SemaTemplate.cpp revision 2ade35e2cfd554e49d35a52047cea98a82787af9
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  // The set of class templates we've already seen.
67  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
68  LookupResult::Filter filter = R.makeFilter();
69  while (filter.hasNext()) {
70    NamedDecl *Orig = filter.next();
71    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
72    if (!Repl)
73      filter.erase();
74    else if (Repl != Orig) {
75
76      // C++ [temp.local]p3:
77      //   A lookup that finds an injected-class-name (10.2) can result in an
78      //   ambiguity in certain cases (for example, if it is found in more than
79      //   one base class). If all of the injected-class-names that are found
80      //   refer to specializations of the same class template, and if the name
81      //   is followed by a template-argument-list, the reference refers to the
82      //   class template itself and not a specialization thereof, and is not
83      //   ambiguous.
84      //
85      // FIXME: Will we eventually have to do the same for alias templates?
86      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
87        if (!ClassTemplates.insert(ClassTmpl)) {
88          filter.erase();
89          continue;
90        }
91
92      filter.replace(Repl);
93    }
94  }
95  filter.done();
96}
97
98TemplateNameKind Sema::isTemplateName(Scope *S,
99                                      CXXScopeSpec &SS,
100                                      UnqualifiedId &Name,
101                                      TypeTy *ObjectTypePtr,
102                                      bool EnteringContext,
103                                      TemplateTy &TemplateResult,
104                                      bool &MemberOfUnknownSpecialization) {
105  assert(getLangOptions().CPlusPlus && "No template names in C!");
106
107  DeclarationName TName;
108  MemberOfUnknownSpecialization = false;
109
110  switch (Name.getKind()) {
111  case UnqualifiedId::IK_Identifier:
112    TName = DeclarationName(Name.Identifier);
113    break;
114
115  case UnqualifiedId::IK_OperatorFunctionId:
116    TName = Context.DeclarationNames.getCXXOperatorName(
117                                              Name.OperatorFunctionId.Operator);
118    break;
119
120  case UnqualifiedId::IK_LiteralOperatorId:
121    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
122    break;
123
124  default:
125    return TNK_Non_template;
126  }
127
128  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
129
130  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
131                 LookupOrdinaryName);
132  R.suppressDiagnostics();
133  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
134                     MemberOfUnknownSpecialization);
135  if (R.empty() || R.isAmbiguous())
136    return TNK_Non_template;
137
138  TemplateName Template;
139  TemplateNameKind TemplateKind;
140
141  unsigned ResultCount = R.end() - R.begin();
142  if (ResultCount > 1) {
143    // We assume that we'll preserve the qualifier from a function
144    // template name in other ways.
145    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
146    TemplateKind = TNK_Function_template;
147  } else {
148    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
149
150    if (SS.isSet() && !SS.isInvalid()) {
151      NestedNameSpecifier *Qualifier
152        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
153      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
154    } else {
155      Template = TemplateName(TD);
156    }
157
158    if (isa<FunctionTemplateDecl>(TD))
159      TemplateKind = TNK_Function_template;
160    else {
161      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
162      TemplateKind = TNK_Type_template;
163    }
164  }
165
166  TemplateResult = TemplateTy::make(Template);
167  return TemplateKind;
168}
169
170bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
171                                       SourceLocation IILoc,
172                                       Scope *S,
173                                       const CXXScopeSpec *SS,
174                                       TemplateTy &SuggestedTemplate,
175                                       TemplateNameKind &SuggestedKind) {
176  // We can't recover unless there's a dependent scope specifier preceding the
177  // template name.
178  // FIXME: Typo correction?
179  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
180      computeDeclContext(*SS))
181    return false;
182
183  // The code is missing a 'template' keyword prior to the dependent template
184  // name.
185  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
186  Diag(IILoc, diag::err_template_kw_missing)
187    << Qualifier << II.getName()
188    << FixItHint::CreateInsertion(IILoc, "template ");
189  SuggestedTemplate
190    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
191  SuggestedKind = TNK_Dependent_template_name;
192  return true;
193}
194
195void Sema::LookupTemplateName(LookupResult &Found,
196                              Scope *S, CXXScopeSpec &SS,
197                              QualType ObjectType,
198                              bool EnteringContext,
199                              bool &MemberOfUnknownSpecialization) {
200  // Determine where to perform name lookup
201  MemberOfUnknownSpecialization = false;
202  DeclContext *LookupCtx = 0;
203  bool isDependent = false;
204  if (!ObjectType.isNull()) {
205    // This nested-name-specifier occurs in a member access expression, e.g.,
206    // x->B::f, and we are looking into the type of the object.
207    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
208    LookupCtx = computeDeclContext(ObjectType);
209    isDependent = ObjectType->isDependentType();
210    assert((isDependent || !ObjectType->isIncompleteType()) &&
211           "Caller should have completed object type");
212  } else if (SS.isSet()) {
213    // This nested-name-specifier occurs after another nested-name-specifier,
214    // so long into the context associated with the prior nested-name-specifier.
215    LookupCtx = computeDeclContext(SS, EnteringContext);
216    isDependent = isDependentScopeSpecifier(SS);
217
218    // The declaration context must be complete.
219    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
220      return;
221  }
222
223  bool ObjectTypeSearchedInScope = false;
224  if (LookupCtx) {
225    // Perform "qualified" name lookup into the declaration context we
226    // computed, which is either the type of the base of a member access
227    // expression or the declaration context associated with a prior
228    // nested-name-specifier.
229    LookupQualifiedName(Found, LookupCtx);
230
231    if (!ObjectType.isNull() && Found.empty()) {
232      // C++ [basic.lookup.classref]p1:
233      //   In a class member access expression (5.2.5), if the . or -> token is
234      //   immediately followed by an identifier followed by a <, the
235      //   identifier must be looked up to determine whether the < is the
236      //   beginning of a template argument list (14.2) or a less-than operator.
237      //   The identifier is first looked up in the class of the object
238      //   expression. If the identifier is not found, it is then looked up in
239      //   the context of the entire postfix-expression and shall name a class
240      //   or function template.
241      //
242      // FIXME: When we're instantiating a template, do we actually have to
243      // look in the scope of the template? Seems fishy...
244      if (S) LookupName(Found, S);
245      ObjectTypeSearchedInScope = true;
246    }
247  } else if (isDependent) {
248    // We cannot look into a dependent object type or nested nme
249    // specifier.
250    MemberOfUnknownSpecialization = true;
251    return;
252  } else {
253    // Perform unqualified name lookup in the current scope.
254    LookupName(Found, S);
255  }
256
257  if (Found.empty() && !isDependent) {
258    // If we did not find any names, attempt to correct any typos.
259    DeclarationName Name = Found.getLookupName();
260    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
261                                                 false, CTC_CXXCasts)) {
262      FilterAcceptableTemplateNames(Context, Found);
263      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
264        if (LookupCtx)
265          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
266            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
267            << FixItHint::CreateReplacement(Found.getNameLoc(),
268                                          Found.getLookupName().getAsString());
269        else
270          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
271            << Name << Found.getLookupName()
272            << FixItHint::CreateReplacement(Found.getNameLoc(),
273                                          Found.getLookupName().getAsString());
274        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
275          Diag(Template->getLocation(), diag::note_previous_decl)
276            << Template->getDeclName();
277      } else
278        Found.clear();
279    } else {
280      Found.clear();
281    }
282  }
283
284  FilterAcceptableTemplateNames(Context, Found);
285  if (Found.empty())
286    return;
287
288  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
289    // C++ [basic.lookup.classref]p1:
290    //   [...] If the lookup in the class of the object expression finds a
291    //   template, the name is also looked up in the context of the entire
292    //   postfix-expression and [...]
293    //
294    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
295                            LookupOrdinaryName);
296    LookupName(FoundOuter, S);
297    FilterAcceptableTemplateNames(Context, FoundOuter);
298
299    if (FoundOuter.empty()) {
300      //   - if the name is not found, the name found in the class of the
301      //     object expression is used, otherwise
302    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
303      //   - if the name is found in the context of the entire
304      //     postfix-expression and does not name a class template, the name
305      //     found in the class of the object expression is used, otherwise
306    } else {
307      //   - if the name found is a class template, it must refer to the same
308      //     entity as the one found in the class of the object expression,
309      //     otherwise the program is ill-formed.
310      if (!Found.isSingleResult() ||
311          Found.getFoundDecl()->getCanonicalDecl()
312            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
313        Diag(Found.getNameLoc(),
314             diag::ext_nested_name_member_ref_lookup_ambiguous)
315          << Found.getLookupName()
316          << ObjectType;
317        Diag(Found.getRepresentativeDecl()->getLocation(),
318             diag::note_ambig_member_ref_object_type)
319          << ObjectType;
320        Diag(FoundOuter.getFoundDecl()->getLocation(),
321             diag::note_ambig_member_ref_scope);
322
323        // Recover by taking the template that we found in the object
324        // expression's type.
325      }
326    }
327  }
328}
329
330/// ActOnDependentIdExpression - Handle a dependent id-expression that
331/// was just parsed.  This is only possible with an explicit scope
332/// specifier naming a dependent type.
333Sema::OwningExprResult
334Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
335                                 DeclarationName Name,
336                                 SourceLocation NameLoc,
337                                 bool isAddressOfOperand,
338                           const TemplateArgumentListInfo *TemplateArgs) {
339  NestedNameSpecifier *Qualifier
340    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
341
342  DeclContext *DC = getFunctionLevelDeclContext();
343
344  if (!isAddressOfOperand &&
345      isa<CXXMethodDecl>(DC) &&
346      cast<CXXMethodDecl>(DC)->isInstance()) {
347    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
348
349    // Since the 'this' expression is synthesized, we don't need to
350    // perform the double-lookup check.
351    NamedDecl *FirstQualifierInScope = 0;
352
353    return Owned(CXXDependentScopeMemberExpr::Create(Context,
354                                                     /*This*/ 0, ThisType,
355                                                     /*IsArrow*/ true,
356                                                     /*Op*/ SourceLocation(),
357                                                     Qualifier, SS.getRange(),
358                                                     FirstQualifierInScope,
359                                                     Name, NameLoc,
360                                                     TemplateArgs));
361  }
362
363  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
364}
365
366Sema::OwningExprResult
367Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
368                                DeclarationName Name,
369                                SourceLocation NameLoc,
370                                const TemplateArgumentListInfo *TemplateArgs) {
371  return Owned(DependentScopeDeclRefExpr::Create(Context,
372               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
373                                                 SS.getRange(),
374                                                 Name, NameLoc,
375                                                 TemplateArgs));
376}
377
378/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
379/// that the template parameter 'PrevDecl' is being shadowed by a new
380/// declaration at location Loc. Returns true to indicate that this is
381/// an error, and false otherwise.
382bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
383  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
384
385  // Microsoft Visual C++ permits template parameters to be shadowed.
386  if (getLangOptions().Microsoft)
387    return false;
388
389  // C++ [temp.local]p4:
390  //   A template-parameter shall not be redeclared within its
391  //   scope (including nested scopes).
392  Diag(Loc, diag::err_template_param_shadow)
393    << cast<NamedDecl>(PrevDecl)->getDeclName();
394  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
395  return true;
396}
397
398/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
399/// the parameter D to reference the templated declaration and return a pointer
400/// to the template declaration. Otherwise, do nothing to D and return null.
401TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
402  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
403    D = DeclPtrTy::make(Temp->getTemplatedDecl());
404    return Temp;
405  }
406  return 0;
407}
408
409static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
410                                            const ParsedTemplateArgument &Arg) {
411
412  switch (Arg.getKind()) {
413  case ParsedTemplateArgument::Type: {
414    TypeSourceInfo *DI;
415    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
416    if (!DI)
417      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
418    return TemplateArgumentLoc(TemplateArgument(T), DI);
419  }
420
421  case ParsedTemplateArgument::NonType: {
422    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
423    return TemplateArgumentLoc(TemplateArgument(E), E);
424  }
425
426  case ParsedTemplateArgument::Template: {
427    TemplateName Template
428      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
429    return TemplateArgumentLoc(TemplateArgument(Template),
430                               Arg.getScopeSpec().getRange(),
431                               Arg.getLocation());
432  }
433  }
434
435  llvm_unreachable("Unhandled parsed template argument");
436  return TemplateArgumentLoc();
437}
438
439/// \brief Translates template arguments as provided by the parser
440/// into template arguments used by semantic analysis.
441void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
442                                      TemplateArgumentListInfo &TemplateArgs) {
443 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
444   TemplateArgs.addArgument(translateTemplateArgument(*this,
445                                                      TemplateArgsIn[I]));
446}
447
448/// ActOnTypeParameter - Called when a C++ template type parameter
449/// (e.g., "typename T") has been parsed. Typename specifies whether
450/// the keyword "typename" was used to declare the type parameter
451/// (otherwise, "class" was used), and KeyLoc is the location of the
452/// "class" or "typename" keyword. ParamName is the name of the
453/// parameter (NULL indicates an unnamed template parameter) and
454/// ParamName is the location of the parameter name (if any).
455/// If the type parameter has a default argument, it will be added
456/// later via ActOnTypeParameterDefault.
457Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
458                                         SourceLocation EllipsisLoc,
459                                         SourceLocation KeyLoc,
460                                         IdentifierInfo *ParamName,
461                                         SourceLocation ParamNameLoc,
462                                         unsigned Depth, unsigned Position) {
463  assert(S->isTemplateParamScope() &&
464         "Template type parameter not in template parameter scope!");
465  bool Invalid = false;
466
467  if (ParamName) {
468    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
469                                           LookupOrdinaryName,
470                                           ForRedeclaration);
471    if (PrevDecl && PrevDecl->isTemplateParameter())
472      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
473                                                           PrevDecl);
474  }
475
476  SourceLocation Loc = ParamNameLoc;
477  if (!ParamName)
478    Loc = KeyLoc;
479
480  TemplateTypeParmDecl *Param
481    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
482                                   Loc, Depth, Position, ParamName, Typename,
483                                   Ellipsis);
484  if (Invalid)
485    Param->setInvalidDecl();
486
487  if (ParamName) {
488    // Add the template parameter into the current scope.
489    S->AddDecl(DeclPtrTy::make(Param));
490    IdResolver.AddDecl(Param);
491  }
492
493  return DeclPtrTy::make(Param);
494}
495
496/// ActOnTypeParameterDefault - Adds a default argument (the type
497/// Default) to the given template type parameter (TypeParam).
498void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
499                                     SourceLocation EqualLoc,
500                                     SourceLocation DefaultLoc,
501                                     TypeTy *DefaultT) {
502  TemplateTypeParmDecl *Parm
503    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
504
505  TypeSourceInfo *DefaultTInfo;
506  GetTypeFromParser(DefaultT, &DefaultTInfo);
507
508  assert(DefaultTInfo && "expected source information for type");
509
510  // C++0x [temp.param]p9:
511  // A default template-argument may be specified for any kind of
512  // template-parameter that is not a template parameter pack.
513  if (Parm->isParameterPack()) {
514    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
515    return;
516  }
517
518  // C++ [temp.param]p14:
519  //   A template-parameter shall not be used in its own default argument.
520  // FIXME: Implement this check! Needs a recursive walk over the types.
521
522  // Check the template argument itself.
523  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
524    Parm->setInvalidDecl();
525    return;
526  }
527
528  Parm->setDefaultArgument(DefaultTInfo, false);
529}
530
531/// \brief Check that the type of a non-type template parameter is
532/// well-formed.
533///
534/// \returns the (possibly-promoted) parameter type if valid;
535/// otherwise, produces a diagnostic and returns a NULL type.
536QualType
537Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
538  // We don't allow variably-modified types as the type of non-type template
539  // parameters.
540  if (T->isVariablyModifiedType()) {
541    Diag(Loc, diag::err_variably_modified_nontype_template_param)
542      << T;
543    return QualType();
544  }
545
546  // C++ [temp.param]p4:
547  //
548  // A non-type template-parameter shall have one of the following
549  // (optionally cv-qualified) types:
550  //
551  //       -- integral or enumeration type,
552  if (T->isIntegralOrEnumerationType() ||
553      //   -- pointer to object or pointer to function,
554      (T->isPointerType() &&
555       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
556        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
557      //   -- reference to object or reference to function,
558      T->isReferenceType() ||
559      //   -- pointer to member.
560      T->isMemberPointerType() ||
561      // If T is a dependent type, we can't do the check now, so we
562      // assume that it is well-formed.
563      T->isDependentType())
564    return T;
565  // C++ [temp.param]p8:
566  //
567  //   A non-type template-parameter of type "array of T" or
568  //   "function returning T" is adjusted to be of type "pointer to
569  //   T" or "pointer to function returning T", respectively.
570  else if (T->isArrayType())
571    // FIXME: Keep the type prior to promotion?
572    return Context.getArrayDecayedType(T);
573  else if (T->isFunctionType())
574    // FIXME: Keep the type prior to promotion?
575    return Context.getPointerType(T);
576
577  Diag(Loc, diag::err_template_nontype_parm_bad_type)
578    << T;
579
580  return QualType();
581}
582
583/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
584/// template parameter (e.g., "int Size" in "template<int Size>
585/// class Array") has been parsed. S is the current scope and D is
586/// the parsed declarator.
587Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
588                                                    unsigned Depth,
589                                                    unsigned Position) {
590  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
591  QualType T = TInfo->getType();
592
593  assert(S->isTemplateParamScope() &&
594         "Non-type template parameter not in template parameter scope!");
595  bool Invalid = false;
596
597  IdentifierInfo *ParamName = D.getIdentifier();
598  if (ParamName) {
599    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
600                                           LookupOrdinaryName,
601                                           ForRedeclaration);
602    if (PrevDecl && PrevDecl->isTemplateParameter())
603      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
604                                                           PrevDecl);
605  }
606
607  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
608  if (T.isNull()) {
609    T = Context.IntTy; // Recover with an 'int' type.
610    Invalid = true;
611  }
612
613  NonTypeTemplateParmDecl *Param
614    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
615                                      D.getIdentifierLoc(),
616                                      Depth, Position, ParamName, T, TInfo);
617  if (Invalid)
618    Param->setInvalidDecl();
619
620  if (D.getIdentifier()) {
621    // Add the template parameter into the current scope.
622    S->AddDecl(DeclPtrTy::make(Param));
623    IdResolver.AddDecl(Param);
624  }
625  return DeclPtrTy::make(Param);
626}
627
628/// \brief Adds a default argument to the given non-type template
629/// parameter.
630void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
631                                                SourceLocation EqualLoc,
632                                                ExprArg DefaultE) {
633  NonTypeTemplateParmDecl *TemplateParm
634    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
635  Expr *Default = static_cast<Expr *>(DefaultE.get());
636
637  // C++ [temp.param]p14:
638  //   A template-parameter shall not be used in its own default argument.
639  // FIXME: Implement this check! Needs a recursive walk over the types.
640
641  // Check the well-formedness of the default template argument.
642  TemplateArgument Converted;
643  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
644                            Converted)) {
645    TemplateParm->setInvalidDecl();
646    return;
647  }
648
649  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>(), false);
650}
651
652
653/// ActOnTemplateTemplateParameter - Called when a C++ template template
654/// parameter (e.g. T in template <template <typename> class T> class array)
655/// has been parsed. S is the current scope.
656Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
657                                                     SourceLocation TmpLoc,
658                                                     TemplateParamsTy *Params,
659                                                     IdentifierInfo *Name,
660                                                     SourceLocation NameLoc,
661                                                     unsigned Depth,
662                                                     unsigned Position) {
663  assert(S->isTemplateParamScope() &&
664         "Template template parameter not in template parameter scope!");
665
666  // Construct the parameter object.
667  TemplateTemplateParmDecl *Param =
668    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
669                                     TmpLoc, Depth, Position, Name,
670                                     (TemplateParameterList*)Params);
671
672  // Make sure the parameter is valid.
673  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
674  // do anything yet. However, if the template parameter list or (eventual)
675  // default value is ever invalidated, that will propagate here.
676  bool Invalid = false;
677  if (Invalid) {
678    Param->setInvalidDecl();
679  }
680
681  // If the tt-param has a name, then link the identifier into the scope
682  // and lookup mechanisms.
683  if (Name) {
684    S->AddDecl(DeclPtrTy::make(Param));
685    IdResolver.AddDecl(Param);
686  }
687
688  return DeclPtrTy::make(Param);
689}
690
691/// \brief Adds a default argument to the given template template
692/// parameter.
693void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
694                                                 SourceLocation EqualLoc,
695                                        const ParsedTemplateArgument &Default) {
696  TemplateTemplateParmDecl *TemplateParm
697    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
698
699  // C++ [temp.param]p14:
700  //   A template-parameter shall not be used in its own default argument.
701  // FIXME: Implement this check! Needs a recursive walk over the types.
702
703  // Check only that we have a template template argument. We don't want to
704  // try to check well-formedness now, because our template template parameter
705  // might have dependent types in its template parameters, which we wouldn't
706  // be able to match now.
707  //
708  // If none of the template template parameter's template arguments mention
709  // other template parameters, we could actually perform more checking here.
710  // However, it isn't worth doing.
711  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
712  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
713    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
714      << DefaultArg.getSourceRange();
715    return;
716  }
717
718  TemplateParm->setDefaultArgument(DefaultArg, false);
719}
720
721/// ActOnTemplateParameterList - Builds a TemplateParameterList that
722/// contains the template parameters in Params/NumParams.
723Sema::TemplateParamsTy *
724Sema::ActOnTemplateParameterList(unsigned Depth,
725                                 SourceLocation ExportLoc,
726                                 SourceLocation TemplateLoc,
727                                 SourceLocation LAngleLoc,
728                                 DeclPtrTy *Params, unsigned NumParams,
729                                 SourceLocation RAngleLoc) {
730  if (ExportLoc.isValid())
731    Diag(ExportLoc, diag::warn_template_export_unsupported);
732
733  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
734                                       (NamedDecl**)Params, NumParams,
735                                       RAngleLoc);
736}
737
738static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
739  if (SS.isSet())
740    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
741                        SS.getRange());
742}
743
744Sema::DeclResult
745Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
746                         SourceLocation KWLoc, CXXScopeSpec &SS,
747                         IdentifierInfo *Name, SourceLocation NameLoc,
748                         AttributeList *Attr,
749                         TemplateParameterList *TemplateParams,
750                         AccessSpecifier AS) {
751  assert(TemplateParams && TemplateParams->size() > 0 &&
752         "No template parameters");
753  assert(TUK != TUK_Reference && "Can only declare or define class templates");
754  bool Invalid = false;
755
756  // Check that we can declare a template here.
757  if (CheckTemplateDeclScope(S, TemplateParams))
758    return true;
759
760  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
761  assert(Kind != TTK_Enum && "can't build template of enumerated type");
762
763  // There is no such thing as an unnamed class template.
764  if (!Name) {
765    Diag(KWLoc, diag::err_template_unnamed_class);
766    return true;
767  }
768
769  // Find any previous declaration with this name.
770  DeclContext *SemanticContext;
771  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
772                        ForRedeclaration);
773  if (SS.isNotEmpty() && !SS.isInvalid()) {
774    SemanticContext = computeDeclContext(SS, true);
775    if (!SemanticContext) {
776      // FIXME: Produce a reasonable diagnostic here
777      return true;
778    }
779
780    if (RequireCompleteDeclContext(SS, SemanticContext))
781      return true;
782
783    LookupQualifiedName(Previous, SemanticContext);
784  } else {
785    SemanticContext = CurContext;
786    LookupName(Previous, S);
787  }
788
789  if (Previous.isAmbiguous())
790    return true;
791
792  NamedDecl *PrevDecl = 0;
793  if (Previous.begin() != Previous.end())
794    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
795
796  // If there is a previous declaration with the same name, check
797  // whether this is a valid redeclaration.
798  ClassTemplateDecl *PrevClassTemplate
799    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
800
801  // We may have found the injected-class-name of a class template,
802  // class template partial specialization, or class template specialization.
803  // In these cases, grab the template that is being defined or specialized.
804  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
805      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
806    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
807    PrevClassTemplate
808      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
809    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
810      PrevClassTemplate
811        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
812            ->getSpecializedTemplate();
813    }
814  }
815
816  if (TUK == TUK_Friend) {
817    // C++ [namespace.memdef]p3:
818    //   [...] When looking for a prior declaration of a class or a function
819    //   declared as a friend, and when the name of the friend class or
820    //   function is neither a qualified name nor a template-id, scopes outside
821    //   the innermost enclosing namespace scope are not considered.
822    if (!SS.isSet()) {
823      DeclContext *OutermostContext = CurContext;
824      while (!OutermostContext->isFileContext())
825        OutermostContext = OutermostContext->getLookupParent();
826
827      if (PrevDecl &&
828          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
829           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
830        SemanticContext = PrevDecl->getDeclContext();
831      } else {
832        // Declarations in outer scopes don't matter. However, the outermost
833        // context we computed is the semantic context for our new
834        // declaration.
835        PrevDecl = PrevClassTemplate = 0;
836        SemanticContext = OutermostContext;
837      }
838    }
839
840    if (CurContext->isDependentContext()) {
841      // If this is a dependent context, we don't want to link the friend
842      // class template to the template in scope, because that would perform
843      // checking of the template parameter lists that can't be performed
844      // until the outer context is instantiated.
845      PrevDecl = PrevClassTemplate = 0;
846    }
847  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
848    PrevDecl = PrevClassTemplate = 0;
849
850  if (PrevClassTemplate) {
851    // Ensure that the template parameter lists are compatible.
852    if (!TemplateParameterListsAreEqual(TemplateParams,
853                                   PrevClassTemplate->getTemplateParameters(),
854                                        /*Complain=*/true,
855                                        TPL_TemplateMatch))
856      return true;
857
858    // C++ [temp.class]p4:
859    //   In a redeclaration, partial specialization, explicit
860    //   specialization or explicit instantiation of a class template,
861    //   the class-key shall agree in kind with the original class
862    //   template declaration (7.1.5.3).
863    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
864    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
865      Diag(KWLoc, diag::err_use_with_wrong_tag)
866        << Name
867        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
868      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
869      Kind = PrevRecordDecl->getTagKind();
870    }
871
872    // Check for redefinition of this class template.
873    if (TUK == TUK_Definition) {
874      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
875        Diag(NameLoc, diag::err_redefinition) << Name;
876        Diag(Def->getLocation(), diag::note_previous_definition);
877        // FIXME: Would it make sense to try to "forget" the previous
878        // definition, as part of error recovery?
879        return true;
880      }
881    }
882  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
883    // Maybe we will complain about the shadowed template parameter.
884    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
885    // Just pretend that we didn't see the previous declaration.
886    PrevDecl = 0;
887  } else if (PrevDecl) {
888    // C++ [temp]p5:
889    //   A class template shall not have the same name as any other
890    //   template, class, function, object, enumeration, enumerator,
891    //   namespace, or type in the same scope (3.3), except as specified
892    //   in (14.5.4).
893    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
894    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
895    return true;
896  }
897
898  // Check the template parameter list of this declaration, possibly
899  // merging in the template parameter list from the previous class
900  // template declaration.
901  if (CheckTemplateParameterList(TemplateParams,
902            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
903                                 TPC_ClassTemplate))
904    Invalid = true;
905
906  if (SS.isSet()) {
907    // If the name of the template was qualified, we must be defining the
908    // template out-of-line.
909    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
910        !(TUK == TUK_Friend && CurContext->isDependentContext()))
911      Diag(NameLoc, diag::err_member_def_does_not_match)
912        << Name << SemanticContext << SS.getRange();
913  }
914
915  CXXRecordDecl *NewClass =
916    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
917                          PrevClassTemplate?
918                            PrevClassTemplate->getTemplatedDecl() : 0,
919                          /*DelayTypeCreation=*/true);
920  SetNestedNameSpecifier(NewClass, SS);
921
922  ClassTemplateDecl *NewTemplate
923    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
924                                DeclarationName(Name), TemplateParams,
925                                NewClass, PrevClassTemplate);
926  NewClass->setDescribedClassTemplate(NewTemplate);
927
928  // Build the type for the class template declaration now.
929  QualType T = NewTemplate->getInjectedClassNameSpecialization(Context);
930  T = Context.getInjectedClassNameType(NewClass, T);
931  assert(T->isDependentType() && "Class template type is not dependent?");
932  (void)T;
933
934  // If we are providing an explicit specialization of a member that is a
935  // class template, make a note of that.
936  if (PrevClassTemplate &&
937      PrevClassTemplate->getInstantiatedFromMemberTemplate())
938    PrevClassTemplate->setMemberSpecialization();
939
940  // Set the access specifier.
941  if (!Invalid && TUK != TUK_Friend)
942    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
943
944  // Set the lexical context of these templates
945  NewClass->setLexicalDeclContext(CurContext);
946  NewTemplate->setLexicalDeclContext(CurContext);
947
948  if (TUK == TUK_Definition)
949    NewClass->startDefinition();
950
951  if (Attr)
952    ProcessDeclAttributeList(S, NewClass, Attr);
953
954  if (TUK != TUK_Friend)
955    PushOnScopeChains(NewTemplate, S);
956  else {
957    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
958      NewTemplate->setAccess(PrevClassTemplate->getAccess());
959      NewClass->setAccess(PrevClassTemplate->getAccess());
960    }
961
962    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
963                                       PrevClassTemplate != NULL);
964
965    // Friend templates are visible in fairly strange ways.
966    if (!CurContext->isDependentContext()) {
967      DeclContext *DC = SemanticContext->getLookupContext();
968      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
969      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
970        PushOnScopeChains(NewTemplate, EnclosingScope,
971                          /* AddToContext = */ false);
972    }
973
974    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
975                                            NewClass->getLocation(),
976                                            NewTemplate,
977                                    /*FIXME:*/NewClass->getLocation());
978    Friend->setAccess(AS_public);
979    CurContext->addDecl(Friend);
980  }
981
982  if (Invalid) {
983    NewTemplate->setInvalidDecl();
984    NewClass->setInvalidDecl();
985  }
986  return DeclPtrTy::make(NewTemplate);
987}
988
989/// \brief Diagnose the presence of a default template argument on a
990/// template parameter, which is ill-formed in certain contexts.
991///
992/// \returns true if the default template argument should be dropped.
993static bool DiagnoseDefaultTemplateArgument(Sema &S,
994                                            Sema::TemplateParamListContext TPC,
995                                            SourceLocation ParamLoc,
996                                            SourceRange DefArgRange) {
997  switch (TPC) {
998  case Sema::TPC_ClassTemplate:
999    return false;
1000
1001  case Sema::TPC_FunctionTemplate:
1002    // C++ [temp.param]p9:
1003    //   A default template-argument shall not be specified in a
1004    //   function template declaration or a function template
1005    //   definition [...]
1006    // (This sentence is not in C++0x, per DR226).
1007    if (!S.getLangOptions().CPlusPlus0x)
1008      S.Diag(ParamLoc,
1009             diag::err_template_parameter_default_in_function_template)
1010        << DefArgRange;
1011    return false;
1012
1013  case Sema::TPC_ClassTemplateMember:
1014    // C++0x [temp.param]p9:
1015    //   A default template-argument shall not be specified in the
1016    //   template-parameter-lists of the definition of a member of a
1017    //   class template that appears outside of the member's class.
1018    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1019      << DefArgRange;
1020    return true;
1021
1022  case Sema::TPC_FriendFunctionTemplate:
1023    // C++ [temp.param]p9:
1024    //   A default template-argument shall not be specified in a
1025    //   friend template declaration.
1026    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1027      << DefArgRange;
1028    return true;
1029
1030    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1031    // for friend function templates if there is only a single
1032    // declaration (and it is a definition). Strange!
1033  }
1034
1035  return false;
1036}
1037
1038/// \brief Checks the validity of a template parameter list, possibly
1039/// considering the template parameter list from a previous
1040/// declaration.
1041///
1042/// If an "old" template parameter list is provided, it must be
1043/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1044/// template parameter list.
1045///
1046/// \param NewParams Template parameter list for a new template
1047/// declaration. This template parameter list will be updated with any
1048/// default arguments that are carried through from the previous
1049/// template parameter list.
1050///
1051/// \param OldParams If provided, template parameter list from a
1052/// previous declaration of the same template. Default template
1053/// arguments will be merged from the old template parameter list to
1054/// the new template parameter list.
1055///
1056/// \param TPC Describes the context in which we are checking the given
1057/// template parameter list.
1058///
1059/// \returns true if an error occurred, false otherwise.
1060bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1061                                      TemplateParameterList *OldParams,
1062                                      TemplateParamListContext TPC) {
1063  bool Invalid = false;
1064
1065  // C++ [temp.param]p10:
1066  //   The set of default template-arguments available for use with a
1067  //   template declaration or definition is obtained by merging the
1068  //   default arguments from the definition (if in scope) and all
1069  //   declarations in scope in the same way default function
1070  //   arguments are (8.3.6).
1071  bool SawDefaultArgument = false;
1072  SourceLocation PreviousDefaultArgLoc;
1073
1074  bool SawParameterPack = false;
1075  SourceLocation ParameterPackLoc;
1076
1077  // Dummy initialization to avoid warnings.
1078  TemplateParameterList::iterator OldParam = NewParams->end();
1079  if (OldParams)
1080    OldParam = OldParams->begin();
1081
1082  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1083                                    NewParamEnd = NewParams->end();
1084       NewParam != NewParamEnd; ++NewParam) {
1085    // Variables used to diagnose redundant default arguments
1086    bool RedundantDefaultArg = false;
1087    SourceLocation OldDefaultLoc;
1088    SourceLocation NewDefaultLoc;
1089
1090    // Variables used to diagnose missing default arguments
1091    bool MissingDefaultArg = false;
1092
1093    // C++0x [temp.param]p11:
1094    // If a template parameter of a class template is a template parameter pack,
1095    // it must be the last template parameter.
1096    if (SawParameterPack) {
1097      Diag(ParameterPackLoc,
1098           diag::err_template_param_pack_must_be_last_template_parameter);
1099      Invalid = true;
1100    }
1101
1102    if (TemplateTypeParmDecl *NewTypeParm
1103          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1104      // Check the presence of a default argument here.
1105      if (NewTypeParm->hasDefaultArgument() &&
1106          DiagnoseDefaultTemplateArgument(*this, TPC,
1107                                          NewTypeParm->getLocation(),
1108               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1109                                                       .getSourceRange()))
1110        NewTypeParm->removeDefaultArgument();
1111
1112      // Merge default arguments for template type parameters.
1113      TemplateTypeParmDecl *OldTypeParm
1114          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1115
1116      if (NewTypeParm->isParameterPack()) {
1117        assert(!NewTypeParm->hasDefaultArgument() &&
1118               "Parameter packs can't have a default argument!");
1119        SawParameterPack = true;
1120        ParameterPackLoc = NewTypeParm->getLocation();
1121      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1122                 NewTypeParm->hasDefaultArgument()) {
1123        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1124        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1125        SawDefaultArgument = true;
1126        RedundantDefaultArg = true;
1127        PreviousDefaultArgLoc = NewDefaultLoc;
1128      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1129        // Merge the default argument from the old declaration to the
1130        // new declaration.
1131        SawDefaultArgument = true;
1132        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1133                                        true);
1134        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1135      } else if (NewTypeParm->hasDefaultArgument()) {
1136        SawDefaultArgument = true;
1137        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1138      } else if (SawDefaultArgument)
1139        MissingDefaultArg = true;
1140    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1141               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1142      // Check the presence of a default argument here.
1143      if (NewNonTypeParm->hasDefaultArgument() &&
1144          DiagnoseDefaultTemplateArgument(*this, TPC,
1145                                          NewNonTypeParm->getLocation(),
1146                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1147        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1148        NewNonTypeParm->removeDefaultArgument();
1149      }
1150
1151      // Merge default arguments for non-type template parameters
1152      NonTypeTemplateParmDecl *OldNonTypeParm
1153        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1154      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1155          NewNonTypeParm->hasDefaultArgument()) {
1156        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1157        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1158        SawDefaultArgument = true;
1159        RedundantDefaultArg = true;
1160        PreviousDefaultArgLoc = NewDefaultLoc;
1161      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1162        // Merge the default argument from the old declaration to the
1163        // new declaration.
1164        SawDefaultArgument = true;
1165        // FIXME: We need to create a new kind of "default argument"
1166        // expression that points to a previous template template
1167        // parameter.
1168        NewNonTypeParm->setDefaultArgument(
1169                                         OldNonTypeParm->getDefaultArgument(),
1170                                         /*Inherited=*/ true);
1171        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1172      } else if (NewNonTypeParm->hasDefaultArgument()) {
1173        SawDefaultArgument = true;
1174        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1175      } else if (SawDefaultArgument)
1176        MissingDefaultArg = true;
1177    } else {
1178      // Check the presence of a default argument here.
1179      TemplateTemplateParmDecl *NewTemplateParm
1180        = cast<TemplateTemplateParmDecl>(*NewParam);
1181      if (NewTemplateParm->hasDefaultArgument() &&
1182          DiagnoseDefaultTemplateArgument(*this, TPC,
1183                                          NewTemplateParm->getLocation(),
1184                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1185        NewTemplateParm->removeDefaultArgument();
1186
1187      // Merge default arguments for template template parameters
1188      TemplateTemplateParmDecl *OldTemplateParm
1189        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1190      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1191          NewTemplateParm->hasDefaultArgument()) {
1192        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1193        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1194        SawDefaultArgument = true;
1195        RedundantDefaultArg = true;
1196        PreviousDefaultArgLoc = NewDefaultLoc;
1197      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1198        // Merge the default argument from the old declaration to the
1199        // new declaration.
1200        SawDefaultArgument = true;
1201        // FIXME: We need to create a new kind of "default argument" expression
1202        // that points to a previous template template parameter.
1203        NewTemplateParm->setDefaultArgument(
1204                                          OldTemplateParm->getDefaultArgument(),
1205                                          /*Inherited=*/ true);
1206        PreviousDefaultArgLoc
1207          = OldTemplateParm->getDefaultArgument().getLocation();
1208      } else if (NewTemplateParm->hasDefaultArgument()) {
1209        SawDefaultArgument = true;
1210        PreviousDefaultArgLoc
1211          = NewTemplateParm->getDefaultArgument().getLocation();
1212      } else if (SawDefaultArgument)
1213        MissingDefaultArg = true;
1214    }
1215
1216    if (RedundantDefaultArg) {
1217      // C++ [temp.param]p12:
1218      //   A template-parameter shall not be given default arguments
1219      //   by two different declarations in the same scope.
1220      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1221      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1222      Invalid = true;
1223    } else if (MissingDefaultArg) {
1224      // C++ [temp.param]p11:
1225      //   If a template-parameter has a default template-argument,
1226      //   all subsequent template-parameters shall have a default
1227      //   template-argument supplied.
1228      Diag((*NewParam)->getLocation(),
1229           diag::err_template_param_default_arg_missing);
1230      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1231      Invalid = true;
1232    }
1233
1234    // If we have an old template parameter list that we're merging
1235    // in, move on to the next parameter.
1236    if (OldParams)
1237      ++OldParam;
1238  }
1239
1240  return Invalid;
1241}
1242
1243/// \brief Match the given template parameter lists to the given scope
1244/// specifier, returning the template parameter list that applies to the
1245/// name.
1246///
1247/// \param DeclStartLoc the start of the declaration that has a scope
1248/// specifier or a template parameter list.
1249///
1250/// \param SS the scope specifier that will be matched to the given template
1251/// parameter lists. This scope specifier precedes a qualified name that is
1252/// being declared.
1253///
1254/// \param ParamLists the template parameter lists, from the outermost to the
1255/// innermost template parameter lists.
1256///
1257/// \param NumParamLists the number of template parameter lists in ParamLists.
1258///
1259/// \param IsFriend Whether to apply the slightly different rules for
1260/// matching template parameters to scope specifiers in friend
1261/// declarations.
1262///
1263/// \param IsExplicitSpecialization will be set true if the entity being
1264/// declared is an explicit specialization, false otherwise.
1265///
1266/// \returns the template parameter list, if any, that corresponds to the
1267/// name that is preceded by the scope specifier @p SS. This template
1268/// parameter list may be have template parameters (if we're declaring a
1269/// template) or may have no template parameters (if we're declaring a
1270/// template specialization), or may be NULL (if we were's declaring isn't
1271/// itself a template).
1272TemplateParameterList *
1273Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1274                                              const CXXScopeSpec &SS,
1275                                          TemplateParameterList **ParamLists,
1276                                              unsigned NumParamLists,
1277                                              bool IsFriend,
1278                                              bool &IsExplicitSpecialization) {
1279  IsExplicitSpecialization = false;
1280
1281  // Find the template-ids that occur within the nested-name-specifier. These
1282  // template-ids will match up with the template parameter lists.
1283  llvm::SmallVector<const TemplateSpecializationType *, 4>
1284    TemplateIdsInSpecifier;
1285  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1286    ExplicitSpecializationsInSpecifier;
1287  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1288       NNS; NNS = NNS->getPrefix()) {
1289    const Type *T = NNS->getAsType();
1290    if (!T) break;
1291
1292    // C++0x [temp.expl.spec]p17:
1293    //   A member or a member template may be nested within many
1294    //   enclosing class templates. In an explicit specialization for
1295    //   such a member, the member declaration shall be preceded by a
1296    //   template<> for each enclosing class template that is
1297    //   explicitly specialized.
1298    //
1299    // Following the existing practice of GNU and EDG, we allow a typedef of a
1300    // template specialization type.
1301    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1302      T = TT->LookThroughTypedefs().getTypePtr();
1303
1304    if (const TemplateSpecializationType *SpecType
1305                                  = dyn_cast<TemplateSpecializationType>(T)) {
1306      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1307      if (!Template)
1308        continue; // FIXME: should this be an error? probably...
1309
1310      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1311        ClassTemplateSpecializationDecl *SpecDecl
1312          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1313        // If the nested name specifier refers to an explicit specialization,
1314        // we don't need a template<> header.
1315        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1316          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1317          continue;
1318        }
1319      }
1320
1321      TemplateIdsInSpecifier.push_back(SpecType);
1322    }
1323  }
1324
1325  // Reverse the list of template-ids in the scope specifier, so that we can
1326  // more easily match up the template-ids and the template parameter lists.
1327  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1328
1329  SourceLocation FirstTemplateLoc = DeclStartLoc;
1330  if (NumParamLists)
1331    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1332
1333  // Match the template-ids found in the specifier to the template parameter
1334  // lists.
1335  unsigned Idx = 0;
1336  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1337       Idx != NumTemplateIds; ++Idx) {
1338    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1339    bool DependentTemplateId = TemplateId->isDependentType();
1340    if (Idx >= NumParamLists) {
1341      // We have a template-id without a corresponding template parameter
1342      // list.
1343
1344      // ...which is fine if this is a friend declaration.
1345      if (IsFriend) {
1346        IsExplicitSpecialization = true;
1347        break;
1348      }
1349
1350      if (DependentTemplateId) {
1351        // FIXME: the location information here isn't great.
1352        Diag(SS.getRange().getBegin(),
1353             diag::err_template_spec_needs_template_parameters)
1354          << TemplateId
1355          << SS.getRange();
1356      } else {
1357        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1358          << SS.getRange()
1359          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1360        IsExplicitSpecialization = true;
1361      }
1362      return 0;
1363    }
1364
1365    // Check the template parameter list against its corresponding template-id.
1366    if (DependentTemplateId) {
1367      TemplateParameterList *ExpectedTemplateParams = 0;
1368
1369      // Are there cases in (e.g.) friends where this won't match?
1370      if (const InjectedClassNameType *Injected
1371            = TemplateId->getAs<InjectedClassNameType>()) {
1372        CXXRecordDecl *Record = Injected->getDecl();
1373        if (ClassTemplatePartialSpecializationDecl *Partial =
1374              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1375          ExpectedTemplateParams = Partial->getTemplateParameters();
1376        else
1377          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1378            ->getTemplateParameters();
1379      }
1380
1381      if (ExpectedTemplateParams)
1382        TemplateParameterListsAreEqual(ParamLists[Idx],
1383                                       ExpectedTemplateParams,
1384                                       true, TPL_TemplateMatch);
1385
1386      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1387    } else if (ParamLists[Idx]->size() > 0)
1388      Diag(ParamLists[Idx]->getTemplateLoc(),
1389           diag::err_template_param_list_matches_nontemplate)
1390        << TemplateId
1391        << ParamLists[Idx]->getSourceRange();
1392    else
1393      IsExplicitSpecialization = true;
1394  }
1395
1396  // If there were at least as many template-ids as there were template
1397  // parameter lists, then there are no template parameter lists remaining for
1398  // the declaration itself.
1399  if (Idx >= NumParamLists)
1400    return 0;
1401
1402  // If there were too many template parameter lists, complain about that now.
1403  if (Idx != NumParamLists - 1) {
1404    while (Idx < NumParamLists - 1) {
1405      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1406      Diag(ParamLists[Idx]->getTemplateLoc(),
1407           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1408                               : diag::err_template_spec_extra_headers)
1409        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1410                       ParamLists[Idx]->getRAngleLoc());
1411
1412      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1413        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1414             diag::note_explicit_template_spec_does_not_need_header)
1415          << ExplicitSpecializationsInSpecifier.back();
1416        ExplicitSpecializationsInSpecifier.pop_back();
1417      }
1418
1419      ++Idx;
1420    }
1421  }
1422
1423  // Return the last template parameter list, which corresponds to the
1424  // entity being declared.
1425  return ParamLists[NumParamLists - 1];
1426}
1427
1428QualType Sema::CheckTemplateIdType(TemplateName Name,
1429                                   SourceLocation TemplateLoc,
1430                              const TemplateArgumentListInfo &TemplateArgs) {
1431  TemplateDecl *Template = Name.getAsTemplateDecl();
1432  if (!Template) {
1433    // The template name does not resolve to a template, so we just
1434    // build a dependent template-id type.
1435    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1436  }
1437
1438  // Check that the template argument list is well-formed for this
1439  // template.
1440  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1441                                        TemplateArgs.size());
1442  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1443                                false, Converted))
1444    return QualType();
1445
1446  assert((Converted.structuredSize() ==
1447            Template->getTemplateParameters()->size()) &&
1448         "Converted template argument list is too short!");
1449
1450  QualType CanonType;
1451
1452  if (Name.isDependent() ||
1453      TemplateSpecializationType::anyDependentTemplateArguments(
1454                                                      TemplateArgs)) {
1455    // This class template specialization is a dependent
1456    // type. Therefore, its canonical type is another class template
1457    // specialization type that contains all of the converted
1458    // arguments in canonical form. This ensures that, e.g., A<T> and
1459    // A<T, T> have identical types when A is declared as:
1460    //
1461    //   template<typename T, typename U = T> struct A;
1462    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1463    CanonType = Context.getTemplateSpecializationType(CanonName,
1464                                                   Converted.getFlatArguments(),
1465                                                   Converted.flatSize());
1466
1467    // FIXME: CanonType is not actually the canonical type, and unfortunately
1468    // it is a TemplateSpecializationType that we will never use again.
1469    // In the future, we need to teach getTemplateSpecializationType to only
1470    // build the canonical type and return that to us.
1471    CanonType = Context.getCanonicalType(CanonType);
1472
1473    // This might work out to be a current instantiation, in which
1474    // case the canonical type needs to be the InjectedClassNameType.
1475    //
1476    // TODO: in theory this could be a simple hashtable lookup; most
1477    // changes to CurContext don't change the set of current
1478    // instantiations.
1479    if (isa<ClassTemplateDecl>(Template)) {
1480      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1481        // If we get out to a namespace, we're done.
1482        if (Ctx->isFileContext()) break;
1483
1484        // If this isn't a record, keep looking.
1485        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1486        if (!Record) continue;
1487
1488        // Look for one of the two cases with InjectedClassNameTypes
1489        // and check whether it's the same template.
1490        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1491            !Record->getDescribedClassTemplate())
1492          continue;
1493
1494        // Fetch the injected class name type and check whether its
1495        // injected type is equal to the type we just built.
1496        QualType ICNT = Context.getTypeDeclType(Record);
1497        QualType Injected = cast<InjectedClassNameType>(ICNT)
1498          ->getInjectedSpecializationType();
1499
1500        if (CanonType != Injected->getCanonicalTypeInternal())
1501          continue;
1502
1503        // If so, the canonical type of this TST is the injected
1504        // class name type of the record we just found.
1505        assert(ICNT.isCanonical());
1506        CanonType = ICNT;
1507        break;
1508      }
1509    }
1510  } else if (ClassTemplateDecl *ClassTemplate
1511               = dyn_cast<ClassTemplateDecl>(Template)) {
1512    // Find the class template specialization declaration that
1513    // corresponds to these arguments.
1514    llvm::FoldingSetNodeID ID;
1515    ClassTemplateSpecializationDecl::Profile(ID,
1516                                             Converted.getFlatArguments(),
1517                                             Converted.flatSize(),
1518                                             Context);
1519    void *InsertPos = 0;
1520    ClassTemplateSpecializationDecl *Decl
1521      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1522    if (!Decl) {
1523      // This is the first time we have referenced this class template
1524      // specialization. Create the canonical declaration and add it to
1525      // the set of specializations.
1526      Decl = ClassTemplateSpecializationDecl::Create(Context,
1527                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1528                                                ClassTemplate->getDeclContext(),
1529                                                ClassTemplate->getLocation(),
1530                                                ClassTemplate,
1531                                                Converted, 0);
1532      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1533      Decl->setLexicalDeclContext(CurContext);
1534    }
1535
1536    CanonType = Context.getTypeDeclType(Decl);
1537    assert(isa<RecordType>(CanonType) &&
1538           "type of non-dependent specialization is not a RecordType");
1539  }
1540
1541  // Build the fully-sugared type for this class template
1542  // specialization, which refers back to the class template
1543  // specialization we created or found.
1544  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1545}
1546
1547Action::TypeResult
1548Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1549                          SourceLocation LAngleLoc,
1550                          ASTTemplateArgsPtr TemplateArgsIn,
1551                          SourceLocation RAngleLoc) {
1552  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1553
1554  // Translate the parser's template argument list in our AST format.
1555  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1556  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1557
1558  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1559  TemplateArgsIn.release();
1560
1561  if (Result.isNull())
1562    return true;
1563
1564  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1565  TemplateSpecializationTypeLoc TL
1566    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1567  TL.setTemplateNameLoc(TemplateLoc);
1568  TL.setLAngleLoc(LAngleLoc);
1569  TL.setRAngleLoc(RAngleLoc);
1570  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1571    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1572
1573  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1574}
1575
1576Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1577                                              TagUseKind TUK,
1578                                              DeclSpec::TST TagSpec,
1579                                              SourceLocation TagLoc) {
1580  if (TypeResult.isInvalid())
1581    return Sema::TypeResult();
1582
1583  // FIXME: preserve source info, ideally without copying the DI.
1584  TypeSourceInfo *DI;
1585  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1586
1587  // Verify the tag specifier.
1588  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1589
1590  if (const RecordType *RT = Type->getAs<RecordType>()) {
1591    RecordDecl *D = RT->getDecl();
1592
1593    IdentifierInfo *Id = D->getIdentifier();
1594    assert(Id && "templated class must have an identifier");
1595
1596    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1597      Diag(TagLoc, diag::err_use_with_wrong_tag)
1598        << Type
1599        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1600      Diag(D->getLocation(), diag::note_previous_use);
1601    }
1602  }
1603
1604  ElaboratedTypeKeyword Keyword
1605    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1606  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1607
1608  return ElabType.getAsOpaquePtr();
1609}
1610
1611Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1612                                                 LookupResult &R,
1613                                                 bool RequiresADL,
1614                                 const TemplateArgumentListInfo &TemplateArgs) {
1615  // FIXME: Can we do any checking at this point? I guess we could check the
1616  // template arguments that we have against the template name, if the template
1617  // name refers to a single template. That's not a terribly common case,
1618  // though.
1619
1620  // These should be filtered out by our callers.
1621  assert(!R.empty() && "empty lookup results when building templateid");
1622  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1623
1624  NestedNameSpecifier *Qualifier = 0;
1625  SourceRange QualifierRange;
1626  if (SS.isSet()) {
1627    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1628    QualifierRange = SS.getRange();
1629  }
1630
1631  // We don't want lookup warnings at this point.
1632  R.suppressDiagnostics();
1633
1634  bool Dependent
1635    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1636                                              &TemplateArgs);
1637  UnresolvedLookupExpr *ULE
1638    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1639                                   Qualifier, QualifierRange,
1640                                   R.getLookupName(), R.getNameLoc(),
1641                                   RequiresADL, TemplateArgs,
1642                                   R.begin(), R.end());
1643
1644  return Owned(ULE);
1645}
1646
1647// We actually only call this from template instantiation.
1648Sema::OwningExprResult
1649Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1650                                   DeclarationName Name,
1651                                   SourceLocation NameLoc,
1652                             const TemplateArgumentListInfo &TemplateArgs) {
1653  DeclContext *DC;
1654  if (!(DC = computeDeclContext(SS, false)) ||
1655      DC->isDependentContext() ||
1656      RequireCompleteDeclContext(SS, DC))
1657    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1658
1659  bool MemberOfUnknownSpecialization;
1660  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1661  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1662                     MemberOfUnknownSpecialization);
1663
1664  if (R.isAmbiguous())
1665    return ExprError();
1666
1667  if (R.empty()) {
1668    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1669      << Name << SS.getRange();
1670    return ExprError();
1671  }
1672
1673  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1674    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1675      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1676    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1677    return ExprError();
1678  }
1679
1680  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1681}
1682
1683/// \brief Form a dependent template name.
1684///
1685/// This action forms a dependent template name given the template
1686/// name and its (presumably dependent) scope specifier. For
1687/// example, given "MetaFun::template apply", the scope specifier \p
1688/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1689/// of the "template" keyword, and "apply" is the \p Name.
1690Sema::TemplateTy
1691Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1692                                 CXXScopeSpec &SS,
1693                                 UnqualifiedId &Name,
1694                                 TypeTy *ObjectType,
1695                                 bool EnteringContext) {
1696  DeclContext *LookupCtx = 0;
1697  if (SS.isSet())
1698    LookupCtx = computeDeclContext(SS, EnteringContext);
1699  if (!LookupCtx && ObjectType)
1700    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1701  if (LookupCtx) {
1702    // C++0x [temp.names]p5:
1703    //   If a name prefixed by the keyword template is not the name of
1704    //   a template, the program is ill-formed. [Note: the keyword
1705    //   template may not be applied to non-template members of class
1706    //   templates. -end note ] [ Note: as is the case with the
1707    //   typename prefix, the template prefix is allowed in cases
1708    //   where it is not strictly necessary; i.e., when the
1709    //   nested-name-specifier or the expression on the left of the ->
1710    //   or . is not dependent on a template-parameter, or the use
1711    //   does not appear in the scope of a template. -end note]
1712    //
1713    // Note: C++03 was more strict here, because it banned the use of
1714    // the "template" keyword prior to a template-name that was not a
1715    // dependent name. C++ DR468 relaxed this requirement (the
1716    // "template" keyword is now permitted). We follow the C++0x
1717    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1718    TemplateTy Template;
1719    bool MemberOfUnknownSpecialization;
1720    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1721                                          EnteringContext, Template,
1722                                          MemberOfUnknownSpecialization);
1723    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1724        isa<CXXRecordDecl>(LookupCtx) &&
1725        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1726      // This is a dependent template.
1727    } else if (TNK == TNK_Non_template) {
1728      Diag(Name.getSourceRange().getBegin(),
1729           diag::err_template_kw_refers_to_non_template)
1730        << GetNameFromUnqualifiedId(Name)
1731        << Name.getSourceRange()
1732        << TemplateKWLoc;
1733      return TemplateTy();
1734    } else {
1735      // We found something; return it.
1736      if (ActiveTemplateInstantiations.empty() &&
1737          !getLangOptions().CPlusPlus0x &&
1738          !SS.isEmpty() && !isDependentScopeSpecifier(SS))
1739        Diag(TemplateKWLoc.isValid()? TemplateKWLoc
1740                                    : Name.getSourceRange().getBegin(),
1741             diag::ext_template_nondependent)
1742        << SourceRange(Name.getSourceRange().getBegin())
1743        << FixItHint::CreateRemoval(TemplateKWLoc);
1744
1745      return Template;
1746    }
1747  }
1748
1749  NestedNameSpecifier *Qualifier
1750    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1751
1752  switch (Name.getKind()) {
1753  case UnqualifiedId::IK_Identifier:
1754    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1755                                                             Name.Identifier));
1756
1757  case UnqualifiedId::IK_OperatorFunctionId:
1758    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1759                                             Name.OperatorFunctionId.Operator));
1760
1761  case UnqualifiedId::IK_LiteralOperatorId:
1762    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1763
1764  default:
1765    break;
1766  }
1767
1768  Diag(Name.getSourceRange().getBegin(),
1769       diag::err_template_kw_refers_to_non_template)
1770    << GetNameFromUnqualifiedId(Name)
1771    << Name.getSourceRange()
1772    << TemplateKWLoc;
1773  return TemplateTy();
1774}
1775
1776bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1777                                     const TemplateArgumentLoc &AL,
1778                                     TemplateArgumentListBuilder &Converted) {
1779  const TemplateArgument &Arg = AL.getArgument();
1780
1781  // Check template type parameter.
1782  switch(Arg.getKind()) {
1783  case TemplateArgument::Type:
1784    // C++ [temp.arg.type]p1:
1785    //   A template-argument for a template-parameter which is a
1786    //   type shall be a type-id.
1787    break;
1788  case TemplateArgument::Template: {
1789    // We have a template type parameter but the template argument
1790    // is a template without any arguments.
1791    SourceRange SR = AL.getSourceRange();
1792    TemplateName Name = Arg.getAsTemplate();
1793    Diag(SR.getBegin(), diag::err_template_missing_args)
1794      << Name << SR;
1795    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1796      Diag(Decl->getLocation(), diag::note_template_decl_here);
1797
1798    return true;
1799  }
1800  default: {
1801    // We have a template type parameter but the template argument
1802    // is not a type.
1803    SourceRange SR = AL.getSourceRange();
1804    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1805    Diag(Param->getLocation(), diag::note_template_param_here);
1806
1807    return true;
1808  }
1809  }
1810
1811  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1812    return true;
1813
1814  // Add the converted template type argument.
1815  Converted.Append(
1816                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1817  return false;
1818}
1819
1820/// \brief Substitute template arguments into the default template argument for
1821/// the given template type parameter.
1822///
1823/// \param SemaRef the semantic analysis object for which we are performing
1824/// the substitution.
1825///
1826/// \param Template the template that we are synthesizing template arguments
1827/// for.
1828///
1829/// \param TemplateLoc the location of the template name that started the
1830/// template-id we are checking.
1831///
1832/// \param RAngleLoc the location of the right angle bracket ('>') that
1833/// terminates the template-id.
1834///
1835/// \param Param the template template parameter whose default we are
1836/// substituting into.
1837///
1838/// \param Converted the list of template arguments provided for template
1839/// parameters that precede \p Param in the template parameter list.
1840///
1841/// \returns the substituted template argument, or NULL if an error occurred.
1842static TypeSourceInfo *
1843SubstDefaultTemplateArgument(Sema &SemaRef,
1844                             TemplateDecl *Template,
1845                             SourceLocation TemplateLoc,
1846                             SourceLocation RAngleLoc,
1847                             TemplateTypeParmDecl *Param,
1848                             TemplateArgumentListBuilder &Converted) {
1849  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1850
1851  // If the argument type is dependent, instantiate it now based
1852  // on the previously-computed template arguments.
1853  if (ArgType->getType()->isDependentType()) {
1854    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1855                                      /*TakeArgs=*/false);
1856
1857    MultiLevelTemplateArgumentList AllTemplateArgs
1858      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1859
1860    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1861                                     Template, Converted.getFlatArguments(),
1862                                     Converted.flatSize(),
1863                                     SourceRange(TemplateLoc, RAngleLoc));
1864
1865    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1866                                Param->getDefaultArgumentLoc(),
1867                                Param->getDeclName());
1868  }
1869
1870  return ArgType;
1871}
1872
1873/// \brief Substitute template arguments into the default template argument for
1874/// the given non-type template parameter.
1875///
1876/// \param SemaRef the semantic analysis object for which we are performing
1877/// the substitution.
1878///
1879/// \param Template the template that we are synthesizing template arguments
1880/// for.
1881///
1882/// \param TemplateLoc the location of the template name that started the
1883/// template-id we are checking.
1884///
1885/// \param RAngleLoc the location of the right angle bracket ('>') that
1886/// terminates the template-id.
1887///
1888/// \param Param the non-type template parameter whose default we are
1889/// substituting into.
1890///
1891/// \param Converted the list of template arguments provided for template
1892/// parameters that precede \p Param in the template parameter list.
1893///
1894/// \returns the substituted template argument, or NULL if an error occurred.
1895static Sema::OwningExprResult
1896SubstDefaultTemplateArgument(Sema &SemaRef,
1897                             TemplateDecl *Template,
1898                             SourceLocation TemplateLoc,
1899                             SourceLocation RAngleLoc,
1900                             NonTypeTemplateParmDecl *Param,
1901                             TemplateArgumentListBuilder &Converted) {
1902  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1903                                    /*TakeArgs=*/false);
1904
1905  MultiLevelTemplateArgumentList AllTemplateArgs
1906    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1907
1908  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1909                                   Template, Converted.getFlatArguments(),
1910                                   Converted.flatSize(),
1911                                   SourceRange(TemplateLoc, RAngleLoc));
1912
1913  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1914}
1915
1916/// \brief Substitute template arguments into the default template argument for
1917/// the given template template parameter.
1918///
1919/// \param SemaRef the semantic analysis object for which we are performing
1920/// the substitution.
1921///
1922/// \param Template the template that we are synthesizing template arguments
1923/// for.
1924///
1925/// \param TemplateLoc the location of the template name that started the
1926/// template-id we are checking.
1927///
1928/// \param RAngleLoc the location of the right angle bracket ('>') that
1929/// terminates the template-id.
1930///
1931/// \param Param the template template parameter whose default we are
1932/// substituting into.
1933///
1934/// \param Converted the list of template arguments provided for template
1935/// parameters that precede \p Param in the template parameter list.
1936///
1937/// \returns the substituted template argument, or NULL if an error occurred.
1938static TemplateName
1939SubstDefaultTemplateArgument(Sema &SemaRef,
1940                             TemplateDecl *Template,
1941                             SourceLocation TemplateLoc,
1942                             SourceLocation RAngleLoc,
1943                             TemplateTemplateParmDecl *Param,
1944                             TemplateArgumentListBuilder &Converted) {
1945  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1946                                    /*TakeArgs=*/false);
1947
1948  MultiLevelTemplateArgumentList AllTemplateArgs
1949    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1950
1951  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1952                                   Template, Converted.getFlatArguments(),
1953                                   Converted.flatSize(),
1954                                   SourceRange(TemplateLoc, RAngleLoc));
1955
1956  return SemaRef.SubstTemplateName(
1957                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1958                              Param->getDefaultArgument().getTemplateNameLoc(),
1959                                   AllTemplateArgs);
1960}
1961
1962/// \brief If the given template parameter has a default template
1963/// argument, substitute into that default template argument and
1964/// return the corresponding template argument.
1965TemplateArgumentLoc
1966Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1967                                              SourceLocation TemplateLoc,
1968                                              SourceLocation RAngleLoc,
1969                                              Decl *Param,
1970                                     TemplateArgumentListBuilder &Converted) {
1971  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1972    if (!TypeParm->hasDefaultArgument())
1973      return TemplateArgumentLoc();
1974
1975    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1976                                                      TemplateLoc,
1977                                                      RAngleLoc,
1978                                                      TypeParm,
1979                                                      Converted);
1980    if (DI)
1981      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1982
1983    return TemplateArgumentLoc();
1984  }
1985
1986  if (NonTypeTemplateParmDecl *NonTypeParm
1987        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1988    if (!NonTypeParm->hasDefaultArgument())
1989      return TemplateArgumentLoc();
1990
1991    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1992                                                        TemplateLoc,
1993                                                        RAngleLoc,
1994                                                        NonTypeParm,
1995                                                        Converted);
1996    if (Arg.isInvalid())
1997      return TemplateArgumentLoc();
1998
1999    Expr *ArgE = Arg.takeAs<Expr>();
2000    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2001  }
2002
2003  TemplateTemplateParmDecl *TempTempParm
2004    = cast<TemplateTemplateParmDecl>(Param);
2005  if (!TempTempParm->hasDefaultArgument())
2006    return TemplateArgumentLoc();
2007
2008  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2009                                                    TemplateLoc,
2010                                                    RAngleLoc,
2011                                                    TempTempParm,
2012                                                    Converted);
2013  if (TName.isNull())
2014    return TemplateArgumentLoc();
2015
2016  return TemplateArgumentLoc(TemplateArgument(TName),
2017                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2018                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2019}
2020
2021/// \brief Check that the given template argument corresponds to the given
2022/// template parameter.
2023bool Sema::CheckTemplateArgument(NamedDecl *Param,
2024                                 const TemplateArgumentLoc &Arg,
2025                                 TemplateDecl *Template,
2026                                 SourceLocation TemplateLoc,
2027                                 SourceLocation RAngleLoc,
2028                                 TemplateArgumentListBuilder &Converted,
2029                                 CheckTemplateArgumentKind CTAK) {
2030  // Check template type parameters.
2031  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2032    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2033
2034  // Check non-type template parameters.
2035  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2036    // Do substitution on the type of the non-type template parameter
2037    // with the template arguments we've seen thus far.
2038    QualType NTTPType = NTTP->getType();
2039    if (NTTPType->isDependentType()) {
2040      // Do substitution on the type of the non-type template parameter.
2041      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2042                                 NTTP, Converted.getFlatArguments(),
2043                                 Converted.flatSize(),
2044                                 SourceRange(TemplateLoc, RAngleLoc));
2045
2046      TemplateArgumentList TemplateArgs(Context, Converted,
2047                                        /*TakeArgs=*/false);
2048      NTTPType = SubstType(NTTPType,
2049                           MultiLevelTemplateArgumentList(TemplateArgs),
2050                           NTTP->getLocation(),
2051                           NTTP->getDeclName());
2052      // If that worked, check the non-type template parameter type
2053      // for validity.
2054      if (!NTTPType.isNull())
2055        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2056                                                     NTTP->getLocation());
2057      if (NTTPType.isNull())
2058        return true;
2059    }
2060
2061    switch (Arg.getArgument().getKind()) {
2062    case TemplateArgument::Null:
2063      assert(false && "Should never see a NULL template argument here");
2064      return true;
2065
2066    case TemplateArgument::Expression: {
2067      Expr *E = Arg.getArgument().getAsExpr();
2068      TemplateArgument Result;
2069      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2070        return true;
2071
2072      Converted.Append(Result);
2073      break;
2074    }
2075
2076    case TemplateArgument::Declaration:
2077    case TemplateArgument::Integral:
2078      // We've already checked this template argument, so just copy
2079      // it to the list of converted arguments.
2080      Converted.Append(Arg.getArgument());
2081      break;
2082
2083    case TemplateArgument::Template:
2084      // We were given a template template argument. It may not be ill-formed;
2085      // see below.
2086      if (DependentTemplateName *DTN
2087            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2088        // We have a template argument such as \c T::template X, which we
2089        // parsed as a template template argument. However, since we now
2090        // know that we need a non-type template argument, convert this
2091        // template name into an expression.
2092        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2093                                                    DTN->getQualifier(),
2094                                               Arg.getTemplateQualifierRange(),
2095                                                    DTN->getIdentifier(),
2096                                                    Arg.getTemplateNameLoc());
2097
2098        TemplateArgument Result;
2099        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2100          return true;
2101
2102        Converted.Append(Result);
2103        break;
2104      }
2105
2106      // We have a template argument that actually does refer to a class
2107      // template, template alias, or template template parameter, and
2108      // therefore cannot be a non-type template argument.
2109      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2110        << Arg.getSourceRange();
2111
2112      Diag(Param->getLocation(), diag::note_template_param_here);
2113      return true;
2114
2115    case TemplateArgument::Type: {
2116      // We have a non-type template parameter but the template
2117      // argument is a type.
2118
2119      // C++ [temp.arg]p2:
2120      //   In a template-argument, an ambiguity between a type-id and
2121      //   an expression is resolved to a type-id, regardless of the
2122      //   form of the corresponding template-parameter.
2123      //
2124      // We warn specifically about this case, since it can be rather
2125      // confusing for users.
2126      QualType T = Arg.getArgument().getAsType();
2127      SourceRange SR = Arg.getSourceRange();
2128      if (T->isFunctionType())
2129        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2130      else
2131        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2132      Diag(Param->getLocation(), diag::note_template_param_here);
2133      return true;
2134    }
2135
2136    case TemplateArgument::Pack:
2137      llvm_unreachable("Caller must expand template argument packs");
2138      break;
2139    }
2140
2141    return false;
2142  }
2143
2144
2145  // Check template template parameters.
2146  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2147
2148  // Substitute into the template parameter list of the template
2149  // template parameter, since previously-supplied template arguments
2150  // may appear within the template template parameter.
2151  {
2152    // Set up a template instantiation context.
2153    LocalInstantiationScope Scope(*this);
2154    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2155                               TempParm, Converted.getFlatArguments(),
2156                               Converted.flatSize(),
2157                               SourceRange(TemplateLoc, RAngleLoc));
2158
2159    TemplateArgumentList TemplateArgs(Context, Converted,
2160                                      /*TakeArgs=*/false);
2161    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2162                      SubstDecl(TempParm, CurContext,
2163                                MultiLevelTemplateArgumentList(TemplateArgs)));
2164    if (!TempParm)
2165      return true;
2166
2167    // FIXME: TempParam is leaked.
2168  }
2169
2170  switch (Arg.getArgument().getKind()) {
2171  case TemplateArgument::Null:
2172    assert(false && "Should never see a NULL template argument here");
2173    return true;
2174
2175  case TemplateArgument::Template:
2176    if (CheckTemplateArgument(TempParm, Arg))
2177      return true;
2178
2179    Converted.Append(Arg.getArgument());
2180    break;
2181
2182  case TemplateArgument::Expression:
2183  case TemplateArgument::Type:
2184    // We have a template template parameter but the template
2185    // argument does not refer to a template.
2186    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2187    return true;
2188
2189  case TemplateArgument::Declaration:
2190    llvm_unreachable(
2191                       "Declaration argument with template template parameter");
2192    break;
2193  case TemplateArgument::Integral:
2194    llvm_unreachable(
2195                          "Integral argument with template template parameter");
2196    break;
2197
2198  case TemplateArgument::Pack:
2199    llvm_unreachable("Caller must expand template argument packs");
2200    break;
2201  }
2202
2203  return false;
2204}
2205
2206/// \brief Check that the given template argument list is well-formed
2207/// for specializing the given template.
2208bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2209                                     SourceLocation TemplateLoc,
2210                                const TemplateArgumentListInfo &TemplateArgs,
2211                                     bool PartialTemplateArgs,
2212                                     TemplateArgumentListBuilder &Converted) {
2213  TemplateParameterList *Params = Template->getTemplateParameters();
2214  unsigned NumParams = Params->size();
2215  unsigned NumArgs = TemplateArgs.size();
2216  bool Invalid = false;
2217
2218  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2219
2220  bool HasParameterPack =
2221    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2222
2223  if ((NumArgs > NumParams && !HasParameterPack) ||
2224      (NumArgs < Params->getMinRequiredArguments() &&
2225       !PartialTemplateArgs)) {
2226    // FIXME: point at either the first arg beyond what we can handle,
2227    // or the '>', depending on whether we have too many or too few
2228    // arguments.
2229    SourceRange Range;
2230    if (NumArgs > NumParams)
2231      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2232    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2233      << (NumArgs > NumParams)
2234      << (isa<ClassTemplateDecl>(Template)? 0 :
2235          isa<FunctionTemplateDecl>(Template)? 1 :
2236          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2237      << Template << Range;
2238    Diag(Template->getLocation(), diag::note_template_decl_here)
2239      << Params->getSourceRange();
2240    Invalid = true;
2241  }
2242
2243  // C++ [temp.arg]p1:
2244  //   [...] The type and form of each template-argument specified in
2245  //   a template-id shall match the type and form specified for the
2246  //   corresponding parameter declared by the template in its
2247  //   template-parameter-list.
2248  unsigned ArgIdx = 0;
2249  for (TemplateParameterList::iterator Param = Params->begin(),
2250                                       ParamEnd = Params->end();
2251       Param != ParamEnd; ++Param, ++ArgIdx) {
2252    if (ArgIdx > NumArgs && PartialTemplateArgs)
2253      break;
2254
2255    // If we have a template parameter pack, check every remaining template
2256    // argument against that template parameter pack.
2257    if ((*Param)->isTemplateParameterPack()) {
2258      Converted.BeginPack();
2259      for (; ArgIdx < NumArgs; ++ArgIdx) {
2260        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2261                                  TemplateLoc, RAngleLoc, Converted)) {
2262          Invalid = true;
2263          break;
2264        }
2265      }
2266      Converted.EndPack();
2267      continue;
2268    }
2269
2270    if (ArgIdx < NumArgs) {
2271      // Check the template argument we were given.
2272      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2273                                TemplateLoc, RAngleLoc, Converted))
2274        return true;
2275
2276      continue;
2277    }
2278
2279    // We have a default template argument that we will use.
2280    TemplateArgumentLoc Arg;
2281
2282    // Retrieve the default template argument from the template
2283    // parameter. For each kind of template parameter, we substitute the
2284    // template arguments provided thus far and any "outer" template arguments
2285    // (when the template parameter was part of a nested template) into
2286    // the default argument.
2287    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2288      if (!TTP->hasDefaultArgument()) {
2289        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2290        break;
2291      }
2292
2293      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2294                                                             Template,
2295                                                             TemplateLoc,
2296                                                             RAngleLoc,
2297                                                             TTP,
2298                                                             Converted);
2299      if (!ArgType)
2300        return true;
2301
2302      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2303                                ArgType);
2304    } else if (NonTypeTemplateParmDecl *NTTP
2305                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2306      if (!NTTP->hasDefaultArgument()) {
2307        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2308        break;
2309      }
2310
2311      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2312                                                              TemplateLoc,
2313                                                              RAngleLoc,
2314                                                              NTTP,
2315                                                              Converted);
2316      if (E.isInvalid())
2317        return true;
2318
2319      Expr *Ex = E.takeAs<Expr>();
2320      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2321    } else {
2322      TemplateTemplateParmDecl *TempParm
2323        = cast<TemplateTemplateParmDecl>(*Param);
2324
2325      if (!TempParm->hasDefaultArgument()) {
2326        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2327        break;
2328      }
2329
2330      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2331                                                       TemplateLoc,
2332                                                       RAngleLoc,
2333                                                       TempParm,
2334                                                       Converted);
2335      if (Name.isNull())
2336        return true;
2337
2338      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2339                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2340                  TempParm->getDefaultArgument().getTemplateNameLoc());
2341    }
2342
2343    // Introduce an instantiation record that describes where we are using
2344    // the default template argument.
2345    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2346                                        Converted.getFlatArguments(),
2347                                        Converted.flatSize(),
2348                                        SourceRange(TemplateLoc, RAngleLoc));
2349
2350    // Check the default template argument.
2351    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2352                              RAngleLoc, Converted))
2353      return true;
2354  }
2355
2356  return Invalid;
2357}
2358
2359/// \brief Check a template argument against its corresponding
2360/// template type parameter.
2361///
2362/// This routine implements the semantics of C++ [temp.arg.type]. It
2363/// returns true if an error occurred, and false otherwise.
2364bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2365                                 TypeSourceInfo *ArgInfo) {
2366  assert(ArgInfo && "invalid TypeSourceInfo");
2367  QualType Arg = ArgInfo->getType();
2368
2369  // C++ [temp.arg.type]p2:
2370  //   A local type, a type with no linkage, an unnamed type or a type
2371  //   compounded from any of these types shall not be used as a
2372  //   template-argument for a template type-parameter.
2373  //
2374  // FIXME: Perform the unnamed type check.
2375  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2376  const TagType *Tag = 0;
2377  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2378    Tag = EnumT;
2379  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2380    Tag = RecordT;
2381  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2382    SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2383    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2384      << QualType(Tag, 0) << SR;
2385  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2386           !Tag->getDecl()->getTypedefForAnonDecl()) {
2387    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2388    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2389    return true;
2390  } else if (Arg->isVariablyModifiedType()) {
2391    Diag(SR.getBegin(), diag::err_variably_modified_template_arg)
2392      << Arg;
2393    return true;
2394  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2395    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2396  }
2397
2398  return false;
2399}
2400
2401/// \brief Checks whether the given template argument is the address
2402/// of an object or function according to C++ [temp.arg.nontype]p1.
2403static bool
2404CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2405                                               NonTypeTemplateParmDecl *Param,
2406                                               QualType ParamType,
2407                                               Expr *ArgIn,
2408                                               TemplateArgument &Converted) {
2409  bool Invalid = false;
2410  Expr *Arg = ArgIn;
2411  QualType ArgType = Arg->getType();
2412
2413  // See through any implicit casts we added to fix the type.
2414  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2415    Arg = Cast->getSubExpr();
2416
2417  // C++ [temp.arg.nontype]p1:
2418  //
2419  //   A template-argument for a non-type, non-template
2420  //   template-parameter shall be one of: [...]
2421  //
2422  //     -- the address of an object or function with external
2423  //        linkage, including function templates and function
2424  //        template-ids but excluding non-static class members,
2425  //        expressed as & id-expression where the & is optional if
2426  //        the name refers to a function or array, or if the
2427  //        corresponding template-parameter is a reference; or
2428  DeclRefExpr *DRE = 0;
2429
2430  // Ignore (and complain about) any excess parentheses.
2431  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2432    if (!Invalid) {
2433      S.Diag(Arg->getSourceRange().getBegin(),
2434             diag::err_template_arg_extra_parens)
2435        << Arg->getSourceRange();
2436      Invalid = true;
2437    }
2438
2439    Arg = Parens->getSubExpr();
2440  }
2441
2442  bool AddressTaken = false;
2443  SourceLocation AddrOpLoc;
2444  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2445    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2446      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2447      AddressTaken = true;
2448      AddrOpLoc = UnOp->getOperatorLoc();
2449    }
2450  } else
2451    DRE = dyn_cast<DeclRefExpr>(Arg);
2452
2453  if (!DRE) {
2454    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2455      << Arg->getSourceRange();
2456    S.Diag(Param->getLocation(), diag::note_template_param_here);
2457    return true;
2458  }
2459
2460  // Stop checking the precise nature of the argument if it is value dependent,
2461  // it should be checked when instantiated.
2462  if (Arg->isValueDependent()) {
2463    Converted = TemplateArgument(ArgIn->Retain());
2464    return false;
2465  }
2466
2467  if (!isa<ValueDecl>(DRE->getDecl())) {
2468    S.Diag(Arg->getSourceRange().getBegin(),
2469           diag::err_template_arg_not_object_or_func_form)
2470      << Arg->getSourceRange();
2471    S.Diag(Param->getLocation(), diag::note_template_param_here);
2472    return true;
2473  }
2474
2475  NamedDecl *Entity = 0;
2476
2477  // Cannot refer to non-static data members
2478  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2479    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2480      << Field << Arg->getSourceRange();
2481    S.Diag(Param->getLocation(), diag::note_template_param_here);
2482    return true;
2483  }
2484
2485  // Cannot refer to non-static member functions
2486  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2487    if (!Method->isStatic()) {
2488      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2489        << Method << Arg->getSourceRange();
2490      S.Diag(Param->getLocation(), diag::note_template_param_here);
2491      return true;
2492    }
2493
2494  // Functions must have external linkage.
2495  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2496    if (!isExternalLinkage(Func->getLinkage())) {
2497      S.Diag(Arg->getSourceRange().getBegin(),
2498             diag::err_template_arg_function_not_extern)
2499        << Func << Arg->getSourceRange();
2500      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2501        << true;
2502      return true;
2503    }
2504
2505    // Okay: we've named a function with external linkage.
2506    Entity = Func;
2507
2508    // If the template parameter has pointer type, the function decays.
2509    if (ParamType->isPointerType() && !AddressTaken)
2510      ArgType = S.Context.getPointerType(Func->getType());
2511    else if (AddressTaken && ParamType->isReferenceType()) {
2512      // If we originally had an address-of operator, but the
2513      // parameter has reference type, complain and (if things look
2514      // like they will work) drop the address-of operator.
2515      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2516                                            ParamType.getNonReferenceType())) {
2517        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2518          << ParamType;
2519        S.Diag(Param->getLocation(), diag::note_template_param_here);
2520        return true;
2521      }
2522
2523      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2524        << ParamType
2525        << FixItHint::CreateRemoval(AddrOpLoc);
2526      S.Diag(Param->getLocation(), diag::note_template_param_here);
2527
2528      ArgType = Func->getType();
2529    }
2530  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2531    if (!isExternalLinkage(Var->getLinkage())) {
2532      S.Diag(Arg->getSourceRange().getBegin(),
2533             diag::err_template_arg_object_not_extern)
2534        << Var << Arg->getSourceRange();
2535      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2536        << true;
2537      return true;
2538    }
2539
2540    // A value of reference type is not an object.
2541    if (Var->getType()->isReferenceType()) {
2542      S.Diag(Arg->getSourceRange().getBegin(),
2543             diag::err_template_arg_reference_var)
2544        << Var->getType() << Arg->getSourceRange();
2545      S.Diag(Param->getLocation(), diag::note_template_param_here);
2546      return true;
2547    }
2548
2549    // Okay: we've named an object with external linkage
2550    Entity = Var;
2551
2552    // If the template parameter has pointer type, we must have taken
2553    // the address of this object.
2554    if (ParamType->isReferenceType()) {
2555      if (AddressTaken) {
2556        // If we originally had an address-of operator, but the
2557        // parameter has reference type, complain and (if things look
2558        // like they will work) drop the address-of operator.
2559        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2560                                            ParamType.getNonReferenceType())) {
2561          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2562            << ParamType;
2563          S.Diag(Param->getLocation(), diag::note_template_param_here);
2564          return true;
2565        }
2566
2567        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2568          << ParamType
2569          << FixItHint::CreateRemoval(AddrOpLoc);
2570        S.Diag(Param->getLocation(), diag::note_template_param_here);
2571
2572        ArgType = Var->getType();
2573      }
2574    } else if (!AddressTaken && ParamType->isPointerType()) {
2575      if (Var->getType()->isArrayType()) {
2576        // Array-to-pointer decay.
2577        ArgType = S.Context.getArrayDecayedType(Var->getType());
2578      } else {
2579        // If the template parameter has pointer type but the address of
2580        // this object was not taken, complain and (possibly) recover by
2581        // taking the address of the entity.
2582        ArgType = S.Context.getPointerType(Var->getType());
2583        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2584          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2585            << ParamType;
2586          S.Diag(Param->getLocation(), diag::note_template_param_here);
2587          return true;
2588        }
2589
2590        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2591          << ParamType
2592          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2593
2594        S.Diag(Param->getLocation(), diag::note_template_param_here);
2595      }
2596    }
2597  } else {
2598    // We found something else, but we don't know specifically what it is.
2599    S.Diag(Arg->getSourceRange().getBegin(),
2600           diag::err_template_arg_not_object_or_func)
2601      << Arg->getSourceRange();
2602    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2603    return true;
2604  }
2605
2606  if (ParamType->isPointerType() &&
2607      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2608      S.IsQualificationConversion(ArgType, ParamType)) {
2609    // For pointer-to-object types, qualification conversions are
2610    // permitted.
2611  } else {
2612    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2613      if (!ParamRef->getPointeeType()->isFunctionType()) {
2614        // C++ [temp.arg.nontype]p5b3:
2615        //   For a non-type template-parameter of type reference to
2616        //   object, no conversions apply. The type referred to by the
2617        //   reference may be more cv-qualified than the (otherwise
2618        //   identical) type of the template- argument. The
2619        //   template-parameter is bound directly to the
2620        //   template-argument, which shall be an lvalue.
2621
2622        // FIXME: Other qualifiers?
2623        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2624        unsigned ArgQuals = ArgType.getCVRQualifiers();
2625
2626        if ((ParamQuals | ArgQuals) != ParamQuals) {
2627          S.Diag(Arg->getSourceRange().getBegin(),
2628                 diag::err_template_arg_ref_bind_ignores_quals)
2629            << ParamType << Arg->getType()
2630            << Arg->getSourceRange();
2631          S.Diag(Param->getLocation(), diag::note_template_param_here);
2632          return true;
2633        }
2634      }
2635    }
2636
2637    // At this point, the template argument refers to an object or
2638    // function with external linkage. We now need to check whether the
2639    // argument and parameter types are compatible.
2640    if (!S.Context.hasSameUnqualifiedType(ArgType,
2641                                          ParamType.getNonReferenceType())) {
2642      // We can't perform this conversion or binding.
2643      if (ParamType->isReferenceType())
2644        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2645          << ParamType << Arg->getType() << Arg->getSourceRange();
2646      else
2647        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2648          << Arg->getType() << ParamType << Arg->getSourceRange();
2649      S.Diag(Param->getLocation(), diag::note_template_param_here);
2650      return true;
2651    }
2652  }
2653
2654  // Create the template argument.
2655  Converted = TemplateArgument(Entity->getCanonicalDecl());
2656  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2657  return false;
2658}
2659
2660/// \brief Checks whether the given template argument is a pointer to
2661/// member constant according to C++ [temp.arg.nontype]p1.
2662bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2663                                                TemplateArgument &Converted) {
2664  bool Invalid = false;
2665
2666  // See through any implicit casts we added to fix the type.
2667  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2668    Arg = Cast->getSubExpr();
2669
2670  // C++ [temp.arg.nontype]p1:
2671  //
2672  //   A template-argument for a non-type, non-template
2673  //   template-parameter shall be one of: [...]
2674  //
2675  //     -- a pointer to member expressed as described in 5.3.1.
2676  DeclRefExpr *DRE = 0;
2677
2678  // Ignore (and complain about) any excess parentheses.
2679  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2680    if (!Invalid) {
2681      Diag(Arg->getSourceRange().getBegin(),
2682           diag::err_template_arg_extra_parens)
2683        << Arg->getSourceRange();
2684      Invalid = true;
2685    }
2686
2687    Arg = Parens->getSubExpr();
2688  }
2689
2690  // A pointer-to-member constant written &Class::member.
2691  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2692    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2693      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2694      if (DRE && !DRE->getQualifier())
2695        DRE = 0;
2696    }
2697  }
2698  // A constant of pointer-to-member type.
2699  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2700    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2701      if (VD->getType()->isMemberPointerType()) {
2702        if (isa<NonTypeTemplateParmDecl>(VD) ||
2703            (isa<VarDecl>(VD) &&
2704             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2705          if (Arg->isTypeDependent() || Arg->isValueDependent())
2706            Converted = TemplateArgument(Arg->Retain());
2707          else
2708            Converted = TemplateArgument(VD->getCanonicalDecl());
2709          return Invalid;
2710        }
2711      }
2712    }
2713
2714    DRE = 0;
2715  }
2716
2717  if (!DRE)
2718    return Diag(Arg->getSourceRange().getBegin(),
2719                diag::err_template_arg_not_pointer_to_member_form)
2720      << Arg->getSourceRange();
2721
2722  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2723    assert((isa<FieldDecl>(DRE->getDecl()) ||
2724            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2725           "Only non-static member pointers can make it here");
2726
2727    // Okay: this is the address of a non-static member, and therefore
2728    // a member pointer constant.
2729    if (Arg->isTypeDependent() || Arg->isValueDependent())
2730      Converted = TemplateArgument(Arg->Retain());
2731    else
2732      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2733    return Invalid;
2734  }
2735
2736  // We found something else, but we don't know specifically what it is.
2737  Diag(Arg->getSourceRange().getBegin(),
2738       diag::err_template_arg_not_pointer_to_member_form)
2739      << Arg->getSourceRange();
2740  Diag(DRE->getDecl()->getLocation(),
2741       diag::note_template_arg_refers_here);
2742  return true;
2743}
2744
2745/// \brief Check a template argument against its corresponding
2746/// non-type template parameter.
2747///
2748/// This routine implements the semantics of C++ [temp.arg.nontype].
2749/// It returns true if an error occurred, and false otherwise. \p
2750/// InstantiatedParamType is the type of the non-type template
2751/// parameter after it has been instantiated.
2752///
2753/// If no error was detected, Converted receives the converted template argument.
2754bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2755                                 QualType InstantiatedParamType, Expr *&Arg,
2756                                 TemplateArgument &Converted,
2757                                 CheckTemplateArgumentKind CTAK) {
2758  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2759
2760  // If either the parameter has a dependent type or the argument is
2761  // type-dependent, there's nothing we can check now.
2762  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2763    // FIXME: Produce a cloned, canonical expression?
2764    Converted = TemplateArgument(Arg);
2765    return false;
2766  }
2767
2768  // C++ [temp.arg.nontype]p5:
2769  //   The following conversions are performed on each expression used
2770  //   as a non-type template-argument. If a non-type
2771  //   template-argument cannot be converted to the type of the
2772  //   corresponding template-parameter then the program is
2773  //   ill-formed.
2774  //
2775  //     -- for a non-type template-parameter of integral or
2776  //        enumeration type, integral promotions (4.5) and integral
2777  //        conversions (4.7) are applied.
2778  QualType ParamType = InstantiatedParamType;
2779  QualType ArgType = Arg->getType();
2780  if (ParamType->isIntegralOrEnumerationType()) {
2781    // C++ [temp.arg.nontype]p1:
2782    //   A template-argument for a non-type, non-template
2783    //   template-parameter shall be one of:
2784    //
2785    //     -- an integral constant-expression of integral or enumeration
2786    //        type; or
2787    //     -- the name of a non-type template-parameter; or
2788    SourceLocation NonConstantLoc;
2789    llvm::APSInt Value;
2790    if (!ArgType->isIntegralOrEnumerationType()) {
2791      Diag(Arg->getSourceRange().getBegin(),
2792           diag::err_template_arg_not_integral_or_enumeral)
2793        << ArgType << Arg->getSourceRange();
2794      Diag(Param->getLocation(), diag::note_template_param_here);
2795      return true;
2796    } else if (!Arg->isValueDependent() &&
2797               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2798      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2799        << ArgType << Arg->getSourceRange();
2800      return true;
2801    }
2802
2803    // From here on out, all we care about are the unqualified forms
2804    // of the parameter and argument types.
2805    ParamType = ParamType.getUnqualifiedType();
2806    ArgType = ArgType.getUnqualifiedType();
2807
2808    // Try to convert the argument to the parameter's type.
2809    if (Context.hasSameType(ParamType, ArgType)) {
2810      // Okay: no conversion necessary
2811    } else if (CTAK == CTAK_Deduced) {
2812      // C++ [temp.deduct.type]p17:
2813      //   If, in the declaration of a function template with a non-type
2814      //   template-parameter, the non-type template- parameter is used
2815      //   in an expression in the function parameter-list and, if the
2816      //   corresponding template-argument is deduced, the
2817      //   template-argument type shall match the type of the
2818      //   template-parameter exactly, except that a template-argument
2819      //   deduced from an array bound may be of any integral type.
2820      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2821        << ArgType << ParamType;
2822      Diag(Param->getLocation(), diag::note_template_param_here);
2823      return true;
2824    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2825               !ParamType->isEnumeralType()) {
2826      // This is an integral promotion or conversion.
2827      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2828    } else {
2829      // We can't perform this conversion.
2830      Diag(Arg->getSourceRange().getBegin(),
2831           diag::err_template_arg_not_convertible)
2832        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2833      Diag(Param->getLocation(), diag::note_template_param_here);
2834      return true;
2835    }
2836
2837    QualType IntegerType = Context.getCanonicalType(ParamType);
2838    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2839      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2840
2841    if (!Arg->isValueDependent()) {
2842      llvm::APSInt OldValue = Value;
2843
2844      // Coerce the template argument's value to the value it will have
2845      // based on the template parameter's type.
2846      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2847      if (Value.getBitWidth() != AllowedBits)
2848        Value.extOrTrunc(AllowedBits);
2849      Value.setIsSigned(IntegerType->isSignedIntegerType());
2850
2851      // Complain if an unsigned parameter received a negative value.
2852      if (IntegerType->isUnsignedIntegerType()
2853          && (OldValue.isSigned() && OldValue.isNegative())) {
2854        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2855          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2856          << Arg->getSourceRange();
2857        Diag(Param->getLocation(), diag::note_template_param_here);
2858      }
2859
2860      // Complain if we overflowed the template parameter's type.
2861      unsigned RequiredBits;
2862      if (IntegerType->isUnsignedIntegerType())
2863        RequiredBits = OldValue.getActiveBits();
2864      else if (OldValue.isUnsigned())
2865        RequiredBits = OldValue.getActiveBits() + 1;
2866      else
2867        RequiredBits = OldValue.getMinSignedBits();
2868      if (RequiredBits > AllowedBits) {
2869        Diag(Arg->getSourceRange().getBegin(),
2870             diag::warn_template_arg_too_large)
2871          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2872          << Arg->getSourceRange();
2873        Diag(Param->getLocation(), diag::note_template_param_here);
2874      }
2875    }
2876
2877    // Add the value of this argument to the list of converted
2878    // arguments. We use the bitwidth and signedness of the template
2879    // parameter.
2880    if (Arg->isValueDependent()) {
2881      // The argument is value-dependent. Create a new
2882      // TemplateArgument with the converted expression.
2883      Converted = TemplateArgument(Arg);
2884      return false;
2885    }
2886
2887    Converted = TemplateArgument(Value,
2888                                 ParamType->isEnumeralType() ? ParamType
2889                                                             : IntegerType);
2890    return false;
2891  }
2892
2893  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2894
2895  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2896  // from a template argument of type std::nullptr_t to a non-type
2897  // template parameter of type pointer to object, pointer to
2898  // function, or pointer-to-member, respectively.
2899  if (ArgType->isNullPtrType() &&
2900      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2901    Converted = TemplateArgument((NamedDecl *)0);
2902    return false;
2903  }
2904
2905  // Handle pointer-to-function, reference-to-function, and
2906  // pointer-to-member-function all in (roughly) the same way.
2907  if (// -- For a non-type template-parameter of type pointer to
2908      //    function, only the function-to-pointer conversion (4.3) is
2909      //    applied. If the template-argument represents a set of
2910      //    overloaded functions (or a pointer to such), the matching
2911      //    function is selected from the set (13.4).
2912      (ParamType->isPointerType() &&
2913       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2914      // -- For a non-type template-parameter of type reference to
2915      //    function, no conversions apply. If the template-argument
2916      //    represents a set of overloaded functions, the matching
2917      //    function is selected from the set (13.4).
2918      (ParamType->isReferenceType() &&
2919       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2920      // -- For a non-type template-parameter of type pointer to
2921      //    member function, no conversions apply. If the
2922      //    template-argument represents a set of overloaded member
2923      //    functions, the matching member function is selected from
2924      //    the set (13.4).
2925      (ParamType->isMemberPointerType() &&
2926       ParamType->getAs<MemberPointerType>()->getPointeeType()
2927         ->isFunctionType())) {
2928
2929    if (Arg->getType() == Context.OverloadTy) {
2930      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2931                                                                true,
2932                                                                FoundResult)) {
2933        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2934          return true;
2935
2936        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2937        ArgType = Arg->getType();
2938      } else
2939        return true;
2940    }
2941
2942    if (!ParamType->isMemberPointerType())
2943      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2944                                                            ParamType,
2945                                                            Arg, Converted);
2946
2947    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2948      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2949                        Arg->isLvalue(Context) == Expr::LV_Valid);
2950    } else if (!Context.hasSameUnqualifiedType(ArgType,
2951                                           ParamType.getNonReferenceType())) {
2952      // We can't perform this conversion.
2953      Diag(Arg->getSourceRange().getBegin(),
2954           diag::err_template_arg_not_convertible)
2955        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2956      Diag(Param->getLocation(), diag::note_template_param_here);
2957      return true;
2958    }
2959
2960    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2961  }
2962
2963  if (ParamType->isPointerType()) {
2964    //   -- for a non-type template-parameter of type pointer to
2965    //      object, qualification conversions (4.4) and the
2966    //      array-to-pointer conversion (4.2) are applied.
2967    // C++0x also allows a value of std::nullptr_t.
2968    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2969           "Only object pointers allowed here");
2970
2971    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2972                                                          ParamType,
2973                                                          Arg, Converted);
2974  }
2975
2976  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2977    //   -- For a non-type template-parameter of type reference to
2978    //      object, no conversions apply. The type referred to by the
2979    //      reference may be more cv-qualified than the (otherwise
2980    //      identical) type of the template-argument. The
2981    //      template-parameter is bound directly to the
2982    //      template-argument, which must be an lvalue.
2983    assert(ParamRefType->getPointeeType()->isObjectType() &&
2984           "Only object references allowed here");
2985
2986    if (Arg->getType() == Context.OverloadTy) {
2987      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2988                                                 ParamRefType->getPointeeType(),
2989                                                                true,
2990                                                                FoundResult)) {
2991        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2992          return true;
2993
2994        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2995        ArgType = Arg->getType();
2996      } else
2997        return true;
2998    }
2999
3000    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3001                                                          ParamType,
3002                                                          Arg, Converted);
3003  }
3004
3005  //     -- For a non-type template-parameter of type pointer to data
3006  //        member, qualification conversions (4.4) are applied.
3007  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3008
3009  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3010    // Types match exactly: nothing more to do here.
3011  } else if (IsQualificationConversion(ArgType, ParamType)) {
3012    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
3013                      Arg->isLvalue(Context) == Expr::LV_Valid);
3014  } else {
3015    // We can't perform this conversion.
3016    Diag(Arg->getSourceRange().getBegin(),
3017         diag::err_template_arg_not_convertible)
3018      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3019    Diag(Param->getLocation(), diag::note_template_param_here);
3020    return true;
3021  }
3022
3023  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3024}
3025
3026/// \brief Check a template argument against its corresponding
3027/// template template parameter.
3028///
3029/// This routine implements the semantics of C++ [temp.arg.template].
3030/// It returns true if an error occurred, and false otherwise.
3031bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3032                                 const TemplateArgumentLoc &Arg) {
3033  TemplateName Name = Arg.getArgument().getAsTemplate();
3034  TemplateDecl *Template = Name.getAsTemplateDecl();
3035  if (!Template) {
3036    // Any dependent template name is fine.
3037    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3038    return false;
3039  }
3040
3041  // C++ [temp.arg.template]p1:
3042  //   A template-argument for a template template-parameter shall be
3043  //   the name of a class template, expressed as id-expression. Only
3044  //   primary class templates are considered when matching the
3045  //   template template argument with the corresponding parameter;
3046  //   partial specializations are not considered even if their
3047  //   parameter lists match that of the template template parameter.
3048  //
3049  // Note that we also allow template template parameters here, which
3050  // will happen when we are dealing with, e.g., class template
3051  // partial specializations.
3052  if (!isa<ClassTemplateDecl>(Template) &&
3053      !isa<TemplateTemplateParmDecl>(Template)) {
3054    assert(isa<FunctionTemplateDecl>(Template) &&
3055           "Only function templates are possible here");
3056    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3057    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3058      << Template;
3059  }
3060
3061  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3062                                         Param->getTemplateParameters(),
3063                                         true,
3064                                         TPL_TemplateTemplateArgumentMatch,
3065                                         Arg.getLocation());
3066}
3067
3068/// \brief Given a non-type template argument that refers to a
3069/// declaration and the type of its corresponding non-type template
3070/// parameter, produce an expression that properly refers to that
3071/// declaration.
3072Sema::OwningExprResult
3073Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3074                                              QualType ParamType,
3075                                              SourceLocation Loc) {
3076  assert(Arg.getKind() == TemplateArgument::Declaration &&
3077         "Only declaration template arguments permitted here");
3078  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3079
3080  if (VD->getDeclContext()->isRecord() &&
3081      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3082    // If the value is a class member, we might have a pointer-to-member.
3083    // Determine whether the non-type template template parameter is of
3084    // pointer-to-member type. If so, we need to build an appropriate
3085    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3086    // would refer to the member itself.
3087    if (ParamType->isMemberPointerType()) {
3088      QualType ClassType
3089        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3090      NestedNameSpecifier *Qualifier
3091        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
3092      CXXScopeSpec SS;
3093      SS.setScopeRep(Qualifier);
3094      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
3095                                           VD->getType().getNonReferenceType(),
3096                                                  Loc,
3097                                                  &SS);
3098      if (RefExpr.isInvalid())
3099        return ExprError();
3100
3101      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3102
3103      // We might need to perform a trailing qualification conversion, since
3104      // the element type on the parameter could be more qualified than the
3105      // element type in the expression we constructed.
3106      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3107                                    ParamType.getUnqualifiedType())) {
3108        Expr *RefE = RefExpr.takeAs<Expr>();
3109        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(),
3110                          CastExpr::CK_NoOp);
3111        RefExpr = Owned(RefE);
3112      }
3113
3114      assert(!RefExpr.isInvalid() &&
3115             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3116                                 ParamType.getUnqualifiedType()));
3117      return move(RefExpr);
3118    }
3119  }
3120
3121  QualType T = VD->getType().getNonReferenceType();
3122  if (ParamType->isPointerType()) {
3123    // When the non-type template parameter is a pointer, take the
3124    // address of the declaration.
3125    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3126    if (RefExpr.isInvalid())
3127      return ExprError();
3128
3129    if (T->isFunctionType() || T->isArrayType()) {
3130      // Decay functions and arrays.
3131      Expr *RefE = (Expr *)RefExpr.get();
3132      DefaultFunctionArrayConversion(RefE);
3133      if (RefE != RefExpr.get()) {
3134        RefExpr.release();
3135        RefExpr = Owned(RefE);
3136      }
3137
3138      return move(RefExpr);
3139    }
3140
3141    // Take the address of everything else
3142    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3143  }
3144
3145  // If the non-type template parameter has reference type, qualify the
3146  // resulting declaration reference with the extra qualifiers on the
3147  // type that the reference refers to.
3148  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3149    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3150
3151  return BuildDeclRefExpr(VD, T, Loc);
3152}
3153
3154/// \brief Construct a new expression that refers to the given
3155/// integral template argument with the given source-location
3156/// information.
3157///
3158/// This routine takes care of the mapping from an integral template
3159/// argument (which may have any integral type) to the appropriate
3160/// literal value.
3161Sema::OwningExprResult
3162Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3163                                                  SourceLocation Loc) {
3164  assert(Arg.getKind() == TemplateArgument::Integral &&
3165         "Operation is only value for integral template arguments");
3166  QualType T = Arg.getIntegralType();
3167  if (T->isCharType() || T->isWideCharType())
3168    return Owned(new (Context) CharacterLiteral(
3169                                             Arg.getAsIntegral()->getZExtValue(),
3170                                             T->isWideCharType(),
3171                                             T,
3172                                             Loc));
3173  if (T->isBooleanType())
3174    return Owned(new (Context) CXXBoolLiteralExpr(
3175                                            Arg.getAsIntegral()->getBoolValue(),
3176                                            T,
3177                                            Loc));
3178
3179  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3180}
3181
3182
3183/// \brief Determine whether the given template parameter lists are
3184/// equivalent.
3185///
3186/// \param New  The new template parameter list, typically written in the
3187/// source code as part of a new template declaration.
3188///
3189/// \param Old  The old template parameter list, typically found via
3190/// name lookup of the template declared with this template parameter
3191/// list.
3192///
3193/// \param Complain  If true, this routine will produce a diagnostic if
3194/// the template parameter lists are not equivalent.
3195///
3196/// \param Kind describes how we are to match the template parameter lists.
3197///
3198/// \param TemplateArgLoc If this source location is valid, then we
3199/// are actually checking the template parameter list of a template
3200/// argument (New) against the template parameter list of its
3201/// corresponding template template parameter (Old). We produce
3202/// slightly different diagnostics in this scenario.
3203///
3204/// \returns True if the template parameter lists are equal, false
3205/// otherwise.
3206bool
3207Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3208                                     TemplateParameterList *Old,
3209                                     bool Complain,
3210                                     TemplateParameterListEqualKind Kind,
3211                                     SourceLocation TemplateArgLoc) {
3212  if (Old->size() != New->size()) {
3213    if (Complain) {
3214      unsigned NextDiag = diag::err_template_param_list_different_arity;
3215      if (TemplateArgLoc.isValid()) {
3216        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3217        NextDiag = diag::note_template_param_list_different_arity;
3218      }
3219      Diag(New->getTemplateLoc(), NextDiag)
3220          << (New->size() > Old->size())
3221          << (Kind != TPL_TemplateMatch)
3222          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3223      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3224        << (Kind != TPL_TemplateMatch)
3225        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3226    }
3227
3228    return false;
3229  }
3230
3231  for (TemplateParameterList::iterator OldParm = Old->begin(),
3232         OldParmEnd = Old->end(), NewParm = New->begin();
3233       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3234    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3235      if (Complain) {
3236        unsigned NextDiag = diag::err_template_param_different_kind;
3237        if (TemplateArgLoc.isValid()) {
3238          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3239          NextDiag = diag::note_template_param_different_kind;
3240        }
3241        Diag((*NewParm)->getLocation(), NextDiag)
3242          << (Kind != TPL_TemplateMatch);
3243        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3244          << (Kind != TPL_TemplateMatch);
3245      }
3246      return false;
3247    }
3248
3249    if (TemplateTypeParmDecl *OldTTP
3250                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3251      // Template type parameters are equivalent if either both are template
3252      // type parameter packs or neither are (since we know we're at the same
3253      // index).
3254      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3255      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3256        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3257        // allow one to match a template parameter pack in the template
3258        // parameter list of a template template parameter to one or more
3259        // template parameters in the template parameter list of the
3260        // corresponding template template argument.
3261        if (Complain) {
3262          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3263          if (TemplateArgLoc.isValid()) {
3264            Diag(TemplateArgLoc,
3265                 diag::err_template_arg_template_params_mismatch);
3266            NextDiag = diag::note_template_parameter_pack_non_pack;
3267          }
3268          Diag(NewTTP->getLocation(), NextDiag)
3269            << 0 << NewTTP->isParameterPack();
3270          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3271            << 0 << OldTTP->isParameterPack();
3272        }
3273        return false;
3274      }
3275    } else if (NonTypeTemplateParmDecl *OldNTTP
3276                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3277      // The types of non-type template parameters must agree.
3278      NonTypeTemplateParmDecl *NewNTTP
3279        = cast<NonTypeTemplateParmDecl>(*NewParm);
3280
3281      // If we are matching a template template argument to a template
3282      // template parameter and one of the non-type template parameter types
3283      // is dependent, then we must wait until template instantiation time
3284      // to actually compare the arguments.
3285      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3286          (OldNTTP->getType()->isDependentType() ||
3287           NewNTTP->getType()->isDependentType()))
3288        continue;
3289
3290      if (Context.getCanonicalType(OldNTTP->getType()) !=
3291            Context.getCanonicalType(NewNTTP->getType())) {
3292        if (Complain) {
3293          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3294          if (TemplateArgLoc.isValid()) {
3295            Diag(TemplateArgLoc,
3296                 diag::err_template_arg_template_params_mismatch);
3297            NextDiag = diag::note_template_nontype_parm_different_type;
3298          }
3299          Diag(NewNTTP->getLocation(), NextDiag)
3300            << NewNTTP->getType()
3301            << (Kind != TPL_TemplateMatch);
3302          Diag(OldNTTP->getLocation(),
3303               diag::note_template_nontype_parm_prev_declaration)
3304            << OldNTTP->getType();
3305        }
3306        return false;
3307      }
3308    } else {
3309      // The template parameter lists of template template
3310      // parameters must agree.
3311      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3312             "Only template template parameters handled here");
3313      TemplateTemplateParmDecl *OldTTP
3314        = cast<TemplateTemplateParmDecl>(*OldParm);
3315      TemplateTemplateParmDecl *NewTTP
3316        = cast<TemplateTemplateParmDecl>(*NewParm);
3317      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3318                                          OldTTP->getTemplateParameters(),
3319                                          Complain,
3320              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3321                                          TemplateArgLoc))
3322        return false;
3323    }
3324  }
3325
3326  return true;
3327}
3328
3329/// \brief Check whether a template can be declared within this scope.
3330///
3331/// If the template declaration is valid in this scope, returns
3332/// false. Otherwise, issues a diagnostic and returns true.
3333bool
3334Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3335  // Find the nearest enclosing declaration scope.
3336  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3337         (S->getFlags() & Scope::TemplateParamScope) != 0)
3338    S = S->getParent();
3339
3340  // C++ [temp]p2:
3341  //   A template-declaration can appear only as a namespace scope or
3342  //   class scope declaration.
3343  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3344  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3345      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3346    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3347             << TemplateParams->getSourceRange();
3348
3349  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3350    Ctx = Ctx->getParent();
3351
3352  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3353    return false;
3354
3355  return Diag(TemplateParams->getTemplateLoc(),
3356              diag::err_template_outside_namespace_or_class_scope)
3357    << TemplateParams->getSourceRange();
3358}
3359
3360/// \brief Determine what kind of template specialization the given declaration
3361/// is.
3362static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3363  if (!D)
3364    return TSK_Undeclared;
3365
3366  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3367    return Record->getTemplateSpecializationKind();
3368  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3369    return Function->getTemplateSpecializationKind();
3370  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3371    return Var->getTemplateSpecializationKind();
3372
3373  return TSK_Undeclared;
3374}
3375
3376/// \brief Check whether a specialization is well-formed in the current
3377/// context.
3378///
3379/// This routine determines whether a template specialization can be declared
3380/// in the current context (C++ [temp.expl.spec]p2).
3381///
3382/// \param S the semantic analysis object for which this check is being
3383/// performed.
3384///
3385/// \param Specialized the entity being specialized or instantiated, which
3386/// may be a kind of template (class template, function template, etc.) or
3387/// a member of a class template (member function, static data member,
3388/// member class).
3389///
3390/// \param PrevDecl the previous declaration of this entity, if any.
3391///
3392/// \param Loc the location of the explicit specialization or instantiation of
3393/// this entity.
3394///
3395/// \param IsPartialSpecialization whether this is a partial specialization of
3396/// a class template.
3397///
3398/// \returns true if there was an error that we cannot recover from, false
3399/// otherwise.
3400static bool CheckTemplateSpecializationScope(Sema &S,
3401                                             NamedDecl *Specialized,
3402                                             NamedDecl *PrevDecl,
3403                                             SourceLocation Loc,
3404                                             bool IsPartialSpecialization) {
3405  // Keep these "kind" numbers in sync with the %select statements in the
3406  // various diagnostics emitted by this routine.
3407  int EntityKind = 0;
3408  bool isTemplateSpecialization = false;
3409  if (isa<ClassTemplateDecl>(Specialized)) {
3410    EntityKind = IsPartialSpecialization? 1 : 0;
3411    isTemplateSpecialization = true;
3412  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3413    EntityKind = 2;
3414    isTemplateSpecialization = true;
3415  } else if (isa<CXXMethodDecl>(Specialized))
3416    EntityKind = 3;
3417  else if (isa<VarDecl>(Specialized))
3418    EntityKind = 4;
3419  else if (isa<RecordDecl>(Specialized))
3420    EntityKind = 5;
3421  else {
3422    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3423    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3424    return true;
3425  }
3426
3427  // C++ [temp.expl.spec]p2:
3428  //   An explicit specialization shall be declared in the namespace
3429  //   of which the template is a member, or, for member templates, in
3430  //   the namespace of which the enclosing class or enclosing class
3431  //   template is a member. An explicit specialization of a member
3432  //   function, member class or static data member of a class
3433  //   template shall be declared in the namespace of which the class
3434  //   template is a member. Such a declaration may also be a
3435  //   definition. If the declaration is not a definition, the
3436  //   specialization may be defined later in the name- space in which
3437  //   the explicit specialization was declared, or in a namespace
3438  //   that encloses the one in which the explicit specialization was
3439  //   declared.
3440  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3441    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3442      << Specialized;
3443    return true;
3444  }
3445
3446  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3447    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3448      << Specialized;
3449    return true;
3450  }
3451
3452  // C++ [temp.class.spec]p6:
3453  //   A class template partial specialization may be declared or redeclared
3454  //   in any namespace scope in which its definition may be defined (14.5.1
3455  //   and 14.5.2).
3456  bool ComplainedAboutScope = false;
3457  DeclContext *SpecializedContext
3458    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3459  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3460  if ((!PrevDecl ||
3461       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3462       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3463    // There is no prior declaration of this entity, so this
3464    // specialization must be in the same context as the template
3465    // itself.
3466    if (!DC->Equals(SpecializedContext)) {
3467      if (isa<TranslationUnitDecl>(SpecializedContext))
3468        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3469        << EntityKind << Specialized;
3470      else if (isa<NamespaceDecl>(SpecializedContext))
3471        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3472        << EntityKind << Specialized
3473        << cast<NamedDecl>(SpecializedContext);
3474
3475      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3476      ComplainedAboutScope = true;
3477    }
3478  }
3479
3480  // Make sure that this redeclaration (or definition) occurs in an enclosing
3481  // namespace.
3482  // Note that HandleDeclarator() performs this check for explicit
3483  // specializations of function templates, static data members, and member
3484  // functions, so we skip the check here for those kinds of entities.
3485  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3486  // Should we refactor that check, so that it occurs later?
3487  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3488      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3489        isa<FunctionDecl>(Specialized))) {
3490    if (isa<TranslationUnitDecl>(SpecializedContext))
3491      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3492        << EntityKind << Specialized;
3493    else if (isa<NamespaceDecl>(SpecializedContext))
3494      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3495        << EntityKind << Specialized
3496        << cast<NamedDecl>(SpecializedContext);
3497
3498    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3499  }
3500
3501  // FIXME: check for specialization-after-instantiation errors and such.
3502
3503  return false;
3504}
3505
3506/// \brief Check the non-type template arguments of a class template
3507/// partial specialization according to C++ [temp.class.spec]p9.
3508///
3509/// \param TemplateParams the template parameters of the primary class
3510/// template.
3511///
3512/// \param TemplateArg the template arguments of the class template
3513/// partial specialization.
3514///
3515/// \param MirrorsPrimaryTemplate will be set true if the class
3516/// template partial specialization arguments are identical to the
3517/// implicit template arguments of the primary template. This is not
3518/// necessarily an error (C++0x), and it is left to the caller to diagnose
3519/// this condition when it is an error.
3520///
3521/// \returns true if there was an error, false otherwise.
3522bool Sema::CheckClassTemplatePartialSpecializationArgs(
3523                                        TemplateParameterList *TemplateParams,
3524                             const TemplateArgumentListBuilder &TemplateArgs,
3525                                        bool &MirrorsPrimaryTemplate) {
3526  // FIXME: the interface to this function will have to change to
3527  // accommodate variadic templates.
3528  MirrorsPrimaryTemplate = true;
3529
3530  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3531
3532  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3533    // Determine whether the template argument list of the partial
3534    // specialization is identical to the implicit argument list of
3535    // the primary template. The caller may need to diagnostic this as
3536    // an error per C++ [temp.class.spec]p9b3.
3537    if (MirrorsPrimaryTemplate) {
3538      if (TemplateTypeParmDecl *TTP
3539            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3540        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3541              Context.getCanonicalType(ArgList[I].getAsType()))
3542          MirrorsPrimaryTemplate = false;
3543      } else if (TemplateTemplateParmDecl *TTP
3544                   = dyn_cast<TemplateTemplateParmDecl>(
3545                                                 TemplateParams->getParam(I))) {
3546        TemplateName Name = ArgList[I].getAsTemplate();
3547        TemplateTemplateParmDecl *ArgDecl
3548          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3549        if (!ArgDecl ||
3550            ArgDecl->getIndex() != TTP->getIndex() ||
3551            ArgDecl->getDepth() != TTP->getDepth())
3552          MirrorsPrimaryTemplate = false;
3553      }
3554    }
3555
3556    NonTypeTemplateParmDecl *Param
3557      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3558    if (!Param) {
3559      continue;
3560    }
3561
3562    Expr *ArgExpr = ArgList[I].getAsExpr();
3563    if (!ArgExpr) {
3564      MirrorsPrimaryTemplate = false;
3565      continue;
3566    }
3567
3568    // C++ [temp.class.spec]p8:
3569    //   A non-type argument is non-specialized if it is the name of a
3570    //   non-type parameter. All other non-type arguments are
3571    //   specialized.
3572    //
3573    // Below, we check the two conditions that only apply to
3574    // specialized non-type arguments, so skip any non-specialized
3575    // arguments.
3576    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3577      if (NonTypeTemplateParmDecl *NTTP
3578            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3579        if (MirrorsPrimaryTemplate &&
3580            (Param->getIndex() != NTTP->getIndex() ||
3581             Param->getDepth() != NTTP->getDepth()))
3582          MirrorsPrimaryTemplate = false;
3583
3584        continue;
3585      }
3586
3587    // C++ [temp.class.spec]p9:
3588    //   Within the argument list of a class template partial
3589    //   specialization, the following restrictions apply:
3590    //     -- A partially specialized non-type argument expression
3591    //        shall not involve a template parameter of the partial
3592    //        specialization except when the argument expression is a
3593    //        simple identifier.
3594    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3595      Diag(ArgExpr->getLocStart(),
3596           diag::err_dependent_non_type_arg_in_partial_spec)
3597        << ArgExpr->getSourceRange();
3598      return true;
3599    }
3600
3601    //     -- The type of a template parameter corresponding to a
3602    //        specialized non-type argument shall not be dependent on a
3603    //        parameter of the specialization.
3604    if (Param->getType()->isDependentType()) {
3605      Diag(ArgExpr->getLocStart(),
3606           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3607        << Param->getType()
3608        << ArgExpr->getSourceRange();
3609      Diag(Param->getLocation(), diag::note_template_param_here);
3610      return true;
3611    }
3612
3613    MirrorsPrimaryTemplate = false;
3614  }
3615
3616  return false;
3617}
3618
3619/// \brief Retrieve the previous declaration of the given declaration.
3620static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3621  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3622    return VD->getPreviousDeclaration();
3623  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3624    return FD->getPreviousDeclaration();
3625  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3626    return TD->getPreviousDeclaration();
3627  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3628    return TD->getPreviousDeclaration();
3629  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3630    return FTD->getPreviousDeclaration();
3631  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3632    return CTD->getPreviousDeclaration();
3633  return 0;
3634}
3635
3636Sema::DeclResult
3637Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3638                                       TagUseKind TUK,
3639                                       SourceLocation KWLoc,
3640                                       CXXScopeSpec &SS,
3641                                       TemplateTy TemplateD,
3642                                       SourceLocation TemplateNameLoc,
3643                                       SourceLocation LAngleLoc,
3644                                       ASTTemplateArgsPtr TemplateArgsIn,
3645                                       SourceLocation RAngleLoc,
3646                                       AttributeList *Attr,
3647                               MultiTemplateParamsArg TemplateParameterLists) {
3648  assert(TUK != TUK_Reference && "References are not specializations");
3649
3650  // Find the class template we're specializing
3651  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3652  ClassTemplateDecl *ClassTemplate
3653    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3654
3655  if (!ClassTemplate) {
3656    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3657      << (Name.getAsTemplateDecl() &&
3658          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3659    return true;
3660  }
3661
3662  bool isExplicitSpecialization = false;
3663  bool isPartialSpecialization = false;
3664
3665  // Check the validity of the template headers that introduce this
3666  // template.
3667  // FIXME: We probably shouldn't complain about these headers for
3668  // friend declarations.
3669  TemplateParameterList *TemplateParams
3670    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3671                        (TemplateParameterList**)TemplateParameterLists.get(),
3672                                              TemplateParameterLists.size(),
3673                                              TUK == TUK_Friend,
3674                                              isExplicitSpecialization);
3675  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3676  if (TemplateParams)
3677    --NumMatchedTemplateParamLists;
3678
3679  if (TemplateParams && TemplateParams->size() > 0) {
3680    isPartialSpecialization = true;
3681
3682    // C++ [temp.class.spec]p10:
3683    //   The template parameter list of a specialization shall not
3684    //   contain default template argument values.
3685    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3686      Decl *Param = TemplateParams->getParam(I);
3687      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3688        if (TTP->hasDefaultArgument()) {
3689          Diag(TTP->getDefaultArgumentLoc(),
3690               diag::err_default_arg_in_partial_spec);
3691          TTP->removeDefaultArgument();
3692        }
3693      } else if (NonTypeTemplateParmDecl *NTTP
3694                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3695        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3696          Diag(NTTP->getDefaultArgumentLoc(),
3697               diag::err_default_arg_in_partial_spec)
3698            << DefArg->getSourceRange();
3699          NTTP->removeDefaultArgument();
3700          DefArg->Destroy(Context);
3701        }
3702      } else {
3703        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3704        if (TTP->hasDefaultArgument()) {
3705          Diag(TTP->getDefaultArgument().getLocation(),
3706               diag::err_default_arg_in_partial_spec)
3707            << TTP->getDefaultArgument().getSourceRange();
3708          TTP->removeDefaultArgument();
3709        }
3710      }
3711    }
3712  } else if (TemplateParams) {
3713    if (TUK == TUK_Friend)
3714      Diag(KWLoc, diag::err_template_spec_friend)
3715        << FixItHint::CreateRemoval(
3716                                SourceRange(TemplateParams->getTemplateLoc(),
3717                                            TemplateParams->getRAngleLoc()))
3718        << SourceRange(LAngleLoc, RAngleLoc);
3719    else
3720      isExplicitSpecialization = true;
3721  } else if (TUK != TUK_Friend) {
3722    Diag(KWLoc, diag::err_template_spec_needs_header)
3723      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3724    isExplicitSpecialization = true;
3725  }
3726
3727  // Check that the specialization uses the same tag kind as the
3728  // original template.
3729  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3730  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3731  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3732                                    Kind, KWLoc,
3733                                    *ClassTemplate->getIdentifier())) {
3734    Diag(KWLoc, diag::err_use_with_wrong_tag)
3735      << ClassTemplate
3736      << FixItHint::CreateReplacement(KWLoc,
3737                            ClassTemplate->getTemplatedDecl()->getKindName());
3738    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3739         diag::note_previous_use);
3740    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3741  }
3742
3743  // Translate the parser's template argument list in our AST format.
3744  TemplateArgumentListInfo TemplateArgs;
3745  TemplateArgs.setLAngleLoc(LAngleLoc);
3746  TemplateArgs.setRAngleLoc(RAngleLoc);
3747  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3748
3749  // Check that the template argument list is well-formed for this
3750  // template.
3751  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3752                                        TemplateArgs.size());
3753  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3754                                TemplateArgs, false, Converted))
3755    return true;
3756
3757  assert((Converted.structuredSize() ==
3758            ClassTemplate->getTemplateParameters()->size()) &&
3759         "Converted template argument list is too short!");
3760
3761  // Find the class template (partial) specialization declaration that
3762  // corresponds to these arguments.
3763  llvm::FoldingSetNodeID ID;
3764  if (isPartialSpecialization) {
3765    bool MirrorsPrimaryTemplate;
3766    if (CheckClassTemplatePartialSpecializationArgs(
3767                                         ClassTemplate->getTemplateParameters(),
3768                                         Converted, MirrorsPrimaryTemplate))
3769      return true;
3770
3771    if (MirrorsPrimaryTemplate) {
3772      // C++ [temp.class.spec]p9b3:
3773      //
3774      //   -- The argument list of the specialization shall not be identical
3775      //      to the implicit argument list of the primary template.
3776      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3777        << (TUK == TUK_Definition)
3778        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3779      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3780                                ClassTemplate->getIdentifier(),
3781                                TemplateNameLoc,
3782                                Attr,
3783                                TemplateParams,
3784                                AS_none);
3785    }
3786
3787    // FIXME: Diagnose friend partial specializations
3788
3789    if (!Name.isDependent() &&
3790        !TemplateSpecializationType::anyDependentTemplateArguments(
3791                                             TemplateArgs.getArgumentArray(),
3792                                                         TemplateArgs.size())) {
3793      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3794        << ClassTemplate->getDeclName();
3795      isPartialSpecialization = false;
3796    } else {
3797      // FIXME: Template parameter list matters, too
3798      ClassTemplatePartialSpecializationDecl::Profile(ID,
3799                                                  Converted.getFlatArguments(),
3800                                                      Converted.flatSize(),
3801                                                      Context);
3802    }
3803  }
3804
3805  if (!isPartialSpecialization)
3806    ClassTemplateSpecializationDecl::Profile(ID,
3807                                             Converted.getFlatArguments(),
3808                                             Converted.flatSize(),
3809                                             Context);
3810  void *InsertPos = 0;
3811  ClassTemplateSpecializationDecl *PrevDecl = 0;
3812
3813  if (isPartialSpecialization)
3814    PrevDecl
3815      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3816                                                                    InsertPos);
3817  else
3818    PrevDecl
3819      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3820
3821  ClassTemplateSpecializationDecl *Specialization = 0;
3822
3823  // Check whether we can declare a class template specialization in
3824  // the current scope.
3825  if (TUK != TUK_Friend &&
3826      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3827                                       TemplateNameLoc,
3828                                       isPartialSpecialization))
3829    return true;
3830
3831  // The canonical type
3832  QualType CanonType;
3833  if (PrevDecl &&
3834      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3835               TUK == TUK_Friend)) {
3836    // Since the only prior class template specialization with these
3837    // arguments was referenced but not declared, or we're only
3838    // referencing this specialization as a friend, reuse that
3839    // declaration node as our own, updating its source location to
3840    // reflect our new declaration.
3841    Specialization = PrevDecl;
3842    Specialization->setLocation(TemplateNameLoc);
3843    PrevDecl = 0;
3844    CanonType = Context.getTypeDeclType(Specialization);
3845  } else if (isPartialSpecialization) {
3846    // Build the canonical type that describes the converted template
3847    // arguments of the class template partial specialization.
3848    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3849    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3850                                                  Converted.getFlatArguments(),
3851                                                  Converted.flatSize());
3852
3853    // Create a new class template partial specialization declaration node.
3854    ClassTemplatePartialSpecializationDecl *PrevPartial
3855      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3856    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3857                            : ClassTemplate->getPartialSpecializations().size();
3858    ClassTemplatePartialSpecializationDecl *Partial
3859      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3860                                             ClassTemplate->getDeclContext(),
3861                                                       TemplateNameLoc,
3862                                                       TemplateParams,
3863                                                       ClassTemplate,
3864                                                       Converted,
3865                                                       TemplateArgs,
3866                                                       CanonType,
3867                                                       PrevPartial,
3868                                                       SequenceNumber);
3869    SetNestedNameSpecifier(Partial, SS);
3870    if (NumMatchedTemplateParamLists > 0) {
3871      Partial->setTemplateParameterListsInfo(Context,
3872                                             NumMatchedTemplateParamLists,
3873                    (TemplateParameterList**) TemplateParameterLists.release());
3874    }
3875
3876    if (PrevPartial) {
3877      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3878      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3879    } else {
3880      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3881    }
3882    Specialization = Partial;
3883
3884    // If we are providing an explicit specialization of a member class
3885    // template specialization, make a note of that.
3886    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3887      PrevPartial->setMemberSpecialization();
3888
3889    // Check that all of the template parameters of the class template
3890    // partial specialization are deducible from the template
3891    // arguments. If not, this class template partial specialization
3892    // will never be used.
3893    llvm::SmallVector<bool, 8> DeducibleParams;
3894    DeducibleParams.resize(TemplateParams->size());
3895    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3896                               TemplateParams->getDepth(),
3897                               DeducibleParams);
3898    unsigned NumNonDeducible = 0;
3899    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3900      if (!DeducibleParams[I])
3901        ++NumNonDeducible;
3902
3903    if (NumNonDeducible) {
3904      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3905        << (NumNonDeducible > 1)
3906        << SourceRange(TemplateNameLoc, RAngleLoc);
3907      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3908        if (!DeducibleParams[I]) {
3909          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3910          if (Param->getDeclName())
3911            Diag(Param->getLocation(),
3912                 diag::note_partial_spec_unused_parameter)
3913              << Param->getDeclName();
3914          else
3915            Diag(Param->getLocation(),
3916                 diag::note_partial_spec_unused_parameter)
3917              << std::string("<anonymous>");
3918        }
3919      }
3920    }
3921  } else {
3922    // Create a new class template specialization declaration node for
3923    // this explicit specialization or friend declaration.
3924    Specialization
3925      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3926                                             ClassTemplate->getDeclContext(),
3927                                                TemplateNameLoc,
3928                                                ClassTemplate,
3929                                                Converted,
3930                                                PrevDecl);
3931    SetNestedNameSpecifier(Specialization, SS);
3932    if (NumMatchedTemplateParamLists > 0) {
3933      Specialization->setTemplateParameterListsInfo(Context,
3934                                                  NumMatchedTemplateParamLists,
3935                    (TemplateParameterList**) TemplateParameterLists.release());
3936    }
3937
3938    if (PrevDecl) {
3939      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3940      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3941    } else {
3942      ClassTemplate->getSpecializations().InsertNode(Specialization,
3943                                                     InsertPos);
3944    }
3945
3946    CanonType = Context.getTypeDeclType(Specialization);
3947  }
3948
3949  // C++ [temp.expl.spec]p6:
3950  //   If a template, a member template or the member of a class template is
3951  //   explicitly specialized then that specialization shall be declared
3952  //   before the first use of that specialization that would cause an implicit
3953  //   instantiation to take place, in every translation unit in which such a
3954  //   use occurs; no diagnostic is required.
3955  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3956    bool Okay = false;
3957    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3958      // Is there any previous explicit specialization declaration?
3959      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3960        Okay = true;
3961        break;
3962      }
3963    }
3964
3965    if (!Okay) {
3966      SourceRange Range(TemplateNameLoc, RAngleLoc);
3967      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3968        << Context.getTypeDeclType(Specialization) << Range;
3969
3970      Diag(PrevDecl->getPointOfInstantiation(),
3971           diag::note_instantiation_required_here)
3972        << (PrevDecl->getTemplateSpecializationKind()
3973                                                != TSK_ImplicitInstantiation);
3974      return true;
3975    }
3976  }
3977
3978  // If this is not a friend, note that this is an explicit specialization.
3979  if (TUK != TUK_Friend)
3980    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3981
3982  // Check that this isn't a redefinition of this specialization.
3983  if (TUK == TUK_Definition) {
3984    if (RecordDecl *Def = Specialization->getDefinition()) {
3985      SourceRange Range(TemplateNameLoc, RAngleLoc);
3986      Diag(TemplateNameLoc, diag::err_redefinition)
3987        << Context.getTypeDeclType(Specialization) << Range;
3988      Diag(Def->getLocation(), diag::note_previous_definition);
3989      Specialization->setInvalidDecl();
3990      return true;
3991    }
3992  }
3993
3994  // Build the fully-sugared type for this class template
3995  // specialization as the user wrote in the specialization
3996  // itself. This means that we'll pretty-print the type retrieved
3997  // from the specialization's declaration the way that the user
3998  // actually wrote the specialization, rather than formatting the
3999  // name based on the "canonical" representation used to store the
4000  // template arguments in the specialization.
4001  TypeSourceInfo *WrittenTy
4002    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4003                                                TemplateArgs, CanonType);
4004  if (TUK != TUK_Friend) {
4005    Specialization->setTypeAsWritten(WrittenTy);
4006    Specialization->setTemplateKeywordLoc(KWLoc);
4007  }
4008  TemplateArgsIn.release();
4009
4010  // C++ [temp.expl.spec]p9:
4011  //   A template explicit specialization is in the scope of the
4012  //   namespace in which the template was defined.
4013  //
4014  // We actually implement this paragraph where we set the semantic
4015  // context (in the creation of the ClassTemplateSpecializationDecl),
4016  // but we also maintain the lexical context where the actual
4017  // definition occurs.
4018  Specialization->setLexicalDeclContext(CurContext);
4019
4020  // We may be starting the definition of this specialization.
4021  if (TUK == TUK_Definition)
4022    Specialization->startDefinition();
4023
4024  if (TUK == TUK_Friend) {
4025    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4026                                            TemplateNameLoc,
4027                                            WrittenTy,
4028                                            /*FIXME:*/KWLoc);
4029    Friend->setAccess(AS_public);
4030    CurContext->addDecl(Friend);
4031  } else {
4032    // Add the specialization into its lexical context, so that it can
4033    // be seen when iterating through the list of declarations in that
4034    // context. However, specializations are not found by name lookup.
4035    CurContext->addDecl(Specialization);
4036  }
4037  return DeclPtrTy::make(Specialization);
4038}
4039
4040Sema::DeclPtrTy
4041Sema::ActOnTemplateDeclarator(Scope *S,
4042                              MultiTemplateParamsArg TemplateParameterLists,
4043                              Declarator &D) {
4044  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4045}
4046
4047Sema::DeclPtrTy
4048Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4049                               MultiTemplateParamsArg TemplateParameterLists,
4050                                      Declarator &D) {
4051  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4052  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4053         "Not a function declarator!");
4054  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4055
4056  if (FTI.hasPrototype) {
4057    // FIXME: Diagnose arguments without names in C.
4058  }
4059
4060  Scope *ParentScope = FnBodyScope->getParent();
4061
4062  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4063                                  move(TemplateParameterLists),
4064                                  /*IsFunctionDefinition=*/true);
4065  if (FunctionTemplateDecl *FunctionTemplate
4066        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
4067    return ActOnStartOfFunctionDef(FnBodyScope,
4068                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
4069  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
4070    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
4071  return DeclPtrTy();
4072}
4073
4074/// \brief Strips various properties off an implicit instantiation
4075/// that has just been explicitly specialized.
4076static void StripImplicitInstantiation(NamedDecl *D) {
4077  D->invalidateAttrs();
4078
4079  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4080    FD->setInlineSpecified(false);
4081  }
4082}
4083
4084/// \brief Diagnose cases where we have an explicit template specialization
4085/// before/after an explicit template instantiation, producing diagnostics
4086/// for those cases where they are required and determining whether the
4087/// new specialization/instantiation will have any effect.
4088///
4089/// \param NewLoc the location of the new explicit specialization or
4090/// instantiation.
4091///
4092/// \param NewTSK the kind of the new explicit specialization or instantiation.
4093///
4094/// \param PrevDecl the previous declaration of the entity.
4095///
4096/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4097///
4098/// \param PrevPointOfInstantiation if valid, indicates where the previus
4099/// declaration was instantiated (either implicitly or explicitly).
4100///
4101/// \param HasNoEffect will be set to true to indicate that the new
4102/// specialization or instantiation has no effect and should be ignored.
4103///
4104/// \returns true if there was an error that should prevent the introduction of
4105/// the new declaration into the AST, false otherwise.
4106bool
4107Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4108                                             TemplateSpecializationKind NewTSK,
4109                                             NamedDecl *PrevDecl,
4110                                             TemplateSpecializationKind PrevTSK,
4111                                        SourceLocation PrevPointOfInstantiation,
4112                                             bool &HasNoEffect) {
4113  HasNoEffect = false;
4114
4115  switch (NewTSK) {
4116  case TSK_Undeclared:
4117  case TSK_ImplicitInstantiation:
4118    assert(false && "Don't check implicit instantiations here");
4119    return false;
4120
4121  case TSK_ExplicitSpecialization:
4122    switch (PrevTSK) {
4123    case TSK_Undeclared:
4124    case TSK_ExplicitSpecialization:
4125      // Okay, we're just specializing something that is either already
4126      // explicitly specialized or has merely been mentioned without any
4127      // instantiation.
4128      return false;
4129
4130    case TSK_ImplicitInstantiation:
4131      if (PrevPointOfInstantiation.isInvalid()) {
4132        // The declaration itself has not actually been instantiated, so it is
4133        // still okay to specialize it.
4134        StripImplicitInstantiation(PrevDecl);
4135        return false;
4136      }
4137      // Fall through
4138
4139    case TSK_ExplicitInstantiationDeclaration:
4140    case TSK_ExplicitInstantiationDefinition:
4141      assert((PrevTSK == TSK_ImplicitInstantiation ||
4142              PrevPointOfInstantiation.isValid()) &&
4143             "Explicit instantiation without point of instantiation?");
4144
4145      // C++ [temp.expl.spec]p6:
4146      //   If a template, a member template or the member of a class template
4147      //   is explicitly specialized then that specialization shall be declared
4148      //   before the first use of that specialization that would cause an
4149      //   implicit instantiation to take place, in every translation unit in
4150      //   which such a use occurs; no diagnostic is required.
4151      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4152        // Is there any previous explicit specialization declaration?
4153        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4154          return false;
4155      }
4156
4157      Diag(NewLoc, diag::err_specialization_after_instantiation)
4158        << PrevDecl;
4159      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4160        << (PrevTSK != TSK_ImplicitInstantiation);
4161
4162      return true;
4163    }
4164    break;
4165
4166  case TSK_ExplicitInstantiationDeclaration:
4167    switch (PrevTSK) {
4168    case TSK_ExplicitInstantiationDeclaration:
4169      // This explicit instantiation declaration is redundant (that's okay).
4170      HasNoEffect = true;
4171      return false;
4172
4173    case TSK_Undeclared:
4174    case TSK_ImplicitInstantiation:
4175      // We're explicitly instantiating something that may have already been
4176      // implicitly instantiated; that's fine.
4177      return false;
4178
4179    case TSK_ExplicitSpecialization:
4180      // C++0x [temp.explicit]p4:
4181      //   For a given set of template parameters, if an explicit instantiation
4182      //   of a template appears after a declaration of an explicit
4183      //   specialization for that template, the explicit instantiation has no
4184      //   effect.
4185      HasNoEffect = true;
4186      return false;
4187
4188    case TSK_ExplicitInstantiationDefinition:
4189      // C++0x [temp.explicit]p10:
4190      //   If an entity is the subject of both an explicit instantiation
4191      //   declaration and an explicit instantiation definition in the same
4192      //   translation unit, the definition shall follow the declaration.
4193      Diag(NewLoc,
4194           diag::err_explicit_instantiation_declaration_after_definition);
4195      Diag(PrevPointOfInstantiation,
4196           diag::note_explicit_instantiation_definition_here);
4197      assert(PrevPointOfInstantiation.isValid() &&
4198             "Explicit instantiation without point of instantiation?");
4199      HasNoEffect = true;
4200      return false;
4201    }
4202    break;
4203
4204  case TSK_ExplicitInstantiationDefinition:
4205    switch (PrevTSK) {
4206    case TSK_Undeclared:
4207    case TSK_ImplicitInstantiation:
4208      // We're explicitly instantiating something that may have already been
4209      // implicitly instantiated; that's fine.
4210      return false;
4211
4212    case TSK_ExplicitSpecialization:
4213      // C++ DR 259, C++0x [temp.explicit]p4:
4214      //   For a given set of template parameters, if an explicit
4215      //   instantiation of a template appears after a declaration of
4216      //   an explicit specialization for that template, the explicit
4217      //   instantiation has no effect.
4218      //
4219      // In C++98/03 mode, we only give an extension warning here, because it
4220      // is not harmful to try to explicitly instantiate something that
4221      // has been explicitly specialized.
4222      if (!getLangOptions().CPlusPlus0x) {
4223        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4224          << PrevDecl;
4225        Diag(PrevDecl->getLocation(),
4226             diag::note_previous_template_specialization);
4227      }
4228      HasNoEffect = true;
4229      return false;
4230
4231    case TSK_ExplicitInstantiationDeclaration:
4232      // We're explicity instantiating a definition for something for which we
4233      // were previously asked to suppress instantiations. That's fine.
4234      return false;
4235
4236    case TSK_ExplicitInstantiationDefinition:
4237      // C++0x [temp.spec]p5:
4238      //   For a given template and a given set of template-arguments,
4239      //     - an explicit instantiation definition shall appear at most once
4240      //       in a program,
4241      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4242        << PrevDecl;
4243      Diag(PrevPointOfInstantiation,
4244           diag::note_previous_explicit_instantiation);
4245      HasNoEffect = true;
4246      return false;
4247    }
4248    break;
4249  }
4250
4251  assert(false && "Missing specialization/instantiation case?");
4252
4253  return false;
4254}
4255
4256/// \brief Perform semantic analysis for the given dependent function
4257/// template specialization.  The only possible way to get a dependent
4258/// function template specialization is with a friend declaration,
4259/// like so:
4260///
4261///   template <class T> void foo(T);
4262///   template <class T> class A {
4263///     friend void foo<>(T);
4264///   };
4265///
4266/// There really isn't any useful analysis we can do here, so we
4267/// just store the information.
4268bool
4269Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4270                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4271                                                   LookupResult &Previous) {
4272  // Remove anything from Previous that isn't a function template in
4273  // the correct context.
4274  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4275  LookupResult::Filter F = Previous.makeFilter();
4276  while (F.hasNext()) {
4277    NamedDecl *D = F.next()->getUnderlyingDecl();
4278    if (!isa<FunctionTemplateDecl>(D) ||
4279        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4280      F.erase();
4281  }
4282  F.done();
4283
4284  // Should this be diagnosed here?
4285  if (Previous.empty()) return true;
4286
4287  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4288                                         ExplicitTemplateArgs);
4289  return false;
4290}
4291
4292/// \brief Perform semantic analysis for the given function template
4293/// specialization.
4294///
4295/// This routine performs all of the semantic analysis required for an
4296/// explicit function template specialization. On successful completion,
4297/// the function declaration \p FD will become a function template
4298/// specialization.
4299///
4300/// \param FD the function declaration, which will be updated to become a
4301/// function template specialization.
4302///
4303/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4304/// if any. Note that this may be valid info even when 0 arguments are
4305/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4306/// as it anyway contains info on the angle brackets locations.
4307///
4308/// \param PrevDecl the set of declarations that may be specialized by
4309/// this function specialization.
4310bool
4311Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4312                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4313                                          LookupResult &Previous) {
4314  // The set of function template specializations that could match this
4315  // explicit function template specialization.
4316  UnresolvedSet<8> Candidates;
4317
4318  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4319  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4320         I != E; ++I) {
4321    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4322    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4323      // Only consider templates found within the same semantic lookup scope as
4324      // FD.
4325      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4326        continue;
4327
4328      // C++ [temp.expl.spec]p11:
4329      //   A trailing template-argument can be left unspecified in the
4330      //   template-id naming an explicit function template specialization
4331      //   provided it can be deduced from the function argument type.
4332      // Perform template argument deduction to determine whether we may be
4333      // specializing this template.
4334      // FIXME: It is somewhat wasteful to build
4335      TemplateDeductionInfo Info(Context, FD->getLocation());
4336      FunctionDecl *Specialization = 0;
4337      if (TemplateDeductionResult TDK
4338            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4339                                      FD->getType(),
4340                                      Specialization,
4341                                      Info)) {
4342        // FIXME: Template argument deduction failed; record why it failed, so
4343        // that we can provide nifty diagnostics.
4344        (void)TDK;
4345        continue;
4346      }
4347
4348      // Record this candidate.
4349      Candidates.addDecl(Specialization, I.getAccess());
4350    }
4351  }
4352
4353  // Find the most specialized function template.
4354  UnresolvedSetIterator Result
4355    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4356                         TPOC_Other, FD->getLocation(),
4357                  PDiag(diag::err_function_template_spec_no_match)
4358                    << FD->getDeclName(),
4359                  PDiag(diag::err_function_template_spec_ambiguous)
4360                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4361                  PDiag(diag::note_function_template_spec_matched));
4362  if (Result == Candidates.end())
4363    return true;
4364
4365  // Ignore access information;  it doesn't figure into redeclaration checking.
4366  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4367  Specialization->setLocation(FD->getLocation());
4368
4369  // FIXME: Check if the prior specialization has a point of instantiation.
4370  // If so, we have run afoul of .
4371
4372  // If this is a friend declaration, then we're not really declaring
4373  // an explicit specialization.
4374  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4375
4376  // Check the scope of this explicit specialization.
4377  if (!isFriend &&
4378      CheckTemplateSpecializationScope(*this,
4379                                       Specialization->getPrimaryTemplate(),
4380                                       Specialization, FD->getLocation(),
4381                                       false))
4382    return true;
4383
4384  // C++ [temp.expl.spec]p6:
4385  //   If a template, a member template or the member of a class template is
4386  //   explicitly specialized then that specialization shall be declared
4387  //   before the first use of that specialization that would cause an implicit
4388  //   instantiation to take place, in every translation unit in which such a
4389  //   use occurs; no diagnostic is required.
4390  FunctionTemplateSpecializationInfo *SpecInfo
4391    = Specialization->getTemplateSpecializationInfo();
4392  assert(SpecInfo && "Function template specialization info missing?");
4393
4394  bool HasNoEffect = false;
4395  if (!isFriend &&
4396      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4397                                             TSK_ExplicitSpecialization,
4398                                             Specialization,
4399                                   SpecInfo->getTemplateSpecializationKind(),
4400                                         SpecInfo->getPointOfInstantiation(),
4401                                             HasNoEffect))
4402    return true;
4403
4404  // Mark the prior declaration as an explicit specialization, so that later
4405  // clients know that this is an explicit specialization.
4406  if (!isFriend)
4407    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4408
4409  // Turn the given function declaration into a function template
4410  // specialization, with the template arguments from the previous
4411  // specialization.
4412  // Take copies of (semantic and syntactic) template argument lists.
4413  const TemplateArgumentList* TemplArgs = new (Context)
4414    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4415  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4416    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4417  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4418                                        TemplArgs, /*InsertPos=*/0,
4419                                    SpecInfo->getTemplateSpecializationKind(),
4420                                        TemplArgsAsWritten);
4421
4422  // The "previous declaration" for this function template specialization is
4423  // the prior function template specialization.
4424  Previous.clear();
4425  Previous.addDecl(Specialization);
4426  return false;
4427}
4428
4429/// \brief Perform semantic analysis for the given non-template member
4430/// specialization.
4431///
4432/// This routine performs all of the semantic analysis required for an
4433/// explicit member function specialization. On successful completion,
4434/// the function declaration \p FD will become a member function
4435/// specialization.
4436///
4437/// \param Member the member declaration, which will be updated to become a
4438/// specialization.
4439///
4440/// \param Previous the set of declarations, one of which may be specialized
4441/// by this function specialization;  the set will be modified to contain the
4442/// redeclared member.
4443bool
4444Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4445  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4446
4447  // Try to find the member we are instantiating.
4448  NamedDecl *Instantiation = 0;
4449  NamedDecl *InstantiatedFrom = 0;
4450  MemberSpecializationInfo *MSInfo = 0;
4451
4452  if (Previous.empty()) {
4453    // Nowhere to look anyway.
4454  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4455    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4456           I != E; ++I) {
4457      NamedDecl *D = (*I)->getUnderlyingDecl();
4458      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4459        if (Context.hasSameType(Function->getType(), Method->getType())) {
4460          Instantiation = Method;
4461          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4462          MSInfo = Method->getMemberSpecializationInfo();
4463          break;
4464        }
4465      }
4466    }
4467  } else if (isa<VarDecl>(Member)) {
4468    VarDecl *PrevVar;
4469    if (Previous.isSingleResult() &&
4470        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4471      if (PrevVar->isStaticDataMember()) {
4472        Instantiation = PrevVar;
4473        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4474        MSInfo = PrevVar->getMemberSpecializationInfo();
4475      }
4476  } else if (isa<RecordDecl>(Member)) {
4477    CXXRecordDecl *PrevRecord;
4478    if (Previous.isSingleResult() &&
4479        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4480      Instantiation = PrevRecord;
4481      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4482      MSInfo = PrevRecord->getMemberSpecializationInfo();
4483    }
4484  }
4485
4486  if (!Instantiation) {
4487    // There is no previous declaration that matches. Since member
4488    // specializations are always out-of-line, the caller will complain about
4489    // this mismatch later.
4490    return false;
4491  }
4492
4493  // If this is a friend, just bail out here before we start turning
4494  // things into explicit specializations.
4495  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4496    // Preserve instantiation information.
4497    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4498      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4499                                      cast<CXXMethodDecl>(InstantiatedFrom),
4500        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4501    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4502      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4503                                      cast<CXXRecordDecl>(InstantiatedFrom),
4504        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4505    }
4506
4507    Previous.clear();
4508    Previous.addDecl(Instantiation);
4509    return false;
4510  }
4511
4512  // Make sure that this is a specialization of a member.
4513  if (!InstantiatedFrom) {
4514    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4515      << Member;
4516    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4517    return true;
4518  }
4519
4520  // C++ [temp.expl.spec]p6:
4521  //   If a template, a member template or the member of a class template is
4522  //   explicitly specialized then that spe- cialization shall be declared
4523  //   before the first use of that specialization that would cause an implicit
4524  //   instantiation to take place, in every translation unit in which such a
4525  //   use occurs; no diagnostic is required.
4526  assert(MSInfo && "Member specialization info missing?");
4527
4528  bool HasNoEffect = false;
4529  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4530                                             TSK_ExplicitSpecialization,
4531                                             Instantiation,
4532                                     MSInfo->getTemplateSpecializationKind(),
4533                                           MSInfo->getPointOfInstantiation(),
4534                                             HasNoEffect))
4535    return true;
4536
4537  // Check the scope of this explicit specialization.
4538  if (CheckTemplateSpecializationScope(*this,
4539                                       InstantiatedFrom,
4540                                       Instantiation, Member->getLocation(),
4541                                       false))
4542    return true;
4543
4544  // Note that this is an explicit instantiation of a member.
4545  // the original declaration to note that it is an explicit specialization
4546  // (if it was previously an implicit instantiation). This latter step
4547  // makes bookkeeping easier.
4548  if (isa<FunctionDecl>(Member)) {
4549    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4550    if (InstantiationFunction->getTemplateSpecializationKind() ==
4551          TSK_ImplicitInstantiation) {
4552      InstantiationFunction->setTemplateSpecializationKind(
4553                                                  TSK_ExplicitSpecialization);
4554      InstantiationFunction->setLocation(Member->getLocation());
4555    }
4556
4557    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4558                                        cast<CXXMethodDecl>(InstantiatedFrom),
4559                                                  TSK_ExplicitSpecialization);
4560  } else if (isa<VarDecl>(Member)) {
4561    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4562    if (InstantiationVar->getTemplateSpecializationKind() ==
4563          TSK_ImplicitInstantiation) {
4564      InstantiationVar->setTemplateSpecializationKind(
4565                                                  TSK_ExplicitSpecialization);
4566      InstantiationVar->setLocation(Member->getLocation());
4567    }
4568
4569    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4570                                                cast<VarDecl>(InstantiatedFrom),
4571                                                TSK_ExplicitSpecialization);
4572  } else {
4573    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4574    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4575    if (InstantiationClass->getTemplateSpecializationKind() ==
4576          TSK_ImplicitInstantiation) {
4577      InstantiationClass->setTemplateSpecializationKind(
4578                                                   TSK_ExplicitSpecialization);
4579      InstantiationClass->setLocation(Member->getLocation());
4580    }
4581
4582    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4583                                        cast<CXXRecordDecl>(InstantiatedFrom),
4584                                                   TSK_ExplicitSpecialization);
4585  }
4586
4587  // Save the caller the trouble of having to figure out which declaration
4588  // this specialization matches.
4589  Previous.clear();
4590  Previous.addDecl(Instantiation);
4591  return false;
4592}
4593
4594/// \brief Check the scope of an explicit instantiation.
4595static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4596                                            SourceLocation InstLoc,
4597                                            bool WasQualifiedName) {
4598  DeclContext *ExpectedContext
4599    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4600  DeclContext *CurContext = S.CurContext->getLookupContext();
4601
4602  // C++0x [temp.explicit]p2:
4603  //   An explicit instantiation shall appear in an enclosing namespace of its
4604  //   template.
4605  //
4606  // This is DR275, which we do not retroactively apply to C++98/03.
4607  if (S.getLangOptions().CPlusPlus0x &&
4608      !CurContext->Encloses(ExpectedContext)) {
4609    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4610      S.Diag(InstLoc,
4611             S.getLangOptions().CPlusPlus0x?
4612                 diag::err_explicit_instantiation_out_of_scope
4613               : diag::warn_explicit_instantiation_out_of_scope_0x)
4614        << D << NS;
4615    else
4616      S.Diag(InstLoc,
4617             S.getLangOptions().CPlusPlus0x?
4618                 diag::err_explicit_instantiation_must_be_global
4619               : diag::warn_explicit_instantiation_out_of_scope_0x)
4620        << D;
4621    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4622    return;
4623  }
4624
4625  // C++0x [temp.explicit]p2:
4626  //   If the name declared in the explicit instantiation is an unqualified
4627  //   name, the explicit instantiation shall appear in the namespace where
4628  //   its template is declared or, if that namespace is inline (7.3.1), any
4629  //   namespace from its enclosing namespace set.
4630  if (WasQualifiedName)
4631    return;
4632
4633  if (CurContext->Equals(ExpectedContext))
4634    return;
4635
4636  S.Diag(InstLoc,
4637         S.getLangOptions().CPlusPlus0x?
4638             diag::err_explicit_instantiation_unqualified_wrong_namespace
4639           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4640    << D << ExpectedContext;
4641  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4642}
4643
4644/// \brief Determine whether the given scope specifier has a template-id in it.
4645static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4646  if (!SS.isSet())
4647    return false;
4648
4649  // C++0x [temp.explicit]p2:
4650  //   If the explicit instantiation is for a member function, a member class
4651  //   or a static data member of a class template specialization, the name of
4652  //   the class template specialization in the qualified-id for the member
4653  //   name shall be a simple-template-id.
4654  //
4655  // C++98 has the same restriction, just worded differently.
4656  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4657       NNS; NNS = NNS->getPrefix())
4658    if (Type *T = NNS->getAsType())
4659      if (isa<TemplateSpecializationType>(T))
4660        return true;
4661
4662  return false;
4663}
4664
4665// Explicit instantiation of a class template specialization
4666Sema::DeclResult
4667Sema::ActOnExplicitInstantiation(Scope *S,
4668                                 SourceLocation ExternLoc,
4669                                 SourceLocation TemplateLoc,
4670                                 unsigned TagSpec,
4671                                 SourceLocation KWLoc,
4672                                 const CXXScopeSpec &SS,
4673                                 TemplateTy TemplateD,
4674                                 SourceLocation TemplateNameLoc,
4675                                 SourceLocation LAngleLoc,
4676                                 ASTTemplateArgsPtr TemplateArgsIn,
4677                                 SourceLocation RAngleLoc,
4678                                 AttributeList *Attr) {
4679  // Find the class template we're specializing
4680  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4681  ClassTemplateDecl *ClassTemplate
4682    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4683
4684  // Check that the specialization uses the same tag kind as the
4685  // original template.
4686  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4687  assert(Kind != TTK_Enum &&
4688         "Invalid enum tag in class template explicit instantiation!");
4689  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4690                                    Kind, KWLoc,
4691                                    *ClassTemplate->getIdentifier())) {
4692    Diag(KWLoc, diag::err_use_with_wrong_tag)
4693      << ClassTemplate
4694      << FixItHint::CreateReplacement(KWLoc,
4695                            ClassTemplate->getTemplatedDecl()->getKindName());
4696    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4697         diag::note_previous_use);
4698    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4699  }
4700
4701  // C++0x [temp.explicit]p2:
4702  //   There are two forms of explicit instantiation: an explicit instantiation
4703  //   definition and an explicit instantiation declaration. An explicit
4704  //   instantiation declaration begins with the extern keyword. [...]
4705  TemplateSpecializationKind TSK
4706    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4707                           : TSK_ExplicitInstantiationDeclaration;
4708
4709  // Translate the parser's template argument list in our AST format.
4710  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4711  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4712
4713  // Check that the template argument list is well-formed for this
4714  // template.
4715  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4716                                        TemplateArgs.size());
4717  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4718                                TemplateArgs, false, Converted))
4719    return true;
4720
4721  assert((Converted.structuredSize() ==
4722            ClassTemplate->getTemplateParameters()->size()) &&
4723         "Converted template argument list is too short!");
4724
4725  // Find the class template specialization declaration that
4726  // corresponds to these arguments.
4727  llvm::FoldingSetNodeID ID;
4728  ClassTemplateSpecializationDecl::Profile(ID,
4729                                           Converted.getFlatArguments(),
4730                                           Converted.flatSize(),
4731                                           Context);
4732  void *InsertPos = 0;
4733  ClassTemplateSpecializationDecl *PrevDecl
4734    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4735
4736  TemplateSpecializationKind PrevDecl_TSK
4737    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4738
4739  // C++0x [temp.explicit]p2:
4740  //   [...] An explicit instantiation shall appear in an enclosing
4741  //   namespace of its template. [...]
4742  //
4743  // This is C++ DR 275.
4744  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4745                                  SS.isSet());
4746
4747  ClassTemplateSpecializationDecl *Specialization = 0;
4748
4749  bool ReusedDecl = false;
4750  bool HasNoEffect = false;
4751  if (PrevDecl) {
4752    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4753                                               PrevDecl, PrevDecl_TSK,
4754                                            PrevDecl->getPointOfInstantiation(),
4755                                               HasNoEffect))
4756      return DeclPtrTy::make(PrevDecl);
4757
4758    // Even though HasNoEffect == true means that this explicit instantiation
4759    // has no effect on semantics, we go on to put its syntax in the AST.
4760
4761    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4762        PrevDecl_TSK == TSK_Undeclared) {
4763      // Since the only prior class template specialization with these
4764      // arguments was referenced but not declared, reuse that
4765      // declaration node as our own, updating the source location
4766      // for the template name to reflect our new declaration.
4767      // (Other source locations will be updated later.)
4768      Specialization = PrevDecl;
4769      Specialization->setLocation(TemplateNameLoc);
4770      PrevDecl = 0;
4771      ReusedDecl = true;
4772    }
4773  }
4774
4775  if (!Specialization) {
4776    // Create a new class template specialization declaration node for
4777    // this explicit specialization.
4778    Specialization
4779      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4780                                             ClassTemplate->getDeclContext(),
4781                                                TemplateNameLoc,
4782                                                ClassTemplate,
4783                                                Converted, PrevDecl);
4784    SetNestedNameSpecifier(Specialization, SS);
4785
4786    if (!HasNoEffect) {
4787      if (PrevDecl) {
4788        // Remove the previous declaration from the folding set, since we want
4789        // to introduce a new declaration.
4790        ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4791        ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4792      }
4793      // Insert the new specialization.
4794      ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4795    }
4796  }
4797
4798  // Build the fully-sugared type for this explicit instantiation as
4799  // the user wrote in the explicit instantiation itself. This means
4800  // that we'll pretty-print the type retrieved from the
4801  // specialization's declaration the way that the user actually wrote
4802  // the explicit instantiation, rather than formatting the name based
4803  // on the "canonical" representation used to store the template
4804  // arguments in the specialization.
4805  TypeSourceInfo *WrittenTy
4806    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4807                                                TemplateArgs,
4808                                  Context.getTypeDeclType(Specialization));
4809  Specialization->setTypeAsWritten(WrittenTy);
4810  TemplateArgsIn.release();
4811
4812  // Set source locations for keywords.
4813  Specialization->setExternLoc(ExternLoc);
4814  Specialization->setTemplateKeywordLoc(TemplateLoc);
4815
4816  // Add the explicit instantiation into its lexical context. However,
4817  // since explicit instantiations are never found by name lookup, we
4818  // just put it into the declaration context directly.
4819  Specialization->setLexicalDeclContext(CurContext);
4820  CurContext->addDecl(Specialization);
4821
4822  // Syntax is now OK, so return if it has no other effect on semantics.
4823  if (HasNoEffect) {
4824    // Set the template specialization kind.
4825    Specialization->setTemplateSpecializationKind(TSK);
4826    return DeclPtrTy::make(Specialization);
4827  }
4828
4829  // C++ [temp.explicit]p3:
4830  //   A definition of a class template or class member template
4831  //   shall be in scope at the point of the explicit instantiation of
4832  //   the class template or class member template.
4833  //
4834  // This check comes when we actually try to perform the
4835  // instantiation.
4836  ClassTemplateSpecializationDecl *Def
4837    = cast_or_null<ClassTemplateSpecializationDecl>(
4838                                              Specialization->getDefinition());
4839  if (!Def)
4840    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4841  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4842    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4843    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4844  }
4845
4846  // Instantiate the members of this class template specialization.
4847  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4848                                       Specialization->getDefinition());
4849  if (Def) {
4850    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4851
4852    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4853    // TSK_ExplicitInstantiationDefinition
4854    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4855        TSK == TSK_ExplicitInstantiationDefinition)
4856      Def->setTemplateSpecializationKind(TSK);
4857
4858    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4859  }
4860
4861  // Set the template specialization kind.
4862  Specialization->setTemplateSpecializationKind(TSK);
4863  return DeclPtrTy::make(Specialization);
4864}
4865
4866// Explicit instantiation of a member class of a class template.
4867Sema::DeclResult
4868Sema::ActOnExplicitInstantiation(Scope *S,
4869                                 SourceLocation ExternLoc,
4870                                 SourceLocation TemplateLoc,
4871                                 unsigned TagSpec,
4872                                 SourceLocation KWLoc,
4873                                 CXXScopeSpec &SS,
4874                                 IdentifierInfo *Name,
4875                                 SourceLocation NameLoc,
4876                                 AttributeList *Attr) {
4877
4878  bool Owned = false;
4879  bool IsDependent = false;
4880  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4881                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4882                            MultiTemplateParamsArg(*this, 0, 0),
4883                            Owned, IsDependent);
4884  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4885
4886  if (!TagD)
4887    return true;
4888
4889  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4890  if (Tag->isEnum()) {
4891    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4892      << Context.getTypeDeclType(Tag);
4893    return true;
4894  }
4895
4896  if (Tag->isInvalidDecl())
4897    return true;
4898
4899  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4900  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4901  if (!Pattern) {
4902    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4903      << Context.getTypeDeclType(Record);
4904    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4905    return true;
4906  }
4907
4908  // C++0x [temp.explicit]p2:
4909  //   If the explicit instantiation is for a class or member class, the
4910  //   elaborated-type-specifier in the declaration shall include a
4911  //   simple-template-id.
4912  //
4913  // C++98 has the same restriction, just worded differently.
4914  if (!ScopeSpecifierHasTemplateId(SS))
4915    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4916      << Record << SS.getRange();
4917
4918  // C++0x [temp.explicit]p2:
4919  //   There are two forms of explicit instantiation: an explicit instantiation
4920  //   definition and an explicit instantiation declaration. An explicit
4921  //   instantiation declaration begins with the extern keyword. [...]
4922  TemplateSpecializationKind TSK
4923    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4924                           : TSK_ExplicitInstantiationDeclaration;
4925
4926  // C++0x [temp.explicit]p2:
4927  //   [...] An explicit instantiation shall appear in an enclosing
4928  //   namespace of its template. [...]
4929  //
4930  // This is C++ DR 275.
4931  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4932
4933  // Verify that it is okay to explicitly instantiate here.
4934  CXXRecordDecl *PrevDecl
4935    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4936  if (!PrevDecl && Record->getDefinition())
4937    PrevDecl = Record;
4938  if (PrevDecl) {
4939    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4940    bool HasNoEffect = false;
4941    assert(MSInfo && "No member specialization information?");
4942    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4943                                               PrevDecl,
4944                                        MSInfo->getTemplateSpecializationKind(),
4945                                             MSInfo->getPointOfInstantiation(),
4946                                               HasNoEffect))
4947      return true;
4948    if (HasNoEffect)
4949      return TagD;
4950  }
4951
4952  CXXRecordDecl *RecordDef
4953    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4954  if (!RecordDef) {
4955    // C++ [temp.explicit]p3:
4956    //   A definition of a member class of a class template shall be in scope
4957    //   at the point of an explicit instantiation of the member class.
4958    CXXRecordDecl *Def
4959      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4960    if (!Def) {
4961      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4962        << 0 << Record->getDeclName() << Record->getDeclContext();
4963      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4964        << Pattern;
4965      return true;
4966    } else {
4967      if (InstantiateClass(NameLoc, Record, Def,
4968                           getTemplateInstantiationArgs(Record),
4969                           TSK))
4970        return true;
4971
4972      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4973      if (!RecordDef)
4974        return true;
4975    }
4976  }
4977
4978  // Instantiate all of the members of the class.
4979  InstantiateClassMembers(NameLoc, RecordDef,
4980                          getTemplateInstantiationArgs(Record), TSK);
4981
4982  if (TSK == TSK_ExplicitInstantiationDefinition)
4983    MarkVTableUsed(NameLoc, RecordDef, true);
4984
4985  // FIXME: We don't have any representation for explicit instantiations of
4986  // member classes. Such a representation is not needed for compilation, but it
4987  // should be available for clients that want to see all of the declarations in
4988  // the source code.
4989  return TagD;
4990}
4991
4992Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4993                                                  SourceLocation ExternLoc,
4994                                                  SourceLocation TemplateLoc,
4995                                                  Declarator &D) {
4996  // Explicit instantiations always require a name.
4997  DeclarationName Name = GetNameForDeclarator(D);
4998  if (!Name) {
4999    if (!D.isInvalidType())
5000      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5001           diag::err_explicit_instantiation_requires_name)
5002        << D.getDeclSpec().getSourceRange()
5003        << D.getSourceRange();
5004
5005    return true;
5006  }
5007
5008  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5009  // we find one that is.
5010  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5011         (S->getFlags() & Scope::TemplateParamScope) != 0)
5012    S = S->getParent();
5013
5014  // Determine the type of the declaration.
5015  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5016  QualType R = T->getType();
5017  if (R.isNull())
5018    return true;
5019
5020  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5021    // Cannot explicitly instantiate a typedef.
5022    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5023      << Name;
5024    return true;
5025  }
5026
5027  // C++0x [temp.explicit]p1:
5028  //   [...] An explicit instantiation of a function template shall not use the
5029  //   inline or constexpr specifiers.
5030  // Presumably, this also applies to member functions of class templates as
5031  // well.
5032  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5033    Diag(D.getDeclSpec().getInlineSpecLoc(),
5034         diag::err_explicit_instantiation_inline)
5035      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5036
5037  // FIXME: check for constexpr specifier.
5038
5039  // C++0x [temp.explicit]p2:
5040  //   There are two forms of explicit instantiation: an explicit instantiation
5041  //   definition and an explicit instantiation declaration. An explicit
5042  //   instantiation declaration begins with the extern keyword. [...]
5043  TemplateSpecializationKind TSK
5044    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5045                           : TSK_ExplicitInstantiationDeclaration;
5046
5047  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
5048  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5049
5050  if (!R->isFunctionType()) {
5051    // C++ [temp.explicit]p1:
5052    //   A [...] static data member of a class template can be explicitly
5053    //   instantiated from the member definition associated with its class
5054    //   template.
5055    if (Previous.isAmbiguous())
5056      return true;
5057
5058    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5059    if (!Prev || !Prev->isStaticDataMember()) {
5060      // We expect to see a data data member here.
5061      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5062        << Name;
5063      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5064           P != PEnd; ++P)
5065        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5066      return true;
5067    }
5068
5069    if (!Prev->getInstantiatedFromStaticDataMember()) {
5070      // FIXME: Check for explicit specialization?
5071      Diag(D.getIdentifierLoc(),
5072           diag::err_explicit_instantiation_data_member_not_instantiated)
5073        << Prev;
5074      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5075      // FIXME: Can we provide a note showing where this was declared?
5076      return true;
5077    }
5078
5079    // C++0x [temp.explicit]p2:
5080    //   If the explicit instantiation is for a member function, a member class
5081    //   or a static data member of a class template specialization, the name of
5082    //   the class template specialization in the qualified-id for the member
5083    //   name shall be a simple-template-id.
5084    //
5085    // C++98 has the same restriction, just worded differently.
5086    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5087      Diag(D.getIdentifierLoc(),
5088           diag::err_explicit_instantiation_without_qualified_id)
5089        << Prev << D.getCXXScopeSpec().getRange();
5090
5091    // Check the scope of this explicit instantiation.
5092    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5093
5094    // Verify that it is okay to explicitly instantiate here.
5095    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5096    assert(MSInfo && "Missing static data member specialization info?");
5097    bool HasNoEffect = false;
5098    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5099                                        MSInfo->getTemplateSpecializationKind(),
5100                                              MSInfo->getPointOfInstantiation(),
5101                                               HasNoEffect))
5102      return true;
5103    if (HasNoEffect)
5104      return DeclPtrTy();
5105
5106    // Instantiate static data member.
5107    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5108    if (TSK == TSK_ExplicitInstantiationDefinition)
5109      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
5110                                            /*DefinitionRequired=*/true);
5111
5112    // FIXME: Create an ExplicitInstantiation node?
5113    return DeclPtrTy();
5114  }
5115
5116  // If the declarator is a template-id, translate the parser's template
5117  // argument list into our AST format.
5118  bool HasExplicitTemplateArgs = false;
5119  TemplateArgumentListInfo TemplateArgs;
5120  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5121    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5122    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5123    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5124    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5125                                       TemplateId->getTemplateArgs(),
5126                                       TemplateId->NumArgs);
5127    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5128    HasExplicitTemplateArgs = true;
5129    TemplateArgsPtr.release();
5130  }
5131
5132  // C++ [temp.explicit]p1:
5133  //   A [...] function [...] can be explicitly instantiated from its template.
5134  //   A member function [...] of a class template can be explicitly
5135  //  instantiated from the member definition associated with its class
5136  //  template.
5137  UnresolvedSet<8> Matches;
5138  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5139       P != PEnd; ++P) {
5140    NamedDecl *Prev = *P;
5141    if (!HasExplicitTemplateArgs) {
5142      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5143        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5144          Matches.clear();
5145
5146          Matches.addDecl(Method, P.getAccess());
5147          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5148            break;
5149        }
5150      }
5151    }
5152
5153    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5154    if (!FunTmpl)
5155      continue;
5156
5157    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5158    FunctionDecl *Specialization = 0;
5159    if (TemplateDeductionResult TDK
5160          = DeduceTemplateArguments(FunTmpl,
5161                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5162                                    R, Specialization, Info)) {
5163      // FIXME: Keep track of almost-matches?
5164      (void)TDK;
5165      continue;
5166    }
5167
5168    Matches.addDecl(Specialization, P.getAccess());
5169  }
5170
5171  // Find the most specialized function template specialization.
5172  UnresolvedSetIterator Result
5173    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5174                         D.getIdentifierLoc(),
5175                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5176                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5177                         PDiag(diag::note_explicit_instantiation_candidate));
5178
5179  if (Result == Matches.end())
5180    return true;
5181
5182  // Ignore access control bits, we don't need them for redeclaration checking.
5183  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5184
5185  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5186    Diag(D.getIdentifierLoc(),
5187         diag::err_explicit_instantiation_member_function_not_instantiated)
5188      << Specialization
5189      << (Specialization->getTemplateSpecializationKind() ==
5190          TSK_ExplicitSpecialization);
5191    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5192    return true;
5193  }
5194
5195  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5196  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5197    PrevDecl = Specialization;
5198
5199  if (PrevDecl) {
5200    bool HasNoEffect = false;
5201    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5202                                               PrevDecl,
5203                                     PrevDecl->getTemplateSpecializationKind(),
5204                                          PrevDecl->getPointOfInstantiation(),
5205                                               HasNoEffect))
5206      return true;
5207
5208    // FIXME: We may still want to build some representation of this
5209    // explicit specialization.
5210    if (HasNoEffect)
5211      return DeclPtrTy();
5212  }
5213
5214  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5215
5216  if (TSK == TSK_ExplicitInstantiationDefinition)
5217    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
5218                                  false, /*DefinitionRequired=*/true);
5219
5220  // C++0x [temp.explicit]p2:
5221  //   If the explicit instantiation is for a member function, a member class
5222  //   or a static data member of a class template specialization, the name of
5223  //   the class template specialization in the qualified-id for the member
5224  //   name shall be a simple-template-id.
5225  //
5226  // C++98 has the same restriction, just worded differently.
5227  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5228  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5229      D.getCXXScopeSpec().isSet() &&
5230      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5231    Diag(D.getIdentifierLoc(),
5232         diag::err_explicit_instantiation_without_qualified_id)
5233    << Specialization << D.getCXXScopeSpec().getRange();
5234
5235  CheckExplicitInstantiationScope(*this,
5236                   FunTmpl? (NamedDecl *)FunTmpl
5237                          : Specialization->getInstantiatedFromMemberFunction(),
5238                                  D.getIdentifierLoc(),
5239                                  D.getCXXScopeSpec().isSet());
5240
5241  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5242  return DeclPtrTy();
5243}
5244
5245Sema::TypeResult
5246Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5247                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5248                        SourceLocation TagLoc, SourceLocation NameLoc) {
5249  // This has to hold, because SS is expected to be defined.
5250  assert(Name && "Expected a name in a dependent tag");
5251
5252  NestedNameSpecifier *NNS
5253    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5254  if (!NNS)
5255    return true;
5256
5257  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5258
5259  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5260    Diag(NameLoc, diag::err_dependent_tag_decl)
5261      << (TUK == TUK_Definition) << Kind << SS.getRange();
5262    return true;
5263  }
5264
5265  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5266  return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr();
5267}
5268
5269Sema::TypeResult
5270Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5271                        const IdentifierInfo &II, SourceLocation IdLoc) {
5272  NestedNameSpecifier *NNS
5273    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5274  if (!NNS)
5275    return true;
5276
5277  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5278                                 TypenameLoc, SS.getRange(), IdLoc);
5279  if (T.isNull())
5280    return true;
5281
5282  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5283  if (isa<DependentNameType>(T)) {
5284    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5285    TL.setKeywordLoc(TypenameLoc);
5286    TL.setQualifierRange(SS.getRange());
5287    TL.setNameLoc(IdLoc);
5288  } else {
5289    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5290    TL.setKeywordLoc(TypenameLoc);
5291    TL.setQualifierRange(SS.getRange());
5292    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5293  }
5294
5295  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5296}
5297
5298Sema::TypeResult
5299Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5300                        SourceLocation TemplateLoc, TypeTy *Ty) {
5301  TypeSourceInfo *InnerTSI = 0;
5302  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5303  NestedNameSpecifier *NNS
5304    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5305
5306  assert(isa<TemplateSpecializationType>(T) &&
5307         "Expected a template specialization type");
5308
5309  if (computeDeclContext(SS, false)) {
5310    // If we can compute a declaration context, then the "typename"
5311    // keyword was superfluous. Just build an ElaboratedType to keep
5312    // track of the nested-name-specifier.
5313
5314    // Push the inner type, preserving its source locations if possible.
5315    TypeLocBuilder Builder;
5316    if (InnerTSI)
5317      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5318    else
5319      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5320
5321    T = Context.getElaboratedType(ETK_Typename, NNS, T);
5322    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5323    TL.setKeywordLoc(TypenameLoc);
5324    TL.setQualifierRange(SS.getRange());
5325
5326    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5327    return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5328  }
5329
5330  // TODO: it's really silly that we make a template specialization
5331  // type earlier only to drop it again here.
5332  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5333  DependentTemplateName *DTN =
5334    TST->getTemplateName().getAsDependentTemplateName();
5335  assert(DTN && "dependent template has non-dependent name?");
5336  T = Context.getDependentTemplateSpecializationType(ETK_Typename, NNS,
5337                                                     DTN->getIdentifier(),
5338                                                     TST->getNumArgs(),
5339                                                     TST->getArgs());
5340  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5341  DependentTemplateSpecializationTypeLoc TL =
5342    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5343  if (InnerTSI) {
5344    TemplateSpecializationTypeLoc TSTL =
5345      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5346    TL.setLAngleLoc(TSTL.getLAngleLoc());
5347    TL.setRAngleLoc(TSTL.getRAngleLoc());
5348    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5349      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5350  } else {
5351    TL.initializeLocal(SourceLocation());
5352  }
5353  TL.setKeywordLoc(TypenameLoc);
5354  TL.setQualifierRange(SS.getRange());
5355  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5356}
5357
5358/// \brief Build the type that describes a C++ typename specifier,
5359/// e.g., "typename T::type".
5360QualType
5361Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5362                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5363                        SourceLocation KeywordLoc, SourceRange NNSRange,
5364                        SourceLocation IILoc) {
5365  CXXScopeSpec SS;
5366  SS.setScopeRep(NNS);
5367  SS.setRange(NNSRange);
5368
5369  DeclContext *Ctx = computeDeclContext(SS);
5370  if (!Ctx) {
5371    // If the nested-name-specifier is dependent and couldn't be
5372    // resolved to a type, build a typename type.
5373    assert(NNS->isDependent());
5374    return Context.getDependentNameType(Keyword, NNS, &II);
5375  }
5376
5377  // If the nested-name-specifier refers to the current instantiation,
5378  // the "typename" keyword itself is superfluous. In C++03, the
5379  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5380  // allows such extraneous "typename" keywords, and we retroactively
5381  // apply this DR to C++03 code with only a warning. In any case we continue.
5382
5383  if (RequireCompleteDeclContext(SS, Ctx))
5384    return QualType();
5385
5386  DeclarationName Name(&II);
5387  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5388  LookupQualifiedName(Result, Ctx);
5389  unsigned DiagID = 0;
5390  Decl *Referenced = 0;
5391  switch (Result.getResultKind()) {
5392  case LookupResult::NotFound:
5393    DiagID = diag::err_typename_nested_not_found;
5394    break;
5395
5396  case LookupResult::NotFoundInCurrentInstantiation:
5397    // Okay, it's a member of an unknown instantiation.
5398    return Context.getDependentNameType(Keyword, NNS, &II);
5399
5400  case LookupResult::Found:
5401    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5402      if (ActiveTemplateInstantiations.empty() &&
5403          !getLangOptions().CPlusPlus0x && !SS.isEmpty() &&
5404          !isDependentScopeSpecifier(SS))
5405        Diag(KeywordLoc.isValid()? KeywordLoc : IILoc,
5406             diag::ext_typename_nondependent)
5407          << SourceRange(IILoc)
5408          << FixItHint::CreateRemoval(KeywordLoc);
5409
5410      // We found a type. Build an ElaboratedType, since the
5411      // typename-specifier was just sugar.
5412      return Context.getElaboratedType(ETK_Typename, NNS,
5413                                       Context.getTypeDeclType(Type));
5414    }
5415
5416    DiagID = diag::err_typename_nested_not_type;
5417    Referenced = Result.getFoundDecl();
5418    break;
5419
5420  case LookupResult::FoundUnresolvedValue:
5421    llvm_unreachable("unresolved using decl in non-dependent context");
5422    return QualType();
5423
5424  case LookupResult::FoundOverloaded:
5425    DiagID = diag::err_typename_nested_not_type;
5426    Referenced = *Result.begin();
5427    break;
5428
5429  case LookupResult::Ambiguous:
5430    return QualType();
5431  }
5432
5433  // If we get here, it's because name lookup did not find a
5434  // type. Emit an appropriate diagnostic and return an error.
5435  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5436                        IILoc);
5437  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5438  if (Referenced)
5439    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5440      << Name;
5441  return QualType();
5442}
5443
5444namespace {
5445  // See Sema::RebuildTypeInCurrentInstantiation
5446  class CurrentInstantiationRebuilder
5447    : public TreeTransform<CurrentInstantiationRebuilder> {
5448    SourceLocation Loc;
5449    DeclarationName Entity;
5450
5451  public:
5452    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5453
5454    CurrentInstantiationRebuilder(Sema &SemaRef,
5455                                  SourceLocation Loc,
5456                                  DeclarationName Entity)
5457    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5458      Loc(Loc), Entity(Entity) { }
5459
5460    /// \brief Determine whether the given type \p T has already been
5461    /// transformed.
5462    ///
5463    /// For the purposes of type reconstruction, a type has already been
5464    /// transformed if it is NULL or if it is not dependent.
5465    bool AlreadyTransformed(QualType T) {
5466      return T.isNull() || !T->isDependentType();
5467    }
5468
5469    /// \brief Returns the location of the entity whose type is being
5470    /// rebuilt.
5471    SourceLocation getBaseLocation() { return Loc; }
5472
5473    /// \brief Returns the name of the entity whose type is being rebuilt.
5474    DeclarationName getBaseEntity() { return Entity; }
5475
5476    /// \brief Sets the "base" location and entity when that
5477    /// information is known based on another transformation.
5478    void setBase(SourceLocation Loc, DeclarationName Entity) {
5479      this->Loc = Loc;
5480      this->Entity = Entity;
5481    }
5482
5483    /// \brief Transforms an expression by returning the expression itself
5484    /// (an identity function).
5485    ///
5486    /// FIXME: This is completely unsafe; we will need to actually clone the
5487    /// expressions.
5488    Sema::OwningExprResult TransformExpr(Expr *E) {
5489      return getSema().Owned(E->Retain());
5490    }
5491  };
5492}
5493
5494/// \brief Rebuilds a type within the context of the current instantiation.
5495///
5496/// The type \p T is part of the type of an out-of-line member definition of
5497/// a class template (or class template partial specialization) that was parsed
5498/// and constructed before we entered the scope of the class template (or
5499/// partial specialization thereof). This routine will rebuild that type now
5500/// that we have entered the declarator's scope, which may produce different
5501/// canonical types, e.g.,
5502///
5503/// \code
5504/// template<typename T>
5505/// struct X {
5506///   typedef T* pointer;
5507///   pointer data();
5508/// };
5509///
5510/// template<typename T>
5511/// typename X<T>::pointer X<T>::data() { ... }
5512/// \endcode
5513///
5514/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5515/// since we do not know that we can look into X<T> when we parsed the type.
5516/// This function will rebuild the type, performing the lookup of "pointer"
5517/// in X<T> and returning an ElaboratedType whose canonical type is the same
5518/// as the canonical type of T*, allowing the return types of the out-of-line
5519/// definition and the declaration to match.
5520TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5521                                                        SourceLocation Loc,
5522                                                        DeclarationName Name) {
5523  if (!T || !T->getType()->isDependentType())
5524    return T;
5525
5526  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5527  return Rebuilder.TransformType(T);
5528}
5529
5530bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5531  if (SS.isInvalid()) return true;
5532
5533  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5534  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5535                                          DeclarationName());
5536  NestedNameSpecifier *Rebuilt =
5537    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5538  if (!Rebuilt) return true;
5539
5540  SS.setScopeRep(Rebuilt);
5541  return false;
5542}
5543
5544/// \brief Produces a formatted string that describes the binding of
5545/// template parameters to template arguments.
5546std::string
5547Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5548                                      const TemplateArgumentList &Args) {
5549  // FIXME: For variadic templates, we'll need to get the structured list.
5550  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5551                                         Args.flat_size());
5552}
5553
5554std::string
5555Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5556                                      const TemplateArgument *Args,
5557                                      unsigned NumArgs) {
5558  std::string Result;
5559
5560  if (!Params || Params->size() == 0 || NumArgs == 0)
5561    return Result;
5562
5563  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5564    if (I >= NumArgs)
5565      break;
5566
5567    if (I == 0)
5568      Result += "[with ";
5569    else
5570      Result += ", ";
5571
5572    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5573      Result += Id->getName();
5574    } else {
5575      Result += '$';
5576      Result += llvm::utostr(I);
5577    }
5578
5579    Result += " = ";
5580
5581    switch (Args[I].getKind()) {
5582      case TemplateArgument::Null:
5583        Result += "<no value>";
5584        break;
5585
5586      case TemplateArgument::Type: {
5587        std::string TypeStr;
5588        Args[I].getAsType().getAsStringInternal(TypeStr,
5589                                                Context.PrintingPolicy);
5590        Result += TypeStr;
5591        break;
5592      }
5593
5594      case TemplateArgument::Declaration: {
5595        bool Unnamed = true;
5596        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5597          if (ND->getDeclName()) {
5598            Unnamed = false;
5599            Result += ND->getNameAsString();
5600          }
5601        }
5602
5603        if (Unnamed) {
5604          Result += "<anonymous>";
5605        }
5606        break;
5607      }
5608
5609      case TemplateArgument::Template: {
5610        std::string Str;
5611        llvm::raw_string_ostream OS(Str);
5612        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5613        Result += OS.str();
5614        break;
5615      }
5616
5617      case TemplateArgument::Integral: {
5618        Result += Args[I].getAsIntegral()->toString(10);
5619        break;
5620      }
5621
5622      case TemplateArgument::Expression: {
5623        // FIXME: This is non-optimal, since we're regurgitating the
5624        // expression we were given.
5625        std::string Str;
5626        {
5627          llvm::raw_string_ostream OS(Str);
5628          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5629                                           Context.PrintingPolicy);
5630        }
5631        Result += Str;
5632        break;
5633      }
5634
5635      case TemplateArgument::Pack:
5636        // FIXME: Format template argument packs
5637        Result += "<template argument pack>";
5638        break;
5639    }
5640  }
5641
5642  Result += ']';
5643  return Result;
5644}
5645