845            break;
5846        }
5847      }
5848    }
5849
5850    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5851    if (!FunTmpl)
5852      continue;
5853
5854    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5855    FunctionDecl *Specialization = 0;
5856    if (TemplateDeductionResult TDK
5857          = DeduceTemplateArguments(FunTmpl,
5858                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5859                                    R, Specialization, Info)) {
5860      // FIXME: Keep track of almost-matches?
5861      (void)TDK;
5862      continue;
5863    }
5864
5865    Matches.addDecl(Specialization, P.getAccess());
5866  }
5867
5868  // Find the most specialized function template specialization.
5869  UnresolvedSetIterator Result
5870    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5871                         D.getIdentifierLoc(),
5872                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5873                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5874                         PDiag(diag::note_explicit_instantiation_candidate));
5875
5876  if (Result == Matches.end())
5877    return true;
5878
5879  // Ignore access control bits, we don't need them for redeclaration checking.
5880  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5881
5882  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5883    Diag(D.getIdentifierLoc(),
5884         diag::err_explicit_instantiation_member_function_not_instantiated)
5885      << Specialization
5886      << (Specialization->getTemplateSpecializationKind() ==
5887          TSK_ExplicitSpecialization);
5888    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5889    return true;
5890  }
5891
5892  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5893  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5894    PrevDecl = Specialization;
5895
5896  if (PrevDecl) {
5897    bool HasNoEffect = false;
5898    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5899                                               PrevDecl,
5900                                     PrevDecl->getTemplateSpecializationKind(),
5901                                          PrevDecl->getPointOfInstantiation(),
5902                                               HasNoEffect))
5903      return true;
5904
5905    // FIXME: We may still want to build some representation of this
5906    // explicit specialization.
5907    if (HasNoEffect)
5908      return (Decl*) 0;
5909  }
5910
5911  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5912
5913  if (TSK == TSK_ExplicitInstantiationDefinition)
5914    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5915
5916  // C++0x [temp.explicit]p2:
5917  //   If the explicit instantiation is for a member function, a member class
5918  //   or a static data member of a class template specialization, the name of
5919  //   the class template specialization in the qualified-id for the member
5920  //   name shall be a simple-template-id.
5921  //
5922  // C++98 has the same restriction, just worded differently.
5923  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5924  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5925      D.getCXXScopeSpec().isSet() &&
5926      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5927    Diag(D.getIdentifierLoc(),
5928         diag::ext_explicit_instantiation_without_qualified_id)
5929    << Specialization << D.getCXXScopeSpec().getRange();
5930
5931  CheckExplicitInstantiationScope(*this,
5932                   FunTmpl? (NamedDecl *)FunTmpl
5933                          : Specialization->getInstantiatedFromMemberFunction(),
5934                                  D.getIdentifierLoc(),
5935                                  D.getCXXScopeSpec().isSet());
5936
5937  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5938  return (Decl*) 0;
5939}
5940
5941TypeResult
5942Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5943                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5944                        SourceLocation TagLoc, SourceLocation NameLoc) {
5945  // This has to hold, because SS is expected to be defined.
5946  assert(Name && "Expected a name in a dependent tag");
5947
5948  NestedNameSpecifier *NNS
5949    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5950  if (!NNS)
5951    return true;
5952
5953  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5954
5955  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5956    Diag(NameLoc, diag::err_dependent_tag_decl)
5957      << (TUK == TUK_Definition) << Kind << SS.getRange();
5958    return true;
5959  }
5960
5961  // Create the resulting type.
5962  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5963  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
5964
5965  // Create type-source location information for this type.
5966  TypeLocBuilder TLB;
5967  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
5968  TL.setKeywordLoc(TagLoc);
5969  TL.setQualifierLoc(SS.getWithLocInContext(Context));
5970  TL.setNameLoc(NameLoc);
5971  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
5972}
5973
5974TypeResult
5975Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5976                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5977                        SourceLocation IdLoc) {
5978  if (SS.isInvalid())
5979    return true;
5980
5981  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5982      !getLangOptions().CPlusPlus0x)
5983    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5984      << FixItHint::CreateRemoval(TypenameLoc);
5985
5986  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5987  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
5988                                 TypenameLoc, QualifierLoc, II, IdLoc);
5989  if (T.isNull())
5990    return true;
5991
5992  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5993  if (isa<DependentNameType>(T)) {
5994    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5995    TL.setKeywordLoc(TypenameLoc);
5996    TL.setQualifierLoc(QualifierLoc);
5997    TL.setNameLoc(IdLoc);
5998  } else {
5999    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6000    TL.setKeywordLoc(TypenameLoc);
6001    TL.setQualifierLoc(QualifierLoc);
6002    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6003  }
6004
6005  return CreateParsedType(T, TSI);
6006}
6007
6008TypeResult
6009Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6010                        const CXXScopeSpec &SS,
6011                        SourceLocation TemplateLoc,
6012                        TemplateTy TemplateIn,
6013                        SourceLocation TemplateNameLoc,
6014                        SourceLocation LAngleLoc,
6015                        ASTTemplateArgsPtr TemplateArgsIn,
6016                        SourceLocation RAngleLoc) {
6017  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6018      !getLangOptions().CPlusPlus0x)
6019    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6020    << FixItHint::CreateRemoval(TypenameLoc);
6021
6022  // Translate the parser's template argument list in our AST format.
6023  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6024  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6025
6026  TemplateName Template = TemplateIn.get();
6027  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6028    // Construct a dependent template specialization type.
6029    assert(DTN && "dependent template has non-dependent name?");
6030    assert(DTN->getQualifier()
6031           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6032    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6033                                                          DTN->getQualifier(),
6034                                                          DTN->getIdentifier(),
6035                                                                TemplateArgs);
6036
6037    // Create source-location information for this type.
6038    TypeLocBuilder Builder;
6039    DependentTemplateSpecializationTypeLoc SpecTL
6040    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6041    SpecTL.setLAngleLoc(LAngleLoc);
6042    SpecTL.setRAngleLoc(RAngleLoc);
6043    SpecTL.setKeywordLoc(TypenameLoc);
6044    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6045    SpecTL.setNameLoc(TemplateNameLoc);
6046    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6047      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6048    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6049  }
6050
6051  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6052  if (T.isNull())
6053    return true;
6054
6055  // Provide source-location information for the template specialization
6056  // type.
6057  TypeLocBuilder Builder;
6058  TemplateSpecializationTypeLoc SpecTL
6059    = Builder.push<TemplateSpecializationTypeLoc>(T);
6060
6061  // FIXME: No place to set the location of the 'template' keyword!
6062  SpecTL.setLAngleLoc(LAngleLoc);
6063  SpecTL.setRAngleLoc(RAngleLoc);
6064  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6065  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6066    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6067
6068  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6069  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6070  TL.setKeywordLoc(TypenameLoc);
6071  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6072
6073  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6074  return CreateParsedType(T, TSI);
6075}
6076
6077
6078/// \brief Build the type that describes a C++ typename specifier,
6079/// e.g., "typename T::type".
6080QualType
6081Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6082                        SourceLocation KeywordLoc,
6083                        NestedNameSpecifierLoc QualifierLoc,
6084                        const IdentifierInfo &II,
6085                        SourceLocation IILoc) {
6086  CXXScopeSpec SS;
6087  SS.Adopt(QualifierLoc);
6088
6089  DeclContext *Ctx = computeDeclContext(SS);
6090  if (!Ctx) {
6091    // If the nested-name-specifier is dependent and couldn't be
6092    // resolved to a type, build a typename type.
6093    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6094    return Context.getDependentNameType(Keyword,
6095                                        QualifierLoc.getNestedNameSpecifier(),
6096                                        &II);
6097  }
6098
6099  // If the nested-name-specifier refers to the current instantiation,
6100  // the "typename" keyword itself is superfluous. In C++03, the
6101  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6102  // allows such extraneous "typename" keywords, and we retroactively
6103  // apply this DR to C++03 code with only a warning. In any case we continue.
6104
6105  if (RequireCompleteDeclContext(SS, Ctx))
6106    return QualType();
6107
6108  DeclarationName Name(&II);
6109  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6110  LookupQualifiedName(Result, Ctx);
6111  unsigned DiagID = 0;
6112  Decl *Referenced = 0;
6113  switch (Result.getResultKind()) {
6114  case LookupResult::NotFound:
6115    DiagID = diag::err_typename_nested_not_found;
6116    break;
6117
6118  case LookupResult::FoundUnresolvedValue: {
6119    // We found a using declaration that is a value. Most likely, the using
6120    // declaration itself is meant to have the 'typename' keyword.
6121    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6122                          IILoc);
6123    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6124      << Name << Ctx << FullRange;
6125    if (UnresolvedUsingValueDecl *Using
6126          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6127      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6128      Diag(Loc, diag::note_using_value_decl_missing_typename)
6129        << FixItHint::CreateInsertion(Loc, "typename ");
6130    }
6131  }
6132  // Fall through to create a dependent typename type, from which we can recover
6133  // better.
6134
6135  case LookupResult::NotFoundInCurrentInstantiation:
6136    // Okay, it's a member of an unknown instantiation.
6137    return Context.getDependentNameType(Keyword,
6138                                        QualifierLoc.getNestedNameSpecifier(),
6139                                        &II);
6140
6141  case LookupResult::Found:
6142    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6143      // We found a type. Build an ElaboratedType, since the
6144      // typename-specifier was just sugar.
6145      return Context.getElaboratedType(ETK_Typename,
6146                                       QualifierLoc.getNestedNameSpecifier(),
6147                                       Context.getTypeDeclType(Type));
6148    }
6149
6150    DiagID = diag::err_typename_nested_not_type;
6151    Referenced = Result.getFoundDecl();
6152    break;
6153
6154
6155    llvm_unreachable("unresolved using decl in non-dependent context");
6156    return QualType();
6157
6158  case LookupResult::FoundOverloaded:
6159    DiagID = diag::err_typename_nested_not_type;
6160    Referenced = *Result.begin();
6161    break;
6162
6163  case LookupResult::Ambiguous:
6164    return QualType();
6165  }
6166
6167  // If we get here, it's because name lookup did not find a
6168  // type. Emit an appropriate diagnostic and return an error.
6169  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6170                        IILoc);
6171  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6172  if (Referenced)
6173    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6174      << Name;
6175  return QualType();
6176}
6177
6178namespace {
6179  // See Sema::RebuildTypeInCurrentInstantiation
6180  class CurrentInstantiationRebuilder
6181    : public TreeTransform<CurrentInstantiationRebuilder> {
6182    SourceLocation Loc;
6183    DeclarationName Entity;
6184
6185  public:
6186    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6187
6188    CurrentInstantiationRebuilder(Sema &SemaRef,
6189                                  SourceLocation Loc,
6190                                  DeclarationName Entity)
6191    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6192      Loc(Loc), Entity(Entity) { }
6193
6194    /// \brief Determine whether the given type \p T has already been
6195    /// transformed.
6196    ///
6197    /// For the purposes of type reconstruction, a type has already been
6198    /// transformed if it is NULL or if it is not dependent.
6199    bool AlreadyTransformed(QualType T) {
6200      return T.isNull() || !T->isDependentType();
6201    }
6202
6203    /// \brief Returns the location of the entity whose type is being
6204    /// rebuilt.
6205    SourceLocation getBaseLocation() { return Loc; }
6206
6207    /// \brief Returns the name of the entity whose type is being rebuilt.
6208    DeclarationName getBaseEntity() { return Entity; }
6209
6210    /// \brief Sets the "base" location and entity when that
6211    /// information is known based on another transformation.
6212    void setBase(SourceLocation Loc, DeclarationName Entity) {
6213      this->Loc = Loc;
6214      this->Entity = Entity;
6215    }
6216  };
6217}
6218
6219/// \brief Rebuilds a type within the context of the current instantiation.
6220///
6221/// The type \p T is part of the type of an out-of-line member definition of
6222/// a class template (or class template partial specialization) that was parsed
6223/// and constructed before we entered the scope of the class template (or
6224/// partial specialization thereof). This routine will rebuild that type now
6225/// that we have entered the declarator's scope, which may produce different
6226/// canonical types, e.g.,
6227///
6228/// \code
6229/// template<typename T>
6230/// struct X {
6231///   typedef T* pointer;
6232///   pointer data();
6233/// };
6234///
6235/// template<typename T>
6236/// typename X<T>::pointer X<T>::data() { ... }
6237/// \endcode
6238///
6239/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6240/// since we do not know that we can look into X<T> when we parsed the type.
6241/// This function will rebuild the type, performing the lookup of "pointer"
6242/// in X<T> and returning an ElaboratedType whose canonical type is the same
6243/// as the canonical type of T*, allowing the return types of the out-of-line
6244/// definition and the declaration to match.
6245TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6246                                                        SourceLocation Loc,
6247                                                        DeclarationName Name) {
6248  if (!T || !T->getType()->isDependentType())
6249    return T;
6250
6251  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6252  return Rebuilder.TransformType(T);
6253}
6254
6255ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6256  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6257                                          DeclarationName());
6258  return Rebuilder.TransformExpr(E);
6259}
6260
6261bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6262  if (SS.isInvalid())
6263    return true;
6264
6265  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6266  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6267                                          DeclarationName());
6268  NestedNameSpecifierLoc Rebuilt
6269    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6270  if (!Rebuilt)
6271    return true;
6272
6273  SS.Adopt(Rebuilt);
6274  return false;
6275}
6276
6277/// \brief Produces a formatted string that describes the binding of
6278/// template parameters to template arguments.
6279std::string
6280Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6281                                      const TemplateArgumentList &Args) {
6282  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6283}
6284
6285std::string
6286Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6287                                      const TemplateArgument *Args,
6288                                      unsigned NumArgs) {
6289  llvm::SmallString<128> Str;
6290  llvm::raw_svector_ostream Out(Str);
6291
6292  if (!Params || Params->size() == 0 || NumArgs == 0)
6293    return std::string();
6294
6295  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6296    if (I >= NumArgs)
6297      break;
6298
6299    if (I == 0)
6300      Out << "[with ";
6301    else
6302      Out << ", ";
6303
6304    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6305      Out << Id->getName();
6306    } else {
6307      Out << '$' << I;
6308    }
6309
6310    Out << " = ";
6311    Args[I].print(Context.PrintingPolicy, Out);
6312  }
6313
6314  Out << ']';
6315  return Out.str();
6316}
6317