SemaTemplate.cpp revision 2ade35e2cfd554e49d35a52047cea98a82787af9
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 31 if (!D) 32 return 0; 33 34 if (isa<TemplateDecl>(D)) 35 return D; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 // The set of class templates we've already seen. 67 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 68 LookupResult::Filter filter = R.makeFilter(); 69 while (filter.hasNext()) { 70 NamedDecl *Orig = filter.next(); 71 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 72 if (!Repl) 73 filter.erase(); 74 else if (Repl != Orig) { 75 76 // C++ [temp.local]p3: 77 // A lookup that finds an injected-class-name (10.2) can result in an 78 // ambiguity in certain cases (for example, if it is found in more than 79 // one base class). If all of the injected-class-names that are found 80 // refer to specializations of the same class template, and if the name 81 // is followed by a template-argument-list, the reference refers to the 82 // class template itself and not a specialization thereof, and is not 83 // ambiguous. 84 // 85 // FIXME: Will we eventually have to do the same for alias templates? 86 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 87 if (!ClassTemplates.insert(ClassTmpl)) { 88 filter.erase(); 89 continue; 90 } 91 92 filter.replace(Repl); 93 } 94 } 95 filter.done(); 96} 97 98TemplateNameKind Sema::isTemplateName(Scope *S, 99 CXXScopeSpec &SS, 100 UnqualifiedId &Name, 101 TypeTy *ObjectTypePtr, 102 bool EnteringContext, 103 TemplateTy &TemplateResult, 104 bool &MemberOfUnknownSpecialization) { 105 assert(getLangOptions().CPlusPlus && "No template names in C!"); 106 107 DeclarationName TName; 108 MemberOfUnknownSpecialization = false; 109 110 switch (Name.getKind()) { 111 case UnqualifiedId::IK_Identifier: 112 TName = DeclarationName(Name.Identifier); 113 break; 114 115 case UnqualifiedId::IK_OperatorFunctionId: 116 TName = Context.DeclarationNames.getCXXOperatorName( 117 Name.OperatorFunctionId.Operator); 118 break; 119 120 case UnqualifiedId::IK_LiteralOperatorId: 121 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 122 break; 123 124 default: 125 return TNK_Non_template; 126 } 127 128 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 129 130 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 131 LookupOrdinaryName); 132 R.suppressDiagnostics(); 133 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 134 MemberOfUnknownSpecialization); 135 if (R.empty() || R.isAmbiguous()) 136 return TNK_Non_template; 137 138 TemplateName Template; 139 TemplateNameKind TemplateKind; 140 141 unsigned ResultCount = R.end() - R.begin(); 142 if (ResultCount > 1) { 143 // We assume that we'll preserve the qualifier from a function 144 // template name in other ways. 145 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 146 TemplateKind = TNK_Function_template; 147 } else { 148 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 149 150 if (SS.isSet() && !SS.isInvalid()) { 151 NestedNameSpecifier *Qualifier 152 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 153 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 154 } else { 155 Template = TemplateName(TD); 156 } 157 158 if (isa<FunctionTemplateDecl>(TD)) 159 TemplateKind = TNK_Function_template; 160 else { 161 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 162 TemplateKind = TNK_Type_template; 163 } 164 } 165 166 TemplateResult = TemplateTy::make(Template); 167 return TemplateKind; 168} 169 170bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 171 SourceLocation IILoc, 172 Scope *S, 173 const CXXScopeSpec *SS, 174 TemplateTy &SuggestedTemplate, 175 TemplateNameKind &SuggestedKind) { 176 // We can't recover unless there's a dependent scope specifier preceding the 177 // template name. 178 // FIXME: Typo correction? 179 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 180 computeDeclContext(*SS)) 181 return false; 182 183 // The code is missing a 'template' keyword prior to the dependent template 184 // name. 185 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 186 Diag(IILoc, diag::err_template_kw_missing) 187 << Qualifier << II.getName() 188 << FixItHint::CreateInsertion(IILoc, "template "); 189 SuggestedTemplate 190 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 191 SuggestedKind = TNK_Dependent_template_name; 192 return true; 193} 194 195void Sema::LookupTemplateName(LookupResult &Found, 196 Scope *S, CXXScopeSpec &SS, 197 QualType ObjectType, 198 bool EnteringContext, 199 bool &MemberOfUnknownSpecialization) { 200 // Determine where to perform name lookup 201 MemberOfUnknownSpecialization = false; 202 DeclContext *LookupCtx = 0; 203 bool isDependent = false; 204 if (!ObjectType.isNull()) { 205 // This nested-name-specifier occurs in a member access expression, e.g., 206 // x->B::f, and we are looking into the type of the object. 207 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 208 LookupCtx = computeDeclContext(ObjectType); 209 isDependent = ObjectType->isDependentType(); 210 assert((isDependent || !ObjectType->isIncompleteType()) && 211 "Caller should have completed object type"); 212 } else if (SS.isSet()) { 213 // This nested-name-specifier occurs after another nested-name-specifier, 214 // so long into the context associated with the prior nested-name-specifier. 215 LookupCtx = computeDeclContext(SS, EnteringContext); 216 isDependent = isDependentScopeSpecifier(SS); 217 218 // The declaration context must be complete. 219 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 220 return; 221 } 222 223 bool ObjectTypeSearchedInScope = false; 224 if (LookupCtx) { 225 // Perform "qualified" name lookup into the declaration context we 226 // computed, which is either the type of the base of a member access 227 // expression or the declaration context associated with a prior 228 // nested-name-specifier. 229 LookupQualifiedName(Found, LookupCtx); 230 231 if (!ObjectType.isNull() && Found.empty()) { 232 // C++ [basic.lookup.classref]p1: 233 // In a class member access expression (5.2.5), if the . or -> token is 234 // immediately followed by an identifier followed by a <, the 235 // identifier must be looked up to determine whether the < is the 236 // beginning of a template argument list (14.2) or a less-than operator. 237 // The identifier is first looked up in the class of the object 238 // expression. If the identifier is not found, it is then looked up in 239 // the context of the entire postfix-expression and shall name a class 240 // or function template. 241 // 242 // FIXME: When we're instantiating a template, do we actually have to 243 // look in the scope of the template? Seems fishy... 244 if (S) LookupName(Found, S); 245 ObjectTypeSearchedInScope = true; 246 } 247 } else if (isDependent) { 248 // We cannot look into a dependent object type or nested nme 249 // specifier. 250 MemberOfUnknownSpecialization = true; 251 return; 252 } else { 253 // Perform unqualified name lookup in the current scope. 254 LookupName(Found, S); 255 } 256 257 if (Found.empty() && !isDependent) { 258 // If we did not find any names, attempt to correct any typos. 259 DeclarationName Name = Found.getLookupName(); 260 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 261 false, CTC_CXXCasts)) { 262 FilterAcceptableTemplateNames(Context, Found); 263 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 264 if (LookupCtx) 265 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 266 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 267 << FixItHint::CreateReplacement(Found.getNameLoc(), 268 Found.getLookupName().getAsString()); 269 else 270 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 271 << Name << Found.getLookupName() 272 << FixItHint::CreateReplacement(Found.getNameLoc(), 273 Found.getLookupName().getAsString()); 274 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 275 Diag(Template->getLocation(), diag::note_previous_decl) 276 << Template->getDeclName(); 277 } else 278 Found.clear(); 279 } else { 280 Found.clear(); 281 } 282 } 283 284 FilterAcceptableTemplateNames(Context, Found); 285 if (Found.empty()) 286 return; 287 288 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 289 // C++ [basic.lookup.classref]p1: 290 // [...] If the lookup in the class of the object expression finds a 291 // template, the name is also looked up in the context of the entire 292 // postfix-expression and [...] 293 // 294 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 295 LookupOrdinaryName); 296 LookupName(FoundOuter, S); 297 FilterAcceptableTemplateNames(Context, FoundOuter); 298 299 if (FoundOuter.empty()) { 300 // - if the name is not found, the name found in the class of the 301 // object expression is used, otherwise 302 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 303 // - if the name is found in the context of the entire 304 // postfix-expression and does not name a class template, the name 305 // found in the class of the object expression is used, otherwise 306 } else { 307 // - if the name found is a class template, it must refer to the same 308 // entity as the one found in the class of the object expression, 309 // otherwise the program is ill-formed. 310 if (!Found.isSingleResult() || 311 Found.getFoundDecl()->getCanonicalDecl() 312 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 313 Diag(Found.getNameLoc(), 314 diag::ext_nested_name_member_ref_lookup_ambiguous) 315 << Found.getLookupName() 316 << ObjectType; 317 Diag(Found.getRepresentativeDecl()->getLocation(), 318 diag::note_ambig_member_ref_object_type) 319 << ObjectType; 320 Diag(FoundOuter.getFoundDecl()->getLocation(), 321 diag::note_ambig_member_ref_scope); 322 323 // Recover by taking the template that we found in the object 324 // expression's type. 325 } 326 } 327 } 328} 329 330/// ActOnDependentIdExpression - Handle a dependent id-expression that 331/// was just parsed. This is only possible with an explicit scope 332/// specifier naming a dependent type. 333Sema::OwningExprResult 334Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 335 DeclarationName Name, 336 SourceLocation NameLoc, 337 bool isAddressOfOperand, 338 const TemplateArgumentListInfo *TemplateArgs) { 339 NestedNameSpecifier *Qualifier 340 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 341 342 DeclContext *DC = getFunctionLevelDeclContext(); 343 344 if (!isAddressOfOperand && 345 isa<CXXMethodDecl>(DC) && 346 cast<CXXMethodDecl>(DC)->isInstance()) { 347 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 348 349 // Since the 'this' expression is synthesized, we don't need to 350 // perform the double-lookup check. 351 NamedDecl *FirstQualifierInScope = 0; 352 353 return Owned(CXXDependentScopeMemberExpr::Create(Context, 354 /*This*/ 0, ThisType, 355 /*IsArrow*/ true, 356 /*Op*/ SourceLocation(), 357 Qualifier, SS.getRange(), 358 FirstQualifierInScope, 359 Name, NameLoc, 360 TemplateArgs)); 361 } 362 363 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 364} 365 366Sema::OwningExprResult 367Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 368 DeclarationName Name, 369 SourceLocation NameLoc, 370 const TemplateArgumentListInfo *TemplateArgs) { 371 return Owned(DependentScopeDeclRefExpr::Create(Context, 372 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 373 SS.getRange(), 374 Name, NameLoc, 375 TemplateArgs)); 376} 377 378/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 379/// that the template parameter 'PrevDecl' is being shadowed by a new 380/// declaration at location Loc. Returns true to indicate that this is 381/// an error, and false otherwise. 382bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 383 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 384 385 // Microsoft Visual C++ permits template parameters to be shadowed. 386 if (getLangOptions().Microsoft) 387 return false; 388 389 // C++ [temp.local]p4: 390 // A template-parameter shall not be redeclared within its 391 // scope (including nested scopes). 392 Diag(Loc, diag::err_template_param_shadow) 393 << cast<NamedDecl>(PrevDecl)->getDeclName(); 394 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 395 return true; 396} 397 398/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 399/// the parameter D to reference the templated declaration and return a pointer 400/// to the template declaration. Otherwise, do nothing to D and return null. 401TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 402 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 403 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 404 return Temp; 405 } 406 return 0; 407} 408 409static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 410 const ParsedTemplateArgument &Arg) { 411 412 switch (Arg.getKind()) { 413 case ParsedTemplateArgument::Type: { 414 TypeSourceInfo *DI; 415 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 416 if (!DI) 417 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 418 return TemplateArgumentLoc(TemplateArgument(T), DI); 419 } 420 421 case ParsedTemplateArgument::NonType: { 422 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 423 return TemplateArgumentLoc(TemplateArgument(E), E); 424 } 425 426 case ParsedTemplateArgument::Template: { 427 TemplateName Template 428 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 429 return TemplateArgumentLoc(TemplateArgument(Template), 430 Arg.getScopeSpec().getRange(), 431 Arg.getLocation()); 432 } 433 } 434 435 llvm_unreachable("Unhandled parsed template argument"); 436 return TemplateArgumentLoc(); 437} 438 439/// \brief Translates template arguments as provided by the parser 440/// into template arguments used by semantic analysis. 441void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 442 TemplateArgumentListInfo &TemplateArgs) { 443 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 444 TemplateArgs.addArgument(translateTemplateArgument(*this, 445 TemplateArgsIn[I])); 446} 447 448/// ActOnTypeParameter - Called when a C++ template type parameter 449/// (e.g., "typename T") has been parsed. Typename specifies whether 450/// the keyword "typename" was used to declare the type parameter 451/// (otherwise, "class" was used), and KeyLoc is the location of the 452/// "class" or "typename" keyword. ParamName is the name of the 453/// parameter (NULL indicates an unnamed template parameter) and 454/// ParamName is the location of the parameter name (if any). 455/// If the type parameter has a default argument, it will be added 456/// later via ActOnTypeParameterDefault. 457Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 458 SourceLocation EllipsisLoc, 459 SourceLocation KeyLoc, 460 IdentifierInfo *ParamName, 461 SourceLocation ParamNameLoc, 462 unsigned Depth, unsigned Position) { 463 assert(S->isTemplateParamScope() && 464 "Template type parameter not in template parameter scope!"); 465 bool Invalid = false; 466 467 if (ParamName) { 468 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 469 LookupOrdinaryName, 470 ForRedeclaration); 471 if (PrevDecl && PrevDecl->isTemplateParameter()) 472 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 473 PrevDecl); 474 } 475 476 SourceLocation Loc = ParamNameLoc; 477 if (!ParamName) 478 Loc = KeyLoc; 479 480 TemplateTypeParmDecl *Param 481 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 482 Loc, Depth, Position, ParamName, Typename, 483 Ellipsis); 484 if (Invalid) 485 Param->setInvalidDecl(); 486 487 if (ParamName) { 488 // Add the template parameter into the current scope. 489 S->AddDecl(DeclPtrTy::make(Param)); 490 IdResolver.AddDecl(Param); 491 } 492 493 return DeclPtrTy::make(Param); 494} 495 496/// ActOnTypeParameterDefault - Adds a default argument (the type 497/// Default) to the given template type parameter (TypeParam). 498void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 499 SourceLocation EqualLoc, 500 SourceLocation DefaultLoc, 501 TypeTy *DefaultT) { 502 TemplateTypeParmDecl *Parm 503 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 504 505 TypeSourceInfo *DefaultTInfo; 506 GetTypeFromParser(DefaultT, &DefaultTInfo); 507 508 assert(DefaultTInfo && "expected source information for type"); 509 510 // C++0x [temp.param]p9: 511 // A default template-argument may be specified for any kind of 512 // template-parameter that is not a template parameter pack. 513 if (Parm->isParameterPack()) { 514 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 515 return; 516 } 517 518 // C++ [temp.param]p14: 519 // A template-parameter shall not be used in its own default argument. 520 // FIXME: Implement this check! Needs a recursive walk over the types. 521 522 // Check the template argument itself. 523 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 524 Parm->setInvalidDecl(); 525 return; 526 } 527 528 Parm->setDefaultArgument(DefaultTInfo, false); 529} 530 531/// \brief Check that the type of a non-type template parameter is 532/// well-formed. 533/// 534/// \returns the (possibly-promoted) parameter type if valid; 535/// otherwise, produces a diagnostic and returns a NULL type. 536QualType 537Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 538 // We don't allow variably-modified types as the type of non-type template 539 // parameters. 540 if (T->isVariablyModifiedType()) { 541 Diag(Loc, diag::err_variably_modified_nontype_template_param) 542 << T; 543 return QualType(); 544 } 545 546 // C++ [temp.param]p4: 547 // 548 // A non-type template-parameter shall have one of the following 549 // (optionally cv-qualified) types: 550 // 551 // -- integral or enumeration type, 552 if (T->isIntegralOrEnumerationType() || 553 // -- pointer to object or pointer to function, 554 (T->isPointerType() && 555 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 556 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 557 // -- reference to object or reference to function, 558 T->isReferenceType() || 559 // -- pointer to member. 560 T->isMemberPointerType() || 561 // If T is a dependent type, we can't do the check now, so we 562 // assume that it is well-formed. 563 T->isDependentType()) 564 return T; 565 // C++ [temp.param]p8: 566 // 567 // A non-type template-parameter of type "array of T" or 568 // "function returning T" is adjusted to be of type "pointer to 569 // T" or "pointer to function returning T", respectively. 570 else if (T->isArrayType()) 571 // FIXME: Keep the type prior to promotion? 572 return Context.getArrayDecayedType(T); 573 else if (T->isFunctionType()) 574 // FIXME: Keep the type prior to promotion? 575 return Context.getPointerType(T); 576 577 Diag(Loc, diag::err_template_nontype_parm_bad_type) 578 << T; 579 580 return QualType(); 581} 582 583/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 584/// template parameter (e.g., "int Size" in "template<int Size> 585/// class Array") has been parsed. S is the current scope and D is 586/// the parsed declarator. 587Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 588 unsigned Depth, 589 unsigned Position) { 590 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 591 QualType T = TInfo->getType(); 592 593 assert(S->isTemplateParamScope() && 594 "Non-type template parameter not in template parameter scope!"); 595 bool Invalid = false; 596 597 IdentifierInfo *ParamName = D.getIdentifier(); 598 if (ParamName) { 599 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 600 LookupOrdinaryName, 601 ForRedeclaration); 602 if (PrevDecl && PrevDecl->isTemplateParameter()) 603 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 604 PrevDecl); 605 } 606 607 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 608 if (T.isNull()) { 609 T = Context.IntTy; // Recover with an 'int' type. 610 Invalid = true; 611 } 612 613 NonTypeTemplateParmDecl *Param 614 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 615 D.getIdentifierLoc(), 616 Depth, Position, ParamName, T, TInfo); 617 if (Invalid) 618 Param->setInvalidDecl(); 619 620 if (D.getIdentifier()) { 621 // Add the template parameter into the current scope. 622 S->AddDecl(DeclPtrTy::make(Param)); 623 IdResolver.AddDecl(Param); 624 } 625 return DeclPtrTy::make(Param); 626} 627 628/// \brief Adds a default argument to the given non-type template 629/// parameter. 630void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 631 SourceLocation EqualLoc, 632 ExprArg DefaultE) { 633 NonTypeTemplateParmDecl *TemplateParm 634 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 635 Expr *Default = static_cast<Expr *>(DefaultE.get()); 636 637 // C++ [temp.param]p14: 638 // A template-parameter shall not be used in its own default argument. 639 // FIXME: Implement this check! Needs a recursive walk over the types. 640 641 // Check the well-formedness of the default template argument. 642 TemplateArgument Converted; 643 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 644 Converted)) { 645 TemplateParm->setInvalidDecl(); 646 return; 647 } 648 649 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>(), false); 650} 651 652 653/// ActOnTemplateTemplateParameter - Called when a C++ template template 654/// parameter (e.g. T in template <template <typename> class T> class array) 655/// has been parsed. S is the current scope. 656Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 657 SourceLocation TmpLoc, 658 TemplateParamsTy *Params, 659 IdentifierInfo *Name, 660 SourceLocation NameLoc, 661 unsigned Depth, 662 unsigned Position) { 663 assert(S->isTemplateParamScope() && 664 "Template template parameter not in template parameter scope!"); 665 666 // Construct the parameter object. 667 TemplateTemplateParmDecl *Param = 668 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 669 TmpLoc, Depth, Position, Name, 670 (TemplateParameterList*)Params); 671 672 // Make sure the parameter is valid. 673 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 674 // do anything yet. However, if the template parameter list or (eventual) 675 // default value is ever invalidated, that will propagate here. 676 bool Invalid = false; 677 if (Invalid) { 678 Param->setInvalidDecl(); 679 } 680 681 // If the tt-param has a name, then link the identifier into the scope 682 // and lookup mechanisms. 683 if (Name) { 684 S->AddDecl(DeclPtrTy::make(Param)); 685 IdResolver.AddDecl(Param); 686 } 687 688 return DeclPtrTy::make(Param); 689} 690 691/// \brief Adds a default argument to the given template template 692/// parameter. 693void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 694 SourceLocation EqualLoc, 695 const ParsedTemplateArgument &Default) { 696 TemplateTemplateParmDecl *TemplateParm 697 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 698 699 // C++ [temp.param]p14: 700 // A template-parameter shall not be used in its own default argument. 701 // FIXME: Implement this check! Needs a recursive walk over the types. 702 703 // Check only that we have a template template argument. We don't want to 704 // try to check well-formedness now, because our template template parameter 705 // might have dependent types in its template parameters, which we wouldn't 706 // be able to match now. 707 // 708 // If none of the template template parameter's template arguments mention 709 // other template parameters, we could actually perform more checking here. 710 // However, it isn't worth doing. 711 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 712 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 713 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 714 << DefaultArg.getSourceRange(); 715 return; 716 } 717 718 TemplateParm->setDefaultArgument(DefaultArg, false); 719} 720 721/// ActOnTemplateParameterList - Builds a TemplateParameterList that 722/// contains the template parameters in Params/NumParams. 723Sema::TemplateParamsTy * 724Sema::ActOnTemplateParameterList(unsigned Depth, 725 SourceLocation ExportLoc, 726 SourceLocation TemplateLoc, 727 SourceLocation LAngleLoc, 728 DeclPtrTy *Params, unsigned NumParams, 729 SourceLocation RAngleLoc) { 730 if (ExportLoc.isValid()) 731 Diag(ExportLoc, diag::warn_template_export_unsupported); 732 733 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 734 (NamedDecl**)Params, NumParams, 735 RAngleLoc); 736} 737 738static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 739 if (SS.isSet()) 740 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 741 SS.getRange()); 742} 743 744Sema::DeclResult 745Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 746 SourceLocation KWLoc, CXXScopeSpec &SS, 747 IdentifierInfo *Name, SourceLocation NameLoc, 748 AttributeList *Attr, 749 TemplateParameterList *TemplateParams, 750 AccessSpecifier AS) { 751 assert(TemplateParams && TemplateParams->size() > 0 && 752 "No template parameters"); 753 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 754 bool Invalid = false; 755 756 // Check that we can declare a template here. 757 if (CheckTemplateDeclScope(S, TemplateParams)) 758 return true; 759 760 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 761 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 762 763 // There is no such thing as an unnamed class template. 764 if (!Name) { 765 Diag(KWLoc, diag::err_template_unnamed_class); 766 return true; 767 } 768 769 // Find any previous declaration with this name. 770 DeclContext *SemanticContext; 771 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 772 ForRedeclaration); 773 if (SS.isNotEmpty() && !SS.isInvalid()) { 774 SemanticContext = computeDeclContext(SS, true); 775 if (!SemanticContext) { 776 // FIXME: Produce a reasonable diagnostic here 777 return true; 778 } 779 780 if (RequireCompleteDeclContext(SS, SemanticContext)) 781 return true; 782 783 LookupQualifiedName(Previous, SemanticContext); 784 } else { 785 SemanticContext = CurContext; 786 LookupName(Previous, S); 787 } 788 789 if (Previous.isAmbiguous()) 790 return true; 791 792 NamedDecl *PrevDecl = 0; 793 if (Previous.begin() != Previous.end()) 794 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 795 796 // If there is a previous declaration with the same name, check 797 // whether this is a valid redeclaration. 798 ClassTemplateDecl *PrevClassTemplate 799 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 800 801 // We may have found the injected-class-name of a class template, 802 // class template partial specialization, or class template specialization. 803 // In these cases, grab the template that is being defined or specialized. 804 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 805 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 806 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 807 PrevClassTemplate 808 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 809 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 810 PrevClassTemplate 811 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 812 ->getSpecializedTemplate(); 813 } 814 } 815 816 if (TUK == TUK_Friend) { 817 // C++ [namespace.memdef]p3: 818 // [...] When looking for a prior declaration of a class or a function 819 // declared as a friend, and when the name of the friend class or 820 // function is neither a qualified name nor a template-id, scopes outside 821 // the innermost enclosing namespace scope are not considered. 822 if (!SS.isSet()) { 823 DeclContext *OutermostContext = CurContext; 824 while (!OutermostContext->isFileContext()) 825 OutermostContext = OutermostContext->getLookupParent(); 826 827 if (PrevDecl && 828 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 829 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 830 SemanticContext = PrevDecl->getDeclContext(); 831 } else { 832 // Declarations in outer scopes don't matter. However, the outermost 833 // context we computed is the semantic context for our new 834 // declaration. 835 PrevDecl = PrevClassTemplate = 0; 836 SemanticContext = OutermostContext; 837 } 838 } 839 840 if (CurContext->isDependentContext()) { 841 // If this is a dependent context, we don't want to link the friend 842 // class template to the template in scope, because that would perform 843 // checking of the template parameter lists that can't be performed 844 // until the outer context is instantiated. 845 PrevDecl = PrevClassTemplate = 0; 846 } 847 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 848 PrevDecl = PrevClassTemplate = 0; 849 850 if (PrevClassTemplate) { 851 // Ensure that the template parameter lists are compatible. 852 if (!TemplateParameterListsAreEqual(TemplateParams, 853 PrevClassTemplate->getTemplateParameters(), 854 /*Complain=*/true, 855 TPL_TemplateMatch)) 856 return true; 857 858 // C++ [temp.class]p4: 859 // In a redeclaration, partial specialization, explicit 860 // specialization or explicit instantiation of a class template, 861 // the class-key shall agree in kind with the original class 862 // template declaration (7.1.5.3). 863 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 864 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 865 Diag(KWLoc, diag::err_use_with_wrong_tag) 866 << Name 867 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 868 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 869 Kind = PrevRecordDecl->getTagKind(); 870 } 871 872 // Check for redefinition of this class template. 873 if (TUK == TUK_Definition) { 874 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 875 Diag(NameLoc, diag::err_redefinition) << Name; 876 Diag(Def->getLocation(), diag::note_previous_definition); 877 // FIXME: Would it make sense to try to "forget" the previous 878 // definition, as part of error recovery? 879 return true; 880 } 881 } 882 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 883 // Maybe we will complain about the shadowed template parameter. 884 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 885 // Just pretend that we didn't see the previous declaration. 886 PrevDecl = 0; 887 } else if (PrevDecl) { 888 // C++ [temp]p5: 889 // A class template shall not have the same name as any other 890 // template, class, function, object, enumeration, enumerator, 891 // namespace, or type in the same scope (3.3), except as specified 892 // in (14.5.4). 893 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 894 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 895 return true; 896 } 897 898 // Check the template parameter list of this declaration, possibly 899 // merging in the template parameter list from the previous class 900 // template declaration. 901 if (CheckTemplateParameterList(TemplateParams, 902 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 903 TPC_ClassTemplate)) 904 Invalid = true; 905 906 if (SS.isSet()) { 907 // If the name of the template was qualified, we must be defining the 908 // template out-of-line. 909 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 910 !(TUK == TUK_Friend && CurContext->isDependentContext())) 911 Diag(NameLoc, diag::err_member_def_does_not_match) 912 << Name << SemanticContext << SS.getRange(); 913 } 914 915 CXXRecordDecl *NewClass = 916 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 917 PrevClassTemplate? 918 PrevClassTemplate->getTemplatedDecl() : 0, 919 /*DelayTypeCreation=*/true); 920 SetNestedNameSpecifier(NewClass, SS); 921 922 ClassTemplateDecl *NewTemplate 923 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 924 DeclarationName(Name), TemplateParams, 925 NewClass, PrevClassTemplate); 926 NewClass->setDescribedClassTemplate(NewTemplate); 927 928 // Build the type for the class template declaration now. 929 QualType T = NewTemplate->getInjectedClassNameSpecialization(Context); 930 T = Context.getInjectedClassNameType(NewClass, T); 931 assert(T->isDependentType() && "Class template type is not dependent?"); 932 (void)T; 933 934 // If we are providing an explicit specialization of a member that is a 935 // class template, make a note of that. 936 if (PrevClassTemplate && 937 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 938 PrevClassTemplate->setMemberSpecialization(); 939 940 // Set the access specifier. 941 if (!Invalid && TUK != TUK_Friend) 942 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 943 944 // Set the lexical context of these templates 945 NewClass->setLexicalDeclContext(CurContext); 946 NewTemplate->setLexicalDeclContext(CurContext); 947 948 if (TUK == TUK_Definition) 949 NewClass->startDefinition(); 950 951 if (Attr) 952 ProcessDeclAttributeList(S, NewClass, Attr); 953 954 if (TUK != TUK_Friend) 955 PushOnScopeChains(NewTemplate, S); 956 else { 957 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 958 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 959 NewClass->setAccess(PrevClassTemplate->getAccess()); 960 } 961 962 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 963 PrevClassTemplate != NULL); 964 965 // Friend templates are visible in fairly strange ways. 966 if (!CurContext->isDependentContext()) { 967 DeclContext *DC = SemanticContext->getLookupContext(); 968 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 969 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 970 PushOnScopeChains(NewTemplate, EnclosingScope, 971 /* AddToContext = */ false); 972 } 973 974 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 975 NewClass->getLocation(), 976 NewTemplate, 977 /*FIXME:*/NewClass->getLocation()); 978 Friend->setAccess(AS_public); 979 CurContext->addDecl(Friend); 980 } 981 982 if (Invalid) { 983 NewTemplate->setInvalidDecl(); 984 NewClass->setInvalidDecl(); 985 } 986 return DeclPtrTy::make(NewTemplate); 987} 988 989/// \brief Diagnose the presence of a default template argument on a 990/// template parameter, which is ill-formed in certain contexts. 991/// 992/// \returns true if the default template argument should be dropped. 993static bool DiagnoseDefaultTemplateArgument(Sema &S, 994 Sema::TemplateParamListContext TPC, 995 SourceLocation ParamLoc, 996 SourceRange DefArgRange) { 997 switch (TPC) { 998 case Sema::TPC_ClassTemplate: 999 return false; 1000 1001 case Sema::TPC_FunctionTemplate: 1002 // C++ [temp.param]p9: 1003 // A default template-argument shall not be specified in a 1004 // function template declaration or a function template 1005 // definition [...] 1006 // (This sentence is not in C++0x, per DR226). 1007 if (!S.getLangOptions().CPlusPlus0x) 1008 S.Diag(ParamLoc, 1009 diag::err_template_parameter_default_in_function_template) 1010 << DefArgRange; 1011 return false; 1012 1013 case Sema::TPC_ClassTemplateMember: 1014 // C++0x [temp.param]p9: 1015 // A default template-argument shall not be specified in the 1016 // template-parameter-lists of the definition of a member of a 1017 // class template that appears outside of the member's class. 1018 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1019 << DefArgRange; 1020 return true; 1021 1022 case Sema::TPC_FriendFunctionTemplate: 1023 // C++ [temp.param]p9: 1024 // A default template-argument shall not be specified in a 1025 // friend template declaration. 1026 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1027 << DefArgRange; 1028 return true; 1029 1030 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1031 // for friend function templates if there is only a single 1032 // declaration (and it is a definition). Strange! 1033 } 1034 1035 return false; 1036} 1037 1038/// \brief Checks the validity of a template parameter list, possibly 1039/// considering the template parameter list from a previous 1040/// declaration. 1041/// 1042/// If an "old" template parameter list is provided, it must be 1043/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1044/// template parameter list. 1045/// 1046/// \param NewParams Template parameter list for a new template 1047/// declaration. This template parameter list will be updated with any 1048/// default arguments that are carried through from the previous 1049/// template parameter list. 1050/// 1051/// \param OldParams If provided, template parameter list from a 1052/// previous declaration of the same template. Default template 1053/// arguments will be merged from the old template parameter list to 1054/// the new template parameter list. 1055/// 1056/// \param TPC Describes the context in which we are checking the given 1057/// template parameter list. 1058/// 1059/// \returns true if an error occurred, false otherwise. 1060bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1061 TemplateParameterList *OldParams, 1062 TemplateParamListContext TPC) { 1063 bool Invalid = false; 1064 1065 // C++ [temp.param]p10: 1066 // The set of default template-arguments available for use with a 1067 // template declaration or definition is obtained by merging the 1068 // default arguments from the definition (if in scope) and all 1069 // declarations in scope in the same way default function 1070 // arguments are (8.3.6). 1071 bool SawDefaultArgument = false; 1072 SourceLocation PreviousDefaultArgLoc; 1073 1074 bool SawParameterPack = false; 1075 SourceLocation ParameterPackLoc; 1076 1077 // Dummy initialization to avoid warnings. 1078 TemplateParameterList::iterator OldParam = NewParams->end(); 1079 if (OldParams) 1080 OldParam = OldParams->begin(); 1081 1082 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1083 NewParamEnd = NewParams->end(); 1084 NewParam != NewParamEnd; ++NewParam) { 1085 // Variables used to diagnose redundant default arguments 1086 bool RedundantDefaultArg = false; 1087 SourceLocation OldDefaultLoc; 1088 SourceLocation NewDefaultLoc; 1089 1090 // Variables used to diagnose missing default arguments 1091 bool MissingDefaultArg = false; 1092 1093 // C++0x [temp.param]p11: 1094 // If a template parameter of a class template is a template parameter pack, 1095 // it must be the last template parameter. 1096 if (SawParameterPack) { 1097 Diag(ParameterPackLoc, 1098 diag::err_template_param_pack_must_be_last_template_parameter); 1099 Invalid = true; 1100 } 1101 1102 if (TemplateTypeParmDecl *NewTypeParm 1103 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1104 // Check the presence of a default argument here. 1105 if (NewTypeParm->hasDefaultArgument() && 1106 DiagnoseDefaultTemplateArgument(*this, TPC, 1107 NewTypeParm->getLocation(), 1108 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1109 .getSourceRange())) 1110 NewTypeParm->removeDefaultArgument(); 1111 1112 // Merge default arguments for template type parameters. 1113 TemplateTypeParmDecl *OldTypeParm 1114 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1115 1116 if (NewTypeParm->isParameterPack()) { 1117 assert(!NewTypeParm->hasDefaultArgument() && 1118 "Parameter packs can't have a default argument!"); 1119 SawParameterPack = true; 1120 ParameterPackLoc = NewTypeParm->getLocation(); 1121 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1122 NewTypeParm->hasDefaultArgument()) { 1123 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1124 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1125 SawDefaultArgument = true; 1126 RedundantDefaultArg = true; 1127 PreviousDefaultArgLoc = NewDefaultLoc; 1128 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1129 // Merge the default argument from the old declaration to the 1130 // new declaration. 1131 SawDefaultArgument = true; 1132 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1133 true); 1134 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1135 } else if (NewTypeParm->hasDefaultArgument()) { 1136 SawDefaultArgument = true; 1137 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1138 } else if (SawDefaultArgument) 1139 MissingDefaultArg = true; 1140 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1141 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1142 // Check the presence of a default argument here. 1143 if (NewNonTypeParm->hasDefaultArgument() && 1144 DiagnoseDefaultTemplateArgument(*this, TPC, 1145 NewNonTypeParm->getLocation(), 1146 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1147 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1148 NewNonTypeParm->removeDefaultArgument(); 1149 } 1150 1151 // Merge default arguments for non-type template parameters 1152 NonTypeTemplateParmDecl *OldNonTypeParm 1153 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1154 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1155 NewNonTypeParm->hasDefaultArgument()) { 1156 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1157 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1158 SawDefaultArgument = true; 1159 RedundantDefaultArg = true; 1160 PreviousDefaultArgLoc = NewDefaultLoc; 1161 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1162 // Merge the default argument from the old declaration to the 1163 // new declaration. 1164 SawDefaultArgument = true; 1165 // FIXME: We need to create a new kind of "default argument" 1166 // expression that points to a previous template template 1167 // parameter. 1168 NewNonTypeParm->setDefaultArgument( 1169 OldNonTypeParm->getDefaultArgument(), 1170 /*Inherited=*/ true); 1171 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1172 } else if (NewNonTypeParm->hasDefaultArgument()) { 1173 SawDefaultArgument = true; 1174 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1175 } else if (SawDefaultArgument) 1176 MissingDefaultArg = true; 1177 } else { 1178 // Check the presence of a default argument here. 1179 TemplateTemplateParmDecl *NewTemplateParm 1180 = cast<TemplateTemplateParmDecl>(*NewParam); 1181 if (NewTemplateParm->hasDefaultArgument() && 1182 DiagnoseDefaultTemplateArgument(*this, TPC, 1183 NewTemplateParm->getLocation(), 1184 NewTemplateParm->getDefaultArgument().getSourceRange())) 1185 NewTemplateParm->removeDefaultArgument(); 1186 1187 // Merge default arguments for template template parameters 1188 TemplateTemplateParmDecl *OldTemplateParm 1189 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1190 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1191 NewTemplateParm->hasDefaultArgument()) { 1192 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1193 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1194 SawDefaultArgument = true; 1195 RedundantDefaultArg = true; 1196 PreviousDefaultArgLoc = NewDefaultLoc; 1197 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1198 // Merge the default argument from the old declaration to the 1199 // new declaration. 1200 SawDefaultArgument = true; 1201 // FIXME: We need to create a new kind of "default argument" expression 1202 // that points to a previous template template parameter. 1203 NewTemplateParm->setDefaultArgument( 1204 OldTemplateParm->getDefaultArgument(), 1205 /*Inherited=*/ true); 1206 PreviousDefaultArgLoc 1207 = OldTemplateParm->getDefaultArgument().getLocation(); 1208 } else if (NewTemplateParm->hasDefaultArgument()) { 1209 SawDefaultArgument = true; 1210 PreviousDefaultArgLoc 1211 = NewTemplateParm->getDefaultArgument().getLocation(); 1212 } else if (SawDefaultArgument) 1213 MissingDefaultArg = true; 1214 } 1215 1216 if (RedundantDefaultArg) { 1217 // C++ [temp.param]p12: 1218 // A template-parameter shall not be given default arguments 1219 // by two different declarations in the same scope. 1220 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1221 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1222 Invalid = true; 1223 } else if (MissingDefaultArg) { 1224 // C++ [temp.param]p11: 1225 // If a template-parameter has a default template-argument, 1226 // all subsequent template-parameters shall have a default 1227 // template-argument supplied. 1228 Diag((*NewParam)->getLocation(), 1229 diag::err_template_param_default_arg_missing); 1230 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1231 Invalid = true; 1232 } 1233 1234 // If we have an old template parameter list that we're merging 1235 // in, move on to the next parameter. 1236 if (OldParams) 1237 ++OldParam; 1238 } 1239 1240 return Invalid; 1241} 1242 1243/// \brief Match the given template parameter lists to the given scope 1244/// specifier, returning the template parameter list that applies to the 1245/// name. 1246/// 1247/// \param DeclStartLoc the start of the declaration that has a scope 1248/// specifier or a template parameter list. 1249/// 1250/// \param SS the scope specifier that will be matched to the given template 1251/// parameter lists. This scope specifier precedes a qualified name that is 1252/// being declared. 1253/// 1254/// \param ParamLists the template parameter lists, from the outermost to the 1255/// innermost template parameter lists. 1256/// 1257/// \param NumParamLists the number of template parameter lists in ParamLists. 1258/// 1259/// \param IsFriend Whether to apply the slightly different rules for 1260/// matching template parameters to scope specifiers in friend 1261/// declarations. 1262/// 1263/// \param IsExplicitSpecialization will be set true if the entity being 1264/// declared is an explicit specialization, false otherwise. 1265/// 1266/// \returns the template parameter list, if any, that corresponds to the 1267/// name that is preceded by the scope specifier @p SS. This template 1268/// parameter list may be have template parameters (if we're declaring a 1269/// template) or may have no template parameters (if we're declaring a 1270/// template specialization), or may be NULL (if we were's declaring isn't 1271/// itself a template). 1272TemplateParameterList * 1273Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1274 const CXXScopeSpec &SS, 1275 TemplateParameterList **ParamLists, 1276 unsigned NumParamLists, 1277 bool IsFriend, 1278 bool &IsExplicitSpecialization) { 1279 IsExplicitSpecialization = false; 1280 1281 // Find the template-ids that occur within the nested-name-specifier. These 1282 // template-ids will match up with the template parameter lists. 1283 llvm::SmallVector<const TemplateSpecializationType *, 4> 1284 TemplateIdsInSpecifier; 1285 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1286 ExplicitSpecializationsInSpecifier; 1287 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1288 NNS; NNS = NNS->getPrefix()) { 1289 const Type *T = NNS->getAsType(); 1290 if (!T) break; 1291 1292 // C++0x [temp.expl.spec]p17: 1293 // A member or a member template may be nested within many 1294 // enclosing class templates. In an explicit specialization for 1295 // such a member, the member declaration shall be preceded by a 1296 // template<> for each enclosing class template that is 1297 // explicitly specialized. 1298 // 1299 // Following the existing practice of GNU and EDG, we allow a typedef of a 1300 // template specialization type. 1301 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1302 T = TT->LookThroughTypedefs().getTypePtr(); 1303 1304 if (const TemplateSpecializationType *SpecType 1305 = dyn_cast<TemplateSpecializationType>(T)) { 1306 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1307 if (!Template) 1308 continue; // FIXME: should this be an error? probably... 1309 1310 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1311 ClassTemplateSpecializationDecl *SpecDecl 1312 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1313 // If the nested name specifier refers to an explicit specialization, 1314 // we don't need a template<> header. 1315 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1316 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1317 continue; 1318 } 1319 } 1320 1321 TemplateIdsInSpecifier.push_back(SpecType); 1322 } 1323 } 1324 1325 // Reverse the list of template-ids in the scope specifier, so that we can 1326 // more easily match up the template-ids and the template parameter lists. 1327 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1328 1329 SourceLocation FirstTemplateLoc = DeclStartLoc; 1330 if (NumParamLists) 1331 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1332 1333 // Match the template-ids found in the specifier to the template parameter 1334 // lists. 1335 unsigned Idx = 0; 1336 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1337 Idx != NumTemplateIds; ++Idx) { 1338 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1339 bool DependentTemplateId = TemplateId->isDependentType(); 1340 if (Idx >= NumParamLists) { 1341 // We have a template-id without a corresponding template parameter 1342 // list. 1343 1344 // ...which is fine if this is a friend declaration. 1345 if (IsFriend) { 1346 IsExplicitSpecialization = true; 1347 break; 1348 } 1349 1350 if (DependentTemplateId) { 1351 // FIXME: the location information here isn't great. 1352 Diag(SS.getRange().getBegin(), 1353 diag::err_template_spec_needs_template_parameters) 1354 << TemplateId 1355 << SS.getRange(); 1356 } else { 1357 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1358 << SS.getRange() 1359 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1360 IsExplicitSpecialization = true; 1361 } 1362 return 0; 1363 } 1364 1365 // Check the template parameter list against its corresponding template-id. 1366 if (DependentTemplateId) { 1367 TemplateParameterList *ExpectedTemplateParams = 0; 1368 1369 // Are there cases in (e.g.) friends where this won't match? 1370 if (const InjectedClassNameType *Injected 1371 = TemplateId->getAs<InjectedClassNameType>()) { 1372 CXXRecordDecl *Record = Injected->getDecl(); 1373 if (ClassTemplatePartialSpecializationDecl *Partial = 1374 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1375 ExpectedTemplateParams = Partial->getTemplateParameters(); 1376 else 1377 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1378 ->getTemplateParameters(); 1379 } 1380 1381 if (ExpectedTemplateParams) 1382 TemplateParameterListsAreEqual(ParamLists[Idx], 1383 ExpectedTemplateParams, 1384 true, TPL_TemplateMatch); 1385 1386 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1387 } else if (ParamLists[Idx]->size() > 0) 1388 Diag(ParamLists[Idx]->getTemplateLoc(), 1389 diag::err_template_param_list_matches_nontemplate) 1390 << TemplateId 1391 << ParamLists[Idx]->getSourceRange(); 1392 else 1393 IsExplicitSpecialization = true; 1394 } 1395 1396 // If there were at least as many template-ids as there were template 1397 // parameter lists, then there are no template parameter lists remaining for 1398 // the declaration itself. 1399 if (Idx >= NumParamLists) 1400 return 0; 1401 1402 // If there were too many template parameter lists, complain about that now. 1403 if (Idx != NumParamLists - 1) { 1404 while (Idx < NumParamLists - 1) { 1405 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1406 Diag(ParamLists[Idx]->getTemplateLoc(), 1407 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1408 : diag::err_template_spec_extra_headers) 1409 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1410 ParamLists[Idx]->getRAngleLoc()); 1411 1412 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1413 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1414 diag::note_explicit_template_spec_does_not_need_header) 1415 << ExplicitSpecializationsInSpecifier.back(); 1416 ExplicitSpecializationsInSpecifier.pop_back(); 1417 } 1418 1419 ++Idx; 1420 } 1421 } 1422 1423 // Return the last template parameter list, which corresponds to the 1424 // entity being declared. 1425 return ParamLists[NumParamLists - 1]; 1426} 1427 1428QualType Sema::CheckTemplateIdType(TemplateName Name, 1429 SourceLocation TemplateLoc, 1430 const TemplateArgumentListInfo &TemplateArgs) { 1431 TemplateDecl *Template = Name.getAsTemplateDecl(); 1432 if (!Template) { 1433 // The template name does not resolve to a template, so we just 1434 // build a dependent template-id type. 1435 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1436 } 1437 1438 // Check that the template argument list is well-formed for this 1439 // template. 1440 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1441 TemplateArgs.size()); 1442 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1443 false, Converted)) 1444 return QualType(); 1445 1446 assert((Converted.structuredSize() == 1447 Template->getTemplateParameters()->size()) && 1448 "Converted template argument list is too short!"); 1449 1450 QualType CanonType; 1451 1452 if (Name.isDependent() || 1453 TemplateSpecializationType::anyDependentTemplateArguments( 1454 TemplateArgs)) { 1455 // This class template specialization is a dependent 1456 // type. Therefore, its canonical type is another class template 1457 // specialization type that contains all of the converted 1458 // arguments in canonical form. This ensures that, e.g., A<T> and 1459 // A<T, T> have identical types when A is declared as: 1460 // 1461 // template<typename T, typename U = T> struct A; 1462 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1463 CanonType = Context.getTemplateSpecializationType(CanonName, 1464 Converted.getFlatArguments(), 1465 Converted.flatSize()); 1466 1467 // FIXME: CanonType is not actually the canonical type, and unfortunately 1468 // it is a TemplateSpecializationType that we will never use again. 1469 // In the future, we need to teach getTemplateSpecializationType to only 1470 // build the canonical type and return that to us. 1471 CanonType = Context.getCanonicalType(CanonType); 1472 1473 // This might work out to be a current instantiation, in which 1474 // case the canonical type needs to be the InjectedClassNameType. 1475 // 1476 // TODO: in theory this could be a simple hashtable lookup; most 1477 // changes to CurContext don't change the set of current 1478 // instantiations. 1479 if (isa<ClassTemplateDecl>(Template)) { 1480 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1481 // If we get out to a namespace, we're done. 1482 if (Ctx->isFileContext()) break; 1483 1484 // If this isn't a record, keep looking. 1485 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1486 if (!Record) continue; 1487 1488 // Look for one of the two cases with InjectedClassNameTypes 1489 // and check whether it's the same template. 1490 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1491 !Record->getDescribedClassTemplate()) 1492 continue; 1493 1494 // Fetch the injected class name type and check whether its 1495 // injected type is equal to the type we just built. 1496 QualType ICNT = Context.getTypeDeclType(Record); 1497 QualType Injected = cast<InjectedClassNameType>(ICNT) 1498 ->getInjectedSpecializationType(); 1499 1500 if (CanonType != Injected->getCanonicalTypeInternal()) 1501 continue; 1502 1503 // If so, the canonical type of this TST is the injected 1504 // class name type of the record we just found. 1505 assert(ICNT.isCanonical()); 1506 CanonType = ICNT; 1507 break; 1508 } 1509 } 1510 } else if (ClassTemplateDecl *ClassTemplate 1511 = dyn_cast<ClassTemplateDecl>(Template)) { 1512 // Find the class template specialization declaration that 1513 // corresponds to these arguments. 1514 llvm::FoldingSetNodeID ID; 1515 ClassTemplateSpecializationDecl::Profile(ID, 1516 Converted.getFlatArguments(), 1517 Converted.flatSize(), 1518 Context); 1519 void *InsertPos = 0; 1520 ClassTemplateSpecializationDecl *Decl 1521 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1522 if (!Decl) { 1523 // This is the first time we have referenced this class template 1524 // specialization. Create the canonical declaration and add it to 1525 // the set of specializations. 1526 Decl = ClassTemplateSpecializationDecl::Create(Context, 1527 ClassTemplate->getTemplatedDecl()->getTagKind(), 1528 ClassTemplate->getDeclContext(), 1529 ClassTemplate->getLocation(), 1530 ClassTemplate, 1531 Converted, 0); 1532 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1533 Decl->setLexicalDeclContext(CurContext); 1534 } 1535 1536 CanonType = Context.getTypeDeclType(Decl); 1537 assert(isa<RecordType>(CanonType) && 1538 "type of non-dependent specialization is not a RecordType"); 1539 } 1540 1541 // Build the fully-sugared type for this class template 1542 // specialization, which refers back to the class template 1543 // specialization we created or found. 1544 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1545} 1546 1547Action::TypeResult 1548Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1549 SourceLocation LAngleLoc, 1550 ASTTemplateArgsPtr TemplateArgsIn, 1551 SourceLocation RAngleLoc) { 1552 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1553 1554 // Translate the parser's template argument list in our AST format. 1555 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1556 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1557 1558 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1559 TemplateArgsIn.release(); 1560 1561 if (Result.isNull()) 1562 return true; 1563 1564 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1565 TemplateSpecializationTypeLoc TL 1566 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1567 TL.setTemplateNameLoc(TemplateLoc); 1568 TL.setLAngleLoc(LAngleLoc); 1569 TL.setRAngleLoc(RAngleLoc); 1570 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1571 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1572 1573 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1574} 1575 1576Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1577 TagUseKind TUK, 1578 DeclSpec::TST TagSpec, 1579 SourceLocation TagLoc) { 1580 if (TypeResult.isInvalid()) 1581 return Sema::TypeResult(); 1582 1583 // FIXME: preserve source info, ideally without copying the DI. 1584 TypeSourceInfo *DI; 1585 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1586 1587 // Verify the tag specifier. 1588 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1589 1590 if (const RecordType *RT = Type->getAs<RecordType>()) { 1591 RecordDecl *D = RT->getDecl(); 1592 1593 IdentifierInfo *Id = D->getIdentifier(); 1594 assert(Id && "templated class must have an identifier"); 1595 1596 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1597 Diag(TagLoc, diag::err_use_with_wrong_tag) 1598 << Type 1599 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1600 Diag(D->getLocation(), diag::note_previous_use); 1601 } 1602 } 1603 1604 ElaboratedTypeKeyword Keyword 1605 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1606 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1607 1608 return ElabType.getAsOpaquePtr(); 1609} 1610 1611Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1612 LookupResult &R, 1613 bool RequiresADL, 1614 const TemplateArgumentListInfo &TemplateArgs) { 1615 // FIXME: Can we do any checking at this point? I guess we could check the 1616 // template arguments that we have against the template name, if the template 1617 // name refers to a single template. That's not a terribly common case, 1618 // though. 1619 1620 // These should be filtered out by our callers. 1621 assert(!R.empty() && "empty lookup results when building templateid"); 1622 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1623 1624 NestedNameSpecifier *Qualifier = 0; 1625 SourceRange QualifierRange; 1626 if (SS.isSet()) { 1627 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1628 QualifierRange = SS.getRange(); 1629 } 1630 1631 // We don't want lookup warnings at this point. 1632 R.suppressDiagnostics(); 1633 1634 bool Dependent 1635 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1636 &TemplateArgs); 1637 UnresolvedLookupExpr *ULE 1638 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1639 Qualifier, QualifierRange, 1640 R.getLookupName(), R.getNameLoc(), 1641 RequiresADL, TemplateArgs, 1642 R.begin(), R.end()); 1643 1644 return Owned(ULE); 1645} 1646 1647// We actually only call this from template instantiation. 1648Sema::OwningExprResult 1649Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1650 DeclarationName Name, 1651 SourceLocation NameLoc, 1652 const TemplateArgumentListInfo &TemplateArgs) { 1653 DeclContext *DC; 1654 if (!(DC = computeDeclContext(SS, false)) || 1655 DC->isDependentContext() || 1656 RequireCompleteDeclContext(SS, DC)) 1657 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1658 1659 bool MemberOfUnknownSpecialization; 1660 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1661 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1662 MemberOfUnknownSpecialization); 1663 1664 if (R.isAmbiguous()) 1665 return ExprError(); 1666 1667 if (R.empty()) { 1668 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1669 << Name << SS.getRange(); 1670 return ExprError(); 1671 } 1672 1673 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1674 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1675 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1676 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1677 return ExprError(); 1678 } 1679 1680 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1681} 1682 1683/// \brief Form a dependent template name. 1684/// 1685/// This action forms a dependent template name given the template 1686/// name and its (presumably dependent) scope specifier. For 1687/// example, given "MetaFun::template apply", the scope specifier \p 1688/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1689/// of the "template" keyword, and "apply" is the \p Name. 1690Sema::TemplateTy 1691Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1692 CXXScopeSpec &SS, 1693 UnqualifiedId &Name, 1694 TypeTy *ObjectType, 1695 bool EnteringContext) { 1696 DeclContext *LookupCtx = 0; 1697 if (SS.isSet()) 1698 LookupCtx = computeDeclContext(SS, EnteringContext); 1699 if (!LookupCtx && ObjectType) 1700 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1701 if (LookupCtx) { 1702 // C++0x [temp.names]p5: 1703 // If a name prefixed by the keyword template is not the name of 1704 // a template, the program is ill-formed. [Note: the keyword 1705 // template may not be applied to non-template members of class 1706 // templates. -end note ] [ Note: as is the case with the 1707 // typename prefix, the template prefix is allowed in cases 1708 // where it is not strictly necessary; i.e., when the 1709 // nested-name-specifier or the expression on the left of the -> 1710 // or . is not dependent on a template-parameter, or the use 1711 // does not appear in the scope of a template. -end note] 1712 // 1713 // Note: C++03 was more strict here, because it banned the use of 1714 // the "template" keyword prior to a template-name that was not a 1715 // dependent name. C++ DR468 relaxed this requirement (the 1716 // "template" keyword is now permitted). We follow the C++0x 1717 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1718 TemplateTy Template; 1719 bool MemberOfUnknownSpecialization; 1720 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1721 EnteringContext, Template, 1722 MemberOfUnknownSpecialization); 1723 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1724 isa<CXXRecordDecl>(LookupCtx) && 1725 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1726 // This is a dependent template. 1727 } else if (TNK == TNK_Non_template) { 1728 Diag(Name.getSourceRange().getBegin(), 1729 diag::err_template_kw_refers_to_non_template) 1730 << GetNameFromUnqualifiedId(Name) 1731 << Name.getSourceRange() 1732 << TemplateKWLoc; 1733 return TemplateTy(); 1734 } else { 1735 // We found something; return it. 1736 if (ActiveTemplateInstantiations.empty() && 1737 !getLangOptions().CPlusPlus0x && 1738 !SS.isEmpty() && !isDependentScopeSpecifier(SS)) 1739 Diag(TemplateKWLoc.isValid()? TemplateKWLoc 1740 : Name.getSourceRange().getBegin(), 1741 diag::ext_template_nondependent) 1742 << SourceRange(Name.getSourceRange().getBegin()) 1743 << FixItHint::CreateRemoval(TemplateKWLoc); 1744 1745 return Template; 1746 } 1747 } 1748 1749 NestedNameSpecifier *Qualifier 1750 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1751 1752 switch (Name.getKind()) { 1753 case UnqualifiedId::IK_Identifier: 1754 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1755 Name.Identifier)); 1756 1757 case UnqualifiedId::IK_OperatorFunctionId: 1758 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1759 Name.OperatorFunctionId.Operator)); 1760 1761 case UnqualifiedId::IK_LiteralOperatorId: 1762 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1763 1764 default: 1765 break; 1766 } 1767 1768 Diag(Name.getSourceRange().getBegin(), 1769 diag::err_template_kw_refers_to_non_template) 1770 << GetNameFromUnqualifiedId(Name) 1771 << Name.getSourceRange() 1772 << TemplateKWLoc; 1773 return TemplateTy(); 1774} 1775 1776bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1777 const TemplateArgumentLoc &AL, 1778 TemplateArgumentListBuilder &Converted) { 1779 const TemplateArgument &Arg = AL.getArgument(); 1780 1781 // Check template type parameter. 1782 switch(Arg.getKind()) { 1783 case TemplateArgument::Type: 1784 // C++ [temp.arg.type]p1: 1785 // A template-argument for a template-parameter which is a 1786 // type shall be a type-id. 1787 break; 1788 case TemplateArgument::Template: { 1789 // We have a template type parameter but the template argument 1790 // is a template without any arguments. 1791 SourceRange SR = AL.getSourceRange(); 1792 TemplateName Name = Arg.getAsTemplate(); 1793 Diag(SR.getBegin(), diag::err_template_missing_args) 1794 << Name << SR; 1795 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1796 Diag(Decl->getLocation(), diag::note_template_decl_here); 1797 1798 return true; 1799 } 1800 default: { 1801 // We have a template type parameter but the template argument 1802 // is not a type. 1803 SourceRange SR = AL.getSourceRange(); 1804 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1805 Diag(Param->getLocation(), diag::note_template_param_here); 1806 1807 return true; 1808 } 1809 } 1810 1811 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1812 return true; 1813 1814 // Add the converted template type argument. 1815 Converted.Append( 1816 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1817 return false; 1818} 1819 1820/// \brief Substitute template arguments into the default template argument for 1821/// the given template type parameter. 1822/// 1823/// \param SemaRef the semantic analysis object for which we are performing 1824/// the substitution. 1825/// 1826/// \param Template the template that we are synthesizing template arguments 1827/// for. 1828/// 1829/// \param TemplateLoc the location of the template name that started the 1830/// template-id we are checking. 1831/// 1832/// \param RAngleLoc the location of the right angle bracket ('>') that 1833/// terminates the template-id. 1834/// 1835/// \param Param the template template parameter whose default we are 1836/// substituting into. 1837/// 1838/// \param Converted the list of template arguments provided for template 1839/// parameters that precede \p Param in the template parameter list. 1840/// 1841/// \returns the substituted template argument, or NULL if an error occurred. 1842static TypeSourceInfo * 1843SubstDefaultTemplateArgument(Sema &SemaRef, 1844 TemplateDecl *Template, 1845 SourceLocation TemplateLoc, 1846 SourceLocation RAngleLoc, 1847 TemplateTypeParmDecl *Param, 1848 TemplateArgumentListBuilder &Converted) { 1849 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1850 1851 // If the argument type is dependent, instantiate it now based 1852 // on the previously-computed template arguments. 1853 if (ArgType->getType()->isDependentType()) { 1854 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1855 /*TakeArgs=*/false); 1856 1857 MultiLevelTemplateArgumentList AllTemplateArgs 1858 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1859 1860 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1861 Template, Converted.getFlatArguments(), 1862 Converted.flatSize(), 1863 SourceRange(TemplateLoc, RAngleLoc)); 1864 1865 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1866 Param->getDefaultArgumentLoc(), 1867 Param->getDeclName()); 1868 } 1869 1870 return ArgType; 1871} 1872 1873/// \brief Substitute template arguments into the default template argument for 1874/// the given non-type template parameter. 1875/// 1876/// \param SemaRef the semantic analysis object for which we are performing 1877/// the substitution. 1878/// 1879/// \param Template the template that we are synthesizing template arguments 1880/// for. 1881/// 1882/// \param TemplateLoc the location of the template name that started the 1883/// template-id we are checking. 1884/// 1885/// \param RAngleLoc the location of the right angle bracket ('>') that 1886/// terminates the template-id. 1887/// 1888/// \param Param the non-type template parameter whose default we are 1889/// substituting into. 1890/// 1891/// \param Converted the list of template arguments provided for template 1892/// parameters that precede \p Param in the template parameter list. 1893/// 1894/// \returns the substituted template argument, or NULL if an error occurred. 1895static Sema::OwningExprResult 1896SubstDefaultTemplateArgument(Sema &SemaRef, 1897 TemplateDecl *Template, 1898 SourceLocation TemplateLoc, 1899 SourceLocation RAngleLoc, 1900 NonTypeTemplateParmDecl *Param, 1901 TemplateArgumentListBuilder &Converted) { 1902 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1903 /*TakeArgs=*/false); 1904 1905 MultiLevelTemplateArgumentList AllTemplateArgs 1906 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1907 1908 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1909 Template, Converted.getFlatArguments(), 1910 Converted.flatSize(), 1911 SourceRange(TemplateLoc, RAngleLoc)); 1912 1913 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1914} 1915 1916/// \brief Substitute template arguments into the default template argument for 1917/// the given template template parameter. 1918/// 1919/// \param SemaRef the semantic analysis object for which we are performing 1920/// the substitution. 1921/// 1922/// \param Template the template that we are synthesizing template arguments 1923/// for. 1924/// 1925/// \param TemplateLoc the location of the template name that started the 1926/// template-id we are checking. 1927/// 1928/// \param RAngleLoc the location of the right angle bracket ('>') that 1929/// terminates the template-id. 1930/// 1931/// \param Param the template template parameter whose default we are 1932/// substituting into. 1933/// 1934/// \param Converted the list of template arguments provided for template 1935/// parameters that precede \p Param in the template parameter list. 1936/// 1937/// \returns the substituted template argument, or NULL if an error occurred. 1938static TemplateName 1939SubstDefaultTemplateArgument(Sema &SemaRef, 1940 TemplateDecl *Template, 1941 SourceLocation TemplateLoc, 1942 SourceLocation RAngleLoc, 1943 TemplateTemplateParmDecl *Param, 1944 TemplateArgumentListBuilder &Converted) { 1945 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1946 /*TakeArgs=*/false); 1947 1948 MultiLevelTemplateArgumentList AllTemplateArgs 1949 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1950 1951 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1952 Template, Converted.getFlatArguments(), 1953 Converted.flatSize(), 1954 SourceRange(TemplateLoc, RAngleLoc)); 1955 1956 return SemaRef.SubstTemplateName( 1957 Param->getDefaultArgument().getArgument().getAsTemplate(), 1958 Param->getDefaultArgument().getTemplateNameLoc(), 1959 AllTemplateArgs); 1960} 1961 1962/// \brief If the given template parameter has a default template 1963/// argument, substitute into that default template argument and 1964/// return the corresponding template argument. 1965TemplateArgumentLoc 1966Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1967 SourceLocation TemplateLoc, 1968 SourceLocation RAngleLoc, 1969 Decl *Param, 1970 TemplateArgumentListBuilder &Converted) { 1971 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1972 if (!TypeParm->hasDefaultArgument()) 1973 return TemplateArgumentLoc(); 1974 1975 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1976 TemplateLoc, 1977 RAngleLoc, 1978 TypeParm, 1979 Converted); 1980 if (DI) 1981 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1982 1983 return TemplateArgumentLoc(); 1984 } 1985 1986 if (NonTypeTemplateParmDecl *NonTypeParm 1987 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1988 if (!NonTypeParm->hasDefaultArgument()) 1989 return TemplateArgumentLoc(); 1990 1991 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1992 TemplateLoc, 1993 RAngleLoc, 1994 NonTypeParm, 1995 Converted); 1996 if (Arg.isInvalid()) 1997 return TemplateArgumentLoc(); 1998 1999 Expr *ArgE = Arg.takeAs<Expr>(); 2000 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2001 } 2002 2003 TemplateTemplateParmDecl *TempTempParm 2004 = cast<TemplateTemplateParmDecl>(Param); 2005 if (!TempTempParm->hasDefaultArgument()) 2006 return TemplateArgumentLoc(); 2007 2008 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2009 TemplateLoc, 2010 RAngleLoc, 2011 TempTempParm, 2012 Converted); 2013 if (TName.isNull()) 2014 return TemplateArgumentLoc(); 2015 2016 return TemplateArgumentLoc(TemplateArgument(TName), 2017 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2018 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2019} 2020 2021/// \brief Check that the given template argument corresponds to the given 2022/// template parameter. 2023bool Sema::CheckTemplateArgument(NamedDecl *Param, 2024 const TemplateArgumentLoc &Arg, 2025 TemplateDecl *Template, 2026 SourceLocation TemplateLoc, 2027 SourceLocation RAngleLoc, 2028 TemplateArgumentListBuilder &Converted, 2029 CheckTemplateArgumentKind CTAK) { 2030 // Check template type parameters. 2031 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2032 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2033 2034 // Check non-type template parameters. 2035 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2036 // Do substitution on the type of the non-type template parameter 2037 // with the template arguments we've seen thus far. 2038 QualType NTTPType = NTTP->getType(); 2039 if (NTTPType->isDependentType()) { 2040 // Do substitution on the type of the non-type template parameter. 2041 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2042 NTTP, Converted.getFlatArguments(), 2043 Converted.flatSize(), 2044 SourceRange(TemplateLoc, RAngleLoc)); 2045 2046 TemplateArgumentList TemplateArgs(Context, Converted, 2047 /*TakeArgs=*/false); 2048 NTTPType = SubstType(NTTPType, 2049 MultiLevelTemplateArgumentList(TemplateArgs), 2050 NTTP->getLocation(), 2051 NTTP->getDeclName()); 2052 // If that worked, check the non-type template parameter type 2053 // for validity. 2054 if (!NTTPType.isNull()) 2055 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2056 NTTP->getLocation()); 2057 if (NTTPType.isNull()) 2058 return true; 2059 } 2060 2061 switch (Arg.getArgument().getKind()) { 2062 case TemplateArgument::Null: 2063 assert(false && "Should never see a NULL template argument here"); 2064 return true; 2065 2066 case TemplateArgument::Expression: { 2067 Expr *E = Arg.getArgument().getAsExpr(); 2068 TemplateArgument Result; 2069 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2070 return true; 2071 2072 Converted.Append(Result); 2073 break; 2074 } 2075 2076 case TemplateArgument::Declaration: 2077 case TemplateArgument::Integral: 2078 // We've already checked this template argument, so just copy 2079 // it to the list of converted arguments. 2080 Converted.Append(Arg.getArgument()); 2081 break; 2082 2083 case TemplateArgument::Template: 2084 // We were given a template template argument. It may not be ill-formed; 2085 // see below. 2086 if (DependentTemplateName *DTN 2087 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2088 // We have a template argument such as \c T::template X, which we 2089 // parsed as a template template argument. However, since we now 2090 // know that we need a non-type template argument, convert this 2091 // template name into an expression. 2092 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2093 DTN->getQualifier(), 2094 Arg.getTemplateQualifierRange(), 2095 DTN->getIdentifier(), 2096 Arg.getTemplateNameLoc()); 2097 2098 TemplateArgument Result; 2099 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2100 return true; 2101 2102 Converted.Append(Result); 2103 break; 2104 } 2105 2106 // We have a template argument that actually does refer to a class 2107 // template, template alias, or template template parameter, and 2108 // therefore cannot be a non-type template argument. 2109 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2110 << Arg.getSourceRange(); 2111 2112 Diag(Param->getLocation(), diag::note_template_param_here); 2113 return true; 2114 2115 case TemplateArgument::Type: { 2116 // We have a non-type template parameter but the template 2117 // argument is a type. 2118 2119 // C++ [temp.arg]p2: 2120 // In a template-argument, an ambiguity between a type-id and 2121 // an expression is resolved to a type-id, regardless of the 2122 // form of the corresponding template-parameter. 2123 // 2124 // We warn specifically about this case, since it can be rather 2125 // confusing for users. 2126 QualType T = Arg.getArgument().getAsType(); 2127 SourceRange SR = Arg.getSourceRange(); 2128 if (T->isFunctionType()) 2129 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2130 else 2131 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2132 Diag(Param->getLocation(), diag::note_template_param_here); 2133 return true; 2134 } 2135 2136 case TemplateArgument::Pack: 2137 llvm_unreachable("Caller must expand template argument packs"); 2138 break; 2139 } 2140 2141 return false; 2142 } 2143 2144 2145 // Check template template parameters. 2146 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2147 2148 // Substitute into the template parameter list of the template 2149 // template parameter, since previously-supplied template arguments 2150 // may appear within the template template parameter. 2151 { 2152 // Set up a template instantiation context. 2153 LocalInstantiationScope Scope(*this); 2154 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2155 TempParm, Converted.getFlatArguments(), 2156 Converted.flatSize(), 2157 SourceRange(TemplateLoc, RAngleLoc)); 2158 2159 TemplateArgumentList TemplateArgs(Context, Converted, 2160 /*TakeArgs=*/false); 2161 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2162 SubstDecl(TempParm, CurContext, 2163 MultiLevelTemplateArgumentList(TemplateArgs))); 2164 if (!TempParm) 2165 return true; 2166 2167 // FIXME: TempParam is leaked. 2168 } 2169 2170 switch (Arg.getArgument().getKind()) { 2171 case TemplateArgument::Null: 2172 assert(false && "Should never see a NULL template argument here"); 2173 return true; 2174 2175 case TemplateArgument::Template: 2176 if (CheckTemplateArgument(TempParm, Arg)) 2177 return true; 2178 2179 Converted.Append(Arg.getArgument()); 2180 break; 2181 2182 case TemplateArgument::Expression: 2183 case TemplateArgument::Type: 2184 // We have a template template parameter but the template 2185 // argument does not refer to a template. 2186 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2187 return true; 2188 2189 case TemplateArgument::Declaration: 2190 llvm_unreachable( 2191 "Declaration argument with template template parameter"); 2192 break; 2193 case TemplateArgument::Integral: 2194 llvm_unreachable( 2195 "Integral argument with template template parameter"); 2196 break; 2197 2198 case TemplateArgument::Pack: 2199 llvm_unreachable("Caller must expand template argument packs"); 2200 break; 2201 } 2202 2203 return false; 2204} 2205 2206/// \brief Check that the given template argument list is well-formed 2207/// for specializing the given template. 2208bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2209 SourceLocation TemplateLoc, 2210 const TemplateArgumentListInfo &TemplateArgs, 2211 bool PartialTemplateArgs, 2212 TemplateArgumentListBuilder &Converted) { 2213 TemplateParameterList *Params = Template->getTemplateParameters(); 2214 unsigned NumParams = Params->size(); 2215 unsigned NumArgs = TemplateArgs.size(); 2216 bool Invalid = false; 2217 2218 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2219 2220 bool HasParameterPack = 2221 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2222 2223 if ((NumArgs > NumParams && !HasParameterPack) || 2224 (NumArgs < Params->getMinRequiredArguments() && 2225 !PartialTemplateArgs)) { 2226 // FIXME: point at either the first arg beyond what we can handle, 2227 // or the '>', depending on whether we have too many or too few 2228 // arguments. 2229 SourceRange Range; 2230 if (NumArgs > NumParams) 2231 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2232 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2233 << (NumArgs > NumParams) 2234 << (isa<ClassTemplateDecl>(Template)? 0 : 2235 isa<FunctionTemplateDecl>(Template)? 1 : 2236 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2237 << Template << Range; 2238 Diag(Template->getLocation(), diag::note_template_decl_here) 2239 << Params->getSourceRange(); 2240 Invalid = true; 2241 } 2242 2243 // C++ [temp.arg]p1: 2244 // [...] The type and form of each template-argument specified in 2245 // a template-id shall match the type and form specified for the 2246 // corresponding parameter declared by the template in its 2247 // template-parameter-list. 2248 unsigned ArgIdx = 0; 2249 for (TemplateParameterList::iterator Param = Params->begin(), 2250 ParamEnd = Params->end(); 2251 Param != ParamEnd; ++Param, ++ArgIdx) { 2252 if (ArgIdx > NumArgs && PartialTemplateArgs) 2253 break; 2254 2255 // If we have a template parameter pack, check every remaining template 2256 // argument against that template parameter pack. 2257 if ((*Param)->isTemplateParameterPack()) { 2258 Converted.BeginPack(); 2259 for (; ArgIdx < NumArgs; ++ArgIdx) { 2260 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2261 TemplateLoc, RAngleLoc, Converted)) { 2262 Invalid = true; 2263 break; 2264 } 2265 } 2266 Converted.EndPack(); 2267 continue; 2268 } 2269 2270 if (ArgIdx < NumArgs) { 2271 // Check the template argument we were given. 2272 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2273 TemplateLoc, RAngleLoc, Converted)) 2274 return true; 2275 2276 continue; 2277 } 2278 2279 // We have a default template argument that we will use. 2280 TemplateArgumentLoc Arg; 2281 2282 // Retrieve the default template argument from the template 2283 // parameter. For each kind of template parameter, we substitute the 2284 // template arguments provided thus far and any "outer" template arguments 2285 // (when the template parameter was part of a nested template) into 2286 // the default argument. 2287 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2288 if (!TTP->hasDefaultArgument()) { 2289 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2290 break; 2291 } 2292 2293 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2294 Template, 2295 TemplateLoc, 2296 RAngleLoc, 2297 TTP, 2298 Converted); 2299 if (!ArgType) 2300 return true; 2301 2302 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2303 ArgType); 2304 } else if (NonTypeTemplateParmDecl *NTTP 2305 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2306 if (!NTTP->hasDefaultArgument()) { 2307 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2308 break; 2309 } 2310 2311 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2312 TemplateLoc, 2313 RAngleLoc, 2314 NTTP, 2315 Converted); 2316 if (E.isInvalid()) 2317 return true; 2318 2319 Expr *Ex = E.takeAs<Expr>(); 2320 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2321 } else { 2322 TemplateTemplateParmDecl *TempParm 2323 = cast<TemplateTemplateParmDecl>(*Param); 2324 2325 if (!TempParm->hasDefaultArgument()) { 2326 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2327 break; 2328 } 2329 2330 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2331 TemplateLoc, 2332 RAngleLoc, 2333 TempParm, 2334 Converted); 2335 if (Name.isNull()) 2336 return true; 2337 2338 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2339 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2340 TempParm->getDefaultArgument().getTemplateNameLoc()); 2341 } 2342 2343 // Introduce an instantiation record that describes where we are using 2344 // the default template argument. 2345 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2346 Converted.getFlatArguments(), 2347 Converted.flatSize(), 2348 SourceRange(TemplateLoc, RAngleLoc)); 2349 2350 // Check the default template argument. 2351 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2352 RAngleLoc, Converted)) 2353 return true; 2354 } 2355 2356 return Invalid; 2357} 2358 2359/// \brief Check a template argument against its corresponding 2360/// template type parameter. 2361/// 2362/// This routine implements the semantics of C++ [temp.arg.type]. It 2363/// returns true if an error occurred, and false otherwise. 2364bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2365 TypeSourceInfo *ArgInfo) { 2366 assert(ArgInfo && "invalid TypeSourceInfo"); 2367 QualType Arg = ArgInfo->getType(); 2368 2369 // C++ [temp.arg.type]p2: 2370 // A local type, a type with no linkage, an unnamed type or a type 2371 // compounded from any of these types shall not be used as a 2372 // template-argument for a template type-parameter. 2373 // 2374 // FIXME: Perform the unnamed type check. 2375 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2376 const TagType *Tag = 0; 2377 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2378 Tag = EnumT; 2379 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2380 Tag = RecordT; 2381 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2382 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2383 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2384 << QualType(Tag, 0) << SR; 2385 } else if (Tag && !Tag->getDecl()->getDeclName() && 2386 !Tag->getDecl()->getTypedefForAnonDecl()) { 2387 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2388 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2389 return true; 2390 } else if (Arg->isVariablyModifiedType()) { 2391 Diag(SR.getBegin(), diag::err_variably_modified_template_arg) 2392 << Arg; 2393 return true; 2394 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2395 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2396 } 2397 2398 return false; 2399} 2400 2401/// \brief Checks whether the given template argument is the address 2402/// of an object or function according to C++ [temp.arg.nontype]p1. 2403static bool 2404CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2405 NonTypeTemplateParmDecl *Param, 2406 QualType ParamType, 2407 Expr *ArgIn, 2408 TemplateArgument &Converted) { 2409 bool Invalid = false; 2410 Expr *Arg = ArgIn; 2411 QualType ArgType = Arg->getType(); 2412 2413 // See through any implicit casts we added to fix the type. 2414 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2415 Arg = Cast->getSubExpr(); 2416 2417 // C++ [temp.arg.nontype]p1: 2418 // 2419 // A template-argument for a non-type, non-template 2420 // template-parameter shall be one of: [...] 2421 // 2422 // -- the address of an object or function with external 2423 // linkage, including function templates and function 2424 // template-ids but excluding non-static class members, 2425 // expressed as & id-expression where the & is optional if 2426 // the name refers to a function or array, or if the 2427 // corresponding template-parameter is a reference; or 2428 DeclRefExpr *DRE = 0; 2429 2430 // Ignore (and complain about) any excess parentheses. 2431 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2432 if (!Invalid) { 2433 S.Diag(Arg->getSourceRange().getBegin(), 2434 diag::err_template_arg_extra_parens) 2435 << Arg->getSourceRange(); 2436 Invalid = true; 2437 } 2438 2439 Arg = Parens->getSubExpr(); 2440 } 2441 2442 bool AddressTaken = false; 2443 SourceLocation AddrOpLoc; 2444 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2445 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2446 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2447 AddressTaken = true; 2448 AddrOpLoc = UnOp->getOperatorLoc(); 2449 } 2450 } else 2451 DRE = dyn_cast<DeclRefExpr>(Arg); 2452 2453 if (!DRE) { 2454 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2455 << Arg->getSourceRange(); 2456 S.Diag(Param->getLocation(), diag::note_template_param_here); 2457 return true; 2458 } 2459 2460 // Stop checking the precise nature of the argument if it is value dependent, 2461 // it should be checked when instantiated. 2462 if (Arg->isValueDependent()) { 2463 Converted = TemplateArgument(ArgIn->Retain()); 2464 return false; 2465 } 2466 2467 if (!isa<ValueDecl>(DRE->getDecl())) { 2468 S.Diag(Arg->getSourceRange().getBegin(), 2469 diag::err_template_arg_not_object_or_func_form) 2470 << Arg->getSourceRange(); 2471 S.Diag(Param->getLocation(), diag::note_template_param_here); 2472 return true; 2473 } 2474 2475 NamedDecl *Entity = 0; 2476 2477 // Cannot refer to non-static data members 2478 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2479 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2480 << Field << Arg->getSourceRange(); 2481 S.Diag(Param->getLocation(), diag::note_template_param_here); 2482 return true; 2483 } 2484 2485 // Cannot refer to non-static member functions 2486 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2487 if (!Method->isStatic()) { 2488 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2489 << Method << Arg->getSourceRange(); 2490 S.Diag(Param->getLocation(), diag::note_template_param_here); 2491 return true; 2492 } 2493 2494 // Functions must have external linkage. 2495 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2496 if (!isExternalLinkage(Func->getLinkage())) { 2497 S.Diag(Arg->getSourceRange().getBegin(), 2498 diag::err_template_arg_function_not_extern) 2499 << Func << Arg->getSourceRange(); 2500 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2501 << true; 2502 return true; 2503 } 2504 2505 // Okay: we've named a function with external linkage. 2506 Entity = Func; 2507 2508 // If the template parameter has pointer type, the function decays. 2509 if (ParamType->isPointerType() && !AddressTaken) 2510 ArgType = S.Context.getPointerType(Func->getType()); 2511 else if (AddressTaken && ParamType->isReferenceType()) { 2512 // If we originally had an address-of operator, but the 2513 // parameter has reference type, complain and (if things look 2514 // like they will work) drop the address-of operator. 2515 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2516 ParamType.getNonReferenceType())) { 2517 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2518 << ParamType; 2519 S.Diag(Param->getLocation(), diag::note_template_param_here); 2520 return true; 2521 } 2522 2523 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2524 << ParamType 2525 << FixItHint::CreateRemoval(AddrOpLoc); 2526 S.Diag(Param->getLocation(), diag::note_template_param_here); 2527 2528 ArgType = Func->getType(); 2529 } 2530 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2531 if (!isExternalLinkage(Var->getLinkage())) { 2532 S.Diag(Arg->getSourceRange().getBegin(), 2533 diag::err_template_arg_object_not_extern) 2534 << Var << Arg->getSourceRange(); 2535 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2536 << true; 2537 return true; 2538 } 2539 2540 // A value of reference type is not an object. 2541 if (Var->getType()->isReferenceType()) { 2542 S.Diag(Arg->getSourceRange().getBegin(), 2543 diag::err_template_arg_reference_var) 2544 << Var->getType() << Arg->getSourceRange(); 2545 S.Diag(Param->getLocation(), diag::note_template_param_here); 2546 return true; 2547 } 2548 2549 // Okay: we've named an object with external linkage 2550 Entity = Var; 2551 2552 // If the template parameter has pointer type, we must have taken 2553 // the address of this object. 2554 if (ParamType->isReferenceType()) { 2555 if (AddressTaken) { 2556 // If we originally had an address-of operator, but the 2557 // parameter has reference type, complain and (if things look 2558 // like they will work) drop the address-of operator. 2559 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2560 ParamType.getNonReferenceType())) { 2561 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2562 << ParamType; 2563 S.Diag(Param->getLocation(), diag::note_template_param_here); 2564 return true; 2565 } 2566 2567 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2568 << ParamType 2569 << FixItHint::CreateRemoval(AddrOpLoc); 2570 S.Diag(Param->getLocation(), diag::note_template_param_here); 2571 2572 ArgType = Var->getType(); 2573 } 2574 } else if (!AddressTaken && ParamType->isPointerType()) { 2575 if (Var->getType()->isArrayType()) { 2576 // Array-to-pointer decay. 2577 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2578 } else { 2579 // If the template parameter has pointer type but the address of 2580 // this object was not taken, complain and (possibly) recover by 2581 // taking the address of the entity. 2582 ArgType = S.Context.getPointerType(Var->getType()); 2583 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2584 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2585 << ParamType; 2586 S.Diag(Param->getLocation(), diag::note_template_param_here); 2587 return true; 2588 } 2589 2590 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2591 << ParamType 2592 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2593 2594 S.Diag(Param->getLocation(), diag::note_template_param_here); 2595 } 2596 } 2597 } else { 2598 // We found something else, but we don't know specifically what it is. 2599 S.Diag(Arg->getSourceRange().getBegin(), 2600 diag::err_template_arg_not_object_or_func) 2601 << Arg->getSourceRange(); 2602 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2603 return true; 2604 } 2605 2606 if (ParamType->isPointerType() && 2607 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2608 S.IsQualificationConversion(ArgType, ParamType)) { 2609 // For pointer-to-object types, qualification conversions are 2610 // permitted. 2611 } else { 2612 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2613 if (!ParamRef->getPointeeType()->isFunctionType()) { 2614 // C++ [temp.arg.nontype]p5b3: 2615 // For a non-type template-parameter of type reference to 2616 // object, no conversions apply. The type referred to by the 2617 // reference may be more cv-qualified than the (otherwise 2618 // identical) type of the template- argument. The 2619 // template-parameter is bound directly to the 2620 // template-argument, which shall be an lvalue. 2621 2622 // FIXME: Other qualifiers? 2623 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2624 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2625 2626 if ((ParamQuals | ArgQuals) != ParamQuals) { 2627 S.Diag(Arg->getSourceRange().getBegin(), 2628 diag::err_template_arg_ref_bind_ignores_quals) 2629 << ParamType << Arg->getType() 2630 << Arg->getSourceRange(); 2631 S.Diag(Param->getLocation(), diag::note_template_param_here); 2632 return true; 2633 } 2634 } 2635 } 2636 2637 // At this point, the template argument refers to an object or 2638 // function with external linkage. We now need to check whether the 2639 // argument and parameter types are compatible. 2640 if (!S.Context.hasSameUnqualifiedType(ArgType, 2641 ParamType.getNonReferenceType())) { 2642 // We can't perform this conversion or binding. 2643 if (ParamType->isReferenceType()) 2644 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2645 << ParamType << Arg->getType() << Arg->getSourceRange(); 2646 else 2647 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2648 << Arg->getType() << ParamType << Arg->getSourceRange(); 2649 S.Diag(Param->getLocation(), diag::note_template_param_here); 2650 return true; 2651 } 2652 } 2653 2654 // Create the template argument. 2655 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2656 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2657 return false; 2658} 2659 2660/// \brief Checks whether the given template argument is a pointer to 2661/// member constant according to C++ [temp.arg.nontype]p1. 2662bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2663 TemplateArgument &Converted) { 2664 bool Invalid = false; 2665 2666 // See through any implicit casts we added to fix the type. 2667 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2668 Arg = Cast->getSubExpr(); 2669 2670 // C++ [temp.arg.nontype]p1: 2671 // 2672 // A template-argument for a non-type, non-template 2673 // template-parameter shall be one of: [...] 2674 // 2675 // -- a pointer to member expressed as described in 5.3.1. 2676 DeclRefExpr *DRE = 0; 2677 2678 // Ignore (and complain about) any excess parentheses. 2679 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2680 if (!Invalid) { 2681 Diag(Arg->getSourceRange().getBegin(), 2682 diag::err_template_arg_extra_parens) 2683 << Arg->getSourceRange(); 2684 Invalid = true; 2685 } 2686 2687 Arg = Parens->getSubExpr(); 2688 } 2689 2690 // A pointer-to-member constant written &Class::member. 2691 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2692 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2693 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2694 if (DRE && !DRE->getQualifier()) 2695 DRE = 0; 2696 } 2697 } 2698 // A constant of pointer-to-member type. 2699 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2700 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2701 if (VD->getType()->isMemberPointerType()) { 2702 if (isa<NonTypeTemplateParmDecl>(VD) || 2703 (isa<VarDecl>(VD) && 2704 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2705 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2706 Converted = TemplateArgument(Arg->Retain()); 2707 else 2708 Converted = TemplateArgument(VD->getCanonicalDecl()); 2709 return Invalid; 2710 } 2711 } 2712 } 2713 2714 DRE = 0; 2715 } 2716 2717 if (!DRE) 2718 return Diag(Arg->getSourceRange().getBegin(), 2719 diag::err_template_arg_not_pointer_to_member_form) 2720 << Arg->getSourceRange(); 2721 2722 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2723 assert((isa<FieldDecl>(DRE->getDecl()) || 2724 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2725 "Only non-static member pointers can make it here"); 2726 2727 // Okay: this is the address of a non-static member, and therefore 2728 // a member pointer constant. 2729 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2730 Converted = TemplateArgument(Arg->Retain()); 2731 else 2732 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2733 return Invalid; 2734 } 2735 2736 // We found something else, but we don't know specifically what it is. 2737 Diag(Arg->getSourceRange().getBegin(), 2738 diag::err_template_arg_not_pointer_to_member_form) 2739 << Arg->getSourceRange(); 2740 Diag(DRE->getDecl()->getLocation(), 2741 diag::note_template_arg_refers_here); 2742 return true; 2743} 2744 2745/// \brief Check a template argument against its corresponding 2746/// non-type template parameter. 2747/// 2748/// This routine implements the semantics of C++ [temp.arg.nontype]. 2749/// It returns true if an error occurred, and false otherwise. \p 2750/// InstantiatedParamType is the type of the non-type template 2751/// parameter after it has been instantiated. 2752/// 2753/// If no error was detected, Converted receives the converted template argument. 2754bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2755 QualType InstantiatedParamType, Expr *&Arg, 2756 TemplateArgument &Converted, 2757 CheckTemplateArgumentKind CTAK) { 2758 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2759 2760 // If either the parameter has a dependent type or the argument is 2761 // type-dependent, there's nothing we can check now. 2762 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2763 // FIXME: Produce a cloned, canonical expression? 2764 Converted = TemplateArgument(Arg); 2765 return false; 2766 } 2767 2768 // C++ [temp.arg.nontype]p5: 2769 // The following conversions are performed on each expression used 2770 // as a non-type template-argument. If a non-type 2771 // template-argument cannot be converted to the type of the 2772 // corresponding template-parameter then the program is 2773 // ill-formed. 2774 // 2775 // -- for a non-type template-parameter of integral or 2776 // enumeration type, integral promotions (4.5) and integral 2777 // conversions (4.7) are applied. 2778 QualType ParamType = InstantiatedParamType; 2779 QualType ArgType = Arg->getType(); 2780 if (ParamType->isIntegralOrEnumerationType()) { 2781 // C++ [temp.arg.nontype]p1: 2782 // A template-argument for a non-type, non-template 2783 // template-parameter shall be one of: 2784 // 2785 // -- an integral constant-expression of integral or enumeration 2786 // type; or 2787 // -- the name of a non-type template-parameter; or 2788 SourceLocation NonConstantLoc; 2789 llvm::APSInt Value; 2790 if (!ArgType->isIntegralOrEnumerationType()) { 2791 Diag(Arg->getSourceRange().getBegin(), 2792 diag::err_template_arg_not_integral_or_enumeral) 2793 << ArgType << Arg->getSourceRange(); 2794 Diag(Param->getLocation(), diag::note_template_param_here); 2795 return true; 2796 } else if (!Arg->isValueDependent() && 2797 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2798 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2799 << ArgType << Arg->getSourceRange(); 2800 return true; 2801 } 2802 2803 // From here on out, all we care about are the unqualified forms 2804 // of the parameter and argument types. 2805 ParamType = ParamType.getUnqualifiedType(); 2806 ArgType = ArgType.getUnqualifiedType(); 2807 2808 // Try to convert the argument to the parameter's type. 2809 if (Context.hasSameType(ParamType, ArgType)) { 2810 // Okay: no conversion necessary 2811 } else if (CTAK == CTAK_Deduced) { 2812 // C++ [temp.deduct.type]p17: 2813 // If, in the declaration of a function template with a non-type 2814 // template-parameter, the non-type template- parameter is used 2815 // in an expression in the function parameter-list and, if the 2816 // corresponding template-argument is deduced, the 2817 // template-argument type shall match the type of the 2818 // template-parameter exactly, except that a template-argument 2819 // deduced from an array bound may be of any integral type. 2820 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2821 << ArgType << ParamType; 2822 Diag(Param->getLocation(), diag::note_template_param_here); 2823 return true; 2824 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2825 !ParamType->isEnumeralType()) { 2826 // This is an integral promotion or conversion. 2827 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2828 } else { 2829 // We can't perform this conversion. 2830 Diag(Arg->getSourceRange().getBegin(), 2831 diag::err_template_arg_not_convertible) 2832 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2833 Diag(Param->getLocation(), diag::note_template_param_here); 2834 return true; 2835 } 2836 2837 QualType IntegerType = Context.getCanonicalType(ParamType); 2838 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2839 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2840 2841 if (!Arg->isValueDependent()) { 2842 llvm::APSInt OldValue = Value; 2843 2844 // Coerce the template argument's value to the value it will have 2845 // based on the template parameter's type. 2846 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2847 if (Value.getBitWidth() != AllowedBits) 2848 Value.extOrTrunc(AllowedBits); 2849 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2850 2851 // Complain if an unsigned parameter received a negative value. 2852 if (IntegerType->isUnsignedIntegerType() 2853 && (OldValue.isSigned() && OldValue.isNegative())) { 2854 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2855 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2856 << Arg->getSourceRange(); 2857 Diag(Param->getLocation(), diag::note_template_param_here); 2858 } 2859 2860 // Complain if we overflowed the template parameter's type. 2861 unsigned RequiredBits; 2862 if (IntegerType->isUnsignedIntegerType()) 2863 RequiredBits = OldValue.getActiveBits(); 2864 else if (OldValue.isUnsigned()) 2865 RequiredBits = OldValue.getActiveBits() + 1; 2866 else 2867 RequiredBits = OldValue.getMinSignedBits(); 2868 if (RequiredBits > AllowedBits) { 2869 Diag(Arg->getSourceRange().getBegin(), 2870 diag::warn_template_arg_too_large) 2871 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2872 << Arg->getSourceRange(); 2873 Diag(Param->getLocation(), diag::note_template_param_here); 2874 } 2875 } 2876 2877 // Add the value of this argument to the list of converted 2878 // arguments. We use the bitwidth and signedness of the template 2879 // parameter. 2880 if (Arg->isValueDependent()) { 2881 // The argument is value-dependent. Create a new 2882 // TemplateArgument with the converted expression. 2883 Converted = TemplateArgument(Arg); 2884 return false; 2885 } 2886 2887 Converted = TemplateArgument(Value, 2888 ParamType->isEnumeralType() ? ParamType 2889 : IntegerType); 2890 return false; 2891 } 2892 2893 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2894 2895 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2896 // from a template argument of type std::nullptr_t to a non-type 2897 // template parameter of type pointer to object, pointer to 2898 // function, or pointer-to-member, respectively. 2899 if (ArgType->isNullPtrType() && 2900 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2901 Converted = TemplateArgument((NamedDecl *)0); 2902 return false; 2903 } 2904 2905 // Handle pointer-to-function, reference-to-function, and 2906 // pointer-to-member-function all in (roughly) the same way. 2907 if (// -- For a non-type template-parameter of type pointer to 2908 // function, only the function-to-pointer conversion (4.3) is 2909 // applied. If the template-argument represents a set of 2910 // overloaded functions (or a pointer to such), the matching 2911 // function is selected from the set (13.4). 2912 (ParamType->isPointerType() && 2913 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2914 // -- For a non-type template-parameter of type reference to 2915 // function, no conversions apply. If the template-argument 2916 // represents a set of overloaded functions, the matching 2917 // function is selected from the set (13.4). 2918 (ParamType->isReferenceType() && 2919 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2920 // -- For a non-type template-parameter of type pointer to 2921 // member function, no conversions apply. If the 2922 // template-argument represents a set of overloaded member 2923 // functions, the matching member function is selected from 2924 // the set (13.4). 2925 (ParamType->isMemberPointerType() && 2926 ParamType->getAs<MemberPointerType>()->getPointeeType() 2927 ->isFunctionType())) { 2928 2929 if (Arg->getType() == Context.OverloadTy) { 2930 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2931 true, 2932 FoundResult)) { 2933 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2934 return true; 2935 2936 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2937 ArgType = Arg->getType(); 2938 } else 2939 return true; 2940 } 2941 2942 if (!ParamType->isMemberPointerType()) 2943 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2944 ParamType, 2945 Arg, Converted); 2946 2947 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2948 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2949 Arg->isLvalue(Context) == Expr::LV_Valid); 2950 } else if (!Context.hasSameUnqualifiedType(ArgType, 2951 ParamType.getNonReferenceType())) { 2952 // We can't perform this conversion. 2953 Diag(Arg->getSourceRange().getBegin(), 2954 diag::err_template_arg_not_convertible) 2955 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2956 Diag(Param->getLocation(), diag::note_template_param_here); 2957 return true; 2958 } 2959 2960 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2961 } 2962 2963 if (ParamType->isPointerType()) { 2964 // -- for a non-type template-parameter of type pointer to 2965 // object, qualification conversions (4.4) and the 2966 // array-to-pointer conversion (4.2) are applied. 2967 // C++0x also allows a value of std::nullptr_t. 2968 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2969 "Only object pointers allowed here"); 2970 2971 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2972 ParamType, 2973 Arg, Converted); 2974 } 2975 2976 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2977 // -- For a non-type template-parameter of type reference to 2978 // object, no conversions apply. The type referred to by the 2979 // reference may be more cv-qualified than the (otherwise 2980 // identical) type of the template-argument. The 2981 // template-parameter is bound directly to the 2982 // template-argument, which must be an lvalue. 2983 assert(ParamRefType->getPointeeType()->isObjectType() && 2984 "Only object references allowed here"); 2985 2986 if (Arg->getType() == Context.OverloadTy) { 2987 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2988 ParamRefType->getPointeeType(), 2989 true, 2990 FoundResult)) { 2991 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2992 return true; 2993 2994 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2995 ArgType = Arg->getType(); 2996 } else 2997 return true; 2998 } 2999 3000 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3001 ParamType, 3002 Arg, Converted); 3003 } 3004 3005 // -- For a non-type template-parameter of type pointer to data 3006 // member, qualification conversions (4.4) are applied. 3007 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3008 3009 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3010 // Types match exactly: nothing more to do here. 3011 } else if (IsQualificationConversion(ArgType, ParamType)) { 3012 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 3013 Arg->isLvalue(Context) == Expr::LV_Valid); 3014 } else { 3015 // We can't perform this conversion. 3016 Diag(Arg->getSourceRange().getBegin(), 3017 diag::err_template_arg_not_convertible) 3018 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3019 Diag(Param->getLocation(), diag::note_template_param_here); 3020 return true; 3021 } 3022 3023 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3024} 3025 3026/// \brief Check a template argument against its corresponding 3027/// template template parameter. 3028/// 3029/// This routine implements the semantics of C++ [temp.arg.template]. 3030/// It returns true if an error occurred, and false otherwise. 3031bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3032 const TemplateArgumentLoc &Arg) { 3033 TemplateName Name = Arg.getArgument().getAsTemplate(); 3034 TemplateDecl *Template = Name.getAsTemplateDecl(); 3035 if (!Template) { 3036 // Any dependent template name is fine. 3037 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3038 return false; 3039 } 3040 3041 // C++ [temp.arg.template]p1: 3042 // A template-argument for a template template-parameter shall be 3043 // the name of a class template, expressed as id-expression. Only 3044 // primary class templates are considered when matching the 3045 // template template argument with the corresponding parameter; 3046 // partial specializations are not considered even if their 3047 // parameter lists match that of the template template parameter. 3048 // 3049 // Note that we also allow template template parameters here, which 3050 // will happen when we are dealing with, e.g., class template 3051 // partial specializations. 3052 if (!isa<ClassTemplateDecl>(Template) && 3053 !isa<TemplateTemplateParmDecl>(Template)) { 3054 assert(isa<FunctionTemplateDecl>(Template) && 3055 "Only function templates are possible here"); 3056 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3057 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3058 << Template; 3059 } 3060 3061 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3062 Param->getTemplateParameters(), 3063 true, 3064 TPL_TemplateTemplateArgumentMatch, 3065 Arg.getLocation()); 3066} 3067 3068/// \brief Given a non-type template argument that refers to a 3069/// declaration and the type of its corresponding non-type template 3070/// parameter, produce an expression that properly refers to that 3071/// declaration. 3072Sema::OwningExprResult 3073Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3074 QualType ParamType, 3075 SourceLocation Loc) { 3076 assert(Arg.getKind() == TemplateArgument::Declaration && 3077 "Only declaration template arguments permitted here"); 3078 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3079 3080 if (VD->getDeclContext()->isRecord() && 3081 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3082 // If the value is a class member, we might have a pointer-to-member. 3083 // Determine whether the non-type template template parameter is of 3084 // pointer-to-member type. If so, we need to build an appropriate 3085 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3086 // would refer to the member itself. 3087 if (ParamType->isMemberPointerType()) { 3088 QualType ClassType 3089 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3090 NestedNameSpecifier *Qualifier 3091 = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr()); 3092 CXXScopeSpec SS; 3093 SS.setScopeRep(Qualifier); 3094 OwningExprResult RefExpr = BuildDeclRefExpr(VD, 3095 VD->getType().getNonReferenceType(), 3096 Loc, 3097 &SS); 3098 if (RefExpr.isInvalid()) 3099 return ExprError(); 3100 3101 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3102 3103 // We might need to perform a trailing qualification conversion, since 3104 // the element type on the parameter could be more qualified than the 3105 // element type in the expression we constructed. 3106 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3107 ParamType.getUnqualifiedType())) { 3108 Expr *RefE = RefExpr.takeAs<Expr>(); 3109 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), 3110 CastExpr::CK_NoOp); 3111 RefExpr = Owned(RefE); 3112 } 3113 3114 assert(!RefExpr.isInvalid() && 3115 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3116 ParamType.getUnqualifiedType())); 3117 return move(RefExpr); 3118 } 3119 } 3120 3121 QualType T = VD->getType().getNonReferenceType(); 3122 if (ParamType->isPointerType()) { 3123 // When the non-type template parameter is a pointer, take the 3124 // address of the declaration. 3125 OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3126 if (RefExpr.isInvalid()) 3127 return ExprError(); 3128 3129 if (T->isFunctionType() || T->isArrayType()) { 3130 // Decay functions and arrays. 3131 Expr *RefE = (Expr *)RefExpr.get(); 3132 DefaultFunctionArrayConversion(RefE); 3133 if (RefE != RefExpr.get()) { 3134 RefExpr.release(); 3135 RefExpr = Owned(RefE); 3136 } 3137 3138 return move(RefExpr); 3139 } 3140 3141 // Take the address of everything else 3142 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3143 } 3144 3145 // If the non-type template parameter has reference type, qualify the 3146 // resulting declaration reference with the extra qualifiers on the 3147 // type that the reference refers to. 3148 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3149 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3150 3151 return BuildDeclRefExpr(VD, T, Loc); 3152} 3153 3154/// \brief Construct a new expression that refers to the given 3155/// integral template argument with the given source-location 3156/// information. 3157/// 3158/// This routine takes care of the mapping from an integral template 3159/// argument (which may have any integral type) to the appropriate 3160/// literal value. 3161Sema::OwningExprResult 3162Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3163 SourceLocation Loc) { 3164 assert(Arg.getKind() == TemplateArgument::Integral && 3165 "Operation is only value for integral template arguments"); 3166 QualType T = Arg.getIntegralType(); 3167 if (T->isCharType() || T->isWideCharType()) 3168 return Owned(new (Context) CharacterLiteral( 3169 Arg.getAsIntegral()->getZExtValue(), 3170 T->isWideCharType(), 3171 T, 3172 Loc)); 3173 if (T->isBooleanType()) 3174 return Owned(new (Context) CXXBoolLiteralExpr( 3175 Arg.getAsIntegral()->getBoolValue(), 3176 T, 3177 Loc)); 3178 3179 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3180} 3181 3182 3183/// \brief Determine whether the given template parameter lists are 3184/// equivalent. 3185/// 3186/// \param New The new template parameter list, typically written in the 3187/// source code as part of a new template declaration. 3188/// 3189/// \param Old The old template parameter list, typically found via 3190/// name lookup of the template declared with this template parameter 3191/// list. 3192/// 3193/// \param Complain If true, this routine will produce a diagnostic if 3194/// the template parameter lists are not equivalent. 3195/// 3196/// \param Kind describes how we are to match the template parameter lists. 3197/// 3198/// \param TemplateArgLoc If this source location is valid, then we 3199/// are actually checking the template parameter list of a template 3200/// argument (New) against the template parameter list of its 3201/// corresponding template template parameter (Old). We produce 3202/// slightly different diagnostics in this scenario. 3203/// 3204/// \returns True if the template parameter lists are equal, false 3205/// otherwise. 3206bool 3207Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3208 TemplateParameterList *Old, 3209 bool Complain, 3210 TemplateParameterListEqualKind Kind, 3211 SourceLocation TemplateArgLoc) { 3212 if (Old->size() != New->size()) { 3213 if (Complain) { 3214 unsigned NextDiag = diag::err_template_param_list_different_arity; 3215 if (TemplateArgLoc.isValid()) { 3216 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3217 NextDiag = diag::note_template_param_list_different_arity; 3218 } 3219 Diag(New->getTemplateLoc(), NextDiag) 3220 << (New->size() > Old->size()) 3221 << (Kind != TPL_TemplateMatch) 3222 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3223 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3224 << (Kind != TPL_TemplateMatch) 3225 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3226 } 3227 3228 return false; 3229 } 3230 3231 for (TemplateParameterList::iterator OldParm = Old->begin(), 3232 OldParmEnd = Old->end(), NewParm = New->begin(); 3233 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3234 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3235 if (Complain) { 3236 unsigned NextDiag = diag::err_template_param_different_kind; 3237 if (TemplateArgLoc.isValid()) { 3238 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3239 NextDiag = diag::note_template_param_different_kind; 3240 } 3241 Diag((*NewParm)->getLocation(), NextDiag) 3242 << (Kind != TPL_TemplateMatch); 3243 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3244 << (Kind != TPL_TemplateMatch); 3245 } 3246 return false; 3247 } 3248 3249 if (TemplateTypeParmDecl *OldTTP 3250 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) { 3251 // Template type parameters are equivalent if either both are template 3252 // type parameter packs or neither are (since we know we're at the same 3253 // index). 3254 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm); 3255 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3256 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3257 // allow one to match a template parameter pack in the template 3258 // parameter list of a template template parameter to one or more 3259 // template parameters in the template parameter list of the 3260 // corresponding template template argument. 3261 if (Complain) { 3262 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3263 if (TemplateArgLoc.isValid()) { 3264 Diag(TemplateArgLoc, 3265 diag::err_template_arg_template_params_mismatch); 3266 NextDiag = diag::note_template_parameter_pack_non_pack; 3267 } 3268 Diag(NewTTP->getLocation(), NextDiag) 3269 << 0 << NewTTP->isParameterPack(); 3270 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3271 << 0 << OldTTP->isParameterPack(); 3272 } 3273 return false; 3274 } 3275 } else if (NonTypeTemplateParmDecl *OldNTTP 3276 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3277 // The types of non-type template parameters must agree. 3278 NonTypeTemplateParmDecl *NewNTTP 3279 = cast<NonTypeTemplateParmDecl>(*NewParm); 3280 3281 // If we are matching a template template argument to a template 3282 // template parameter and one of the non-type template parameter types 3283 // is dependent, then we must wait until template instantiation time 3284 // to actually compare the arguments. 3285 if (Kind == TPL_TemplateTemplateArgumentMatch && 3286 (OldNTTP->getType()->isDependentType() || 3287 NewNTTP->getType()->isDependentType())) 3288 continue; 3289 3290 if (Context.getCanonicalType(OldNTTP->getType()) != 3291 Context.getCanonicalType(NewNTTP->getType())) { 3292 if (Complain) { 3293 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3294 if (TemplateArgLoc.isValid()) { 3295 Diag(TemplateArgLoc, 3296 diag::err_template_arg_template_params_mismatch); 3297 NextDiag = diag::note_template_nontype_parm_different_type; 3298 } 3299 Diag(NewNTTP->getLocation(), NextDiag) 3300 << NewNTTP->getType() 3301 << (Kind != TPL_TemplateMatch); 3302 Diag(OldNTTP->getLocation(), 3303 diag::note_template_nontype_parm_prev_declaration) 3304 << OldNTTP->getType(); 3305 } 3306 return false; 3307 } 3308 } else { 3309 // The template parameter lists of template template 3310 // parameters must agree. 3311 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3312 "Only template template parameters handled here"); 3313 TemplateTemplateParmDecl *OldTTP 3314 = cast<TemplateTemplateParmDecl>(*OldParm); 3315 TemplateTemplateParmDecl *NewTTP 3316 = cast<TemplateTemplateParmDecl>(*NewParm); 3317 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3318 OldTTP->getTemplateParameters(), 3319 Complain, 3320 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3321 TemplateArgLoc)) 3322 return false; 3323 } 3324 } 3325 3326 return true; 3327} 3328 3329/// \brief Check whether a template can be declared within this scope. 3330/// 3331/// If the template declaration is valid in this scope, returns 3332/// false. Otherwise, issues a diagnostic and returns true. 3333bool 3334Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3335 // Find the nearest enclosing declaration scope. 3336 while ((S->getFlags() & Scope::DeclScope) == 0 || 3337 (S->getFlags() & Scope::TemplateParamScope) != 0) 3338 S = S->getParent(); 3339 3340 // C++ [temp]p2: 3341 // A template-declaration can appear only as a namespace scope or 3342 // class scope declaration. 3343 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3344 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3345 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3346 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3347 << TemplateParams->getSourceRange(); 3348 3349 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3350 Ctx = Ctx->getParent(); 3351 3352 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3353 return false; 3354 3355 return Diag(TemplateParams->getTemplateLoc(), 3356 diag::err_template_outside_namespace_or_class_scope) 3357 << TemplateParams->getSourceRange(); 3358} 3359 3360/// \brief Determine what kind of template specialization the given declaration 3361/// is. 3362static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3363 if (!D) 3364 return TSK_Undeclared; 3365 3366 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3367 return Record->getTemplateSpecializationKind(); 3368 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3369 return Function->getTemplateSpecializationKind(); 3370 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3371 return Var->getTemplateSpecializationKind(); 3372 3373 return TSK_Undeclared; 3374} 3375 3376/// \brief Check whether a specialization is well-formed in the current 3377/// context. 3378/// 3379/// This routine determines whether a template specialization can be declared 3380/// in the current context (C++ [temp.expl.spec]p2). 3381/// 3382/// \param S the semantic analysis object for which this check is being 3383/// performed. 3384/// 3385/// \param Specialized the entity being specialized or instantiated, which 3386/// may be a kind of template (class template, function template, etc.) or 3387/// a member of a class template (member function, static data member, 3388/// member class). 3389/// 3390/// \param PrevDecl the previous declaration of this entity, if any. 3391/// 3392/// \param Loc the location of the explicit specialization or instantiation of 3393/// this entity. 3394/// 3395/// \param IsPartialSpecialization whether this is a partial specialization of 3396/// a class template. 3397/// 3398/// \returns true if there was an error that we cannot recover from, false 3399/// otherwise. 3400static bool CheckTemplateSpecializationScope(Sema &S, 3401 NamedDecl *Specialized, 3402 NamedDecl *PrevDecl, 3403 SourceLocation Loc, 3404 bool IsPartialSpecialization) { 3405 // Keep these "kind" numbers in sync with the %select statements in the 3406 // various diagnostics emitted by this routine. 3407 int EntityKind = 0; 3408 bool isTemplateSpecialization = false; 3409 if (isa<ClassTemplateDecl>(Specialized)) { 3410 EntityKind = IsPartialSpecialization? 1 : 0; 3411 isTemplateSpecialization = true; 3412 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3413 EntityKind = 2; 3414 isTemplateSpecialization = true; 3415 } else if (isa<CXXMethodDecl>(Specialized)) 3416 EntityKind = 3; 3417 else if (isa<VarDecl>(Specialized)) 3418 EntityKind = 4; 3419 else if (isa<RecordDecl>(Specialized)) 3420 EntityKind = 5; 3421 else { 3422 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3423 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3424 return true; 3425 } 3426 3427 // C++ [temp.expl.spec]p2: 3428 // An explicit specialization shall be declared in the namespace 3429 // of which the template is a member, or, for member templates, in 3430 // the namespace of which the enclosing class or enclosing class 3431 // template is a member. An explicit specialization of a member 3432 // function, member class or static data member of a class 3433 // template shall be declared in the namespace of which the class 3434 // template is a member. Such a declaration may also be a 3435 // definition. If the declaration is not a definition, the 3436 // specialization may be defined later in the name- space in which 3437 // the explicit specialization was declared, or in a namespace 3438 // that encloses the one in which the explicit specialization was 3439 // declared. 3440 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3441 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3442 << Specialized; 3443 return true; 3444 } 3445 3446 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3447 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3448 << Specialized; 3449 return true; 3450 } 3451 3452 // C++ [temp.class.spec]p6: 3453 // A class template partial specialization may be declared or redeclared 3454 // in any namespace scope in which its definition may be defined (14.5.1 3455 // and 14.5.2). 3456 bool ComplainedAboutScope = false; 3457 DeclContext *SpecializedContext 3458 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3459 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3460 if ((!PrevDecl || 3461 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3462 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3463 // There is no prior declaration of this entity, so this 3464 // specialization must be in the same context as the template 3465 // itself. 3466 if (!DC->Equals(SpecializedContext)) { 3467 if (isa<TranslationUnitDecl>(SpecializedContext)) 3468 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3469 << EntityKind << Specialized; 3470 else if (isa<NamespaceDecl>(SpecializedContext)) 3471 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3472 << EntityKind << Specialized 3473 << cast<NamedDecl>(SpecializedContext); 3474 3475 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3476 ComplainedAboutScope = true; 3477 } 3478 } 3479 3480 // Make sure that this redeclaration (or definition) occurs in an enclosing 3481 // namespace. 3482 // Note that HandleDeclarator() performs this check for explicit 3483 // specializations of function templates, static data members, and member 3484 // functions, so we skip the check here for those kinds of entities. 3485 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3486 // Should we refactor that check, so that it occurs later? 3487 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3488 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3489 isa<FunctionDecl>(Specialized))) { 3490 if (isa<TranslationUnitDecl>(SpecializedContext)) 3491 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3492 << EntityKind << Specialized; 3493 else if (isa<NamespaceDecl>(SpecializedContext)) 3494 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3495 << EntityKind << Specialized 3496 << cast<NamedDecl>(SpecializedContext); 3497 3498 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3499 } 3500 3501 // FIXME: check for specialization-after-instantiation errors and such. 3502 3503 return false; 3504} 3505 3506/// \brief Check the non-type template arguments of a class template 3507/// partial specialization according to C++ [temp.class.spec]p9. 3508/// 3509/// \param TemplateParams the template parameters of the primary class 3510/// template. 3511/// 3512/// \param TemplateArg the template arguments of the class template 3513/// partial specialization. 3514/// 3515/// \param MirrorsPrimaryTemplate will be set true if the class 3516/// template partial specialization arguments are identical to the 3517/// implicit template arguments of the primary template. This is not 3518/// necessarily an error (C++0x), and it is left to the caller to diagnose 3519/// this condition when it is an error. 3520/// 3521/// \returns true if there was an error, false otherwise. 3522bool Sema::CheckClassTemplatePartialSpecializationArgs( 3523 TemplateParameterList *TemplateParams, 3524 const TemplateArgumentListBuilder &TemplateArgs, 3525 bool &MirrorsPrimaryTemplate) { 3526 // FIXME: the interface to this function will have to change to 3527 // accommodate variadic templates. 3528 MirrorsPrimaryTemplate = true; 3529 3530 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3531 3532 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3533 // Determine whether the template argument list of the partial 3534 // specialization is identical to the implicit argument list of 3535 // the primary template. The caller may need to diagnostic this as 3536 // an error per C++ [temp.class.spec]p9b3. 3537 if (MirrorsPrimaryTemplate) { 3538 if (TemplateTypeParmDecl *TTP 3539 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3540 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3541 Context.getCanonicalType(ArgList[I].getAsType())) 3542 MirrorsPrimaryTemplate = false; 3543 } else if (TemplateTemplateParmDecl *TTP 3544 = dyn_cast<TemplateTemplateParmDecl>( 3545 TemplateParams->getParam(I))) { 3546 TemplateName Name = ArgList[I].getAsTemplate(); 3547 TemplateTemplateParmDecl *ArgDecl 3548 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3549 if (!ArgDecl || 3550 ArgDecl->getIndex() != TTP->getIndex() || 3551 ArgDecl->getDepth() != TTP->getDepth()) 3552 MirrorsPrimaryTemplate = false; 3553 } 3554 } 3555 3556 NonTypeTemplateParmDecl *Param 3557 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3558 if (!Param) { 3559 continue; 3560 } 3561 3562 Expr *ArgExpr = ArgList[I].getAsExpr(); 3563 if (!ArgExpr) { 3564 MirrorsPrimaryTemplate = false; 3565 continue; 3566 } 3567 3568 // C++ [temp.class.spec]p8: 3569 // A non-type argument is non-specialized if it is the name of a 3570 // non-type parameter. All other non-type arguments are 3571 // specialized. 3572 // 3573 // Below, we check the two conditions that only apply to 3574 // specialized non-type arguments, so skip any non-specialized 3575 // arguments. 3576 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3577 if (NonTypeTemplateParmDecl *NTTP 3578 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3579 if (MirrorsPrimaryTemplate && 3580 (Param->getIndex() != NTTP->getIndex() || 3581 Param->getDepth() != NTTP->getDepth())) 3582 MirrorsPrimaryTemplate = false; 3583 3584 continue; 3585 } 3586 3587 // C++ [temp.class.spec]p9: 3588 // Within the argument list of a class template partial 3589 // specialization, the following restrictions apply: 3590 // -- A partially specialized non-type argument expression 3591 // shall not involve a template parameter of the partial 3592 // specialization except when the argument expression is a 3593 // simple identifier. 3594 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3595 Diag(ArgExpr->getLocStart(), 3596 diag::err_dependent_non_type_arg_in_partial_spec) 3597 << ArgExpr->getSourceRange(); 3598 return true; 3599 } 3600 3601 // -- The type of a template parameter corresponding to a 3602 // specialized non-type argument shall not be dependent on a 3603 // parameter of the specialization. 3604 if (Param->getType()->isDependentType()) { 3605 Diag(ArgExpr->getLocStart(), 3606 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3607 << Param->getType() 3608 << ArgExpr->getSourceRange(); 3609 Diag(Param->getLocation(), diag::note_template_param_here); 3610 return true; 3611 } 3612 3613 MirrorsPrimaryTemplate = false; 3614 } 3615 3616 return false; 3617} 3618 3619/// \brief Retrieve the previous declaration of the given declaration. 3620static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3621 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3622 return VD->getPreviousDeclaration(); 3623 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3624 return FD->getPreviousDeclaration(); 3625 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3626 return TD->getPreviousDeclaration(); 3627 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3628 return TD->getPreviousDeclaration(); 3629 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3630 return FTD->getPreviousDeclaration(); 3631 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3632 return CTD->getPreviousDeclaration(); 3633 return 0; 3634} 3635 3636Sema::DeclResult 3637Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3638 TagUseKind TUK, 3639 SourceLocation KWLoc, 3640 CXXScopeSpec &SS, 3641 TemplateTy TemplateD, 3642 SourceLocation TemplateNameLoc, 3643 SourceLocation LAngleLoc, 3644 ASTTemplateArgsPtr TemplateArgsIn, 3645 SourceLocation RAngleLoc, 3646 AttributeList *Attr, 3647 MultiTemplateParamsArg TemplateParameterLists) { 3648 assert(TUK != TUK_Reference && "References are not specializations"); 3649 3650 // Find the class template we're specializing 3651 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3652 ClassTemplateDecl *ClassTemplate 3653 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3654 3655 if (!ClassTemplate) { 3656 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3657 << (Name.getAsTemplateDecl() && 3658 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3659 return true; 3660 } 3661 3662 bool isExplicitSpecialization = false; 3663 bool isPartialSpecialization = false; 3664 3665 // Check the validity of the template headers that introduce this 3666 // template. 3667 // FIXME: We probably shouldn't complain about these headers for 3668 // friend declarations. 3669 TemplateParameterList *TemplateParams 3670 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3671 (TemplateParameterList**)TemplateParameterLists.get(), 3672 TemplateParameterLists.size(), 3673 TUK == TUK_Friend, 3674 isExplicitSpecialization); 3675 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 3676 if (TemplateParams) 3677 --NumMatchedTemplateParamLists; 3678 3679 if (TemplateParams && TemplateParams->size() > 0) { 3680 isPartialSpecialization = true; 3681 3682 // C++ [temp.class.spec]p10: 3683 // The template parameter list of a specialization shall not 3684 // contain default template argument values. 3685 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3686 Decl *Param = TemplateParams->getParam(I); 3687 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3688 if (TTP->hasDefaultArgument()) { 3689 Diag(TTP->getDefaultArgumentLoc(), 3690 diag::err_default_arg_in_partial_spec); 3691 TTP->removeDefaultArgument(); 3692 } 3693 } else if (NonTypeTemplateParmDecl *NTTP 3694 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3695 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3696 Diag(NTTP->getDefaultArgumentLoc(), 3697 diag::err_default_arg_in_partial_spec) 3698 << DefArg->getSourceRange(); 3699 NTTP->removeDefaultArgument(); 3700 DefArg->Destroy(Context); 3701 } 3702 } else { 3703 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3704 if (TTP->hasDefaultArgument()) { 3705 Diag(TTP->getDefaultArgument().getLocation(), 3706 diag::err_default_arg_in_partial_spec) 3707 << TTP->getDefaultArgument().getSourceRange(); 3708 TTP->removeDefaultArgument(); 3709 } 3710 } 3711 } 3712 } else if (TemplateParams) { 3713 if (TUK == TUK_Friend) 3714 Diag(KWLoc, diag::err_template_spec_friend) 3715 << FixItHint::CreateRemoval( 3716 SourceRange(TemplateParams->getTemplateLoc(), 3717 TemplateParams->getRAngleLoc())) 3718 << SourceRange(LAngleLoc, RAngleLoc); 3719 else 3720 isExplicitSpecialization = true; 3721 } else if (TUK != TUK_Friend) { 3722 Diag(KWLoc, diag::err_template_spec_needs_header) 3723 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3724 isExplicitSpecialization = true; 3725 } 3726 3727 // Check that the specialization uses the same tag kind as the 3728 // original template. 3729 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3730 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 3731 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3732 Kind, KWLoc, 3733 *ClassTemplate->getIdentifier())) { 3734 Diag(KWLoc, diag::err_use_with_wrong_tag) 3735 << ClassTemplate 3736 << FixItHint::CreateReplacement(KWLoc, 3737 ClassTemplate->getTemplatedDecl()->getKindName()); 3738 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3739 diag::note_previous_use); 3740 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3741 } 3742 3743 // Translate the parser's template argument list in our AST format. 3744 TemplateArgumentListInfo TemplateArgs; 3745 TemplateArgs.setLAngleLoc(LAngleLoc); 3746 TemplateArgs.setRAngleLoc(RAngleLoc); 3747 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3748 3749 // Check that the template argument list is well-formed for this 3750 // template. 3751 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3752 TemplateArgs.size()); 3753 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3754 TemplateArgs, false, Converted)) 3755 return true; 3756 3757 assert((Converted.structuredSize() == 3758 ClassTemplate->getTemplateParameters()->size()) && 3759 "Converted template argument list is too short!"); 3760 3761 // Find the class template (partial) specialization declaration that 3762 // corresponds to these arguments. 3763 llvm::FoldingSetNodeID ID; 3764 if (isPartialSpecialization) { 3765 bool MirrorsPrimaryTemplate; 3766 if (CheckClassTemplatePartialSpecializationArgs( 3767 ClassTemplate->getTemplateParameters(), 3768 Converted, MirrorsPrimaryTemplate)) 3769 return true; 3770 3771 if (MirrorsPrimaryTemplate) { 3772 // C++ [temp.class.spec]p9b3: 3773 // 3774 // -- The argument list of the specialization shall not be identical 3775 // to the implicit argument list of the primary template. 3776 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3777 << (TUK == TUK_Definition) 3778 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3779 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3780 ClassTemplate->getIdentifier(), 3781 TemplateNameLoc, 3782 Attr, 3783 TemplateParams, 3784 AS_none); 3785 } 3786 3787 // FIXME: Diagnose friend partial specializations 3788 3789 if (!Name.isDependent() && 3790 !TemplateSpecializationType::anyDependentTemplateArguments( 3791 TemplateArgs.getArgumentArray(), 3792 TemplateArgs.size())) { 3793 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3794 << ClassTemplate->getDeclName(); 3795 isPartialSpecialization = false; 3796 } else { 3797 // FIXME: Template parameter list matters, too 3798 ClassTemplatePartialSpecializationDecl::Profile(ID, 3799 Converted.getFlatArguments(), 3800 Converted.flatSize(), 3801 Context); 3802 } 3803 } 3804 3805 if (!isPartialSpecialization) 3806 ClassTemplateSpecializationDecl::Profile(ID, 3807 Converted.getFlatArguments(), 3808 Converted.flatSize(), 3809 Context); 3810 void *InsertPos = 0; 3811 ClassTemplateSpecializationDecl *PrevDecl = 0; 3812 3813 if (isPartialSpecialization) 3814 PrevDecl 3815 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3816 InsertPos); 3817 else 3818 PrevDecl 3819 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3820 3821 ClassTemplateSpecializationDecl *Specialization = 0; 3822 3823 // Check whether we can declare a class template specialization in 3824 // the current scope. 3825 if (TUK != TUK_Friend && 3826 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3827 TemplateNameLoc, 3828 isPartialSpecialization)) 3829 return true; 3830 3831 // The canonical type 3832 QualType CanonType; 3833 if (PrevDecl && 3834 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3835 TUK == TUK_Friend)) { 3836 // Since the only prior class template specialization with these 3837 // arguments was referenced but not declared, or we're only 3838 // referencing this specialization as a friend, reuse that 3839 // declaration node as our own, updating its source location to 3840 // reflect our new declaration. 3841 Specialization = PrevDecl; 3842 Specialization->setLocation(TemplateNameLoc); 3843 PrevDecl = 0; 3844 CanonType = Context.getTypeDeclType(Specialization); 3845 } else if (isPartialSpecialization) { 3846 // Build the canonical type that describes the converted template 3847 // arguments of the class template partial specialization. 3848 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3849 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3850 Converted.getFlatArguments(), 3851 Converted.flatSize()); 3852 3853 // Create a new class template partial specialization declaration node. 3854 ClassTemplatePartialSpecializationDecl *PrevPartial 3855 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3856 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 3857 : ClassTemplate->getPartialSpecializations().size(); 3858 ClassTemplatePartialSpecializationDecl *Partial 3859 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 3860 ClassTemplate->getDeclContext(), 3861 TemplateNameLoc, 3862 TemplateParams, 3863 ClassTemplate, 3864 Converted, 3865 TemplateArgs, 3866 CanonType, 3867 PrevPartial, 3868 SequenceNumber); 3869 SetNestedNameSpecifier(Partial, SS); 3870 if (NumMatchedTemplateParamLists > 0) { 3871 Partial->setTemplateParameterListsInfo(Context, 3872 NumMatchedTemplateParamLists, 3873 (TemplateParameterList**) TemplateParameterLists.release()); 3874 } 3875 3876 if (PrevPartial) { 3877 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3878 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3879 } else { 3880 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3881 } 3882 Specialization = Partial; 3883 3884 // If we are providing an explicit specialization of a member class 3885 // template specialization, make a note of that. 3886 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3887 PrevPartial->setMemberSpecialization(); 3888 3889 // Check that all of the template parameters of the class template 3890 // partial specialization are deducible from the template 3891 // arguments. If not, this class template partial specialization 3892 // will never be used. 3893 llvm::SmallVector<bool, 8> DeducibleParams; 3894 DeducibleParams.resize(TemplateParams->size()); 3895 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3896 TemplateParams->getDepth(), 3897 DeducibleParams); 3898 unsigned NumNonDeducible = 0; 3899 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3900 if (!DeducibleParams[I]) 3901 ++NumNonDeducible; 3902 3903 if (NumNonDeducible) { 3904 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3905 << (NumNonDeducible > 1) 3906 << SourceRange(TemplateNameLoc, RAngleLoc); 3907 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3908 if (!DeducibleParams[I]) { 3909 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3910 if (Param->getDeclName()) 3911 Diag(Param->getLocation(), 3912 diag::note_partial_spec_unused_parameter) 3913 << Param->getDeclName(); 3914 else 3915 Diag(Param->getLocation(), 3916 diag::note_partial_spec_unused_parameter) 3917 << std::string("<anonymous>"); 3918 } 3919 } 3920 } 3921 } else { 3922 // Create a new class template specialization declaration node for 3923 // this explicit specialization or friend declaration. 3924 Specialization 3925 = ClassTemplateSpecializationDecl::Create(Context, Kind, 3926 ClassTemplate->getDeclContext(), 3927 TemplateNameLoc, 3928 ClassTemplate, 3929 Converted, 3930 PrevDecl); 3931 SetNestedNameSpecifier(Specialization, SS); 3932 if (NumMatchedTemplateParamLists > 0) { 3933 Specialization->setTemplateParameterListsInfo(Context, 3934 NumMatchedTemplateParamLists, 3935 (TemplateParameterList**) TemplateParameterLists.release()); 3936 } 3937 3938 if (PrevDecl) { 3939 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3940 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3941 } else { 3942 ClassTemplate->getSpecializations().InsertNode(Specialization, 3943 InsertPos); 3944 } 3945 3946 CanonType = Context.getTypeDeclType(Specialization); 3947 } 3948 3949 // C++ [temp.expl.spec]p6: 3950 // If a template, a member template or the member of a class template is 3951 // explicitly specialized then that specialization shall be declared 3952 // before the first use of that specialization that would cause an implicit 3953 // instantiation to take place, in every translation unit in which such a 3954 // use occurs; no diagnostic is required. 3955 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3956 bool Okay = false; 3957 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3958 // Is there any previous explicit specialization declaration? 3959 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3960 Okay = true; 3961 break; 3962 } 3963 } 3964 3965 if (!Okay) { 3966 SourceRange Range(TemplateNameLoc, RAngleLoc); 3967 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3968 << Context.getTypeDeclType(Specialization) << Range; 3969 3970 Diag(PrevDecl->getPointOfInstantiation(), 3971 diag::note_instantiation_required_here) 3972 << (PrevDecl->getTemplateSpecializationKind() 3973 != TSK_ImplicitInstantiation); 3974 return true; 3975 } 3976 } 3977 3978 // If this is not a friend, note that this is an explicit specialization. 3979 if (TUK != TUK_Friend) 3980 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3981 3982 // Check that this isn't a redefinition of this specialization. 3983 if (TUK == TUK_Definition) { 3984 if (RecordDecl *Def = Specialization->getDefinition()) { 3985 SourceRange Range(TemplateNameLoc, RAngleLoc); 3986 Diag(TemplateNameLoc, diag::err_redefinition) 3987 << Context.getTypeDeclType(Specialization) << Range; 3988 Diag(Def->getLocation(), diag::note_previous_definition); 3989 Specialization->setInvalidDecl(); 3990 return true; 3991 } 3992 } 3993 3994 // Build the fully-sugared type for this class template 3995 // specialization as the user wrote in the specialization 3996 // itself. This means that we'll pretty-print the type retrieved 3997 // from the specialization's declaration the way that the user 3998 // actually wrote the specialization, rather than formatting the 3999 // name based on the "canonical" representation used to store the 4000 // template arguments in the specialization. 4001 TypeSourceInfo *WrittenTy 4002 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4003 TemplateArgs, CanonType); 4004 if (TUK != TUK_Friend) { 4005 Specialization->setTypeAsWritten(WrittenTy); 4006 Specialization->setTemplateKeywordLoc(KWLoc); 4007 } 4008 TemplateArgsIn.release(); 4009 4010 // C++ [temp.expl.spec]p9: 4011 // A template explicit specialization is in the scope of the 4012 // namespace in which the template was defined. 4013 // 4014 // We actually implement this paragraph where we set the semantic 4015 // context (in the creation of the ClassTemplateSpecializationDecl), 4016 // but we also maintain the lexical context where the actual 4017 // definition occurs. 4018 Specialization->setLexicalDeclContext(CurContext); 4019 4020 // We may be starting the definition of this specialization. 4021 if (TUK == TUK_Definition) 4022 Specialization->startDefinition(); 4023 4024 if (TUK == TUK_Friend) { 4025 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4026 TemplateNameLoc, 4027 WrittenTy, 4028 /*FIXME:*/KWLoc); 4029 Friend->setAccess(AS_public); 4030 CurContext->addDecl(Friend); 4031 } else { 4032 // Add the specialization into its lexical context, so that it can 4033 // be seen when iterating through the list of declarations in that 4034 // context. However, specializations are not found by name lookup. 4035 CurContext->addDecl(Specialization); 4036 } 4037 return DeclPtrTy::make(Specialization); 4038} 4039 4040Sema::DeclPtrTy 4041Sema::ActOnTemplateDeclarator(Scope *S, 4042 MultiTemplateParamsArg TemplateParameterLists, 4043 Declarator &D) { 4044 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4045} 4046 4047Sema::DeclPtrTy 4048Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4049 MultiTemplateParamsArg TemplateParameterLists, 4050 Declarator &D) { 4051 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4052 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 4053 "Not a function declarator!"); 4054 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 4055 4056 if (FTI.hasPrototype) { 4057 // FIXME: Diagnose arguments without names in C. 4058 } 4059 4060 Scope *ParentScope = FnBodyScope->getParent(); 4061 4062 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 4063 move(TemplateParameterLists), 4064 /*IsFunctionDefinition=*/true); 4065 if (FunctionTemplateDecl *FunctionTemplate 4066 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 4067 return ActOnStartOfFunctionDef(FnBodyScope, 4068 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 4069 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 4070 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 4071 return DeclPtrTy(); 4072} 4073 4074/// \brief Strips various properties off an implicit instantiation 4075/// that has just been explicitly specialized. 4076static void StripImplicitInstantiation(NamedDecl *D) { 4077 D->invalidateAttrs(); 4078 4079 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4080 FD->setInlineSpecified(false); 4081 } 4082} 4083 4084/// \brief Diagnose cases where we have an explicit template specialization 4085/// before/after an explicit template instantiation, producing diagnostics 4086/// for those cases where they are required and determining whether the 4087/// new specialization/instantiation will have any effect. 4088/// 4089/// \param NewLoc the location of the new explicit specialization or 4090/// instantiation. 4091/// 4092/// \param NewTSK the kind of the new explicit specialization or instantiation. 4093/// 4094/// \param PrevDecl the previous declaration of the entity. 4095/// 4096/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4097/// 4098/// \param PrevPointOfInstantiation if valid, indicates where the previus 4099/// declaration was instantiated (either implicitly or explicitly). 4100/// 4101/// \param HasNoEffect will be set to true to indicate that the new 4102/// specialization or instantiation has no effect and should be ignored. 4103/// 4104/// \returns true if there was an error that should prevent the introduction of 4105/// the new declaration into the AST, false otherwise. 4106bool 4107Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4108 TemplateSpecializationKind NewTSK, 4109 NamedDecl *PrevDecl, 4110 TemplateSpecializationKind PrevTSK, 4111 SourceLocation PrevPointOfInstantiation, 4112 bool &HasNoEffect) { 4113 HasNoEffect = false; 4114 4115 switch (NewTSK) { 4116 case TSK_Undeclared: 4117 case TSK_ImplicitInstantiation: 4118 assert(false && "Don't check implicit instantiations here"); 4119 return false; 4120 4121 case TSK_ExplicitSpecialization: 4122 switch (PrevTSK) { 4123 case TSK_Undeclared: 4124 case TSK_ExplicitSpecialization: 4125 // Okay, we're just specializing something that is either already 4126 // explicitly specialized or has merely been mentioned without any 4127 // instantiation. 4128 return false; 4129 4130 case TSK_ImplicitInstantiation: 4131 if (PrevPointOfInstantiation.isInvalid()) { 4132 // The declaration itself has not actually been instantiated, so it is 4133 // still okay to specialize it. 4134 StripImplicitInstantiation(PrevDecl); 4135 return false; 4136 } 4137 // Fall through 4138 4139 case TSK_ExplicitInstantiationDeclaration: 4140 case TSK_ExplicitInstantiationDefinition: 4141 assert((PrevTSK == TSK_ImplicitInstantiation || 4142 PrevPointOfInstantiation.isValid()) && 4143 "Explicit instantiation without point of instantiation?"); 4144 4145 // C++ [temp.expl.spec]p6: 4146 // If a template, a member template or the member of a class template 4147 // is explicitly specialized then that specialization shall be declared 4148 // before the first use of that specialization that would cause an 4149 // implicit instantiation to take place, in every translation unit in 4150 // which such a use occurs; no diagnostic is required. 4151 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4152 // Is there any previous explicit specialization declaration? 4153 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4154 return false; 4155 } 4156 4157 Diag(NewLoc, diag::err_specialization_after_instantiation) 4158 << PrevDecl; 4159 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4160 << (PrevTSK != TSK_ImplicitInstantiation); 4161 4162 return true; 4163 } 4164 break; 4165 4166 case TSK_ExplicitInstantiationDeclaration: 4167 switch (PrevTSK) { 4168 case TSK_ExplicitInstantiationDeclaration: 4169 // This explicit instantiation declaration is redundant (that's okay). 4170 HasNoEffect = true; 4171 return false; 4172 4173 case TSK_Undeclared: 4174 case TSK_ImplicitInstantiation: 4175 // We're explicitly instantiating something that may have already been 4176 // implicitly instantiated; that's fine. 4177 return false; 4178 4179 case TSK_ExplicitSpecialization: 4180 // C++0x [temp.explicit]p4: 4181 // For a given set of template parameters, if an explicit instantiation 4182 // of a template appears after a declaration of an explicit 4183 // specialization for that template, the explicit instantiation has no 4184 // effect. 4185 HasNoEffect = true; 4186 return false; 4187 4188 case TSK_ExplicitInstantiationDefinition: 4189 // C++0x [temp.explicit]p10: 4190 // If an entity is the subject of both an explicit instantiation 4191 // declaration and an explicit instantiation definition in the same 4192 // translation unit, the definition shall follow the declaration. 4193 Diag(NewLoc, 4194 diag::err_explicit_instantiation_declaration_after_definition); 4195 Diag(PrevPointOfInstantiation, 4196 diag::note_explicit_instantiation_definition_here); 4197 assert(PrevPointOfInstantiation.isValid() && 4198 "Explicit instantiation without point of instantiation?"); 4199 HasNoEffect = true; 4200 return false; 4201 } 4202 break; 4203 4204 case TSK_ExplicitInstantiationDefinition: 4205 switch (PrevTSK) { 4206 case TSK_Undeclared: 4207 case TSK_ImplicitInstantiation: 4208 // We're explicitly instantiating something that may have already been 4209 // implicitly instantiated; that's fine. 4210 return false; 4211 4212 case TSK_ExplicitSpecialization: 4213 // C++ DR 259, C++0x [temp.explicit]p4: 4214 // For a given set of template parameters, if an explicit 4215 // instantiation of a template appears after a declaration of 4216 // an explicit specialization for that template, the explicit 4217 // instantiation has no effect. 4218 // 4219 // In C++98/03 mode, we only give an extension warning here, because it 4220 // is not harmful to try to explicitly instantiate something that 4221 // has been explicitly specialized. 4222 if (!getLangOptions().CPlusPlus0x) { 4223 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4224 << PrevDecl; 4225 Diag(PrevDecl->getLocation(), 4226 diag::note_previous_template_specialization); 4227 } 4228 HasNoEffect = true; 4229 return false; 4230 4231 case TSK_ExplicitInstantiationDeclaration: 4232 // We're explicity instantiating a definition for something for which we 4233 // were previously asked to suppress instantiations. That's fine. 4234 return false; 4235 4236 case TSK_ExplicitInstantiationDefinition: 4237 // C++0x [temp.spec]p5: 4238 // For a given template and a given set of template-arguments, 4239 // - an explicit instantiation definition shall appear at most once 4240 // in a program, 4241 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4242 << PrevDecl; 4243 Diag(PrevPointOfInstantiation, 4244 diag::note_previous_explicit_instantiation); 4245 HasNoEffect = true; 4246 return false; 4247 } 4248 break; 4249 } 4250 4251 assert(false && "Missing specialization/instantiation case?"); 4252 4253 return false; 4254} 4255 4256/// \brief Perform semantic analysis for the given dependent function 4257/// template specialization. The only possible way to get a dependent 4258/// function template specialization is with a friend declaration, 4259/// like so: 4260/// 4261/// template <class T> void foo(T); 4262/// template <class T> class A { 4263/// friend void foo<>(T); 4264/// }; 4265/// 4266/// There really isn't any useful analysis we can do here, so we 4267/// just store the information. 4268bool 4269Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4270 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4271 LookupResult &Previous) { 4272 // Remove anything from Previous that isn't a function template in 4273 // the correct context. 4274 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4275 LookupResult::Filter F = Previous.makeFilter(); 4276 while (F.hasNext()) { 4277 NamedDecl *D = F.next()->getUnderlyingDecl(); 4278 if (!isa<FunctionTemplateDecl>(D) || 4279 !FDLookupContext->Equals(D->getDeclContext()->getLookupContext())) 4280 F.erase(); 4281 } 4282 F.done(); 4283 4284 // Should this be diagnosed here? 4285 if (Previous.empty()) return true; 4286 4287 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4288 ExplicitTemplateArgs); 4289 return false; 4290} 4291 4292/// \brief Perform semantic analysis for the given function template 4293/// specialization. 4294/// 4295/// This routine performs all of the semantic analysis required for an 4296/// explicit function template specialization. On successful completion, 4297/// the function declaration \p FD will become a function template 4298/// specialization. 4299/// 4300/// \param FD the function declaration, which will be updated to become a 4301/// function template specialization. 4302/// 4303/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4304/// if any. Note that this may be valid info even when 0 arguments are 4305/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4306/// as it anyway contains info on the angle brackets locations. 4307/// 4308/// \param PrevDecl the set of declarations that may be specialized by 4309/// this function specialization. 4310bool 4311Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4312 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4313 LookupResult &Previous) { 4314 // The set of function template specializations that could match this 4315 // explicit function template specialization. 4316 UnresolvedSet<8> Candidates; 4317 4318 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4319 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4320 I != E; ++I) { 4321 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4322 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4323 // Only consider templates found within the same semantic lookup scope as 4324 // FD. 4325 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4326 continue; 4327 4328 // C++ [temp.expl.spec]p11: 4329 // A trailing template-argument can be left unspecified in the 4330 // template-id naming an explicit function template specialization 4331 // provided it can be deduced from the function argument type. 4332 // Perform template argument deduction to determine whether we may be 4333 // specializing this template. 4334 // FIXME: It is somewhat wasteful to build 4335 TemplateDeductionInfo Info(Context, FD->getLocation()); 4336 FunctionDecl *Specialization = 0; 4337 if (TemplateDeductionResult TDK 4338 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4339 FD->getType(), 4340 Specialization, 4341 Info)) { 4342 // FIXME: Template argument deduction failed; record why it failed, so 4343 // that we can provide nifty diagnostics. 4344 (void)TDK; 4345 continue; 4346 } 4347 4348 // Record this candidate. 4349 Candidates.addDecl(Specialization, I.getAccess()); 4350 } 4351 } 4352 4353 // Find the most specialized function template. 4354 UnresolvedSetIterator Result 4355 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4356 TPOC_Other, FD->getLocation(), 4357 PDiag(diag::err_function_template_spec_no_match) 4358 << FD->getDeclName(), 4359 PDiag(diag::err_function_template_spec_ambiguous) 4360 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4361 PDiag(diag::note_function_template_spec_matched)); 4362 if (Result == Candidates.end()) 4363 return true; 4364 4365 // Ignore access information; it doesn't figure into redeclaration checking. 4366 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4367 Specialization->setLocation(FD->getLocation()); 4368 4369 // FIXME: Check if the prior specialization has a point of instantiation. 4370 // If so, we have run afoul of . 4371 4372 // If this is a friend declaration, then we're not really declaring 4373 // an explicit specialization. 4374 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4375 4376 // Check the scope of this explicit specialization. 4377 if (!isFriend && 4378 CheckTemplateSpecializationScope(*this, 4379 Specialization->getPrimaryTemplate(), 4380 Specialization, FD->getLocation(), 4381 false)) 4382 return true; 4383 4384 // C++ [temp.expl.spec]p6: 4385 // If a template, a member template or the member of a class template is 4386 // explicitly specialized then that specialization shall be declared 4387 // before the first use of that specialization that would cause an implicit 4388 // instantiation to take place, in every translation unit in which such a 4389 // use occurs; no diagnostic is required. 4390 FunctionTemplateSpecializationInfo *SpecInfo 4391 = Specialization->getTemplateSpecializationInfo(); 4392 assert(SpecInfo && "Function template specialization info missing?"); 4393 4394 bool HasNoEffect = false; 4395 if (!isFriend && 4396 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4397 TSK_ExplicitSpecialization, 4398 Specialization, 4399 SpecInfo->getTemplateSpecializationKind(), 4400 SpecInfo->getPointOfInstantiation(), 4401 HasNoEffect)) 4402 return true; 4403 4404 // Mark the prior declaration as an explicit specialization, so that later 4405 // clients know that this is an explicit specialization. 4406 if (!isFriend) 4407 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4408 4409 // Turn the given function declaration into a function template 4410 // specialization, with the template arguments from the previous 4411 // specialization. 4412 // Take copies of (semantic and syntactic) template argument lists. 4413 const TemplateArgumentList* TemplArgs = new (Context) 4414 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4415 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4416 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4417 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4418 TemplArgs, /*InsertPos=*/0, 4419 SpecInfo->getTemplateSpecializationKind(), 4420 TemplArgsAsWritten); 4421 4422 // The "previous declaration" for this function template specialization is 4423 // the prior function template specialization. 4424 Previous.clear(); 4425 Previous.addDecl(Specialization); 4426 return false; 4427} 4428 4429/// \brief Perform semantic analysis for the given non-template member 4430/// specialization. 4431/// 4432/// This routine performs all of the semantic analysis required for an 4433/// explicit member function specialization. On successful completion, 4434/// the function declaration \p FD will become a member function 4435/// specialization. 4436/// 4437/// \param Member the member declaration, which will be updated to become a 4438/// specialization. 4439/// 4440/// \param Previous the set of declarations, one of which may be specialized 4441/// by this function specialization; the set will be modified to contain the 4442/// redeclared member. 4443bool 4444Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4445 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4446 4447 // Try to find the member we are instantiating. 4448 NamedDecl *Instantiation = 0; 4449 NamedDecl *InstantiatedFrom = 0; 4450 MemberSpecializationInfo *MSInfo = 0; 4451 4452 if (Previous.empty()) { 4453 // Nowhere to look anyway. 4454 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4455 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4456 I != E; ++I) { 4457 NamedDecl *D = (*I)->getUnderlyingDecl(); 4458 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4459 if (Context.hasSameType(Function->getType(), Method->getType())) { 4460 Instantiation = Method; 4461 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4462 MSInfo = Method->getMemberSpecializationInfo(); 4463 break; 4464 } 4465 } 4466 } 4467 } else if (isa<VarDecl>(Member)) { 4468 VarDecl *PrevVar; 4469 if (Previous.isSingleResult() && 4470 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4471 if (PrevVar->isStaticDataMember()) { 4472 Instantiation = PrevVar; 4473 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4474 MSInfo = PrevVar->getMemberSpecializationInfo(); 4475 } 4476 } else if (isa<RecordDecl>(Member)) { 4477 CXXRecordDecl *PrevRecord; 4478 if (Previous.isSingleResult() && 4479 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4480 Instantiation = PrevRecord; 4481 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4482 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4483 } 4484 } 4485 4486 if (!Instantiation) { 4487 // There is no previous declaration that matches. Since member 4488 // specializations are always out-of-line, the caller will complain about 4489 // this mismatch later. 4490 return false; 4491 } 4492 4493 // If this is a friend, just bail out here before we start turning 4494 // things into explicit specializations. 4495 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4496 // Preserve instantiation information. 4497 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4498 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4499 cast<CXXMethodDecl>(InstantiatedFrom), 4500 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4501 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4502 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4503 cast<CXXRecordDecl>(InstantiatedFrom), 4504 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4505 } 4506 4507 Previous.clear(); 4508 Previous.addDecl(Instantiation); 4509 return false; 4510 } 4511 4512 // Make sure that this is a specialization of a member. 4513 if (!InstantiatedFrom) { 4514 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4515 << Member; 4516 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4517 return true; 4518 } 4519 4520 // C++ [temp.expl.spec]p6: 4521 // If a template, a member template or the member of a class template is 4522 // explicitly specialized then that spe- cialization shall be declared 4523 // before the first use of that specialization that would cause an implicit 4524 // instantiation to take place, in every translation unit in which such a 4525 // use occurs; no diagnostic is required. 4526 assert(MSInfo && "Member specialization info missing?"); 4527 4528 bool HasNoEffect = false; 4529 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4530 TSK_ExplicitSpecialization, 4531 Instantiation, 4532 MSInfo->getTemplateSpecializationKind(), 4533 MSInfo->getPointOfInstantiation(), 4534 HasNoEffect)) 4535 return true; 4536 4537 // Check the scope of this explicit specialization. 4538 if (CheckTemplateSpecializationScope(*this, 4539 InstantiatedFrom, 4540 Instantiation, Member->getLocation(), 4541 false)) 4542 return true; 4543 4544 // Note that this is an explicit instantiation of a member. 4545 // the original declaration to note that it is an explicit specialization 4546 // (if it was previously an implicit instantiation). This latter step 4547 // makes bookkeeping easier. 4548 if (isa<FunctionDecl>(Member)) { 4549 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4550 if (InstantiationFunction->getTemplateSpecializationKind() == 4551 TSK_ImplicitInstantiation) { 4552 InstantiationFunction->setTemplateSpecializationKind( 4553 TSK_ExplicitSpecialization); 4554 InstantiationFunction->setLocation(Member->getLocation()); 4555 } 4556 4557 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4558 cast<CXXMethodDecl>(InstantiatedFrom), 4559 TSK_ExplicitSpecialization); 4560 } else if (isa<VarDecl>(Member)) { 4561 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4562 if (InstantiationVar->getTemplateSpecializationKind() == 4563 TSK_ImplicitInstantiation) { 4564 InstantiationVar->setTemplateSpecializationKind( 4565 TSK_ExplicitSpecialization); 4566 InstantiationVar->setLocation(Member->getLocation()); 4567 } 4568 4569 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4570 cast<VarDecl>(InstantiatedFrom), 4571 TSK_ExplicitSpecialization); 4572 } else { 4573 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4574 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4575 if (InstantiationClass->getTemplateSpecializationKind() == 4576 TSK_ImplicitInstantiation) { 4577 InstantiationClass->setTemplateSpecializationKind( 4578 TSK_ExplicitSpecialization); 4579 InstantiationClass->setLocation(Member->getLocation()); 4580 } 4581 4582 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4583 cast<CXXRecordDecl>(InstantiatedFrom), 4584 TSK_ExplicitSpecialization); 4585 } 4586 4587 // Save the caller the trouble of having to figure out which declaration 4588 // this specialization matches. 4589 Previous.clear(); 4590 Previous.addDecl(Instantiation); 4591 return false; 4592} 4593 4594/// \brief Check the scope of an explicit instantiation. 4595static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4596 SourceLocation InstLoc, 4597 bool WasQualifiedName) { 4598 DeclContext *ExpectedContext 4599 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4600 DeclContext *CurContext = S.CurContext->getLookupContext(); 4601 4602 // C++0x [temp.explicit]p2: 4603 // An explicit instantiation shall appear in an enclosing namespace of its 4604 // template. 4605 // 4606 // This is DR275, which we do not retroactively apply to C++98/03. 4607 if (S.getLangOptions().CPlusPlus0x && 4608 !CurContext->Encloses(ExpectedContext)) { 4609 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4610 S.Diag(InstLoc, 4611 S.getLangOptions().CPlusPlus0x? 4612 diag::err_explicit_instantiation_out_of_scope 4613 : diag::warn_explicit_instantiation_out_of_scope_0x) 4614 << D << NS; 4615 else 4616 S.Diag(InstLoc, 4617 S.getLangOptions().CPlusPlus0x? 4618 diag::err_explicit_instantiation_must_be_global 4619 : diag::warn_explicit_instantiation_out_of_scope_0x) 4620 << D; 4621 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4622 return; 4623 } 4624 4625 // C++0x [temp.explicit]p2: 4626 // If the name declared in the explicit instantiation is an unqualified 4627 // name, the explicit instantiation shall appear in the namespace where 4628 // its template is declared or, if that namespace is inline (7.3.1), any 4629 // namespace from its enclosing namespace set. 4630 if (WasQualifiedName) 4631 return; 4632 4633 if (CurContext->Equals(ExpectedContext)) 4634 return; 4635 4636 S.Diag(InstLoc, 4637 S.getLangOptions().CPlusPlus0x? 4638 diag::err_explicit_instantiation_unqualified_wrong_namespace 4639 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 4640 << D << ExpectedContext; 4641 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4642} 4643 4644/// \brief Determine whether the given scope specifier has a template-id in it. 4645static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4646 if (!SS.isSet()) 4647 return false; 4648 4649 // C++0x [temp.explicit]p2: 4650 // If the explicit instantiation is for a member function, a member class 4651 // or a static data member of a class template specialization, the name of 4652 // the class template specialization in the qualified-id for the member 4653 // name shall be a simple-template-id. 4654 // 4655 // C++98 has the same restriction, just worded differently. 4656 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4657 NNS; NNS = NNS->getPrefix()) 4658 if (Type *T = NNS->getAsType()) 4659 if (isa<TemplateSpecializationType>(T)) 4660 return true; 4661 4662 return false; 4663} 4664 4665// Explicit instantiation of a class template specialization 4666Sema::DeclResult 4667Sema::ActOnExplicitInstantiation(Scope *S, 4668 SourceLocation ExternLoc, 4669 SourceLocation TemplateLoc, 4670 unsigned TagSpec, 4671 SourceLocation KWLoc, 4672 const CXXScopeSpec &SS, 4673 TemplateTy TemplateD, 4674 SourceLocation TemplateNameLoc, 4675 SourceLocation LAngleLoc, 4676 ASTTemplateArgsPtr TemplateArgsIn, 4677 SourceLocation RAngleLoc, 4678 AttributeList *Attr) { 4679 // Find the class template we're specializing 4680 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4681 ClassTemplateDecl *ClassTemplate 4682 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4683 4684 // Check that the specialization uses the same tag kind as the 4685 // original template. 4686 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4687 assert(Kind != TTK_Enum && 4688 "Invalid enum tag in class template explicit instantiation!"); 4689 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4690 Kind, KWLoc, 4691 *ClassTemplate->getIdentifier())) { 4692 Diag(KWLoc, diag::err_use_with_wrong_tag) 4693 << ClassTemplate 4694 << FixItHint::CreateReplacement(KWLoc, 4695 ClassTemplate->getTemplatedDecl()->getKindName()); 4696 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4697 diag::note_previous_use); 4698 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4699 } 4700 4701 // C++0x [temp.explicit]p2: 4702 // There are two forms of explicit instantiation: an explicit instantiation 4703 // definition and an explicit instantiation declaration. An explicit 4704 // instantiation declaration begins with the extern keyword. [...] 4705 TemplateSpecializationKind TSK 4706 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4707 : TSK_ExplicitInstantiationDeclaration; 4708 4709 // Translate the parser's template argument list in our AST format. 4710 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4711 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4712 4713 // Check that the template argument list is well-formed for this 4714 // template. 4715 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4716 TemplateArgs.size()); 4717 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4718 TemplateArgs, false, Converted)) 4719 return true; 4720 4721 assert((Converted.structuredSize() == 4722 ClassTemplate->getTemplateParameters()->size()) && 4723 "Converted template argument list is too short!"); 4724 4725 // Find the class template specialization declaration that 4726 // corresponds to these arguments. 4727 llvm::FoldingSetNodeID ID; 4728 ClassTemplateSpecializationDecl::Profile(ID, 4729 Converted.getFlatArguments(), 4730 Converted.flatSize(), 4731 Context); 4732 void *InsertPos = 0; 4733 ClassTemplateSpecializationDecl *PrevDecl 4734 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4735 4736 TemplateSpecializationKind PrevDecl_TSK 4737 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 4738 4739 // C++0x [temp.explicit]p2: 4740 // [...] An explicit instantiation shall appear in an enclosing 4741 // namespace of its template. [...] 4742 // 4743 // This is C++ DR 275. 4744 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4745 SS.isSet()); 4746 4747 ClassTemplateSpecializationDecl *Specialization = 0; 4748 4749 bool ReusedDecl = false; 4750 bool HasNoEffect = false; 4751 if (PrevDecl) { 4752 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4753 PrevDecl, PrevDecl_TSK, 4754 PrevDecl->getPointOfInstantiation(), 4755 HasNoEffect)) 4756 return DeclPtrTy::make(PrevDecl); 4757 4758 // Even though HasNoEffect == true means that this explicit instantiation 4759 // has no effect on semantics, we go on to put its syntax in the AST. 4760 4761 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 4762 PrevDecl_TSK == TSK_Undeclared) { 4763 // Since the only prior class template specialization with these 4764 // arguments was referenced but not declared, reuse that 4765 // declaration node as our own, updating the source location 4766 // for the template name to reflect our new declaration. 4767 // (Other source locations will be updated later.) 4768 Specialization = PrevDecl; 4769 Specialization->setLocation(TemplateNameLoc); 4770 PrevDecl = 0; 4771 ReusedDecl = true; 4772 } 4773 } 4774 4775 if (!Specialization) { 4776 // Create a new class template specialization declaration node for 4777 // this explicit specialization. 4778 Specialization 4779 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4780 ClassTemplate->getDeclContext(), 4781 TemplateNameLoc, 4782 ClassTemplate, 4783 Converted, PrevDecl); 4784 SetNestedNameSpecifier(Specialization, SS); 4785 4786 if (!HasNoEffect) { 4787 if (PrevDecl) { 4788 // Remove the previous declaration from the folding set, since we want 4789 // to introduce a new declaration. 4790 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4791 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4792 } 4793 // Insert the new specialization. 4794 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4795 } 4796 } 4797 4798 // Build the fully-sugared type for this explicit instantiation as 4799 // the user wrote in the explicit instantiation itself. This means 4800 // that we'll pretty-print the type retrieved from the 4801 // specialization's declaration the way that the user actually wrote 4802 // the explicit instantiation, rather than formatting the name based 4803 // on the "canonical" representation used to store the template 4804 // arguments in the specialization. 4805 TypeSourceInfo *WrittenTy 4806 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4807 TemplateArgs, 4808 Context.getTypeDeclType(Specialization)); 4809 Specialization->setTypeAsWritten(WrittenTy); 4810 TemplateArgsIn.release(); 4811 4812 // Set source locations for keywords. 4813 Specialization->setExternLoc(ExternLoc); 4814 Specialization->setTemplateKeywordLoc(TemplateLoc); 4815 4816 // Add the explicit instantiation into its lexical context. However, 4817 // since explicit instantiations are never found by name lookup, we 4818 // just put it into the declaration context directly. 4819 Specialization->setLexicalDeclContext(CurContext); 4820 CurContext->addDecl(Specialization); 4821 4822 // Syntax is now OK, so return if it has no other effect on semantics. 4823 if (HasNoEffect) { 4824 // Set the template specialization kind. 4825 Specialization->setTemplateSpecializationKind(TSK); 4826 return DeclPtrTy::make(Specialization); 4827 } 4828 4829 // C++ [temp.explicit]p3: 4830 // A definition of a class template or class member template 4831 // shall be in scope at the point of the explicit instantiation of 4832 // the class template or class member template. 4833 // 4834 // This check comes when we actually try to perform the 4835 // instantiation. 4836 ClassTemplateSpecializationDecl *Def 4837 = cast_or_null<ClassTemplateSpecializationDecl>( 4838 Specialization->getDefinition()); 4839 if (!Def) 4840 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4841 else if (TSK == TSK_ExplicitInstantiationDefinition) { 4842 MarkVTableUsed(TemplateNameLoc, Specialization, true); 4843 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 4844 } 4845 4846 // Instantiate the members of this class template specialization. 4847 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4848 Specialization->getDefinition()); 4849 if (Def) { 4850 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4851 4852 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4853 // TSK_ExplicitInstantiationDefinition 4854 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4855 TSK == TSK_ExplicitInstantiationDefinition) 4856 Def->setTemplateSpecializationKind(TSK); 4857 4858 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4859 } 4860 4861 // Set the template specialization kind. 4862 Specialization->setTemplateSpecializationKind(TSK); 4863 return DeclPtrTy::make(Specialization); 4864} 4865 4866// Explicit instantiation of a member class of a class template. 4867Sema::DeclResult 4868Sema::ActOnExplicitInstantiation(Scope *S, 4869 SourceLocation ExternLoc, 4870 SourceLocation TemplateLoc, 4871 unsigned TagSpec, 4872 SourceLocation KWLoc, 4873 CXXScopeSpec &SS, 4874 IdentifierInfo *Name, 4875 SourceLocation NameLoc, 4876 AttributeList *Attr) { 4877 4878 bool Owned = false; 4879 bool IsDependent = false; 4880 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4881 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4882 MultiTemplateParamsArg(*this, 0, 0), 4883 Owned, IsDependent); 4884 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4885 4886 if (!TagD) 4887 return true; 4888 4889 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4890 if (Tag->isEnum()) { 4891 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4892 << Context.getTypeDeclType(Tag); 4893 return true; 4894 } 4895 4896 if (Tag->isInvalidDecl()) 4897 return true; 4898 4899 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4900 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4901 if (!Pattern) { 4902 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4903 << Context.getTypeDeclType(Record); 4904 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4905 return true; 4906 } 4907 4908 // C++0x [temp.explicit]p2: 4909 // If the explicit instantiation is for a class or member class, the 4910 // elaborated-type-specifier in the declaration shall include a 4911 // simple-template-id. 4912 // 4913 // C++98 has the same restriction, just worded differently. 4914 if (!ScopeSpecifierHasTemplateId(SS)) 4915 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4916 << Record << SS.getRange(); 4917 4918 // C++0x [temp.explicit]p2: 4919 // There are two forms of explicit instantiation: an explicit instantiation 4920 // definition and an explicit instantiation declaration. An explicit 4921 // instantiation declaration begins with the extern keyword. [...] 4922 TemplateSpecializationKind TSK 4923 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4924 : TSK_ExplicitInstantiationDeclaration; 4925 4926 // C++0x [temp.explicit]p2: 4927 // [...] An explicit instantiation shall appear in an enclosing 4928 // namespace of its template. [...] 4929 // 4930 // This is C++ DR 275. 4931 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4932 4933 // Verify that it is okay to explicitly instantiate here. 4934 CXXRecordDecl *PrevDecl 4935 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4936 if (!PrevDecl && Record->getDefinition()) 4937 PrevDecl = Record; 4938 if (PrevDecl) { 4939 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4940 bool HasNoEffect = false; 4941 assert(MSInfo && "No member specialization information?"); 4942 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4943 PrevDecl, 4944 MSInfo->getTemplateSpecializationKind(), 4945 MSInfo->getPointOfInstantiation(), 4946 HasNoEffect)) 4947 return true; 4948 if (HasNoEffect) 4949 return TagD; 4950 } 4951 4952 CXXRecordDecl *RecordDef 4953 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4954 if (!RecordDef) { 4955 // C++ [temp.explicit]p3: 4956 // A definition of a member class of a class template shall be in scope 4957 // at the point of an explicit instantiation of the member class. 4958 CXXRecordDecl *Def 4959 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4960 if (!Def) { 4961 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4962 << 0 << Record->getDeclName() << Record->getDeclContext(); 4963 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4964 << Pattern; 4965 return true; 4966 } else { 4967 if (InstantiateClass(NameLoc, Record, Def, 4968 getTemplateInstantiationArgs(Record), 4969 TSK)) 4970 return true; 4971 4972 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4973 if (!RecordDef) 4974 return true; 4975 } 4976 } 4977 4978 // Instantiate all of the members of the class. 4979 InstantiateClassMembers(NameLoc, RecordDef, 4980 getTemplateInstantiationArgs(Record), TSK); 4981 4982 if (TSK == TSK_ExplicitInstantiationDefinition) 4983 MarkVTableUsed(NameLoc, RecordDef, true); 4984 4985 // FIXME: We don't have any representation for explicit instantiations of 4986 // member classes. Such a representation is not needed for compilation, but it 4987 // should be available for clients that want to see all of the declarations in 4988 // the source code. 4989 return TagD; 4990} 4991 4992Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4993 SourceLocation ExternLoc, 4994 SourceLocation TemplateLoc, 4995 Declarator &D) { 4996 // Explicit instantiations always require a name. 4997 DeclarationName Name = GetNameForDeclarator(D); 4998 if (!Name) { 4999 if (!D.isInvalidType()) 5000 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5001 diag::err_explicit_instantiation_requires_name) 5002 << D.getDeclSpec().getSourceRange() 5003 << D.getSourceRange(); 5004 5005 return true; 5006 } 5007 5008 // The scope passed in may not be a decl scope. Zip up the scope tree until 5009 // we find one that is. 5010 while ((S->getFlags() & Scope::DeclScope) == 0 || 5011 (S->getFlags() & Scope::TemplateParamScope) != 0) 5012 S = S->getParent(); 5013 5014 // Determine the type of the declaration. 5015 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5016 QualType R = T->getType(); 5017 if (R.isNull()) 5018 return true; 5019 5020 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5021 // Cannot explicitly instantiate a typedef. 5022 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5023 << Name; 5024 return true; 5025 } 5026 5027 // C++0x [temp.explicit]p1: 5028 // [...] An explicit instantiation of a function template shall not use the 5029 // inline or constexpr specifiers. 5030 // Presumably, this also applies to member functions of class templates as 5031 // well. 5032 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5033 Diag(D.getDeclSpec().getInlineSpecLoc(), 5034 diag::err_explicit_instantiation_inline) 5035 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5036 5037 // FIXME: check for constexpr specifier. 5038 5039 // C++0x [temp.explicit]p2: 5040 // There are two forms of explicit instantiation: an explicit instantiation 5041 // definition and an explicit instantiation declaration. An explicit 5042 // instantiation declaration begins with the extern keyword. [...] 5043 TemplateSpecializationKind TSK 5044 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5045 : TSK_ExplicitInstantiationDeclaration; 5046 5047 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 5048 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5049 5050 if (!R->isFunctionType()) { 5051 // C++ [temp.explicit]p1: 5052 // A [...] static data member of a class template can be explicitly 5053 // instantiated from the member definition associated with its class 5054 // template. 5055 if (Previous.isAmbiguous()) 5056 return true; 5057 5058 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5059 if (!Prev || !Prev->isStaticDataMember()) { 5060 // We expect to see a data data member here. 5061 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5062 << Name; 5063 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5064 P != PEnd; ++P) 5065 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5066 return true; 5067 } 5068 5069 if (!Prev->getInstantiatedFromStaticDataMember()) { 5070 // FIXME: Check for explicit specialization? 5071 Diag(D.getIdentifierLoc(), 5072 diag::err_explicit_instantiation_data_member_not_instantiated) 5073 << Prev; 5074 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5075 // FIXME: Can we provide a note showing where this was declared? 5076 return true; 5077 } 5078 5079 // C++0x [temp.explicit]p2: 5080 // If the explicit instantiation is for a member function, a member class 5081 // or a static data member of a class template specialization, the name of 5082 // the class template specialization in the qualified-id for the member 5083 // name shall be a simple-template-id. 5084 // 5085 // C++98 has the same restriction, just worded differently. 5086 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5087 Diag(D.getIdentifierLoc(), 5088 diag::err_explicit_instantiation_without_qualified_id) 5089 << Prev << D.getCXXScopeSpec().getRange(); 5090 5091 // Check the scope of this explicit instantiation. 5092 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5093 5094 // Verify that it is okay to explicitly instantiate here. 5095 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5096 assert(MSInfo && "Missing static data member specialization info?"); 5097 bool HasNoEffect = false; 5098 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5099 MSInfo->getTemplateSpecializationKind(), 5100 MSInfo->getPointOfInstantiation(), 5101 HasNoEffect)) 5102 return true; 5103 if (HasNoEffect) 5104 return DeclPtrTy(); 5105 5106 // Instantiate static data member. 5107 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5108 if (TSK == TSK_ExplicitInstantiationDefinition) 5109 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 5110 /*DefinitionRequired=*/true); 5111 5112 // FIXME: Create an ExplicitInstantiation node? 5113 return DeclPtrTy(); 5114 } 5115 5116 // If the declarator is a template-id, translate the parser's template 5117 // argument list into our AST format. 5118 bool HasExplicitTemplateArgs = false; 5119 TemplateArgumentListInfo TemplateArgs; 5120 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5121 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5122 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5123 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5124 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5125 TemplateId->getTemplateArgs(), 5126 TemplateId->NumArgs); 5127 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5128 HasExplicitTemplateArgs = true; 5129 TemplateArgsPtr.release(); 5130 } 5131 5132 // C++ [temp.explicit]p1: 5133 // A [...] function [...] can be explicitly instantiated from its template. 5134 // A member function [...] of a class template can be explicitly 5135 // instantiated from the member definition associated with its class 5136 // template. 5137 UnresolvedSet<8> Matches; 5138 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5139 P != PEnd; ++P) { 5140 NamedDecl *Prev = *P; 5141 if (!HasExplicitTemplateArgs) { 5142 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5143 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5144 Matches.clear(); 5145 5146 Matches.addDecl(Method, P.getAccess()); 5147 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5148 break; 5149 } 5150 } 5151 } 5152 5153 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5154 if (!FunTmpl) 5155 continue; 5156 5157 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5158 FunctionDecl *Specialization = 0; 5159 if (TemplateDeductionResult TDK 5160 = DeduceTemplateArguments(FunTmpl, 5161 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5162 R, Specialization, Info)) { 5163 // FIXME: Keep track of almost-matches? 5164 (void)TDK; 5165 continue; 5166 } 5167 5168 Matches.addDecl(Specialization, P.getAccess()); 5169 } 5170 5171 // Find the most specialized function template specialization. 5172 UnresolvedSetIterator Result 5173 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5174 D.getIdentifierLoc(), 5175 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5176 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5177 PDiag(diag::note_explicit_instantiation_candidate)); 5178 5179 if (Result == Matches.end()) 5180 return true; 5181 5182 // Ignore access control bits, we don't need them for redeclaration checking. 5183 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5184 5185 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5186 Diag(D.getIdentifierLoc(), 5187 diag::err_explicit_instantiation_member_function_not_instantiated) 5188 << Specialization 5189 << (Specialization->getTemplateSpecializationKind() == 5190 TSK_ExplicitSpecialization); 5191 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5192 return true; 5193 } 5194 5195 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5196 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5197 PrevDecl = Specialization; 5198 5199 if (PrevDecl) { 5200 bool HasNoEffect = false; 5201 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5202 PrevDecl, 5203 PrevDecl->getTemplateSpecializationKind(), 5204 PrevDecl->getPointOfInstantiation(), 5205 HasNoEffect)) 5206 return true; 5207 5208 // FIXME: We may still want to build some representation of this 5209 // explicit specialization. 5210 if (HasNoEffect) 5211 return DeclPtrTy(); 5212 } 5213 5214 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5215 5216 if (TSK == TSK_ExplicitInstantiationDefinition) 5217 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 5218 false, /*DefinitionRequired=*/true); 5219 5220 // C++0x [temp.explicit]p2: 5221 // If the explicit instantiation is for a member function, a member class 5222 // or a static data member of a class template specialization, the name of 5223 // the class template specialization in the qualified-id for the member 5224 // name shall be a simple-template-id. 5225 // 5226 // C++98 has the same restriction, just worded differently. 5227 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5228 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5229 D.getCXXScopeSpec().isSet() && 5230 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5231 Diag(D.getIdentifierLoc(), 5232 diag::err_explicit_instantiation_without_qualified_id) 5233 << Specialization << D.getCXXScopeSpec().getRange(); 5234 5235 CheckExplicitInstantiationScope(*this, 5236 FunTmpl? (NamedDecl *)FunTmpl 5237 : Specialization->getInstantiatedFromMemberFunction(), 5238 D.getIdentifierLoc(), 5239 D.getCXXScopeSpec().isSet()); 5240 5241 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5242 return DeclPtrTy(); 5243} 5244 5245Sema::TypeResult 5246Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5247 const CXXScopeSpec &SS, IdentifierInfo *Name, 5248 SourceLocation TagLoc, SourceLocation NameLoc) { 5249 // This has to hold, because SS is expected to be defined. 5250 assert(Name && "Expected a name in a dependent tag"); 5251 5252 NestedNameSpecifier *NNS 5253 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5254 if (!NNS) 5255 return true; 5256 5257 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5258 5259 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5260 Diag(NameLoc, diag::err_dependent_tag_decl) 5261 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5262 return true; 5263 } 5264 5265 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5266 return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr(); 5267} 5268 5269Sema::TypeResult 5270Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5271 const IdentifierInfo &II, SourceLocation IdLoc) { 5272 NestedNameSpecifier *NNS 5273 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5274 if (!NNS) 5275 return true; 5276 5277 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5278 TypenameLoc, SS.getRange(), IdLoc); 5279 if (T.isNull()) 5280 return true; 5281 5282 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5283 if (isa<DependentNameType>(T)) { 5284 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5285 TL.setKeywordLoc(TypenameLoc); 5286 TL.setQualifierRange(SS.getRange()); 5287 TL.setNameLoc(IdLoc); 5288 } else { 5289 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5290 TL.setKeywordLoc(TypenameLoc); 5291 TL.setQualifierRange(SS.getRange()); 5292 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5293 } 5294 5295 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5296} 5297 5298Sema::TypeResult 5299Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5300 SourceLocation TemplateLoc, TypeTy *Ty) { 5301 TypeSourceInfo *InnerTSI = 0; 5302 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5303 NestedNameSpecifier *NNS 5304 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5305 5306 assert(isa<TemplateSpecializationType>(T) && 5307 "Expected a template specialization type"); 5308 5309 if (computeDeclContext(SS, false)) { 5310 // If we can compute a declaration context, then the "typename" 5311 // keyword was superfluous. Just build an ElaboratedType to keep 5312 // track of the nested-name-specifier. 5313 5314 // Push the inner type, preserving its source locations if possible. 5315 TypeLocBuilder Builder; 5316 if (InnerTSI) 5317 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5318 else 5319 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5320 5321 T = Context.getElaboratedType(ETK_Typename, NNS, T); 5322 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5323 TL.setKeywordLoc(TypenameLoc); 5324 TL.setQualifierRange(SS.getRange()); 5325 5326 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5327 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5328 } 5329 5330 // TODO: it's really silly that we make a template specialization 5331 // type earlier only to drop it again here. 5332 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5333 DependentTemplateName *DTN = 5334 TST->getTemplateName().getAsDependentTemplateName(); 5335 assert(DTN && "dependent template has non-dependent name?"); 5336 T = Context.getDependentTemplateSpecializationType(ETK_Typename, NNS, 5337 DTN->getIdentifier(), 5338 TST->getNumArgs(), 5339 TST->getArgs()); 5340 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5341 DependentTemplateSpecializationTypeLoc TL = 5342 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5343 if (InnerTSI) { 5344 TemplateSpecializationTypeLoc TSTL = 5345 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5346 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5347 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5348 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5349 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5350 } else { 5351 TL.initializeLocal(SourceLocation()); 5352 } 5353 TL.setKeywordLoc(TypenameLoc); 5354 TL.setQualifierRange(SS.getRange()); 5355 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5356} 5357 5358/// \brief Build the type that describes a C++ typename specifier, 5359/// e.g., "typename T::type". 5360QualType 5361Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5362 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5363 SourceLocation KeywordLoc, SourceRange NNSRange, 5364 SourceLocation IILoc) { 5365 CXXScopeSpec SS; 5366 SS.setScopeRep(NNS); 5367 SS.setRange(NNSRange); 5368 5369 DeclContext *Ctx = computeDeclContext(SS); 5370 if (!Ctx) { 5371 // If the nested-name-specifier is dependent and couldn't be 5372 // resolved to a type, build a typename type. 5373 assert(NNS->isDependent()); 5374 return Context.getDependentNameType(Keyword, NNS, &II); 5375 } 5376 5377 // If the nested-name-specifier refers to the current instantiation, 5378 // the "typename" keyword itself is superfluous. In C++03, the 5379 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5380 // allows such extraneous "typename" keywords, and we retroactively 5381 // apply this DR to C++03 code with only a warning. In any case we continue. 5382 5383 if (RequireCompleteDeclContext(SS, Ctx)) 5384 return QualType(); 5385 5386 DeclarationName Name(&II); 5387 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5388 LookupQualifiedName(Result, Ctx); 5389 unsigned DiagID = 0; 5390 Decl *Referenced = 0; 5391 switch (Result.getResultKind()) { 5392 case LookupResult::NotFound: 5393 DiagID = diag::err_typename_nested_not_found; 5394 break; 5395 5396 case LookupResult::NotFoundInCurrentInstantiation: 5397 // Okay, it's a member of an unknown instantiation. 5398 return Context.getDependentNameType(Keyword, NNS, &II); 5399 5400 case LookupResult::Found: 5401 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5402 if (ActiveTemplateInstantiations.empty() && 5403 !getLangOptions().CPlusPlus0x && !SS.isEmpty() && 5404 !isDependentScopeSpecifier(SS)) 5405 Diag(KeywordLoc.isValid()? KeywordLoc : IILoc, 5406 diag::ext_typename_nondependent) 5407 << SourceRange(IILoc) 5408 << FixItHint::CreateRemoval(KeywordLoc); 5409 5410 // We found a type. Build an ElaboratedType, since the 5411 // typename-specifier was just sugar. 5412 return Context.getElaboratedType(ETK_Typename, NNS, 5413 Context.getTypeDeclType(Type)); 5414 } 5415 5416 DiagID = diag::err_typename_nested_not_type; 5417 Referenced = Result.getFoundDecl(); 5418 break; 5419 5420 case LookupResult::FoundUnresolvedValue: 5421 llvm_unreachable("unresolved using decl in non-dependent context"); 5422 return QualType(); 5423 5424 case LookupResult::FoundOverloaded: 5425 DiagID = diag::err_typename_nested_not_type; 5426 Referenced = *Result.begin(); 5427 break; 5428 5429 case LookupResult::Ambiguous: 5430 return QualType(); 5431 } 5432 5433 // If we get here, it's because name lookup did not find a 5434 // type. Emit an appropriate diagnostic and return an error. 5435 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5436 IILoc); 5437 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5438 if (Referenced) 5439 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5440 << Name; 5441 return QualType(); 5442} 5443 5444namespace { 5445 // See Sema::RebuildTypeInCurrentInstantiation 5446 class CurrentInstantiationRebuilder 5447 : public TreeTransform<CurrentInstantiationRebuilder> { 5448 SourceLocation Loc; 5449 DeclarationName Entity; 5450 5451 public: 5452 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5453 5454 CurrentInstantiationRebuilder(Sema &SemaRef, 5455 SourceLocation Loc, 5456 DeclarationName Entity) 5457 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5458 Loc(Loc), Entity(Entity) { } 5459 5460 /// \brief Determine whether the given type \p T has already been 5461 /// transformed. 5462 /// 5463 /// For the purposes of type reconstruction, a type has already been 5464 /// transformed if it is NULL or if it is not dependent. 5465 bool AlreadyTransformed(QualType T) { 5466 return T.isNull() || !T->isDependentType(); 5467 } 5468 5469 /// \brief Returns the location of the entity whose type is being 5470 /// rebuilt. 5471 SourceLocation getBaseLocation() { return Loc; } 5472 5473 /// \brief Returns the name of the entity whose type is being rebuilt. 5474 DeclarationName getBaseEntity() { return Entity; } 5475 5476 /// \brief Sets the "base" location and entity when that 5477 /// information is known based on another transformation. 5478 void setBase(SourceLocation Loc, DeclarationName Entity) { 5479 this->Loc = Loc; 5480 this->Entity = Entity; 5481 } 5482 5483 /// \brief Transforms an expression by returning the expression itself 5484 /// (an identity function). 5485 /// 5486 /// FIXME: This is completely unsafe; we will need to actually clone the 5487 /// expressions. 5488 Sema::OwningExprResult TransformExpr(Expr *E) { 5489 return getSema().Owned(E->Retain()); 5490 } 5491 }; 5492} 5493 5494/// \brief Rebuilds a type within the context of the current instantiation. 5495/// 5496/// The type \p T is part of the type of an out-of-line member definition of 5497/// a class template (or class template partial specialization) that was parsed 5498/// and constructed before we entered the scope of the class template (or 5499/// partial specialization thereof). This routine will rebuild that type now 5500/// that we have entered the declarator's scope, which may produce different 5501/// canonical types, e.g., 5502/// 5503/// \code 5504/// template<typename T> 5505/// struct X { 5506/// typedef T* pointer; 5507/// pointer data(); 5508/// }; 5509/// 5510/// template<typename T> 5511/// typename X<T>::pointer X<T>::data() { ... } 5512/// \endcode 5513/// 5514/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5515/// since we do not know that we can look into X<T> when we parsed the type. 5516/// This function will rebuild the type, performing the lookup of "pointer" 5517/// in X<T> and returning an ElaboratedType whose canonical type is the same 5518/// as the canonical type of T*, allowing the return types of the out-of-line 5519/// definition and the declaration to match. 5520TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5521 SourceLocation Loc, 5522 DeclarationName Name) { 5523 if (!T || !T->getType()->isDependentType()) 5524 return T; 5525 5526 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5527 return Rebuilder.TransformType(T); 5528} 5529 5530bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5531 if (SS.isInvalid()) return true; 5532 5533 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5534 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5535 DeclarationName()); 5536 NestedNameSpecifier *Rebuilt = 5537 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5538 if (!Rebuilt) return true; 5539 5540 SS.setScopeRep(Rebuilt); 5541 return false; 5542} 5543 5544/// \brief Produces a formatted string that describes the binding of 5545/// template parameters to template arguments. 5546std::string 5547Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5548 const TemplateArgumentList &Args) { 5549 // FIXME: For variadic templates, we'll need to get the structured list. 5550 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5551 Args.flat_size()); 5552} 5553 5554std::string 5555Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5556 const TemplateArgument *Args, 5557 unsigned NumArgs) { 5558 std::string Result; 5559 5560 if (!Params || Params->size() == 0 || NumArgs == 0) 5561 return Result; 5562 5563 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5564 if (I >= NumArgs) 5565 break; 5566 5567 if (I == 0) 5568 Result += "[with "; 5569 else 5570 Result += ", "; 5571 5572 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5573 Result += Id->getName(); 5574 } else { 5575 Result += '$'; 5576 Result += llvm::utostr(I); 5577 } 5578 5579 Result += " = "; 5580 5581 switch (Args[I].getKind()) { 5582 case TemplateArgument::Null: 5583 Result += "<no value>"; 5584 break; 5585 5586 case TemplateArgument::Type: { 5587 std::string TypeStr; 5588 Args[I].getAsType().getAsStringInternal(TypeStr, 5589 Context.PrintingPolicy); 5590 Result += TypeStr; 5591 break; 5592 } 5593 5594 case TemplateArgument::Declaration: { 5595 bool Unnamed = true; 5596 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5597 if (ND->getDeclName()) { 5598 Unnamed = false; 5599 Result += ND->getNameAsString(); 5600 } 5601 } 5602 5603 if (Unnamed) { 5604 Result += "<anonymous>"; 5605 } 5606 break; 5607 } 5608 5609 case TemplateArgument::Template: { 5610 std::string Str; 5611 llvm::raw_string_ostream OS(Str); 5612 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5613 Result += OS.str(); 5614 break; 5615 } 5616 5617 case TemplateArgument::Integral: { 5618 Result += Args[I].getAsIntegral()->toString(10); 5619 break; 5620 } 5621 5622 case TemplateArgument::Expression: { 5623 // FIXME: This is non-optimal, since we're regurgitating the 5624 // expression we were given. 5625 std::string Str; 5626 { 5627 llvm::raw_string_ostream OS(Str); 5628 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5629 Context.PrintingPolicy); 5630 } 5631 Result += Str; 5632 break; 5633 } 5634 5635 case TemplateArgument::Pack: 5636 // FIXME: Format template argument packs 5637 Result += "<template argument pack>"; 5638 break; 5639 } 5640 } 5641 5642 Result += ']'; 5643 return Result; 5644} 5645