SemaTemplate.cpp revision 51ffb0c9d43b2d3fd210e51ecdd67ba5d1790d70
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Parse/Template.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
63  if (!Ovl)
64    return 0;
65
66  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
67                                              FEnd = Ovl->function_end();
68       F != FEnd; ++F) {
69    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
70      // We've found a function template. Determine whether there are
71      // any other function templates we need to bundle together in an
72      // OverloadedFunctionDecl
73      for (++F; F != FEnd; ++F) {
74        if (isa<FunctionTemplateDecl>(*F))
75          break;
76      }
77
78      if (F != FEnd) {
79        // Build an overloaded function decl containing only the
80        // function templates in Ovl.
81        OverloadedFunctionDecl *OvlTemplate
82          = OverloadedFunctionDecl::Create(Context,
83                                           Ovl->getDeclContext(),
84                                           Ovl->getDeclName());
85        OvlTemplate->addOverload(FuncTmpl);
86        OvlTemplate->addOverload(*F);
87        for (++F; F != FEnd; ++F) {
88          if (isa<FunctionTemplateDecl>(*F))
89            OvlTemplate->addOverload(*F);
90        }
91
92        return OvlTemplate;
93      }
94
95      return FuncTmpl;
96    }
97  }
98
99  return 0;
100}
101
102static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
103  LookupResult::Filter filter = R.makeFilter();
104  while (filter.hasNext()) {
105    NamedDecl *Orig = filter.next();
106    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
107    if (!Repl)
108      filter.erase();
109    else if (Repl != Orig)
110      filter.replace(Repl);
111  }
112  filter.done();
113}
114
115TemplateNameKind Sema::isTemplateName(Scope *S,
116                                      const CXXScopeSpec &SS,
117                                      UnqualifiedId &Name,
118                                      TypeTy *ObjectTypePtr,
119                                      bool EnteringContext,
120                                      TemplateTy &TemplateResult) {
121  DeclarationName TName;
122
123  switch (Name.getKind()) {
124  case UnqualifiedId::IK_Identifier:
125    TName = DeclarationName(Name.Identifier);
126    break;
127
128  case UnqualifiedId::IK_OperatorFunctionId:
129    TName = Context.DeclarationNames.getCXXOperatorName(
130                                              Name.OperatorFunctionId.Operator);
131    break;
132
133  default:
134    return TNK_Non_template;
135  }
136
137  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
138
139  LookupResult R(*this, TName, SourceLocation(), LookupOrdinaryName);
140  R.suppressDiagnostics();
141  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
142  if (R.empty())
143    return TNK_Non_template;
144
145  NamedDecl *Template = R.getAsSingleDecl(Context);
146
147  if (SS.isSet() && !SS.isInvalid()) {
148    NestedNameSpecifier *Qualifier
149      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
150    if (OverloadedFunctionDecl *Ovl
151          = dyn_cast<OverloadedFunctionDecl>(Template))
152      TemplateResult
153        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
154                                                            Ovl));
155    else
156      TemplateResult
157        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
158                                                 cast<TemplateDecl>(Template)));
159  } else if (OverloadedFunctionDecl *Ovl
160               = dyn_cast<OverloadedFunctionDecl>(Template)) {
161    TemplateResult = TemplateTy::make(TemplateName(Ovl));
162  } else {
163    TemplateResult = TemplateTy::make(
164                                  TemplateName(cast<TemplateDecl>(Template)));
165  }
166
167  if (isa<ClassTemplateDecl>(Template) ||
168      isa<TemplateTemplateParmDecl>(Template))
169    return TNK_Type_template;
170
171  assert((isa<FunctionTemplateDecl>(Template) ||
172          isa<OverloadedFunctionDecl>(Template)) &&
173         "Unhandled template kind in Sema::isTemplateName");
174  return TNK_Function_template;
175}
176
177void Sema::LookupTemplateName(LookupResult &Found,
178                              Scope *S, const CXXScopeSpec &SS,
179                              QualType ObjectType,
180                              bool EnteringContext) {
181  // Determine where to perform name lookup
182  DeclContext *LookupCtx = 0;
183  bool isDependent = false;
184  if (!ObjectType.isNull()) {
185    // This nested-name-specifier occurs in a member access expression, e.g.,
186    // x->B::f, and we are looking into the type of the object.
187    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
188    LookupCtx = computeDeclContext(ObjectType);
189    isDependent = ObjectType->isDependentType();
190    assert((isDependent || !ObjectType->isIncompleteType()) &&
191           "Caller should have completed object type");
192  } else if (SS.isSet()) {
193    // This nested-name-specifier occurs after another nested-name-specifier,
194    // so long into the context associated with the prior nested-name-specifier.
195    LookupCtx = computeDeclContext(SS, EnteringContext);
196    isDependent = isDependentScopeSpecifier(SS);
197
198    // The declaration context must be complete.
199    if (LookupCtx && RequireCompleteDeclContext(SS))
200      return;
201  }
202
203  bool ObjectTypeSearchedInScope = false;
204  if (LookupCtx) {
205    // Perform "qualified" name lookup into the declaration context we
206    // computed, which is either the type of the base of a member access
207    // expression or the declaration context associated with a prior
208    // nested-name-specifier.
209    LookupQualifiedName(Found, LookupCtx);
210
211    if (!ObjectType.isNull() && Found.empty()) {
212      // C++ [basic.lookup.classref]p1:
213      //   In a class member access expression (5.2.5), if the . or -> token is
214      //   immediately followed by an identifier followed by a <, the
215      //   identifier must be looked up to determine whether the < is the
216      //   beginning of a template argument list (14.2) or a less-than operator.
217      //   The identifier is first looked up in the class of the object
218      //   expression. If the identifier is not found, it is then looked up in
219      //   the context of the entire postfix-expression and shall name a class
220      //   or function template.
221      //
222      // FIXME: When we're instantiating a template, do we actually have to
223      // look in the scope of the template? Seems fishy...
224      if (S) LookupName(Found, S);
225      ObjectTypeSearchedInScope = true;
226    }
227  } else if (isDependent) {
228    // We cannot look into a dependent object type or
229    return;
230  } else {
231    // Perform unqualified name lookup in the current scope.
232    LookupName(Found, S);
233  }
234
235  // FIXME: Cope with ambiguous name-lookup results.
236  assert(!Found.isAmbiguous() &&
237         "Cannot handle template name-lookup ambiguities");
238
239  FilterAcceptableTemplateNames(Context, Found);
240  if (Found.empty())
241    return;
242
243  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
244    // C++ [basic.lookup.classref]p1:
245    //   [...] If the lookup in the class of the object expression finds a
246    //   template, the name is also looked up in the context of the entire
247    //   postfix-expression and [...]
248    //
249    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
250                            LookupOrdinaryName);
251    LookupName(FoundOuter, S);
252    FilterAcceptableTemplateNames(Context, FoundOuter);
253    // FIXME: Handle ambiguities in this lookup better
254
255    if (FoundOuter.empty()) {
256      //   - if the name is not found, the name found in the class of the
257      //     object expression is used, otherwise
258    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
259      //   - if the name is found in the context of the entire
260      //     postfix-expression and does not name a class template, the name
261      //     found in the class of the object expression is used, otherwise
262    } else {
263      //   - if the name found is a class template, it must refer to the same
264      //     entity as the one found in the class of the object expression,
265      //     otherwise the program is ill-formed.
266      if (!Found.isSingleResult() ||
267          Found.getFoundDecl()->getCanonicalDecl()
268            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
269        Diag(Found.getNameLoc(),
270             diag::err_nested_name_member_ref_lookup_ambiguous)
271          << Found.getLookupName();
272        Diag(Found.getRepresentativeDecl()->getLocation(),
273             diag::note_ambig_member_ref_object_type)
274          << ObjectType;
275        Diag(FoundOuter.getFoundDecl()->getLocation(),
276             diag::note_ambig_member_ref_scope);
277
278        // Recover by taking the template that we found in the object
279        // expression's type.
280      }
281    }
282  }
283}
284
285/// Constructs a full type for the given nested-name-specifier.
286static QualType GetTypeForQualifier(ASTContext &Context,
287                                    NestedNameSpecifier *Qualifier) {
288  // Three possibilities:
289
290  // 1.  A namespace (global or not).
291  assert(!Qualifier->getAsNamespace() && "can't construct type for namespace");
292
293  // 2.  A type (templated or not).
294  Type *Ty = Qualifier->getAsType();
295  if (Ty) return QualType(Ty, 0);
296
297  // 3.  A dependent identifier.
298  assert(Qualifier->getAsIdentifier());
299  return Context.getTypenameType(Qualifier->getPrefix(),
300                                 Qualifier->getAsIdentifier());
301}
302
303static bool HasDependentTypeAsBase(ASTContext &Context,
304                                   CXXRecordDecl *Record,
305                                   CanQualType T) {
306  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
307         E = Record->bases_end(); I != E; ++I) {
308    CanQualType BaseT = Context.getCanonicalType((*I).getType());
309    if (BaseT == T)
310      return true;
311
312    // We have to recurse here to cover some really bizarre cases.
313    // Obviously, we can only have the dependent type as an indirect
314    // base class through a dependent base class, and usually it's
315    // impossible to know which instantiation a dependent base class
316    // will have.  But!  If we're actually *inside* the dependent base
317    // class, then we know its instantiation and can therefore be
318    // reasonably expected to look into it.
319
320    // template <class T> class A : Base<T> {
321    //   class Inner : A<T> {
322    //     void foo() {
323    //       Base<T>::foo(); // statically known to be an implicit member
324    //                          reference
325    //     }
326    //   };
327    // };
328
329    CanQual<RecordType> RT = BaseT->getAs<RecordType>();
330
331    // Base might be a dependent member type, in which case we
332    // obviously can't look into it.
333    if (!RT) continue;
334
335    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(RT->getDecl());
336    if (BaseRecord->isDefinition() &&
337        HasDependentTypeAsBase(Context, BaseRecord, T))
338      return true;
339  }
340
341  return false;
342}
343
344/// Checks whether the given dependent nested-name specifier
345/// introduces an implicit member reference.  This is only true if the
346/// nested-name specifier names a type identical to one of the current
347/// instance method's context's (possibly indirect) base classes.
348static bool IsImplicitDependentMemberReference(Sema &SemaRef,
349                                               NestedNameSpecifier *Qualifier,
350                                               QualType &ThisType) {
351  // If the context isn't a C++ method, then it isn't an implicit
352  // member reference.
353  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext);
354  if (!MD || MD->isStatic())
355    return false;
356
357  ASTContext &Context = SemaRef.Context;
358
359  // We want to check whether the method's context is known to inherit
360  // from the type named by the nested name specifier.  The trivial
361  // case here is:
362  //   template <class T> class Base { ... };
363  //   template <class T> class Derived : Base<T> {
364  //     void foo() {
365  //       Base<T>::foo();
366  //     }
367  //   };
368
369  QualType QT = GetTypeForQualifier(Context, Qualifier);
370  CanQualType T = Context.getCanonicalType(QT);
371
372  // And now, just walk the non-dependent type hierarchy, trying to
373  // find the given type as a literal base class.
374  CXXRecordDecl *Record = cast<CXXRecordDecl>(MD->getParent());
375  if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T ||
376      HasDependentTypeAsBase(Context, Record, T)) {
377    ThisType = MD->getThisType(Context);
378    return true;
379  }
380
381  return false;
382}
383
384/// ActOnDependentIdExpression - Handle a dependent declaration name
385/// that was just parsed.
386Sema::OwningExprResult
387Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
388                                 DeclarationName Name,
389                                 SourceLocation NameLoc,
390                                 bool CheckForImplicitMember,
391                           const TemplateArgumentListInfo *TemplateArgs) {
392  NestedNameSpecifier *Qualifier
393    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
394
395  QualType ThisType;
396  if (CheckForImplicitMember &&
397      IsImplicitDependentMemberReference(*this, Qualifier, ThisType)) {
398    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
399
400    // Since the 'this' expression is synthesized, we don't need to
401    // perform the double-lookup check.
402    NamedDecl *FirstQualifierInScope = 0;
403
404    return Owned(CXXDependentScopeMemberExpr::Create(Context, This, true,
405                                                     /*Op*/ SourceLocation(),
406                                                     Qualifier, SS.getRange(),
407                                                     FirstQualifierInScope,
408                                                     Name, NameLoc,
409                                                     TemplateArgs));
410  }
411
412  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
413}
414
415Sema::OwningExprResult
416Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
417                                DeclarationName Name,
418                                SourceLocation NameLoc,
419                                const TemplateArgumentListInfo *TemplateArgs) {
420  return Owned(DependentScopeDeclRefExpr::Create(Context,
421               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
422                                                 SS.getRange(),
423                                                 Name, NameLoc,
424                                                 TemplateArgs));
425}
426
427/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
428/// that the template parameter 'PrevDecl' is being shadowed by a new
429/// declaration at location Loc. Returns true to indicate that this is
430/// an error, and false otherwise.
431bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
432  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
433
434  // Microsoft Visual C++ permits template parameters to be shadowed.
435  if (getLangOptions().Microsoft)
436    return false;
437
438  // C++ [temp.local]p4:
439  //   A template-parameter shall not be redeclared within its
440  //   scope (including nested scopes).
441  Diag(Loc, diag::err_template_param_shadow)
442    << cast<NamedDecl>(PrevDecl)->getDeclName();
443  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
444  return true;
445}
446
447/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
448/// the parameter D to reference the templated declaration and return a pointer
449/// to the template declaration. Otherwise, do nothing to D and return null.
450TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
451  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
452    D = DeclPtrTy::make(Temp->getTemplatedDecl());
453    return Temp;
454  }
455  return 0;
456}
457
458static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
459                                            const ParsedTemplateArgument &Arg) {
460
461  switch (Arg.getKind()) {
462  case ParsedTemplateArgument::Type: {
463    DeclaratorInfo *DI;
464    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
465    if (!DI)
466      DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation());
467    return TemplateArgumentLoc(TemplateArgument(T), DI);
468  }
469
470  case ParsedTemplateArgument::NonType: {
471    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
472    return TemplateArgumentLoc(TemplateArgument(E), E);
473  }
474
475  case ParsedTemplateArgument::Template: {
476    TemplateName Template
477      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
478    return TemplateArgumentLoc(TemplateArgument(Template),
479                               Arg.getScopeSpec().getRange(),
480                               Arg.getLocation());
481  }
482  }
483
484  llvm::llvm_unreachable("Unhandled parsed template argument");
485  return TemplateArgumentLoc();
486}
487
488/// \brief Translates template arguments as provided by the parser
489/// into template arguments used by semantic analysis.
490void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
491                                      TemplateArgumentListInfo &TemplateArgs) {
492 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
493   TemplateArgs.addArgument(translateTemplateArgument(*this,
494                                                      TemplateArgsIn[I]));
495}
496
497/// ActOnTypeParameter - Called when a C++ template type parameter
498/// (e.g., "typename T") has been parsed. Typename specifies whether
499/// the keyword "typename" was used to declare the type parameter
500/// (otherwise, "class" was used), and KeyLoc is the location of the
501/// "class" or "typename" keyword. ParamName is the name of the
502/// parameter (NULL indicates an unnamed template parameter) and
503/// ParamName is the location of the parameter name (if any).
504/// If the type parameter has a default argument, it will be added
505/// later via ActOnTypeParameterDefault.
506Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
507                                         SourceLocation EllipsisLoc,
508                                         SourceLocation KeyLoc,
509                                         IdentifierInfo *ParamName,
510                                         SourceLocation ParamNameLoc,
511                                         unsigned Depth, unsigned Position) {
512  assert(S->isTemplateParamScope() &&
513         "Template type parameter not in template parameter scope!");
514  bool Invalid = false;
515
516  if (ParamName) {
517    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
518    if (PrevDecl && PrevDecl->isTemplateParameter())
519      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
520                                                           PrevDecl);
521  }
522
523  SourceLocation Loc = ParamNameLoc;
524  if (!ParamName)
525    Loc = KeyLoc;
526
527  TemplateTypeParmDecl *Param
528    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
529                                   Depth, Position, ParamName, Typename,
530                                   Ellipsis);
531  if (Invalid)
532    Param->setInvalidDecl();
533
534  if (ParamName) {
535    // Add the template parameter into the current scope.
536    S->AddDecl(DeclPtrTy::make(Param));
537    IdResolver.AddDecl(Param);
538  }
539
540  return DeclPtrTy::make(Param);
541}
542
543/// ActOnTypeParameterDefault - Adds a default argument (the type
544/// Default) to the given template type parameter (TypeParam).
545void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
546                                     SourceLocation EqualLoc,
547                                     SourceLocation DefaultLoc,
548                                     TypeTy *DefaultT) {
549  TemplateTypeParmDecl *Parm
550    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
551
552  DeclaratorInfo *DefaultDInfo;
553  GetTypeFromParser(DefaultT, &DefaultDInfo);
554
555  assert(DefaultDInfo && "expected source information for type");
556
557  // C++0x [temp.param]p9:
558  // A default template-argument may be specified for any kind of
559  // template-parameter that is not a template parameter pack.
560  if (Parm->isParameterPack()) {
561    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
562    return;
563  }
564
565  // C++ [temp.param]p14:
566  //   A template-parameter shall not be used in its own default argument.
567  // FIXME: Implement this check! Needs a recursive walk over the types.
568
569  // Check the template argument itself.
570  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
571    Parm->setInvalidDecl();
572    return;
573  }
574
575  Parm->setDefaultArgument(DefaultDInfo, false);
576}
577
578/// \brief Check that the type of a non-type template parameter is
579/// well-formed.
580///
581/// \returns the (possibly-promoted) parameter type if valid;
582/// otherwise, produces a diagnostic and returns a NULL type.
583QualType
584Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
585  // C++ [temp.param]p4:
586  //
587  // A non-type template-parameter shall have one of the following
588  // (optionally cv-qualified) types:
589  //
590  //       -- integral or enumeration type,
591  if (T->isIntegralType() || T->isEnumeralType() ||
592      //   -- pointer to object or pointer to function,
593      (T->isPointerType() &&
594       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
595        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
596      //   -- reference to object or reference to function,
597      T->isReferenceType() ||
598      //   -- pointer to member.
599      T->isMemberPointerType() ||
600      // If T is a dependent type, we can't do the check now, so we
601      // assume that it is well-formed.
602      T->isDependentType())
603    return T;
604  // C++ [temp.param]p8:
605  //
606  //   A non-type template-parameter of type "array of T" or
607  //   "function returning T" is adjusted to be of type "pointer to
608  //   T" or "pointer to function returning T", respectively.
609  else if (T->isArrayType())
610    // FIXME: Keep the type prior to promotion?
611    return Context.getArrayDecayedType(T);
612  else if (T->isFunctionType())
613    // FIXME: Keep the type prior to promotion?
614    return Context.getPointerType(T);
615
616  Diag(Loc, diag::err_template_nontype_parm_bad_type)
617    << T;
618
619  return QualType();
620}
621
622/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
623/// template parameter (e.g., "int Size" in "template<int Size>
624/// class Array") has been parsed. S is the current scope and D is
625/// the parsed declarator.
626Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
627                                                    unsigned Depth,
628                                                    unsigned Position) {
629  DeclaratorInfo *DInfo = 0;
630  QualType T = GetTypeForDeclarator(D, S, &DInfo);
631
632  assert(S->isTemplateParamScope() &&
633         "Non-type template parameter not in template parameter scope!");
634  bool Invalid = false;
635
636  IdentifierInfo *ParamName = D.getIdentifier();
637  if (ParamName) {
638    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
639    if (PrevDecl && PrevDecl->isTemplateParameter())
640      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
641                                                           PrevDecl);
642  }
643
644  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
645  if (T.isNull()) {
646    T = Context.IntTy; // Recover with an 'int' type.
647    Invalid = true;
648  }
649
650  NonTypeTemplateParmDecl *Param
651    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
652                                      Depth, Position, ParamName, T, DInfo);
653  if (Invalid)
654    Param->setInvalidDecl();
655
656  if (D.getIdentifier()) {
657    // Add the template parameter into the current scope.
658    S->AddDecl(DeclPtrTy::make(Param));
659    IdResolver.AddDecl(Param);
660  }
661  return DeclPtrTy::make(Param);
662}
663
664/// \brief Adds a default argument to the given non-type template
665/// parameter.
666void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
667                                                SourceLocation EqualLoc,
668                                                ExprArg DefaultE) {
669  NonTypeTemplateParmDecl *TemplateParm
670    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
671  Expr *Default = static_cast<Expr *>(DefaultE.get());
672
673  // C++ [temp.param]p14:
674  //   A template-parameter shall not be used in its own default argument.
675  // FIXME: Implement this check! Needs a recursive walk over the types.
676
677  // Check the well-formedness of the default template argument.
678  TemplateArgument Converted;
679  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
680                            Converted)) {
681    TemplateParm->setInvalidDecl();
682    return;
683  }
684
685  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
686}
687
688
689/// ActOnTemplateTemplateParameter - Called when a C++ template template
690/// parameter (e.g. T in template <template <typename> class T> class array)
691/// has been parsed. S is the current scope.
692Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
693                                                     SourceLocation TmpLoc,
694                                                     TemplateParamsTy *Params,
695                                                     IdentifierInfo *Name,
696                                                     SourceLocation NameLoc,
697                                                     unsigned Depth,
698                                                     unsigned Position) {
699  assert(S->isTemplateParamScope() &&
700         "Template template parameter not in template parameter scope!");
701
702  // Construct the parameter object.
703  TemplateTemplateParmDecl *Param =
704    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
705                                     Position, Name,
706                                     (TemplateParameterList*)Params);
707
708  // Make sure the parameter is valid.
709  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
710  // do anything yet. However, if the template parameter list or (eventual)
711  // default value is ever invalidated, that will propagate here.
712  bool Invalid = false;
713  if (Invalid) {
714    Param->setInvalidDecl();
715  }
716
717  // If the tt-param has a name, then link the identifier into the scope
718  // and lookup mechanisms.
719  if (Name) {
720    S->AddDecl(DeclPtrTy::make(Param));
721    IdResolver.AddDecl(Param);
722  }
723
724  return DeclPtrTy::make(Param);
725}
726
727/// \brief Adds a default argument to the given template template
728/// parameter.
729void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
730                                                 SourceLocation EqualLoc,
731                                        const ParsedTemplateArgument &Default) {
732  TemplateTemplateParmDecl *TemplateParm
733    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
734
735  // C++ [temp.param]p14:
736  //   A template-parameter shall not be used in its own default argument.
737  // FIXME: Implement this check! Needs a recursive walk over the types.
738
739  // Check only that we have a template template argument. We don't want to
740  // try to check well-formedness now, because our template template parameter
741  // might have dependent types in its template parameters, which we wouldn't
742  // be able to match now.
743  //
744  // If none of the template template parameter's template arguments mention
745  // other template parameters, we could actually perform more checking here.
746  // However, it isn't worth doing.
747  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
748  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
749    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
750      << DefaultArg.getSourceRange();
751    return;
752  }
753
754  TemplateParm->setDefaultArgument(DefaultArg);
755}
756
757/// ActOnTemplateParameterList - Builds a TemplateParameterList that
758/// contains the template parameters in Params/NumParams.
759Sema::TemplateParamsTy *
760Sema::ActOnTemplateParameterList(unsigned Depth,
761                                 SourceLocation ExportLoc,
762                                 SourceLocation TemplateLoc,
763                                 SourceLocation LAngleLoc,
764                                 DeclPtrTy *Params, unsigned NumParams,
765                                 SourceLocation RAngleLoc) {
766  if (ExportLoc.isValid())
767    Diag(ExportLoc, diag::warn_template_export_unsupported);
768
769  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
770                                       (NamedDecl**)Params, NumParams,
771                                       RAngleLoc);
772}
773
774Sema::DeclResult
775Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
776                         SourceLocation KWLoc, const CXXScopeSpec &SS,
777                         IdentifierInfo *Name, SourceLocation NameLoc,
778                         AttributeList *Attr,
779                         TemplateParameterList *TemplateParams,
780                         AccessSpecifier AS) {
781  assert(TemplateParams && TemplateParams->size() > 0 &&
782         "No template parameters");
783  assert(TUK != TUK_Reference && "Can only declare or define class templates");
784  bool Invalid = false;
785
786  // Check that we can declare a template here.
787  if (CheckTemplateDeclScope(S, TemplateParams))
788    return true;
789
790  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
791  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
792
793  // There is no such thing as an unnamed class template.
794  if (!Name) {
795    Diag(KWLoc, diag::err_template_unnamed_class);
796    return true;
797  }
798
799  // Find any previous declaration with this name.
800  DeclContext *SemanticContext;
801  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
802                        ForRedeclaration);
803  if (SS.isNotEmpty() && !SS.isInvalid()) {
804    if (RequireCompleteDeclContext(SS))
805      return true;
806
807    SemanticContext = computeDeclContext(SS, true);
808    if (!SemanticContext) {
809      // FIXME: Produce a reasonable diagnostic here
810      return true;
811    }
812
813    LookupQualifiedName(Previous, SemanticContext);
814  } else {
815    SemanticContext = CurContext;
816    LookupName(Previous, S);
817  }
818
819  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
820  NamedDecl *PrevDecl = 0;
821  if (Previous.begin() != Previous.end())
822    PrevDecl = *Previous.begin();
823
824  if (PrevDecl && TUK == TUK_Friend) {
825    // C++ [namespace.memdef]p3:
826    //   [...] When looking for a prior declaration of a class or a function
827    //   declared as a friend, and when the name of the friend class or
828    //   function is neither a qualified name nor a template-id, scopes outside
829    //   the innermost enclosing namespace scope are not considered.
830    DeclContext *OutermostContext = CurContext;
831    while (!OutermostContext->isFileContext())
832      OutermostContext = OutermostContext->getLookupParent();
833
834    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
835        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
836      SemanticContext = PrevDecl->getDeclContext();
837    } else {
838      // Declarations in outer scopes don't matter. However, the outermost
839      // context we computed is the semantic context for our new
840      // declaration.
841      PrevDecl = 0;
842      SemanticContext = OutermostContext;
843    }
844
845    if (CurContext->isDependentContext()) {
846      // If this is a dependent context, we don't want to link the friend
847      // class template to the template in scope, because that would perform
848      // checking of the template parameter lists that can't be performed
849      // until the outer context is instantiated.
850      PrevDecl = 0;
851    }
852  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
853    PrevDecl = 0;
854
855  // If there is a previous declaration with the same name, check
856  // whether this is a valid redeclaration.
857  ClassTemplateDecl *PrevClassTemplate
858    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
859
860  // We may have found the injected-class-name of a class template,
861  // class template partial specialization, or class template specialization.
862  // In these cases, grab the template that is being defined or specialized.
863  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
864      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
865    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
866    PrevClassTemplate
867      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
868    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
869      PrevClassTemplate
870        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
871            ->getSpecializedTemplate();
872    }
873  }
874
875  if (PrevClassTemplate) {
876    // Ensure that the template parameter lists are compatible.
877    if (!TemplateParameterListsAreEqual(TemplateParams,
878                                   PrevClassTemplate->getTemplateParameters(),
879                                        /*Complain=*/true,
880                                        TPL_TemplateMatch))
881      return true;
882
883    // C++ [temp.class]p4:
884    //   In a redeclaration, partial specialization, explicit
885    //   specialization or explicit instantiation of a class template,
886    //   the class-key shall agree in kind with the original class
887    //   template declaration (7.1.5.3).
888    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
889    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
890      Diag(KWLoc, diag::err_use_with_wrong_tag)
891        << Name
892        << CodeModificationHint::CreateReplacement(KWLoc,
893                            PrevRecordDecl->getKindName());
894      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
895      Kind = PrevRecordDecl->getTagKind();
896    }
897
898    // Check for redefinition of this class template.
899    if (TUK == TUK_Definition) {
900      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
901        Diag(NameLoc, diag::err_redefinition) << Name;
902        Diag(Def->getLocation(), diag::note_previous_definition);
903        // FIXME: Would it make sense to try to "forget" the previous
904        // definition, as part of error recovery?
905        return true;
906      }
907    }
908  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
909    // Maybe we will complain about the shadowed template parameter.
910    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
911    // Just pretend that we didn't see the previous declaration.
912    PrevDecl = 0;
913  } else if (PrevDecl) {
914    // C++ [temp]p5:
915    //   A class template shall not have the same name as any other
916    //   template, class, function, object, enumeration, enumerator,
917    //   namespace, or type in the same scope (3.3), except as specified
918    //   in (14.5.4).
919    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
920    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
921    return true;
922  }
923
924  // Check the template parameter list of this declaration, possibly
925  // merging in the template parameter list from the previous class
926  // template declaration.
927  if (CheckTemplateParameterList(TemplateParams,
928            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
929                                 TPC_ClassTemplate))
930    Invalid = true;
931
932  // FIXME: If we had a scope specifier, we better have a previous template
933  // declaration!
934
935  CXXRecordDecl *NewClass =
936    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
937                          PrevClassTemplate?
938                            PrevClassTemplate->getTemplatedDecl() : 0,
939                          /*DelayTypeCreation=*/true);
940
941  ClassTemplateDecl *NewTemplate
942    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
943                                DeclarationName(Name), TemplateParams,
944                                NewClass, PrevClassTemplate);
945  NewClass->setDescribedClassTemplate(NewTemplate);
946
947  // Build the type for the class template declaration now.
948  QualType T =
949    Context.getTypeDeclType(NewClass,
950                            PrevClassTemplate?
951                              PrevClassTemplate->getTemplatedDecl() : 0);
952  assert(T->isDependentType() && "Class template type is not dependent?");
953  (void)T;
954
955  // If we are providing an explicit specialization of a member that is a
956  // class template, make a note of that.
957  if (PrevClassTemplate &&
958      PrevClassTemplate->getInstantiatedFromMemberTemplate())
959    PrevClassTemplate->setMemberSpecialization();
960
961  // Set the access specifier.
962  if (!Invalid && TUK != TUK_Friend)
963    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
964
965  // Set the lexical context of these templates
966  NewClass->setLexicalDeclContext(CurContext);
967  NewTemplate->setLexicalDeclContext(CurContext);
968
969  if (TUK == TUK_Definition)
970    NewClass->startDefinition();
971
972  if (Attr)
973    ProcessDeclAttributeList(S, NewClass, Attr);
974
975  if (TUK != TUK_Friend)
976    PushOnScopeChains(NewTemplate, S);
977  else {
978    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
979      NewTemplate->setAccess(PrevClassTemplate->getAccess());
980      NewClass->setAccess(PrevClassTemplate->getAccess());
981    }
982
983    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
984                                       PrevClassTemplate != NULL);
985
986    // Friend templates are visible in fairly strange ways.
987    if (!CurContext->isDependentContext()) {
988      DeclContext *DC = SemanticContext->getLookupContext();
989      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
990      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
991        PushOnScopeChains(NewTemplate, EnclosingScope,
992                          /* AddToContext = */ false);
993    }
994
995    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
996                                            NewClass->getLocation(),
997                                            NewTemplate,
998                                    /*FIXME:*/NewClass->getLocation());
999    Friend->setAccess(AS_public);
1000    CurContext->addDecl(Friend);
1001  }
1002
1003  if (Invalid) {
1004    NewTemplate->setInvalidDecl();
1005    NewClass->setInvalidDecl();
1006  }
1007  return DeclPtrTy::make(NewTemplate);
1008}
1009
1010/// \brief Diagnose the presence of a default template argument on a
1011/// template parameter, which is ill-formed in certain contexts.
1012///
1013/// \returns true if the default template argument should be dropped.
1014static bool DiagnoseDefaultTemplateArgument(Sema &S,
1015                                            Sema::TemplateParamListContext TPC,
1016                                            SourceLocation ParamLoc,
1017                                            SourceRange DefArgRange) {
1018  switch (TPC) {
1019  case Sema::TPC_ClassTemplate:
1020    return false;
1021
1022  case Sema::TPC_FunctionTemplate:
1023    // C++ [temp.param]p9:
1024    //   A default template-argument shall not be specified in a
1025    //   function template declaration or a function template
1026    //   definition [...]
1027    // (This sentence is not in C++0x, per DR226).
1028    if (!S.getLangOptions().CPlusPlus0x)
1029      S.Diag(ParamLoc,
1030             diag::err_template_parameter_default_in_function_template)
1031        << DefArgRange;
1032    return false;
1033
1034  case Sema::TPC_ClassTemplateMember:
1035    // C++0x [temp.param]p9:
1036    //   A default template-argument shall not be specified in the
1037    //   template-parameter-lists of the definition of a member of a
1038    //   class template that appears outside of the member's class.
1039    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1040      << DefArgRange;
1041    return true;
1042
1043  case Sema::TPC_FriendFunctionTemplate:
1044    // C++ [temp.param]p9:
1045    //   A default template-argument shall not be specified in a
1046    //   friend template declaration.
1047    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1048      << DefArgRange;
1049    return true;
1050
1051    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1052    // for friend function templates if there is only a single
1053    // declaration (and it is a definition). Strange!
1054  }
1055
1056  return false;
1057}
1058
1059/// \brief Checks the validity of a template parameter list, possibly
1060/// considering the template parameter list from a previous
1061/// declaration.
1062///
1063/// If an "old" template parameter list is provided, it must be
1064/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1065/// template parameter list.
1066///
1067/// \param NewParams Template parameter list for a new template
1068/// declaration. This template parameter list will be updated with any
1069/// default arguments that are carried through from the previous
1070/// template parameter list.
1071///
1072/// \param OldParams If provided, template parameter list from a
1073/// previous declaration of the same template. Default template
1074/// arguments will be merged from the old template parameter list to
1075/// the new template parameter list.
1076///
1077/// \param TPC Describes the context in which we are checking the given
1078/// template parameter list.
1079///
1080/// \returns true if an error occurred, false otherwise.
1081bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1082                                      TemplateParameterList *OldParams,
1083                                      TemplateParamListContext TPC) {
1084  bool Invalid = false;
1085
1086  // C++ [temp.param]p10:
1087  //   The set of default template-arguments available for use with a
1088  //   template declaration or definition is obtained by merging the
1089  //   default arguments from the definition (if in scope) and all
1090  //   declarations in scope in the same way default function
1091  //   arguments are (8.3.6).
1092  bool SawDefaultArgument = false;
1093  SourceLocation PreviousDefaultArgLoc;
1094
1095  bool SawParameterPack = false;
1096  SourceLocation ParameterPackLoc;
1097
1098  // Dummy initialization to avoid warnings.
1099  TemplateParameterList::iterator OldParam = NewParams->end();
1100  if (OldParams)
1101    OldParam = OldParams->begin();
1102
1103  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1104                                    NewParamEnd = NewParams->end();
1105       NewParam != NewParamEnd; ++NewParam) {
1106    // Variables used to diagnose redundant default arguments
1107    bool RedundantDefaultArg = false;
1108    SourceLocation OldDefaultLoc;
1109    SourceLocation NewDefaultLoc;
1110
1111    // Variables used to diagnose missing default arguments
1112    bool MissingDefaultArg = false;
1113
1114    // C++0x [temp.param]p11:
1115    // If a template parameter of a class template is a template parameter pack,
1116    // it must be the last template parameter.
1117    if (SawParameterPack) {
1118      Diag(ParameterPackLoc,
1119           diag::err_template_param_pack_must_be_last_template_parameter);
1120      Invalid = true;
1121    }
1122
1123    if (TemplateTypeParmDecl *NewTypeParm
1124          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1125      // Check the presence of a default argument here.
1126      if (NewTypeParm->hasDefaultArgument() &&
1127          DiagnoseDefaultTemplateArgument(*this, TPC,
1128                                          NewTypeParm->getLocation(),
1129               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1130                                                       .getFullSourceRange()))
1131        NewTypeParm->removeDefaultArgument();
1132
1133      // Merge default arguments for template type parameters.
1134      TemplateTypeParmDecl *OldTypeParm
1135          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1136
1137      if (NewTypeParm->isParameterPack()) {
1138        assert(!NewTypeParm->hasDefaultArgument() &&
1139               "Parameter packs can't have a default argument!");
1140        SawParameterPack = true;
1141        ParameterPackLoc = NewTypeParm->getLocation();
1142      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1143                 NewTypeParm->hasDefaultArgument()) {
1144        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1145        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1146        SawDefaultArgument = true;
1147        RedundantDefaultArg = true;
1148        PreviousDefaultArgLoc = NewDefaultLoc;
1149      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1150        // Merge the default argument from the old declaration to the
1151        // new declaration.
1152        SawDefaultArgument = true;
1153        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1154                                        true);
1155        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1156      } else if (NewTypeParm->hasDefaultArgument()) {
1157        SawDefaultArgument = true;
1158        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1159      } else if (SawDefaultArgument)
1160        MissingDefaultArg = true;
1161    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1162               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1163      // Check the presence of a default argument here.
1164      if (NewNonTypeParm->hasDefaultArgument() &&
1165          DiagnoseDefaultTemplateArgument(*this, TPC,
1166                                          NewNonTypeParm->getLocation(),
1167                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1168        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1169        NewNonTypeParm->setDefaultArgument(0);
1170      }
1171
1172      // Merge default arguments for non-type template parameters
1173      NonTypeTemplateParmDecl *OldNonTypeParm
1174        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1175      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1176          NewNonTypeParm->hasDefaultArgument()) {
1177        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1178        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1179        SawDefaultArgument = true;
1180        RedundantDefaultArg = true;
1181        PreviousDefaultArgLoc = NewDefaultLoc;
1182      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1183        // Merge the default argument from the old declaration to the
1184        // new declaration.
1185        SawDefaultArgument = true;
1186        // FIXME: We need to create a new kind of "default argument"
1187        // expression that points to a previous template template
1188        // parameter.
1189        NewNonTypeParm->setDefaultArgument(
1190                                        OldNonTypeParm->getDefaultArgument());
1191        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1192      } else if (NewNonTypeParm->hasDefaultArgument()) {
1193        SawDefaultArgument = true;
1194        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1195      } else if (SawDefaultArgument)
1196        MissingDefaultArg = true;
1197    } else {
1198      // Check the presence of a default argument here.
1199      TemplateTemplateParmDecl *NewTemplateParm
1200        = cast<TemplateTemplateParmDecl>(*NewParam);
1201      if (NewTemplateParm->hasDefaultArgument() &&
1202          DiagnoseDefaultTemplateArgument(*this, TPC,
1203                                          NewTemplateParm->getLocation(),
1204                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1205        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1206
1207      // Merge default arguments for template template parameters
1208      TemplateTemplateParmDecl *OldTemplateParm
1209        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1210      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1211          NewTemplateParm->hasDefaultArgument()) {
1212        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1213        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1214        SawDefaultArgument = true;
1215        RedundantDefaultArg = true;
1216        PreviousDefaultArgLoc = NewDefaultLoc;
1217      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1218        // Merge the default argument from the old declaration to the
1219        // new declaration.
1220        SawDefaultArgument = true;
1221        // FIXME: We need to create a new kind of "default argument" expression
1222        // that points to a previous template template parameter.
1223        NewTemplateParm->setDefaultArgument(
1224                                        OldTemplateParm->getDefaultArgument());
1225        PreviousDefaultArgLoc
1226          = OldTemplateParm->getDefaultArgument().getLocation();
1227      } else if (NewTemplateParm->hasDefaultArgument()) {
1228        SawDefaultArgument = true;
1229        PreviousDefaultArgLoc
1230          = NewTemplateParm->getDefaultArgument().getLocation();
1231      } else if (SawDefaultArgument)
1232        MissingDefaultArg = true;
1233    }
1234
1235    if (RedundantDefaultArg) {
1236      // C++ [temp.param]p12:
1237      //   A template-parameter shall not be given default arguments
1238      //   by two different declarations in the same scope.
1239      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1240      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1241      Invalid = true;
1242    } else if (MissingDefaultArg) {
1243      // C++ [temp.param]p11:
1244      //   If a template-parameter has a default template-argument,
1245      //   all subsequent template-parameters shall have a default
1246      //   template-argument supplied.
1247      Diag((*NewParam)->getLocation(),
1248           diag::err_template_param_default_arg_missing);
1249      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1250      Invalid = true;
1251    }
1252
1253    // If we have an old template parameter list that we're merging
1254    // in, move on to the next parameter.
1255    if (OldParams)
1256      ++OldParam;
1257  }
1258
1259  return Invalid;
1260}
1261
1262/// \brief Match the given template parameter lists to the given scope
1263/// specifier, returning the template parameter list that applies to the
1264/// name.
1265///
1266/// \param DeclStartLoc the start of the declaration that has a scope
1267/// specifier or a template parameter list.
1268///
1269/// \param SS the scope specifier that will be matched to the given template
1270/// parameter lists. This scope specifier precedes a qualified name that is
1271/// being declared.
1272///
1273/// \param ParamLists the template parameter lists, from the outermost to the
1274/// innermost template parameter lists.
1275///
1276/// \param NumParamLists the number of template parameter lists in ParamLists.
1277///
1278/// \param IsExplicitSpecialization will be set true if the entity being
1279/// declared is an explicit specialization, false otherwise.
1280///
1281/// \returns the template parameter list, if any, that corresponds to the
1282/// name that is preceded by the scope specifier @p SS. This template
1283/// parameter list may be have template parameters (if we're declaring a
1284/// template) or may have no template parameters (if we're declaring a
1285/// template specialization), or may be NULL (if we were's declaring isn't
1286/// itself a template).
1287TemplateParameterList *
1288Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1289                                              const CXXScopeSpec &SS,
1290                                          TemplateParameterList **ParamLists,
1291                                              unsigned NumParamLists,
1292                                              bool &IsExplicitSpecialization) {
1293  IsExplicitSpecialization = false;
1294
1295  // Find the template-ids that occur within the nested-name-specifier. These
1296  // template-ids will match up with the template parameter lists.
1297  llvm::SmallVector<const TemplateSpecializationType *, 4>
1298    TemplateIdsInSpecifier;
1299  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1300    ExplicitSpecializationsInSpecifier;
1301  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1302       NNS; NNS = NNS->getPrefix()) {
1303    if (const TemplateSpecializationType *SpecType
1304          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
1305      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1306      if (!Template)
1307        continue; // FIXME: should this be an error? probably...
1308
1309      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1310        ClassTemplateSpecializationDecl *SpecDecl
1311          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1312        // If the nested name specifier refers to an explicit specialization,
1313        // we don't need a template<> header.
1314        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1315          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1316          continue;
1317        }
1318      }
1319
1320      TemplateIdsInSpecifier.push_back(SpecType);
1321    }
1322  }
1323
1324  // Reverse the list of template-ids in the scope specifier, so that we can
1325  // more easily match up the template-ids and the template parameter lists.
1326  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1327
1328  SourceLocation FirstTemplateLoc = DeclStartLoc;
1329  if (NumParamLists)
1330    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1331
1332  // Match the template-ids found in the specifier to the template parameter
1333  // lists.
1334  unsigned Idx = 0;
1335  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1336       Idx != NumTemplateIds; ++Idx) {
1337    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1338    bool DependentTemplateId = TemplateId->isDependentType();
1339    if (Idx >= NumParamLists) {
1340      // We have a template-id without a corresponding template parameter
1341      // list.
1342      if (DependentTemplateId) {
1343        // FIXME: the location information here isn't great.
1344        Diag(SS.getRange().getBegin(),
1345             diag::err_template_spec_needs_template_parameters)
1346          << TemplateId
1347          << SS.getRange();
1348      } else {
1349        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1350          << SS.getRange()
1351          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1352                                                   "template<> ");
1353        IsExplicitSpecialization = true;
1354      }
1355      return 0;
1356    }
1357
1358    // Check the template parameter list against its corresponding template-id.
1359    if (DependentTemplateId) {
1360      TemplateDecl *Template
1361        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1362
1363      if (ClassTemplateDecl *ClassTemplate
1364            = dyn_cast<ClassTemplateDecl>(Template)) {
1365        TemplateParameterList *ExpectedTemplateParams = 0;
1366        // Is this template-id naming the primary template?
1367        if (Context.hasSameType(TemplateId,
1368                             ClassTemplate->getInjectedClassNameType(Context)))
1369          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1370        // ... or a partial specialization?
1371        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1372                   = ClassTemplate->findPartialSpecialization(TemplateId))
1373          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1374
1375        if (ExpectedTemplateParams)
1376          TemplateParameterListsAreEqual(ParamLists[Idx],
1377                                         ExpectedTemplateParams,
1378                                         true, TPL_TemplateMatch);
1379      }
1380
1381      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1382    } else if (ParamLists[Idx]->size() > 0)
1383      Diag(ParamLists[Idx]->getTemplateLoc(),
1384           diag::err_template_param_list_matches_nontemplate)
1385        << TemplateId
1386        << ParamLists[Idx]->getSourceRange();
1387    else
1388      IsExplicitSpecialization = true;
1389  }
1390
1391  // If there were at least as many template-ids as there were template
1392  // parameter lists, then there are no template parameter lists remaining for
1393  // the declaration itself.
1394  if (Idx >= NumParamLists)
1395    return 0;
1396
1397  // If there were too many template parameter lists, complain about that now.
1398  if (Idx != NumParamLists - 1) {
1399    while (Idx < NumParamLists - 1) {
1400      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1401      Diag(ParamLists[Idx]->getTemplateLoc(),
1402           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1403                               : diag::err_template_spec_extra_headers)
1404        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1405                       ParamLists[Idx]->getRAngleLoc());
1406
1407      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1408        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1409             diag::note_explicit_template_spec_does_not_need_header)
1410          << ExplicitSpecializationsInSpecifier.back();
1411        ExplicitSpecializationsInSpecifier.pop_back();
1412      }
1413
1414      ++Idx;
1415    }
1416  }
1417
1418  // Return the last template parameter list, which corresponds to the
1419  // entity being declared.
1420  return ParamLists[NumParamLists - 1];
1421}
1422
1423QualType Sema::CheckTemplateIdType(TemplateName Name,
1424                                   SourceLocation TemplateLoc,
1425                              const TemplateArgumentListInfo &TemplateArgs) {
1426  TemplateDecl *Template = Name.getAsTemplateDecl();
1427  if (!Template) {
1428    // The template name does not resolve to a template, so we just
1429    // build a dependent template-id type.
1430    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1431  }
1432
1433  // Check that the template argument list is well-formed for this
1434  // template.
1435  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1436                                        TemplateArgs.size());
1437  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1438                                false, Converted))
1439    return QualType();
1440
1441  assert((Converted.structuredSize() ==
1442            Template->getTemplateParameters()->size()) &&
1443         "Converted template argument list is too short!");
1444
1445  QualType CanonType;
1446
1447  if (Name.isDependent() ||
1448      TemplateSpecializationType::anyDependentTemplateArguments(
1449                                                      TemplateArgs)) {
1450    // This class template specialization is a dependent
1451    // type. Therefore, its canonical type is another class template
1452    // specialization type that contains all of the converted
1453    // arguments in canonical form. This ensures that, e.g., A<T> and
1454    // A<T, T> have identical types when A is declared as:
1455    //
1456    //   template<typename T, typename U = T> struct A;
1457    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1458    CanonType = Context.getTemplateSpecializationType(CanonName,
1459                                                   Converted.getFlatArguments(),
1460                                                   Converted.flatSize());
1461
1462    // FIXME: CanonType is not actually the canonical type, and unfortunately
1463    // it is a TemplateSpecializationType that we will never use again.
1464    // In the future, we need to teach getTemplateSpecializationType to only
1465    // build the canonical type and return that to us.
1466    CanonType = Context.getCanonicalType(CanonType);
1467  } else if (ClassTemplateDecl *ClassTemplate
1468               = dyn_cast<ClassTemplateDecl>(Template)) {
1469    // Find the class template specialization declaration that
1470    // corresponds to these arguments.
1471    llvm::FoldingSetNodeID ID;
1472    ClassTemplateSpecializationDecl::Profile(ID,
1473                                             Converted.getFlatArguments(),
1474                                             Converted.flatSize(),
1475                                             Context);
1476    void *InsertPos = 0;
1477    ClassTemplateSpecializationDecl *Decl
1478      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1479    if (!Decl) {
1480      // This is the first time we have referenced this class template
1481      // specialization. Create the canonical declaration and add it to
1482      // the set of specializations.
1483      Decl = ClassTemplateSpecializationDecl::Create(Context,
1484                                    ClassTemplate->getDeclContext(),
1485                                    ClassTemplate->getLocation(),
1486                                    ClassTemplate,
1487                                    Converted, 0);
1488      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1489      Decl->setLexicalDeclContext(CurContext);
1490    }
1491
1492    CanonType = Context.getTypeDeclType(Decl);
1493  }
1494
1495  // Build the fully-sugared type for this class template
1496  // specialization, which refers back to the class template
1497  // specialization we created or found.
1498  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1499}
1500
1501Action::TypeResult
1502Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1503                          SourceLocation LAngleLoc,
1504                          ASTTemplateArgsPtr TemplateArgsIn,
1505                          SourceLocation RAngleLoc) {
1506  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1507
1508  // Translate the parser's template argument list in our AST format.
1509  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1510  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1511
1512  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1513  TemplateArgsIn.release();
1514
1515  if (Result.isNull())
1516    return true;
1517
1518  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
1519  TemplateSpecializationTypeLoc TL
1520    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1521  TL.setTemplateNameLoc(TemplateLoc);
1522  TL.setLAngleLoc(LAngleLoc);
1523  TL.setRAngleLoc(RAngleLoc);
1524  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1525    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1526
1527  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1528}
1529
1530Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1531                                              TagUseKind TUK,
1532                                              DeclSpec::TST TagSpec,
1533                                              SourceLocation TagLoc) {
1534  if (TypeResult.isInvalid())
1535    return Sema::TypeResult();
1536
1537  // FIXME: preserve source info, ideally without copying the DI.
1538  DeclaratorInfo *DI;
1539  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1540
1541  // Verify the tag specifier.
1542  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1543
1544  if (const RecordType *RT = Type->getAs<RecordType>()) {
1545    RecordDecl *D = RT->getDecl();
1546
1547    IdentifierInfo *Id = D->getIdentifier();
1548    assert(Id && "templated class must have an identifier");
1549
1550    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1551      Diag(TagLoc, diag::err_use_with_wrong_tag)
1552        << Type
1553        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1554                                                   D->getKindName());
1555      Diag(D->getLocation(), diag::note_previous_use);
1556    }
1557  }
1558
1559  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1560
1561  return ElabType.getAsOpaquePtr();
1562}
1563
1564Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1565                                                 LookupResult &R,
1566                                                 bool RequiresADL,
1567                                 const TemplateArgumentListInfo &TemplateArgs) {
1568  // FIXME: Can we do any checking at this point? I guess we could check the
1569  // template arguments that we have against the template name, if the template
1570  // name refers to a single template. That's not a terribly common case,
1571  // though.
1572
1573  // These should be filtered out by our callers.
1574  assert(!R.empty() && "empty lookup results when building templateid");
1575  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1576
1577  NestedNameSpecifier *Qualifier = 0;
1578  SourceRange QualifierRange;
1579  if (SS.isSet()) {
1580    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1581    QualifierRange = SS.getRange();
1582  }
1583
1584  bool Dependent
1585    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1586                                              &TemplateArgs);
1587  UnresolvedLookupExpr *ULE
1588    = UnresolvedLookupExpr::Create(Context, Dependent,
1589                                   Qualifier, QualifierRange,
1590                                   R.getLookupName(), R.getNameLoc(),
1591                                   RequiresADL, TemplateArgs);
1592  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1593    ULE->addDecl(*I);
1594
1595  return Owned(ULE);
1596}
1597
1598// We actually only call this from template instantiation.
1599Sema::OwningExprResult
1600Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1601                                   DeclarationName Name,
1602                                   SourceLocation NameLoc,
1603                             const TemplateArgumentListInfo &TemplateArgs) {
1604  DeclContext *DC;
1605  if (!(DC = computeDeclContext(SS, false)) ||
1606      DC->isDependentContext() ||
1607      RequireCompleteDeclContext(SS))
1608    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1609
1610  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1611  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1612
1613  if (R.isAmbiguous())
1614    return ExprError();
1615
1616  if (R.empty()) {
1617    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1618      << Name << SS.getRange();
1619    return ExprError();
1620  }
1621
1622  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1623    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1624      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1625    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1626    return ExprError();
1627  }
1628
1629  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1630}
1631
1632/// \brief Form a dependent template name.
1633///
1634/// This action forms a dependent template name given the template
1635/// name and its (presumably dependent) scope specifier. For
1636/// example, given "MetaFun::template apply", the scope specifier \p
1637/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1638/// of the "template" keyword, and "apply" is the \p Name.
1639Sema::TemplateTy
1640Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1641                                 const CXXScopeSpec &SS,
1642                                 UnqualifiedId &Name,
1643                                 TypeTy *ObjectType,
1644                                 bool EnteringContext) {
1645  if ((ObjectType &&
1646       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1647      (SS.isSet() && computeDeclContext(SS, EnteringContext))) {
1648    // C++0x [temp.names]p5:
1649    //   If a name prefixed by the keyword template is not the name of
1650    //   a template, the program is ill-formed. [Note: the keyword
1651    //   template may not be applied to non-template members of class
1652    //   templates. -end note ] [ Note: as is the case with the
1653    //   typename prefix, the template prefix is allowed in cases
1654    //   where it is not strictly necessary; i.e., when the
1655    //   nested-name-specifier or the expression on the left of the ->
1656    //   or . is not dependent on a template-parameter, or the use
1657    //   does not appear in the scope of a template. -end note]
1658    //
1659    // Note: C++03 was more strict here, because it banned the use of
1660    // the "template" keyword prior to a template-name that was not a
1661    // dependent name. C++ DR468 relaxed this requirement (the
1662    // "template" keyword is now permitted). We follow the C++0x
1663    // rules, even in C++03 mode, retroactively applying the DR.
1664    TemplateTy Template;
1665    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1666                                          EnteringContext, Template);
1667    if (TNK == TNK_Non_template) {
1668      Diag(Name.getSourceRange().getBegin(),
1669           diag::err_template_kw_refers_to_non_template)
1670        << GetNameFromUnqualifiedId(Name)
1671        << Name.getSourceRange();
1672      return TemplateTy();
1673    }
1674
1675    return Template;
1676  }
1677
1678  NestedNameSpecifier *Qualifier
1679    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1680
1681  switch (Name.getKind()) {
1682  case UnqualifiedId::IK_Identifier:
1683    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1684                                                             Name.Identifier));
1685
1686  case UnqualifiedId::IK_OperatorFunctionId:
1687    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1688                                             Name.OperatorFunctionId.Operator));
1689
1690  default:
1691    break;
1692  }
1693
1694  Diag(Name.getSourceRange().getBegin(),
1695       diag::err_template_kw_refers_to_non_template)
1696    << GetNameFromUnqualifiedId(Name)
1697    << Name.getSourceRange();
1698  return TemplateTy();
1699}
1700
1701bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1702                                     const TemplateArgumentLoc &AL,
1703                                     TemplateArgumentListBuilder &Converted) {
1704  const TemplateArgument &Arg = AL.getArgument();
1705
1706  // Check template type parameter.
1707  if (Arg.getKind() != TemplateArgument::Type) {
1708    // C++ [temp.arg.type]p1:
1709    //   A template-argument for a template-parameter which is a
1710    //   type shall be a type-id.
1711
1712    // We have a template type parameter but the template argument
1713    // is not a type.
1714    SourceRange SR = AL.getSourceRange();
1715    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1716    Diag(Param->getLocation(), diag::note_template_param_here);
1717
1718    return true;
1719  }
1720
1721  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
1722    return true;
1723
1724  // Add the converted template type argument.
1725  Converted.Append(
1726                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1727  return false;
1728}
1729
1730/// \brief Substitute template arguments into the default template argument for
1731/// the given template type parameter.
1732///
1733/// \param SemaRef the semantic analysis object for which we are performing
1734/// the substitution.
1735///
1736/// \param Template the template that we are synthesizing template arguments
1737/// for.
1738///
1739/// \param TemplateLoc the location of the template name that started the
1740/// template-id we are checking.
1741///
1742/// \param RAngleLoc the location of the right angle bracket ('>') that
1743/// terminates the template-id.
1744///
1745/// \param Param the template template parameter whose default we are
1746/// substituting into.
1747///
1748/// \param Converted the list of template arguments provided for template
1749/// parameters that precede \p Param in the template parameter list.
1750///
1751/// \returns the substituted template argument, or NULL if an error occurred.
1752static DeclaratorInfo *
1753SubstDefaultTemplateArgument(Sema &SemaRef,
1754                             TemplateDecl *Template,
1755                             SourceLocation TemplateLoc,
1756                             SourceLocation RAngleLoc,
1757                             TemplateTypeParmDecl *Param,
1758                             TemplateArgumentListBuilder &Converted) {
1759  DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo();
1760
1761  // If the argument type is dependent, instantiate it now based
1762  // on the previously-computed template arguments.
1763  if (ArgType->getType()->isDependentType()) {
1764    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1765                                      /*TakeArgs=*/false);
1766
1767    MultiLevelTemplateArgumentList AllTemplateArgs
1768      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1769
1770    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1771                                     Template, Converted.getFlatArguments(),
1772                                     Converted.flatSize(),
1773                                     SourceRange(TemplateLoc, RAngleLoc));
1774
1775    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1776                                Param->getDefaultArgumentLoc(),
1777                                Param->getDeclName());
1778  }
1779
1780  return ArgType;
1781}
1782
1783/// \brief Substitute template arguments into the default template argument for
1784/// the given non-type template parameter.
1785///
1786/// \param SemaRef the semantic analysis object for which we are performing
1787/// the substitution.
1788///
1789/// \param Template the template that we are synthesizing template arguments
1790/// for.
1791///
1792/// \param TemplateLoc the location of the template name that started the
1793/// template-id we are checking.
1794///
1795/// \param RAngleLoc the location of the right angle bracket ('>') that
1796/// terminates the template-id.
1797///
1798/// \param Param the non-type template parameter whose default we are
1799/// substituting into.
1800///
1801/// \param Converted the list of template arguments provided for template
1802/// parameters that precede \p Param in the template parameter list.
1803///
1804/// \returns the substituted template argument, or NULL if an error occurred.
1805static Sema::OwningExprResult
1806SubstDefaultTemplateArgument(Sema &SemaRef,
1807                             TemplateDecl *Template,
1808                             SourceLocation TemplateLoc,
1809                             SourceLocation RAngleLoc,
1810                             NonTypeTemplateParmDecl *Param,
1811                             TemplateArgumentListBuilder &Converted) {
1812  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1813                                    /*TakeArgs=*/false);
1814
1815  MultiLevelTemplateArgumentList AllTemplateArgs
1816    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1817
1818  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1819                                   Template, Converted.getFlatArguments(),
1820                                   Converted.flatSize(),
1821                                   SourceRange(TemplateLoc, RAngleLoc));
1822
1823  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1824}
1825
1826/// \brief Substitute template arguments into the default template argument for
1827/// the given template template parameter.
1828///
1829/// \param SemaRef the semantic analysis object for which we are performing
1830/// the substitution.
1831///
1832/// \param Template the template that we are synthesizing template arguments
1833/// for.
1834///
1835/// \param TemplateLoc the location of the template name that started the
1836/// template-id we are checking.
1837///
1838/// \param RAngleLoc the location of the right angle bracket ('>') that
1839/// terminates the template-id.
1840///
1841/// \param Param the template template parameter whose default we are
1842/// substituting into.
1843///
1844/// \param Converted the list of template arguments provided for template
1845/// parameters that precede \p Param in the template parameter list.
1846///
1847/// \returns the substituted template argument, or NULL if an error occurred.
1848static TemplateName
1849SubstDefaultTemplateArgument(Sema &SemaRef,
1850                             TemplateDecl *Template,
1851                             SourceLocation TemplateLoc,
1852                             SourceLocation RAngleLoc,
1853                             TemplateTemplateParmDecl *Param,
1854                             TemplateArgumentListBuilder &Converted) {
1855  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1856                                    /*TakeArgs=*/false);
1857
1858  MultiLevelTemplateArgumentList AllTemplateArgs
1859    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1860
1861  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1862                                   Template, Converted.getFlatArguments(),
1863                                   Converted.flatSize(),
1864                                   SourceRange(TemplateLoc, RAngleLoc));
1865
1866  return SemaRef.SubstTemplateName(
1867                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1868                              Param->getDefaultArgument().getTemplateNameLoc(),
1869                                   AllTemplateArgs);
1870}
1871
1872/// \brief If the given template parameter has a default template
1873/// argument, substitute into that default template argument and
1874/// return the corresponding template argument.
1875TemplateArgumentLoc
1876Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1877                                              SourceLocation TemplateLoc,
1878                                              SourceLocation RAngleLoc,
1879                                              Decl *Param,
1880                                     TemplateArgumentListBuilder &Converted) {
1881  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1882    if (!TypeParm->hasDefaultArgument())
1883      return TemplateArgumentLoc();
1884
1885    DeclaratorInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1886                                                      TemplateLoc,
1887                                                      RAngleLoc,
1888                                                      TypeParm,
1889                                                      Converted);
1890    if (DI)
1891      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1892
1893    return TemplateArgumentLoc();
1894  }
1895
1896  if (NonTypeTemplateParmDecl *NonTypeParm
1897        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1898    if (!NonTypeParm->hasDefaultArgument())
1899      return TemplateArgumentLoc();
1900
1901    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1902                                                        TemplateLoc,
1903                                                        RAngleLoc,
1904                                                        NonTypeParm,
1905                                                        Converted);
1906    if (Arg.isInvalid())
1907      return TemplateArgumentLoc();
1908
1909    Expr *ArgE = Arg.takeAs<Expr>();
1910    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1911  }
1912
1913  TemplateTemplateParmDecl *TempTempParm
1914    = cast<TemplateTemplateParmDecl>(Param);
1915  if (!TempTempParm->hasDefaultArgument())
1916    return TemplateArgumentLoc();
1917
1918  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1919                                                    TemplateLoc,
1920                                                    RAngleLoc,
1921                                                    TempTempParm,
1922                                                    Converted);
1923  if (TName.isNull())
1924    return TemplateArgumentLoc();
1925
1926  return TemplateArgumentLoc(TemplateArgument(TName),
1927                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1928                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1929}
1930
1931/// \brief Check that the given template argument corresponds to the given
1932/// template parameter.
1933bool Sema::CheckTemplateArgument(NamedDecl *Param,
1934                                 const TemplateArgumentLoc &Arg,
1935                                 TemplateDecl *Template,
1936                                 SourceLocation TemplateLoc,
1937                                 SourceLocation RAngleLoc,
1938                                 TemplateArgumentListBuilder &Converted) {
1939  // Check template type parameters.
1940  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1941    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1942
1943  // Check non-type template parameters.
1944  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1945    // Do substitution on the type of the non-type template parameter
1946    // with the template arguments we've seen thus far.
1947    QualType NTTPType = NTTP->getType();
1948    if (NTTPType->isDependentType()) {
1949      // Do substitution on the type of the non-type template parameter.
1950      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1951                                 NTTP, Converted.getFlatArguments(),
1952                                 Converted.flatSize(),
1953                                 SourceRange(TemplateLoc, RAngleLoc));
1954
1955      TemplateArgumentList TemplateArgs(Context, Converted,
1956                                        /*TakeArgs=*/false);
1957      NTTPType = SubstType(NTTPType,
1958                           MultiLevelTemplateArgumentList(TemplateArgs),
1959                           NTTP->getLocation(),
1960                           NTTP->getDeclName());
1961      // If that worked, check the non-type template parameter type
1962      // for validity.
1963      if (!NTTPType.isNull())
1964        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1965                                                     NTTP->getLocation());
1966      if (NTTPType.isNull())
1967        return true;
1968    }
1969
1970    switch (Arg.getArgument().getKind()) {
1971    case TemplateArgument::Null:
1972      assert(false && "Should never see a NULL template argument here");
1973      return true;
1974
1975    case TemplateArgument::Expression: {
1976      Expr *E = Arg.getArgument().getAsExpr();
1977      TemplateArgument Result;
1978      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1979        return true;
1980
1981      Converted.Append(Result);
1982      break;
1983    }
1984
1985    case TemplateArgument::Declaration:
1986    case TemplateArgument::Integral:
1987      // We've already checked this template argument, so just copy
1988      // it to the list of converted arguments.
1989      Converted.Append(Arg.getArgument());
1990      break;
1991
1992    case TemplateArgument::Template:
1993      // We were given a template template argument. It may not be ill-formed;
1994      // see below.
1995      if (DependentTemplateName *DTN
1996            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1997        // We have a template argument such as \c T::template X, which we
1998        // parsed as a template template argument. However, since we now
1999        // know that we need a non-type template argument, convert this
2000        // template name into an expression.
2001        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2002                                                    DTN->getQualifier(),
2003                                               Arg.getTemplateQualifierRange(),
2004                                                    DTN->getIdentifier(),
2005                                                    Arg.getTemplateNameLoc());
2006
2007        TemplateArgument Result;
2008        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2009          return true;
2010
2011        Converted.Append(Result);
2012        break;
2013      }
2014
2015      // We have a template argument that actually does refer to a class
2016      // template, template alias, or template template parameter, and
2017      // therefore cannot be a non-type template argument.
2018      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2019        << Arg.getSourceRange();
2020
2021      Diag(Param->getLocation(), diag::note_template_param_here);
2022      return true;
2023
2024    case TemplateArgument::Type: {
2025      // We have a non-type template parameter but the template
2026      // argument is a type.
2027
2028      // C++ [temp.arg]p2:
2029      //   In a template-argument, an ambiguity between a type-id and
2030      //   an expression is resolved to a type-id, regardless of the
2031      //   form of the corresponding template-parameter.
2032      //
2033      // We warn specifically about this case, since it can be rather
2034      // confusing for users.
2035      QualType T = Arg.getArgument().getAsType();
2036      SourceRange SR = Arg.getSourceRange();
2037      if (T->isFunctionType())
2038        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2039      else
2040        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2041      Diag(Param->getLocation(), diag::note_template_param_here);
2042      return true;
2043    }
2044
2045    case TemplateArgument::Pack:
2046      llvm::llvm_unreachable("Caller must expand template argument packs");
2047      break;
2048    }
2049
2050    return false;
2051  }
2052
2053
2054  // Check template template parameters.
2055  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2056
2057  // Substitute into the template parameter list of the template
2058  // template parameter, since previously-supplied template arguments
2059  // may appear within the template template parameter.
2060  {
2061    // Set up a template instantiation context.
2062    LocalInstantiationScope Scope(*this);
2063    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2064                               TempParm, Converted.getFlatArguments(),
2065                               Converted.flatSize(),
2066                               SourceRange(TemplateLoc, RAngleLoc));
2067
2068    TemplateArgumentList TemplateArgs(Context, Converted,
2069                                      /*TakeArgs=*/false);
2070    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2071                      SubstDecl(TempParm, CurContext,
2072                                MultiLevelTemplateArgumentList(TemplateArgs)));
2073    if (!TempParm)
2074      return true;
2075
2076    // FIXME: TempParam is leaked.
2077  }
2078
2079  switch (Arg.getArgument().getKind()) {
2080  case TemplateArgument::Null:
2081    assert(false && "Should never see a NULL template argument here");
2082    return true;
2083
2084  case TemplateArgument::Template:
2085    if (CheckTemplateArgument(TempParm, Arg))
2086      return true;
2087
2088    Converted.Append(Arg.getArgument());
2089    break;
2090
2091  case TemplateArgument::Expression:
2092  case TemplateArgument::Type:
2093    // We have a template template parameter but the template
2094    // argument does not refer to a template.
2095    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2096    return true;
2097
2098  case TemplateArgument::Declaration:
2099    llvm::llvm_unreachable(
2100                       "Declaration argument with template template parameter");
2101    break;
2102  case TemplateArgument::Integral:
2103    llvm::llvm_unreachable(
2104                          "Integral argument with template template parameter");
2105    break;
2106
2107  case TemplateArgument::Pack:
2108    llvm::llvm_unreachable("Caller must expand template argument packs");
2109    break;
2110  }
2111
2112  return false;
2113}
2114
2115/// \brief Check that the given template argument list is well-formed
2116/// for specializing the given template.
2117bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2118                                     SourceLocation TemplateLoc,
2119                                const TemplateArgumentListInfo &TemplateArgs,
2120                                     bool PartialTemplateArgs,
2121                                     TemplateArgumentListBuilder &Converted) {
2122  TemplateParameterList *Params = Template->getTemplateParameters();
2123  unsigned NumParams = Params->size();
2124  unsigned NumArgs = TemplateArgs.size();
2125  bool Invalid = false;
2126
2127  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2128
2129  bool HasParameterPack =
2130    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2131
2132  if ((NumArgs > NumParams && !HasParameterPack) ||
2133      (NumArgs < Params->getMinRequiredArguments() &&
2134       !PartialTemplateArgs)) {
2135    // FIXME: point at either the first arg beyond what we can handle,
2136    // or the '>', depending on whether we have too many or too few
2137    // arguments.
2138    SourceRange Range;
2139    if (NumArgs > NumParams)
2140      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2141    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2142      << (NumArgs > NumParams)
2143      << (isa<ClassTemplateDecl>(Template)? 0 :
2144          isa<FunctionTemplateDecl>(Template)? 1 :
2145          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2146      << Template << Range;
2147    Diag(Template->getLocation(), diag::note_template_decl_here)
2148      << Params->getSourceRange();
2149    Invalid = true;
2150  }
2151
2152  // C++ [temp.arg]p1:
2153  //   [...] The type and form of each template-argument specified in
2154  //   a template-id shall match the type and form specified for the
2155  //   corresponding parameter declared by the template in its
2156  //   template-parameter-list.
2157  unsigned ArgIdx = 0;
2158  for (TemplateParameterList::iterator Param = Params->begin(),
2159                                       ParamEnd = Params->end();
2160       Param != ParamEnd; ++Param, ++ArgIdx) {
2161    if (ArgIdx > NumArgs && PartialTemplateArgs)
2162      break;
2163
2164    // If we have a template parameter pack, check every remaining template
2165    // argument against that template parameter pack.
2166    if ((*Param)->isTemplateParameterPack()) {
2167      Converted.BeginPack();
2168      for (; ArgIdx < NumArgs; ++ArgIdx) {
2169        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2170                                  TemplateLoc, RAngleLoc, Converted)) {
2171          Invalid = true;
2172          break;
2173        }
2174      }
2175      Converted.EndPack();
2176      continue;
2177    }
2178
2179    if (ArgIdx < NumArgs) {
2180      // Check the template argument we were given.
2181      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2182                                TemplateLoc, RAngleLoc, Converted))
2183        return true;
2184
2185      continue;
2186    }
2187
2188    // We have a default template argument that we will use.
2189    TemplateArgumentLoc Arg;
2190
2191    // Retrieve the default template argument from the template
2192    // parameter. For each kind of template parameter, we substitute the
2193    // template arguments provided thus far and any "outer" template arguments
2194    // (when the template parameter was part of a nested template) into
2195    // the default argument.
2196    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2197      if (!TTP->hasDefaultArgument()) {
2198        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2199        break;
2200      }
2201
2202      DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this,
2203                                                             Template,
2204                                                             TemplateLoc,
2205                                                             RAngleLoc,
2206                                                             TTP,
2207                                                             Converted);
2208      if (!ArgType)
2209        return true;
2210
2211      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2212                                ArgType);
2213    } else if (NonTypeTemplateParmDecl *NTTP
2214                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2215      if (!NTTP->hasDefaultArgument()) {
2216        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2217        break;
2218      }
2219
2220      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2221                                                              TemplateLoc,
2222                                                              RAngleLoc,
2223                                                              NTTP,
2224                                                              Converted);
2225      if (E.isInvalid())
2226        return true;
2227
2228      Expr *Ex = E.takeAs<Expr>();
2229      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2230    } else {
2231      TemplateTemplateParmDecl *TempParm
2232        = cast<TemplateTemplateParmDecl>(*Param);
2233
2234      if (!TempParm->hasDefaultArgument()) {
2235        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2236        break;
2237      }
2238
2239      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2240                                                       TemplateLoc,
2241                                                       RAngleLoc,
2242                                                       TempParm,
2243                                                       Converted);
2244      if (Name.isNull())
2245        return true;
2246
2247      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2248                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2249                  TempParm->getDefaultArgument().getTemplateNameLoc());
2250    }
2251
2252    // Introduce an instantiation record that describes where we are using
2253    // the default template argument.
2254    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2255                                        Converted.getFlatArguments(),
2256                                        Converted.flatSize(),
2257                                        SourceRange(TemplateLoc, RAngleLoc));
2258
2259    // Check the default template argument.
2260    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2261                              RAngleLoc, Converted))
2262      return true;
2263  }
2264
2265  return Invalid;
2266}
2267
2268/// \brief Check a template argument against its corresponding
2269/// template type parameter.
2270///
2271/// This routine implements the semantics of C++ [temp.arg.type]. It
2272/// returns true if an error occurred, and false otherwise.
2273bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2274                                 DeclaratorInfo *ArgInfo) {
2275  assert(ArgInfo && "invalid DeclaratorInfo");
2276  QualType Arg = ArgInfo->getType();
2277
2278  // C++ [temp.arg.type]p2:
2279  //   A local type, a type with no linkage, an unnamed type or a type
2280  //   compounded from any of these types shall not be used as a
2281  //   template-argument for a template type-parameter.
2282  //
2283  // FIXME: Perform the recursive and no-linkage type checks.
2284  const TagType *Tag = 0;
2285  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2286    Tag = EnumT;
2287  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2288    Tag = RecordT;
2289  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2290    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2291    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2292      << QualType(Tag, 0) << SR;
2293  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2294           !Tag->getDecl()->getTypedefForAnonDecl()) {
2295    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2296    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2297    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2298    return true;
2299  }
2300
2301  return false;
2302}
2303
2304/// \brief Checks whether the given template argument is the address
2305/// of an object or function according to C++ [temp.arg.nontype]p1.
2306bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
2307                                                          NamedDecl *&Entity) {
2308  bool Invalid = false;
2309
2310  // See through any implicit casts we added to fix the type.
2311  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2312    Arg = Cast->getSubExpr();
2313
2314  // C++0x allows nullptr, and there's no further checking to be done for that.
2315  if (Arg->getType()->isNullPtrType())
2316    return false;
2317
2318  // C++ [temp.arg.nontype]p1:
2319  //
2320  //   A template-argument for a non-type, non-template
2321  //   template-parameter shall be one of: [...]
2322  //
2323  //     -- the address of an object or function with external
2324  //        linkage, including function templates and function
2325  //        template-ids but excluding non-static class members,
2326  //        expressed as & id-expression where the & is optional if
2327  //        the name refers to a function or array, or if the
2328  //        corresponding template-parameter is a reference; or
2329  DeclRefExpr *DRE = 0;
2330
2331  // Ignore (and complain about) any excess parentheses.
2332  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2333    if (!Invalid) {
2334      Diag(Arg->getSourceRange().getBegin(),
2335           diag::err_template_arg_extra_parens)
2336        << Arg->getSourceRange();
2337      Invalid = true;
2338    }
2339
2340    Arg = Parens->getSubExpr();
2341  }
2342
2343  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2344    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2345      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2346  } else
2347    DRE = dyn_cast<DeclRefExpr>(Arg);
2348
2349  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
2350    return Diag(Arg->getSourceRange().getBegin(),
2351                diag::err_template_arg_not_object_or_func_form)
2352      << Arg->getSourceRange();
2353
2354  // Cannot refer to non-static data members
2355  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2356    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2357      << Field << Arg->getSourceRange();
2358
2359  // Cannot refer to non-static member functions
2360  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2361    if (!Method->isStatic())
2362      return Diag(Arg->getSourceRange().getBegin(),
2363                  diag::err_template_arg_method)
2364        << Method << Arg->getSourceRange();
2365
2366  // Functions must have external linkage.
2367  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2368    if (Func->getStorageClass() == FunctionDecl::Static) {
2369      Diag(Arg->getSourceRange().getBegin(),
2370           diag::err_template_arg_function_not_extern)
2371        << Func << Arg->getSourceRange();
2372      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2373        << true;
2374      return true;
2375    }
2376
2377    // Okay: we've named a function with external linkage.
2378    Entity = Func;
2379    return Invalid;
2380  }
2381
2382  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2383    if (!Var->hasGlobalStorage()) {
2384      Diag(Arg->getSourceRange().getBegin(),
2385           diag::err_template_arg_object_not_extern)
2386        << Var << Arg->getSourceRange();
2387      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2388        << true;
2389      return true;
2390    }
2391
2392    // Okay: we've named an object with external linkage
2393    Entity = Var;
2394    return Invalid;
2395  }
2396
2397  // We found something else, but we don't know specifically what it is.
2398  Diag(Arg->getSourceRange().getBegin(),
2399       diag::err_template_arg_not_object_or_func)
2400      << Arg->getSourceRange();
2401  Diag(DRE->getDecl()->getLocation(),
2402       diag::note_template_arg_refers_here);
2403  return true;
2404}
2405
2406/// \brief Checks whether the given template argument is a pointer to
2407/// member constant according to C++ [temp.arg.nontype]p1.
2408bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2409                                                TemplateArgument &Converted) {
2410  bool Invalid = false;
2411
2412  // See through any implicit casts we added to fix the type.
2413  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2414    Arg = Cast->getSubExpr();
2415
2416  // C++0x allows nullptr, and there's no further checking to be done for that.
2417  if (Arg->getType()->isNullPtrType())
2418    return false;
2419
2420  // C++ [temp.arg.nontype]p1:
2421  //
2422  //   A template-argument for a non-type, non-template
2423  //   template-parameter shall be one of: [...]
2424  //
2425  //     -- a pointer to member expressed as described in 5.3.1.
2426  DeclRefExpr *DRE = 0;
2427
2428  // Ignore (and complain about) any excess parentheses.
2429  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2430    if (!Invalid) {
2431      Diag(Arg->getSourceRange().getBegin(),
2432           diag::err_template_arg_extra_parens)
2433        << Arg->getSourceRange();
2434      Invalid = true;
2435    }
2436
2437    Arg = Parens->getSubExpr();
2438  }
2439
2440  // A pointer-to-member constant written &Class::member.
2441  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2442    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2443      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2444      if (DRE && !DRE->getQualifier())
2445        DRE = 0;
2446    }
2447  }
2448  // A constant of pointer-to-member type.
2449  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2450    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2451      if (VD->getType()->isMemberPointerType()) {
2452        if (isa<NonTypeTemplateParmDecl>(VD) ||
2453            (isa<VarDecl>(VD) &&
2454             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2455          if (Arg->isTypeDependent() || Arg->isValueDependent())
2456            Converted = TemplateArgument(Arg->Retain());
2457          else
2458            Converted = TemplateArgument(VD->getCanonicalDecl());
2459          return Invalid;
2460        }
2461      }
2462    }
2463
2464    DRE = 0;
2465  }
2466
2467  if (!DRE)
2468    return Diag(Arg->getSourceRange().getBegin(),
2469                diag::err_template_arg_not_pointer_to_member_form)
2470      << Arg->getSourceRange();
2471
2472  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2473    assert((isa<FieldDecl>(DRE->getDecl()) ||
2474            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2475           "Only non-static member pointers can make it here");
2476
2477    // Okay: this is the address of a non-static member, and therefore
2478    // a member pointer constant.
2479    if (Arg->isTypeDependent() || Arg->isValueDependent())
2480      Converted = TemplateArgument(Arg->Retain());
2481    else
2482      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2483    return Invalid;
2484  }
2485
2486  // We found something else, but we don't know specifically what it is.
2487  Diag(Arg->getSourceRange().getBegin(),
2488       diag::err_template_arg_not_pointer_to_member_form)
2489      << Arg->getSourceRange();
2490  Diag(DRE->getDecl()->getLocation(),
2491       diag::note_template_arg_refers_here);
2492  return true;
2493}
2494
2495/// \brief Check a template argument against its corresponding
2496/// non-type template parameter.
2497///
2498/// This routine implements the semantics of C++ [temp.arg.nontype].
2499/// It returns true if an error occurred, and false otherwise. \p
2500/// InstantiatedParamType is the type of the non-type template
2501/// parameter after it has been instantiated.
2502///
2503/// If no error was detected, Converted receives the converted template argument.
2504bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2505                                 QualType InstantiatedParamType, Expr *&Arg,
2506                                 TemplateArgument &Converted) {
2507  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2508
2509  // If either the parameter has a dependent type or the argument is
2510  // type-dependent, there's nothing we can check now.
2511  // FIXME: Add template argument to Converted!
2512  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2513    // FIXME: Produce a cloned, canonical expression?
2514    Converted = TemplateArgument(Arg);
2515    return false;
2516  }
2517
2518  // C++ [temp.arg.nontype]p5:
2519  //   The following conversions are performed on each expression used
2520  //   as a non-type template-argument. If a non-type
2521  //   template-argument cannot be converted to the type of the
2522  //   corresponding template-parameter then the program is
2523  //   ill-formed.
2524  //
2525  //     -- for a non-type template-parameter of integral or
2526  //        enumeration type, integral promotions (4.5) and integral
2527  //        conversions (4.7) are applied.
2528  QualType ParamType = InstantiatedParamType;
2529  QualType ArgType = Arg->getType();
2530  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2531    // C++ [temp.arg.nontype]p1:
2532    //   A template-argument for a non-type, non-template
2533    //   template-parameter shall be one of:
2534    //
2535    //     -- an integral constant-expression of integral or enumeration
2536    //        type; or
2537    //     -- the name of a non-type template-parameter; or
2538    SourceLocation NonConstantLoc;
2539    llvm::APSInt Value;
2540    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2541      Diag(Arg->getSourceRange().getBegin(),
2542           diag::err_template_arg_not_integral_or_enumeral)
2543        << ArgType << Arg->getSourceRange();
2544      Diag(Param->getLocation(), diag::note_template_param_here);
2545      return true;
2546    } else if (!Arg->isValueDependent() &&
2547               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2548      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2549        << ArgType << Arg->getSourceRange();
2550      return true;
2551    }
2552
2553    // FIXME: We need some way to more easily get the unqualified form
2554    // of the types without going all the way to the
2555    // canonical type.
2556    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2557      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2558    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2559      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2560
2561    // Try to convert the argument to the parameter's type.
2562    if (Context.hasSameType(ParamType, ArgType)) {
2563      // Okay: no conversion necessary
2564    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2565               !ParamType->isEnumeralType()) {
2566      // This is an integral promotion or conversion.
2567      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2568    } else {
2569      // We can't perform this conversion.
2570      Diag(Arg->getSourceRange().getBegin(),
2571           diag::err_template_arg_not_convertible)
2572        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2573      Diag(Param->getLocation(), diag::note_template_param_here);
2574      return true;
2575    }
2576
2577    QualType IntegerType = Context.getCanonicalType(ParamType);
2578    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2579      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2580
2581    if (!Arg->isValueDependent()) {
2582      // Check that an unsigned parameter does not receive a negative
2583      // value.
2584      if (IntegerType->isUnsignedIntegerType()
2585          && (Value.isSigned() && Value.isNegative())) {
2586        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2587          << Value.toString(10) << Param->getType()
2588          << Arg->getSourceRange();
2589        Diag(Param->getLocation(), diag::note_template_param_here);
2590        return true;
2591      }
2592
2593      // Check that we don't overflow the template parameter type.
2594      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2595      if (Value.getActiveBits() > AllowedBits) {
2596        Diag(Arg->getSourceRange().getBegin(),
2597             diag::err_template_arg_too_large)
2598          << Value.toString(10) << Param->getType()
2599          << Arg->getSourceRange();
2600        Diag(Param->getLocation(), diag::note_template_param_here);
2601        return true;
2602      }
2603
2604      if (Value.getBitWidth() != AllowedBits)
2605        Value.extOrTrunc(AllowedBits);
2606      Value.setIsSigned(IntegerType->isSignedIntegerType());
2607    }
2608
2609    // Add the value of this argument to the list of converted
2610    // arguments. We use the bitwidth and signedness of the template
2611    // parameter.
2612    if (Arg->isValueDependent()) {
2613      // The argument is value-dependent. Create a new
2614      // TemplateArgument with the converted expression.
2615      Converted = TemplateArgument(Arg);
2616      return false;
2617    }
2618
2619    Converted = TemplateArgument(Value,
2620                                 ParamType->isEnumeralType() ? ParamType
2621                                                             : IntegerType);
2622    return false;
2623  }
2624
2625  // Handle pointer-to-function, reference-to-function, and
2626  // pointer-to-member-function all in (roughly) the same way.
2627  if (// -- For a non-type template-parameter of type pointer to
2628      //    function, only the function-to-pointer conversion (4.3) is
2629      //    applied. If the template-argument represents a set of
2630      //    overloaded functions (or a pointer to such), the matching
2631      //    function is selected from the set (13.4).
2632      // In C++0x, any std::nullptr_t value can be converted.
2633      (ParamType->isPointerType() &&
2634       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2635      // -- For a non-type template-parameter of type reference to
2636      //    function, no conversions apply. If the template-argument
2637      //    represents a set of overloaded functions, the matching
2638      //    function is selected from the set (13.4).
2639      (ParamType->isReferenceType() &&
2640       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2641      // -- For a non-type template-parameter of type pointer to
2642      //    member function, no conversions apply. If the
2643      //    template-argument represents a set of overloaded member
2644      //    functions, the matching member function is selected from
2645      //    the set (13.4).
2646      // Again, C++0x allows a std::nullptr_t value.
2647      (ParamType->isMemberPointerType() &&
2648       ParamType->getAs<MemberPointerType>()->getPointeeType()
2649         ->isFunctionType())) {
2650    if (Context.hasSameUnqualifiedType(ArgType,
2651                                       ParamType.getNonReferenceType())) {
2652      // We don't have to do anything: the types already match.
2653    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2654                 ParamType->isMemberPointerType())) {
2655      ArgType = ParamType;
2656      if (ParamType->isMemberPointerType())
2657        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2658      else
2659        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2660    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2661      ArgType = Context.getPointerType(ArgType);
2662      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2663    } else if (FunctionDecl *Fn
2664                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2665      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2666        return true;
2667
2668      Arg = FixOverloadedFunctionReference(Arg, Fn);
2669      ArgType = Arg->getType();
2670      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2671        ArgType = Context.getPointerType(Arg->getType());
2672        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2673      }
2674    }
2675
2676    if (!Context.hasSameUnqualifiedType(ArgType,
2677                                        ParamType.getNonReferenceType())) {
2678      // We can't perform this conversion.
2679      Diag(Arg->getSourceRange().getBegin(),
2680           diag::err_template_arg_not_convertible)
2681        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2682      Diag(Param->getLocation(), diag::note_template_param_here);
2683      return true;
2684    }
2685
2686    if (ParamType->isMemberPointerType())
2687      return CheckTemplateArgumentPointerToMember(Arg, Converted);
2688
2689    NamedDecl *Entity = 0;
2690    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2691      return true;
2692
2693    if (Entity)
2694      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2695    Converted = TemplateArgument(Entity);
2696    return false;
2697  }
2698
2699  if (ParamType->isPointerType()) {
2700    //   -- for a non-type template-parameter of type pointer to
2701    //      object, qualification conversions (4.4) and the
2702    //      array-to-pointer conversion (4.2) are applied.
2703    // C++0x also allows a value of std::nullptr_t.
2704    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2705           "Only object pointers allowed here");
2706
2707    if (ArgType->isNullPtrType()) {
2708      ArgType = ParamType;
2709      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2710    } else if (ArgType->isArrayType()) {
2711      ArgType = Context.getArrayDecayedType(ArgType);
2712      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2713    }
2714
2715    if (IsQualificationConversion(ArgType, ParamType)) {
2716      ArgType = ParamType;
2717      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2718    }
2719
2720    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2721      // We can't perform this conversion.
2722      Diag(Arg->getSourceRange().getBegin(),
2723           diag::err_template_arg_not_convertible)
2724        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2725      Diag(Param->getLocation(), diag::note_template_param_here);
2726      return true;
2727    }
2728
2729    NamedDecl *Entity = 0;
2730    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2731      return true;
2732
2733    if (Entity)
2734      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2735    Converted = TemplateArgument(Entity);
2736    return false;
2737  }
2738
2739  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2740    //   -- For a non-type template-parameter of type reference to
2741    //      object, no conversions apply. The type referred to by the
2742    //      reference may be more cv-qualified than the (otherwise
2743    //      identical) type of the template-argument. The
2744    //      template-parameter is bound directly to the
2745    //      template-argument, which must be an lvalue.
2746    assert(ParamRefType->getPointeeType()->isObjectType() &&
2747           "Only object references allowed here");
2748
2749    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2750      Diag(Arg->getSourceRange().getBegin(),
2751           diag::err_template_arg_no_ref_bind)
2752        << InstantiatedParamType << Arg->getType()
2753        << Arg->getSourceRange();
2754      Diag(Param->getLocation(), diag::note_template_param_here);
2755      return true;
2756    }
2757
2758    unsigned ParamQuals
2759      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2760    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2761
2762    if ((ParamQuals | ArgQuals) != ParamQuals) {
2763      Diag(Arg->getSourceRange().getBegin(),
2764           diag::err_template_arg_ref_bind_ignores_quals)
2765        << InstantiatedParamType << Arg->getType()
2766        << Arg->getSourceRange();
2767      Diag(Param->getLocation(), diag::note_template_param_here);
2768      return true;
2769    }
2770
2771    NamedDecl *Entity = 0;
2772    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2773      return true;
2774
2775    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2776    Converted = TemplateArgument(Entity);
2777    return false;
2778  }
2779
2780  //     -- For a non-type template-parameter of type pointer to data
2781  //        member, qualification conversions (4.4) are applied.
2782  // C++0x allows std::nullptr_t values.
2783  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2784
2785  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2786    // Types match exactly: nothing more to do here.
2787  } else if (ArgType->isNullPtrType()) {
2788    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2789  } else if (IsQualificationConversion(ArgType, ParamType)) {
2790    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2791  } else {
2792    // We can't perform this conversion.
2793    Diag(Arg->getSourceRange().getBegin(),
2794         diag::err_template_arg_not_convertible)
2795      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2796    Diag(Param->getLocation(), diag::note_template_param_here);
2797    return true;
2798  }
2799
2800  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2801}
2802
2803/// \brief Check a template argument against its corresponding
2804/// template template parameter.
2805///
2806/// This routine implements the semantics of C++ [temp.arg.template].
2807/// It returns true if an error occurred, and false otherwise.
2808bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2809                                 const TemplateArgumentLoc &Arg) {
2810  TemplateName Name = Arg.getArgument().getAsTemplate();
2811  TemplateDecl *Template = Name.getAsTemplateDecl();
2812  if (!Template) {
2813    // Any dependent template name is fine.
2814    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2815    return false;
2816  }
2817
2818  // C++ [temp.arg.template]p1:
2819  //   A template-argument for a template template-parameter shall be
2820  //   the name of a class template, expressed as id-expression. Only
2821  //   primary class templates are considered when matching the
2822  //   template template argument with the corresponding parameter;
2823  //   partial specializations are not considered even if their
2824  //   parameter lists match that of the template template parameter.
2825  //
2826  // Note that we also allow template template parameters here, which
2827  // will happen when we are dealing with, e.g., class template
2828  // partial specializations.
2829  if (!isa<ClassTemplateDecl>(Template) &&
2830      !isa<TemplateTemplateParmDecl>(Template)) {
2831    assert(isa<FunctionTemplateDecl>(Template) &&
2832           "Only function templates are possible here");
2833    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2834    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2835      << Template;
2836  }
2837
2838  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2839                                         Param->getTemplateParameters(),
2840                                         true,
2841                                         TPL_TemplateTemplateArgumentMatch,
2842                                         Arg.getLocation());
2843}
2844
2845/// \brief Determine whether the given template parameter lists are
2846/// equivalent.
2847///
2848/// \param New  The new template parameter list, typically written in the
2849/// source code as part of a new template declaration.
2850///
2851/// \param Old  The old template parameter list, typically found via
2852/// name lookup of the template declared with this template parameter
2853/// list.
2854///
2855/// \param Complain  If true, this routine will produce a diagnostic if
2856/// the template parameter lists are not equivalent.
2857///
2858/// \param Kind describes how we are to match the template parameter lists.
2859///
2860/// \param TemplateArgLoc If this source location is valid, then we
2861/// are actually checking the template parameter list of a template
2862/// argument (New) against the template parameter list of its
2863/// corresponding template template parameter (Old). We produce
2864/// slightly different diagnostics in this scenario.
2865///
2866/// \returns True if the template parameter lists are equal, false
2867/// otherwise.
2868bool
2869Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2870                                     TemplateParameterList *Old,
2871                                     bool Complain,
2872                                     TemplateParameterListEqualKind Kind,
2873                                     SourceLocation TemplateArgLoc) {
2874  if (Old->size() != New->size()) {
2875    if (Complain) {
2876      unsigned NextDiag = diag::err_template_param_list_different_arity;
2877      if (TemplateArgLoc.isValid()) {
2878        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2879        NextDiag = diag::note_template_param_list_different_arity;
2880      }
2881      Diag(New->getTemplateLoc(), NextDiag)
2882          << (New->size() > Old->size())
2883          << (Kind != TPL_TemplateMatch)
2884          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2885      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2886        << (Kind != TPL_TemplateMatch)
2887        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2888    }
2889
2890    return false;
2891  }
2892
2893  for (TemplateParameterList::iterator OldParm = Old->begin(),
2894         OldParmEnd = Old->end(), NewParm = New->begin();
2895       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2896    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2897      if (Complain) {
2898        unsigned NextDiag = diag::err_template_param_different_kind;
2899        if (TemplateArgLoc.isValid()) {
2900          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2901          NextDiag = diag::note_template_param_different_kind;
2902        }
2903        Diag((*NewParm)->getLocation(), NextDiag)
2904          << (Kind != TPL_TemplateMatch);
2905        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2906          << (Kind != TPL_TemplateMatch);
2907      }
2908      return false;
2909    }
2910
2911    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2912      // Okay; all template type parameters are equivalent (since we
2913      // know we're at the same index).
2914    } else if (NonTypeTemplateParmDecl *OldNTTP
2915                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2916      // The types of non-type template parameters must agree.
2917      NonTypeTemplateParmDecl *NewNTTP
2918        = cast<NonTypeTemplateParmDecl>(*NewParm);
2919
2920      // If we are matching a template template argument to a template
2921      // template parameter and one of the non-type template parameter types
2922      // is dependent, then we must wait until template instantiation time
2923      // to actually compare the arguments.
2924      if (Kind == TPL_TemplateTemplateArgumentMatch &&
2925          (OldNTTP->getType()->isDependentType() ||
2926           NewNTTP->getType()->isDependentType()))
2927        continue;
2928
2929      if (Context.getCanonicalType(OldNTTP->getType()) !=
2930            Context.getCanonicalType(NewNTTP->getType())) {
2931        if (Complain) {
2932          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2933          if (TemplateArgLoc.isValid()) {
2934            Diag(TemplateArgLoc,
2935                 diag::err_template_arg_template_params_mismatch);
2936            NextDiag = diag::note_template_nontype_parm_different_type;
2937          }
2938          Diag(NewNTTP->getLocation(), NextDiag)
2939            << NewNTTP->getType()
2940            << (Kind != TPL_TemplateMatch);
2941          Diag(OldNTTP->getLocation(),
2942               diag::note_template_nontype_parm_prev_declaration)
2943            << OldNTTP->getType();
2944        }
2945        return false;
2946      }
2947    } else {
2948      // The template parameter lists of template template
2949      // parameters must agree.
2950      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2951             "Only template template parameters handled here");
2952      TemplateTemplateParmDecl *OldTTP
2953        = cast<TemplateTemplateParmDecl>(*OldParm);
2954      TemplateTemplateParmDecl *NewTTP
2955        = cast<TemplateTemplateParmDecl>(*NewParm);
2956      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2957                                          OldTTP->getTemplateParameters(),
2958                                          Complain,
2959              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
2960                                          TemplateArgLoc))
2961        return false;
2962    }
2963  }
2964
2965  return true;
2966}
2967
2968/// \brief Check whether a template can be declared within this scope.
2969///
2970/// If the template declaration is valid in this scope, returns
2971/// false. Otherwise, issues a diagnostic and returns true.
2972bool
2973Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2974  // Find the nearest enclosing declaration scope.
2975  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2976         (S->getFlags() & Scope::TemplateParamScope) != 0)
2977    S = S->getParent();
2978
2979  // C++ [temp]p2:
2980  //   A template-declaration can appear only as a namespace scope or
2981  //   class scope declaration.
2982  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2983  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2984      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2985    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2986             << TemplateParams->getSourceRange();
2987
2988  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2989    Ctx = Ctx->getParent();
2990
2991  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2992    return false;
2993
2994  return Diag(TemplateParams->getTemplateLoc(),
2995              diag::err_template_outside_namespace_or_class_scope)
2996    << TemplateParams->getSourceRange();
2997}
2998
2999/// \brief Determine what kind of template specialization the given declaration
3000/// is.
3001static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3002  if (!D)
3003    return TSK_Undeclared;
3004
3005  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3006    return Record->getTemplateSpecializationKind();
3007  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3008    return Function->getTemplateSpecializationKind();
3009  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3010    return Var->getTemplateSpecializationKind();
3011
3012  return TSK_Undeclared;
3013}
3014
3015/// \brief Check whether a specialization is well-formed in the current
3016/// context.
3017///
3018/// This routine determines whether a template specialization can be declared
3019/// in the current context (C++ [temp.expl.spec]p2).
3020///
3021/// \param S the semantic analysis object for which this check is being
3022/// performed.
3023///
3024/// \param Specialized the entity being specialized or instantiated, which
3025/// may be a kind of template (class template, function template, etc.) or
3026/// a member of a class template (member function, static data member,
3027/// member class).
3028///
3029/// \param PrevDecl the previous declaration of this entity, if any.
3030///
3031/// \param Loc the location of the explicit specialization or instantiation of
3032/// this entity.
3033///
3034/// \param IsPartialSpecialization whether this is a partial specialization of
3035/// a class template.
3036///
3037/// \returns true if there was an error that we cannot recover from, false
3038/// otherwise.
3039static bool CheckTemplateSpecializationScope(Sema &S,
3040                                             NamedDecl *Specialized,
3041                                             NamedDecl *PrevDecl,
3042                                             SourceLocation Loc,
3043                                             bool IsPartialSpecialization) {
3044  // Keep these "kind" numbers in sync with the %select statements in the
3045  // various diagnostics emitted by this routine.
3046  int EntityKind = 0;
3047  bool isTemplateSpecialization = false;
3048  if (isa<ClassTemplateDecl>(Specialized)) {
3049    EntityKind = IsPartialSpecialization? 1 : 0;
3050    isTemplateSpecialization = true;
3051  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3052    EntityKind = 2;
3053    isTemplateSpecialization = true;
3054  } else if (isa<CXXMethodDecl>(Specialized))
3055    EntityKind = 3;
3056  else if (isa<VarDecl>(Specialized))
3057    EntityKind = 4;
3058  else if (isa<RecordDecl>(Specialized))
3059    EntityKind = 5;
3060  else {
3061    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3062    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3063    return true;
3064  }
3065
3066  // C++ [temp.expl.spec]p2:
3067  //   An explicit specialization shall be declared in the namespace
3068  //   of which the template is a member, or, for member templates, in
3069  //   the namespace of which the enclosing class or enclosing class
3070  //   template is a member. An explicit specialization of a member
3071  //   function, member class or static data member of a class
3072  //   template shall be declared in the namespace of which the class
3073  //   template is a member. Such a declaration may also be a
3074  //   definition. If the declaration is not a definition, the
3075  //   specialization may be defined later in the name- space in which
3076  //   the explicit specialization was declared, or in a namespace
3077  //   that encloses the one in which the explicit specialization was
3078  //   declared.
3079  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3080    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3081      << Specialized;
3082    return true;
3083  }
3084
3085  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3086    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3087      << Specialized;
3088    return true;
3089  }
3090
3091  // C++ [temp.class.spec]p6:
3092  //   A class template partial specialization may be declared or redeclared
3093  //   in any namespace scope in which its definition may be defined (14.5.1
3094  //   and 14.5.2).
3095  bool ComplainedAboutScope = false;
3096  DeclContext *SpecializedContext
3097    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3098  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3099  if ((!PrevDecl ||
3100       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3101       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3102    // There is no prior declaration of this entity, so this
3103    // specialization must be in the same context as the template
3104    // itself.
3105    if (!DC->Equals(SpecializedContext)) {
3106      if (isa<TranslationUnitDecl>(SpecializedContext))
3107        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3108        << EntityKind << Specialized;
3109      else if (isa<NamespaceDecl>(SpecializedContext))
3110        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3111        << EntityKind << Specialized
3112        << cast<NamedDecl>(SpecializedContext);
3113
3114      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3115      ComplainedAboutScope = true;
3116    }
3117  }
3118
3119  // Make sure that this redeclaration (or definition) occurs in an enclosing
3120  // namespace.
3121  // Note that HandleDeclarator() performs this check for explicit
3122  // specializations of function templates, static data members, and member
3123  // functions, so we skip the check here for those kinds of entities.
3124  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3125  // Should we refactor that check, so that it occurs later?
3126  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3127      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3128        isa<FunctionDecl>(Specialized))) {
3129    if (isa<TranslationUnitDecl>(SpecializedContext))
3130      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3131        << EntityKind << Specialized;
3132    else if (isa<NamespaceDecl>(SpecializedContext))
3133      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3134        << EntityKind << Specialized
3135        << cast<NamedDecl>(SpecializedContext);
3136
3137    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3138  }
3139
3140  // FIXME: check for specialization-after-instantiation errors and such.
3141
3142  return false;
3143}
3144
3145/// \brief Check the non-type template arguments of a class template
3146/// partial specialization according to C++ [temp.class.spec]p9.
3147///
3148/// \param TemplateParams the template parameters of the primary class
3149/// template.
3150///
3151/// \param TemplateArg the template arguments of the class template
3152/// partial specialization.
3153///
3154/// \param MirrorsPrimaryTemplate will be set true if the class
3155/// template partial specialization arguments are identical to the
3156/// implicit template arguments of the primary template. This is not
3157/// necessarily an error (C++0x), and it is left to the caller to diagnose
3158/// this condition when it is an error.
3159///
3160/// \returns true if there was an error, false otherwise.
3161bool Sema::CheckClassTemplatePartialSpecializationArgs(
3162                                        TemplateParameterList *TemplateParams,
3163                             const TemplateArgumentListBuilder &TemplateArgs,
3164                                        bool &MirrorsPrimaryTemplate) {
3165  // FIXME: the interface to this function will have to change to
3166  // accommodate variadic templates.
3167  MirrorsPrimaryTemplate = true;
3168
3169  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3170
3171  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3172    // Determine whether the template argument list of the partial
3173    // specialization is identical to the implicit argument list of
3174    // the primary template. The caller may need to diagnostic this as
3175    // an error per C++ [temp.class.spec]p9b3.
3176    if (MirrorsPrimaryTemplate) {
3177      if (TemplateTypeParmDecl *TTP
3178            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3179        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3180              Context.getCanonicalType(ArgList[I].getAsType()))
3181          MirrorsPrimaryTemplate = false;
3182      } else if (TemplateTemplateParmDecl *TTP
3183                   = dyn_cast<TemplateTemplateParmDecl>(
3184                                                 TemplateParams->getParam(I))) {
3185        TemplateName Name = ArgList[I].getAsTemplate();
3186        TemplateTemplateParmDecl *ArgDecl
3187          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3188        if (!ArgDecl ||
3189            ArgDecl->getIndex() != TTP->getIndex() ||
3190            ArgDecl->getDepth() != TTP->getDepth())
3191          MirrorsPrimaryTemplate = false;
3192      }
3193    }
3194
3195    NonTypeTemplateParmDecl *Param
3196      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3197    if (!Param) {
3198      continue;
3199    }
3200
3201    Expr *ArgExpr = ArgList[I].getAsExpr();
3202    if (!ArgExpr) {
3203      MirrorsPrimaryTemplate = false;
3204      continue;
3205    }
3206
3207    // C++ [temp.class.spec]p8:
3208    //   A non-type argument is non-specialized if it is the name of a
3209    //   non-type parameter. All other non-type arguments are
3210    //   specialized.
3211    //
3212    // Below, we check the two conditions that only apply to
3213    // specialized non-type arguments, so skip any non-specialized
3214    // arguments.
3215    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3216      if (NonTypeTemplateParmDecl *NTTP
3217            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3218        if (MirrorsPrimaryTemplate &&
3219            (Param->getIndex() != NTTP->getIndex() ||
3220             Param->getDepth() != NTTP->getDepth()))
3221          MirrorsPrimaryTemplate = false;
3222
3223        continue;
3224      }
3225
3226    // C++ [temp.class.spec]p9:
3227    //   Within the argument list of a class template partial
3228    //   specialization, the following restrictions apply:
3229    //     -- A partially specialized non-type argument expression
3230    //        shall not involve a template parameter of the partial
3231    //        specialization except when the argument expression is a
3232    //        simple identifier.
3233    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3234      Diag(ArgExpr->getLocStart(),
3235           diag::err_dependent_non_type_arg_in_partial_spec)
3236        << ArgExpr->getSourceRange();
3237      return true;
3238    }
3239
3240    //     -- The type of a template parameter corresponding to a
3241    //        specialized non-type argument shall not be dependent on a
3242    //        parameter of the specialization.
3243    if (Param->getType()->isDependentType()) {
3244      Diag(ArgExpr->getLocStart(),
3245           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3246        << Param->getType()
3247        << ArgExpr->getSourceRange();
3248      Diag(Param->getLocation(), diag::note_template_param_here);
3249      return true;
3250    }
3251
3252    MirrorsPrimaryTemplate = false;
3253  }
3254
3255  return false;
3256}
3257
3258Sema::DeclResult
3259Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3260                                       TagUseKind TUK,
3261                                       SourceLocation KWLoc,
3262                                       const CXXScopeSpec &SS,
3263                                       TemplateTy TemplateD,
3264                                       SourceLocation TemplateNameLoc,
3265                                       SourceLocation LAngleLoc,
3266                                       ASTTemplateArgsPtr TemplateArgsIn,
3267                                       SourceLocation RAngleLoc,
3268                                       AttributeList *Attr,
3269                               MultiTemplateParamsArg TemplateParameterLists) {
3270  assert(TUK != TUK_Reference && "References are not specializations");
3271
3272  // Find the class template we're specializing
3273  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3274  ClassTemplateDecl *ClassTemplate
3275    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3276
3277  if (!ClassTemplate) {
3278    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3279      << (Name.getAsTemplateDecl() &&
3280          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3281    return true;
3282  }
3283
3284  bool isExplicitSpecialization = false;
3285  bool isPartialSpecialization = false;
3286
3287  // Check the validity of the template headers that introduce this
3288  // template.
3289  // FIXME: We probably shouldn't complain about these headers for
3290  // friend declarations.
3291  TemplateParameterList *TemplateParams
3292    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3293                        (TemplateParameterList**)TemplateParameterLists.get(),
3294                                              TemplateParameterLists.size(),
3295                                              isExplicitSpecialization);
3296  if (TemplateParams && TemplateParams->size() > 0) {
3297    isPartialSpecialization = true;
3298
3299    // C++ [temp.class.spec]p10:
3300    //   The template parameter list of a specialization shall not
3301    //   contain default template argument values.
3302    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3303      Decl *Param = TemplateParams->getParam(I);
3304      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3305        if (TTP->hasDefaultArgument()) {
3306          Diag(TTP->getDefaultArgumentLoc(),
3307               diag::err_default_arg_in_partial_spec);
3308          TTP->removeDefaultArgument();
3309        }
3310      } else if (NonTypeTemplateParmDecl *NTTP
3311                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3312        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3313          Diag(NTTP->getDefaultArgumentLoc(),
3314               diag::err_default_arg_in_partial_spec)
3315            << DefArg->getSourceRange();
3316          NTTP->setDefaultArgument(0);
3317          DefArg->Destroy(Context);
3318        }
3319      } else {
3320        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3321        if (TTP->hasDefaultArgument()) {
3322          Diag(TTP->getDefaultArgument().getLocation(),
3323               diag::err_default_arg_in_partial_spec)
3324            << TTP->getDefaultArgument().getSourceRange();
3325          TTP->setDefaultArgument(TemplateArgumentLoc());
3326        }
3327      }
3328    }
3329  } else if (TemplateParams) {
3330    if (TUK == TUK_Friend)
3331      Diag(KWLoc, diag::err_template_spec_friend)
3332        << CodeModificationHint::CreateRemoval(
3333                                SourceRange(TemplateParams->getTemplateLoc(),
3334                                            TemplateParams->getRAngleLoc()))
3335        << SourceRange(LAngleLoc, RAngleLoc);
3336    else
3337      isExplicitSpecialization = true;
3338  } else if (TUK != TUK_Friend) {
3339    Diag(KWLoc, diag::err_template_spec_needs_header)
3340      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3341    isExplicitSpecialization = true;
3342  }
3343
3344  // Check that the specialization uses the same tag kind as the
3345  // original template.
3346  TagDecl::TagKind Kind;
3347  switch (TagSpec) {
3348  default: assert(0 && "Unknown tag type!");
3349  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3350  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3351  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3352  }
3353  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3354                                    Kind, KWLoc,
3355                                    *ClassTemplate->getIdentifier())) {
3356    Diag(KWLoc, diag::err_use_with_wrong_tag)
3357      << ClassTemplate
3358      << CodeModificationHint::CreateReplacement(KWLoc,
3359                            ClassTemplate->getTemplatedDecl()->getKindName());
3360    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3361         diag::note_previous_use);
3362    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3363  }
3364
3365  // Translate the parser's template argument list in our AST format.
3366  TemplateArgumentListInfo TemplateArgs;
3367  TemplateArgs.setLAngleLoc(LAngleLoc);
3368  TemplateArgs.setRAngleLoc(RAngleLoc);
3369  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3370
3371  // Check that the template argument list is well-formed for this
3372  // template.
3373  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3374                                        TemplateArgs.size());
3375  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3376                                TemplateArgs, false, Converted))
3377    return true;
3378
3379  assert((Converted.structuredSize() ==
3380            ClassTemplate->getTemplateParameters()->size()) &&
3381         "Converted template argument list is too short!");
3382
3383  // Find the class template (partial) specialization declaration that
3384  // corresponds to these arguments.
3385  llvm::FoldingSetNodeID ID;
3386  if (isPartialSpecialization) {
3387    bool MirrorsPrimaryTemplate;
3388    if (CheckClassTemplatePartialSpecializationArgs(
3389                                         ClassTemplate->getTemplateParameters(),
3390                                         Converted, MirrorsPrimaryTemplate))
3391      return true;
3392
3393    if (MirrorsPrimaryTemplate) {
3394      // C++ [temp.class.spec]p9b3:
3395      //
3396      //   -- The argument list of the specialization shall not be identical
3397      //      to the implicit argument list of the primary template.
3398      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3399        << (TUK == TUK_Definition)
3400        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3401                                                           RAngleLoc));
3402      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3403                                ClassTemplate->getIdentifier(),
3404                                TemplateNameLoc,
3405                                Attr,
3406                                TemplateParams,
3407                                AS_none);
3408    }
3409
3410    // FIXME: Diagnose friend partial specializations
3411
3412    // FIXME: Template parameter list matters, too
3413    ClassTemplatePartialSpecializationDecl::Profile(ID,
3414                                                   Converted.getFlatArguments(),
3415                                                   Converted.flatSize(),
3416                                                    Context);
3417  } else
3418    ClassTemplateSpecializationDecl::Profile(ID,
3419                                             Converted.getFlatArguments(),
3420                                             Converted.flatSize(),
3421                                             Context);
3422  void *InsertPos = 0;
3423  ClassTemplateSpecializationDecl *PrevDecl = 0;
3424
3425  if (isPartialSpecialization)
3426    PrevDecl
3427      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3428                                                                    InsertPos);
3429  else
3430    PrevDecl
3431      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3432
3433  ClassTemplateSpecializationDecl *Specialization = 0;
3434
3435  // Check whether we can declare a class template specialization in
3436  // the current scope.
3437  if (TUK != TUK_Friend &&
3438      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3439                                       TemplateNameLoc,
3440                                       isPartialSpecialization))
3441    return true;
3442
3443  // The canonical type
3444  QualType CanonType;
3445  if (PrevDecl &&
3446      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3447       TUK == TUK_Friend)) {
3448    // Since the only prior class template specialization with these
3449    // arguments was referenced but not declared, or we're only
3450    // referencing this specialization as a friend, reuse that
3451    // declaration node as our own, updating its source location to
3452    // reflect our new declaration.
3453    Specialization = PrevDecl;
3454    Specialization->setLocation(TemplateNameLoc);
3455    PrevDecl = 0;
3456    CanonType = Context.getTypeDeclType(Specialization);
3457  } else if (isPartialSpecialization) {
3458    // Build the canonical type that describes the converted template
3459    // arguments of the class template partial specialization.
3460    CanonType = Context.getTemplateSpecializationType(
3461                                                  TemplateName(ClassTemplate),
3462                                                  Converted.getFlatArguments(),
3463                                                  Converted.flatSize());
3464
3465    // Create a new class template partial specialization declaration node.
3466    ClassTemplatePartialSpecializationDecl *PrevPartial
3467      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3468    ClassTemplatePartialSpecializationDecl *Partial
3469      = ClassTemplatePartialSpecializationDecl::Create(Context,
3470                                             ClassTemplate->getDeclContext(),
3471                                                       TemplateNameLoc,
3472                                                       TemplateParams,
3473                                                       ClassTemplate,
3474                                                       Converted,
3475                                                       TemplateArgs,
3476                                                       PrevPartial);
3477
3478    if (PrevPartial) {
3479      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3480      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3481    } else {
3482      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3483    }
3484    Specialization = Partial;
3485
3486    // If we are providing an explicit specialization of a member class
3487    // template specialization, make a note of that.
3488    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3489      PrevPartial->setMemberSpecialization();
3490
3491    // Check that all of the template parameters of the class template
3492    // partial specialization are deducible from the template
3493    // arguments. If not, this class template partial specialization
3494    // will never be used.
3495    llvm::SmallVector<bool, 8> DeducibleParams;
3496    DeducibleParams.resize(TemplateParams->size());
3497    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3498                               TemplateParams->getDepth(),
3499                               DeducibleParams);
3500    unsigned NumNonDeducible = 0;
3501    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3502      if (!DeducibleParams[I])
3503        ++NumNonDeducible;
3504
3505    if (NumNonDeducible) {
3506      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3507        << (NumNonDeducible > 1)
3508        << SourceRange(TemplateNameLoc, RAngleLoc);
3509      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3510        if (!DeducibleParams[I]) {
3511          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3512          if (Param->getDeclName())
3513            Diag(Param->getLocation(),
3514                 diag::note_partial_spec_unused_parameter)
3515              << Param->getDeclName();
3516          else
3517            Diag(Param->getLocation(),
3518                 diag::note_partial_spec_unused_parameter)
3519              << std::string("<anonymous>");
3520        }
3521      }
3522    }
3523  } else {
3524    // Create a new class template specialization declaration node for
3525    // this explicit specialization or friend declaration.
3526    Specialization
3527      = ClassTemplateSpecializationDecl::Create(Context,
3528                                             ClassTemplate->getDeclContext(),
3529                                                TemplateNameLoc,
3530                                                ClassTemplate,
3531                                                Converted,
3532                                                PrevDecl);
3533
3534    if (PrevDecl) {
3535      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3536      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3537    } else {
3538      ClassTemplate->getSpecializations().InsertNode(Specialization,
3539                                                     InsertPos);
3540    }
3541
3542    CanonType = Context.getTypeDeclType(Specialization);
3543  }
3544
3545  // C++ [temp.expl.spec]p6:
3546  //   If a template, a member template or the member of a class template is
3547  //   explicitly specialized then that specialization shall be declared
3548  //   before the first use of that specialization that would cause an implicit
3549  //   instantiation to take place, in every translation unit in which such a
3550  //   use occurs; no diagnostic is required.
3551  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3552    SourceRange Range(TemplateNameLoc, RAngleLoc);
3553    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3554      << Context.getTypeDeclType(Specialization) << Range;
3555
3556    Diag(PrevDecl->getPointOfInstantiation(),
3557         diag::note_instantiation_required_here)
3558      << (PrevDecl->getTemplateSpecializationKind()
3559                                                != TSK_ImplicitInstantiation);
3560    return true;
3561  }
3562
3563  // If this is not a friend, note that this is an explicit specialization.
3564  if (TUK != TUK_Friend)
3565    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3566
3567  // Check that this isn't a redefinition of this specialization.
3568  if (TUK == TUK_Definition) {
3569    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3570      SourceRange Range(TemplateNameLoc, RAngleLoc);
3571      Diag(TemplateNameLoc, diag::err_redefinition)
3572        << Context.getTypeDeclType(Specialization) << Range;
3573      Diag(Def->getLocation(), diag::note_previous_definition);
3574      Specialization->setInvalidDecl();
3575      return true;
3576    }
3577  }
3578
3579  // Build the fully-sugared type for this class template
3580  // specialization as the user wrote in the specialization
3581  // itself. This means that we'll pretty-print the type retrieved
3582  // from the specialization's declaration the way that the user
3583  // actually wrote the specialization, rather than formatting the
3584  // name based on the "canonical" representation used to store the
3585  // template arguments in the specialization.
3586  QualType WrittenTy
3587    = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3588  if (TUK != TUK_Friend)
3589    Specialization->setTypeAsWritten(WrittenTy);
3590  TemplateArgsIn.release();
3591
3592  // C++ [temp.expl.spec]p9:
3593  //   A template explicit specialization is in the scope of the
3594  //   namespace in which the template was defined.
3595  //
3596  // We actually implement this paragraph where we set the semantic
3597  // context (in the creation of the ClassTemplateSpecializationDecl),
3598  // but we also maintain the lexical context where the actual
3599  // definition occurs.
3600  Specialization->setLexicalDeclContext(CurContext);
3601
3602  // We may be starting the definition of this specialization.
3603  if (TUK == TUK_Definition)
3604    Specialization->startDefinition();
3605
3606  if (TUK == TUK_Friend) {
3607    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3608                                            TemplateNameLoc,
3609                                            WrittenTy.getTypePtr(),
3610                                            /*FIXME:*/KWLoc);
3611    Friend->setAccess(AS_public);
3612    CurContext->addDecl(Friend);
3613  } else {
3614    // Add the specialization into its lexical context, so that it can
3615    // be seen when iterating through the list of declarations in that
3616    // context. However, specializations are not found by name lookup.
3617    CurContext->addDecl(Specialization);
3618  }
3619  return DeclPtrTy::make(Specialization);
3620}
3621
3622Sema::DeclPtrTy
3623Sema::ActOnTemplateDeclarator(Scope *S,
3624                              MultiTemplateParamsArg TemplateParameterLists,
3625                              Declarator &D) {
3626  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3627}
3628
3629Sema::DeclPtrTy
3630Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3631                               MultiTemplateParamsArg TemplateParameterLists,
3632                                      Declarator &D) {
3633  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3634  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3635         "Not a function declarator!");
3636  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3637
3638  if (FTI.hasPrototype) {
3639    // FIXME: Diagnose arguments without names in C.
3640  }
3641
3642  Scope *ParentScope = FnBodyScope->getParent();
3643
3644  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3645                                  move(TemplateParameterLists),
3646                                  /*IsFunctionDefinition=*/true);
3647  if (FunctionTemplateDecl *FunctionTemplate
3648        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3649    return ActOnStartOfFunctionDef(FnBodyScope,
3650                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3651  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3652    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3653  return DeclPtrTy();
3654}
3655
3656/// \brief Diagnose cases where we have an explicit template specialization
3657/// before/after an explicit template instantiation, producing diagnostics
3658/// for those cases where they are required and determining whether the
3659/// new specialization/instantiation will have any effect.
3660///
3661/// \param NewLoc the location of the new explicit specialization or
3662/// instantiation.
3663///
3664/// \param NewTSK the kind of the new explicit specialization or instantiation.
3665///
3666/// \param PrevDecl the previous declaration of the entity.
3667///
3668/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3669///
3670/// \param PrevPointOfInstantiation if valid, indicates where the previus
3671/// declaration was instantiated (either implicitly or explicitly).
3672///
3673/// \param SuppressNew will be set to true to indicate that the new
3674/// specialization or instantiation has no effect and should be ignored.
3675///
3676/// \returns true if there was an error that should prevent the introduction of
3677/// the new declaration into the AST, false otherwise.
3678bool
3679Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3680                                             TemplateSpecializationKind NewTSK,
3681                                             NamedDecl *PrevDecl,
3682                                             TemplateSpecializationKind PrevTSK,
3683                                        SourceLocation PrevPointOfInstantiation,
3684                                             bool &SuppressNew) {
3685  SuppressNew = false;
3686
3687  switch (NewTSK) {
3688  case TSK_Undeclared:
3689  case TSK_ImplicitInstantiation:
3690    assert(false && "Don't check implicit instantiations here");
3691    return false;
3692
3693  case TSK_ExplicitSpecialization:
3694    switch (PrevTSK) {
3695    case TSK_Undeclared:
3696    case TSK_ExplicitSpecialization:
3697      // Okay, we're just specializing something that is either already
3698      // explicitly specialized or has merely been mentioned without any
3699      // instantiation.
3700      return false;
3701
3702    case TSK_ImplicitInstantiation:
3703      if (PrevPointOfInstantiation.isInvalid()) {
3704        // The declaration itself has not actually been instantiated, so it is
3705        // still okay to specialize it.
3706        return false;
3707      }
3708      // Fall through
3709
3710    case TSK_ExplicitInstantiationDeclaration:
3711    case TSK_ExplicitInstantiationDefinition:
3712      assert((PrevTSK == TSK_ImplicitInstantiation ||
3713              PrevPointOfInstantiation.isValid()) &&
3714             "Explicit instantiation without point of instantiation?");
3715
3716      // C++ [temp.expl.spec]p6:
3717      //   If a template, a member template or the member of a class template
3718      //   is explicitly specialized then that specialization shall be declared
3719      //   before the first use of that specialization that would cause an
3720      //   implicit instantiation to take place, in every translation unit in
3721      //   which such a use occurs; no diagnostic is required.
3722      Diag(NewLoc, diag::err_specialization_after_instantiation)
3723        << PrevDecl;
3724      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3725        << (PrevTSK != TSK_ImplicitInstantiation);
3726
3727      return true;
3728    }
3729    break;
3730
3731  case TSK_ExplicitInstantiationDeclaration:
3732    switch (PrevTSK) {
3733    case TSK_ExplicitInstantiationDeclaration:
3734      // This explicit instantiation declaration is redundant (that's okay).
3735      SuppressNew = true;
3736      return false;
3737
3738    case TSK_Undeclared:
3739    case TSK_ImplicitInstantiation:
3740      // We're explicitly instantiating something that may have already been
3741      // implicitly instantiated; that's fine.
3742      return false;
3743
3744    case TSK_ExplicitSpecialization:
3745      // C++0x [temp.explicit]p4:
3746      //   For a given set of template parameters, if an explicit instantiation
3747      //   of a template appears after a declaration of an explicit
3748      //   specialization for that template, the explicit instantiation has no
3749      //   effect.
3750      return false;
3751
3752    case TSK_ExplicitInstantiationDefinition:
3753      // C++0x [temp.explicit]p10:
3754      //   If an entity is the subject of both an explicit instantiation
3755      //   declaration and an explicit instantiation definition in the same
3756      //   translation unit, the definition shall follow the declaration.
3757      Diag(NewLoc,
3758           diag::err_explicit_instantiation_declaration_after_definition);
3759      Diag(PrevPointOfInstantiation,
3760           diag::note_explicit_instantiation_definition_here);
3761      assert(PrevPointOfInstantiation.isValid() &&
3762             "Explicit instantiation without point of instantiation?");
3763      SuppressNew = true;
3764      return false;
3765    }
3766    break;
3767
3768  case TSK_ExplicitInstantiationDefinition:
3769    switch (PrevTSK) {
3770    case TSK_Undeclared:
3771    case TSK_ImplicitInstantiation:
3772      // We're explicitly instantiating something that may have already been
3773      // implicitly instantiated; that's fine.
3774      return false;
3775
3776    case TSK_ExplicitSpecialization:
3777      // C++ DR 259, C++0x [temp.explicit]p4:
3778      //   For a given set of template parameters, if an explicit
3779      //   instantiation of a template appears after a declaration of
3780      //   an explicit specialization for that template, the explicit
3781      //   instantiation has no effect.
3782      //
3783      // In C++98/03 mode, we only give an extension warning here, because it
3784      // is not not harmful to try to explicitly instantiate something that
3785      // has been explicitly specialized.
3786      if (!getLangOptions().CPlusPlus0x) {
3787        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3788          << PrevDecl;
3789        Diag(PrevDecl->getLocation(),
3790             diag::note_previous_template_specialization);
3791      }
3792      SuppressNew = true;
3793      return false;
3794
3795    case TSK_ExplicitInstantiationDeclaration:
3796      // We're explicity instantiating a definition for something for which we
3797      // were previously asked to suppress instantiations. That's fine.
3798      return false;
3799
3800    case TSK_ExplicitInstantiationDefinition:
3801      // C++0x [temp.spec]p5:
3802      //   For a given template and a given set of template-arguments,
3803      //     - an explicit instantiation definition shall appear at most once
3804      //       in a program,
3805      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3806        << PrevDecl;
3807      Diag(PrevPointOfInstantiation,
3808           diag::note_previous_explicit_instantiation);
3809      SuppressNew = true;
3810      return false;
3811    }
3812    break;
3813  }
3814
3815  assert(false && "Missing specialization/instantiation case?");
3816
3817  return false;
3818}
3819
3820/// \brief Perform semantic analysis for the given function template
3821/// specialization.
3822///
3823/// This routine performs all of the semantic analysis required for an
3824/// explicit function template specialization. On successful completion,
3825/// the function declaration \p FD will become a function template
3826/// specialization.
3827///
3828/// \param FD the function declaration, which will be updated to become a
3829/// function template specialization.
3830///
3831/// \param HasExplicitTemplateArgs whether any template arguments were
3832/// explicitly provided.
3833///
3834/// \param LAngleLoc the location of the left angle bracket ('<'), if
3835/// template arguments were explicitly provided.
3836///
3837/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3838/// if any.
3839///
3840/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3841/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3842/// true as in, e.g., \c void sort<>(char*, char*);
3843///
3844/// \param RAngleLoc the location of the right angle bracket ('>'), if
3845/// template arguments were explicitly provided.
3846///
3847/// \param PrevDecl the set of declarations that
3848bool
3849Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3850                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3851                                          LookupResult &Previous) {
3852  // The set of function template specializations that could match this
3853  // explicit function template specialization.
3854  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3855  CandidateSet Candidates;
3856
3857  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3858  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3859         I != E; ++I) {
3860    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
3861    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
3862      // Only consider templates found within the same semantic lookup scope as
3863      // FD.
3864      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3865        continue;
3866
3867      // C++ [temp.expl.spec]p11:
3868      //   A trailing template-argument can be left unspecified in the
3869      //   template-id naming an explicit function template specialization
3870      //   provided it can be deduced from the function argument type.
3871      // Perform template argument deduction to determine whether we may be
3872      // specializing this template.
3873      // FIXME: It is somewhat wasteful to build
3874      TemplateDeductionInfo Info(Context);
3875      FunctionDecl *Specialization = 0;
3876      if (TemplateDeductionResult TDK
3877            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
3878                                      FD->getType(),
3879                                      Specialization,
3880                                      Info)) {
3881        // FIXME: Template argument deduction failed; record why it failed, so
3882        // that we can provide nifty diagnostics.
3883        (void)TDK;
3884        continue;
3885      }
3886
3887      // Record this candidate.
3888      Candidates.push_back(Specialization);
3889    }
3890  }
3891
3892  // Find the most specialized function template.
3893  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3894                                                    Candidates.size(),
3895                                                    TPOC_Other,
3896                                                    FD->getLocation(),
3897                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3898                    << FD->getDeclName(),
3899                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3900                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
3901                  PartialDiagnostic(diag::note_function_template_spec_matched));
3902  if (!Specialization)
3903    return true;
3904
3905  // FIXME: Check if the prior specialization has a point of instantiation.
3906  // If so, we have run afoul of .
3907
3908  // Check the scope of this explicit specialization.
3909  if (CheckTemplateSpecializationScope(*this,
3910                                       Specialization->getPrimaryTemplate(),
3911                                       Specialization, FD->getLocation(),
3912                                       false))
3913    return true;
3914
3915  // C++ [temp.expl.spec]p6:
3916  //   If a template, a member template or the member of a class template is
3917  //   explicitly specialized then that specialization shall be declared
3918  //   before the first use of that specialization that would cause an implicit
3919  //   instantiation to take place, in every translation unit in which such a
3920  //   use occurs; no diagnostic is required.
3921  FunctionTemplateSpecializationInfo *SpecInfo
3922    = Specialization->getTemplateSpecializationInfo();
3923  assert(SpecInfo && "Function template specialization info missing?");
3924  if (SpecInfo->getPointOfInstantiation().isValid()) {
3925    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3926      << FD;
3927    Diag(SpecInfo->getPointOfInstantiation(),
3928         diag::note_instantiation_required_here)
3929      << (Specialization->getTemplateSpecializationKind()
3930                                                != TSK_ImplicitInstantiation);
3931    return true;
3932  }
3933
3934  // Mark the prior declaration as an explicit specialization, so that later
3935  // clients know that this is an explicit specialization.
3936  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3937
3938  // Turn the given function declaration into a function template
3939  // specialization, with the template arguments from the previous
3940  // specialization.
3941  FD->setFunctionTemplateSpecialization(Context,
3942                                        Specialization->getPrimaryTemplate(),
3943                         new (Context) TemplateArgumentList(
3944                             *Specialization->getTemplateSpecializationArgs()),
3945                                        /*InsertPos=*/0,
3946                                        TSK_ExplicitSpecialization);
3947
3948  // The "previous declaration" for this function template specialization is
3949  // the prior function template specialization.
3950  Previous.clear();
3951  Previous.addDecl(Specialization);
3952  return false;
3953}
3954
3955/// \brief Perform semantic analysis for the given non-template member
3956/// specialization.
3957///
3958/// This routine performs all of the semantic analysis required for an
3959/// explicit member function specialization. On successful completion,
3960/// the function declaration \p FD will become a member function
3961/// specialization.
3962///
3963/// \param Member the member declaration, which will be updated to become a
3964/// specialization.
3965///
3966/// \param Previous the set of declarations, one of which may be specialized
3967/// by this function specialization;  the set will be modified to contain the
3968/// redeclared member.
3969bool
3970Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
3971  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3972
3973  // Try to find the member we are instantiating.
3974  NamedDecl *Instantiation = 0;
3975  NamedDecl *InstantiatedFrom = 0;
3976  MemberSpecializationInfo *MSInfo = 0;
3977
3978  if (Previous.empty()) {
3979    // Nowhere to look anyway.
3980  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3981    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3982           I != E; ++I) {
3983      NamedDecl *D = (*I)->getUnderlyingDecl();
3984      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
3985        if (Context.hasSameType(Function->getType(), Method->getType())) {
3986          Instantiation = Method;
3987          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3988          MSInfo = Method->getMemberSpecializationInfo();
3989          break;
3990        }
3991      }
3992    }
3993  } else if (isa<VarDecl>(Member)) {
3994    VarDecl *PrevVar;
3995    if (Previous.isSingleResult() &&
3996        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
3997      if (PrevVar->isStaticDataMember()) {
3998        Instantiation = PrevVar;
3999        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4000        MSInfo = PrevVar->getMemberSpecializationInfo();
4001      }
4002  } else if (isa<RecordDecl>(Member)) {
4003    CXXRecordDecl *PrevRecord;
4004    if (Previous.isSingleResult() &&
4005        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4006      Instantiation = PrevRecord;
4007      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4008      MSInfo = PrevRecord->getMemberSpecializationInfo();
4009    }
4010  }
4011
4012  if (!Instantiation) {
4013    // There is no previous declaration that matches. Since member
4014    // specializations are always out-of-line, the caller will complain about
4015    // this mismatch later.
4016    return false;
4017  }
4018
4019  // Make sure that this is a specialization of a member.
4020  if (!InstantiatedFrom) {
4021    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4022      << Member;
4023    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4024    return true;
4025  }
4026
4027  // C++ [temp.expl.spec]p6:
4028  //   If a template, a member template or the member of a class template is
4029  //   explicitly specialized then that spe- cialization shall be declared
4030  //   before the first use of that specialization that would cause an implicit
4031  //   instantiation to take place, in every translation unit in which such a
4032  //   use occurs; no diagnostic is required.
4033  assert(MSInfo && "Member specialization info missing?");
4034  if (MSInfo->getPointOfInstantiation().isValid()) {
4035    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
4036      << Member;
4037    Diag(MSInfo->getPointOfInstantiation(),
4038         diag::note_instantiation_required_here)
4039      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
4040    return true;
4041  }
4042
4043  // Check the scope of this explicit specialization.
4044  if (CheckTemplateSpecializationScope(*this,
4045                                       InstantiatedFrom,
4046                                       Instantiation, Member->getLocation(),
4047                                       false))
4048    return true;
4049
4050  // Note that this is an explicit instantiation of a member.
4051  // the original declaration to note that it is an explicit specialization
4052  // (if it was previously an implicit instantiation). This latter step
4053  // makes bookkeeping easier.
4054  if (isa<FunctionDecl>(Member)) {
4055    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4056    if (InstantiationFunction->getTemplateSpecializationKind() ==
4057          TSK_ImplicitInstantiation) {
4058      InstantiationFunction->setTemplateSpecializationKind(
4059                                                  TSK_ExplicitSpecialization);
4060      InstantiationFunction->setLocation(Member->getLocation());
4061    }
4062
4063    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4064                                        cast<CXXMethodDecl>(InstantiatedFrom),
4065                                                  TSK_ExplicitSpecialization);
4066  } else if (isa<VarDecl>(Member)) {
4067    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4068    if (InstantiationVar->getTemplateSpecializationKind() ==
4069          TSK_ImplicitInstantiation) {
4070      InstantiationVar->setTemplateSpecializationKind(
4071                                                  TSK_ExplicitSpecialization);
4072      InstantiationVar->setLocation(Member->getLocation());
4073    }
4074
4075    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4076                                                cast<VarDecl>(InstantiatedFrom),
4077                                                TSK_ExplicitSpecialization);
4078  } else {
4079    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4080    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4081    if (InstantiationClass->getTemplateSpecializationKind() ==
4082          TSK_ImplicitInstantiation) {
4083      InstantiationClass->setTemplateSpecializationKind(
4084                                                   TSK_ExplicitSpecialization);
4085      InstantiationClass->setLocation(Member->getLocation());
4086    }
4087
4088    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4089                                        cast<CXXRecordDecl>(InstantiatedFrom),
4090                                                   TSK_ExplicitSpecialization);
4091  }
4092
4093  // Save the caller the trouble of having to figure out which declaration
4094  // this specialization matches.
4095  Previous.clear();
4096  Previous.addDecl(Instantiation);
4097  return false;
4098}
4099
4100/// \brief Check the scope of an explicit instantiation.
4101static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4102                                            SourceLocation InstLoc,
4103                                            bool WasQualifiedName) {
4104  DeclContext *ExpectedContext
4105    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4106  DeclContext *CurContext = S.CurContext->getLookupContext();
4107
4108  // C++0x [temp.explicit]p2:
4109  //   An explicit instantiation shall appear in an enclosing namespace of its
4110  //   template.
4111  //
4112  // This is DR275, which we do not retroactively apply to C++98/03.
4113  if (S.getLangOptions().CPlusPlus0x &&
4114      !CurContext->Encloses(ExpectedContext)) {
4115    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4116      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4117        << D << NS;
4118    else
4119      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4120        << D;
4121    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4122    return;
4123  }
4124
4125  // C++0x [temp.explicit]p2:
4126  //   If the name declared in the explicit instantiation is an unqualified
4127  //   name, the explicit instantiation shall appear in the namespace where
4128  //   its template is declared or, if that namespace is inline (7.3.1), any
4129  //   namespace from its enclosing namespace set.
4130  if (WasQualifiedName)
4131    return;
4132
4133  if (CurContext->Equals(ExpectedContext))
4134    return;
4135
4136  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4137    << D << ExpectedContext;
4138  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4139}
4140
4141/// \brief Determine whether the given scope specifier has a template-id in it.
4142static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4143  if (!SS.isSet())
4144    return false;
4145
4146  // C++0x [temp.explicit]p2:
4147  //   If the explicit instantiation is for a member function, a member class
4148  //   or a static data member of a class template specialization, the name of
4149  //   the class template specialization in the qualified-id for the member
4150  //   name shall be a simple-template-id.
4151  //
4152  // C++98 has the same restriction, just worded differently.
4153  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4154       NNS; NNS = NNS->getPrefix())
4155    if (Type *T = NNS->getAsType())
4156      if (isa<TemplateSpecializationType>(T))
4157        return true;
4158
4159  return false;
4160}
4161
4162// Explicit instantiation of a class template specialization
4163// FIXME: Implement extern template semantics
4164Sema::DeclResult
4165Sema::ActOnExplicitInstantiation(Scope *S,
4166                                 SourceLocation ExternLoc,
4167                                 SourceLocation TemplateLoc,
4168                                 unsigned TagSpec,
4169                                 SourceLocation KWLoc,
4170                                 const CXXScopeSpec &SS,
4171                                 TemplateTy TemplateD,
4172                                 SourceLocation TemplateNameLoc,
4173                                 SourceLocation LAngleLoc,
4174                                 ASTTemplateArgsPtr TemplateArgsIn,
4175                                 SourceLocation RAngleLoc,
4176                                 AttributeList *Attr) {
4177  // Find the class template we're specializing
4178  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4179  ClassTemplateDecl *ClassTemplate
4180    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4181
4182  // Check that the specialization uses the same tag kind as the
4183  // original template.
4184  TagDecl::TagKind Kind;
4185  switch (TagSpec) {
4186  default: assert(0 && "Unknown tag type!");
4187  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4188  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4189  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4190  }
4191  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4192                                    Kind, KWLoc,
4193                                    *ClassTemplate->getIdentifier())) {
4194    Diag(KWLoc, diag::err_use_with_wrong_tag)
4195      << ClassTemplate
4196      << CodeModificationHint::CreateReplacement(KWLoc,
4197                            ClassTemplate->getTemplatedDecl()->getKindName());
4198    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4199         diag::note_previous_use);
4200    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4201  }
4202
4203  // C++0x [temp.explicit]p2:
4204  //   There are two forms of explicit instantiation: an explicit instantiation
4205  //   definition and an explicit instantiation declaration. An explicit
4206  //   instantiation declaration begins with the extern keyword. [...]
4207  TemplateSpecializationKind TSK
4208    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4209                           : TSK_ExplicitInstantiationDeclaration;
4210
4211  // Translate the parser's template argument list in our AST format.
4212  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4213  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4214
4215  // Check that the template argument list is well-formed for this
4216  // template.
4217  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4218                                        TemplateArgs.size());
4219  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4220                                TemplateArgs, false, Converted))
4221    return true;
4222
4223  assert((Converted.structuredSize() ==
4224            ClassTemplate->getTemplateParameters()->size()) &&
4225         "Converted template argument list is too short!");
4226
4227  // Find the class template specialization declaration that
4228  // corresponds to these arguments.
4229  llvm::FoldingSetNodeID ID;
4230  ClassTemplateSpecializationDecl::Profile(ID,
4231                                           Converted.getFlatArguments(),
4232                                           Converted.flatSize(),
4233                                           Context);
4234  void *InsertPos = 0;
4235  ClassTemplateSpecializationDecl *PrevDecl
4236    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4237
4238  // C++0x [temp.explicit]p2:
4239  //   [...] An explicit instantiation shall appear in an enclosing
4240  //   namespace of its template. [...]
4241  //
4242  // This is C++ DR 275.
4243  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4244                                  SS.isSet());
4245
4246  ClassTemplateSpecializationDecl *Specialization = 0;
4247
4248  bool ReusedDecl = false;
4249  if (PrevDecl) {
4250    bool SuppressNew = false;
4251    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4252                                               PrevDecl,
4253                                              PrevDecl->getSpecializationKind(),
4254                                            PrevDecl->getPointOfInstantiation(),
4255                                               SuppressNew))
4256      return DeclPtrTy::make(PrevDecl);
4257
4258    if (SuppressNew)
4259      return DeclPtrTy::make(PrevDecl);
4260
4261    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4262        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4263      // Since the only prior class template specialization with these
4264      // arguments was referenced but not declared, reuse that
4265      // declaration node as our own, updating its source location to
4266      // reflect our new declaration.
4267      Specialization = PrevDecl;
4268      Specialization->setLocation(TemplateNameLoc);
4269      PrevDecl = 0;
4270      ReusedDecl = true;
4271    }
4272  }
4273
4274  if (!Specialization) {
4275    // Create a new class template specialization declaration node for
4276    // this explicit specialization.
4277    Specialization
4278      = ClassTemplateSpecializationDecl::Create(Context,
4279                                             ClassTemplate->getDeclContext(),
4280                                                TemplateNameLoc,
4281                                                ClassTemplate,
4282                                                Converted, PrevDecl);
4283
4284    if (PrevDecl) {
4285      // Remove the previous declaration from the folding set, since we want
4286      // to introduce a new declaration.
4287      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4288      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4289    }
4290
4291    // Insert the new specialization.
4292    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4293  }
4294
4295  // Build the fully-sugared type for this explicit instantiation as
4296  // the user wrote in the explicit instantiation itself. This means
4297  // that we'll pretty-print the type retrieved from the
4298  // specialization's declaration the way that the user actually wrote
4299  // the explicit instantiation, rather than formatting the name based
4300  // on the "canonical" representation used to store the template
4301  // arguments in the specialization.
4302  QualType WrittenTy
4303    = Context.getTemplateSpecializationType(Name, TemplateArgs,
4304                                  Context.getTypeDeclType(Specialization));
4305  Specialization->setTypeAsWritten(WrittenTy);
4306  TemplateArgsIn.release();
4307
4308  if (!ReusedDecl) {
4309    // Add the explicit instantiation into its lexical context. However,
4310    // since explicit instantiations are never found by name lookup, we
4311    // just put it into the declaration context directly.
4312    Specialization->setLexicalDeclContext(CurContext);
4313    CurContext->addDecl(Specialization);
4314  }
4315
4316  // C++ [temp.explicit]p3:
4317  //   A definition of a class template or class member template
4318  //   shall be in scope at the point of the explicit instantiation of
4319  //   the class template or class member template.
4320  //
4321  // This check comes when we actually try to perform the
4322  // instantiation.
4323  ClassTemplateSpecializationDecl *Def
4324    = cast_or_null<ClassTemplateSpecializationDecl>(
4325                                        Specialization->getDefinition(Context));
4326  if (!Def)
4327    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4328
4329  // Instantiate the members of this class template specialization.
4330  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4331                                       Specialization->getDefinition(Context));
4332  if (Def)
4333    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4334
4335  return DeclPtrTy::make(Specialization);
4336}
4337
4338// Explicit instantiation of a member class of a class template.
4339Sema::DeclResult
4340Sema::ActOnExplicitInstantiation(Scope *S,
4341                                 SourceLocation ExternLoc,
4342                                 SourceLocation TemplateLoc,
4343                                 unsigned TagSpec,
4344                                 SourceLocation KWLoc,
4345                                 const CXXScopeSpec &SS,
4346                                 IdentifierInfo *Name,
4347                                 SourceLocation NameLoc,
4348                                 AttributeList *Attr) {
4349
4350  bool Owned = false;
4351  bool IsDependent = false;
4352  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4353                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4354                            MultiTemplateParamsArg(*this, 0, 0),
4355                            Owned, IsDependent);
4356  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4357
4358  if (!TagD)
4359    return true;
4360
4361  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4362  if (Tag->isEnum()) {
4363    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4364      << Context.getTypeDeclType(Tag);
4365    return true;
4366  }
4367
4368  if (Tag->isInvalidDecl())
4369    return true;
4370
4371  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4372  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4373  if (!Pattern) {
4374    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4375      << Context.getTypeDeclType(Record);
4376    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4377    return true;
4378  }
4379
4380  // C++0x [temp.explicit]p2:
4381  //   If the explicit instantiation is for a class or member class, the
4382  //   elaborated-type-specifier in the declaration shall include a
4383  //   simple-template-id.
4384  //
4385  // C++98 has the same restriction, just worded differently.
4386  if (!ScopeSpecifierHasTemplateId(SS))
4387    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4388      << Record << SS.getRange();
4389
4390  // C++0x [temp.explicit]p2:
4391  //   There are two forms of explicit instantiation: an explicit instantiation
4392  //   definition and an explicit instantiation declaration. An explicit
4393  //   instantiation declaration begins with the extern keyword. [...]
4394  TemplateSpecializationKind TSK
4395    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4396                           : TSK_ExplicitInstantiationDeclaration;
4397
4398  // C++0x [temp.explicit]p2:
4399  //   [...] An explicit instantiation shall appear in an enclosing
4400  //   namespace of its template. [...]
4401  //
4402  // This is C++ DR 275.
4403  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4404
4405  // Verify that it is okay to explicitly instantiate here.
4406  CXXRecordDecl *PrevDecl
4407    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4408  if (!PrevDecl && Record->getDefinition(Context))
4409    PrevDecl = Record;
4410  if (PrevDecl) {
4411    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4412    bool SuppressNew = false;
4413    assert(MSInfo && "No member specialization information?");
4414    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4415                                               PrevDecl,
4416                                        MSInfo->getTemplateSpecializationKind(),
4417                                             MSInfo->getPointOfInstantiation(),
4418                                               SuppressNew))
4419      return true;
4420    if (SuppressNew)
4421      return TagD;
4422  }
4423
4424  CXXRecordDecl *RecordDef
4425    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4426  if (!RecordDef) {
4427    // C++ [temp.explicit]p3:
4428    //   A definition of a member class of a class template shall be in scope
4429    //   at the point of an explicit instantiation of the member class.
4430    CXXRecordDecl *Def
4431      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4432    if (!Def) {
4433      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4434        << 0 << Record->getDeclName() << Record->getDeclContext();
4435      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4436        << Pattern;
4437      return true;
4438    } else {
4439      if (InstantiateClass(NameLoc, Record, Def,
4440                           getTemplateInstantiationArgs(Record),
4441                           TSK))
4442        return true;
4443
4444      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4445      if (!RecordDef)
4446        return true;
4447    }
4448  }
4449
4450  // Instantiate all of the members of the class.
4451  InstantiateClassMembers(NameLoc, RecordDef,
4452                          getTemplateInstantiationArgs(Record), TSK);
4453
4454  // FIXME: We don't have any representation for explicit instantiations of
4455  // member classes. Such a representation is not needed for compilation, but it
4456  // should be available for clients that want to see all of the declarations in
4457  // the source code.
4458  return TagD;
4459}
4460
4461Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4462                                                  SourceLocation ExternLoc,
4463                                                  SourceLocation TemplateLoc,
4464                                                  Declarator &D) {
4465  // Explicit instantiations always require a name.
4466  DeclarationName Name = GetNameForDeclarator(D);
4467  if (!Name) {
4468    if (!D.isInvalidType())
4469      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4470           diag::err_explicit_instantiation_requires_name)
4471        << D.getDeclSpec().getSourceRange()
4472        << D.getSourceRange();
4473
4474    return true;
4475  }
4476
4477  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4478  // we find one that is.
4479  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4480         (S->getFlags() & Scope::TemplateParamScope) != 0)
4481    S = S->getParent();
4482
4483  // Determine the type of the declaration.
4484  QualType R = GetTypeForDeclarator(D, S, 0);
4485  if (R.isNull())
4486    return true;
4487
4488  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4489    // Cannot explicitly instantiate a typedef.
4490    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4491      << Name;
4492    return true;
4493  }
4494
4495  // C++0x [temp.explicit]p1:
4496  //   [...] An explicit instantiation of a function template shall not use the
4497  //   inline or constexpr specifiers.
4498  // Presumably, this also applies to member functions of class templates as
4499  // well.
4500  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4501    Diag(D.getDeclSpec().getInlineSpecLoc(),
4502         diag::err_explicit_instantiation_inline)
4503      << CodeModificationHint::CreateRemoval(
4504                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
4505
4506  // FIXME: check for constexpr specifier.
4507
4508  // C++0x [temp.explicit]p2:
4509  //   There are two forms of explicit instantiation: an explicit instantiation
4510  //   definition and an explicit instantiation declaration. An explicit
4511  //   instantiation declaration begins with the extern keyword. [...]
4512  TemplateSpecializationKind TSK
4513    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4514                           : TSK_ExplicitInstantiationDeclaration;
4515
4516  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4517  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4518
4519  if (!R->isFunctionType()) {
4520    // C++ [temp.explicit]p1:
4521    //   A [...] static data member of a class template can be explicitly
4522    //   instantiated from the member definition associated with its class
4523    //   template.
4524    if (Previous.isAmbiguous())
4525      return true;
4526
4527    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
4528        Previous.getAsSingleDecl(Context));
4529    if (!Prev || !Prev->isStaticDataMember()) {
4530      // We expect to see a data data member here.
4531      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4532        << Name;
4533      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4534           P != PEnd; ++P)
4535        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4536      return true;
4537    }
4538
4539    if (!Prev->getInstantiatedFromStaticDataMember()) {
4540      // FIXME: Check for explicit specialization?
4541      Diag(D.getIdentifierLoc(),
4542           diag::err_explicit_instantiation_data_member_not_instantiated)
4543        << Prev;
4544      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4545      // FIXME: Can we provide a note showing where this was declared?
4546      return true;
4547    }
4548
4549    // C++0x [temp.explicit]p2:
4550    //   If the explicit instantiation is for a member function, a member class
4551    //   or a static data member of a class template specialization, the name of
4552    //   the class template specialization in the qualified-id for the member
4553    //   name shall be a simple-template-id.
4554    //
4555    // C++98 has the same restriction, just worded differently.
4556    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4557      Diag(D.getIdentifierLoc(),
4558           diag::err_explicit_instantiation_without_qualified_id)
4559        << Prev << D.getCXXScopeSpec().getRange();
4560
4561    // Check the scope of this explicit instantiation.
4562    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4563
4564    // Verify that it is okay to explicitly instantiate here.
4565    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4566    assert(MSInfo && "Missing static data member specialization info?");
4567    bool SuppressNew = false;
4568    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4569                                        MSInfo->getTemplateSpecializationKind(),
4570                                              MSInfo->getPointOfInstantiation(),
4571                                               SuppressNew))
4572      return true;
4573    if (SuppressNew)
4574      return DeclPtrTy();
4575
4576    // Instantiate static data member.
4577    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4578    if (TSK == TSK_ExplicitInstantiationDefinition)
4579      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4580                                            /*DefinitionRequired=*/true);
4581
4582    // FIXME: Create an ExplicitInstantiation node?
4583    return DeclPtrTy();
4584  }
4585
4586  // If the declarator is a template-id, translate the parser's template
4587  // argument list into our AST format.
4588  bool HasExplicitTemplateArgs = false;
4589  TemplateArgumentListInfo TemplateArgs;
4590  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4591    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4592    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4593    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4594    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4595                                       TemplateId->getTemplateArgs(),
4596                                       TemplateId->NumArgs);
4597    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4598    HasExplicitTemplateArgs = true;
4599    TemplateArgsPtr.release();
4600  }
4601
4602  // C++ [temp.explicit]p1:
4603  //   A [...] function [...] can be explicitly instantiated from its template.
4604  //   A member function [...] of a class template can be explicitly
4605  //  instantiated from the member definition associated with its class
4606  //  template.
4607  llvm::SmallVector<FunctionDecl *, 8> Matches;
4608  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4609       P != PEnd; ++P) {
4610    NamedDecl *Prev = *P;
4611    if (!HasExplicitTemplateArgs) {
4612      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4613        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4614          Matches.clear();
4615          Matches.push_back(Method);
4616          break;
4617        }
4618      }
4619    }
4620
4621    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4622    if (!FunTmpl)
4623      continue;
4624
4625    TemplateDeductionInfo Info(Context);
4626    FunctionDecl *Specialization = 0;
4627    if (TemplateDeductionResult TDK
4628          = DeduceTemplateArguments(FunTmpl,
4629                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4630                                    R, Specialization, Info)) {
4631      // FIXME: Keep track of almost-matches?
4632      (void)TDK;
4633      continue;
4634    }
4635
4636    Matches.push_back(Specialization);
4637  }
4638
4639  // Find the most specialized function template specialization.
4640  FunctionDecl *Specialization
4641    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4642                         D.getIdentifierLoc(),
4643          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4644          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4645                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4646
4647  if (!Specialization)
4648    return true;
4649
4650  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4651    Diag(D.getIdentifierLoc(),
4652         diag::err_explicit_instantiation_member_function_not_instantiated)
4653      << Specialization
4654      << (Specialization->getTemplateSpecializationKind() ==
4655          TSK_ExplicitSpecialization);
4656    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4657    return true;
4658  }
4659
4660  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4661  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4662    PrevDecl = Specialization;
4663
4664  if (PrevDecl) {
4665    bool SuppressNew = false;
4666    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4667                                               PrevDecl,
4668                                     PrevDecl->getTemplateSpecializationKind(),
4669                                          PrevDecl->getPointOfInstantiation(),
4670                                               SuppressNew))
4671      return true;
4672
4673    // FIXME: We may still want to build some representation of this
4674    // explicit specialization.
4675    if (SuppressNew)
4676      return DeclPtrTy();
4677  }
4678
4679  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4680
4681  if (TSK == TSK_ExplicitInstantiationDefinition)
4682    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4683                                  false, /*DefinitionRequired=*/true);
4684
4685  // C++0x [temp.explicit]p2:
4686  //   If the explicit instantiation is for a member function, a member class
4687  //   or a static data member of a class template specialization, the name of
4688  //   the class template specialization in the qualified-id for the member
4689  //   name shall be a simple-template-id.
4690  //
4691  // C++98 has the same restriction, just worded differently.
4692  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4693  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4694      D.getCXXScopeSpec().isSet() &&
4695      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4696    Diag(D.getIdentifierLoc(),
4697         diag::err_explicit_instantiation_without_qualified_id)
4698    << Specialization << D.getCXXScopeSpec().getRange();
4699
4700  CheckExplicitInstantiationScope(*this,
4701                   FunTmpl? (NamedDecl *)FunTmpl
4702                          : Specialization->getInstantiatedFromMemberFunction(),
4703                                  D.getIdentifierLoc(),
4704                                  D.getCXXScopeSpec().isSet());
4705
4706  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4707  return DeclPtrTy();
4708}
4709
4710Sema::TypeResult
4711Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4712                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4713                        SourceLocation TagLoc, SourceLocation NameLoc) {
4714  // This has to hold, because SS is expected to be defined.
4715  assert(Name && "Expected a name in a dependent tag");
4716
4717  NestedNameSpecifier *NNS
4718    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4719  if (!NNS)
4720    return true;
4721
4722  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4723  if (T.isNull())
4724    return true;
4725
4726  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4727  QualType ElabType = Context.getElaboratedType(T, TagKind);
4728
4729  return ElabType.getAsOpaquePtr();
4730}
4731
4732Sema::TypeResult
4733Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4734                        const IdentifierInfo &II, SourceLocation IdLoc) {
4735  NestedNameSpecifier *NNS
4736    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4737  if (!NNS)
4738    return true;
4739
4740  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4741  if (T.isNull())
4742    return true;
4743  return T.getAsOpaquePtr();
4744}
4745
4746Sema::TypeResult
4747Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4748                        SourceLocation TemplateLoc, TypeTy *Ty) {
4749  QualType T = GetTypeFromParser(Ty);
4750  NestedNameSpecifier *NNS
4751    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4752  const TemplateSpecializationType *TemplateId
4753    = T->getAs<TemplateSpecializationType>();
4754  assert(TemplateId && "Expected a template specialization type");
4755
4756  if (computeDeclContext(SS, false)) {
4757    // If we can compute a declaration context, then the "typename"
4758    // keyword was superfluous. Just build a QualifiedNameType to keep
4759    // track of the nested-name-specifier.
4760
4761    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4762    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4763  }
4764
4765  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4766}
4767
4768/// \brief Build the type that describes a C++ typename specifier,
4769/// e.g., "typename T::type".
4770QualType
4771Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4772                        SourceRange Range) {
4773  CXXRecordDecl *CurrentInstantiation = 0;
4774  if (NNS->isDependent()) {
4775    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4776
4777    // If the nested-name-specifier does not refer to the current
4778    // instantiation, then build a typename type.
4779    if (!CurrentInstantiation)
4780      return Context.getTypenameType(NNS, &II);
4781
4782    // The nested-name-specifier refers to the current instantiation, so the
4783    // "typename" keyword itself is superfluous. In C++03, the program is
4784    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4785    // extraneous "typename" keywords, and we retroactively apply this DR to
4786    // C++03 code.
4787  }
4788
4789  DeclContext *Ctx = 0;
4790
4791  if (CurrentInstantiation)
4792    Ctx = CurrentInstantiation;
4793  else {
4794    CXXScopeSpec SS;
4795    SS.setScopeRep(NNS);
4796    SS.setRange(Range);
4797    if (RequireCompleteDeclContext(SS))
4798      return QualType();
4799
4800    Ctx = computeDeclContext(SS);
4801  }
4802  assert(Ctx && "No declaration context?");
4803
4804  DeclarationName Name(&II);
4805  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
4806  LookupQualifiedName(Result, Ctx);
4807  unsigned DiagID = 0;
4808  Decl *Referenced = 0;
4809  switch (Result.getResultKind()) {
4810  case LookupResult::NotFound:
4811    DiagID = diag::err_typename_nested_not_found;
4812    break;
4813
4814  case LookupResult::Found:
4815    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4816      // We found a type. Build a QualifiedNameType, since the
4817      // typename-specifier was just sugar. FIXME: Tell
4818      // QualifiedNameType that it has a "typename" prefix.
4819      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4820    }
4821
4822    DiagID = diag::err_typename_nested_not_type;
4823    Referenced = Result.getFoundDecl();
4824    break;
4825
4826  case LookupResult::FoundUnresolvedValue:
4827    llvm::llvm_unreachable("unresolved using decl in non-dependent context");
4828    return QualType();
4829
4830  case LookupResult::FoundOverloaded:
4831    DiagID = diag::err_typename_nested_not_type;
4832    Referenced = *Result.begin();
4833    break;
4834
4835  case LookupResult::Ambiguous:
4836    return QualType();
4837  }
4838
4839  // If we get here, it's because name lookup did not find a
4840  // type. Emit an appropriate diagnostic and return an error.
4841  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4842  if (Referenced)
4843    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4844      << Name;
4845  return QualType();
4846}
4847
4848namespace {
4849  // See Sema::RebuildTypeInCurrentInstantiation
4850  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
4851    : public TreeTransform<CurrentInstantiationRebuilder> {
4852    SourceLocation Loc;
4853    DeclarationName Entity;
4854
4855  public:
4856    CurrentInstantiationRebuilder(Sema &SemaRef,
4857                                  SourceLocation Loc,
4858                                  DeclarationName Entity)
4859    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4860      Loc(Loc), Entity(Entity) { }
4861
4862    /// \brief Determine whether the given type \p T has already been
4863    /// transformed.
4864    ///
4865    /// For the purposes of type reconstruction, a type has already been
4866    /// transformed if it is NULL or if it is not dependent.
4867    bool AlreadyTransformed(QualType T) {
4868      return T.isNull() || !T->isDependentType();
4869    }
4870
4871    /// \brief Returns the location of the entity whose type is being
4872    /// rebuilt.
4873    SourceLocation getBaseLocation() { return Loc; }
4874
4875    /// \brief Returns the name of the entity whose type is being rebuilt.
4876    DeclarationName getBaseEntity() { return Entity; }
4877
4878    /// \brief Sets the "base" location and entity when that
4879    /// information is known based on another transformation.
4880    void setBase(SourceLocation Loc, DeclarationName Entity) {
4881      this->Loc = Loc;
4882      this->Entity = Entity;
4883    }
4884
4885    /// \brief Transforms an expression by returning the expression itself
4886    /// (an identity function).
4887    ///
4888    /// FIXME: This is completely unsafe; we will need to actually clone the
4889    /// expressions.
4890    Sema::OwningExprResult TransformExpr(Expr *E) {
4891      return getSema().Owned(E);
4892    }
4893
4894    /// \brief Transforms a typename type by determining whether the type now
4895    /// refers to a member of the current instantiation, and then
4896    /// type-checking and building a QualifiedNameType (when possible).
4897    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4898  };
4899}
4900
4901QualType
4902CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4903                                                     TypenameTypeLoc TL) {
4904  TypenameType *T = TL.getTypePtr();
4905
4906  NestedNameSpecifier *NNS
4907    = TransformNestedNameSpecifier(T->getQualifier(),
4908                              /*FIXME:*/SourceRange(getBaseLocation()));
4909  if (!NNS)
4910    return QualType();
4911
4912  // If the nested-name-specifier did not change, and we cannot compute the
4913  // context corresponding to the nested-name-specifier, then this
4914  // typename type will not change; exit early.
4915  CXXScopeSpec SS;
4916  SS.setRange(SourceRange(getBaseLocation()));
4917  SS.setScopeRep(NNS);
4918
4919  QualType Result;
4920  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4921    Result = QualType(T, 0);
4922
4923  // Rebuild the typename type, which will probably turn into a
4924  // QualifiedNameType.
4925  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4926    QualType NewTemplateId
4927      = TransformType(QualType(TemplateId, 0));
4928    if (NewTemplateId.isNull())
4929      return QualType();
4930
4931    if (NNS == T->getQualifier() &&
4932        NewTemplateId == QualType(TemplateId, 0))
4933      Result = QualType(T, 0);
4934    else
4935      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4936  } else
4937    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4938                                              SourceRange(TL.getNameLoc()));
4939
4940  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4941  NewTL.setNameLoc(TL.getNameLoc());
4942  return Result;
4943}
4944
4945/// \brief Rebuilds a type within the context of the current instantiation.
4946///
4947/// The type \p T is part of the type of an out-of-line member definition of
4948/// a class template (or class template partial specialization) that was parsed
4949/// and constructed before we entered the scope of the class template (or
4950/// partial specialization thereof). This routine will rebuild that type now
4951/// that we have entered the declarator's scope, which may produce different
4952/// canonical types, e.g.,
4953///
4954/// \code
4955/// template<typename T>
4956/// struct X {
4957///   typedef T* pointer;
4958///   pointer data();
4959/// };
4960///
4961/// template<typename T>
4962/// typename X<T>::pointer X<T>::data() { ... }
4963/// \endcode
4964///
4965/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4966/// since we do not know that we can look into X<T> when we parsed the type.
4967/// This function will rebuild the type, performing the lookup of "pointer"
4968/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4969/// as the canonical type of T*, allowing the return types of the out-of-line
4970/// definition and the declaration to match.
4971QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4972                                                 DeclarationName Name) {
4973  if (T.isNull() || !T->isDependentType())
4974    return T;
4975
4976  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4977  return Rebuilder.TransformType(T);
4978}
4979
4980/// \brief Produces a formatted string that describes the binding of
4981/// template parameters to template arguments.
4982std::string
4983Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4984                                      const TemplateArgumentList &Args) {
4985  // FIXME: For variadic templates, we'll need to get the structured list.
4986  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4987                                         Args.flat_size());
4988}
4989
4990std::string
4991Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4992                                      const TemplateArgument *Args,
4993                                      unsigned NumArgs) {
4994  std::string Result;
4995
4996  if (!Params || Params->size() == 0 || NumArgs == 0)
4997    return Result;
4998
4999  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5000    if (I >= NumArgs)
5001      break;
5002
5003    if (I == 0)
5004      Result += "[with ";
5005    else
5006      Result += ", ";
5007
5008    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5009      Result += Id->getName();
5010    } else {
5011      Result += '$';
5012      Result += llvm::utostr(I);
5013    }
5014
5015    Result += " = ";
5016
5017    switch (Args[I].getKind()) {
5018      case TemplateArgument::Null:
5019        Result += "<no value>";
5020        break;
5021
5022      case TemplateArgument::Type: {
5023        std::string TypeStr;
5024        Args[I].getAsType().getAsStringInternal(TypeStr,
5025                                                Context.PrintingPolicy);
5026        Result += TypeStr;
5027        break;
5028      }
5029
5030      case TemplateArgument::Declaration: {
5031        bool Unnamed = true;
5032        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5033          if (ND->getDeclName()) {
5034            Unnamed = false;
5035            Result += ND->getNameAsString();
5036          }
5037        }
5038
5039        if (Unnamed) {
5040          Result += "<anonymous>";
5041        }
5042        break;
5043      }
5044
5045      case TemplateArgument::Template: {
5046        std::string Str;
5047        llvm::raw_string_ostream OS(Str);
5048        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5049        Result += OS.str();
5050        break;
5051      }
5052
5053      case TemplateArgument::Integral: {
5054        Result += Args[I].getAsIntegral()->toString(10);
5055        break;
5056      }
5057
5058      case TemplateArgument::Expression: {
5059        assert(false && "No expressions in deduced template arguments!");
5060        Result += "<expression>";
5061        break;
5062      }
5063
5064      case TemplateArgument::Pack:
5065        // FIXME: Format template argument packs
5066        Result += "<template argument pack>";
5067        break;
5068    }
5069  }
5070
5071  Result += ']';
5072  return Result;
5073}
5074