SemaTemplate.cpp revision 429bb276991ff2dbc7c5b438828b9b7737cb15eb
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  DeclContext *DC = getFunctionLevelDeclContext();
372
373  if (!isAddressOfOperand &&
374      isa<CXXMethodDecl>(DC) &&
375      cast<CXXMethodDecl>(DC)->isInstance()) {
376    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
377
378    // Since the 'this' expression is synthesized, we don't need to
379    // perform the double-lookup check.
380    NamedDecl *FirstQualifierInScope = 0;
381
382    return Owned(CXXDependentScopeMemberExpr::Create(Context,
383                                                     /*This*/ 0, ThisType,
384                                                     /*IsArrow*/ true,
385                                                     /*Op*/ SourceLocation(),
386                                               SS.getWithLocInContext(Context),
387                                                     FirstQualifierInScope,
388                                                     NameInfo,
389                                                     TemplateArgs));
390  }
391
392  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
393}
394
395ExprResult
396Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
397                                const DeclarationNameInfo &NameInfo,
398                                const TemplateArgumentListInfo *TemplateArgs) {
399  return Owned(DependentScopeDeclRefExpr::Create(Context,
400                                               SS.getWithLocInContext(Context),
401                                                 NameInfo,
402                                                 TemplateArgs));
403}
404
405/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
406/// that the template parameter 'PrevDecl' is being shadowed by a new
407/// declaration at location Loc. Returns true to indicate that this is
408/// an error, and false otherwise.
409bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
410  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
411
412  // Microsoft Visual C++ permits template parameters to be shadowed.
413  if (getLangOptions().Microsoft)
414    return false;
415
416  // C++ [temp.local]p4:
417  //   A template-parameter shall not be redeclared within its
418  //   scope (including nested scopes).
419  Diag(Loc, diag::err_template_param_shadow)
420    << cast<NamedDecl>(PrevDecl)->getDeclName();
421  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
422  return true;
423}
424
425/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
426/// the parameter D to reference the templated declaration and return a pointer
427/// to the template declaration. Otherwise, do nothing to D and return null.
428TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
429  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
430    D = Temp->getTemplatedDecl();
431    return Temp;
432  }
433  return 0;
434}
435
436ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
437                                             SourceLocation EllipsisLoc) const {
438  assert(Kind == Template &&
439         "Only template template arguments can be pack expansions here");
440  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
441         "Template template argument pack expansion without packs");
442  ParsedTemplateArgument Result(*this);
443  Result.EllipsisLoc = EllipsisLoc;
444  return Result;
445}
446
447static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
448                                            const ParsedTemplateArgument &Arg) {
449
450  switch (Arg.getKind()) {
451  case ParsedTemplateArgument::Type: {
452    TypeSourceInfo *DI;
453    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
454    if (!DI)
455      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
456    return TemplateArgumentLoc(TemplateArgument(T), DI);
457  }
458
459  case ParsedTemplateArgument::NonType: {
460    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
461    return TemplateArgumentLoc(TemplateArgument(E), E);
462  }
463
464  case ParsedTemplateArgument::Template: {
465    TemplateName Template = Arg.getAsTemplate().get();
466    TemplateArgument TArg;
467    if (Arg.getEllipsisLoc().isValid())
468      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
469    else
470      TArg = Template;
471    return TemplateArgumentLoc(TArg,
472                               Arg.getScopeSpec().getWithLocInContext(
473                                                              SemaRef.Context),
474                               Arg.getLocation(),
475                               Arg.getEllipsisLoc());
476  }
477  }
478
479  llvm_unreachable("Unhandled parsed template argument");
480  return TemplateArgumentLoc();
481}
482
483/// \brief Translates template arguments as provided by the parser
484/// into template arguments used by semantic analysis.
485void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
486                                      TemplateArgumentListInfo &TemplateArgs) {
487 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
488   TemplateArgs.addArgument(translateTemplateArgument(*this,
489                                                      TemplateArgsIn[I]));
490}
491
492/// ActOnTypeParameter - Called when a C++ template type parameter
493/// (e.g., "typename T") has been parsed. Typename specifies whether
494/// the keyword "typename" was used to declare the type parameter
495/// (otherwise, "class" was used), and KeyLoc is the location of the
496/// "class" or "typename" keyword. ParamName is the name of the
497/// parameter (NULL indicates an unnamed template parameter) and
498/// ParamName is the location of the parameter name (if any).
499/// If the type parameter has a default argument, it will be added
500/// later via ActOnTypeParameterDefault.
501Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
502                               SourceLocation EllipsisLoc,
503                               SourceLocation KeyLoc,
504                               IdentifierInfo *ParamName,
505                               SourceLocation ParamNameLoc,
506                               unsigned Depth, unsigned Position,
507                               SourceLocation EqualLoc,
508                               ParsedType DefaultArg) {
509  assert(S->isTemplateParamScope() &&
510         "Template type parameter not in template parameter scope!");
511  bool Invalid = false;
512
513  if (ParamName) {
514    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
515                                           LookupOrdinaryName,
516                                           ForRedeclaration);
517    if (PrevDecl && PrevDecl->isTemplateParameter())
518      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
519                                                           PrevDecl);
520  }
521
522  SourceLocation Loc = ParamNameLoc;
523  if (!ParamName)
524    Loc = KeyLoc;
525
526  TemplateTypeParmDecl *Param
527    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
528                                   KeyLoc, Loc, Depth, Position, ParamName,
529                                   Typename, Ellipsis);
530  Param->setAccess(AS_public);
531  if (Invalid)
532    Param->setInvalidDecl();
533
534  if (ParamName) {
535    // Add the template parameter into the current scope.
536    S->AddDecl(Param);
537    IdResolver.AddDecl(Param);
538  }
539
540  // C++0x [temp.param]p9:
541  //   A default template-argument may be specified for any kind of
542  //   template-parameter that is not a template parameter pack.
543  if (DefaultArg && Ellipsis) {
544    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
545    DefaultArg = ParsedType();
546  }
547
548  // Handle the default argument, if provided.
549  if (DefaultArg) {
550    TypeSourceInfo *DefaultTInfo;
551    GetTypeFromParser(DefaultArg, &DefaultTInfo);
552
553    assert(DefaultTInfo && "expected source information for type");
554
555    // Check for unexpanded parameter packs.
556    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
557                                        UPPC_DefaultArgument))
558      return Param;
559
560    // Check the template argument itself.
561    if (CheckTemplateArgument(Param, DefaultTInfo)) {
562      Param->setInvalidDecl();
563      return Param;
564    }
565
566    Param->setDefaultArgument(DefaultTInfo, false);
567  }
568
569  return Param;
570}
571
572/// \brief Check that the type of a non-type template parameter is
573/// well-formed.
574///
575/// \returns the (possibly-promoted) parameter type if valid;
576/// otherwise, produces a diagnostic and returns a NULL type.
577QualType
578Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
579  // We don't allow variably-modified types as the type of non-type template
580  // parameters.
581  if (T->isVariablyModifiedType()) {
582    Diag(Loc, diag::err_variably_modified_nontype_template_param)
583      << T;
584    return QualType();
585  }
586
587  // C++ [temp.param]p4:
588  //
589  // A non-type template-parameter shall have one of the following
590  // (optionally cv-qualified) types:
591  //
592  //       -- integral or enumeration type,
593  if (T->isIntegralOrEnumerationType() ||
594      //   -- pointer to object or pointer to function,
595      T->isPointerType() ||
596      //   -- reference to object or reference to function,
597      T->isReferenceType() ||
598      //   -- pointer to member.
599      T->isMemberPointerType() ||
600      // If T is a dependent type, we can't do the check now, so we
601      // assume that it is well-formed.
602      T->isDependentType())
603    return T;
604  // C++ [temp.param]p8:
605  //
606  //   A non-type template-parameter of type "array of T" or
607  //   "function returning T" is adjusted to be of type "pointer to
608  //   T" or "pointer to function returning T", respectively.
609  else if (T->isArrayType())
610    // FIXME: Keep the type prior to promotion?
611    return Context.getArrayDecayedType(T);
612  else if (T->isFunctionType())
613    // FIXME: Keep the type prior to promotion?
614    return Context.getPointerType(T);
615
616  Diag(Loc, diag::err_template_nontype_parm_bad_type)
617    << T;
618
619  return QualType();
620}
621
622Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
623                                          unsigned Depth,
624                                          unsigned Position,
625                                          SourceLocation EqualLoc,
626                                          Expr *Default) {
627  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
628  QualType T = TInfo->getType();
629
630  assert(S->isTemplateParamScope() &&
631         "Non-type template parameter not in template parameter scope!");
632  bool Invalid = false;
633
634  IdentifierInfo *ParamName = D.getIdentifier();
635  if (ParamName) {
636    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
637                                           LookupOrdinaryName,
638                                           ForRedeclaration);
639    if (PrevDecl && PrevDecl->isTemplateParameter())
640      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
641                                                           PrevDecl);
642  }
643
644  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
645  if (T.isNull()) {
646    T = Context.IntTy; // Recover with an 'int' type.
647    Invalid = true;
648  }
649
650  bool IsParameterPack = D.hasEllipsis();
651  NonTypeTemplateParmDecl *Param
652    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
653                                      D.getSourceRange().getBegin(),
654                                      D.getIdentifierLoc(),
655                                      Depth, Position, ParamName, T,
656                                      IsParameterPack, TInfo);
657  Param->setAccess(AS_public);
658
659  if (Invalid)
660    Param->setInvalidDecl();
661
662  if (D.getIdentifier()) {
663    // Add the template parameter into the current scope.
664    S->AddDecl(Param);
665    IdResolver.AddDecl(Param);
666  }
667
668  // C++0x [temp.param]p9:
669  //   A default template-argument may be specified for any kind of
670  //   template-parameter that is not a template parameter pack.
671  if (Default && IsParameterPack) {
672    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
673    Default = 0;
674  }
675
676  // Check the well-formedness of the default template argument, if provided.
677  if (Default) {
678    // Check for unexpanded parameter packs.
679    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
680      return Param;
681
682    TemplateArgument Converted;
683    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
684    if (DefaultRes.isInvalid()) {
685      Param->setInvalidDecl();
686      return Param;
687    }
688    Default = DefaultRes.take();
689
690    Param->setDefaultArgument(Default, false);
691  }
692
693  return Param;
694}
695
696/// ActOnTemplateTemplateParameter - Called when a C++ template template
697/// parameter (e.g. T in template <template <typename> class T> class array)
698/// has been parsed. S is the current scope.
699Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
700                                           SourceLocation TmpLoc,
701                                           TemplateParamsTy *Params,
702                                           SourceLocation EllipsisLoc,
703                                           IdentifierInfo *Name,
704                                           SourceLocation NameLoc,
705                                           unsigned Depth,
706                                           unsigned Position,
707                                           SourceLocation EqualLoc,
708                                           ParsedTemplateArgument Default) {
709  assert(S->isTemplateParamScope() &&
710         "Template template parameter not in template parameter scope!");
711
712  // Construct the parameter object.
713  bool IsParameterPack = EllipsisLoc.isValid();
714  TemplateTemplateParmDecl *Param =
715    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
716                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
717                                     Depth, Position, IsParameterPack,
718                                     Name, Params);
719  Param->setAccess(AS_public);
720
721  // If the template template parameter has a name, then link the identifier
722  // into the scope and lookup mechanisms.
723  if (Name) {
724    S->AddDecl(Param);
725    IdResolver.AddDecl(Param);
726  }
727
728  if (Params->size() == 0) {
729    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
730    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
731    Param->setInvalidDecl();
732  }
733
734  // C++0x [temp.param]p9:
735  //   A default template-argument may be specified for any kind of
736  //   template-parameter that is not a template parameter pack.
737  if (IsParameterPack && !Default.isInvalid()) {
738    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
739    Default = ParsedTemplateArgument();
740  }
741
742  if (!Default.isInvalid()) {
743    // Check only that we have a template template argument. We don't want to
744    // try to check well-formedness now, because our template template parameter
745    // might have dependent types in its template parameters, which we wouldn't
746    // be able to match now.
747    //
748    // If none of the template template parameter's template arguments mention
749    // other template parameters, we could actually perform more checking here.
750    // However, it isn't worth doing.
751    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
752    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
753      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
754        << DefaultArg.getSourceRange();
755      return Param;
756    }
757
758    // Check for unexpanded parameter packs.
759    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
760                                        DefaultArg.getArgument().getAsTemplate(),
761                                        UPPC_DefaultArgument))
762      return Param;
763
764    Param->setDefaultArgument(DefaultArg, false);
765  }
766
767  return Param;
768}
769
770/// ActOnTemplateParameterList - Builds a TemplateParameterList that
771/// contains the template parameters in Params/NumParams.
772Sema::TemplateParamsTy *
773Sema::ActOnTemplateParameterList(unsigned Depth,
774                                 SourceLocation ExportLoc,
775                                 SourceLocation TemplateLoc,
776                                 SourceLocation LAngleLoc,
777                                 Decl **Params, unsigned NumParams,
778                                 SourceLocation RAngleLoc) {
779  if (ExportLoc.isValid())
780    Diag(ExportLoc, diag::warn_template_export_unsupported);
781
782  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
783                                       (NamedDecl**)Params, NumParams,
784                                       RAngleLoc);
785}
786
787static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
788  if (SS.isSet())
789    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
790}
791
792DeclResult
793Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
794                         SourceLocation KWLoc, CXXScopeSpec &SS,
795                         IdentifierInfo *Name, SourceLocation NameLoc,
796                         AttributeList *Attr,
797                         TemplateParameterList *TemplateParams,
798                         AccessSpecifier AS,
799                         unsigned NumOuterTemplateParamLists,
800                         TemplateParameterList** OuterTemplateParamLists) {
801  assert(TemplateParams && TemplateParams->size() > 0 &&
802         "No template parameters");
803  assert(TUK != TUK_Reference && "Can only declare or define class templates");
804  bool Invalid = false;
805
806  // Check that we can declare a template here.
807  if (CheckTemplateDeclScope(S, TemplateParams))
808    return true;
809
810  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
811  assert(Kind != TTK_Enum && "can't build template of enumerated type");
812
813  // There is no such thing as an unnamed class template.
814  if (!Name) {
815    Diag(KWLoc, diag::err_template_unnamed_class);
816    return true;
817  }
818
819  // Find any previous declaration with this name.
820  DeclContext *SemanticContext;
821  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
822                        ForRedeclaration);
823  if (SS.isNotEmpty() && !SS.isInvalid()) {
824    SemanticContext = computeDeclContext(SS, true);
825    if (!SemanticContext) {
826      // FIXME: Produce a reasonable diagnostic here
827      return true;
828    }
829
830    if (RequireCompleteDeclContext(SS, SemanticContext))
831      return true;
832
833    LookupQualifiedName(Previous, SemanticContext);
834  } else {
835    SemanticContext = CurContext;
836    LookupName(Previous, S);
837  }
838
839  if (Previous.isAmbiguous())
840    return true;
841
842  NamedDecl *PrevDecl = 0;
843  if (Previous.begin() != Previous.end())
844    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
845
846  // If there is a previous declaration with the same name, check
847  // whether this is a valid redeclaration.
848  ClassTemplateDecl *PrevClassTemplate
849    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
850
851  // We may have found the injected-class-name of a class template,
852  // class template partial specialization, or class template specialization.
853  // In these cases, grab the template that is being defined or specialized.
854  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
855      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
856    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
857    PrevClassTemplate
858      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
859    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
860      PrevClassTemplate
861        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
862            ->getSpecializedTemplate();
863    }
864  }
865
866  if (TUK == TUK_Friend) {
867    // C++ [namespace.memdef]p3:
868    //   [...] When looking for a prior declaration of a class or a function
869    //   declared as a friend, and when the name of the friend class or
870    //   function is neither a qualified name nor a template-id, scopes outside
871    //   the innermost enclosing namespace scope are not considered.
872    if (!SS.isSet()) {
873      DeclContext *OutermostContext = CurContext;
874      while (!OutermostContext->isFileContext())
875        OutermostContext = OutermostContext->getLookupParent();
876
877      if (PrevDecl &&
878          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
879           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
880        SemanticContext = PrevDecl->getDeclContext();
881      } else {
882        // Declarations in outer scopes don't matter. However, the outermost
883        // context we computed is the semantic context for our new
884        // declaration.
885        PrevDecl = PrevClassTemplate = 0;
886        SemanticContext = OutermostContext;
887      }
888    }
889
890    if (CurContext->isDependentContext()) {
891      // If this is a dependent context, we don't want to link the friend
892      // class template to the template in scope, because that would perform
893      // checking of the template parameter lists that can't be performed
894      // until the outer context is instantiated.
895      PrevDecl = PrevClassTemplate = 0;
896    }
897  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
898    PrevDecl = PrevClassTemplate = 0;
899
900  if (PrevClassTemplate) {
901    // Ensure that the template parameter lists are compatible.
902    if (!TemplateParameterListsAreEqual(TemplateParams,
903                                   PrevClassTemplate->getTemplateParameters(),
904                                        /*Complain=*/true,
905                                        TPL_TemplateMatch))
906      return true;
907
908    // C++ [temp.class]p4:
909    //   In a redeclaration, partial specialization, explicit
910    //   specialization or explicit instantiation of a class template,
911    //   the class-key shall agree in kind with the original class
912    //   template declaration (7.1.5.3).
913    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
914    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
915      Diag(KWLoc, diag::err_use_with_wrong_tag)
916        << Name
917        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
918      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
919      Kind = PrevRecordDecl->getTagKind();
920    }
921
922    // Check for redefinition of this class template.
923    if (TUK == TUK_Definition) {
924      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
925        Diag(NameLoc, diag::err_redefinition) << Name;
926        Diag(Def->getLocation(), diag::note_previous_definition);
927        // FIXME: Would it make sense to try to "forget" the previous
928        // definition, as part of error recovery?
929        return true;
930      }
931    }
932  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
933    // Maybe we will complain about the shadowed template parameter.
934    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
935    // Just pretend that we didn't see the previous declaration.
936    PrevDecl = 0;
937  } else if (PrevDecl) {
938    // C++ [temp]p5:
939    //   A class template shall not have the same name as any other
940    //   template, class, function, object, enumeration, enumerator,
941    //   namespace, or type in the same scope (3.3), except as specified
942    //   in (14.5.4).
943    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
944    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
945    return true;
946  }
947
948  // Check the template parameter list of this declaration, possibly
949  // merging in the template parameter list from the previous class
950  // template declaration.
951  if (CheckTemplateParameterList(TemplateParams,
952            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
953                                 (SS.isSet() && SemanticContext &&
954                                  SemanticContext->isRecord() &&
955                                  SemanticContext->isDependentContext())
956                                   ? TPC_ClassTemplateMember
957                                   : TPC_ClassTemplate))
958    Invalid = true;
959
960  if (SS.isSet()) {
961    // If the name of the template was qualified, we must be defining the
962    // template out-of-line.
963    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
964        !(TUK == TUK_Friend && CurContext->isDependentContext()))
965      Diag(NameLoc, diag::err_member_def_does_not_match)
966        << Name << SemanticContext << SS.getRange();
967  }
968
969  CXXRecordDecl *NewClass =
970    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
971                          PrevClassTemplate?
972                            PrevClassTemplate->getTemplatedDecl() : 0,
973                          /*DelayTypeCreation=*/true);
974  SetNestedNameSpecifier(NewClass, SS);
975  if (NumOuterTemplateParamLists > 0)
976    NewClass->setTemplateParameterListsInfo(Context,
977                                            NumOuterTemplateParamLists,
978                                            OuterTemplateParamLists);
979
980  ClassTemplateDecl *NewTemplate
981    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
982                                DeclarationName(Name), TemplateParams,
983                                NewClass, PrevClassTemplate);
984  NewClass->setDescribedClassTemplate(NewTemplate);
985
986  // Build the type for the class template declaration now.
987  QualType T = NewTemplate->getInjectedClassNameSpecialization();
988  T = Context.getInjectedClassNameType(NewClass, T);
989  assert(T->isDependentType() && "Class template type is not dependent?");
990  (void)T;
991
992  // If we are providing an explicit specialization of a member that is a
993  // class template, make a note of that.
994  if (PrevClassTemplate &&
995      PrevClassTemplate->getInstantiatedFromMemberTemplate())
996    PrevClassTemplate->setMemberSpecialization();
997
998  // Set the access specifier.
999  if (!Invalid && TUK != TUK_Friend)
1000    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1001
1002  // Set the lexical context of these templates
1003  NewClass->setLexicalDeclContext(CurContext);
1004  NewTemplate->setLexicalDeclContext(CurContext);
1005
1006  if (TUK == TUK_Definition)
1007    NewClass->startDefinition();
1008
1009  if (Attr)
1010    ProcessDeclAttributeList(S, NewClass, Attr);
1011
1012  if (TUK != TUK_Friend)
1013    PushOnScopeChains(NewTemplate, S);
1014  else {
1015    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1016      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1017      NewClass->setAccess(PrevClassTemplate->getAccess());
1018    }
1019
1020    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1021                                       PrevClassTemplate != NULL);
1022
1023    // Friend templates are visible in fairly strange ways.
1024    if (!CurContext->isDependentContext()) {
1025      DeclContext *DC = SemanticContext->getRedeclContext();
1026      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1027      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1028        PushOnScopeChains(NewTemplate, EnclosingScope,
1029                          /* AddToContext = */ false);
1030    }
1031
1032    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1033                                            NewClass->getLocation(),
1034                                            NewTemplate,
1035                                    /*FIXME:*/NewClass->getLocation());
1036    Friend->setAccess(AS_public);
1037    CurContext->addDecl(Friend);
1038  }
1039
1040  if (Invalid) {
1041    NewTemplate->setInvalidDecl();
1042    NewClass->setInvalidDecl();
1043  }
1044  return NewTemplate;
1045}
1046
1047/// \brief Diagnose the presence of a default template argument on a
1048/// template parameter, which is ill-formed in certain contexts.
1049///
1050/// \returns true if the default template argument should be dropped.
1051static bool DiagnoseDefaultTemplateArgument(Sema &S,
1052                                            Sema::TemplateParamListContext TPC,
1053                                            SourceLocation ParamLoc,
1054                                            SourceRange DefArgRange) {
1055  switch (TPC) {
1056  case Sema::TPC_ClassTemplate:
1057    return false;
1058
1059  case Sema::TPC_FunctionTemplate:
1060  case Sema::TPC_FriendFunctionTemplateDefinition:
1061    // C++ [temp.param]p9:
1062    //   A default template-argument shall not be specified in a
1063    //   function template declaration or a function template
1064    //   definition [...]
1065    //   If a friend function template declaration specifies a default
1066    //   template-argument, that declaration shall be a definition and shall be
1067    //   the only declaration of the function template in the translation unit.
1068    // (C++98/03 doesn't have this wording; see DR226).
1069    if (!S.getLangOptions().CPlusPlus0x)
1070      S.Diag(ParamLoc,
1071             diag::ext_template_parameter_default_in_function_template)
1072        << DefArgRange;
1073    return false;
1074
1075  case Sema::TPC_ClassTemplateMember:
1076    // C++0x [temp.param]p9:
1077    //   A default template-argument shall not be specified in the
1078    //   template-parameter-lists of the definition of a member of a
1079    //   class template that appears outside of the member's class.
1080    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1081      << DefArgRange;
1082    return true;
1083
1084  case Sema::TPC_FriendFunctionTemplate:
1085    // C++ [temp.param]p9:
1086    //   A default template-argument shall not be specified in a
1087    //   friend template declaration.
1088    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1089      << DefArgRange;
1090    return true;
1091
1092    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1093    // for friend function templates if there is only a single
1094    // declaration (and it is a definition). Strange!
1095  }
1096
1097  return false;
1098}
1099
1100/// \brief Check for unexpanded parameter packs within the template parameters
1101/// of a template template parameter, recursively.
1102static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1103                                             TemplateTemplateParmDecl *TTP) {
1104  TemplateParameterList *Params = TTP->getTemplateParameters();
1105  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1106    NamedDecl *P = Params->getParam(I);
1107    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1108      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1109                                            NTTP->getTypeSourceInfo(),
1110                                      Sema::UPPC_NonTypeTemplateParameterType))
1111        return true;
1112
1113      continue;
1114    }
1115
1116    if (TemplateTemplateParmDecl *InnerTTP
1117                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1118      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1119        return true;
1120  }
1121
1122  return false;
1123}
1124
1125/// \brief Checks the validity of a template parameter list, possibly
1126/// considering the template parameter list from a previous
1127/// declaration.
1128///
1129/// If an "old" template parameter list is provided, it must be
1130/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1131/// template parameter list.
1132///
1133/// \param NewParams Template parameter list for a new template
1134/// declaration. This template parameter list will be updated with any
1135/// default arguments that are carried through from the previous
1136/// template parameter list.
1137///
1138/// \param OldParams If provided, template parameter list from a
1139/// previous declaration of the same template. Default template
1140/// arguments will be merged from the old template parameter list to
1141/// the new template parameter list.
1142///
1143/// \param TPC Describes the context in which we are checking the given
1144/// template parameter list.
1145///
1146/// \returns true if an error occurred, false otherwise.
1147bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1148                                      TemplateParameterList *OldParams,
1149                                      TemplateParamListContext TPC) {
1150  bool Invalid = false;
1151
1152  // C++ [temp.param]p10:
1153  //   The set of default template-arguments available for use with a
1154  //   template declaration or definition is obtained by merging the
1155  //   default arguments from the definition (if in scope) and all
1156  //   declarations in scope in the same way default function
1157  //   arguments are (8.3.6).
1158  bool SawDefaultArgument = false;
1159  SourceLocation PreviousDefaultArgLoc;
1160
1161  bool SawParameterPack = false;
1162  SourceLocation ParameterPackLoc;
1163
1164  // Dummy initialization to avoid warnings.
1165  TemplateParameterList::iterator OldParam = NewParams->end();
1166  if (OldParams)
1167    OldParam = OldParams->begin();
1168
1169  bool RemoveDefaultArguments = false;
1170  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1171                                    NewParamEnd = NewParams->end();
1172       NewParam != NewParamEnd; ++NewParam) {
1173    // Variables used to diagnose redundant default arguments
1174    bool RedundantDefaultArg = false;
1175    SourceLocation OldDefaultLoc;
1176    SourceLocation NewDefaultLoc;
1177
1178    // Variables used to diagnose missing default arguments
1179    bool MissingDefaultArg = false;
1180
1181    // C++0x [temp.param]p11:
1182    //   If a template parameter of a primary class template is a template
1183    //   parameter pack, it shall be the last template parameter.
1184    if (SawParameterPack && TPC == TPC_ClassTemplate) {
1185      Diag(ParameterPackLoc,
1186           diag::err_template_param_pack_must_be_last_template_parameter);
1187      Invalid = true;
1188    }
1189
1190    if (TemplateTypeParmDecl *NewTypeParm
1191          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1192      // Check the presence of a default argument here.
1193      if (NewTypeParm->hasDefaultArgument() &&
1194          DiagnoseDefaultTemplateArgument(*this, TPC,
1195                                          NewTypeParm->getLocation(),
1196               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1197                                                       .getSourceRange()))
1198        NewTypeParm->removeDefaultArgument();
1199
1200      // Merge default arguments for template type parameters.
1201      TemplateTypeParmDecl *OldTypeParm
1202          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1203
1204      if (NewTypeParm->isParameterPack()) {
1205        assert(!NewTypeParm->hasDefaultArgument() &&
1206               "Parameter packs can't have a default argument!");
1207        SawParameterPack = true;
1208        ParameterPackLoc = NewTypeParm->getLocation();
1209      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1210                 NewTypeParm->hasDefaultArgument()) {
1211        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1212        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1213        SawDefaultArgument = true;
1214        RedundantDefaultArg = true;
1215        PreviousDefaultArgLoc = NewDefaultLoc;
1216      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1217        // Merge the default argument from the old declaration to the
1218        // new declaration.
1219        SawDefaultArgument = true;
1220        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1221                                        true);
1222        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1223      } else if (NewTypeParm->hasDefaultArgument()) {
1224        SawDefaultArgument = true;
1225        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1226      } else if (SawDefaultArgument)
1227        MissingDefaultArg = true;
1228    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1229               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1230      // Check for unexpanded parameter packs.
1231      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1232                                          NewNonTypeParm->getTypeSourceInfo(),
1233                                          UPPC_NonTypeTemplateParameterType)) {
1234        Invalid = true;
1235        continue;
1236      }
1237
1238      // Check the presence of a default argument here.
1239      if (NewNonTypeParm->hasDefaultArgument() &&
1240          DiagnoseDefaultTemplateArgument(*this, TPC,
1241                                          NewNonTypeParm->getLocation(),
1242                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1243        NewNonTypeParm->removeDefaultArgument();
1244      }
1245
1246      // Merge default arguments for non-type template parameters
1247      NonTypeTemplateParmDecl *OldNonTypeParm
1248        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1249      if (NewNonTypeParm->isParameterPack()) {
1250        assert(!NewNonTypeParm->hasDefaultArgument() &&
1251               "Parameter packs can't have a default argument!");
1252        SawParameterPack = true;
1253        ParameterPackLoc = NewNonTypeParm->getLocation();
1254      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1255          NewNonTypeParm->hasDefaultArgument()) {
1256        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1257        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1258        SawDefaultArgument = true;
1259        RedundantDefaultArg = true;
1260        PreviousDefaultArgLoc = NewDefaultLoc;
1261      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1262        // Merge the default argument from the old declaration to the
1263        // new declaration.
1264        SawDefaultArgument = true;
1265        // FIXME: We need to create a new kind of "default argument"
1266        // expression that points to a previous non-type template
1267        // parameter.
1268        NewNonTypeParm->setDefaultArgument(
1269                                         OldNonTypeParm->getDefaultArgument(),
1270                                         /*Inherited=*/ true);
1271        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1272      } else if (NewNonTypeParm->hasDefaultArgument()) {
1273        SawDefaultArgument = true;
1274        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1275      } else if (SawDefaultArgument)
1276        MissingDefaultArg = true;
1277    } else {
1278      // Check the presence of a default argument here.
1279      TemplateTemplateParmDecl *NewTemplateParm
1280        = cast<TemplateTemplateParmDecl>(*NewParam);
1281
1282      // Check for unexpanded parameter packs, recursively.
1283      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1284        Invalid = true;
1285        continue;
1286      }
1287
1288      if (NewTemplateParm->hasDefaultArgument() &&
1289          DiagnoseDefaultTemplateArgument(*this, TPC,
1290                                          NewTemplateParm->getLocation(),
1291                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1292        NewTemplateParm->removeDefaultArgument();
1293
1294      // Merge default arguments for template template parameters
1295      TemplateTemplateParmDecl *OldTemplateParm
1296        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1297      if (NewTemplateParm->isParameterPack()) {
1298        assert(!NewTemplateParm->hasDefaultArgument() &&
1299               "Parameter packs can't have a default argument!");
1300        SawParameterPack = true;
1301        ParameterPackLoc = NewTemplateParm->getLocation();
1302      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1303          NewTemplateParm->hasDefaultArgument()) {
1304        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1305        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1306        SawDefaultArgument = true;
1307        RedundantDefaultArg = true;
1308        PreviousDefaultArgLoc = NewDefaultLoc;
1309      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1310        // Merge the default argument from the old declaration to the
1311        // new declaration.
1312        SawDefaultArgument = true;
1313        // FIXME: We need to create a new kind of "default argument" expression
1314        // that points to a previous template template parameter.
1315        NewTemplateParm->setDefaultArgument(
1316                                          OldTemplateParm->getDefaultArgument(),
1317                                          /*Inherited=*/ true);
1318        PreviousDefaultArgLoc
1319          = OldTemplateParm->getDefaultArgument().getLocation();
1320      } else if (NewTemplateParm->hasDefaultArgument()) {
1321        SawDefaultArgument = true;
1322        PreviousDefaultArgLoc
1323          = NewTemplateParm->getDefaultArgument().getLocation();
1324      } else if (SawDefaultArgument)
1325        MissingDefaultArg = true;
1326    }
1327
1328    if (RedundantDefaultArg) {
1329      // C++ [temp.param]p12:
1330      //   A template-parameter shall not be given default arguments
1331      //   by two different declarations in the same scope.
1332      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1333      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1334      Invalid = true;
1335    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1336      // C++ [temp.param]p11:
1337      //   If a template-parameter of a class template has a default
1338      //   template-argument, each subsequent template-parameter shall either
1339      //   have a default template-argument supplied or be a template parameter
1340      //   pack.
1341      Diag((*NewParam)->getLocation(),
1342           diag::err_template_param_default_arg_missing);
1343      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1344      Invalid = true;
1345      RemoveDefaultArguments = true;
1346    }
1347
1348    // If we have an old template parameter list that we're merging
1349    // in, move on to the next parameter.
1350    if (OldParams)
1351      ++OldParam;
1352  }
1353
1354  // We were missing some default arguments at the end of the list, so remove
1355  // all of the default arguments.
1356  if (RemoveDefaultArguments) {
1357    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1358                                      NewParamEnd = NewParams->end();
1359         NewParam != NewParamEnd; ++NewParam) {
1360      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1361        TTP->removeDefaultArgument();
1362      else if (NonTypeTemplateParmDecl *NTTP
1363                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1364        NTTP->removeDefaultArgument();
1365      else
1366        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1367    }
1368  }
1369
1370  return Invalid;
1371}
1372
1373namespace {
1374
1375/// A class which looks for a use of a certain level of template
1376/// parameter.
1377struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1378  typedef RecursiveASTVisitor<DependencyChecker> super;
1379
1380  unsigned Depth;
1381  bool Match;
1382
1383  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1384    NamedDecl *ND = Params->getParam(0);
1385    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1386      Depth = PD->getDepth();
1387    } else if (NonTypeTemplateParmDecl *PD =
1388                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1389      Depth = PD->getDepth();
1390    } else {
1391      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1392    }
1393  }
1394
1395  bool Matches(unsigned ParmDepth) {
1396    if (ParmDepth >= Depth) {
1397      Match = true;
1398      return true;
1399    }
1400    return false;
1401  }
1402
1403  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1404    return !Matches(T->getDepth());
1405  }
1406
1407  bool TraverseTemplateName(TemplateName N) {
1408    if (TemplateTemplateParmDecl *PD =
1409          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1410      if (Matches(PD->getDepth())) return false;
1411    return super::TraverseTemplateName(N);
1412  }
1413
1414  bool VisitDeclRefExpr(DeclRefExpr *E) {
1415    if (NonTypeTemplateParmDecl *PD =
1416          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1417      if (PD->getDepth() == Depth) {
1418        Match = true;
1419        return false;
1420      }
1421    }
1422    return super::VisitDeclRefExpr(E);
1423  }
1424};
1425}
1426
1427/// Determines whether a template-id depends on the given parameter
1428/// list.
1429static bool
1430DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1431                            TemplateParameterList *Params) {
1432  DependencyChecker Checker(Params);
1433  Checker.TraverseType(QualType(TemplateId, 0));
1434  return Checker.Match;
1435}
1436
1437/// \brief Match the given template parameter lists to the given scope
1438/// specifier, returning the template parameter list that applies to the
1439/// name.
1440///
1441/// \param DeclStartLoc the start of the declaration that has a scope
1442/// specifier or a template parameter list.
1443///
1444/// \param SS the scope specifier that will be matched to the given template
1445/// parameter lists. This scope specifier precedes a qualified name that is
1446/// being declared.
1447///
1448/// \param ParamLists the template parameter lists, from the outermost to the
1449/// innermost template parameter lists.
1450///
1451/// \param NumParamLists the number of template parameter lists in ParamLists.
1452///
1453/// \param IsFriend Whether to apply the slightly different rules for
1454/// matching template parameters to scope specifiers in friend
1455/// declarations.
1456///
1457/// \param IsExplicitSpecialization will be set true if the entity being
1458/// declared is an explicit specialization, false otherwise.
1459///
1460/// \returns the template parameter list, if any, that corresponds to the
1461/// name that is preceded by the scope specifier @p SS. This template
1462/// parameter list may have template parameters (if we're declaring a
1463/// template) or may have no template parameters (if we're declaring a
1464/// template specialization), or may be NULL (if what we're declaring isn't
1465/// itself a template).
1466TemplateParameterList *
1467Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1468                                              const CXXScopeSpec &SS,
1469                                          TemplateParameterList **ParamLists,
1470                                              unsigned NumParamLists,
1471                                              bool IsFriend,
1472                                              bool &IsExplicitSpecialization,
1473                                              bool &Invalid) {
1474  IsExplicitSpecialization = false;
1475
1476  // Find the template-ids that occur within the nested-name-specifier. These
1477  // template-ids will match up with the template parameter lists.
1478  llvm::SmallVector<const TemplateSpecializationType *, 4>
1479    TemplateIdsInSpecifier;
1480  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1481    ExplicitSpecializationsInSpecifier;
1482  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1483       NNS; NNS = NNS->getPrefix()) {
1484    const Type *T = NNS->getAsType();
1485    if (!T) break;
1486
1487    // C++0x [temp.expl.spec]p17:
1488    //   A member or a member template may be nested within many
1489    //   enclosing class templates. In an explicit specialization for
1490    //   such a member, the member declaration shall be preceded by a
1491    //   template<> for each enclosing class template that is
1492    //   explicitly specialized.
1493    //
1494    // Following the existing practice of GNU and EDG, we allow a typedef of a
1495    // template specialization type.
1496    while (const TypedefType *TT = dyn_cast<TypedefType>(T))
1497      T = TT->getDecl()->getUnderlyingType().getTypePtr();
1498
1499    if (const TemplateSpecializationType *SpecType
1500                                  = dyn_cast<TemplateSpecializationType>(T)) {
1501      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1502      if (!Template)
1503        continue; // FIXME: should this be an error? probably...
1504
1505      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1506        ClassTemplateSpecializationDecl *SpecDecl
1507          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1508        // If the nested name specifier refers to an explicit specialization,
1509        // we don't need a template<> header.
1510        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1511          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1512          continue;
1513        }
1514      }
1515
1516      TemplateIdsInSpecifier.push_back(SpecType);
1517    }
1518  }
1519
1520  // Reverse the list of template-ids in the scope specifier, so that we can
1521  // more easily match up the template-ids and the template parameter lists.
1522  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1523
1524  SourceLocation FirstTemplateLoc = DeclStartLoc;
1525  if (NumParamLists)
1526    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1527
1528  // Match the template-ids found in the specifier to the template parameter
1529  // lists.
1530  unsigned ParamIdx = 0, TemplateIdx = 0;
1531  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1532       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1533    const TemplateSpecializationType *TemplateId
1534      = TemplateIdsInSpecifier[TemplateIdx];
1535    bool DependentTemplateId = TemplateId->isDependentType();
1536
1537    // In friend declarations we can have template-ids which don't
1538    // depend on the corresponding template parameter lists.  But
1539    // assume that empty parameter lists are supposed to match this
1540    // template-id.
1541    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1542      if (!DependentTemplateId ||
1543          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1544        continue;
1545    }
1546
1547    if (ParamIdx >= NumParamLists) {
1548      // We have a template-id without a corresponding template parameter
1549      // list.
1550
1551      // ...which is fine if this is a friend declaration.
1552      if (IsFriend) {
1553        IsExplicitSpecialization = true;
1554        break;
1555      }
1556
1557      if (DependentTemplateId) {
1558        // FIXME: the location information here isn't great.
1559        Diag(SS.getRange().getBegin(),
1560             diag::err_template_spec_needs_template_parameters)
1561          << QualType(TemplateId, 0)
1562          << SS.getRange();
1563        Invalid = true;
1564      } else {
1565        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1566          << SS.getRange()
1567          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1568        IsExplicitSpecialization = true;
1569      }
1570      return 0;
1571    }
1572
1573    // Check the template parameter list against its corresponding template-id.
1574    if (DependentTemplateId) {
1575      TemplateParameterList *ExpectedTemplateParams = 0;
1576
1577      // Are there cases in (e.g.) friends where this won't match?
1578      if (const InjectedClassNameType *Injected
1579            = TemplateId->getAs<InjectedClassNameType>()) {
1580        CXXRecordDecl *Record = Injected->getDecl();
1581        if (ClassTemplatePartialSpecializationDecl *Partial =
1582              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1583          ExpectedTemplateParams = Partial->getTemplateParameters();
1584        else
1585          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1586            ->getTemplateParameters();
1587      }
1588
1589      if (ExpectedTemplateParams)
1590        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1591                                       ExpectedTemplateParams,
1592                                       true, TPL_TemplateMatch);
1593
1594      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1595                                 TPC_ClassTemplateMember);
1596    } else if (ParamLists[ParamIdx]->size() > 0)
1597      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1598           diag::err_template_param_list_matches_nontemplate)
1599        << TemplateId
1600        << ParamLists[ParamIdx]->getSourceRange();
1601    else
1602      IsExplicitSpecialization = true;
1603
1604    ++ParamIdx;
1605  }
1606
1607  // If there were at least as many template-ids as there were template
1608  // parameter lists, then there are no template parameter lists remaining for
1609  // the declaration itself.
1610  if (ParamIdx >= NumParamLists)
1611    return 0;
1612
1613  // If there were too many template parameter lists, complain about that now.
1614  if (ParamIdx != NumParamLists - 1) {
1615    while (ParamIdx < NumParamLists - 1) {
1616      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1617      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1618           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1619                               : diag::err_template_spec_extra_headers)
1620        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1621                       ParamLists[ParamIdx]->getRAngleLoc());
1622
1623      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1624        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1625             diag::note_explicit_template_spec_does_not_need_header)
1626          << ExplicitSpecializationsInSpecifier.back();
1627        ExplicitSpecializationsInSpecifier.pop_back();
1628      }
1629
1630      // We have a template parameter list with no corresponding scope, which
1631      // means that the resulting template declaration can't be instantiated
1632      // properly (we'll end up with dependent nodes when we shouldn't).
1633      if (!isExplicitSpecHeader)
1634        Invalid = true;
1635
1636      ++ParamIdx;
1637    }
1638  }
1639
1640  // Return the last template parameter list, which corresponds to the
1641  // entity being declared.
1642  return ParamLists[NumParamLists - 1];
1643}
1644
1645void Sema::NoteAllFoundTemplates(TemplateName Name) {
1646  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1647    Diag(Template->getLocation(), diag::note_template_declared_here)
1648      << (isa<FunctionTemplateDecl>(Template)? 0
1649          : isa<ClassTemplateDecl>(Template)? 1
1650          : 2)
1651      << Template->getDeclName();
1652    return;
1653  }
1654
1655  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1656    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1657                                          IEnd = OST->end();
1658         I != IEnd; ++I)
1659      Diag((*I)->getLocation(), diag::note_template_declared_here)
1660        << 0 << (*I)->getDeclName();
1661
1662    return;
1663  }
1664}
1665
1666
1667QualType Sema::CheckTemplateIdType(TemplateName Name,
1668                                   SourceLocation TemplateLoc,
1669                                   TemplateArgumentListInfo &TemplateArgs) {
1670  TemplateDecl *Template = Name.getAsTemplateDecl();
1671  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1672    // We might have a substituted template template parameter pack. If so,
1673    // build a template specialization type for it.
1674    if (Name.getAsSubstTemplateTemplateParmPack())
1675      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1676
1677    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1678      << Name;
1679    NoteAllFoundTemplates(Name);
1680    return QualType();
1681  }
1682
1683  // Check that the template argument list is well-formed for this
1684  // template.
1685  llvm::SmallVector<TemplateArgument, 4> Converted;
1686  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1687                                false, Converted))
1688    return QualType();
1689
1690  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1691         "Converted template argument list is too short!");
1692
1693  QualType CanonType;
1694
1695  if (Name.isDependent() ||
1696      TemplateSpecializationType::anyDependentTemplateArguments(
1697                                                      TemplateArgs)) {
1698    // This class template specialization is a dependent
1699    // type. Therefore, its canonical type is another class template
1700    // specialization type that contains all of the converted
1701    // arguments in canonical form. This ensures that, e.g., A<T> and
1702    // A<T, T> have identical types when A is declared as:
1703    //
1704    //   template<typename T, typename U = T> struct A;
1705    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1706    CanonType = Context.getTemplateSpecializationType(CanonName,
1707                                                      Converted.data(),
1708                                                      Converted.size());
1709
1710    // FIXME: CanonType is not actually the canonical type, and unfortunately
1711    // it is a TemplateSpecializationType that we will never use again.
1712    // In the future, we need to teach getTemplateSpecializationType to only
1713    // build the canonical type and return that to us.
1714    CanonType = Context.getCanonicalType(CanonType);
1715
1716    // This might work out to be a current instantiation, in which
1717    // case the canonical type needs to be the InjectedClassNameType.
1718    //
1719    // TODO: in theory this could be a simple hashtable lookup; most
1720    // changes to CurContext don't change the set of current
1721    // instantiations.
1722    if (isa<ClassTemplateDecl>(Template)) {
1723      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1724        // If we get out to a namespace, we're done.
1725        if (Ctx->isFileContext()) break;
1726
1727        // If this isn't a record, keep looking.
1728        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1729        if (!Record) continue;
1730
1731        // Look for one of the two cases with InjectedClassNameTypes
1732        // and check whether it's the same template.
1733        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1734            !Record->getDescribedClassTemplate())
1735          continue;
1736
1737        // Fetch the injected class name type and check whether its
1738        // injected type is equal to the type we just built.
1739        QualType ICNT = Context.getTypeDeclType(Record);
1740        QualType Injected = cast<InjectedClassNameType>(ICNT)
1741          ->getInjectedSpecializationType();
1742
1743        if (CanonType != Injected->getCanonicalTypeInternal())
1744          continue;
1745
1746        // If so, the canonical type of this TST is the injected
1747        // class name type of the record we just found.
1748        assert(ICNT.isCanonical());
1749        CanonType = ICNT;
1750        break;
1751      }
1752    }
1753  } else if (ClassTemplateDecl *ClassTemplate
1754               = dyn_cast<ClassTemplateDecl>(Template)) {
1755    // Find the class template specialization declaration that
1756    // corresponds to these arguments.
1757    void *InsertPos = 0;
1758    ClassTemplateSpecializationDecl *Decl
1759      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1760                                          InsertPos);
1761    if (!Decl) {
1762      // This is the first time we have referenced this class template
1763      // specialization. Create the canonical declaration and add it to
1764      // the set of specializations.
1765      Decl = ClassTemplateSpecializationDecl::Create(Context,
1766                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1767                                                ClassTemplate->getDeclContext(),
1768                                                ClassTemplate->getLocation(),
1769                                                ClassTemplate->getLocation(),
1770                                                     ClassTemplate,
1771                                                     Converted.data(),
1772                                                     Converted.size(), 0);
1773      ClassTemplate->AddSpecialization(Decl, InsertPos);
1774      Decl->setLexicalDeclContext(CurContext);
1775    }
1776
1777    CanonType = Context.getTypeDeclType(Decl);
1778    assert(isa<RecordType>(CanonType) &&
1779           "type of non-dependent specialization is not a RecordType");
1780  }
1781
1782  // Build the fully-sugared type for this class template
1783  // specialization, which refers back to the class template
1784  // specialization we created or found.
1785  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1786}
1787
1788TypeResult
1789Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
1790                          TemplateTy TemplateD, SourceLocation TemplateLoc,
1791                          SourceLocation LAngleLoc,
1792                          ASTTemplateArgsPtr TemplateArgsIn,
1793                          SourceLocation RAngleLoc) {
1794  if (SS.isInvalid())
1795    return true;
1796
1797  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1798
1799  // Translate the parser's template argument list in our AST format.
1800  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1801  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1802
1803  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
1804    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
1805                                                           DTN->getQualifier(),
1806                                                           DTN->getIdentifier(),
1807                                                                TemplateArgs);
1808
1809    // Build type-source information.
1810    TypeLocBuilder TLB;
1811    DependentTemplateSpecializationTypeLoc SpecTL
1812      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
1813    SpecTL.setKeywordLoc(SourceLocation());
1814    SpecTL.setNameLoc(TemplateLoc);
1815    SpecTL.setLAngleLoc(LAngleLoc);
1816    SpecTL.setRAngleLoc(RAngleLoc);
1817    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
1818    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
1819      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
1820    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
1821  }
1822
1823  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1824  TemplateArgsIn.release();
1825
1826  if (Result.isNull())
1827    return true;
1828
1829  // Build type-source information.
1830  TypeLocBuilder TLB;
1831  TemplateSpecializationTypeLoc SpecTL
1832    = TLB.push<TemplateSpecializationTypeLoc>(Result);
1833  SpecTL.setTemplateNameLoc(TemplateLoc);
1834  SpecTL.setLAngleLoc(LAngleLoc);
1835  SpecTL.setRAngleLoc(RAngleLoc);
1836  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
1837    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1838
1839  if (SS.isNotEmpty()) {
1840    // Create an elaborated-type-specifier containing the nested-name-specifier.
1841    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
1842    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
1843    ElabTL.setKeywordLoc(SourceLocation());
1844    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
1845  }
1846
1847  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
1848}
1849
1850TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
1851                                        TypeSpecifierType TagSpec,
1852                                        SourceLocation TagLoc,
1853                                        CXXScopeSpec &SS,
1854                                        TemplateTy TemplateD,
1855                                        SourceLocation TemplateLoc,
1856                                        SourceLocation LAngleLoc,
1857                                        ASTTemplateArgsPtr TemplateArgsIn,
1858                                        SourceLocation RAngleLoc) {
1859  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1860
1861  // Translate the parser's template argument list in our AST format.
1862  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1863  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1864
1865  // Determine the tag kind
1866  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1867  ElaboratedTypeKeyword Keyword
1868    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1869
1870  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
1871    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
1872                                                          DTN->getQualifier(),
1873                                                          DTN->getIdentifier(),
1874                                                                TemplateArgs);
1875
1876    // Build type-source information.
1877    TypeLocBuilder TLB;
1878    DependentTemplateSpecializationTypeLoc SpecTL
1879    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
1880    SpecTL.setKeywordLoc(TagLoc);
1881    SpecTL.setNameLoc(TemplateLoc);
1882    SpecTL.setLAngleLoc(LAngleLoc);
1883    SpecTL.setRAngleLoc(RAngleLoc);
1884    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
1885    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
1886      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
1887    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
1888  }
1889
1890  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1891  if (Result.isNull())
1892    return TypeResult();
1893
1894  // Check the tag kind
1895  if (const RecordType *RT = Result->getAs<RecordType>()) {
1896    RecordDecl *D = RT->getDecl();
1897
1898    IdentifierInfo *Id = D->getIdentifier();
1899    assert(Id && "templated class must have an identifier");
1900
1901    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1902      Diag(TagLoc, diag::err_use_with_wrong_tag)
1903        << Result
1904        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1905      Diag(D->getLocation(), diag::note_previous_use);
1906    }
1907  }
1908
1909  // Provide source-location information for the template specialization.
1910  TypeLocBuilder TLB;
1911  TemplateSpecializationTypeLoc SpecTL
1912    = TLB.push<TemplateSpecializationTypeLoc>(Result);
1913  SpecTL.setTemplateNameLoc(TemplateLoc);
1914  SpecTL.setLAngleLoc(LAngleLoc);
1915  SpecTL.setRAngleLoc(RAngleLoc);
1916  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
1917    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1918
1919  // Construct an elaborated type containing the nested-name-specifier (if any)
1920  // and keyword.
1921  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
1922  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
1923  ElabTL.setKeywordLoc(TagLoc);
1924  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
1925  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
1926}
1927
1928ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1929                                     LookupResult &R,
1930                                     bool RequiresADL,
1931                                 const TemplateArgumentListInfo &TemplateArgs) {
1932  // FIXME: Can we do any checking at this point? I guess we could check the
1933  // template arguments that we have against the template name, if the template
1934  // name refers to a single template. That's not a terribly common case,
1935  // though.
1936  // foo<int> could identify a single function unambiguously
1937  // This approach does NOT work, since f<int>(1);
1938  // gets resolved prior to resorting to overload resolution
1939  // i.e., template<class T> void f(double);
1940  //       vs template<class T, class U> void f(U);
1941
1942  // These should be filtered out by our callers.
1943  assert(!R.empty() && "empty lookup results when building templateid");
1944  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1945
1946  // We don't want lookup warnings at this point.
1947  R.suppressDiagnostics();
1948
1949  UnresolvedLookupExpr *ULE
1950    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
1951                                   SS.getWithLocInContext(Context),
1952                                   R.getLookupNameInfo(),
1953                                   RequiresADL, TemplateArgs,
1954                                   R.begin(), R.end());
1955
1956  return Owned(ULE);
1957}
1958
1959// We actually only call this from template instantiation.
1960ExprResult
1961Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1962                                   const DeclarationNameInfo &NameInfo,
1963                             const TemplateArgumentListInfo &TemplateArgs) {
1964  DeclContext *DC;
1965  if (!(DC = computeDeclContext(SS, false)) ||
1966      DC->isDependentContext() ||
1967      RequireCompleteDeclContext(SS, DC))
1968    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1969
1970  bool MemberOfUnknownSpecialization;
1971  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1972  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1973                     MemberOfUnknownSpecialization);
1974
1975  if (R.isAmbiguous())
1976    return ExprError();
1977
1978  if (R.empty()) {
1979    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1980      << NameInfo.getName() << SS.getRange();
1981    return ExprError();
1982  }
1983
1984  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1985    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1986      << (NestedNameSpecifier*) SS.getScopeRep()
1987      << NameInfo.getName() << SS.getRange();
1988    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1989    return ExprError();
1990  }
1991
1992  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1993}
1994
1995/// \brief Form a dependent template name.
1996///
1997/// This action forms a dependent template name given the template
1998/// name and its (presumably dependent) scope specifier. For
1999/// example, given "MetaFun::template apply", the scope specifier \p
2000/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2001/// of the "template" keyword, and "apply" is the \p Name.
2002TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2003                                                  SourceLocation TemplateKWLoc,
2004                                                  CXXScopeSpec &SS,
2005                                                  UnqualifiedId &Name,
2006                                                  ParsedType ObjectType,
2007                                                  bool EnteringContext,
2008                                                  TemplateTy &Result) {
2009  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
2010      !getLangOptions().CPlusPlus0x)
2011    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
2012      << FixItHint::CreateRemoval(TemplateKWLoc);
2013
2014  DeclContext *LookupCtx = 0;
2015  if (SS.isSet())
2016    LookupCtx = computeDeclContext(SS, EnteringContext);
2017  if (!LookupCtx && ObjectType)
2018    LookupCtx = computeDeclContext(ObjectType.get());
2019  if (LookupCtx) {
2020    // C++0x [temp.names]p5:
2021    //   If a name prefixed by the keyword template is not the name of
2022    //   a template, the program is ill-formed. [Note: the keyword
2023    //   template may not be applied to non-template members of class
2024    //   templates. -end note ] [ Note: as is the case with the
2025    //   typename prefix, the template prefix is allowed in cases
2026    //   where it is not strictly necessary; i.e., when the
2027    //   nested-name-specifier or the expression on the left of the ->
2028    //   or . is not dependent on a template-parameter, or the use
2029    //   does not appear in the scope of a template. -end note]
2030    //
2031    // Note: C++03 was more strict here, because it banned the use of
2032    // the "template" keyword prior to a template-name that was not a
2033    // dependent name. C++ DR468 relaxed this requirement (the
2034    // "template" keyword is now permitted). We follow the C++0x
2035    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2036    bool MemberOfUnknownSpecialization;
2037    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2038                                          ObjectType, EnteringContext, Result,
2039                                          MemberOfUnknownSpecialization);
2040    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2041        isa<CXXRecordDecl>(LookupCtx) &&
2042        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2043         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2044      // This is a dependent template. Handle it below.
2045    } else if (TNK == TNK_Non_template) {
2046      Diag(Name.getSourceRange().getBegin(),
2047           diag::err_template_kw_refers_to_non_template)
2048        << GetNameFromUnqualifiedId(Name).getName()
2049        << Name.getSourceRange()
2050        << TemplateKWLoc;
2051      return TNK_Non_template;
2052    } else {
2053      // We found something; return it.
2054      return TNK;
2055    }
2056  }
2057
2058  NestedNameSpecifier *Qualifier
2059    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2060
2061  switch (Name.getKind()) {
2062  case UnqualifiedId::IK_Identifier:
2063    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2064                                                              Name.Identifier));
2065    return TNK_Dependent_template_name;
2066
2067  case UnqualifiedId::IK_OperatorFunctionId:
2068    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2069                                             Name.OperatorFunctionId.Operator));
2070    return TNK_Dependent_template_name;
2071
2072  case UnqualifiedId::IK_LiteralOperatorId:
2073    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
2074
2075  default:
2076    break;
2077  }
2078
2079  Diag(Name.getSourceRange().getBegin(),
2080       diag::err_template_kw_refers_to_non_template)
2081    << GetNameFromUnqualifiedId(Name).getName()
2082    << Name.getSourceRange()
2083    << TemplateKWLoc;
2084  return TNK_Non_template;
2085}
2086
2087bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2088                                     const TemplateArgumentLoc &AL,
2089                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2090  const TemplateArgument &Arg = AL.getArgument();
2091
2092  // Check template type parameter.
2093  switch(Arg.getKind()) {
2094  case TemplateArgument::Type:
2095    // C++ [temp.arg.type]p1:
2096    //   A template-argument for a template-parameter which is a
2097    //   type shall be a type-id.
2098    break;
2099  case TemplateArgument::Template: {
2100    // We have a template type parameter but the template argument
2101    // is a template without any arguments.
2102    SourceRange SR = AL.getSourceRange();
2103    TemplateName Name = Arg.getAsTemplate();
2104    Diag(SR.getBegin(), diag::err_template_missing_args)
2105      << Name << SR;
2106    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2107      Diag(Decl->getLocation(), diag::note_template_decl_here);
2108
2109    return true;
2110  }
2111  default: {
2112    // We have a template type parameter but the template argument
2113    // is not a type.
2114    SourceRange SR = AL.getSourceRange();
2115    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2116    Diag(Param->getLocation(), diag::note_template_param_here);
2117
2118    return true;
2119  }
2120  }
2121
2122  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2123    return true;
2124
2125  // Add the converted template type argument.
2126  Converted.push_back(
2127                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
2128  return false;
2129}
2130
2131/// \brief Substitute template arguments into the default template argument for
2132/// the given template type parameter.
2133///
2134/// \param SemaRef the semantic analysis object for which we are performing
2135/// the substitution.
2136///
2137/// \param Template the template that we are synthesizing template arguments
2138/// for.
2139///
2140/// \param TemplateLoc the location of the template name that started the
2141/// template-id we are checking.
2142///
2143/// \param RAngleLoc the location of the right angle bracket ('>') that
2144/// terminates the template-id.
2145///
2146/// \param Param the template template parameter whose default we are
2147/// substituting into.
2148///
2149/// \param Converted the list of template arguments provided for template
2150/// parameters that precede \p Param in the template parameter list.
2151/// \returns the substituted template argument, or NULL if an error occurred.
2152static TypeSourceInfo *
2153SubstDefaultTemplateArgument(Sema &SemaRef,
2154                             TemplateDecl *Template,
2155                             SourceLocation TemplateLoc,
2156                             SourceLocation RAngleLoc,
2157                             TemplateTypeParmDecl *Param,
2158                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2159  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2160
2161  // If the argument type is dependent, instantiate it now based
2162  // on the previously-computed template arguments.
2163  if (ArgType->getType()->isDependentType()) {
2164    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2165                                      Converted.data(), Converted.size());
2166
2167    MultiLevelTemplateArgumentList AllTemplateArgs
2168      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2169
2170    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2171                                     Template, Converted.data(),
2172                                     Converted.size(),
2173                                     SourceRange(TemplateLoc, RAngleLoc));
2174
2175    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2176                                Param->getDefaultArgumentLoc(),
2177                                Param->getDeclName());
2178  }
2179
2180  return ArgType;
2181}
2182
2183/// \brief Substitute template arguments into the default template argument for
2184/// the given non-type template parameter.
2185///
2186/// \param SemaRef the semantic analysis object for which we are performing
2187/// the substitution.
2188///
2189/// \param Template the template that we are synthesizing template arguments
2190/// for.
2191///
2192/// \param TemplateLoc the location of the template name that started the
2193/// template-id we are checking.
2194///
2195/// \param RAngleLoc the location of the right angle bracket ('>') that
2196/// terminates the template-id.
2197///
2198/// \param Param the non-type template parameter whose default we are
2199/// substituting into.
2200///
2201/// \param Converted the list of template arguments provided for template
2202/// parameters that precede \p Param in the template parameter list.
2203///
2204/// \returns the substituted template argument, or NULL if an error occurred.
2205static ExprResult
2206SubstDefaultTemplateArgument(Sema &SemaRef,
2207                             TemplateDecl *Template,
2208                             SourceLocation TemplateLoc,
2209                             SourceLocation RAngleLoc,
2210                             NonTypeTemplateParmDecl *Param,
2211                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2212  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2213                                    Converted.data(), Converted.size());
2214
2215  MultiLevelTemplateArgumentList AllTemplateArgs
2216    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2217
2218  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2219                                   Template, Converted.data(),
2220                                   Converted.size(),
2221                                   SourceRange(TemplateLoc, RAngleLoc));
2222
2223  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2224}
2225
2226/// \brief Substitute template arguments into the default template argument for
2227/// the given template template parameter.
2228///
2229/// \param SemaRef the semantic analysis object for which we are performing
2230/// the substitution.
2231///
2232/// \param Template the template that we are synthesizing template arguments
2233/// for.
2234///
2235/// \param TemplateLoc the location of the template name that started the
2236/// template-id we are checking.
2237///
2238/// \param RAngleLoc the location of the right angle bracket ('>') that
2239/// terminates the template-id.
2240///
2241/// \param Param the template template parameter whose default we are
2242/// substituting into.
2243///
2244/// \param Converted the list of template arguments provided for template
2245/// parameters that precede \p Param in the template parameter list.
2246///
2247/// \param QualifierLoc Will be set to the nested-name-specifier (with
2248/// source-location information) that precedes the template name.
2249///
2250/// \returns the substituted template argument, or NULL if an error occurred.
2251static TemplateName
2252SubstDefaultTemplateArgument(Sema &SemaRef,
2253                             TemplateDecl *Template,
2254                             SourceLocation TemplateLoc,
2255                             SourceLocation RAngleLoc,
2256                             TemplateTemplateParmDecl *Param,
2257                       llvm::SmallVectorImpl<TemplateArgument> &Converted,
2258                             NestedNameSpecifierLoc &QualifierLoc) {
2259  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2260                                    Converted.data(), Converted.size());
2261
2262  MultiLevelTemplateArgumentList AllTemplateArgs
2263    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2264
2265  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2266                                   Template, Converted.data(),
2267                                   Converted.size(),
2268                                   SourceRange(TemplateLoc, RAngleLoc));
2269
2270  // Substitute into the nested-name-specifier first,
2271  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2272  if (QualifierLoc) {
2273    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2274                                                       AllTemplateArgs);
2275    if (!QualifierLoc)
2276      return TemplateName();
2277  }
2278
2279  return SemaRef.SubstTemplateName(QualifierLoc,
2280                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2281                              Param->getDefaultArgument().getTemplateNameLoc(),
2282                                   AllTemplateArgs);
2283}
2284
2285/// \brief If the given template parameter has a default template
2286/// argument, substitute into that default template argument and
2287/// return the corresponding template argument.
2288TemplateArgumentLoc
2289Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2290                                              SourceLocation TemplateLoc,
2291                                              SourceLocation RAngleLoc,
2292                                              Decl *Param,
2293                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2294   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2295    if (!TypeParm->hasDefaultArgument())
2296      return TemplateArgumentLoc();
2297
2298    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2299                                                      TemplateLoc,
2300                                                      RAngleLoc,
2301                                                      TypeParm,
2302                                                      Converted);
2303    if (DI)
2304      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2305
2306    return TemplateArgumentLoc();
2307  }
2308
2309  if (NonTypeTemplateParmDecl *NonTypeParm
2310        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2311    if (!NonTypeParm->hasDefaultArgument())
2312      return TemplateArgumentLoc();
2313
2314    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2315                                                  TemplateLoc,
2316                                                  RAngleLoc,
2317                                                  NonTypeParm,
2318                                                  Converted);
2319    if (Arg.isInvalid())
2320      return TemplateArgumentLoc();
2321
2322    Expr *ArgE = Arg.takeAs<Expr>();
2323    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2324  }
2325
2326  TemplateTemplateParmDecl *TempTempParm
2327    = cast<TemplateTemplateParmDecl>(Param);
2328  if (!TempTempParm->hasDefaultArgument())
2329    return TemplateArgumentLoc();
2330
2331
2332  NestedNameSpecifierLoc QualifierLoc;
2333  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2334                                                    TemplateLoc,
2335                                                    RAngleLoc,
2336                                                    TempTempParm,
2337                                                    Converted,
2338                                                    QualifierLoc);
2339  if (TName.isNull())
2340    return TemplateArgumentLoc();
2341
2342  return TemplateArgumentLoc(TemplateArgument(TName),
2343                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2344                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2345}
2346
2347/// \brief Check that the given template argument corresponds to the given
2348/// template parameter.
2349///
2350/// \param Param The template parameter against which the argument will be
2351/// checked.
2352///
2353/// \param Arg The template argument.
2354///
2355/// \param Template The template in which the template argument resides.
2356///
2357/// \param TemplateLoc The location of the template name for the template
2358/// whose argument list we're matching.
2359///
2360/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2361/// the template argument list.
2362///
2363/// \param ArgumentPackIndex The index into the argument pack where this
2364/// argument will be placed. Only valid if the parameter is a parameter pack.
2365///
2366/// \param Converted The checked, converted argument will be added to the
2367/// end of this small vector.
2368///
2369/// \param CTAK Describes how we arrived at this particular template argument:
2370/// explicitly written, deduced, etc.
2371///
2372/// \returns true on error, false otherwise.
2373bool Sema::CheckTemplateArgument(NamedDecl *Param,
2374                                 const TemplateArgumentLoc &Arg,
2375                                 NamedDecl *Template,
2376                                 SourceLocation TemplateLoc,
2377                                 SourceLocation RAngleLoc,
2378                                 unsigned ArgumentPackIndex,
2379                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2380                                 CheckTemplateArgumentKind CTAK) {
2381  // Check template type parameters.
2382  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2383    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2384
2385  // Check non-type template parameters.
2386  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2387    // Do substitution on the type of the non-type template parameter
2388    // with the template arguments we've seen thus far.  But if the
2389    // template has a dependent context then we cannot substitute yet.
2390    QualType NTTPType = NTTP->getType();
2391    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2392      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2393
2394    if (NTTPType->isDependentType() &&
2395        !isa<TemplateTemplateParmDecl>(Template) &&
2396        !Template->getDeclContext()->isDependentContext()) {
2397      // Do substitution on the type of the non-type template parameter.
2398      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2399                                 NTTP, Converted.data(), Converted.size(),
2400                                 SourceRange(TemplateLoc, RAngleLoc));
2401
2402      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2403                                        Converted.data(), Converted.size());
2404      NTTPType = SubstType(NTTPType,
2405                           MultiLevelTemplateArgumentList(TemplateArgs),
2406                           NTTP->getLocation(),
2407                           NTTP->getDeclName());
2408      // If that worked, check the non-type template parameter type
2409      // for validity.
2410      if (!NTTPType.isNull())
2411        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2412                                                     NTTP->getLocation());
2413      if (NTTPType.isNull())
2414        return true;
2415    }
2416
2417    switch (Arg.getArgument().getKind()) {
2418    case TemplateArgument::Null:
2419      assert(false && "Should never see a NULL template argument here");
2420      return true;
2421
2422    case TemplateArgument::Expression: {
2423      TemplateArgument Result;
2424      ExprResult Res =
2425        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2426                              Result, CTAK);
2427      if (Res.isInvalid())
2428        return true;
2429
2430      Converted.push_back(Result);
2431      break;
2432    }
2433
2434    case TemplateArgument::Declaration:
2435    case TemplateArgument::Integral:
2436      // We've already checked this template argument, so just copy
2437      // it to the list of converted arguments.
2438      Converted.push_back(Arg.getArgument());
2439      break;
2440
2441    case TemplateArgument::Template:
2442    case TemplateArgument::TemplateExpansion:
2443      // We were given a template template argument. It may not be ill-formed;
2444      // see below.
2445      if (DependentTemplateName *DTN
2446            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2447                                              .getAsDependentTemplateName()) {
2448        // We have a template argument such as \c T::template X, which we
2449        // parsed as a template template argument. However, since we now
2450        // know that we need a non-type template argument, convert this
2451        // template name into an expression.
2452
2453        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2454                                     Arg.getTemplateNameLoc());
2455
2456        CXXScopeSpec SS;
2457        SS.Adopt(Arg.getTemplateQualifierLoc());
2458        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2459                                                SS.getWithLocInContext(Context),
2460                                                    NameInfo));
2461
2462        // If we parsed the template argument as a pack expansion, create a
2463        // pack expansion expression.
2464        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2465          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2466          if (E.isInvalid())
2467            return true;
2468        }
2469
2470        TemplateArgument Result;
2471        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2472        if (E.isInvalid())
2473          return true;
2474
2475        Converted.push_back(Result);
2476        break;
2477      }
2478
2479      // We have a template argument that actually does refer to a class
2480      // template, template alias, or template template parameter, and
2481      // therefore cannot be a non-type template argument.
2482      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2483        << Arg.getSourceRange();
2484
2485      Diag(Param->getLocation(), diag::note_template_param_here);
2486      return true;
2487
2488    case TemplateArgument::Type: {
2489      // We have a non-type template parameter but the template
2490      // argument is a type.
2491
2492      // C++ [temp.arg]p2:
2493      //   In a template-argument, an ambiguity between a type-id and
2494      //   an expression is resolved to a type-id, regardless of the
2495      //   form of the corresponding template-parameter.
2496      //
2497      // We warn specifically about this case, since it can be rather
2498      // confusing for users.
2499      QualType T = Arg.getArgument().getAsType();
2500      SourceRange SR = Arg.getSourceRange();
2501      if (T->isFunctionType())
2502        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2503      else
2504        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2505      Diag(Param->getLocation(), diag::note_template_param_here);
2506      return true;
2507    }
2508
2509    case TemplateArgument::Pack:
2510      llvm_unreachable("Caller must expand template argument packs");
2511      break;
2512    }
2513
2514    return false;
2515  }
2516
2517
2518  // Check template template parameters.
2519  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2520
2521  // Substitute into the template parameter list of the template
2522  // template parameter, since previously-supplied template arguments
2523  // may appear within the template template parameter.
2524  {
2525    // Set up a template instantiation context.
2526    LocalInstantiationScope Scope(*this);
2527    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2528                               TempParm, Converted.data(), Converted.size(),
2529                               SourceRange(TemplateLoc, RAngleLoc));
2530
2531    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2532                                      Converted.data(), Converted.size());
2533    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2534                      SubstDecl(TempParm, CurContext,
2535                                MultiLevelTemplateArgumentList(TemplateArgs)));
2536    if (!TempParm)
2537      return true;
2538  }
2539
2540  switch (Arg.getArgument().getKind()) {
2541  case TemplateArgument::Null:
2542    assert(false && "Should never see a NULL template argument here");
2543    return true;
2544
2545  case TemplateArgument::Template:
2546  case TemplateArgument::TemplateExpansion:
2547    if (CheckTemplateArgument(TempParm, Arg))
2548      return true;
2549
2550    Converted.push_back(Arg.getArgument());
2551    break;
2552
2553  case TemplateArgument::Expression:
2554  case TemplateArgument::Type:
2555    // We have a template template parameter but the template
2556    // argument does not refer to a template.
2557    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2558    return true;
2559
2560  case TemplateArgument::Declaration:
2561    llvm_unreachable(
2562                       "Declaration argument with template template parameter");
2563    break;
2564  case TemplateArgument::Integral:
2565    llvm_unreachable(
2566                          "Integral argument with template template parameter");
2567    break;
2568
2569  case TemplateArgument::Pack:
2570    llvm_unreachable("Caller must expand template argument packs");
2571    break;
2572  }
2573
2574  return false;
2575}
2576
2577/// \brief Check that the given template argument list is well-formed
2578/// for specializing the given template.
2579bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2580                                     SourceLocation TemplateLoc,
2581                                     TemplateArgumentListInfo &TemplateArgs,
2582                                     bool PartialTemplateArgs,
2583                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2584  TemplateParameterList *Params = Template->getTemplateParameters();
2585  unsigned NumParams = Params->size();
2586  unsigned NumArgs = TemplateArgs.size();
2587  bool Invalid = false;
2588
2589  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2590
2591  bool HasParameterPack =
2592    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2593
2594  if ((NumArgs > NumParams && !HasParameterPack) ||
2595      (NumArgs < Params->getMinRequiredArguments() &&
2596       !PartialTemplateArgs)) {
2597    // FIXME: point at either the first arg beyond what we can handle,
2598    // or the '>', depending on whether we have too many or too few
2599    // arguments.
2600    SourceRange Range;
2601    if (NumArgs > NumParams)
2602      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2603    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2604      << (NumArgs > NumParams)
2605      << (isa<ClassTemplateDecl>(Template)? 0 :
2606          isa<FunctionTemplateDecl>(Template)? 1 :
2607          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2608      << Template << Range;
2609    Diag(Template->getLocation(), diag::note_template_decl_here)
2610      << Params->getSourceRange();
2611    Invalid = true;
2612  }
2613
2614  // C++ [temp.arg]p1:
2615  //   [...] The type and form of each template-argument specified in
2616  //   a template-id shall match the type and form specified for the
2617  //   corresponding parameter declared by the template in its
2618  //   template-parameter-list.
2619  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2620  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2621  TemplateParameterList::iterator Param = Params->begin(),
2622                               ParamEnd = Params->end();
2623  unsigned ArgIdx = 0;
2624  LocalInstantiationScope InstScope(*this, true);
2625  while (Param != ParamEnd) {
2626    if (ArgIdx > NumArgs && PartialTemplateArgs)
2627      break;
2628
2629    if (ArgIdx < NumArgs) {
2630      // If we have an expanded parameter pack, make sure we don't have too
2631      // many arguments.
2632      if (NonTypeTemplateParmDecl *NTTP
2633                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2634        if (NTTP->isExpandedParameterPack() &&
2635            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2636          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2637            << true
2638            << (isa<ClassTemplateDecl>(Template)? 0 :
2639                isa<FunctionTemplateDecl>(Template)? 1 :
2640                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2641            << Template;
2642          Diag(Template->getLocation(), diag::note_template_decl_here)
2643            << Params->getSourceRange();
2644          return true;
2645        }
2646      }
2647
2648      // Check the template argument we were given.
2649      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2650                                TemplateLoc, RAngleLoc,
2651                                ArgumentPack.size(), Converted))
2652        return true;
2653
2654      if ((*Param)->isTemplateParameterPack()) {
2655        // The template parameter was a template parameter pack, so take the
2656        // deduced argument and place it on the argument pack. Note that we
2657        // stay on the same template parameter so that we can deduce more
2658        // arguments.
2659        ArgumentPack.push_back(Converted.back());
2660        Converted.pop_back();
2661      } else {
2662        // Move to the next template parameter.
2663        ++Param;
2664      }
2665      ++ArgIdx;
2666      continue;
2667    }
2668
2669    // If we have a template parameter pack with no more corresponding
2670    // arguments, just break out now and we'll fill in the argument pack below.
2671    if ((*Param)->isTemplateParameterPack())
2672      break;
2673
2674    // We have a default template argument that we will use.
2675    TemplateArgumentLoc Arg;
2676
2677    // Retrieve the default template argument from the template
2678    // parameter. For each kind of template parameter, we substitute the
2679    // template arguments provided thus far and any "outer" template arguments
2680    // (when the template parameter was part of a nested template) into
2681    // the default argument.
2682    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2683      if (!TTP->hasDefaultArgument()) {
2684        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2685        break;
2686      }
2687
2688      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2689                                                             Template,
2690                                                             TemplateLoc,
2691                                                             RAngleLoc,
2692                                                             TTP,
2693                                                             Converted);
2694      if (!ArgType)
2695        return true;
2696
2697      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2698                                ArgType);
2699    } else if (NonTypeTemplateParmDecl *NTTP
2700                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2701      if (!NTTP->hasDefaultArgument()) {
2702        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2703        break;
2704      }
2705
2706      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2707                                                              TemplateLoc,
2708                                                              RAngleLoc,
2709                                                              NTTP,
2710                                                              Converted);
2711      if (E.isInvalid())
2712        return true;
2713
2714      Expr *Ex = E.takeAs<Expr>();
2715      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2716    } else {
2717      TemplateTemplateParmDecl *TempParm
2718        = cast<TemplateTemplateParmDecl>(*Param);
2719
2720      if (!TempParm->hasDefaultArgument()) {
2721        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2722        break;
2723      }
2724
2725      NestedNameSpecifierLoc QualifierLoc;
2726      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2727                                                       TemplateLoc,
2728                                                       RAngleLoc,
2729                                                       TempParm,
2730                                                       Converted,
2731                                                       QualifierLoc);
2732      if (Name.isNull())
2733        return true;
2734
2735      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
2736                           TempParm->getDefaultArgument().getTemplateNameLoc());
2737    }
2738
2739    // Introduce an instantiation record that describes where we are using
2740    // the default template argument.
2741    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2742                                        Converted.data(), Converted.size(),
2743                                        SourceRange(TemplateLoc, RAngleLoc));
2744
2745    // Check the default template argument.
2746    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2747                              RAngleLoc, 0, Converted))
2748      return true;
2749
2750    // Core issue 150 (assumed resolution): if this is a template template
2751    // parameter, keep track of the default template arguments from the
2752    // template definition.
2753    if (isTemplateTemplateParameter)
2754      TemplateArgs.addArgument(Arg);
2755
2756    // Move to the next template parameter and argument.
2757    ++Param;
2758    ++ArgIdx;
2759  }
2760
2761  // Form argument packs for each of the parameter packs remaining.
2762  while (Param != ParamEnd) {
2763    // If we're checking a partial list of template arguments, don't fill
2764    // in arguments for non-template parameter packs.
2765
2766    if ((*Param)->isTemplateParameterPack()) {
2767      if (PartialTemplateArgs && ArgumentPack.empty()) {
2768        Converted.push_back(TemplateArgument());
2769      } else if (ArgumentPack.empty())
2770        Converted.push_back(TemplateArgument(0, 0));
2771      else {
2772        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2773                                                          ArgumentPack.data(),
2774                                                         ArgumentPack.size()));
2775        ArgumentPack.clear();
2776      }
2777    }
2778
2779    ++Param;
2780  }
2781
2782  return Invalid;
2783}
2784
2785namespace {
2786  class UnnamedLocalNoLinkageFinder
2787    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2788  {
2789    Sema &S;
2790    SourceRange SR;
2791
2792    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2793
2794  public:
2795    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2796
2797    bool Visit(QualType T) {
2798      return inherited::Visit(T.getTypePtr());
2799    }
2800
2801#define TYPE(Class, Parent) \
2802    bool Visit##Class##Type(const Class##Type *);
2803#define ABSTRACT_TYPE(Class, Parent) \
2804    bool Visit##Class##Type(const Class##Type *) { return false; }
2805#define NON_CANONICAL_TYPE(Class, Parent) \
2806    bool Visit##Class##Type(const Class##Type *) { return false; }
2807#include "clang/AST/TypeNodes.def"
2808
2809    bool VisitTagDecl(const TagDecl *Tag);
2810    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2811  };
2812}
2813
2814bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2815  return false;
2816}
2817
2818bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2819  return Visit(T->getElementType());
2820}
2821
2822bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2823  return Visit(T->getPointeeType());
2824}
2825
2826bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2827                                                    const BlockPointerType* T) {
2828  return Visit(T->getPointeeType());
2829}
2830
2831bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2832                                                const LValueReferenceType* T) {
2833  return Visit(T->getPointeeType());
2834}
2835
2836bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2837                                                const RValueReferenceType* T) {
2838  return Visit(T->getPointeeType());
2839}
2840
2841bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2842                                                  const MemberPointerType* T) {
2843  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2844}
2845
2846bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2847                                                  const ConstantArrayType* T) {
2848  return Visit(T->getElementType());
2849}
2850
2851bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2852                                                 const IncompleteArrayType* T) {
2853  return Visit(T->getElementType());
2854}
2855
2856bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2857                                                   const VariableArrayType* T) {
2858  return Visit(T->getElementType());
2859}
2860
2861bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2862                                            const DependentSizedArrayType* T) {
2863  return Visit(T->getElementType());
2864}
2865
2866bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2867                                         const DependentSizedExtVectorType* T) {
2868  return Visit(T->getElementType());
2869}
2870
2871bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2872  return Visit(T->getElementType());
2873}
2874
2875bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2876  return Visit(T->getElementType());
2877}
2878
2879bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2880                                                  const FunctionProtoType* T) {
2881  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2882                                         AEnd = T->arg_type_end();
2883       A != AEnd; ++A) {
2884    if (Visit(*A))
2885      return true;
2886  }
2887
2888  return Visit(T->getResultType());
2889}
2890
2891bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2892                                               const FunctionNoProtoType* T) {
2893  return Visit(T->getResultType());
2894}
2895
2896bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2897                                                  const UnresolvedUsingType*) {
2898  return false;
2899}
2900
2901bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2902  return false;
2903}
2904
2905bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2906  return Visit(T->getUnderlyingType());
2907}
2908
2909bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2910  return false;
2911}
2912
2913bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
2914  return Visit(T->getDeducedType());
2915}
2916
2917bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2918  return VisitTagDecl(T->getDecl());
2919}
2920
2921bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2922  return VisitTagDecl(T->getDecl());
2923}
2924
2925bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2926                                                 const TemplateTypeParmType*) {
2927  return false;
2928}
2929
2930bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
2931                                        const SubstTemplateTypeParmPackType *) {
2932  return false;
2933}
2934
2935bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2936                                            const TemplateSpecializationType*) {
2937  return false;
2938}
2939
2940bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2941                                              const InjectedClassNameType* T) {
2942  return VisitTagDecl(T->getDecl());
2943}
2944
2945bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2946                                                   const DependentNameType* T) {
2947  return VisitNestedNameSpecifier(T->getQualifier());
2948}
2949
2950bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2951                                 const DependentTemplateSpecializationType* T) {
2952  return VisitNestedNameSpecifier(T->getQualifier());
2953}
2954
2955bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
2956                                                   const PackExpansionType* T) {
2957  return Visit(T->getPattern());
2958}
2959
2960bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2961  return false;
2962}
2963
2964bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2965                                                   const ObjCInterfaceType *) {
2966  return false;
2967}
2968
2969bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2970                                                const ObjCObjectPointerType *) {
2971  return false;
2972}
2973
2974bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2975  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2976    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2977      << S.Context.getTypeDeclType(Tag) << SR;
2978    return true;
2979  }
2980
2981  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2982    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2983    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2984    return true;
2985  }
2986
2987  return false;
2988}
2989
2990bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2991                                                    NestedNameSpecifier *NNS) {
2992  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2993    return true;
2994
2995  switch (NNS->getKind()) {
2996  case NestedNameSpecifier::Identifier:
2997  case NestedNameSpecifier::Namespace:
2998  case NestedNameSpecifier::NamespaceAlias:
2999  case NestedNameSpecifier::Global:
3000    return false;
3001
3002  case NestedNameSpecifier::TypeSpec:
3003  case NestedNameSpecifier::TypeSpecWithTemplate:
3004    return Visit(QualType(NNS->getAsType(), 0));
3005  }
3006  return false;
3007}
3008
3009
3010/// \brief Check a template argument against its corresponding
3011/// template type parameter.
3012///
3013/// This routine implements the semantics of C++ [temp.arg.type]. It
3014/// returns true if an error occurred, and false otherwise.
3015bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3016                                 TypeSourceInfo *ArgInfo) {
3017  assert(ArgInfo && "invalid TypeSourceInfo");
3018  QualType Arg = ArgInfo->getType();
3019  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3020
3021  if (Arg->isVariablyModifiedType()) {
3022    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3023  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3024    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3025  }
3026
3027  // C++03 [temp.arg.type]p2:
3028  //   A local type, a type with no linkage, an unnamed type or a type
3029  //   compounded from any of these types shall not be used as a
3030  //   template-argument for a template type-parameter.
3031  //
3032  // C++0x allows these, and even in C++03 we allow them as an extension with
3033  // a warning.
3034  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
3035    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3036    (void)Finder.Visit(Context.getCanonicalType(Arg));
3037  }
3038
3039  return false;
3040}
3041
3042/// \brief Checks whether the given template argument is the address
3043/// of an object or function according to C++ [temp.arg.nontype]p1.
3044static bool
3045CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3046                                               NonTypeTemplateParmDecl *Param,
3047                                               QualType ParamType,
3048                                               Expr *ArgIn,
3049                                               TemplateArgument &Converted) {
3050  bool Invalid = false;
3051  Expr *Arg = ArgIn;
3052  QualType ArgType = Arg->getType();
3053
3054  // See through any implicit casts we added to fix the type.
3055  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3056    Arg = Cast->getSubExpr();
3057
3058  // C++ [temp.arg.nontype]p1:
3059  //
3060  //   A template-argument for a non-type, non-template
3061  //   template-parameter shall be one of: [...]
3062  //
3063  //     -- the address of an object or function with external
3064  //        linkage, including function templates and function
3065  //        template-ids but excluding non-static class members,
3066  //        expressed as & id-expression where the & is optional if
3067  //        the name refers to a function or array, or if the
3068  //        corresponding template-parameter is a reference; or
3069  DeclRefExpr *DRE = 0;
3070
3071  // In C++98/03 mode, give an extension warning on any extra parentheses.
3072  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3073  bool ExtraParens = false;
3074  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3075    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
3076      S.Diag(Arg->getSourceRange().getBegin(),
3077             diag::ext_template_arg_extra_parens)
3078        << Arg->getSourceRange();
3079      ExtraParens = true;
3080    }
3081
3082    Arg = Parens->getSubExpr();
3083  }
3084
3085  bool AddressTaken = false;
3086  SourceLocation AddrOpLoc;
3087  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3088    if (UnOp->getOpcode() == UO_AddrOf) {
3089      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3090      AddressTaken = true;
3091      AddrOpLoc = UnOp->getOperatorLoc();
3092    }
3093  } else
3094    DRE = dyn_cast<DeclRefExpr>(Arg);
3095
3096  if (!DRE) {
3097    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3098      << Arg->getSourceRange();
3099    S.Diag(Param->getLocation(), diag::note_template_param_here);
3100    return true;
3101  }
3102
3103  // Stop checking the precise nature of the argument if it is value dependent,
3104  // it should be checked when instantiated.
3105  if (Arg->isValueDependent()) {
3106    Converted = TemplateArgument(ArgIn);
3107    return false;
3108  }
3109
3110  if (!isa<ValueDecl>(DRE->getDecl())) {
3111    S.Diag(Arg->getSourceRange().getBegin(),
3112           diag::err_template_arg_not_object_or_func_form)
3113      << Arg->getSourceRange();
3114    S.Diag(Param->getLocation(), diag::note_template_param_here);
3115    return true;
3116  }
3117
3118  NamedDecl *Entity = 0;
3119
3120  // Cannot refer to non-static data members
3121  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3122    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3123      << Field << Arg->getSourceRange();
3124    S.Diag(Param->getLocation(), diag::note_template_param_here);
3125    return true;
3126  }
3127
3128  // Cannot refer to non-static member functions
3129  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3130    if (!Method->isStatic()) {
3131      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3132        << Method << Arg->getSourceRange();
3133      S.Diag(Param->getLocation(), diag::note_template_param_here);
3134      return true;
3135    }
3136
3137  // Functions must have external linkage.
3138  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3139    if (!isExternalLinkage(Func->getLinkage())) {
3140      S.Diag(Arg->getSourceRange().getBegin(),
3141             diag::err_template_arg_function_not_extern)
3142        << Func << Arg->getSourceRange();
3143      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3144        << true;
3145      return true;
3146    }
3147
3148    // Okay: we've named a function with external linkage.
3149    Entity = Func;
3150
3151    // If the template parameter has pointer type, the function decays.
3152    if (ParamType->isPointerType() && !AddressTaken)
3153      ArgType = S.Context.getPointerType(Func->getType());
3154    else if (AddressTaken && ParamType->isReferenceType()) {
3155      // If we originally had an address-of operator, but the
3156      // parameter has reference type, complain and (if things look
3157      // like they will work) drop the address-of operator.
3158      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3159                                            ParamType.getNonReferenceType())) {
3160        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3161          << ParamType;
3162        S.Diag(Param->getLocation(), diag::note_template_param_here);
3163        return true;
3164      }
3165
3166      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3167        << ParamType
3168        << FixItHint::CreateRemoval(AddrOpLoc);
3169      S.Diag(Param->getLocation(), diag::note_template_param_here);
3170
3171      ArgType = Func->getType();
3172    }
3173  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3174    if (!isExternalLinkage(Var->getLinkage())) {
3175      S.Diag(Arg->getSourceRange().getBegin(),
3176             diag::err_template_arg_object_not_extern)
3177        << Var << Arg->getSourceRange();
3178      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3179        << true;
3180      return true;
3181    }
3182
3183    // A value of reference type is not an object.
3184    if (Var->getType()->isReferenceType()) {
3185      S.Diag(Arg->getSourceRange().getBegin(),
3186             diag::err_template_arg_reference_var)
3187        << Var->getType() << Arg->getSourceRange();
3188      S.Diag(Param->getLocation(), diag::note_template_param_here);
3189      return true;
3190    }
3191
3192    // Okay: we've named an object with external linkage
3193    Entity = Var;
3194
3195    // If the template parameter has pointer type, we must have taken
3196    // the address of this object.
3197    if (ParamType->isReferenceType()) {
3198      if (AddressTaken) {
3199        // If we originally had an address-of operator, but the
3200        // parameter has reference type, complain and (if things look
3201        // like they will work) drop the address-of operator.
3202        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3203                                            ParamType.getNonReferenceType())) {
3204          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3205            << ParamType;
3206          S.Diag(Param->getLocation(), diag::note_template_param_here);
3207          return true;
3208        }
3209
3210        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3211          << ParamType
3212          << FixItHint::CreateRemoval(AddrOpLoc);
3213        S.Diag(Param->getLocation(), diag::note_template_param_here);
3214
3215        ArgType = Var->getType();
3216      }
3217    } else if (!AddressTaken && ParamType->isPointerType()) {
3218      if (Var->getType()->isArrayType()) {
3219        // Array-to-pointer decay.
3220        ArgType = S.Context.getArrayDecayedType(Var->getType());
3221      } else {
3222        // If the template parameter has pointer type but the address of
3223        // this object was not taken, complain and (possibly) recover by
3224        // taking the address of the entity.
3225        ArgType = S.Context.getPointerType(Var->getType());
3226        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3227          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3228            << ParamType;
3229          S.Diag(Param->getLocation(), diag::note_template_param_here);
3230          return true;
3231        }
3232
3233        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3234          << ParamType
3235          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3236
3237        S.Diag(Param->getLocation(), diag::note_template_param_here);
3238      }
3239    }
3240  } else {
3241    // We found something else, but we don't know specifically what it is.
3242    S.Diag(Arg->getSourceRange().getBegin(),
3243           diag::err_template_arg_not_object_or_func)
3244      << Arg->getSourceRange();
3245    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3246    return true;
3247  }
3248
3249  if (ParamType->isPointerType() &&
3250      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3251      S.IsQualificationConversion(ArgType, ParamType, false)) {
3252    // For pointer-to-object types, qualification conversions are
3253    // permitted.
3254  } else {
3255    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3256      if (!ParamRef->getPointeeType()->isFunctionType()) {
3257        // C++ [temp.arg.nontype]p5b3:
3258        //   For a non-type template-parameter of type reference to
3259        //   object, no conversions apply. The type referred to by the
3260        //   reference may be more cv-qualified than the (otherwise
3261        //   identical) type of the template- argument. The
3262        //   template-parameter is bound directly to the
3263        //   template-argument, which shall be an lvalue.
3264
3265        // FIXME: Other qualifiers?
3266        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3267        unsigned ArgQuals = ArgType.getCVRQualifiers();
3268
3269        if ((ParamQuals | ArgQuals) != ParamQuals) {
3270          S.Diag(Arg->getSourceRange().getBegin(),
3271                 diag::err_template_arg_ref_bind_ignores_quals)
3272            << ParamType << Arg->getType()
3273            << Arg->getSourceRange();
3274          S.Diag(Param->getLocation(), diag::note_template_param_here);
3275          return true;
3276        }
3277      }
3278    }
3279
3280    // At this point, the template argument refers to an object or
3281    // function with external linkage. We now need to check whether the
3282    // argument and parameter types are compatible.
3283    if (!S.Context.hasSameUnqualifiedType(ArgType,
3284                                          ParamType.getNonReferenceType())) {
3285      // We can't perform this conversion or binding.
3286      if (ParamType->isReferenceType())
3287        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3288          << ParamType << Arg->getType() << Arg->getSourceRange();
3289      else
3290        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3291          << Arg->getType() << ParamType << Arg->getSourceRange();
3292      S.Diag(Param->getLocation(), diag::note_template_param_here);
3293      return true;
3294    }
3295  }
3296
3297  // Create the template argument.
3298  Converted = TemplateArgument(Entity->getCanonicalDecl());
3299  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3300  return false;
3301}
3302
3303/// \brief Checks whether the given template argument is a pointer to
3304/// member constant according to C++ [temp.arg.nontype]p1.
3305bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3306                                                TemplateArgument &Converted) {
3307  bool Invalid = false;
3308
3309  // See through any implicit casts we added to fix the type.
3310  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3311    Arg = Cast->getSubExpr();
3312
3313  // C++ [temp.arg.nontype]p1:
3314  //
3315  //   A template-argument for a non-type, non-template
3316  //   template-parameter shall be one of: [...]
3317  //
3318  //     -- a pointer to member expressed as described in 5.3.1.
3319  DeclRefExpr *DRE = 0;
3320
3321  // In C++98/03 mode, give an extension warning on any extra parentheses.
3322  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3323  bool ExtraParens = false;
3324  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3325    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3326      Diag(Arg->getSourceRange().getBegin(),
3327           diag::ext_template_arg_extra_parens)
3328        << Arg->getSourceRange();
3329      ExtraParens = true;
3330    }
3331
3332    Arg = Parens->getSubExpr();
3333  }
3334
3335  // A pointer-to-member constant written &Class::member.
3336  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3337    if (UnOp->getOpcode() == UO_AddrOf) {
3338      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3339      if (DRE && !DRE->getQualifier())
3340        DRE = 0;
3341    }
3342  }
3343  // A constant of pointer-to-member type.
3344  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3345    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3346      if (VD->getType()->isMemberPointerType()) {
3347        if (isa<NonTypeTemplateParmDecl>(VD) ||
3348            (isa<VarDecl>(VD) &&
3349             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3350          if (Arg->isTypeDependent() || Arg->isValueDependent())
3351            Converted = TemplateArgument(Arg);
3352          else
3353            Converted = TemplateArgument(VD->getCanonicalDecl());
3354          return Invalid;
3355        }
3356      }
3357    }
3358
3359    DRE = 0;
3360  }
3361
3362  if (!DRE)
3363    return Diag(Arg->getSourceRange().getBegin(),
3364                diag::err_template_arg_not_pointer_to_member_form)
3365      << Arg->getSourceRange();
3366
3367  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3368    assert((isa<FieldDecl>(DRE->getDecl()) ||
3369            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3370           "Only non-static member pointers can make it here");
3371
3372    // Okay: this is the address of a non-static member, and therefore
3373    // a member pointer constant.
3374    if (Arg->isTypeDependent() || Arg->isValueDependent())
3375      Converted = TemplateArgument(Arg);
3376    else
3377      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3378    return Invalid;
3379  }
3380
3381  // We found something else, but we don't know specifically what it is.
3382  Diag(Arg->getSourceRange().getBegin(),
3383       diag::err_template_arg_not_pointer_to_member_form)
3384      << Arg->getSourceRange();
3385  Diag(DRE->getDecl()->getLocation(),
3386       diag::note_template_arg_refers_here);
3387  return true;
3388}
3389
3390/// \brief Check a template argument against its corresponding
3391/// non-type template parameter.
3392///
3393/// This routine implements the semantics of C++ [temp.arg.nontype].
3394/// If an error occurred, it returns ExprError(); otherwise, it
3395/// returns the converted template argument. \p
3396/// InstantiatedParamType is the type of the non-type template
3397/// parameter after it has been instantiated.
3398ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3399                                       QualType InstantiatedParamType, Expr *Arg,
3400                                       TemplateArgument &Converted,
3401                                       CheckTemplateArgumentKind CTAK) {
3402  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3403
3404  // If either the parameter has a dependent type or the argument is
3405  // type-dependent, there's nothing we can check now.
3406  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3407    // FIXME: Produce a cloned, canonical expression?
3408    Converted = TemplateArgument(Arg);
3409    return Owned(Arg);
3410  }
3411
3412  // C++ [temp.arg.nontype]p5:
3413  //   The following conversions are performed on each expression used
3414  //   as a non-type template-argument. If a non-type
3415  //   template-argument cannot be converted to the type of the
3416  //   corresponding template-parameter then the program is
3417  //   ill-formed.
3418  //
3419  //     -- for a non-type template-parameter of integral or
3420  //        enumeration type, integral promotions (4.5) and integral
3421  //        conversions (4.7) are applied.
3422  QualType ParamType = InstantiatedParamType;
3423  QualType ArgType = Arg->getType();
3424  if (ParamType->isIntegralOrEnumerationType()) {
3425    // C++ [temp.arg.nontype]p1:
3426    //   A template-argument for a non-type, non-template
3427    //   template-parameter shall be one of:
3428    //
3429    //     -- an integral constant-expression of integral or enumeration
3430    //        type; or
3431    //     -- the name of a non-type template-parameter; or
3432    SourceLocation NonConstantLoc;
3433    llvm::APSInt Value;
3434    if (!ArgType->isIntegralOrEnumerationType()) {
3435      Diag(Arg->getSourceRange().getBegin(),
3436           diag::err_template_arg_not_integral_or_enumeral)
3437        << ArgType << Arg->getSourceRange();
3438      Diag(Param->getLocation(), diag::note_template_param_here);
3439      return ExprError();
3440    } else if (!Arg->isValueDependent() &&
3441               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3442      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3443        << ArgType << Arg->getSourceRange();
3444      return ExprError();
3445    }
3446
3447    // From here on out, all we care about are the unqualified forms
3448    // of the parameter and argument types.
3449    ParamType = ParamType.getUnqualifiedType();
3450    ArgType = ArgType.getUnqualifiedType();
3451
3452    // Try to convert the argument to the parameter's type.
3453    if (Context.hasSameType(ParamType, ArgType)) {
3454      // Okay: no conversion necessary
3455    } else if (CTAK == CTAK_Deduced) {
3456      // C++ [temp.deduct.type]p17:
3457      //   If, in the declaration of a function template with a non-type
3458      //   template-parameter, the non-type template- parameter is used
3459      //   in an expression in the function parameter-list and, if the
3460      //   corresponding template-argument is deduced, the
3461      //   template-argument type shall match the type of the
3462      //   template-parameter exactly, except that a template-argument
3463      //   deduced from an array bound may be of any integral type.
3464      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3465        << ArgType << ParamType;
3466      Diag(Param->getLocation(), diag::note_template_param_here);
3467      return ExprError();
3468    } else if (ParamType->isBooleanType()) {
3469      // This is an integral-to-boolean conversion.
3470      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3471    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3472               !ParamType->isEnumeralType()) {
3473      // This is an integral promotion or conversion.
3474      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3475    } else {
3476      // We can't perform this conversion.
3477      Diag(Arg->getSourceRange().getBegin(),
3478           diag::err_template_arg_not_convertible)
3479        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3480      Diag(Param->getLocation(), diag::note_template_param_here);
3481      return ExprError();
3482    }
3483
3484    QualType IntegerType = Context.getCanonicalType(ParamType);
3485    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3486      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3487
3488    if (!Arg->isValueDependent()) {
3489      llvm::APSInt OldValue = Value;
3490
3491      // Coerce the template argument's value to the value it will have
3492      // based on the template parameter's type.
3493      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3494      if (Value.getBitWidth() != AllowedBits)
3495        Value = Value.extOrTrunc(AllowedBits);
3496      Value.setIsSigned(IntegerType->isSignedIntegerType());
3497
3498      // Complain if an unsigned parameter received a negative value.
3499      if (IntegerType->isUnsignedIntegerType()
3500          && (OldValue.isSigned() && OldValue.isNegative())) {
3501        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3502          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3503          << Arg->getSourceRange();
3504        Diag(Param->getLocation(), diag::note_template_param_here);
3505      }
3506
3507      // Complain if we overflowed the template parameter's type.
3508      unsigned RequiredBits;
3509      if (IntegerType->isUnsignedIntegerType())
3510        RequiredBits = OldValue.getActiveBits();
3511      else if (OldValue.isUnsigned())
3512        RequiredBits = OldValue.getActiveBits() + 1;
3513      else
3514        RequiredBits = OldValue.getMinSignedBits();
3515      if (RequiredBits > AllowedBits) {
3516        Diag(Arg->getSourceRange().getBegin(),
3517             diag::warn_template_arg_too_large)
3518          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3519          << Arg->getSourceRange();
3520        Diag(Param->getLocation(), diag::note_template_param_here);
3521      }
3522    }
3523
3524    // Add the value of this argument to the list of converted
3525    // arguments. We use the bitwidth and signedness of the template
3526    // parameter.
3527    if (Arg->isValueDependent()) {
3528      // The argument is value-dependent. Create a new
3529      // TemplateArgument with the converted expression.
3530      Converted = TemplateArgument(Arg);
3531      return Owned(Arg);
3532    }
3533
3534    Converted = TemplateArgument(Value,
3535                                 ParamType->isEnumeralType() ? ParamType
3536                                                             : IntegerType);
3537    return Owned(Arg);
3538  }
3539
3540  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3541
3542  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3543  // from a template argument of type std::nullptr_t to a non-type
3544  // template parameter of type pointer to object, pointer to
3545  // function, or pointer-to-member, respectively.
3546  if (ArgType->isNullPtrType() &&
3547      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3548    Converted = TemplateArgument((NamedDecl *)0);
3549    return Owned(Arg);
3550  }
3551
3552  // Handle pointer-to-function, reference-to-function, and
3553  // pointer-to-member-function all in (roughly) the same way.
3554  if (// -- For a non-type template-parameter of type pointer to
3555      //    function, only the function-to-pointer conversion (4.3) is
3556      //    applied. If the template-argument represents a set of
3557      //    overloaded functions (or a pointer to such), the matching
3558      //    function is selected from the set (13.4).
3559      (ParamType->isPointerType() &&
3560       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3561      // -- For a non-type template-parameter of type reference to
3562      //    function, no conversions apply. If the template-argument
3563      //    represents a set of overloaded functions, the matching
3564      //    function is selected from the set (13.4).
3565      (ParamType->isReferenceType() &&
3566       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3567      // -- For a non-type template-parameter of type pointer to
3568      //    member function, no conversions apply. If the
3569      //    template-argument represents a set of overloaded member
3570      //    functions, the matching member function is selected from
3571      //    the set (13.4).
3572      (ParamType->isMemberPointerType() &&
3573       ParamType->getAs<MemberPointerType>()->getPointeeType()
3574         ->isFunctionType())) {
3575
3576    if (Arg->getType() == Context.OverloadTy) {
3577      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3578                                                                true,
3579                                                                FoundResult)) {
3580        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3581          return ExprError();
3582
3583        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3584        ArgType = Arg->getType();
3585      } else
3586        return ExprError();
3587    }
3588
3589    if (!ParamType->isMemberPointerType()) {
3590      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3591                                                         ParamType,
3592                                                         Arg, Converted))
3593        return ExprError();
3594      return Owned(Arg);
3595    }
3596
3597    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3598                                  false)) {
3599      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3600    } else if (!Context.hasSameUnqualifiedType(ArgType,
3601                                           ParamType.getNonReferenceType())) {
3602      // We can't perform this conversion.
3603      Diag(Arg->getSourceRange().getBegin(),
3604           diag::err_template_arg_not_convertible)
3605        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3606      Diag(Param->getLocation(), diag::note_template_param_here);
3607      return ExprError();
3608    }
3609
3610    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3611      return ExprError();
3612    return Owned(Arg);
3613  }
3614
3615  if (ParamType->isPointerType()) {
3616    //   -- for a non-type template-parameter of type pointer to
3617    //      object, qualification conversions (4.4) and the
3618    //      array-to-pointer conversion (4.2) are applied.
3619    // C++0x also allows a value of std::nullptr_t.
3620    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3621           "Only object pointers allowed here");
3622
3623    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3624                                                       ParamType,
3625                                                       Arg, Converted))
3626      return ExprError();
3627    return Owned(Arg);
3628  }
3629
3630  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3631    //   -- For a non-type template-parameter of type reference to
3632    //      object, no conversions apply. The type referred to by the
3633    //      reference may be more cv-qualified than the (otherwise
3634    //      identical) type of the template-argument. The
3635    //      template-parameter is bound directly to the
3636    //      template-argument, which must be an lvalue.
3637    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3638           "Only object references allowed here");
3639
3640    if (Arg->getType() == Context.OverloadTy) {
3641      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3642                                                 ParamRefType->getPointeeType(),
3643                                                                true,
3644                                                                FoundResult)) {
3645        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3646          return ExprError();
3647
3648        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3649        ArgType = Arg->getType();
3650      } else
3651        return ExprError();
3652    }
3653
3654    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3655                                                       ParamType,
3656                                                       Arg, Converted))
3657      return ExprError();
3658    return Owned(Arg);
3659  }
3660
3661  //     -- For a non-type template-parameter of type pointer to data
3662  //        member, qualification conversions (4.4) are applied.
3663  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3664
3665  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3666    // Types match exactly: nothing more to do here.
3667  } else if (IsQualificationConversion(ArgType, ParamType, false)) {
3668    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3669  } else {
3670    // We can't perform this conversion.
3671    Diag(Arg->getSourceRange().getBegin(),
3672         diag::err_template_arg_not_convertible)
3673      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3674    Diag(Param->getLocation(), diag::note_template_param_here);
3675    return ExprError();
3676  }
3677
3678  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3679    return ExprError();
3680  return Owned(Arg);
3681}
3682
3683/// \brief Check a template argument against its corresponding
3684/// template template parameter.
3685///
3686/// This routine implements the semantics of C++ [temp.arg.template].
3687/// It returns true if an error occurred, and false otherwise.
3688bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3689                                 const TemplateArgumentLoc &Arg) {
3690  TemplateName Name = Arg.getArgument().getAsTemplate();
3691  TemplateDecl *Template = Name.getAsTemplateDecl();
3692  if (!Template) {
3693    // Any dependent template name is fine.
3694    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3695    return false;
3696  }
3697
3698  // C++ [temp.arg.template]p1:
3699  //   A template-argument for a template template-parameter shall be
3700  //   the name of a class template, expressed as id-expression. Only
3701  //   primary class templates are considered when matching the
3702  //   template template argument with the corresponding parameter;
3703  //   partial specializations are not considered even if their
3704  //   parameter lists match that of the template template parameter.
3705  //
3706  // Note that we also allow template template parameters here, which
3707  // will happen when we are dealing with, e.g., class template
3708  // partial specializations.
3709  if (!isa<ClassTemplateDecl>(Template) &&
3710      !isa<TemplateTemplateParmDecl>(Template)) {
3711    assert(isa<FunctionTemplateDecl>(Template) &&
3712           "Only function templates are possible here");
3713    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3714    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3715      << Template;
3716  }
3717
3718  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3719                                         Param->getTemplateParameters(),
3720                                         true,
3721                                         TPL_TemplateTemplateArgumentMatch,
3722                                         Arg.getLocation());
3723}
3724
3725/// \brief Given a non-type template argument that refers to a
3726/// declaration and the type of its corresponding non-type template
3727/// parameter, produce an expression that properly refers to that
3728/// declaration.
3729ExprResult
3730Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3731                                              QualType ParamType,
3732                                              SourceLocation Loc) {
3733  assert(Arg.getKind() == TemplateArgument::Declaration &&
3734         "Only declaration template arguments permitted here");
3735  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3736
3737  if (VD->getDeclContext()->isRecord() &&
3738      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3739    // If the value is a class member, we might have a pointer-to-member.
3740    // Determine whether the non-type template template parameter is of
3741    // pointer-to-member type. If so, we need to build an appropriate
3742    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3743    // would refer to the member itself.
3744    if (ParamType->isMemberPointerType()) {
3745      QualType ClassType
3746        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3747      NestedNameSpecifier *Qualifier
3748        = NestedNameSpecifier::Create(Context, 0, false,
3749                                      ClassType.getTypePtr());
3750      CXXScopeSpec SS;
3751      SS.MakeTrivial(Context, Qualifier, Loc);
3752
3753      // The actual value-ness of this is unimportant, but for
3754      // internal consistency's sake, references to instance methods
3755      // are r-values.
3756      ExprValueKind VK = VK_LValue;
3757      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
3758        VK = VK_RValue;
3759
3760      ExprResult RefExpr = BuildDeclRefExpr(VD,
3761                                            VD->getType().getNonReferenceType(),
3762                                            VK,
3763                                            Loc,
3764                                            &SS);
3765      if (RefExpr.isInvalid())
3766        return ExprError();
3767
3768      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3769
3770      // We might need to perform a trailing qualification conversion, since
3771      // the element type on the parameter could be more qualified than the
3772      // element type in the expression we constructed.
3773      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3774                                    ParamType.getUnqualifiedType(), false))
3775        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
3776
3777      assert(!RefExpr.isInvalid() &&
3778             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3779                                 ParamType.getUnqualifiedType()));
3780      return move(RefExpr);
3781    }
3782  }
3783
3784  QualType T = VD->getType().getNonReferenceType();
3785  if (ParamType->isPointerType()) {
3786    // When the non-type template parameter is a pointer, take the
3787    // address of the declaration.
3788    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
3789    if (RefExpr.isInvalid())
3790      return ExprError();
3791
3792    if (T->isFunctionType() || T->isArrayType()) {
3793      // Decay functions and arrays.
3794      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
3795      if (RefExpr.isInvalid())
3796        return ExprError();
3797
3798      return move(RefExpr);
3799    }
3800
3801    // Take the address of everything else
3802    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3803  }
3804
3805  ExprValueKind VK = VK_RValue;
3806
3807  // If the non-type template parameter has reference type, qualify the
3808  // resulting declaration reference with the extra qualifiers on the
3809  // type that the reference refers to.
3810  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
3811    VK = VK_LValue;
3812    T = Context.getQualifiedType(T,
3813                              TargetRef->getPointeeType().getQualifiers());
3814  }
3815
3816  return BuildDeclRefExpr(VD, T, VK, Loc);
3817}
3818
3819/// \brief Construct a new expression that refers to the given
3820/// integral template argument with the given source-location
3821/// information.
3822///
3823/// This routine takes care of the mapping from an integral template
3824/// argument (which may have any integral type) to the appropriate
3825/// literal value.
3826ExprResult
3827Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3828                                                  SourceLocation Loc) {
3829  assert(Arg.getKind() == TemplateArgument::Integral &&
3830         "Operation is only valid for integral template arguments");
3831  QualType T = Arg.getIntegralType();
3832  if (T->isCharType() || T->isWideCharType())
3833    return Owned(new (Context) CharacterLiteral(
3834                                             Arg.getAsIntegral()->getZExtValue(),
3835                                             T->isWideCharType(),
3836                                             T,
3837                                             Loc));
3838  if (T->isBooleanType())
3839    return Owned(new (Context) CXXBoolLiteralExpr(
3840                                            Arg.getAsIntegral()->getBoolValue(),
3841                                            T,
3842                                            Loc));
3843
3844  QualType BT;
3845  if (const EnumType *ET = T->getAs<EnumType>())
3846    BT = ET->getDecl()->getPromotionType();
3847  else
3848    BT = T;
3849
3850  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
3851  if (T->isEnumeralType()) {
3852    // FIXME: This is a hack. We need a better way to handle substituted
3853    // non-type template parameters.
3854    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast,
3855                                      E, 0,
3856                                      Context.getTrivialTypeSourceInfo(T, Loc),
3857                                      Loc, Loc);
3858  }
3859
3860  return Owned(E);
3861}
3862
3863/// \brief Match two template parameters within template parameter lists.
3864static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
3865                                       bool Complain,
3866                                     Sema::TemplateParameterListEqualKind Kind,
3867                                       SourceLocation TemplateArgLoc) {
3868  // Check the actual kind (type, non-type, template).
3869  if (Old->getKind() != New->getKind()) {
3870    if (Complain) {
3871      unsigned NextDiag = diag::err_template_param_different_kind;
3872      if (TemplateArgLoc.isValid()) {
3873        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3874        NextDiag = diag::note_template_param_different_kind;
3875      }
3876      S.Diag(New->getLocation(), NextDiag)
3877        << (Kind != Sema::TPL_TemplateMatch);
3878      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
3879        << (Kind != Sema::TPL_TemplateMatch);
3880    }
3881
3882    return false;
3883  }
3884
3885  // Check that both are parameter packs are neither are parameter packs.
3886  // However, if we are matching a template template argument to a
3887  // template template parameter, the template template parameter can have
3888  // a parameter pack where the template template argument does not.
3889  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
3890      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3891        Old->isTemplateParameterPack())) {
3892    if (Complain) {
3893      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3894      if (TemplateArgLoc.isValid()) {
3895        S.Diag(TemplateArgLoc,
3896             diag::err_template_arg_template_params_mismatch);
3897        NextDiag = diag::note_template_parameter_pack_non_pack;
3898      }
3899
3900      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
3901                      : isa<NonTypeTemplateParmDecl>(New)? 1
3902                      : 2;
3903      S.Diag(New->getLocation(), NextDiag)
3904        << ParamKind << New->isParameterPack();
3905      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
3906        << ParamKind << Old->isParameterPack();
3907    }
3908
3909    return false;
3910  }
3911
3912  // For non-type template parameters, check the type of the parameter.
3913  if (NonTypeTemplateParmDecl *OldNTTP
3914                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
3915    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
3916
3917    // If we are matching a template template argument to a template
3918    // template parameter and one of the non-type template parameter types
3919    // is dependent, then we must wait until template instantiation time
3920    // to actually compare the arguments.
3921    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
3922        (OldNTTP->getType()->isDependentType() ||
3923         NewNTTP->getType()->isDependentType()))
3924      return true;
3925
3926    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
3927      if (Complain) {
3928        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3929        if (TemplateArgLoc.isValid()) {
3930          S.Diag(TemplateArgLoc,
3931                 diag::err_template_arg_template_params_mismatch);
3932          NextDiag = diag::note_template_nontype_parm_different_type;
3933        }
3934        S.Diag(NewNTTP->getLocation(), NextDiag)
3935          << NewNTTP->getType()
3936          << (Kind != Sema::TPL_TemplateMatch);
3937        S.Diag(OldNTTP->getLocation(),
3938               diag::note_template_nontype_parm_prev_declaration)
3939          << OldNTTP->getType();
3940      }
3941
3942      return false;
3943    }
3944
3945    return true;
3946  }
3947
3948  // For template template parameters, check the template parameter types.
3949  // The template parameter lists of template template
3950  // parameters must agree.
3951  if (TemplateTemplateParmDecl *OldTTP
3952                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
3953    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
3954    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3955                                            OldTTP->getTemplateParameters(),
3956                                            Complain,
3957                                        (Kind == Sema::TPL_TemplateMatch
3958                                           ? Sema::TPL_TemplateTemplateParmMatch
3959                                           : Kind),
3960                                            TemplateArgLoc);
3961  }
3962
3963  return true;
3964}
3965
3966/// \brief Diagnose a known arity mismatch when comparing template argument
3967/// lists.
3968static
3969void DiagnoseTemplateParameterListArityMismatch(Sema &S,
3970                                                TemplateParameterList *New,
3971                                                TemplateParameterList *Old,
3972                                      Sema::TemplateParameterListEqualKind Kind,
3973                                                SourceLocation TemplateArgLoc) {
3974  unsigned NextDiag = diag::err_template_param_list_different_arity;
3975  if (TemplateArgLoc.isValid()) {
3976    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3977    NextDiag = diag::note_template_param_list_different_arity;
3978  }
3979  S.Diag(New->getTemplateLoc(), NextDiag)
3980    << (New->size() > Old->size())
3981    << (Kind != Sema::TPL_TemplateMatch)
3982    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3983  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3984    << (Kind != Sema::TPL_TemplateMatch)
3985    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3986}
3987
3988/// \brief Determine whether the given template parameter lists are
3989/// equivalent.
3990///
3991/// \param New  The new template parameter list, typically written in the
3992/// source code as part of a new template declaration.
3993///
3994/// \param Old  The old template parameter list, typically found via
3995/// name lookup of the template declared with this template parameter
3996/// list.
3997///
3998/// \param Complain  If true, this routine will produce a diagnostic if
3999/// the template parameter lists are not equivalent.
4000///
4001/// \param Kind describes how we are to match the template parameter lists.
4002///
4003/// \param TemplateArgLoc If this source location is valid, then we
4004/// are actually checking the template parameter list of a template
4005/// argument (New) against the template parameter list of its
4006/// corresponding template template parameter (Old). We produce
4007/// slightly different diagnostics in this scenario.
4008///
4009/// \returns True if the template parameter lists are equal, false
4010/// otherwise.
4011bool
4012Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4013                                     TemplateParameterList *Old,
4014                                     bool Complain,
4015                                     TemplateParameterListEqualKind Kind,
4016                                     SourceLocation TemplateArgLoc) {
4017  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4018    if (Complain)
4019      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4020                                                 TemplateArgLoc);
4021
4022    return false;
4023  }
4024
4025  // C++0x [temp.arg.template]p3:
4026  //   A template-argument matches a template template-parameter (call it P)
4027  //   when each of the template parameters in the template-parameter-list of
4028  //   the template-argument's corresponding class template or template alias
4029  //   (call it A) matches the corresponding template parameter in the
4030  //   template-parameter-list of P. [...]
4031  TemplateParameterList::iterator NewParm = New->begin();
4032  TemplateParameterList::iterator NewParmEnd = New->end();
4033  for (TemplateParameterList::iterator OldParm = Old->begin(),
4034                                    OldParmEnd = Old->end();
4035       OldParm != OldParmEnd; ++OldParm) {
4036    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4037        !(*OldParm)->isTemplateParameterPack()) {
4038      if (NewParm == NewParmEnd) {
4039        if (Complain)
4040          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4041                                                     TemplateArgLoc);
4042
4043        return false;
4044      }
4045
4046      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4047                                      Kind, TemplateArgLoc))
4048        return false;
4049
4050      ++NewParm;
4051      continue;
4052    }
4053
4054    // C++0x [temp.arg.template]p3:
4055    //   [...] When P's template- parameter-list contains a template parameter
4056    //   pack (14.5.3), the template parameter pack will match zero or more
4057    //   template parameters or template parameter packs in the
4058    //   template-parameter-list of A with the same type and form as the
4059    //   template parameter pack in P (ignoring whether those template
4060    //   parameters are template parameter packs).
4061    for (; NewParm != NewParmEnd; ++NewParm) {
4062      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4063                                      Kind, TemplateArgLoc))
4064        return false;
4065    }
4066  }
4067
4068  // Make sure we exhausted all of the arguments.
4069  if (NewParm != NewParmEnd) {
4070    if (Complain)
4071      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4072                                                 TemplateArgLoc);
4073
4074    return false;
4075  }
4076
4077  return true;
4078}
4079
4080/// \brief Check whether a template can be declared within this scope.
4081///
4082/// If the template declaration is valid in this scope, returns
4083/// false. Otherwise, issues a diagnostic and returns true.
4084bool
4085Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4086  // Find the nearest enclosing declaration scope.
4087  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4088         (S->getFlags() & Scope::TemplateParamScope) != 0)
4089    S = S->getParent();
4090
4091  // C++ [temp]p2:
4092  //   A template-declaration can appear only as a namespace scope or
4093  //   class scope declaration.
4094  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4095  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4096      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4097    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4098             << TemplateParams->getSourceRange();
4099
4100  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4101    Ctx = Ctx->getParent();
4102
4103  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4104    return false;
4105
4106  return Diag(TemplateParams->getTemplateLoc(),
4107              diag::err_template_outside_namespace_or_class_scope)
4108    << TemplateParams->getSourceRange();
4109}
4110
4111/// \brief Determine what kind of template specialization the given declaration
4112/// is.
4113static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4114  if (!D)
4115    return TSK_Undeclared;
4116
4117  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4118    return Record->getTemplateSpecializationKind();
4119  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4120    return Function->getTemplateSpecializationKind();
4121  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4122    return Var->getTemplateSpecializationKind();
4123
4124  return TSK_Undeclared;
4125}
4126
4127/// \brief Check whether a specialization is well-formed in the current
4128/// context.
4129///
4130/// This routine determines whether a template specialization can be declared
4131/// in the current context (C++ [temp.expl.spec]p2).
4132///
4133/// \param S the semantic analysis object for which this check is being
4134/// performed.
4135///
4136/// \param Specialized the entity being specialized or instantiated, which
4137/// may be a kind of template (class template, function template, etc.) or
4138/// a member of a class template (member function, static data member,
4139/// member class).
4140///
4141/// \param PrevDecl the previous declaration of this entity, if any.
4142///
4143/// \param Loc the location of the explicit specialization or instantiation of
4144/// this entity.
4145///
4146/// \param IsPartialSpecialization whether this is a partial specialization of
4147/// a class template.
4148///
4149/// \returns true if there was an error that we cannot recover from, false
4150/// otherwise.
4151static bool CheckTemplateSpecializationScope(Sema &S,
4152                                             NamedDecl *Specialized,
4153                                             NamedDecl *PrevDecl,
4154                                             SourceLocation Loc,
4155                                             bool IsPartialSpecialization) {
4156  // Keep these "kind" numbers in sync with the %select statements in the
4157  // various diagnostics emitted by this routine.
4158  int EntityKind = 0;
4159  if (isa<ClassTemplateDecl>(Specialized))
4160    EntityKind = IsPartialSpecialization? 1 : 0;
4161  else if (isa<FunctionTemplateDecl>(Specialized))
4162    EntityKind = 2;
4163  else if (isa<CXXMethodDecl>(Specialized))
4164    EntityKind = 3;
4165  else if (isa<VarDecl>(Specialized))
4166    EntityKind = 4;
4167  else if (isa<RecordDecl>(Specialized))
4168    EntityKind = 5;
4169  else {
4170    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4171    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4172    return true;
4173  }
4174
4175  // C++ [temp.expl.spec]p2:
4176  //   An explicit specialization shall be declared in the namespace
4177  //   of which the template is a member, or, for member templates, in
4178  //   the namespace of which the enclosing class or enclosing class
4179  //   template is a member. An explicit specialization of a member
4180  //   function, member class or static data member of a class
4181  //   template shall be declared in the namespace of which the class
4182  //   template is a member. Such a declaration may also be a
4183  //   definition. If the declaration is not a definition, the
4184  //   specialization may be defined later in the name- space in which
4185  //   the explicit specialization was declared, or in a namespace
4186  //   that encloses the one in which the explicit specialization was
4187  //   declared.
4188  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4189    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4190      << Specialized;
4191    return true;
4192  }
4193
4194  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4195    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4196      << Specialized;
4197    return true;
4198  }
4199
4200  // C++ [temp.class.spec]p6:
4201  //   A class template partial specialization may be declared or redeclared
4202  //   in any namespace scope in which its definition may be defined (14.5.1
4203  //   and 14.5.2).
4204  bool ComplainedAboutScope = false;
4205  DeclContext *SpecializedContext
4206    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4207  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4208  if ((!PrevDecl ||
4209       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4210       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4211    // C++ [temp.exp.spec]p2:
4212    //   An explicit specialization shall be declared in the namespace of which
4213    //   the template is a member, or, for member templates, in the namespace
4214    //   of which the enclosing class or enclosing class template is a member.
4215    //   An explicit specialization of a member function, member class or
4216    //   static data member of a class template shall be declared in the
4217    //   namespace of which the class template is a member.
4218    //
4219    // C++0x [temp.expl.spec]p2:
4220    //   An explicit specialization shall be declared in a namespace enclosing
4221    //   the specialized template.
4222    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4223        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4224      bool IsCPlusPlus0xExtension
4225        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4226      if (isa<TranslationUnitDecl>(SpecializedContext))
4227        S.Diag(Loc, IsCPlusPlus0xExtension
4228                      ? diag::ext_template_spec_decl_out_of_scope_global
4229                      : diag::err_template_spec_decl_out_of_scope_global)
4230          << EntityKind << Specialized;
4231      else if (isa<NamespaceDecl>(SpecializedContext))
4232        S.Diag(Loc, IsCPlusPlus0xExtension
4233                      ? diag::ext_template_spec_decl_out_of_scope
4234                      : diag::err_template_spec_decl_out_of_scope)
4235          << EntityKind << Specialized
4236          << cast<NamedDecl>(SpecializedContext);
4237
4238      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4239      ComplainedAboutScope = true;
4240    }
4241  }
4242
4243  // Make sure that this redeclaration (or definition) occurs in an enclosing
4244  // namespace.
4245  // Note that HandleDeclarator() performs this check for explicit
4246  // specializations of function templates, static data members, and member
4247  // functions, so we skip the check here for those kinds of entities.
4248  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4249  // Should we refactor that check, so that it occurs later?
4250  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4251      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4252        isa<FunctionDecl>(Specialized))) {
4253    if (isa<TranslationUnitDecl>(SpecializedContext))
4254      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4255        << EntityKind << Specialized;
4256    else if (isa<NamespaceDecl>(SpecializedContext))
4257      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4258        << EntityKind << Specialized
4259        << cast<NamedDecl>(SpecializedContext);
4260
4261    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4262  }
4263
4264  // FIXME: check for specialization-after-instantiation errors and such.
4265
4266  return false;
4267}
4268
4269/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4270/// that checks non-type template partial specialization arguments.
4271static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4272                                                NonTypeTemplateParmDecl *Param,
4273                                                  const TemplateArgument *Args,
4274                                                        unsigned NumArgs) {
4275  for (unsigned I = 0; I != NumArgs; ++I) {
4276    if (Args[I].getKind() == TemplateArgument::Pack) {
4277      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4278                                                           Args[I].pack_begin(),
4279                                                           Args[I].pack_size()))
4280        return true;
4281
4282      continue;
4283    }
4284
4285    Expr *ArgExpr = Args[I].getAsExpr();
4286    if (!ArgExpr) {
4287      continue;
4288    }
4289
4290    // We can have a pack expansion of any of the bullets below.
4291    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4292      ArgExpr = Expansion->getPattern();
4293
4294    // Strip off any implicit casts we added as part of type checking.
4295    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4296      ArgExpr = ICE->getSubExpr();
4297
4298    // C++ [temp.class.spec]p8:
4299    //   A non-type argument is non-specialized if it is the name of a
4300    //   non-type parameter. All other non-type arguments are
4301    //   specialized.
4302    //
4303    // Below, we check the two conditions that only apply to
4304    // specialized non-type arguments, so skip any non-specialized
4305    // arguments.
4306    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4307      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4308        continue;
4309
4310    // C++ [temp.class.spec]p9:
4311    //   Within the argument list of a class template partial
4312    //   specialization, the following restrictions apply:
4313    //     -- A partially specialized non-type argument expression
4314    //        shall not involve a template parameter of the partial
4315    //        specialization except when the argument expression is a
4316    //        simple identifier.
4317    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4318      S.Diag(ArgExpr->getLocStart(),
4319           diag::err_dependent_non_type_arg_in_partial_spec)
4320        << ArgExpr->getSourceRange();
4321      return true;
4322    }
4323
4324    //     -- The type of a template parameter corresponding to a
4325    //        specialized non-type argument shall not be dependent on a
4326    //        parameter of the specialization.
4327    if (Param->getType()->isDependentType()) {
4328      S.Diag(ArgExpr->getLocStart(),
4329           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4330        << Param->getType()
4331        << ArgExpr->getSourceRange();
4332      S.Diag(Param->getLocation(), diag::note_template_param_here);
4333      return true;
4334    }
4335  }
4336
4337  return false;
4338}
4339
4340/// \brief Check the non-type template arguments of a class template
4341/// partial specialization according to C++ [temp.class.spec]p9.
4342///
4343/// \param TemplateParams the template parameters of the primary class
4344/// template.
4345///
4346/// \param TemplateArg the template arguments of the class template
4347/// partial specialization.
4348///
4349/// \returns true if there was an error, false otherwise.
4350static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4351                                        TemplateParameterList *TemplateParams,
4352                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4353  const TemplateArgument *ArgList = TemplateArgs.data();
4354
4355  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4356    NonTypeTemplateParmDecl *Param
4357      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4358    if (!Param)
4359      continue;
4360
4361    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4362                                                           &ArgList[I], 1))
4363      return true;
4364  }
4365
4366  return false;
4367}
4368
4369/// \brief Retrieve the previous declaration of the given declaration.
4370static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4371  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4372    return VD->getPreviousDeclaration();
4373  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4374    return FD->getPreviousDeclaration();
4375  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4376    return TD->getPreviousDeclaration();
4377  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
4378    return TD->getPreviousDeclaration();
4379  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4380    return FTD->getPreviousDeclaration();
4381  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4382    return CTD->getPreviousDeclaration();
4383  return 0;
4384}
4385
4386DeclResult
4387Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4388                                       TagUseKind TUK,
4389                                       SourceLocation KWLoc,
4390                                       CXXScopeSpec &SS,
4391                                       TemplateTy TemplateD,
4392                                       SourceLocation TemplateNameLoc,
4393                                       SourceLocation LAngleLoc,
4394                                       ASTTemplateArgsPtr TemplateArgsIn,
4395                                       SourceLocation RAngleLoc,
4396                                       AttributeList *Attr,
4397                               MultiTemplateParamsArg TemplateParameterLists) {
4398  assert(TUK != TUK_Reference && "References are not specializations");
4399
4400  // NOTE: KWLoc is the location of the tag keyword. This will instead
4401  // store the location of the outermost template keyword in the declaration.
4402  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4403    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4404
4405  // Find the class template we're specializing
4406  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4407  ClassTemplateDecl *ClassTemplate
4408    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4409
4410  if (!ClassTemplate) {
4411    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4412      << (Name.getAsTemplateDecl() &&
4413          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4414    return true;
4415  }
4416
4417  bool isExplicitSpecialization = false;
4418  bool isPartialSpecialization = false;
4419
4420  // Check the validity of the template headers that introduce this
4421  // template.
4422  // FIXME: We probably shouldn't complain about these headers for
4423  // friend declarations.
4424  bool Invalid = false;
4425  TemplateParameterList *TemplateParams
4426    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
4427                        (TemplateParameterList**)TemplateParameterLists.get(),
4428                                              TemplateParameterLists.size(),
4429                                              TUK == TUK_Friend,
4430                                              isExplicitSpecialization,
4431                                              Invalid);
4432  if (Invalid)
4433    return true;
4434
4435  if (TemplateParams && TemplateParams->size() > 0) {
4436    isPartialSpecialization = true;
4437
4438    if (TUK == TUK_Friend) {
4439      Diag(KWLoc, diag::err_partial_specialization_friend)
4440        << SourceRange(LAngleLoc, RAngleLoc);
4441      return true;
4442    }
4443
4444    // C++ [temp.class.spec]p10:
4445    //   The template parameter list of a specialization shall not
4446    //   contain default template argument values.
4447    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4448      Decl *Param = TemplateParams->getParam(I);
4449      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4450        if (TTP->hasDefaultArgument()) {
4451          Diag(TTP->getDefaultArgumentLoc(),
4452               diag::err_default_arg_in_partial_spec);
4453          TTP->removeDefaultArgument();
4454        }
4455      } else if (NonTypeTemplateParmDecl *NTTP
4456                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4457        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4458          Diag(NTTP->getDefaultArgumentLoc(),
4459               diag::err_default_arg_in_partial_spec)
4460            << DefArg->getSourceRange();
4461          NTTP->removeDefaultArgument();
4462        }
4463      } else {
4464        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4465        if (TTP->hasDefaultArgument()) {
4466          Diag(TTP->getDefaultArgument().getLocation(),
4467               diag::err_default_arg_in_partial_spec)
4468            << TTP->getDefaultArgument().getSourceRange();
4469          TTP->removeDefaultArgument();
4470        }
4471      }
4472    }
4473  } else if (TemplateParams) {
4474    if (TUK == TUK_Friend)
4475      Diag(KWLoc, diag::err_template_spec_friend)
4476        << FixItHint::CreateRemoval(
4477                                SourceRange(TemplateParams->getTemplateLoc(),
4478                                            TemplateParams->getRAngleLoc()))
4479        << SourceRange(LAngleLoc, RAngleLoc);
4480    else
4481      isExplicitSpecialization = true;
4482  } else if (TUK != TUK_Friend) {
4483    Diag(KWLoc, diag::err_template_spec_needs_header)
4484      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4485    isExplicitSpecialization = true;
4486  }
4487
4488  // Check that the specialization uses the same tag kind as the
4489  // original template.
4490  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4491  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4492  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4493                                    Kind, KWLoc,
4494                                    *ClassTemplate->getIdentifier())) {
4495    Diag(KWLoc, diag::err_use_with_wrong_tag)
4496      << ClassTemplate
4497      << FixItHint::CreateReplacement(KWLoc,
4498                            ClassTemplate->getTemplatedDecl()->getKindName());
4499    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4500         diag::note_previous_use);
4501    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4502  }
4503
4504  // Translate the parser's template argument list in our AST format.
4505  TemplateArgumentListInfo TemplateArgs;
4506  TemplateArgs.setLAngleLoc(LAngleLoc);
4507  TemplateArgs.setRAngleLoc(RAngleLoc);
4508  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4509
4510  // Check for unexpanded parameter packs in any of the template arguments.
4511  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4512    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4513                                        UPPC_PartialSpecialization))
4514      return true;
4515
4516  // Check that the template argument list is well-formed for this
4517  // template.
4518  llvm::SmallVector<TemplateArgument, 4> Converted;
4519  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4520                                TemplateArgs, false, Converted))
4521    return true;
4522
4523  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4524         "Converted template argument list is too short!");
4525
4526  // Find the class template (partial) specialization declaration that
4527  // corresponds to these arguments.
4528  if (isPartialSpecialization) {
4529    if (CheckClassTemplatePartialSpecializationArgs(*this,
4530                                         ClassTemplate->getTemplateParameters(),
4531                                         Converted))
4532      return true;
4533
4534    if (!Name.isDependent() &&
4535        !TemplateSpecializationType::anyDependentTemplateArguments(
4536                                             TemplateArgs.getArgumentArray(),
4537                                                         TemplateArgs.size())) {
4538      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4539        << ClassTemplate->getDeclName();
4540      isPartialSpecialization = false;
4541    }
4542  }
4543
4544  void *InsertPos = 0;
4545  ClassTemplateSpecializationDecl *PrevDecl = 0;
4546
4547  if (isPartialSpecialization)
4548    // FIXME: Template parameter list matters, too
4549    PrevDecl
4550      = ClassTemplate->findPartialSpecialization(Converted.data(),
4551                                                 Converted.size(),
4552                                                 InsertPos);
4553  else
4554    PrevDecl
4555      = ClassTemplate->findSpecialization(Converted.data(),
4556                                          Converted.size(), InsertPos);
4557
4558  ClassTemplateSpecializationDecl *Specialization = 0;
4559
4560  // Check whether we can declare a class template specialization in
4561  // the current scope.
4562  if (TUK != TUK_Friend &&
4563      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4564                                       TemplateNameLoc,
4565                                       isPartialSpecialization))
4566    return true;
4567
4568  // The canonical type
4569  QualType CanonType;
4570  if (PrevDecl &&
4571      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4572               TUK == TUK_Friend)) {
4573    // Since the only prior class template specialization with these
4574    // arguments was referenced but not declared, or we're only
4575    // referencing this specialization as a friend, reuse that
4576    // declaration node as our own, updating its source location and
4577    // the list of outer template parameters to reflect our new declaration.
4578    Specialization = PrevDecl;
4579    Specialization->setLocation(TemplateNameLoc);
4580    if (TemplateParameterLists.size() > 0) {
4581      Specialization->setTemplateParameterListsInfo(Context,
4582                                              TemplateParameterLists.size(),
4583                    (TemplateParameterList**) TemplateParameterLists.release());
4584    }
4585    PrevDecl = 0;
4586    CanonType = Context.getTypeDeclType(Specialization);
4587  } else if (isPartialSpecialization) {
4588    // Build the canonical type that describes the converted template
4589    // arguments of the class template partial specialization.
4590    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4591    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4592                                                      Converted.data(),
4593                                                      Converted.size());
4594
4595    if (Context.hasSameType(CanonType,
4596                        ClassTemplate->getInjectedClassNameSpecialization())) {
4597      // C++ [temp.class.spec]p9b3:
4598      //
4599      //   -- The argument list of the specialization shall not be identical
4600      //      to the implicit argument list of the primary template.
4601      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4602      << (TUK == TUK_Definition)
4603      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4604      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4605                                ClassTemplate->getIdentifier(),
4606                                TemplateNameLoc,
4607                                Attr,
4608                                TemplateParams,
4609                                AS_none,
4610                                TemplateParameterLists.size() - 1,
4611                  (TemplateParameterList**) TemplateParameterLists.release());
4612    }
4613
4614    // Create a new class template partial specialization declaration node.
4615    ClassTemplatePartialSpecializationDecl *PrevPartial
4616      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4617    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4618                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4619    ClassTemplatePartialSpecializationDecl *Partial
4620      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4621                                             ClassTemplate->getDeclContext(),
4622                                                       KWLoc, TemplateNameLoc,
4623                                                       TemplateParams,
4624                                                       ClassTemplate,
4625                                                       Converted.data(),
4626                                                       Converted.size(),
4627                                                       TemplateArgs,
4628                                                       CanonType,
4629                                                       PrevPartial,
4630                                                       SequenceNumber);
4631    SetNestedNameSpecifier(Partial, SS);
4632    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
4633      Partial->setTemplateParameterListsInfo(Context,
4634                                             TemplateParameterLists.size() - 1,
4635                    (TemplateParameterList**) TemplateParameterLists.release());
4636    }
4637
4638    if (!PrevPartial)
4639      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4640    Specialization = Partial;
4641
4642    // If we are providing an explicit specialization of a member class
4643    // template specialization, make a note of that.
4644    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4645      PrevPartial->setMemberSpecialization();
4646
4647    // Check that all of the template parameters of the class template
4648    // partial specialization are deducible from the template
4649    // arguments. If not, this class template partial specialization
4650    // will never be used.
4651    llvm::SmallVector<bool, 8> DeducibleParams;
4652    DeducibleParams.resize(TemplateParams->size());
4653    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4654                               TemplateParams->getDepth(),
4655                               DeducibleParams);
4656    unsigned NumNonDeducible = 0;
4657    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4658      if (!DeducibleParams[I])
4659        ++NumNonDeducible;
4660
4661    if (NumNonDeducible) {
4662      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4663        << (NumNonDeducible > 1)
4664        << SourceRange(TemplateNameLoc, RAngleLoc);
4665      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4666        if (!DeducibleParams[I]) {
4667          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4668          if (Param->getDeclName())
4669            Diag(Param->getLocation(),
4670                 diag::note_partial_spec_unused_parameter)
4671              << Param->getDeclName();
4672          else
4673            Diag(Param->getLocation(),
4674                 diag::note_partial_spec_unused_parameter)
4675              << "<anonymous>";
4676        }
4677      }
4678    }
4679  } else {
4680    // Create a new class template specialization declaration node for
4681    // this explicit specialization or friend declaration.
4682    Specialization
4683      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4684                                             ClassTemplate->getDeclContext(),
4685                                                KWLoc, TemplateNameLoc,
4686                                                ClassTemplate,
4687                                                Converted.data(),
4688                                                Converted.size(),
4689                                                PrevDecl);
4690    SetNestedNameSpecifier(Specialization, SS);
4691    if (TemplateParameterLists.size() > 0) {
4692      Specialization->setTemplateParameterListsInfo(Context,
4693                                              TemplateParameterLists.size(),
4694                    (TemplateParameterList**) TemplateParameterLists.release());
4695    }
4696
4697    if (!PrevDecl)
4698      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4699
4700    CanonType = Context.getTypeDeclType(Specialization);
4701  }
4702
4703  // C++ [temp.expl.spec]p6:
4704  //   If a template, a member template or the member of a class template is
4705  //   explicitly specialized then that specialization shall be declared
4706  //   before the first use of that specialization that would cause an implicit
4707  //   instantiation to take place, in every translation unit in which such a
4708  //   use occurs; no diagnostic is required.
4709  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4710    bool Okay = false;
4711    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4712      // Is there any previous explicit specialization declaration?
4713      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4714        Okay = true;
4715        break;
4716      }
4717    }
4718
4719    if (!Okay) {
4720      SourceRange Range(TemplateNameLoc, RAngleLoc);
4721      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4722        << Context.getTypeDeclType(Specialization) << Range;
4723
4724      Diag(PrevDecl->getPointOfInstantiation(),
4725           diag::note_instantiation_required_here)
4726        << (PrevDecl->getTemplateSpecializationKind()
4727                                                != TSK_ImplicitInstantiation);
4728      return true;
4729    }
4730  }
4731
4732  // If this is not a friend, note that this is an explicit specialization.
4733  if (TUK != TUK_Friend)
4734    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4735
4736  // Check that this isn't a redefinition of this specialization.
4737  if (TUK == TUK_Definition) {
4738    if (RecordDecl *Def = Specialization->getDefinition()) {
4739      SourceRange Range(TemplateNameLoc, RAngleLoc);
4740      Diag(TemplateNameLoc, diag::err_redefinition)
4741        << Context.getTypeDeclType(Specialization) << Range;
4742      Diag(Def->getLocation(), diag::note_previous_definition);
4743      Specialization->setInvalidDecl();
4744      return true;
4745    }
4746  }
4747
4748  if (Attr)
4749    ProcessDeclAttributeList(S, Specialization, Attr);
4750
4751  // Build the fully-sugared type for this class template
4752  // specialization as the user wrote in the specialization
4753  // itself. This means that we'll pretty-print the type retrieved
4754  // from the specialization's declaration the way that the user
4755  // actually wrote the specialization, rather than formatting the
4756  // name based on the "canonical" representation used to store the
4757  // template arguments in the specialization.
4758  TypeSourceInfo *WrittenTy
4759    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4760                                                TemplateArgs, CanonType);
4761  if (TUK != TUK_Friend) {
4762    Specialization->setTypeAsWritten(WrittenTy);
4763    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4764  }
4765  TemplateArgsIn.release();
4766
4767  // C++ [temp.expl.spec]p9:
4768  //   A template explicit specialization is in the scope of the
4769  //   namespace in which the template was defined.
4770  //
4771  // We actually implement this paragraph where we set the semantic
4772  // context (in the creation of the ClassTemplateSpecializationDecl),
4773  // but we also maintain the lexical context where the actual
4774  // definition occurs.
4775  Specialization->setLexicalDeclContext(CurContext);
4776
4777  // We may be starting the definition of this specialization.
4778  if (TUK == TUK_Definition)
4779    Specialization->startDefinition();
4780
4781  if (TUK == TUK_Friend) {
4782    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4783                                            TemplateNameLoc,
4784                                            WrittenTy,
4785                                            /*FIXME:*/KWLoc);
4786    Friend->setAccess(AS_public);
4787    CurContext->addDecl(Friend);
4788  } else {
4789    // Add the specialization into its lexical context, so that it can
4790    // be seen when iterating through the list of declarations in that
4791    // context. However, specializations are not found by name lookup.
4792    CurContext->addDecl(Specialization);
4793  }
4794  return Specialization;
4795}
4796
4797Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4798                              MultiTemplateParamsArg TemplateParameterLists,
4799                                    Declarator &D) {
4800  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4801}
4802
4803Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4804                               MultiTemplateParamsArg TemplateParameterLists,
4805                                            Declarator &D) {
4806  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4807  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4808
4809  if (FTI.hasPrototype) {
4810    // FIXME: Diagnose arguments without names in C.
4811  }
4812
4813  Scope *ParentScope = FnBodyScope->getParent();
4814
4815  Decl *DP = HandleDeclarator(ParentScope, D,
4816                              move(TemplateParameterLists),
4817                              /*IsFunctionDefinition=*/true);
4818  if (FunctionTemplateDecl *FunctionTemplate
4819        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4820    return ActOnStartOfFunctionDef(FnBodyScope,
4821                                   FunctionTemplate->getTemplatedDecl());
4822  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4823    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4824  return 0;
4825}
4826
4827/// \brief Strips various properties off an implicit instantiation
4828/// that has just been explicitly specialized.
4829static void StripImplicitInstantiation(NamedDecl *D) {
4830  D->dropAttrs();
4831
4832  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4833    FD->setInlineSpecified(false);
4834  }
4835}
4836
4837/// \brief Diagnose cases where we have an explicit template specialization
4838/// before/after an explicit template instantiation, producing diagnostics
4839/// for those cases where they are required and determining whether the
4840/// new specialization/instantiation will have any effect.
4841///
4842/// \param NewLoc the location of the new explicit specialization or
4843/// instantiation.
4844///
4845/// \param NewTSK the kind of the new explicit specialization or instantiation.
4846///
4847/// \param PrevDecl the previous declaration of the entity.
4848///
4849/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4850///
4851/// \param PrevPointOfInstantiation if valid, indicates where the previus
4852/// declaration was instantiated (either implicitly or explicitly).
4853///
4854/// \param HasNoEffect will be set to true to indicate that the new
4855/// specialization or instantiation has no effect and should be ignored.
4856///
4857/// \returns true if there was an error that should prevent the introduction of
4858/// the new declaration into the AST, false otherwise.
4859bool
4860Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4861                                             TemplateSpecializationKind NewTSK,
4862                                             NamedDecl *PrevDecl,
4863                                             TemplateSpecializationKind PrevTSK,
4864                                        SourceLocation PrevPointOfInstantiation,
4865                                             bool &HasNoEffect) {
4866  HasNoEffect = false;
4867
4868  switch (NewTSK) {
4869  case TSK_Undeclared:
4870  case TSK_ImplicitInstantiation:
4871    assert(false && "Don't check implicit instantiations here");
4872    return false;
4873
4874  case TSK_ExplicitSpecialization:
4875    switch (PrevTSK) {
4876    case TSK_Undeclared:
4877    case TSK_ExplicitSpecialization:
4878      // Okay, we're just specializing something that is either already
4879      // explicitly specialized or has merely been mentioned without any
4880      // instantiation.
4881      return false;
4882
4883    case TSK_ImplicitInstantiation:
4884      if (PrevPointOfInstantiation.isInvalid()) {
4885        // The declaration itself has not actually been instantiated, so it is
4886        // still okay to specialize it.
4887        StripImplicitInstantiation(PrevDecl);
4888        return false;
4889      }
4890      // Fall through
4891
4892    case TSK_ExplicitInstantiationDeclaration:
4893    case TSK_ExplicitInstantiationDefinition:
4894      assert((PrevTSK == TSK_ImplicitInstantiation ||
4895              PrevPointOfInstantiation.isValid()) &&
4896             "Explicit instantiation without point of instantiation?");
4897
4898      // C++ [temp.expl.spec]p6:
4899      //   If a template, a member template or the member of a class template
4900      //   is explicitly specialized then that specialization shall be declared
4901      //   before the first use of that specialization that would cause an
4902      //   implicit instantiation to take place, in every translation unit in
4903      //   which such a use occurs; no diagnostic is required.
4904      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4905        // Is there any previous explicit specialization declaration?
4906        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4907          return false;
4908      }
4909
4910      Diag(NewLoc, diag::err_specialization_after_instantiation)
4911        << PrevDecl;
4912      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4913        << (PrevTSK != TSK_ImplicitInstantiation);
4914
4915      return true;
4916    }
4917    break;
4918
4919  case TSK_ExplicitInstantiationDeclaration:
4920    switch (PrevTSK) {
4921    case TSK_ExplicitInstantiationDeclaration:
4922      // This explicit instantiation declaration is redundant (that's okay).
4923      HasNoEffect = true;
4924      return false;
4925
4926    case TSK_Undeclared:
4927    case TSK_ImplicitInstantiation:
4928      // We're explicitly instantiating something that may have already been
4929      // implicitly instantiated; that's fine.
4930      return false;
4931
4932    case TSK_ExplicitSpecialization:
4933      // C++0x [temp.explicit]p4:
4934      //   For a given set of template parameters, if an explicit instantiation
4935      //   of a template appears after a declaration of an explicit
4936      //   specialization for that template, the explicit instantiation has no
4937      //   effect.
4938      HasNoEffect = true;
4939      return false;
4940
4941    case TSK_ExplicitInstantiationDefinition:
4942      // C++0x [temp.explicit]p10:
4943      //   If an entity is the subject of both an explicit instantiation
4944      //   declaration and an explicit instantiation definition in the same
4945      //   translation unit, the definition shall follow the declaration.
4946      Diag(NewLoc,
4947           diag::err_explicit_instantiation_declaration_after_definition);
4948      Diag(PrevPointOfInstantiation,
4949           diag::note_explicit_instantiation_definition_here);
4950      assert(PrevPointOfInstantiation.isValid() &&
4951             "Explicit instantiation without point of instantiation?");
4952      HasNoEffect = true;
4953      return false;
4954    }
4955    break;
4956
4957  case TSK_ExplicitInstantiationDefinition:
4958    switch (PrevTSK) {
4959    case TSK_Undeclared:
4960    case TSK_ImplicitInstantiation:
4961      // We're explicitly instantiating something that may have already been
4962      // implicitly instantiated; that's fine.
4963      return false;
4964
4965    case TSK_ExplicitSpecialization:
4966      // C++ DR 259, C++0x [temp.explicit]p4:
4967      //   For a given set of template parameters, if an explicit
4968      //   instantiation of a template appears after a declaration of
4969      //   an explicit specialization for that template, the explicit
4970      //   instantiation has no effect.
4971      //
4972      // In C++98/03 mode, we only give an extension warning here, because it
4973      // is not harmful to try to explicitly instantiate something that
4974      // has been explicitly specialized.
4975      if (!getLangOptions().CPlusPlus0x) {
4976        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4977          << PrevDecl;
4978        Diag(PrevDecl->getLocation(),
4979             diag::note_previous_template_specialization);
4980      }
4981      HasNoEffect = true;
4982      return false;
4983
4984    case TSK_ExplicitInstantiationDeclaration:
4985      // We're explicity instantiating a definition for something for which we
4986      // were previously asked to suppress instantiations. That's fine.
4987      return false;
4988
4989    case TSK_ExplicitInstantiationDefinition:
4990      // C++0x [temp.spec]p5:
4991      //   For a given template and a given set of template-arguments,
4992      //     - an explicit instantiation definition shall appear at most once
4993      //       in a program,
4994      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4995        << PrevDecl;
4996      Diag(PrevPointOfInstantiation,
4997           diag::note_previous_explicit_instantiation);
4998      HasNoEffect = true;
4999      return false;
5000    }
5001    break;
5002  }
5003
5004  assert(false && "Missing specialization/instantiation case?");
5005
5006  return false;
5007}
5008
5009/// \brief Perform semantic analysis for the given dependent function
5010/// template specialization.  The only possible way to get a dependent
5011/// function template specialization is with a friend declaration,
5012/// like so:
5013///
5014///   template <class T> void foo(T);
5015///   template <class T> class A {
5016///     friend void foo<>(T);
5017///   };
5018///
5019/// There really isn't any useful analysis we can do here, so we
5020/// just store the information.
5021bool
5022Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5023                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5024                                                   LookupResult &Previous) {
5025  // Remove anything from Previous that isn't a function template in
5026  // the correct context.
5027  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5028  LookupResult::Filter F = Previous.makeFilter();
5029  while (F.hasNext()) {
5030    NamedDecl *D = F.next()->getUnderlyingDecl();
5031    if (!isa<FunctionTemplateDecl>(D) ||
5032        !FDLookupContext->InEnclosingNamespaceSetOf(
5033                              D->getDeclContext()->getRedeclContext()))
5034      F.erase();
5035  }
5036  F.done();
5037
5038  // Should this be diagnosed here?
5039  if (Previous.empty()) return true;
5040
5041  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5042                                         ExplicitTemplateArgs);
5043  return false;
5044}
5045
5046/// \brief Perform semantic analysis for the given function template
5047/// specialization.
5048///
5049/// This routine performs all of the semantic analysis required for an
5050/// explicit function template specialization. On successful completion,
5051/// the function declaration \p FD will become a function template
5052/// specialization.
5053///
5054/// \param FD the function declaration, which will be updated to become a
5055/// function template specialization.
5056///
5057/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5058/// if any. Note that this may be valid info even when 0 arguments are
5059/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5060/// as it anyway contains info on the angle brackets locations.
5061///
5062/// \param PrevDecl the set of declarations that may be specialized by
5063/// this function specialization.
5064bool
5065Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5066                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5067                                          LookupResult &Previous) {
5068  // The set of function template specializations that could match this
5069  // explicit function template specialization.
5070  UnresolvedSet<8> Candidates;
5071
5072  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5073  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5074         I != E; ++I) {
5075    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5076    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5077      // Only consider templates found within the same semantic lookup scope as
5078      // FD.
5079      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5080                                Ovl->getDeclContext()->getRedeclContext()))
5081        continue;
5082
5083      // C++ [temp.expl.spec]p11:
5084      //   A trailing template-argument can be left unspecified in the
5085      //   template-id naming an explicit function template specialization
5086      //   provided it can be deduced from the function argument type.
5087      // Perform template argument deduction to determine whether we may be
5088      // specializing this template.
5089      // FIXME: It is somewhat wasteful to build
5090      TemplateDeductionInfo Info(Context, FD->getLocation());
5091      FunctionDecl *Specialization = 0;
5092      if (TemplateDeductionResult TDK
5093            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5094                                      FD->getType(),
5095                                      Specialization,
5096                                      Info)) {
5097        // FIXME: Template argument deduction failed; record why it failed, so
5098        // that we can provide nifty diagnostics.
5099        (void)TDK;
5100        continue;
5101      }
5102
5103      // Record this candidate.
5104      Candidates.addDecl(Specialization, I.getAccess());
5105    }
5106  }
5107
5108  // Find the most specialized function template.
5109  UnresolvedSetIterator Result
5110    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5111                         TPOC_Other, 0, FD->getLocation(),
5112                  PDiag(diag::err_function_template_spec_no_match)
5113                    << FD->getDeclName(),
5114                  PDiag(diag::err_function_template_spec_ambiguous)
5115                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5116                  PDiag(diag::note_function_template_spec_matched));
5117  if (Result == Candidates.end())
5118    return true;
5119
5120  // Ignore access information;  it doesn't figure into redeclaration checking.
5121  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5122
5123  FunctionTemplateSpecializationInfo *SpecInfo
5124    = Specialization->getTemplateSpecializationInfo();
5125  assert(SpecInfo && "Function template specialization info missing?");
5126  {
5127    // Note: do not overwrite location info if previous template
5128    // specialization kind was explicit.
5129    TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5130    if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5131      Specialization->setLocation(FD->getLocation());
5132  }
5133
5134  // FIXME: Check if the prior specialization has a point of instantiation.
5135  // If so, we have run afoul of .
5136
5137  // If this is a friend declaration, then we're not really declaring
5138  // an explicit specialization.
5139  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5140
5141  // Check the scope of this explicit specialization.
5142  if (!isFriend &&
5143      CheckTemplateSpecializationScope(*this,
5144                                       Specialization->getPrimaryTemplate(),
5145                                       Specialization, FD->getLocation(),
5146                                       false))
5147    return true;
5148
5149  // C++ [temp.expl.spec]p6:
5150  //   If a template, a member template or the member of a class template is
5151  //   explicitly specialized then that specialization shall be declared
5152  //   before the first use of that specialization that would cause an implicit
5153  //   instantiation to take place, in every translation unit in which such a
5154  //   use occurs; no diagnostic is required.
5155  bool HasNoEffect = false;
5156  if (!isFriend &&
5157      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5158                                             TSK_ExplicitSpecialization,
5159                                             Specialization,
5160                                   SpecInfo->getTemplateSpecializationKind(),
5161                                         SpecInfo->getPointOfInstantiation(),
5162                                             HasNoEffect))
5163    return true;
5164
5165  // Mark the prior declaration as an explicit specialization, so that later
5166  // clients know that this is an explicit specialization.
5167  if (!isFriend) {
5168    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5169    MarkUnusedFileScopedDecl(Specialization);
5170  }
5171
5172  // Turn the given function declaration into a function template
5173  // specialization, with the template arguments from the previous
5174  // specialization.
5175  // Take copies of (semantic and syntactic) template argument lists.
5176  const TemplateArgumentList* TemplArgs = new (Context)
5177    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5178  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5179    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5180  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5181                                        TemplArgs, /*InsertPos=*/0,
5182                                    SpecInfo->getTemplateSpecializationKind(),
5183                                        TemplArgsAsWritten);
5184
5185  // The "previous declaration" for this function template specialization is
5186  // the prior function template specialization.
5187  Previous.clear();
5188  Previous.addDecl(Specialization);
5189  return false;
5190}
5191
5192/// \brief Perform semantic analysis for the given non-template member
5193/// specialization.
5194///
5195/// This routine performs all of the semantic analysis required for an
5196/// explicit member function specialization. On successful completion,
5197/// the function declaration \p FD will become a member function
5198/// specialization.
5199///
5200/// \param Member the member declaration, which will be updated to become a
5201/// specialization.
5202///
5203/// \param Previous the set of declarations, one of which may be specialized
5204/// by this function specialization;  the set will be modified to contain the
5205/// redeclared member.
5206bool
5207Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5208  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5209
5210  // Try to find the member we are instantiating.
5211  NamedDecl *Instantiation = 0;
5212  NamedDecl *InstantiatedFrom = 0;
5213  MemberSpecializationInfo *MSInfo = 0;
5214
5215  if (Previous.empty()) {
5216    // Nowhere to look anyway.
5217  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5218    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5219           I != E; ++I) {
5220      NamedDecl *D = (*I)->getUnderlyingDecl();
5221      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5222        if (Context.hasSameType(Function->getType(), Method->getType())) {
5223          Instantiation = Method;
5224          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5225          MSInfo = Method->getMemberSpecializationInfo();
5226          break;
5227        }
5228      }
5229    }
5230  } else if (isa<VarDecl>(Member)) {
5231    VarDecl *PrevVar;
5232    if (Previous.isSingleResult() &&
5233        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5234      if (PrevVar->isStaticDataMember()) {
5235        Instantiation = PrevVar;
5236        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5237        MSInfo = PrevVar->getMemberSpecializationInfo();
5238      }
5239  } else if (isa<RecordDecl>(Member)) {
5240    CXXRecordDecl *PrevRecord;
5241    if (Previous.isSingleResult() &&
5242        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5243      Instantiation = PrevRecord;
5244      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5245      MSInfo = PrevRecord->getMemberSpecializationInfo();
5246    }
5247  }
5248
5249  if (!Instantiation) {
5250    // There is no previous declaration that matches. Since member
5251    // specializations are always out-of-line, the caller will complain about
5252    // this mismatch later.
5253    return false;
5254  }
5255
5256  // If this is a friend, just bail out here before we start turning
5257  // things into explicit specializations.
5258  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5259    // Preserve instantiation information.
5260    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5261      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5262                                      cast<CXXMethodDecl>(InstantiatedFrom),
5263        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5264    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5265      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5266                                      cast<CXXRecordDecl>(InstantiatedFrom),
5267        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5268    }
5269
5270    Previous.clear();
5271    Previous.addDecl(Instantiation);
5272    return false;
5273  }
5274
5275  // Make sure that this is a specialization of a member.
5276  if (!InstantiatedFrom) {
5277    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5278      << Member;
5279    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5280    return true;
5281  }
5282
5283  // C++ [temp.expl.spec]p6:
5284  //   If a template, a member template or the member of a class template is
5285  //   explicitly specialized then that spe- cialization shall be declared
5286  //   before the first use of that specialization that would cause an implicit
5287  //   instantiation to take place, in every translation unit in which such a
5288  //   use occurs; no diagnostic is required.
5289  assert(MSInfo && "Member specialization info missing?");
5290
5291  bool HasNoEffect = false;
5292  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5293                                             TSK_ExplicitSpecialization,
5294                                             Instantiation,
5295                                     MSInfo->getTemplateSpecializationKind(),
5296                                           MSInfo->getPointOfInstantiation(),
5297                                             HasNoEffect))
5298    return true;
5299
5300  // Check the scope of this explicit specialization.
5301  if (CheckTemplateSpecializationScope(*this,
5302                                       InstantiatedFrom,
5303                                       Instantiation, Member->getLocation(),
5304                                       false))
5305    return true;
5306
5307  // Note that this is an explicit instantiation of a member.
5308  // the original declaration to note that it is an explicit specialization
5309  // (if it was previously an implicit instantiation). This latter step
5310  // makes bookkeeping easier.
5311  if (isa<FunctionDecl>(Member)) {
5312    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5313    if (InstantiationFunction->getTemplateSpecializationKind() ==
5314          TSK_ImplicitInstantiation) {
5315      InstantiationFunction->setTemplateSpecializationKind(
5316                                                  TSK_ExplicitSpecialization);
5317      InstantiationFunction->setLocation(Member->getLocation());
5318    }
5319
5320    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5321                                        cast<CXXMethodDecl>(InstantiatedFrom),
5322                                                  TSK_ExplicitSpecialization);
5323    MarkUnusedFileScopedDecl(InstantiationFunction);
5324  } else if (isa<VarDecl>(Member)) {
5325    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5326    if (InstantiationVar->getTemplateSpecializationKind() ==
5327          TSK_ImplicitInstantiation) {
5328      InstantiationVar->setTemplateSpecializationKind(
5329                                                  TSK_ExplicitSpecialization);
5330      InstantiationVar->setLocation(Member->getLocation());
5331    }
5332
5333    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5334                                                cast<VarDecl>(InstantiatedFrom),
5335                                                TSK_ExplicitSpecialization);
5336    MarkUnusedFileScopedDecl(InstantiationVar);
5337  } else {
5338    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5339    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5340    if (InstantiationClass->getTemplateSpecializationKind() ==
5341          TSK_ImplicitInstantiation) {
5342      InstantiationClass->setTemplateSpecializationKind(
5343                                                   TSK_ExplicitSpecialization);
5344      InstantiationClass->setLocation(Member->getLocation());
5345    }
5346
5347    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5348                                        cast<CXXRecordDecl>(InstantiatedFrom),
5349                                                   TSK_ExplicitSpecialization);
5350  }
5351
5352  // Save the caller the trouble of having to figure out which declaration
5353  // this specialization matches.
5354  Previous.clear();
5355  Previous.addDecl(Instantiation);
5356  return false;
5357}
5358
5359/// \brief Check the scope of an explicit instantiation.
5360///
5361/// \returns true if a serious error occurs, false otherwise.
5362static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5363                                            SourceLocation InstLoc,
5364                                            bool WasQualifiedName) {
5365  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5366  DeclContext *CurContext = S.CurContext->getRedeclContext();
5367
5368  if (CurContext->isRecord()) {
5369    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5370      << D;
5371    return true;
5372  }
5373
5374  // C++0x [temp.explicit]p2:
5375  //   An explicit instantiation shall appear in an enclosing namespace of its
5376  //   template.
5377  //
5378  // This is DR275, which we do not retroactively apply to C++98/03.
5379  if (S.getLangOptions().CPlusPlus0x &&
5380      !CurContext->Encloses(OrigContext)) {
5381    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5382      S.Diag(InstLoc,
5383             S.getLangOptions().CPlusPlus0x?
5384                 diag::err_explicit_instantiation_out_of_scope
5385               : diag::warn_explicit_instantiation_out_of_scope_0x)
5386        << D << NS;
5387    else
5388      S.Diag(InstLoc,
5389             S.getLangOptions().CPlusPlus0x?
5390                 diag::err_explicit_instantiation_must_be_global
5391               : diag::warn_explicit_instantiation_out_of_scope_0x)
5392        << D;
5393    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5394    return false;
5395  }
5396
5397  // C++0x [temp.explicit]p2:
5398  //   If the name declared in the explicit instantiation is an unqualified
5399  //   name, the explicit instantiation shall appear in the namespace where
5400  //   its template is declared or, if that namespace is inline (7.3.1), any
5401  //   namespace from its enclosing namespace set.
5402  if (WasQualifiedName)
5403    return false;
5404
5405  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5406    return false;
5407
5408  S.Diag(InstLoc,
5409         S.getLangOptions().CPlusPlus0x?
5410             diag::err_explicit_instantiation_unqualified_wrong_namespace
5411           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5412    << D << OrigContext;
5413  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5414  return false;
5415}
5416
5417/// \brief Determine whether the given scope specifier has a template-id in it.
5418static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5419  if (!SS.isSet())
5420    return false;
5421
5422  // C++0x [temp.explicit]p2:
5423  //   If the explicit instantiation is for a member function, a member class
5424  //   or a static data member of a class template specialization, the name of
5425  //   the class template specialization in the qualified-id for the member
5426  //   name shall be a simple-template-id.
5427  //
5428  // C++98 has the same restriction, just worded differently.
5429  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5430       NNS; NNS = NNS->getPrefix())
5431    if (const Type *T = NNS->getAsType())
5432      if (isa<TemplateSpecializationType>(T))
5433        return true;
5434
5435  return false;
5436}
5437
5438// Explicit instantiation of a class template specialization
5439DeclResult
5440Sema::ActOnExplicitInstantiation(Scope *S,
5441                                 SourceLocation ExternLoc,
5442                                 SourceLocation TemplateLoc,
5443                                 unsigned TagSpec,
5444                                 SourceLocation KWLoc,
5445                                 const CXXScopeSpec &SS,
5446                                 TemplateTy TemplateD,
5447                                 SourceLocation TemplateNameLoc,
5448                                 SourceLocation LAngleLoc,
5449                                 ASTTemplateArgsPtr TemplateArgsIn,
5450                                 SourceLocation RAngleLoc,
5451                                 AttributeList *Attr) {
5452  // Find the class template we're specializing
5453  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5454  ClassTemplateDecl *ClassTemplate
5455    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5456
5457  // Check that the specialization uses the same tag kind as the
5458  // original template.
5459  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5460  assert(Kind != TTK_Enum &&
5461         "Invalid enum tag in class template explicit instantiation!");
5462  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5463                                    Kind, KWLoc,
5464                                    *ClassTemplate->getIdentifier())) {
5465    Diag(KWLoc, diag::err_use_with_wrong_tag)
5466      << ClassTemplate
5467      << FixItHint::CreateReplacement(KWLoc,
5468                            ClassTemplate->getTemplatedDecl()->getKindName());
5469    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5470         diag::note_previous_use);
5471    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5472  }
5473
5474  // C++0x [temp.explicit]p2:
5475  //   There are two forms of explicit instantiation: an explicit instantiation
5476  //   definition and an explicit instantiation declaration. An explicit
5477  //   instantiation declaration begins with the extern keyword. [...]
5478  TemplateSpecializationKind TSK
5479    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5480                           : TSK_ExplicitInstantiationDeclaration;
5481
5482  // Translate the parser's template argument list in our AST format.
5483  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5484  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5485
5486  // Check that the template argument list is well-formed for this
5487  // template.
5488  llvm::SmallVector<TemplateArgument, 4> Converted;
5489  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5490                                TemplateArgs, false, Converted))
5491    return true;
5492
5493  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5494         "Converted template argument list is too short!");
5495
5496  // Find the class template specialization declaration that
5497  // corresponds to these arguments.
5498  void *InsertPos = 0;
5499  ClassTemplateSpecializationDecl *PrevDecl
5500    = ClassTemplate->findSpecialization(Converted.data(),
5501                                        Converted.size(), InsertPos);
5502
5503  TemplateSpecializationKind PrevDecl_TSK
5504    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5505
5506  // C++0x [temp.explicit]p2:
5507  //   [...] An explicit instantiation shall appear in an enclosing
5508  //   namespace of its template. [...]
5509  //
5510  // This is C++ DR 275.
5511  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5512                                      SS.isSet()))
5513    return true;
5514
5515  ClassTemplateSpecializationDecl *Specialization = 0;
5516
5517  bool HasNoEffect = false;
5518  if (PrevDecl) {
5519    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5520                                               PrevDecl, PrevDecl_TSK,
5521                                            PrevDecl->getPointOfInstantiation(),
5522                                               HasNoEffect))
5523      return PrevDecl;
5524
5525    // Even though HasNoEffect == true means that this explicit instantiation
5526    // has no effect on semantics, we go on to put its syntax in the AST.
5527
5528    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5529        PrevDecl_TSK == TSK_Undeclared) {
5530      // Since the only prior class template specialization with these
5531      // arguments was referenced but not declared, reuse that
5532      // declaration node as our own, updating the source location
5533      // for the template name to reflect our new declaration.
5534      // (Other source locations will be updated later.)
5535      Specialization = PrevDecl;
5536      Specialization->setLocation(TemplateNameLoc);
5537      PrevDecl = 0;
5538    }
5539  }
5540
5541  if (!Specialization) {
5542    // Create a new class template specialization declaration node for
5543    // this explicit specialization.
5544    Specialization
5545      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5546                                             ClassTemplate->getDeclContext(),
5547                                                KWLoc, TemplateNameLoc,
5548                                                ClassTemplate,
5549                                                Converted.data(),
5550                                                Converted.size(),
5551                                                PrevDecl);
5552    SetNestedNameSpecifier(Specialization, SS);
5553
5554    if (!HasNoEffect && !PrevDecl) {
5555      // Insert the new specialization.
5556      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5557    }
5558  }
5559
5560  // Build the fully-sugared type for this explicit instantiation as
5561  // the user wrote in the explicit instantiation itself. This means
5562  // that we'll pretty-print the type retrieved from the
5563  // specialization's declaration the way that the user actually wrote
5564  // the explicit instantiation, rather than formatting the name based
5565  // on the "canonical" representation used to store the template
5566  // arguments in the specialization.
5567  TypeSourceInfo *WrittenTy
5568    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5569                                                TemplateArgs,
5570                                  Context.getTypeDeclType(Specialization));
5571  Specialization->setTypeAsWritten(WrittenTy);
5572  TemplateArgsIn.release();
5573
5574  // Set source locations for keywords.
5575  Specialization->setExternLoc(ExternLoc);
5576  Specialization->setTemplateKeywordLoc(TemplateLoc);
5577
5578  // Add the explicit instantiation into its lexical context. However,
5579  // since explicit instantiations are never found by name lookup, we
5580  // just put it into the declaration context directly.
5581  Specialization->setLexicalDeclContext(CurContext);
5582  CurContext->addDecl(Specialization);
5583
5584  // Syntax is now OK, so return if it has no other effect on semantics.
5585  if (HasNoEffect) {
5586    // Set the template specialization kind.
5587    Specialization->setTemplateSpecializationKind(TSK);
5588    return Specialization;
5589  }
5590
5591  // C++ [temp.explicit]p3:
5592  //   A definition of a class template or class member template
5593  //   shall be in scope at the point of the explicit instantiation of
5594  //   the class template or class member template.
5595  //
5596  // This check comes when we actually try to perform the
5597  // instantiation.
5598  ClassTemplateSpecializationDecl *Def
5599    = cast_or_null<ClassTemplateSpecializationDecl>(
5600                                              Specialization->getDefinition());
5601  if (!Def)
5602    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5603  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5604    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5605    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5606  }
5607
5608  // Instantiate the members of this class template specialization.
5609  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5610                                       Specialization->getDefinition());
5611  if (Def) {
5612    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5613
5614    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5615    // TSK_ExplicitInstantiationDefinition
5616    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5617        TSK == TSK_ExplicitInstantiationDefinition)
5618      Def->setTemplateSpecializationKind(TSK);
5619
5620    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5621  }
5622
5623  // Set the template specialization kind.
5624  Specialization->setTemplateSpecializationKind(TSK);
5625  return Specialization;
5626}
5627
5628// Explicit instantiation of a member class of a class template.
5629DeclResult
5630Sema::ActOnExplicitInstantiation(Scope *S,
5631                                 SourceLocation ExternLoc,
5632                                 SourceLocation TemplateLoc,
5633                                 unsigned TagSpec,
5634                                 SourceLocation KWLoc,
5635                                 CXXScopeSpec &SS,
5636                                 IdentifierInfo *Name,
5637                                 SourceLocation NameLoc,
5638                                 AttributeList *Attr) {
5639
5640  bool Owned = false;
5641  bool IsDependent = false;
5642  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5643                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5644                        MultiTemplateParamsArg(*this, 0, 0),
5645                        Owned, IsDependent, false, false,
5646                        TypeResult());
5647  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5648
5649  if (!TagD)
5650    return true;
5651
5652  TagDecl *Tag = cast<TagDecl>(TagD);
5653  if (Tag->isEnum()) {
5654    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5655      << Context.getTypeDeclType(Tag);
5656    return true;
5657  }
5658
5659  if (Tag->isInvalidDecl())
5660    return true;
5661
5662  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5663  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5664  if (!Pattern) {
5665    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5666      << Context.getTypeDeclType(Record);
5667    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5668    return true;
5669  }
5670
5671  // C++0x [temp.explicit]p2:
5672  //   If the explicit instantiation is for a class or member class, the
5673  //   elaborated-type-specifier in the declaration shall include a
5674  //   simple-template-id.
5675  //
5676  // C++98 has the same restriction, just worded differently.
5677  if (!ScopeSpecifierHasTemplateId(SS))
5678    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5679      << Record << SS.getRange();
5680
5681  // C++0x [temp.explicit]p2:
5682  //   There are two forms of explicit instantiation: an explicit instantiation
5683  //   definition and an explicit instantiation declaration. An explicit
5684  //   instantiation declaration begins with the extern keyword. [...]
5685  TemplateSpecializationKind TSK
5686    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5687                           : TSK_ExplicitInstantiationDeclaration;
5688
5689  // C++0x [temp.explicit]p2:
5690  //   [...] An explicit instantiation shall appear in an enclosing
5691  //   namespace of its template. [...]
5692  //
5693  // This is C++ DR 275.
5694  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5695
5696  // Verify that it is okay to explicitly instantiate here.
5697  CXXRecordDecl *PrevDecl
5698    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5699  if (!PrevDecl && Record->getDefinition())
5700    PrevDecl = Record;
5701  if (PrevDecl) {
5702    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5703    bool HasNoEffect = false;
5704    assert(MSInfo && "No member specialization information?");
5705    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5706                                               PrevDecl,
5707                                        MSInfo->getTemplateSpecializationKind(),
5708                                             MSInfo->getPointOfInstantiation(),
5709                                               HasNoEffect))
5710      return true;
5711    if (HasNoEffect)
5712      return TagD;
5713  }
5714
5715  CXXRecordDecl *RecordDef
5716    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5717  if (!RecordDef) {
5718    // C++ [temp.explicit]p3:
5719    //   A definition of a member class of a class template shall be in scope
5720    //   at the point of an explicit instantiation of the member class.
5721    CXXRecordDecl *Def
5722      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5723    if (!Def) {
5724      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5725        << 0 << Record->getDeclName() << Record->getDeclContext();
5726      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5727        << Pattern;
5728      return true;
5729    } else {
5730      if (InstantiateClass(NameLoc, Record, Def,
5731                           getTemplateInstantiationArgs(Record),
5732                           TSK))
5733        return true;
5734
5735      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5736      if (!RecordDef)
5737        return true;
5738    }
5739  }
5740
5741  // Instantiate all of the members of the class.
5742  InstantiateClassMembers(NameLoc, RecordDef,
5743                          getTemplateInstantiationArgs(Record), TSK);
5744
5745  if (TSK == TSK_ExplicitInstantiationDefinition)
5746    MarkVTableUsed(NameLoc, RecordDef, true);
5747
5748  // FIXME: We don't have any representation for explicit instantiations of
5749  // member classes. Such a representation is not needed for compilation, but it
5750  // should be available for clients that want to see all of the declarations in
5751  // the source code.
5752  return TagD;
5753}
5754
5755DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5756                                            SourceLocation ExternLoc,
5757                                            SourceLocation TemplateLoc,
5758                                            Declarator &D) {
5759  // Explicit instantiations always require a name.
5760  // TODO: check if/when DNInfo should replace Name.
5761  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5762  DeclarationName Name = NameInfo.getName();
5763  if (!Name) {
5764    if (!D.isInvalidType())
5765      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5766           diag::err_explicit_instantiation_requires_name)
5767        << D.getDeclSpec().getSourceRange()
5768        << D.getSourceRange();
5769
5770    return true;
5771  }
5772
5773  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5774  // we find one that is.
5775  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5776         (S->getFlags() & Scope::TemplateParamScope) != 0)
5777    S = S->getParent();
5778
5779  // Determine the type of the declaration.
5780  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5781  QualType R = T->getType();
5782  if (R.isNull())
5783    return true;
5784
5785  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5786    // Cannot explicitly instantiate a typedef.
5787    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5788      << Name;
5789    return true;
5790  }
5791
5792  // C++0x [temp.explicit]p1:
5793  //   [...] An explicit instantiation of a function template shall not use the
5794  //   inline or constexpr specifiers.
5795  // Presumably, this also applies to member functions of class templates as
5796  // well.
5797  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5798    Diag(D.getDeclSpec().getInlineSpecLoc(),
5799         diag::err_explicit_instantiation_inline)
5800      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5801
5802  // FIXME: check for constexpr specifier.
5803
5804  // C++0x [temp.explicit]p2:
5805  //   There are two forms of explicit instantiation: an explicit instantiation
5806  //   definition and an explicit instantiation declaration. An explicit
5807  //   instantiation declaration begins with the extern keyword. [...]
5808  TemplateSpecializationKind TSK
5809    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5810                           : TSK_ExplicitInstantiationDeclaration;
5811
5812  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5813  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5814
5815  if (!R->isFunctionType()) {
5816    // C++ [temp.explicit]p1:
5817    //   A [...] static data member of a class template can be explicitly
5818    //   instantiated from the member definition associated with its class
5819    //   template.
5820    if (Previous.isAmbiguous())
5821      return true;
5822
5823    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5824    if (!Prev || !Prev->isStaticDataMember()) {
5825      // We expect to see a data data member here.
5826      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5827        << Name;
5828      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5829           P != PEnd; ++P)
5830        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5831      return true;
5832    }
5833
5834    if (!Prev->getInstantiatedFromStaticDataMember()) {
5835      // FIXME: Check for explicit specialization?
5836      Diag(D.getIdentifierLoc(),
5837           diag::err_explicit_instantiation_data_member_not_instantiated)
5838        << Prev;
5839      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5840      // FIXME: Can we provide a note showing where this was declared?
5841      return true;
5842    }
5843
5844    // C++0x [temp.explicit]p2:
5845    //   If the explicit instantiation is for a member function, a member class
5846    //   or a static data member of a class template specialization, the name of
5847    //   the class template specialization in the qualified-id for the member
5848    //   name shall be a simple-template-id.
5849    //
5850    // C++98 has the same restriction, just worded differently.
5851    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5852      Diag(D.getIdentifierLoc(),
5853           diag::ext_explicit_instantiation_without_qualified_id)
5854        << Prev << D.getCXXScopeSpec().getRange();
5855
5856    // Check the scope of this explicit instantiation.
5857    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5858
5859    // Verify that it is okay to explicitly instantiate here.
5860    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5861    assert(MSInfo && "Missing static data member specialization info?");
5862    bool HasNoEffect = false;
5863    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5864                                        MSInfo->getTemplateSpecializationKind(),
5865                                              MSInfo->getPointOfInstantiation(),
5866                                               HasNoEffect))
5867      return true;
5868    if (HasNoEffect)
5869      return (Decl*) 0;
5870
5871    // Instantiate static data member.
5872    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5873    if (TSK == TSK_ExplicitInstantiationDefinition)
5874      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5875
5876    // FIXME: Create an ExplicitInstantiation node?
5877    return (Decl*) 0;
5878  }
5879
5880  // If the declarator is a template-id, translate the parser's template
5881  // argument list into our AST format.
5882  bool HasExplicitTemplateArgs = false;
5883  TemplateArgumentListInfo TemplateArgs;
5884  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5885    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5886    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5887    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5888    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5889                                       TemplateId->getTemplateArgs(),
5890                                       TemplateId->NumArgs);
5891    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5892    HasExplicitTemplateArgs = true;
5893    TemplateArgsPtr.release();
5894  }
5895
5896  // C++ [temp.explicit]p1:
5897  //   A [...] function [...] can be explicitly instantiated from its template.
5898  //   A member function [...] of a class template can be explicitly
5899  //  instantiated from the member definition associated with its class
5900  //  template.
5901  UnresolvedSet<8> Matches;
5902  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5903       P != PEnd; ++P) {
5904    NamedDecl *Prev = *P;
5905    if (!HasExplicitTemplateArgs) {
5906      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5907        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5908          Matches.clear();
5909
5910          Matches.addDecl(Method, P.getAccess());
5911          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5912            break;
5913        }
5914      }
5915    }
5916
5917    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5918    if (!FunTmpl)
5919      continue;
5920
5921    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5922    FunctionDecl *Specialization = 0;
5923    if (TemplateDeductionResult TDK
5924          = DeduceTemplateArguments(FunTmpl,
5925                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5926                                    R, Specialization, Info)) {
5927      // FIXME: Keep track of almost-matches?
5928      (void)TDK;
5929      continue;
5930    }
5931
5932    Matches.addDecl(Specialization, P.getAccess());
5933  }
5934
5935  // Find the most specialized function template specialization.
5936  UnresolvedSetIterator Result
5937    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
5938                         D.getIdentifierLoc(),
5939                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5940                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5941                         PDiag(diag::note_explicit_instantiation_candidate));
5942
5943  if (Result == Matches.end())
5944    return true;
5945
5946  // Ignore access control bits, we don't need them for redeclaration checking.
5947  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5948
5949  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5950    Diag(D.getIdentifierLoc(),
5951         diag::err_explicit_instantiation_member_function_not_instantiated)
5952      << Specialization
5953      << (Specialization->getTemplateSpecializationKind() ==
5954          TSK_ExplicitSpecialization);
5955    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5956    return true;
5957  }
5958
5959  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5960  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5961    PrevDecl = Specialization;
5962
5963  if (PrevDecl) {
5964    bool HasNoEffect = false;
5965    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5966                                               PrevDecl,
5967                                     PrevDecl->getTemplateSpecializationKind(),
5968                                          PrevDecl->getPointOfInstantiation(),
5969                                               HasNoEffect))
5970      return true;
5971
5972    // FIXME: We may still want to build some representation of this
5973    // explicit specialization.
5974    if (HasNoEffect)
5975      return (Decl*) 0;
5976  }
5977
5978  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5979
5980  if (TSK == TSK_ExplicitInstantiationDefinition)
5981    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5982
5983  // C++0x [temp.explicit]p2:
5984  //   If the explicit instantiation is for a member function, a member class
5985  //   or a static data member of a class template specialization, the name of
5986  //   the class template specialization in the qualified-id for the member
5987  //   name shall be a simple-template-id.
5988  //
5989  // C++98 has the same restriction, just worded differently.
5990  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5991  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5992      D.getCXXScopeSpec().isSet() &&
5993      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5994    Diag(D.getIdentifierLoc(),
5995         diag::ext_explicit_instantiation_without_qualified_id)
5996    << Specialization << D.getCXXScopeSpec().getRange();
5997
5998  CheckExplicitInstantiationScope(*this,
5999                   FunTmpl? (NamedDecl *)FunTmpl
6000                          : Specialization->getInstantiatedFromMemberFunction(),
6001                                  D.getIdentifierLoc(),
6002                                  D.getCXXScopeSpec().isSet());
6003
6004  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6005  return (Decl*) 0;
6006}
6007
6008TypeResult
6009Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6010                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6011                        SourceLocation TagLoc, SourceLocation NameLoc) {
6012  // This has to hold, because SS is expected to be defined.
6013  assert(Name && "Expected a name in a dependent tag");
6014
6015  NestedNameSpecifier *NNS
6016    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6017  if (!NNS)
6018    return true;
6019
6020  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6021
6022  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6023    Diag(NameLoc, diag::err_dependent_tag_decl)
6024      << (TUK == TUK_Definition) << Kind << SS.getRange();
6025    return true;
6026  }
6027
6028  // Create the resulting type.
6029  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6030  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6031
6032  // Create type-source location information for this type.
6033  TypeLocBuilder TLB;
6034  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6035  TL.setKeywordLoc(TagLoc);
6036  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6037  TL.setNameLoc(NameLoc);
6038  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6039}
6040
6041TypeResult
6042Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6043                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6044                        SourceLocation IdLoc) {
6045  if (SS.isInvalid())
6046    return true;
6047
6048  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6049      !getLangOptions().CPlusPlus0x)
6050    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6051      << FixItHint::CreateRemoval(TypenameLoc);
6052
6053  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6054  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6055                                 TypenameLoc, QualifierLoc, II, IdLoc);
6056  if (T.isNull())
6057    return true;
6058
6059  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6060  if (isa<DependentNameType>(T)) {
6061    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6062    TL.setKeywordLoc(TypenameLoc);
6063    TL.setQualifierLoc(QualifierLoc);
6064    TL.setNameLoc(IdLoc);
6065  } else {
6066    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6067    TL.setKeywordLoc(TypenameLoc);
6068    TL.setQualifierLoc(QualifierLoc);
6069    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6070  }
6071
6072  return CreateParsedType(T, TSI);
6073}
6074
6075TypeResult
6076Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6077                        const CXXScopeSpec &SS,
6078                        SourceLocation TemplateLoc,
6079                        TemplateTy TemplateIn,
6080                        SourceLocation TemplateNameLoc,
6081                        SourceLocation LAngleLoc,
6082                        ASTTemplateArgsPtr TemplateArgsIn,
6083                        SourceLocation RAngleLoc) {
6084  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6085      !getLangOptions().CPlusPlus0x)
6086    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6087    << FixItHint::CreateRemoval(TypenameLoc);
6088
6089  // Translate the parser's template argument list in our AST format.
6090  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6091  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6092
6093  TemplateName Template = TemplateIn.get();
6094  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6095    // Construct a dependent template specialization type.
6096    assert(DTN && "dependent template has non-dependent name?");
6097    assert(DTN->getQualifier()
6098           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6099    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6100                                                          DTN->getQualifier(),
6101                                                          DTN->getIdentifier(),
6102                                                                TemplateArgs);
6103
6104    // Create source-location information for this type.
6105    TypeLocBuilder Builder;
6106    DependentTemplateSpecializationTypeLoc SpecTL
6107    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6108    SpecTL.setLAngleLoc(LAngleLoc);
6109    SpecTL.setRAngleLoc(RAngleLoc);
6110    SpecTL.setKeywordLoc(TypenameLoc);
6111    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6112    SpecTL.setNameLoc(TemplateNameLoc);
6113    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6114      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6115    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6116  }
6117
6118  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6119  if (T.isNull())
6120    return true;
6121
6122  // Provide source-location information for the template specialization
6123  // type.
6124  TypeLocBuilder Builder;
6125  TemplateSpecializationTypeLoc SpecTL
6126    = Builder.push<TemplateSpecializationTypeLoc>(T);
6127
6128  // FIXME: No place to set the location of the 'template' keyword!
6129  SpecTL.setLAngleLoc(LAngleLoc);
6130  SpecTL.setRAngleLoc(RAngleLoc);
6131  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6132  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6133    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6134
6135  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6136  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6137  TL.setKeywordLoc(TypenameLoc);
6138  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6139
6140  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6141  return CreateParsedType(T, TSI);
6142}
6143
6144
6145/// \brief Build the type that describes a C++ typename specifier,
6146/// e.g., "typename T::type".
6147QualType
6148Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6149                        SourceLocation KeywordLoc,
6150                        NestedNameSpecifierLoc QualifierLoc,
6151                        const IdentifierInfo &II,
6152                        SourceLocation IILoc) {
6153  CXXScopeSpec SS;
6154  SS.Adopt(QualifierLoc);
6155
6156  DeclContext *Ctx = computeDeclContext(SS);
6157  if (!Ctx) {
6158    // If the nested-name-specifier is dependent and couldn't be
6159    // resolved to a type, build a typename type.
6160    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6161    return Context.getDependentNameType(Keyword,
6162                                        QualifierLoc.getNestedNameSpecifier(),
6163                                        &II);
6164  }
6165
6166  // If the nested-name-specifier refers to the current instantiation,
6167  // the "typename" keyword itself is superfluous. In C++03, the
6168  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6169  // allows such extraneous "typename" keywords, and we retroactively
6170  // apply this DR to C++03 code with only a warning. In any case we continue.
6171
6172  if (RequireCompleteDeclContext(SS, Ctx))
6173    return QualType();
6174
6175  DeclarationName Name(&II);
6176  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6177  LookupQualifiedName(Result, Ctx);
6178  unsigned DiagID = 0;
6179  Decl *Referenced = 0;
6180  switch (Result.getResultKind()) {
6181  case LookupResult::NotFound:
6182    DiagID = diag::err_typename_nested_not_found;
6183    break;
6184
6185  case LookupResult::FoundUnresolvedValue: {
6186    // We found a using declaration that is a value. Most likely, the using
6187    // declaration itself is meant to have the 'typename' keyword.
6188    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6189                          IILoc);
6190    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6191      << Name << Ctx << FullRange;
6192    if (UnresolvedUsingValueDecl *Using
6193          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6194      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6195      Diag(Loc, diag::note_using_value_decl_missing_typename)
6196        << FixItHint::CreateInsertion(Loc, "typename ");
6197    }
6198  }
6199  // Fall through to create a dependent typename type, from which we can recover
6200  // better.
6201
6202  case LookupResult::NotFoundInCurrentInstantiation:
6203    // Okay, it's a member of an unknown instantiation.
6204    return Context.getDependentNameType(Keyword,
6205                                        QualifierLoc.getNestedNameSpecifier(),
6206                                        &II);
6207
6208  case LookupResult::Found:
6209    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6210      // We found a type. Build an ElaboratedType, since the
6211      // typename-specifier was just sugar.
6212      return Context.getElaboratedType(ETK_Typename,
6213                                       QualifierLoc.getNestedNameSpecifier(),
6214                                       Context.getTypeDeclType(Type));
6215    }
6216
6217    DiagID = diag::err_typename_nested_not_type;
6218    Referenced = Result.getFoundDecl();
6219    break;
6220
6221
6222    llvm_unreachable("unresolved using decl in non-dependent context");
6223    return QualType();
6224
6225  case LookupResult::FoundOverloaded:
6226    DiagID = diag::err_typename_nested_not_type;
6227    Referenced = *Result.begin();
6228    break;
6229
6230  case LookupResult::Ambiguous:
6231    return QualType();
6232  }
6233
6234  // If we get here, it's because name lookup did not find a
6235  // type. Emit an appropriate diagnostic and return an error.
6236  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6237                        IILoc);
6238  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6239  if (Referenced)
6240    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6241      << Name;
6242  return QualType();
6243}
6244
6245namespace {
6246  // See Sema::RebuildTypeInCurrentInstantiation
6247  class CurrentInstantiationRebuilder
6248    : public TreeTransform<CurrentInstantiationRebuilder> {
6249    SourceLocation Loc;
6250    DeclarationName Entity;
6251
6252  public:
6253    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6254
6255    CurrentInstantiationRebuilder(Sema &SemaRef,
6256                                  SourceLocation Loc,
6257                                  DeclarationName Entity)
6258    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6259      Loc(Loc), Entity(Entity) { }
6260
6261    /// \brief Determine whether the given type \p T has already been
6262    /// transformed.
6263    ///
6264    /// For the purposes of type reconstruction, a type has already been
6265    /// transformed if it is NULL or if it is not dependent.
6266    bool AlreadyTransformed(QualType T) {
6267      return T.isNull() || !T->isDependentType();
6268    }
6269
6270    /// \brief Returns the location of the entity whose type is being
6271    /// rebuilt.
6272    SourceLocation getBaseLocation() { return Loc; }
6273
6274    /// \brief Returns the name of the entity whose type is being rebuilt.
6275    DeclarationName getBaseEntity() { return Entity; }
6276
6277    /// \brief Sets the "base" location and entity when that
6278    /// information is known based on another transformation.
6279    void setBase(SourceLocation Loc, DeclarationName Entity) {
6280      this->Loc = Loc;
6281      this->Entity = Entity;
6282    }
6283  };
6284}
6285
6286/// \brief Rebuilds a type within the context of the current instantiation.
6287///
6288/// The type \p T is part of the type of an out-of-line member definition of
6289/// a class template (or class template partial specialization) that was parsed
6290/// and constructed before we entered the scope of the class template (or
6291/// partial specialization thereof). This routine will rebuild that type now
6292/// that we have entered the declarator's scope, which may produce different
6293/// canonical types, e.g.,
6294///
6295/// \code
6296/// template<typename T>
6297/// struct X {
6298///   typedef T* pointer;
6299///   pointer data();
6300/// };
6301///
6302/// template<typename T>
6303/// typename X<T>::pointer X<T>::data() { ... }
6304/// \endcode
6305///
6306/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6307/// since we do not know that we can look into X<T> when we parsed the type.
6308/// This function will rebuild the type, performing the lookup of "pointer"
6309/// in X<T> and returning an ElaboratedType whose canonical type is the same
6310/// as the canonical type of T*, allowing the return types of the out-of-line
6311/// definition and the declaration to match.
6312TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6313                                                        SourceLocation Loc,
6314                                                        DeclarationName Name) {
6315  if (!T || !T->getType()->isDependentType())
6316    return T;
6317
6318  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6319  return Rebuilder.TransformType(T);
6320}
6321
6322ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6323  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6324                                          DeclarationName());
6325  return Rebuilder.TransformExpr(E);
6326}
6327
6328bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6329  if (SS.isInvalid())
6330    return true;
6331
6332  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6333  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6334                                          DeclarationName());
6335  NestedNameSpecifierLoc Rebuilt
6336    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6337  if (!Rebuilt)
6338    return true;
6339
6340  SS.Adopt(Rebuilt);
6341  return false;
6342}
6343
6344/// \brief Produces a formatted string that describes the binding of
6345/// template parameters to template arguments.
6346std::string
6347Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6348                                      const TemplateArgumentList &Args) {
6349  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6350}
6351
6352std::string
6353Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6354                                      const TemplateArgument *Args,
6355                                      unsigned NumArgs) {
6356  llvm::SmallString<128> Str;
6357  llvm::raw_svector_ostream Out(Str);
6358
6359  if (!Params || Params->size() == 0 || NumArgs == 0)
6360    return std::string();
6361
6362  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6363    if (I >= NumArgs)
6364      break;
6365
6366    if (I == 0)
6367      Out << "[with ";
6368    else
6369      Out << ", ";
6370
6371    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6372      Out << Id->getName();
6373    } else {
6374      Out << '$' << I;
6375    }
6376
6377    Out << " = ";
6378    Args[I].print(Context.PrintingPolicy, Out);
6379  }
6380
6381  Out << ']';
6382  return Out.str();
6383}
6384