SemaTemplate.cpp revision 5769d6195087229770d7ac90449443e026c47103
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclTemplate.h" 19#include "clang/Parse/DeclSpec.h" 20#include "clang/Parse/Template.h" 21#include "clang/Basic/LangOptions.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/StringExtras.h" 24using namespace clang; 25 26/// \brief Determine whether the declaration found is acceptable as the name 27/// of a template and, if so, return that template declaration. Otherwise, 28/// returns NULL. 29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 30 if (!D) 31 return 0; 32 33 if (isa<TemplateDecl>(D)) 34 return D; 35 36 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 37 // C++ [temp.local]p1: 38 // Like normal (non-template) classes, class templates have an 39 // injected-class-name (Clause 9). The injected-class-name 40 // can be used with or without a template-argument-list. When 41 // it is used without a template-argument-list, it is 42 // equivalent to the injected-class-name followed by the 43 // template-parameters of the class template enclosed in 44 // <>. When it is used with a template-argument-list, it 45 // refers to the specified class template specialization, 46 // which could be the current specialization or another 47 // specialization. 48 if (Record->isInjectedClassName()) { 49 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 50 if (Record->getDescribedClassTemplate()) 51 return Record->getDescribedClassTemplate(); 52 53 if (ClassTemplateSpecializationDecl *Spec 54 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 55 return Spec->getSpecializedTemplate(); 56 } 57 58 return 0; 59 } 60 61 return 0; 62} 63 64static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 65 LookupResult::Filter filter = R.makeFilter(); 66 while (filter.hasNext()) { 67 NamedDecl *Orig = filter.next(); 68 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 69 if (!Repl) 70 filter.erase(); 71 else if (Repl != Orig) 72 filter.replace(Repl); 73 } 74 filter.done(); 75} 76 77TemplateNameKind Sema::isTemplateName(Scope *S, 78 const CXXScopeSpec &SS, 79 UnqualifiedId &Name, 80 TypeTy *ObjectTypePtr, 81 bool EnteringContext, 82 TemplateTy &TemplateResult) { 83 assert(getLangOptions().CPlusPlus && "No template names in C!"); 84 85 DeclarationName TName; 86 87 switch (Name.getKind()) { 88 case UnqualifiedId::IK_Identifier: 89 TName = DeclarationName(Name.Identifier); 90 break; 91 92 case UnqualifiedId::IK_OperatorFunctionId: 93 TName = Context.DeclarationNames.getCXXOperatorName( 94 Name.OperatorFunctionId.Operator); 95 break; 96 97 case UnqualifiedId::IK_LiteralOperatorId: 98 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 99 break; 100 101 default: 102 return TNK_Non_template; 103 } 104 105 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 106 107 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 108 LookupOrdinaryName); 109 R.suppressDiagnostics(); 110 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 111 if (R.empty()) 112 return TNK_Non_template; 113 114 TemplateName Template; 115 TemplateNameKind TemplateKind; 116 117 unsigned ResultCount = R.end() - R.begin(); 118 if (ResultCount > 1) { 119 // We assume that we'll preserve the qualifier from a function 120 // template name in other ways. 121 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 122 TemplateKind = TNK_Function_template; 123 } else { 124 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 125 126 if (SS.isSet() && !SS.isInvalid()) { 127 NestedNameSpecifier *Qualifier 128 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 129 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 130 } else { 131 Template = TemplateName(TD); 132 } 133 134 if (isa<FunctionTemplateDecl>(TD)) 135 TemplateKind = TNK_Function_template; 136 else { 137 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 138 TemplateKind = TNK_Type_template; 139 } 140 } 141 142 TemplateResult = TemplateTy::make(Template); 143 return TemplateKind; 144} 145 146bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 147 SourceLocation IILoc, 148 Scope *S, 149 const CXXScopeSpec *SS, 150 TemplateTy &SuggestedTemplate, 151 TemplateNameKind &SuggestedKind) { 152 // We can't recover unless there's a dependent scope specifier preceding the 153 // template name. 154 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 155 computeDeclContext(*SS)) 156 return false; 157 158 // The code is missing a 'template' keyword prior to the dependent template 159 // name. 160 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 161 Diag(IILoc, diag::err_template_kw_missing) 162 << Qualifier << II.getName() 163 << CodeModificationHint::CreateInsertion(IILoc, "template "); 164 SuggestedTemplate 165 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 166 SuggestedKind = TNK_Dependent_template_name; 167 return true; 168} 169 170void Sema::LookupTemplateName(LookupResult &Found, 171 Scope *S, const CXXScopeSpec &SS, 172 QualType ObjectType, 173 bool EnteringContext) { 174 // Determine where to perform name lookup 175 DeclContext *LookupCtx = 0; 176 bool isDependent = false; 177 if (!ObjectType.isNull()) { 178 // This nested-name-specifier occurs in a member access expression, e.g., 179 // x->B::f, and we are looking into the type of the object. 180 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 181 LookupCtx = computeDeclContext(ObjectType); 182 isDependent = ObjectType->isDependentType(); 183 assert((isDependent || !ObjectType->isIncompleteType()) && 184 "Caller should have completed object type"); 185 } else if (SS.isSet()) { 186 // This nested-name-specifier occurs after another nested-name-specifier, 187 // so long into the context associated with the prior nested-name-specifier. 188 LookupCtx = computeDeclContext(SS, EnteringContext); 189 isDependent = isDependentScopeSpecifier(SS); 190 191 // The declaration context must be complete. 192 if (LookupCtx && RequireCompleteDeclContext(SS)) 193 return; 194 } 195 196 bool ObjectTypeSearchedInScope = false; 197 if (LookupCtx) { 198 // Perform "qualified" name lookup into the declaration context we 199 // computed, which is either the type of the base of a member access 200 // expression or the declaration context associated with a prior 201 // nested-name-specifier. 202 LookupQualifiedName(Found, LookupCtx); 203 204 if (!ObjectType.isNull() && Found.empty()) { 205 // C++ [basic.lookup.classref]p1: 206 // In a class member access expression (5.2.5), if the . or -> token is 207 // immediately followed by an identifier followed by a <, the 208 // identifier must be looked up to determine whether the < is the 209 // beginning of a template argument list (14.2) or a less-than operator. 210 // The identifier is first looked up in the class of the object 211 // expression. If the identifier is not found, it is then looked up in 212 // the context of the entire postfix-expression and shall name a class 213 // or function template. 214 // 215 // FIXME: When we're instantiating a template, do we actually have to 216 // look in the scope of the template? Seems fishy... 217 if (S) LookupName(Found, S); 218 ObjectTypeSearchedInScope = true; 219 } 220 } else if (isDependent) { 221 // We cannot look into a dependent object type or nested nme 222 // specifier. 223 return; 224 } else { 225 // Perform unqualified name lookup in the current scope. 226 LookupName(Found, S); 227 } 228 229 // FIXME: Cope with ambiguous name-lookup results. 230 assert(!Found.isAmbiguous() && 231 "Cannot handle template name-lookup ambiguities"); 232 233 if (Found.empty() && !isDependent) { 234 // If we did not find any names, attempt to correct any typos. 235 DeclarationName Name = Found.getLookupName(); 236 if (CorrectTypo(Found, S, &SS, LookupCtx)) { 237 FilterAcceptableTemplateNames(Context, Found); 238 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 239 if (LookupCtx) 240 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 241 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 242 << CodeModificationHint::CreateReplacement(Found.getNameLoc(), 243 Found.getLookupName().getAsString()); 244 else 245 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 246 << Name << Found.getLookupName() 247 << CodeModificationHint::CreateReplacement(Found.getNameLoc(), 248 Found.getLookupName().getAsString()); 249 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 250 Diag(Template->getLocation(), diag::note_previous_decl) 251 << Template->getDeclName(); 252 } else 253 Found.clear(); 254 } else { 255 Found.clear(); 256 } 257 } 258 259 FilterAcceptableTemplateNames(Context, Found); 260 if (Found.empty()) 261 return; 262 263 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 264 // C++ [basic.lookup.classref]p1: 265 // [...] If the lookup in the class of the object expression finds a 266 // template, the name is also looked up in the context of the entire 267 // postfix-expression and [...] 268 // 269 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 270 LookupOrdinaryName); 271 LookupName(FoundOuter, S); 272 FilterAcceptableTemplateNames(Context, FoundOuter); 273 // FIXME: Handle ambiguities in this lookup better 274 275 if (FoundOuter.empty()) { 276 // - if the name is not found, the name found in the class of the 277 // object expression is used, otherwise 278 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 279 // - if the name is found in the context of the entire 280 // postfix-expression and does not name a class template, the name 281 // found in the class of the object expression is used, otherwise 282 } else { 283 // - if the name found is a class template, it must refer to the same 284 // entity as the one found in the class of the object expression, 285 // otherwise the program is ill-formed. 286 if (!Found.isSingleResult() || 287 Found.getFoundDecl()->getCanonicalDecl() 288 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 289 Diag(Found.getNameLoc(), 290 diag::err_nested_name_member_ref_lookup_ambiguous) 291 << Found.getLookupName(); 292 Diag(Found.getRepresentativeDecl()->getLocation(), 293 diag::note_ambig_member_ref_object_type) 294 << ObjectType; 295 Diag(FoundOuter.getFoundDecl()->getLocation(), 296 diag::note_ambig_member_ref_scope); 297 298 // Recover by taking the template that we found in the object 299 // expression's type. 300 } 301 } 302 } 303} 304 305/// ActOnDependentIdExpression - Handle a dependent id-expression that 306/// was just parsed. This is only possible with an explicit scope 307/// specifier naming a dependent type. 308Sema::OwningExprResult 309Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 310 DeclarationName Name, 311 SourceLocation NameLoc, 312 bool isAddressOfOperand, 313 const TemplateArgumentListInfo *TemplateArgs) { 314 NestedNameSpecifier *Qualifier 315 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 316 317 if (!isAddressOfOperand && 318 isa<CXXMethodDecl>(CurContext) && 319 cast<CXXMethodDecl>(CurContext)->isInstance()) { 320 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 321 322 // Since the 'this' expression is synthesized, we don't need to 323 // perform the double-lookup check. 324 NamedDecl *FirstQualifierInScope = 0; 325 326 return Owned(CXXDependentScopeMemberExpr::Create(Context, 327 /*This*/ 0, ThisType, 328 /*IsArrow*/ true, 329 /*Op*/ SourceLocation(), 330 Qualifier, SS.getRange(), 331 FirstQualifierInScope, 332 Name, NameLoc, 333 TemplateArgs)); 334 } 335 336 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 337} 338 339Sema::OwningExprResult 340Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 341 DeclarationName Name, 342 SourceLocation NameLoc, 343 const TemplateArgumentListInfo *TemplateArgs) { 344 return Owned(DependentScopeDeclRefExpr::Create(Context, 345 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 346 SS.getRange(), 347 Name, NameLoc, 348 TemplateArgs)); 349} 350 351/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 352/// that the template parameter 'PrevDecl' is being shadowed by a new 353/// declaration at location Loc. Returns true to indicate that this is 354/// an error, and false otherwise. 355bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 356 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 357 358 // Microsoft Visual C++ permits template parameters to be shadowed. 359 if (getLangOptions().Microsoft) 360 return false; 361 362 // C++ [temp.local]p4: 363 // A template-parameter shall not be redeclared within its 364 // scope (including nested scopes). 365 Diag(Loc, diag::err_template_param_shadow) 366 << cast<NamedDecl>(PrevDecl)->getDeclName(); 367 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 368 return true; 369} 370 371/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 372/// the parameter D to reference the templated declaration and return a pointer 373/// to the template declaration. Otherwise, do nothing to D and return null. 374TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 375 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 376 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 377 return Temp; 378 } 379 return 0; 380} 381 382static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 383 const ParsedTemplateArgument &Arg) { 384 385 switch (Arg.getKind()) { 386 case ParsedTemplateArgument::Type: { 387 TypeSourceInfo *DI; 388 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 389 if (!DI) 390 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 391 return TemplateArgumentLoc(TemplateArgument(T), DI); 392 } 393 394 case ParsedTemplateArgument::NonType: { 395 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 396 return TemplateArgumentLoc(TemplateArgument(E), E); 397 } 398 399 case ParsedTemplateArgument::Template: { 400 TemplateName Template 401 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 402 return TemplateArgumentLoc(TemplateArgument(Template), 403 Arg.getScopeSpec().getRange(), 404 Arg.getLocation()); 405 } 406 } 407 408 llvm_unreachable("Unhandled parsed template argument"); 409 return TemplateArgumentLoc(); 410} 411 412/// \brief Translates template arguments as provided by the parser 413/// into template arguments used by semantic analysis. 414void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 415 TemplateArgumentListInfo &TemplateArgs) { 416 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 417 TemplateArgs.addArgument(translateTemplateArgument(*this, 418 TemplateArgsIn[I])); 419} 420 421/// ActOnTypeParameter - Called when a C++ template type parameter 422/// (e.g., "typename T") has been parsed. Typename specifies whether 423/// the keyword "typename" was used to declare the type parameter 424/// (otherwise, "class" was used), and KeyLoc is the location of the 425/// "class" or "typename" keyword. ParamName is the name of the 426/// parameter (NULL indicates an unnamed template parameter) and 427/// ParamName is the location of the parameter name (if any). 428/// If the type parameter has a default argument, it will be added 429/// later via ActOnTypeParameterDefault. 430Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 431 SourceLocation EllipsisLoc, 432 SourceLocation KeyLoc, 433 IdentifierInfo *ParamName, 434 SourceLocation ParamNameLoc, 435 unsigned Depth, unsigned Position) { 436 assert(S->isTemplateParamScope() && 437 "Template type parameter not in template parameter scope!"); 438 bool Invalid = false; 439 440 if (ParamName) { 441 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 442 if (PrevDecl && PrevDecl->isTemplateParameter()) 443 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 444 PrevDecl); 445 } 446 447 SourceLocation Loc = ParamNameLoc; 448 if (!ParamName) 449 Loc = KeyLoc; 450 451 TemplateTypeParmDecl *Param 452 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 453 Loc, Depth, Position, ParamName, Typename, 454 Ellipsis); 455 if (Invalid) 456 Param->setInvalidDecl(); 457 458 if (ParamName) { 459 // Add the template parameter into the current scope. 460 S->AddDecl(DeclPtrTy::make(Param)); 461 IdResolver.AddDecl(Param); 462 } 463 464 return DeclPtrTy::make(Param); 465} 466 467/// ActOnTypeParameterDefault - Adds a default argument (the type 468/// Default) to the given template type parameter (TypeParam). 469void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 470 SourceLocation EqualLoc, 471 SourceLocation DefaultLoc, 472 TypeTy *DefaultT) { 473 TemplateTypeParmDecl *Parm 474 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 475 476 TypeSourceInfo *DefaultTInfo; 477 GetTypeFromParser(DefaultT, &DefaultTInfo); 478 479 assert(DefaultTInfo && "expected source information for type"); 480 481 // C++0x [temp.param]p9: 482 // A default template-argument may be specified for any kind of 483 // template-parameter that is not a template parameter pack. 484 if (Parm->isParameterPack()) { 485 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 486 return; 487 } 488 489 // C++ [temp.param]p14: 490 // A template-parameter shall not be used in its own default argument. 491 // FIXME: Implement this check! Needs a recursive walk over the types. 492 493 // Check the template argument itself. 494 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 495 Parm->setInvalidDecl(); 496 return; 497 } 498 499 Parm->setDefaultArgument(DefaultTInfo, false); 500} 501 502/// \brief Check that the type of a non-type template parameter is 503/// well-formed. 504/// 505/// \returns the (possibly-promoted) parameter type if valid; 506/// otherwise, produces a diagnostic and returns a NULL type. 507QualType 508Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 509 // C++ [temp.param]p4: 510 // 511 // A non-type template-parameter shall have one of the following 512 // (optionally cv-qualified) types: 513 // 514 // -- integral or enumeration type, 515 if (T->isIntegralType() || T->isEnumeralType() || 516 // -- pointer to object or pointer to function, 517 (T->isPointerType() && 518 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 519 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 520 // -- reference to object or reference to function, 521 T->isReferenceType() || 522 // -- pointer to member. 523 T->isMemberPointerType() || 524 // If T is a dependent type, we can't do the check now, so we 525 // assume that it is well-formed. 526 T->isDependentType()) 527 return T; 528 // C++ [temp.param]p8: 529 // 530 // A non-type template-parameter of type "array of T" or 531 // "function returning T" is adjusted to be of type "pointer to 532 // T" or "pointer to function returning T", respectively. 533 else if (T->isArrayType()) 534 // FIXME: Keep the type prior to promotion? 535 return Context.getArrayDecayedType(T); 536 else if (T->isFunctionType()) 537 // FIXME: Keep the type prior to promotion? 538 return Context.getPointerType(T); 539 540 Diag(Loc, diag::err_template_nontype_parm_bad_type) 541 << T; 542 543 return QualType(); 544} 545 546/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 547/// template parameter (e.g., "int Size" in "template<int Size> 548/// class Array") has been parsed. S is the current scope and D is 549/// the parsed declarator. 550Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 551 unsigned Depth, 552 unsigned Position) { 553 TypeSourceInfo *TInfo = 0; 554 QualType T = GetTypeForDeclarator(D, S, &TInfo); 555 556 assert(S->isTemplateParamScope() && 557 "Non-type template parameter not in template parameter scope!"); 558 bool Invalid = false; 559 560 IdentifierInfo *ParamName = D.getIdentifier(); 561 if (ParamName) { 562 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 563 if (PrevDecl && PrevDecl->isTemplateParameter()) 564 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 565 PrevDecl); 566 } 567 568 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 569 if (T.isNull()) { 570 T = Context.IntTy; // Recover with an 'int' type. 571 Invalid = true; 572 } 573 574 NonTypeTemplateParmDecl *Param 575 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 576 D.getIdentifierLoc(), 577 Depth, Position, ParamName, T, TInfo); 578 if (Invalid) 579 Param->setInvalidDecl(); 580 581 if (D.getIdentifier()) { 582 // Add the template parameter into the current scope. 583 S->AddDecl(DeclPtrTy::make(Param)); 584 IdResolver.AddDecl(Param); 585 } 586 return DeclPtrTy::make(Param); 587} 588 589/// \brief Adds a default argument to the given non-type template 590/// parameter. 591void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 592 SourceLocation EqualLoc, 593 ExprArg DefaultE) { 594 NonTypeTemplateParmDecl *TemplateParm 595 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 596 Expr *Default = static_cast<Expr *>(DefaultE.get()); 597 598 // C++ [temp.param]p14: 599 // A template-parameter shall not be used in its own default argument. 600 // FIXME: Implement this check! Needs a recursive walk over the types. 601 602 // Check the well-formedness of the default template argument. 603 TemplateArgument Converted; 604 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 605 Converted)) { 606 TemplateParm->setInvalidDecl(); 607 return; 608 } 609 610 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 611} 612 613 614/// ActOnTemplateTemplateParameter - Called when a C++ template template 615/// parameter (e.g. T in template <template <typename> class T> class array) 616/// has been parsed. S is the current scope. 617Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 618 SourceLocation TmpLoc, 619 TemplateParamsTy *Params, 620 IdentifierInfo *Name, 621 SourceLocation NameLoc, 622 unsigned Depth, 623 unsigned Position) { 624 assert(S->isTemplateParamScope() && 625 "Template template parameter not in template parameter scope!"); 626 627 // Construct the parameter object. 628 TemplateTemplateParmDecl *Param = 629 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 630 TmpLoc, Depth, Position, Name, 631 (TemplateParameterList*)Params); 632 633 // Make sure the parameter is valid. 634 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 635 // do anything yet. However, if the template parameter list or (eventual) 636 // default value is ever invalidated, that will propagate here. 637 bool Invalid = false; 638 if (Invalid) { 639 Param->setInvalidDecl(); 640 } 641 642 // If the tt-param has a name, then link the identifier into the scope 643 // and lookup mechanisms. 644 if (Name) { 645 S->AddDecl(DeclPtrTy::make(Param)); 646 IdResolver.AddDecl(Param); 647 } 648 649 return DeclPtrTy::make(Param); 650} 651 652/// \brief Adds a default argument to the given template template 653/// parameter. 654void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 655 SourceLocation EqualLoc, 656 const ParsedTemplateArgument &Default) { 657 TemplateTemplateParmDecl *TemplateParm 658 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 659 660 // C++ [temp.param]p14: 661 // A template-parameter shall not be used in its own default argument. 662 // FIXME: Implement this check! Needs a recursive walk over the types. 663 664 // Check only that we have a template template argument. We don't want to 665 // try to check well-formedness now, because our template template parameter 666 // might have dependent types in its template parameters, which we wouldn't 667 // be able to match now. 668 // 669 // If none of the template template parameter's template arguments mention 670 // other template parameters, we could actually perform more checking here. 671 // However, it isn't worth doing. 672 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 673 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 674 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 675 << DefaultArg.getSourceRange(); 676 return; 677 } 678 679 TemplateParm->setDefaultArgument(DefaultArg); 680} 681 682/// ActOnTemplateParameterList - Builds a TemplateParameterList that 683/// contains the template parameters in Params/NumParams. 684Sema::TemplateParamsTy * 685Sema::ActOnTemplateParameterList(unsigned Depth, 686 SourceLocation ExportLoc, 687 SourceLocation TemplateLoc, 688 SourceLocation LAngleLoc, 689 DeclPtrTy *Params, unsigned NumParams, 690 SourceLocation RAngleLoc) { 691 if (ExportLoc.isValid()) 692 Diag(ExportLoc, diag::warn_template_export_unsupported); 693 694 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 695 (NamedDecl**)Params, NumParams, 696 RAngleLoc); 697} 698 699Sema::DeclResult 700Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 701 SourceLocation KWLoc, const CXXScopeSpec &SS, 702 IdentifierInfo *Name, SourceLocation NameLoc, 703 AttributeList *Attr, 704 TemplateParameterList *TemplateParams, 705 AccessSpecifier AS) { 706 assert(TemplateParams && TemplateParams->size() > 0 && 707 "No template parameters"); 708 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 709 bool Invalid = false; 710 711 // Check that we can declare a template here. 712 if (CheckTemplateDeclScope(S, TemplateParams)) 713 return true; 714 715 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 716 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 717 718 // There is no such thing as an unnamed class template. 719 if (!Name) { 720 Diag(KWLoc, diag::err_template_unnamed_class); 721 return true; 722 } 723 724 // Find any previous declaration with this name. 725 DeclContext *SemanticContext; 726 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 727 ForRedeclaration); 728 if (SS.isNotEmpty() && !SS.isInvalid()) { 729 if (RequireCompleteDeclContext(SS)) 730 return true; 731 732 SemanticContext = computeDeclContext(SS, true); 733 if (!SemanticContext) { 734 // FIXME: Produce a reasonable diagnostic here 735 return true; 736 } 737 738 LookupQualifiedName(Previous, SemanticContext); 739 } else { 740 SemanticContext = CurContext; 741 LookupName(Previous, S); 742 } 743 744 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 745 NamedDecl *PrevDecl = 0; 746 if (Previous.begin() != Previous.end()) 747 PrevDecl = *Previous.begin(); 748 749 // If there is a previous declaration with the same name, check 750 // whether this is a valid redeclaration. 751 ClassTemplateDecl *PrevClassTemplate 752 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 753 754 // We may have found the injected-class-name of a class template, 755 // class template partial specialization, or class template specialization. 756 // In these cases, grab the template that is being defined or specialized. 757 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 758 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 759 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 760 PrevClassTemplate 761 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 762 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 763 PrevClassTemplate 764 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 765 ->getSpecializedTemplate(); 766 } 767 } 768 769 if (TUK == TUK_Friend) { 770 // C++ [namespace.memdef]p3: 771 // [...] When looking for a prior declaration of a class or a function 772 // declared as a friend, and when the name of the friend class or 773 // function is neither a qualified name nor a template-id, scopes outside 774 // the innermost enclosing namespace scope are not considered. 775 DeclContext *OutermostContext = CurContext; 776 while (!OutermostContext->isFileContext()) 777 OutermostContext = OutermostContext->getLookupParent(); 778 779 if (PrevDecl && 780 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 781 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 782 SemanticContext = PrevDecl->getDeclContext(); 783 } else { 784 // Declarations in outer scopes don't matter. However, the outermost 785 // context we computed is the semantic context for our new 786 // declaration. 787 PrevDecl = PrevClassTemplate = 0; 788 SemanticContext = OutermostContext; 789 } 790 791 if (CurContext->isDependentContext()) { 792 // If this is a dependent context, we don't want to link the friend 793 // class template to the template in scope, because that would perform 794 // checking of the template parameter lists that can't be performed 795 // until the outer context is instantiated. 796 PrevDecl = PrevClassTemplate = 0; 797 } 798 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 799 PrevDecl = PrevClassTemplate = 0; 800 801 if (PrevClassTemplate) { 802 // Ensure that the template parameter lists are compatible. 803 if (!TemplateParameterListsAreEqual(TemplateParams, 804 PrevClassTemplate->getTemplateParameters(), 805 /*Complain=*/true, 806 TPL_TemplateMatch)) 807 return true; 808 809 // C++ [temp.class]p4: 810 // In a redeclaration, partial specialization, explicit 811 // specialization or explicit instantiation of a class template, 812 // the class-key shall agree in kind with the original class 813 // template declaration (7.1.5.3). 814 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 815 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 816 Diag(KWLoc, diag::err_use_with_wrong_tag) 817 << Name 818 << CodeModificationHint::CreateReplacement(KWLoc, 819 PrevRecordDecl->getKindName()); 820 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 821 Kind = PrevRecordDecl->getTagKind(); 822 } 823 824 // Check for redefinition of this class template. 825 if (TUK == TUK_Definition) { 826 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 827 Diag(NameLoc, diag::err_redefinition) << Name; 828 Diag(Def->getLocation(), diag::note_previous_definition); 829 // FIXME: Would it make sense to try to "forget" the previous 830 // definition, as part of error recovery? 831 return true; 832 } 833 } 834 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 835 // Maybe we will complain about the shadowed template parameter. 836 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 837 // Just pretend that we didn't see the previous declaration. 838 PrevDecl = 0; 839 } else if (PrevDecl) { 840 // C++ [temp]p5: 841 // A class template shall not have the same name as any other 842 // template, class, function, object, enumeration, enumerator, 843 // namespace, or type in the same scope (3.3), except as specified 844 // in (14.5.4). 845 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 846 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 847 return true; 848 } 849 850 // Check the template parameter list of this declaration, possibly 851 // merging in the template parameter list from the previous class 852 // template declaration. 853 if (CheckTemplateParameterList(TemplateParams, 854 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 855 TPC_ClassTemplate)) 856 Invalid = true; 857 858 // FIXME: If we had a scope specifier, we better have a previous template 859 // declaration! 860 861 CXXRecordDecl *NewClass = 862 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 863 PrevClassTemplate? 864 PrevClassTemplate->getTemplatedDecl() : 0, 865 /*DelayTypeCreation=*/true); 866 867 ClassTemplateDecl *NewTemplate 868 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 869 DeclarationName(Name), TemplateParams, 870 NewClass, PrevClassTemplate); 871 NewClass->setDescribedClassTemplate(NewTemplate); 872 873 // Build the type for the class template declaration now. 874 QualType T = 875 Context.getTypeDeclType(NewClass, 876 PrevClassTemplate? 877 PrevClassTemplate->getTemplatedDecl() : 0); 878 assert(T->isDependentType() && "Class template type is not dependent?"); 879 (void)T; 880 881 // If we are providing an explicit specialization of a member that is a 882 // class template, make a note of that. 883 if (PrevClassTemplate && 884 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 885 PrevClassTemplate->setMemberSpecialization(); 886 887 // Set the access specifier. 888 if (!Invalid && TUK != TUK_Friend) 889 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 890 891 // Set the lexical context of these templates 892 NewClass->setLexicalDeclContext(CurContext); 893 NewTemplate->setLexicalDeclContext(CurContext); 894 895 if (TUK == TUK_Definition) 896 NewClass->startDefinition(); 897 898 if (Attr) 899 ProcessDeclAttributeList(S, NewClass, Attr); 900 901 if (TUK != TUK_Friend) 902 PushOnScopeChains(NewTemplate, S); 903 else { 904 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 905 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 906 NewClass->setAccess(PrevClassTemplate->getAccess()); 907 } 908 909 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 910 PrevClassTemplate != NULL); 911 912 // Friend templates are visible in fairly strange ways. 913 if (!CurContext->isDependentContext()) { 914 DeclContext *DC = SemanticContext->getLookupContext(); 915 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 916 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 917 PushOnScopeChains(NewTemplate, EnclosingScope, 918 /* AddToContext = */ false); 919 } 920 921 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 922 NewClass->getLocation(), 923 NewTemplate, 924 /*FIXME:*/NewClass->getLocation()); 925 Friend->setAccess(AS_public); 926 CurContext->addDecl(Friend); 927 } 928 929 if (Invalid) { 930 NewTemplate->setInvalidDecl(); 931 NewClass->setInvalidDecl(); 932 } 933 return DeclPtrTy::make(NewTemplate); 934} 935 936/// \brief Diagnose the presence of a default template argument on a 937/// template parameter, which is ill-formed in certain contexts. 938/// 939/// \returns true if the default template argument should be dropped. 940static bool DiagnoseDefaultTemplateArgument(Sema &S, 941 Sema::TemplateParamListContext TPC, 942 SourceLocation ParamLoc, 943 SourceRange DefArgRange) { 944 switch (TPC) { 945 case Sema::TPC_ClassTemplate: 946 return false; 947 948 case Sema::TPC_FunctionTemplate: 949 // C++ [temp.param]p9: 950 // A default template-argument shall not be specified in a 951 // function template declaration or a function template 952 // definition [...] 953 // (This sentence is not in C++0x, per DR226). 954 if (!S.getLangOptions().CPlusPlus0x) 955 S.Diag(ParamLoc, 956 diag::err_template_parameter_default_in_function_template) 957 << DefArgRange; 958 return false; 959 960 case Sema::TPC_ClassTemplateMember: 961 // C++0x [temp.param]p9: 962 // A default template-argument shall not be specified in the 963 // template-parameter-lists of the definition of a member of a 964 // class template that appears outside of the member's class. 965 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 966 << DefArgRange; 967 return true; 968 969 case Sema::TPC_FriendFunctionTemplate: 970 // C++ [temp.param]p9: 971 // A default template-argument shall not be specified in a 972 // friend template declaration. 973 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 974 << DefArgRange; 975 return true; 976 977 // FIXME: C++0x [temp.param]p9 allows default template-arguments 978 // for friend function templates if there is only a single 979 // declaration (and it is a definition). Strange! 980 } 981 982 return false; 983} 984 985/// \brief Checks the validity of a template parameter list, possibly 986/// considering the template parameter list from a previous 987/// declaration. 988/// 989/// If an "old" template parameter list is provided, it must be 990/// equivalent (per TemplateParameterListsAreEqual) to the "new" 991/// template parameter list. 992/// 993/// \param NewParams Template parameter list for a new template 994/// declaration. This template parameter list will be updated with any 995/// default arguments that are carried through from the previous 996/// template parameter list. 997/// 998/// \param OldParams If provided, template parameter list from a 999/// previous declaration of the same template. Default template 1000/// arguments will be merged from the old template parameter list to 1001/// the new template parameter list. 1002/// 1003/// \param TPC Describes the context in which we are checking the given 1004/// template parameter list. 1005/// 1006/// \returns true if an error occurred, false otherwise. 1007bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1008 TemplateParameterList *OldParams, 1009 TemplateParamListContext TPC) { 1010 bool Invalid = false; 1011 1012 // C++ [temp.param]p10: 1013 // The set of default template-arguments available for use with a 1014 // template declaration or definition is obtained by merging the 1015 // default arguments from the definition (if in scope) and all 1016 // declarations in scope in the same way default function 1017 // arguments are (8.3.6). 1018 bool SawDefaultArgument = false; 1019 SourceLocation PreviousDefaultArgLoc; 1020 1021 bool SawParameterPack = false; 1022 SourceLocation ParameterPackLoc; 1023 1024 // Dummy initialization to avoid warnings. 1025 TemplateParameterList::iterator OldParam = NewParams->end(); 1026 if (OldParams) 1027 OldParam = OldParams->begin(); 1028 1029 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1030 NewParamEnd = NewParams->end(); 1031 NewParam != NewParamEnd; ++NewParam) { 1032 // Variables used to diagnose redundant default arguments 1033 bool RedundantDefaultArg = false; 1034 SourceLocation OldDefaultLoc; 1035 SourceLocation NewDefaultLoc; 1036 1037 // Variables used to diagnose missing default arguments 1038 bool MissingDefaultArg = false; 1039 1040 // C++0x [temp.param]p11: 1041 // If a template parameter of a class template is a template parameter pack, 1042 // it must be the last template parameter. 1043 if (SawParameterPack) { 1044 Diag(ParameterPackLoc, 1045 diag::err_template_param_pack_must_be_last_template_parameter); 1046 Invalid = true; 1047 } 1048 1049 if (TemplateTypeParmDecl *NewTypeParm 1050 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1051 // Check the presence of a default argument here. 1052 if (NewTypeParm->hasDefaultArgument() && 1053 DiagnoseDefaultTemplateArgument(*this, TPC, 1054 NewTypeParm->getLocation(), 1055 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1056 .getFullSourceRange())) 1057 NewTypeParm->removeDefaultArgument(); 1058 1059 // Merge default arguments for template type parameters. 1060 TemplateTypeParmDecl *OldTypeParm 1061 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1062 1063 if (NewTypeParm->isParameterPack()) { 1064 assert(!NewTypeParm->hasDefaultArgument() && 1065 "Parameter packs can't have a default argument!"); 1066 SawParameterPack = true; 1067 ParameterPackLoc = NewTypeParm->getLocation(); 1068 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1069 NewTypeParm->hasDefaultArgument()) { 1070 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1071 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1072 SawDefaultArgument = true; 1073 RedundantDefaultArg = true; 1074 PreviousDefaultArgLoc = NewDefaultLoc; 1075 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1076 // Merge the default argument from the old declaration to the 1077 // new declaration. 1078 SawDefaultArgument = true; 1079 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1080 true); 1081 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1082 } else if (NewTypeParm->hasDefaultArgument()) { 1083 SawDefaultArgument = true; 1084 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1085 } else if (SawDefaultArgument) 1086 MissingDefaultArg = true; 1087 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1088 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1089 // Check the presence of a default argument here. 1090 if (NewNonTypeParm->hasDefaultArgument() && 1091 DiagnoseDefaultTemplateArgument(*this, TPC, 1092 NewNonTypeParm->getLocation(), 1093 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1094 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1095 NewNonTypeParm->setDefaultArgument(0); 1096 } 1097 1098 // Merge default arguments for non-type template parameters 1099 NonTypeTemplateParmDecl *OldNonTypeParm 1100 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1101 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1102 NewNonTypeParm->hasDefaultArgument()) { 1103 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1104 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1105 SawDefaultArgument = true; 1106 RedundantDefaultArg = true; 1107 PreviousDefaultArgLoc = NewDefaultLoc; 1108 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1109 // Merge the default argument from the old declaration to the 1110 // new declaration. 1111 SawDefaultArgument = true; 1112 // FIXME: We need to create a new kind of "default argument" 1113 // expression that points to a previous template template 1114 // parameter. 1115 NewNonTypeParm->setDefaultArgument( 1116 OldNonTypeParm->getDefaultArgument()); 1117 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1118 } else if (NewNonTypeParm->hasDefaultArgument()) { 1119 SawDefaultArgument = true; 1120 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1121 } else if (SawDefaultArgument) 1122 MissingDefaultArg = true; 1123 } else { 1124 // Check the presence of a default argument here. 1125 TemplateTemplateParmDecl *NewTemplateParm 1126 = cast<TemplateTemplateParmDecl>(*NewParam); 1127 if (NewTemplateParm->hasDefaultArgument() && 1128 DiagnoseDefaultTemplateArgument(*this, TPC, 1129 NewTemplateParm->getLocation(), 1130 NewTemplateParm->getDefaultArgument().getSourceRange())) 1131 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1132 1133 // Merge default arguments for template template parameters 1134 TemplateTemplateParmDecl *OldTemplateParm 1135 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1136 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1137 NewTemplateParm->hasDefaultArgument()) { 1138 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1139 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1140 SawDefaultArgument = true; 1141 RedundantDefaultArg = true; 1142 PreviousDefaultArgLoc = NewDefaultLoc; 1143 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1144 // Merge the default argument from the old declaration to the 1145 // new declaration. 1146 SawDefaultArgument = true; 1147 // FIXME: We need to create a new kind of "default argument" expression 1148 // that points to a previous template template parameter. 1149 NewTemplateParm->setDefaultArgument( 1150 OldTemplateParm->getDefaultArgument()); 1151 PreviousDefaultArgLoc 1152 = OldTemplateParm->getDefaultArgument().getLocation(); 1153 } else if (NewTemplateParm->hasDefaultArgument()) { 1154 SawDefaultArgument = true; 1155 PreviousDefaultArgLoc 1156 = NewTemplateParm->getDefaultArgument().getLocation(); 1157 } else if (SawDefaultArgument) 1158 MissingDefaultArg = true; 1159 } 1160 1161 if (RedundantDefaultArg) { 1162 // C++ [temp.param]p12: 1163 // A template-parameter shall not be given default arguments 1164 // by two different declarations in the same scope. 1165 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1166 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1167 Invalid = true; 1168 } else if (MissingDefaultArg) { 1169 // C++ [temp.param]p11: 1170 // If a template-parameter has a default template-argument, 1171 // all subsequent template-parameters shall have a default 1172 // template-argument supplied. 1173 Diag((*NewParam)->getLocation(), 1174 diag::err_template_param_default_arg_missing); 1175 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1176 Invalid = true; 1177 } 1178 1179 // If we have an old template parameter list that we're merging 1180 // in, move on to the next parameter. 1181 if (OldParams) 1182 ++OldParam; 1183 } 1184 1185 return Invalid; 1186} 1187 1188/// \brief Match the given template parameter lists to the given scope 1189/// specifier, returning the template parameter list that applies to the 1190/// name. 1191/// 1192/// \param DeclStartLoc the start of the declaration that has a scope 1193/// specifier or a template parameter list. 1194/// 1195/// \param SS the scope specifier that will be matched to the given template 1196/// parameter lists. This scope specifier precedes a qualified name that is 1197/// being declared. 1198/// 1199/// \param ParamLists the template parameter lists, from the outermost to the 1200/// innermost template parameter lists. 1201/// 1202/// \param NumParamLists the number of template parameter lists in ParamLists. 1203/// 1204/// \param IsExplicitSpecialization will be set true if the entity being 1205/// declared is an explicit specialization, false otherwise. 1206/// 1207/// \returns the template parameter list, if any, that corresponds to the 1208/// name that is preceded by the scope specifier @p SS. This template 1209/// parameter list may be have template parameters (if we're declaring a 1210/// template) or may have no template parameters (if we're declaring a 1211/// template specialization), or may be NULL (if we were's declaring isn't 1212/// itself a template). 1213TemplateParameterList * 1214Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1215 const CXXScopeSpec &SS, 1216 TemplateParameterList **ParamLists, 1217 unsigned NumParamLists, 1218 bool &IsExplicitSpecialization) { 1219 IsExplicitSpecialization = false; 1220 1221 // Find the template-ids that occur within the nested-name-specifier. These 1222 // template-ids will match up with the template parameter lists. 1223 llvm::SmallVector<const TemplateSpecializationType *, 4> 1224 TemplateIdsInSpecifier; 1225 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1226 ExplicitSpecializationsInSpecifier; 1227 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1228 NNS; NNS = NNS->getPrefix()) { 1229 const Type *T = NNS->getAsType(); 1230 if (!T) break; 1231 1232 // C++0x [temp.expl.spec]p17: 1233 // A member or a member template may be nested within many 1234 // enclosing class templates. In an explicit specialization for 1235 // such a member, the member declaration shall be preceded by a 1236 // template<> for each enclosing class template that is 1237 // explicitly specialized. 1238 // We interpret this as forbidding typedefs of template 1239 // specializations in the scope specifiers of out-of-line decls. 1240 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) { 1241 const Type *UnderlyingT = TT->LookThroughTypedefs().getTypePtr(); 1242 if (isa<TemplateSpecializationType>(UnderlyingT)) 1243 // FIXME: better source location information. 1244 Diag(DeclStartLoc, diag::err_typedef_in_def_scope) << QualType(T,0); 1245 T = UnderlyingT; 1246 } 1247 1248 if (const TemplateSpecializationType *SpecType 1249 = dyn_cast<TemplateSpecializationType>(T)) { 1250 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1251 if (!Template) 1252 continue; // FIXME: should this be an error? probably... 1253 1254 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1255 ClassTemplateSpecializationDecl *SpecDecl 1256 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1257 // If the nested name specifier refers to an explicit specialization, 1258 // we don't need a template<> header. 1259 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1260 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1261 continue; 1262 } 1263 } 1264 1265 TemplateIdsInSpecifier.push_back(SpecType); 1266 } 1267 } 1268 1269 // Reverse the list of template-ids in the scope specifier, so that we can 1270 // more easily match up the template-ids and the template parameter lists. 1271 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1272 1273 SourceLocation FirstTemplateLoc = DeclStartLoc; 1274 if (NumParamLists) 1275 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1276 1277 // Match the template-ids found in the specifier to the template parameter 1278 // lists. 1279 unsigned Idx = 0; 1280 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1281 Idx != NumTemplateIds; ++Idx) { 1282 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1283 bool DependentTemplateId = TemplateId->isDependentType(); 1284 if (Idx >= NumParamLists) { 1285 // We have a template-id without a corresponding template parameter 1286 // list. 1287 if (DependentTemplateId) { 1288 // FIXME: the location information here isn't great. 1289 Diag(SS.getRange().getBegin(), 1290 diag::err_template_spec_needs_template_parameters) 1291 << TemplateId 1292 << SS.getRange(); 1293 } else { 1294 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1295 << SS.getRange() 1296 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1297 "template<> "); 1298 IsExplicitSpecialization = true; 1299 } 1300 return 0; 1301 } 1302 1303 // Check the template parameter list against its corresponding template-id. 1304 if (DependentTemplateId) { 1305 TemplateDecl *Template 1306 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1307 1308 if (ClassTemplateDecl *ClassTemplate 1309 = dyn_cast<ClassTemplateDecl>(Template)) { 1310 TemplateParameterList *ExpectedTemplateParams = 0; 1311 // Is this template-id naming the primary template? 1312 if (Context.hasSameType(TemplateId, 1313 ClassTemplate->getInjectedClassNameType(Context))) 1314 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1315 // ... or a partial specialization? 1316 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1317 = ClassTemplate->findPartialSpecialization(TemplateId)) 1318 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1319 1320 if (ExpectedTemplateParams) 1321 TemplateParameterListsAreEqual(ParamLists[Idx], 1322 ExpectedTemplateParams, 1323 true, TPL_TemplateMatch); 1324 } 1325 1326 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1327 } else if (ParamLists[Idx]->size() > 0) 1328 Diag(ParamLists[Idx]->getTemplateLoc(), 1329 diag::err_template_param_list_matches_nontemplate) 1330 << TemplateId 1331 << ParamLists[Idx]->getSourceRange(); 1332 else 1333 IsExplicitSpecialization = true; 1334 } 1335 1336 // If there were at least as many template-ids as there were template 1337 // parameter lists, then there are no template parameter lists remaining for 1338 // the declaration itself. 1339 if (Idx >= NumParamLists) 1340 return 0; 1341 1342 // If there were too many template parameter lists, complain about that now. 1343 if (Idx != NumParamLists - 1) { 1344 while (Idx < NumParamLists - 1) { 1345 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1346 Diag(ParamLists[Idx]->getTemplateLoc(), 1347 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1348 : diag::err_template_spec_extra_headers) 1349 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1350 ParamLists[Idx]->getRAngleLoc()); 1351 1352 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1353 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1354 diag::note_explicit_template_spec_does_not_need_header) 1355 << ExplicitSpecializationsInSpecifier.back(); 1356 ExplicitSpecializationsInSpecifier.pop_back(); 1357 } 1358 1359 ++Idx; 1360 } 1361 } 1362 1363 // Return the last template parameter list, which corresponds to the 1364 // entity being declared. 1365 return ParamLists[NumParamLists - 1]; 1366} 1367 1368QualType Sema::CheckTemplateIdType(TemplateName Name, 1369 SourceLocation TemplateLoc, 1370 const TemplateArgumentListInfo &TemplateArgs) { 1371 TemplateDecl *Template = Name.getAsTemplateDecl(); 1372 if (!Template) { 1373 // The template name does not resolve to a template, so we just 1374 // build a dependent template-id type. 1375 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1376 } 1377 1378 // Check that the template argument list is well-formed for this 1379 // template. 1380 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1381 TemplateArgs.size()); 1382 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1383 false, Converted)) 1384 return QualType(); 1385 1386 assert((Converted.structuredSize() == 1387 Template->getTemplateParameters()->size()) && 1388 "Converted template argument list is too short!"); 1389 1390 QualType CanonType; 1391 1392 if (Name.isDependent() || 1393 TemplateSpecializationType::anyDependentTemplateArguments( 1394 TemplateArgs)) { 1395 // This class template specialization is a dependent 1396 // type. Therefore, its canonical type is another class template 1397 // specialization type that contains all of the converted 1398 // arguments in canonical form. This ensures that, e.g., A<T> and 1399 // A<T, T> have identical types when A is declared as: 1400 // 1401 // template<typename T, typename U = T> struct A; 1402 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1403 CanonType = Context.getTemplateSpecializationType(CanonName, 1404 Converted.getFlatArguments(), 1405 Converted.flatSize()); 1406 1407 // FIXME: CanonType is not actually the canonical type, and unfortunately 1408 // it is a TemplateSpecializationType that we will never use again. 1409 // In the future, we need to teach getTemplateSpecializationType to only 1410 // build the canonical type and return that to us. 1411 CanonType = Context.getCanonicalType(CanonType); 1412 } else if (ClassTemplateDecl *ClassTemplate 1413 = dyn_cast<ClassTemplateDecl>(Template)) { 1414 // Find the class template specialization declaration that 1415 // corresponds to these arguments. 1416 llvm::FoldingSetNodeID ID; 1417 ClassTemplateSpecializationDecl::Profile(ID, 1418 Converted.getFlatArguments(), 1419 Converted.flatSize(), 1420 Context); 1421 void *InsertPos = 0; 1422 ClassTemplateSpecializationDecl *Decl 1423 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1424 if (!Decl) { 1425 // This is the first time we have referenced this class template 1426 // specialization. Create the canonical declaration and add it to 1427 // the set of specializations. 1428 Decl = ClassTemplateSpecializationDecl::Create(Context, 1429 ClassTemplate->getDeclContext(), 1430 ClassTemplate->getLocation(), 1431 ClassTemplate, 1432 Converted, 0); 1433 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1434 Decl->setLexicalDeclContext(CurContext); 1435 } 1436 1437 CanonType = Context.getTypeDeclType(Decl); 1438 } 1439 1440 // Build the fully-sugared type for this class template 1441 // specialization, which refers back to the class template 1442 // specialization we created or found. 1443 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1444} 1445 1446Action::TypeResult 1447Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1448 SourceLocation LAngleLoc, 1449 ASTTemplateArgsPtr TemplateArgsIn, 1450 SourceLocation RAngleLoc) { 1451 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1452 1453 // Translate the parser's template argument list in our AST format. 1454 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1455 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1456 1457 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1458 TemplateArgsIn.release(); 1459 1460 if (Result.isNull()) 1461 return true; 1462 1463 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1464 TemplateSpecializationTypeLoc TL 1465 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1466 TL.setTemplateNameLoc(TemplateLoc); 1467 TL.setLAngleLoc(LAngleLoc); 1468 TL.setRAngleLoc(RAngleLoc); 1469 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1470 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1471 1472 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1473} 1474 1475Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1476 TagUseKind TUK, 1477 DeclSpec::TST TagSpec, 1478 SourceLocation TagLoc) { 1479 if (TypeResult.isInvalid()) 1480 return Sema::TypeResult(); 1481 1482 // FIXME: preserve source info, ideally without copying the DI. 1483 TypeSourceInfo *DI; 1484 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1485 1486 // Verify the tag specifier. 1487 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1488 1489 if (const RecordType *RT = Type->getAs<RecordType>()) { 1490 RecordDecl *D = RT->getDecl(); 1491 1492 IdentifierInfo *Id = D->getIdentifier(); 1493 assert(Id && "templated class must have an identifier"); 1494 1495 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1496 Diag(TagLoc, diag::err_use_with_wrong_tag) 1497 << Type 1498 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1499 D->getKindName()); 1500 Diag(D->getLocation(), diag::note_previous_use); 1501 } 1502 } 1503 1504 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1505 1506 return ElabType.getAsOpaquePtr(); 1507} 1508 1509Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1510 LookupResult &R, 1511 bool RequiresADL, 1512 const TemplateArgumentListInfo &TemplateArgs) { 1513 // FIXME: Can we do any checking at this point? I guess we could check the 1514 // template arguments that we have against the template name, if the template 1515 // name refers to a single template. That's not a terribly common case, 1516 // though. 1517 1518 // These should be filtered out by our callers. 1519 assert(!R.empty() && "empty lookup results when building templateid"); 1520 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1521 1522 NestedNameSpecifier *Qualifier = 0; 1523 SourceRange QualifierRange; 1524 if (SS.isSet()) { 1525 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1526 QualifierRange = SS.getRange(); 1527 } 1528 1529 // We don't want lookup warnings at this point. 1530 R.suppressDiagnostics(); 1531 1532 bool Dependent 1533 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1534 &TemplateArgs); 1535 UnresolvedLookupExpr *ULE 1536 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1537 Qualifier, QualifierRange, 1538 R.getLookupName(), R.getNameLoc(), 1539 RequiresADL, TemplateArgs); 1540 ULE->addDecls(R.begin(), R.end()); 1541 1542 return Owned(ULE); 1543} 1544 1545// We actually only call this from template instantiation. 1546Sema::OwningExprResult 1547Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS, 1548 DeclarationName Name, 1549 SourceLocation NameLoc, 1550 const TemplateArgumentListInfo &TemplateArgs) { 1551 DeclContext *DC; 1552 if (!(DC = computeDeclContext(SS, false)) || 1553 DC->isDependentContext() || 1554 RequireCompleteDeclContext(SS)) 1555 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1556 1557 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1558 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1559 1560 if (R.isAmbiguous()) 1561 return ExprError(); 1562 1563 if (R.empty()) { 1564 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1565 << Name << SS.getRange(); 1566 return ExprError(); 1567 } 1568 1569 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1570 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1571 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1572 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1573 return ExprError(); 1574 } 1575 1576 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1577} 1578 1579/// \brief Form a dependent template name. 1580/// 1581/// This action forms a dependent template name given the template 1582/// name and its (presumably dependent) scope specifier. For 1583/// example, given "MetaFun::template apply", the scope specifier \p 1584/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1585/// of the "template" keyword, and "apply" is the \p Name. 1586Sema::TemplateTy 1587Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1588 const CXXScopeSpec &SS, 1589 UnqualifiedId &Name, 1590 TypeTy *ObjectType, 1591 bool EnteringContext) { 1592 DeclContext *LookupCtx = 0; 1593 if (SS.isSet()) 1594 LookupCtx = computeDeclContext(SS, EnteringContext); 1595 if (!LookupCtx && ObjectType) 1596 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1597 if (LookupCtx) { 1598 // C++0x [temp.names]p5: 1599 // If a name prefixed by the keyword template is not the name of 1600 // a template, the program is ill-formed. [Note: the keyword 1601 // template may not be applied to non-template members of class 1602 // templates. -end note ] [ Note: as is the case with the 1603 // typename prefix, the template prefix is allowed in cases 1604 // where it is not strictly necessary; i.e., when the 1605 // nested-name-specifier or the expression on the left of the -> 1606 // or . is not dependent on a template-parameter, or the use 1607 // does not appear in the scope of a template. -end note] 1608 // 1609 // Note: C++03 was more strict here, because it banned the use of 1610 // the "template" keyword prior to a template-name that was not a 1611 // dependent name. C++ DR468 relaxed this requirement (the 1612 // "template" keyword is now permitted). We follow the C++0x 1613 // rules, even in C++03 mode, retroactively applying the DR. 1614 TemplateTy Template; 1615 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1616 EnteringContext, Template); 1617 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1618 isa<CXXRecordDecl>(LookupCtx) && 1619 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1620 // This is a dependent template. 1621 } else if (TNK == TNK_Non_template) { 1622 Diag(Name.getSourceRange().getBegin(), 1623 diag::err_template_kw_refers_to_non_template) 1624 << GetNameFromUnqualifiedId(Name) 1625 << Name.getSourceRange(); 1626 return TemplateTy(); 1627 } else { 1628 // We found something; return it. 1629 return Template; 1630 } 1631 } 1632 1633 NestedNameSpecifier *Qualifier 1634 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1635 1636 switch (Name.getKind()) { 1637 case UnqualifiedId::IK_Identifier: 1638 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1639 Name.Identifier)); 1640 1641 case UnqualifiedId::IK_OperatorFunctionId: 1642 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1643 Name.OperatorFunctionId.Operator)); 1644 1645 case UnqualifiedId::IK_LiteralOperatorId: 1646 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1647 1648 default: 1649 break; 1650 } 1651 1652 Diag(Name.getSourceRange().getBegin(), 1653 diag::err_template_kw_refers_to_non_template) 1654 << GetNameFromUnqualifiedId(Name) 1655 << Name.getSourceRange(); 1656 return TemplateTy(); 1657} 1658 1659bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1660 const TemplateArgumentLoc &AL, 1661 TemplateArgumentListBuilder &Converted) { 1662 const TemplateArgument &Arg = AL.getArgument(); 1663 1664 // Check template type parameter. 1665 if (Arg.getKind() != TemplateArgument::Type) { 1666 // C++ [temp.arg.type]p1: 1667 // A template-argument for a template-parameter which is a 1668 // type shall be a type-id. 1669 1670 // We have a template type parameter but the template argument 1671 // is not a type. 1672 SourceRange SR = AL.getSourceRange(); 1673 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1674 Diag(Param->getLocation(), diag::note_template_param_here); 1675 1676 return true; 1677 } 1678 1679 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1680 return true; 1681 1682 // Add the converted template type argument. 1683 Converted.Append( 1684 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1685 return false; 1686} 1687 1688/// \brief Substitute template arguments into the default template argument for 1689/// the given template type parameter. 1690/// 1691/// \param SemaRef the semantic analysis object for which we are performing 1692/// the substitution. 1693/// 1694/// \param Template the template that we are synthesizing template arguments 1695/// for. 1696/// 1697/// \param TemplateLoc the location of the template name that started the 1698/// template-id we are checking. 1699/// 1700/// \param RAngleLoc the location of the right angle bracket ('>') that 1701/// terminates the template-id. 1702/// 1703/// \param Param the template template parameter whose default we are 1704/// substituting into. 1705/// 1706/// \param Converted the list of template arguments provided for template 1707/// parameters that precede \p Param in the template parameter list. 1708/// 1709/// \returns the substituted template argument, or NULL if an error occurred. 1710static TypeSourceInfo * 1711SubstDefaultTemplateArgument(Sema &SemaRef, 1712 TemplateDecl *Template, 1713 SourceLocation TemplateLoc, 1714 SourceLocation RAngleLoc, 1715 TemplateTypeParmDecl *Param, 1716 TemplateArgumentListBuilder &Converted) { 1717 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1718 1719 // If the argument type is dependent, instantiate it now based 1720 // on the previously-computed template arguments. 1721 if (ArgType->getType()->isDependentType()) { 1722 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1723 /*TakeArgs=*/false); 1724 1725 MultiLevelTemplateArgumentList AllTemplateArgs 1726 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1727 1728 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1729 Template, Converted.getFlatArguments(), 1730 Converted.flatSize(), 1731 SourceRange(TemplateLoc, RAngleLoc)); 1732 1733 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1734 Param->getDefaultArgumentLoc(), 1735 Param->getDeclName()); 1736 } 1737 1738 return ArgType; 1739} 1740 1741/// \brief Substitute template arguments into the default template argument for 1742/// the given non-type template parameter. 1743/// 1744/// \param SemaRef the semantic analysis object for which we are performing 1745/// the substitution. 1746/// 1747/// \param Template the template that we are synthesizing template arguments 1748/// for. 1749/// 1750/// \param TemplateLoc the location of the template name that started the 1751/// template-id we are checking. 1752/// 1753/// \param RAngleLoc the location of the right angle bracket ('>') that 1754/// terminates the template-id. 1755/// 1756/// \param Param the non-type template parameter whose default we are 1757/// substituting into. 1758/// 1759/// \param Converted the list of template arguments provided for template 1760/// parameters that precede \p Param in the template parameter list. 1761/// 1762/// \returns the substituted template argument, or NULL if an error occurred. 1763static Sema::OwningExprResult 1764SubstDefaultTemplateArgument(Sema &SemaRef, 1765 TemplateDecl *Template, 1766 SourceLocation TemplateLoc, 1767 SourceLocation RAngleLoc, 1768 NonTypeTemplateParmDecl *Param, 1769 TemplateArgumentListBuilder &Converted) { 1770 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1771 /*TakeArgs=*/false); 1772 1773 MultiLevelTemplateArgumentList AllTemplateArgs 1774 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1775 1776 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1777 Template, Converted.getFlatArguments(), 1778 Converted.flatSize(), 1779 SourceRange(TemplateLoc, RAngleLoc)); 1780 1781 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1782} 1783 1784/// \brief Substitute template arguments into the default template argument for 1785/// the given template template parameter. 1786/// 1787/// \param SemaRef the semantic analysis object for which we are performing 1788/// the substitution. 1789/// 1790/// \param Template the template that we are synthesizing template arguments 1791/// for. 1792/// 1793/// \param TemplateLoc the location of the template name that started the 1794/// template-id we are checking. 1795/// 1796/// \param RAngleLoc the location of the right angle bracket ('>') that 1797/// terminates the template-id. 1798/// 1799/// \param Param the template template parameter whose default we are 1800/// substituting into. 1801/// 1802/// \param Converted the list of template arguments provided for template 1803/// parameters that precede \p Param in the template parameter list. 1804/// 1805/// \returns the substituted template argument, or NULL if an error occurred. 1806static TemplateName 1807SubstDefaultTemplateArgument(Sema &SemaRef, 1808 TemplateDecl *Template, 1809 SourceLocation TemplateLoc, 1810 SourceLocation RAngleLoc, 1811 TemplateTemplateParmDecl *Param, 1812 TemplateArgumentListBuilder &Converted) { 1813 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1814 /*TakeArgs=*/false); 1815 1816 MultiLevelTemplateArgumentList AllTemplateArgs 1817 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1818 1819 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1820 Template, Converted.getFlatArguments(), 1821 Converted.flatSize(), 1822 SourceRange(TemplateLoc, RAngleLoc)); 1823 1824 return SemaRef.SubstTemplateName( 1825 Param->getDefaultArgument().getArgument().getAsTemplate(), 1826 Param->getDefaultArgument().getTemplateNameLoc(), 1827 AllTemplateArgs); 1828} 1829 1830/// \brief If the given template parameter has a default template 1831/// argument, substitute into that default template argument and 1832/// return the corresponding template argument. 1833TemplateArgumentLoc 1834Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1835 SourceLocation TemplateLoc, 1836 SourceLocation RAngleLoc, 1837 Decl *Param, 1838 TemplateArgumentListBuilder &Converted) { 1839 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1840 if (!TypeParm->hasDefaultArgument()) 1841 return TemplateArgumentLoc(); 1842 1843 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1844 TemplateLoc, 1845 RAngleLoc, 1846 TypeParm, 1847 Converted); 1848 if (DI) 1849 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1850 1851 return TemplateArgumentLoc(); 1852 } 1853 1854 if (NonTypeTemplateParmDecl *NonTypeParm 1855 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1856 if (!NonTypeParm->hasDefaultArgument()) 1857 return TemplateArgumentLoc(); 1858 1859 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1860 TemplateLoc, 1861 RAngleLoc, 1862 NonTypeParm, 1863 Converted); 1864 if (Arg.isInvalid()) 1865 return TemplateArgumentLoc(); 1866 1867 Expr *ArgE = Arg.takeAs<Expr>(); 1868 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1869 } 1870 1871 TemplateTemplateParmDecl *TempTempParm 1872 = cast<TemplateTemplateParmDecl>(Param); 1873 if (!TempTempParm->hasDefaultArgument()) 1874 return TemplateArgumentLoc(); 1875 1876 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1877 TemplateLoc, 1878 RAngleLoc, 1879 TempTempParm, 1880 Converted); 1881 if (TName.isNull()) 1882 return TemplateArgumentLoc(); 1883 1884 return TemplateArgumentLoc(TemplateArgument(TName), 1885 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1886 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1887} 1888 1889/// \brief Check that the given template argument corresponds to the given 1890/// template parameter. 1891bool Sema::CheckTemplateArgument(NamedDecl *Param, 1892 const TemplateArgumentLoc &Arg, 1893 TemplateDecl *Template, 1894 SourceLocation TemplateLoc, 1895 SourceLocation RAngleLoc, 1896 TemplateArgumentListBuilder &Converted) { 1897 // Check template type parameters. 1898 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1899 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1900 1901 // Check non-type template parameters. 1902 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1903 // Do substitution on the type of the non-type template parameter 1904 // with the template arguments we've seen thus far. 1905 QualType NTTPType = NTTP->getType(); 1906 if (NTTPType->isDependentType()) { 1907 // Do substitution on the type of the non-type template parameter. 1908 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1909 NTTP, Converted.getFlatArguments(), 1910 Converted.flatSize(), 1911 SourceRange(TemplateLoc, RAngleLoc)); 1912 1913 TemplateArgumentList TemplateArgs(Context, Converted, 1914 /*TakeArgs=*/false); 1915 NTTPType = SubstType(NTTPType, 1916 MultiLevelTemplateArgumentList(TemplateArgs), 1917 NTTP->getLocation(), 1918 NTTP->getDeclName()); 1919 // If that worked, check the non-type template parameter type 1920 // for validity. 1921 if (!NTTPType.isNull()) 1922 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1923 NTTP->getLocation()); 1924 if (NTTPType.isNull()) 1925 return true; 1926 } 1927 1928 switch (Arg.getArgument().getKind()) { 1929 case TemplateArgument::Null: 1930 assert(false && "Should never see a NULL template argument here"); 1931 return true; 1932 1933 case TemplateArgument::Expression: { 1934 Expr *E = Arg.getArgument().getAsExpr(); 1935 TemplateArgument Result; 1936 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1937 return true; 1938 1939 Converted.Append(Result); 1940 break; 1941 } 1942 1943 case TemplateArgument::Declaration: 1944 case TemplateArgument::Integral: 1945 // We've already checked this template argument, so just copy 1946 // it to the list of converted arguments. 1947 Converted.Append(Arg.getArgument()); 1948 break; 1949 1950 case TemplateArgument::Template: 1951 // We were given a template template argument. It may not be ill-formed; 1952 // see below. 1953 if (DependentTemplateName *DTN 1954 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 1955 // We have a template argument such as \c T::template X, which we 1956 // parsed as a template template argument. However, since we now 1957 // know that we need a non-type template argument, convert this 1958 // template name into an expression. 1959 Expr *E = DependentScopeDeclRefExpr::Create(Context, 1960 DTN->getQualifier(), 1961 Arg.getTemplateQualifierRange(), 1962 DTN->getIdentifier(), 1963 Arg.getTemplateNameLoc()); 1964 1965 TemplateArgument Result; 1966 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1967 return true; 1968 1969 Converted.Append(Result); 1970 break; 1971 } 1972 1973 // We have a template argument that actually does refer to a class 1974 // template, template alias, or template template parameter, and 1975 // therefore cannot be a non-type template argument. 1976 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 1977 << Arg.getSourceRange(); 1978 1979 Diag(Param->getLocation(), diag::note_template_param_here); 1980 return true; 1981 1982 case TemplateArgument::Type: { 1983 // We have a non-type template parameter but the template 1984 // argument is a type. 1985 1986 // C++ [temp.arg]p2: 1987 // In a template-argument, an ambiguity between a type-id and 1988 // an expression is resolved to a type-id, regardless of the 1989 // form of the corresponding template-parameter. 1990 // 1991 // We warn specifically about this case, since it can be rather 1992 // confusing for users. 1993 QualType T = Arg.getArgument().getAsType(); 1994 SourceRange SR = Arg.getSourceRange(); 1995 if (T->isFunctionType()) 1996 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 1997 else 1998 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 1999 Diag(Param->getLocation(), diag::note_template_param_here); 2000 return true; 2001 } 2002 2003 case TemplateArgument::Pack: 2004 llvm_unreachable("Caller must expand template argument packs"); 2005 break; 2006 } 2007 2008 return false; 2009 } 2010 2011 2012 // Check template template parameters. 2013 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2014 2015 // Substitute into the template parameter list of the template 2016 // template parameter, since previously-supplied template arguments 2017 // may appear within the template template parameter. 2018 { 2019 // Set up a template instantiation context. 2020 LocalInstantiationScope Scope(*this); 2021 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2022 TempParm, Converted.getFlatArguments(), 2023 Converted.flatSize(), 2024 SourceRange(TemplateLoc, RAngleLoc)); 2025 2026 TemplateArgumentList TemplateArgs(Context, Converted, 2027 /*TakeArgs=*/false); 2028 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2029 SubstDecl(TempParm, CurContext, 2030 MultiLevelTemplateArgumentList(TemplateArgs))); 2031 if (!TempParm) 2032 return true; 2033 2034 // FIXME: TempParam is leaked. 2035 } 2036 2037 switch (Arg.getArgument().getKind()) { 2038 case TemplateArgument::Null: 2039 assert(false && "Should never see a NULL template argument here"); 2040 return true; 2041 2042 case TemplateArgument::Template: 2043 if (CheckTemplateArgument(TempParm, Arg)) 2044 return true; 2045 2046 Converted.Append(Arg.getArgument()); 2047 break; 2048 2049 case TemplateArgument::Expression: 2050 case TemplateArgument::Type: 2051 // We have a template template parameter but the template 2052 // argument does not refer to a template. 2053 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2054 return true; 2055 2056 case TemplateArgument::Declaration: 2057 llvm_unreachable( 2058 "Declaration argument with template template parameter"); 2059 break; 2060 case TemplateArgument::Integral: 2061 llvm_unreachable( 2062 "Integral argument with template template parameter"); 2063 break; 2064 2065 case TemplateArgument::Pack: 2066 llvm_unreachable("Caller must expand template argument packs"); 2067 break; 2068 } 2069 2070 return false; 2071} 2072 2073/// \brief Check that the given template argument list is well-formed 2074/// for specializing the given template. 2075bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2076 SourceLocation TemplateLoc, 2077 const TemplateArgumentListInfo &TemplateArgs, 2078 bool PartialTemplateArgs, 2079 TemplateArgumentListBuilder &Converted) { 2080 TemplateParameterList *Params = Template->getTemplateParameters(); 2081 unsigned NumParams = Params->size(); 2082 unsigned NumArgs = TemplateArgs.size(); 2083 bool Invalid = false; 2084 2085 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2086 2087 bool HasParameterPack = 2088 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2089 2090 if ((NumArgs > NumParams && !HasParameterPack) || 2091 (NumArgs < Params->getMinRequiredArguments() && 2092 !PartialTemplateArgs)) { 2093 // FIXME: point at either the first arg beyond what we can handle, 2094 // or the '>', depending on whether we have too many or too few 2095 // arguments. 2096 SourceRange Range; 2097 if (NumArgs > NumParams) 2098 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2099 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2100 << (NumArgs > NumParams) 2101 << (isa<ClassTemplateDecl>(Template)? 0 : 2102 isa<FunctionTemplateDecl>(Template)? 1 : 2103 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2104 << Template << Range; 2105 Diag(Template->getLocation(), diag::note_template_decl_here) 2106 << Params->getSourceRange(); 2107 Invalid = true; 2108 } 2109 2110 // C++ [temp.arg]p1: 2111 // [...] The type and form of each template-argument specified in 2112 // a template-id shall match the type and form specified for the 2113 // corresponding parameter declared by the template in its 2114 // template-parameter-list. 2115 unsigned ArgIdx = 0; 2116 for (TemplateParameterList::iterator Param = Params->begin(), 2117 ParamEnd = Params->end(); 2118 Param != ParamEnd; ++Param, ++ArgIdx) { 2119 if (ArgIdx > NumArgs && PartialTemplateArgs) 2120 break; 2121 2122 // If we have a template parameter pack, check every remaining template 2123 // argument against that template parameter pack. 2124 if ((*Param)->isTemplateParameterPack()) { 2125 Converted.BeginPack(); 2126 for (; ArgIdx < NumArgs; ++ArgIdx) { 2127 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2128 TemplateLoc, RAngleLoc, Converted)) { 2129 Invalid = true; 2130 break; 2131 } 2132 } 2133 Converted.EndPack(); 2134 continue; 2135 } 2136 2137 if (ArgIdx < NumArgs) { 2138 // Check the template argument we were given. 2139 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2140 TemplateLoc, RAngleLoc, Converted)) 2141 return true; 2142 2143 continue; 2144 } 2145 2146 // We have a default template argument that we will use. 2147 TemplateArgumentLoc Arg; 2148 2149 // Retrieve the default template argument from the template 2150 // parameter. For each kind of template parameter, we substitute the 2151 // template arguments provided thus far and any "outer" template arguments 2152 // (when the template parameter was part of a nested template) into 2153 // the default argument. 2154 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2155 if (!TTP->hasDefaultArgument()) { 2156 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2157 break; 2158 } 2159 2160 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2161 Template, 2162 TemplateLoc, 2163 RAngleLoc, 2164 TTP, 2165 Converted); 2166 if (!ArgType) 2167 return true; 2168 2169 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2170 ArgType); 2171 } else if (NonTypeTemplateParmDecl *NTTP 2172 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2173 if (!NTTP->hasDefaultArgument()) { 2174 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2175 break; 2176 } 2177 2178 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2179 TemplateLoc, 2180 RAngleLoc, 2181 NTTP, 2182 Converted); 2183 if (E.isInvalid()) 2184 return true; 2185 2186 Expr *Ex = E.takeAs<Expr>(); 2187 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2188 } else { 2189 TemplateTemplateParmDecl *TempParm 2190 = cast<TemplateTemplateParmDecl>(*Param); 2191 2192 if (!TempParm->hasDefaultArgument()) { 2193 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2194 break; 2195 } 2196 2197 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2198 TemplateLoc, 2199 RAngleLoc, 2200 TempParm, 2201 Converted); 2202 if (Name.isNull()) 2203 return true; 2204 2205 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2206 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2207 TempParm->getDefaultArgument().getTemplateNameLoc()); 2208 } 2209 2210 // Introduce an instantiation record that describes where we are using 2211 // the default template argument. 2212 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2213 Converted.getFlatArguments(), 2214 Converted.flatSize(), 2215 SourceRange(TemplateLoc, RAngleLoc)); 2216 2217 // Check the default template argument. 2218 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2219 RAngleLoc, Converted)) 2220 return true; 2221 } 2222 2223 return Invalid; 2224} 2225 2226/// \brief Check a template argument against its corresponding 2227/// template type parameter. 2228/// 2229/// This routine implements the semantics of C++ [temp.arg.type]. It 2230/// returns true if an error occurred, and false otherwise. 2231bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2232 TypeSourceInfo *ArgInfo) { 2233 assert(ArgInfo && "invalid TypeSourceInfo"); 2234 QualType Arg = ArgInfo->getType(); 2235 2236 // C++ [temp.arg.type]p2: 2237 // A local type, a type with no linkage, an unnamed type or a type 2238 // compounded from any of these types shall not be used as a 2239 // template-argument for a template type-parameter. 2240 // 2241 // FIXME: Perform the recursive and no-linkage type checks. 2242 const TagType *Tag = 0; 2243 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2244 Tag = EnumT; 2245 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2246 Tag = RecordT; 2247 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2248 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2249 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2250 << QualType(Tag, 0) << SR; 2251 } else if (Tag && !Tag->getDecl()->getDeclName() && 2252 !Tag->getDecl()->getTypedefForAnonDecl()) { 2253 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2254 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2255 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2256 return true; 2257 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2258 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2259 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2260 } 2261 2262 return false; 2263} 2264 2265/// \brief Checks whether the given template argument is the address 2266/// of an object or function according to C++ [temp.arg.nontype]p1. 2267bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 2268 NamedDecl *&Entity) { 2269 bool Invalid = false; 2270 2271 // See through any implicit casts we added to fix the type. 2272 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2273 Arg = Cast->getSubExpr(); 2274 2275 // C++0x allows nullptr, and there's no further checking to be done for that. 2276 if (Arg->getType()->isNullPtrType()) 2277 return false; 2278 2279 // C++ [temp.arg.nontype]p1: 2280 // 2281 // A template-argument for a non-type, non-template 2282 // template-parameter shall be one of: [...] 2283 // 2284 // -- the address of an object or function with external 2285 // linkage, including function templates and function 2286 // template-ids but excluding non-static class members, 2287 // expressed as & id-expression where the & is optional if 2288 // the name refers to a function or array, or if the 2289 // corresponding template-parameter is a reference; or 2290 DeclRefExpr *DRE = 0; 2291 2292 // Ignore (and complain about) any excess parentheses. 2293 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2294 if (!Invalid) { 2295 Diag(Arg->getSourceRange().getBegin(), 2296 diag::err_template_arg_extra_parens) 2297 << Arg->getSourceRange(); 2298 Invalid = true; 2299 } 2300 2301 Arg = Parens->getSubExpr(); 2302 } 2303 2304 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2305 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 2306 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2307 } else 2308 DRE = dyn_cast<DeclRefExpr>(Arg); 2309 2310 if (!DRE) 2311 return Diag(Arg->getSourceRange().getBegin(), 2312 diag::err_template_arg_not_decl_ref) 2313 << Arg->getSourceRange(); 2314 2315 // Stop checking the precise nature of the argument if it is value dependent, 2316 // it should be checked when instantiated. 2317 if (Arg->isValueDependent()) 2318 return false; 2319 2320 if (!isa<ValueDecl>(DRE->getDecl())) 2321 return Diag(Arg->getSourceRange().getBegin(), 2322 diag::err_template_arg_not_object_or_func_form) 2323 << Arg->getSourceRange(); 2324 2325 // Cannot refer to non-static data members 2326 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 2327 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2328 << Field << Arg->getSourceRange(); 2329 2330 // Cannot refer to non-static member functions 2331 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2332 if (!Method->isStatic()) 2333 return Diag(Arg->getSourceRange().getBegin(), 2334 diag::err_template_arg_method) 2335 << Method << Arg->getSourceRange(); 2336 2337 // Functions must have external linkage. 2338 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2339 if (!isExternalLinkage(Func->getLinkage())) { 2340 Diag(Arg->getSourceRange().getBegin(), 2341 diag::err_template_arg_function_not_extern) 2342 << Func << Arg->getSourceRange(); 2343 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2344 << true; 2345 return true; 2346 } 2347 2348 // Okay: we've named a function with external linkage. 2349 Entity = Func; 2350 return Invalid; 2351 } 2352 2353 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2354 if (!isExternalLinkage(Var->getLinkage())) { 2355 Diag(Arg->getSourceRange().getBegin(), 2356 diag::err_template_arg_object_not_extern) 2357 << Var << Arg->getSourceRange(); 2358 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2359 << true; 2360 return true; 2361 } 2362 2363 // Okay: we've named an object with external linkage 2364 Entity = Var; 2365 return Invalid; 2366 } 2367 2368 // We found something else, but we don't know specifically what it is. 2369 Diag(Arg->getSourceRange().getBegin(), 2370 diag::err_template_arg_not_object_or_func) 2371 << Arg->getSourceRange(); 2372 Diag(DRE->getDecl()->getLocation(), 2373 diag::note_template_arg_refers_here); 2374 return true; 2375} 2376 2377/// \brief Checks whether the given template argument is a pointer to 2378/// member constant according to C++ [temp.arg.nontype]p1. 2379bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2380 TemplateArgument &Converted) { 2381 bool Invalid = false; 2382 2383 // See through any implicit casts we added to fix the type. 2384 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2385 Arg = Cast->getSubExpr(); 2386 2387 // C++0x allows nullptr, and there's no further checking to be done for that. 2388 if (Arg->getType()->isNullPtrType()) 2389 return false; 2390 2391 // C++ [temp.arg.nontype]p1: 2392 // 2393 // A template-argument for a non-type, non-template 2394 // template-parameter shall be one of: [...] 2395 // 2396 // -- a pointer to member expressed as described in 5.3.1. 2397 DeclRefExpr *DRE = 0; 2398 2399 // Ignore (and complain about) any excess parentheses. 2400 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2401 if (!Invalid) { 2402 Diag(Arg->getSourceRange().getBegin(), 2403 diag::err_template_arg_extra_parens) 2404 << Arg->getSourceRange(); 2405 Invalid = true; 2406 } 2407 2408 Arg = Parens->getSubExpr(); 2409 } 2410 2411 // A pointer-to-member constant written &Class::member. 2412 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2413 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2414 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2415 if (DRE && !DRE->getQualifier()) 2416 DRE = 0; 2417 } 2418 } 2419 // A constant of pointer-to-member type. 2420 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2421 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2422 if (VD->getType()->isMemberPointerType()) { 2423 if (isa<NonTypeTemplateParmDecl>(VD) || 2424 (isa<VarDecl>(VD) && 2425 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2426 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2427 Converted = TemplateArgument(Arg->Retain()); 2428 else 2429 Converted = TemplateArgument(VD->getCanonicalDecl()); 2430 return Invalid; 2431 } 2432 } 2433 } 2434 2435 DRE = 0; 2436 } 2437 2438 if (!DRE) 2439 return Diag(Arg->getSourceRange().getBegin(), 2440 diag::err_template_arg_not_pointer_to_member_form) 2441 << Arg->getSourceRange(); 2442 2443 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2444 assert((isa<FieldDecl>(DRE->getDecl()) || 2445 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2446 "Only non-static member pointers can make it here"); 2447 2448 // Okay: this is the address of a non-static member, and therefore 2449 // a member pointer constant. 2450 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2451 Converted = TemplateArgument(Arg->Retain()); 2452 else 2453 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2454 return Invalid; 2455 } 2456 2457 // We found something else, but we don't know specifically what it is. 2458 Diag(Arg->getSourceRange().getBegin(), 2459 diag::err_template_arg_not_pointer_to_member_form) 2460 << Arg->getSourceRange(); 2461 Diag(DRE->getDecl()->getLocation(), 2462 diag::note_template_arg_refers_here); 2463 return true; 2464} 2465 2466/// \brief Check a template argument against its corresponding 2467/// non-type template parameter. 2468/// 2469/// This routine implements the semantics of C++ [temp.arg.nontype]. 2470/// It returns true if an error occurred, and false otherwise. \p 2471/// InstantiatedParamType is the type of the non-type template 2472/// parameter after it has been instantiated. 2473/// 2474/// If no error was detected, Converted receives the converted template argument. 2475bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2476 QualType InstantiatedParamType, Expr *&Arg, 2477 TemplateArgument &Converted) { 2478 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2479 2480 // If either the parameter has a dependent type or the argument is 2481 // type-dependent, there's nothing we can check now. 2482 // FIXME: Add template argument to Converted! 2483 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2484 // FIXME: Produce a cloned, canonical expression? 2485 Converted = TemplateArgument(Arg); 2486 return false; 2487 } 2488 2489 // C++ [temp.arg.nontype]p5: 2490 // The following conversions are performed on each expression used 2491 // as a non-type template-argument. If a non-type 2492 // template-argument cannot be converted to the type of the 2493 // corresponding template-parameter then the program is 2494 // ill-formed. 2495 // 2496 // -- for a non-type template-parameter of integral or 2497 // enumeration type, integral promotions (4.5) and integral 2498 // conversions (4.7) are applied. 2499 QualType ParamType = InstantiatedParamType; 2500 QualType ArgType = Arg->getType(); 2501 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2502 // C++ [temp.arg.nontype]p1: 2503 // A template-argument for a non-type, non-template 2504 // template-parameter shall be one of: 2505 // 2506 // -- an integral constant-expression of integral or enumeration 2507 // type; or 2508 // -- the name of a non-type template-parameter; or 2509 SourceLocation NonConstantLoc; 2510 llvm::APSInt Value; 2511 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2512 Diag(Arg->getSourceRange().getBegin(), 2513 diag::err_template_arg_not_integral_or_enumeral) 2514 << ArgType << Arg->getSourceRange(); 2515 Diag(Param->getLocation(), diag::note_template_param_here); 2516 return true; 2517 } else if (!Arg->isValueDependent() && 2518 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2519 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2520 << ArgType << Arg->getSourceRange(); 2521 return true; 2522 } 2523 2524 // FIXME: We need some way to more easily get the unqualified form 2525 // of the types without going all the way to the 2526 // canonical type. 2527 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 2528 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 2529 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 2530 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 2531 2532 // Try to convert the argument to the parameter's type. 2533 if (Context.hasSameType(ParamType, ArgType)) { 2534 // Okay: no conversion necessary 2535 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2536 !ParamType->isEnumeralType()) { 2537 // This is an integral promotion or conversion. 2538 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2539 } else { 2540 // We can't perform this conversion. 2541 Diag(Arg->getSourceRange().getBegin(), 2542 diag::err_template_arg_not_convertible) 2543 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2544 Diag(Param->getLocation(), diag::note_template_param_here); 2545 return true; 2546 } 2547 2548 QualType IntegerType = Context.getCanonicalType(ParamType); 2549 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2550 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2551 2552 if (!Arg->isValueDependent()) { 2553 // Check that an unsigned parameter does not receive a negative 2554 // value. 2555 if (IntegerType->isUnsignedIntegerType() 2556 && (Value.isSigned() && Value.isNegative())) { 2557 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 2558 << Value.toString(10) << Param->getType() 2559 << Arg->getSourceRange(); 2560 Diag(Param->getLocation(), diag::note_template_param_here); 2561 return true; 2562 } 2563 2564 // Check that we don't overflow the template parameter type. 2565 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2566 unsigned RequiredBits; 2567 if (IntegerType->isUnsignedIntegerType()) 2568 RequiredBits = Value.getActiveBits(); 2569 else if (Value.isUnsigned()) 2570 RequiredBits = Value.getActiveBits() + 1; 2571 else 2572 RequiredBits = Value.getMinSignedBits(); 2573 if (RequiredBits > AllowedBits) { 2574 Diag(Arg->getSourceRange().getBegin(), 2575 diag::err_template_arg_too_large) 2576 << Value.toString(10) << Param->getType() 2577 << Arg->getSourceRange(); 2578 Diag(Param->getLocation(), diag::note_template_param_here); 2579 return true; 2580 } 2581 2582 if (Value.getBitWidth() != AllowedBits) 2583 Value.extOrTrunc(AllowedBits); 2584 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2585 } 2586 2587 // Add the value of this argument to the list of converted 2588 // arguments. We use the bitwidth and signedness of the template 2589 // parameter. 2590 if (Arg->isValueDependent()) { 2591 // The argument is value-dependent. Create a new 2592 // TemplateArgument with the converted expression. 2593 Converted = TemplateArgument(Arg); 2594 return false; 2595 } 2596 2597 Converted = TemplateArgument(Value, 2598 ParamType->isEnumeralType() ? ParamType 2599 : IntegerType); 2600 return false; 2601 } 2602 2603 // Handle pointer-to-function, reference-to-function, and 2604 // pointer-to-member-function all in (roughly) the same way. 2605 if (// -- For a non-type template-parameter of type pointer to 2606 // function, only the function-to-pointer conversion (4.3) is 2607 // applied. If the template-argument represents a set of 2608 // overloaded functions (or a pointer to such), the matching 2609 // function is selected from the set (13.4). 2610 // In C++0x, any std::nullptr_t value can be converted. 2611 (ParamType->isPointerType() && 2612 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2613 // -- For a non-type template-parameter of type reference to 2614 // function, no conversions apply. If the template-argument 2615 // represents a set of overloaded functions, the matching 2616 // function is selected from the set (13.4). 2617 (ParamType->isReferenceType() && 2618 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2619 // -- For a non-type template-parameter of type pointer to 2620 // member function, no conversions apply. If the 2621 // template-argument represents a set of overloaded member 2622 // functions, the matching member function is selected from 2623 // the set (13.4). 2624 // Again, C++0x allows a std::nullptr_t value. 2625 (ParamType->isMemberPointerType() && 2626 ParamType->getAs<MemberPointerType>()->getPointeeType() 2627 ->isFunctionType())) { 2628 if (Context.hasSameUnqualifiedType(ArgType, 2629 ParamType.getNonReferenceType())) { 2630 // We don't have to do anything: the types already match. 2631 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2632 ParamType->isMemberPointerType())) { 2633 ArgType = ParamType; 2634 if (ParamType->isMemberPointerType()) 2635 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2636 else 2637 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2638 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2639 ArgType = Context.getPointerType(ArgType); 2640 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2641 } else if (FunctionDecl *Fn 2642 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2643 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2644 return true; 2645 2646 Arg = FixOverloadedFunctionReference(Arg, Fn); 2647 ArgType = Arg->getType(); 2648 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2649 ArgType = Context.getPointerType(Arg->getType()); 2650 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2651 } 2652 } 2653 2654 if (!Context.hasSameUnqualifiedType(ArgType, 2655 ParamType.getNonReferenceType())) { 2656 // We can't perform this conversion. 2657 Diag(Arg->getSourceRange().getBegin(), 2658 diag::err_template_arg_not_convertible) 2659 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2660 Diag(Param->getLocation(), diag::note_template_param_here); 2661 return true; 2662 } 2663 2664 if (ParamType->isMemberPointerType()) 2665 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2666 2667 NamedDecl *Entity = 0; 2668 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2669 return true; 2670 2671 if (Arg->isValueDependent()) { 2672 Converted = TemplateArgument(Arg); 2673 } else { 2674 if (Entity) 2675 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2676 Converted = TemplateArgument(Entity); 2677 } 2678 return false; 2679 } 2680 2681 if (ParamType->isPointerType()) { 2682 // -- for a non-type template-parameter of type pointer to 2683 // object, qualification conversions (4.4) and the 2684 // array-to-pointer conversion (4.2) are applied. 2685 // C++0x also allows a value of std::nullptr_t. 2686 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2687 "Only object pointers allowed here"); 2688 2689 if (ArgType->isNullPtrType()) { 2690 ArgType = ParamType; 2691 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2692 } else if (ArgType->isArrayType()) { 2693 ArgType = Context.getArrayDecayedType(ArgType); 2694 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2695 } 2696 2697 if (IsQualificationConversion(ArgType, ParamType)) { 2698 ArgType = ParamType; 2699 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2700 } 2701 2702 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2703 // We can't perform this conversion. 2704 Diag(Arg->getSourceRange().getBegin(), 2705 diag::err_template_arg_not_convertible) 2706 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2707 Diag(Param->getLocation(), diag::note_template_param_here); 2708 return true; 2709 } 2710 2711 NamedDecl *Entity = 0; 2712 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2713 return true; 2714 2715 if (Arg->isValueDependent()) { 2716 Converted = TemplateArgument(Arg); 2717 } else { 2718 if (Entity) 2719 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2720 Converted = TemplateArgument(Entity); 2721 } 2722 return false; 2723 } 2724 2725 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2726 // -- For a non-type template-parameter of type reference to 2727 // object, no conversions apply. The type referred to by the 2728 // reference may be more cv-qualified than the (otherwise 2729 // identical) type of the template-argument. The 2730 // template-parameter is bound directly to the 2731 // template-argument, which must be an lvalue. 2732 assert(ParamRefType->getPointeeType()->isObjectType() && 2733 "Only object references allowed here"); 2734 2735 QualType ReferredType = ParamRefType->getPointeeType(); 2736 if (!Context.hasSameUnqualifiedType(ReferredType, ArgType)) { 2737 Diag(Arg->getSourceRange().getBegin(), 2738 diag::err_template_arg_no_ref_bind) 2739 << InstantiatedParamType << Arg->getType() 2740 << Arg->getSourceRange(); 2741 Diag(Param->getLocation(), diag::note_template_param_here); 2742 return true; 2743 } 2744 2745 unsigned ParamQuals 2746 = Context.getCanonicalType(ReferredType).getCVRQualifiers(); 2747 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2748 2749 if ((ParamQuals | ArgQuals) != ParamQuals) { 2750 Diag(Arg->getSourceRange().getBegin(), 2751 diag::err_template_arg_ref_bind_ignores_quals) 2752 << InstantiatedParamType << Arg->getType() 2753 << Arg->getSourceRange(); 2754 Diag(Param->getLocation(), diag::note_template_param_here); 2755 return true; 2756 } 2757 2758 NamedDecl *Entity = 0; 2759 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2760 return true; 2761 2762 if (Arg->isValueDependent()) { 2763 Converted = TemplateArgument(Arg); 2764 } else { 2765 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2766 Converted = TemplateArgument(Entity); 2767 } 2768 return false; 2769 } 2770 2771 // -- For a non-type template-parameter of type pointer to data 2772 // member, qualification conversions (4.4) are applied. 2773 // C++0x allows std::nullptr_t values. 2774 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2775 2776 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2777 // Types match exactly: nothing more to do here. 2778 } else if (ArgType->isNullPtrType()) { 2779 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2780 } else if (IsQualificationConversion(ArgType, ParamType)) { 2781 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2782 } else { 2783 // We can't perform this conversion. 2784 Diag(Arg->getSourceRange().getBegin(), 2785 diag::err_template_arg_not_convertible) 2786 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2787 Diag(Param->getLocation(), diag::note_template_param_here); 2788 return true; 2789 } 2790 2791 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2792} 2793 2794/// \brief Check a template argument against its corresponding 2795/// template template parameter. 2796/// 2797/// This routine implements the semantics of C++ [temp.arg.template]. 2798/// It returns true if an error occurred, and false otherwise. 2799bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2800 const TemplateArgumentLoc &Arg) { 2801 TemplateName Name = Arg.getArgument().getAsTemplate(); 2802 TemplateDecl *Template = Name.getAsTemplateDecl(); 2803 if (!Template) { 2804 // Any dependent template name is fine. 2805 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2806 return false; 2807 } 2808 2809 // C++ [temp.arg.template]p1: 2810 // A template-argument for a template template-parameter shall be 2811 // the name of a class template, expressed as id-expression. Only 2812 // primary class templates are considered when matching the 2813 // template template argument with the corresponding parameter; 2814 // partial specializations are not considered even if their 2815 // parameter lists match that of the template template parameter. 2816 // 2817 // Note that we also allow template template parameters here, which 2818 // will happen when we are dealing with, e.g., class template 2819 // partial specializations. 2820 if (!isa<ClassTemplateDecl>(Template) && 2821 !isa<TemplateTemplateParmDecl>(Template)) { 2822 assert(isa<FunctionTemplateDecl>(Template) && 2823 "Only function templates are possible here"); 2824 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2825 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2826 << Template; 2827 } 2828 2829 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2830 Param->getTemplateParameters(), 2831 true, 2832 TPL_TemplateTemplateArgumentMatch, 2833 Arg.getLocation()); 2834} 2835 2836/// \brief Determine whether the given template parameter lists are 2837/// equivalent. 2838/// 2839/// \param New The new template parameter list, typically written in the 2840/// source code as part of a new template declaration. 2841/// 2842/// \param Old The old template parameter list, typically found via 2843/// name lookup of the template declared with this template parameter 2844/// list. 2845/// 2846/// \param Complain If true, this routine will produce a diagnostic if 2847/// the template parameter lists are not equivalent. 2848/// 2849/// \param Kind describes how we are to match the template parameter lists. 2850/// 2851/// \param TemplateArgLoc If this source location is valid, then we 2852/// are actually checking the template parameter list of a template 2853/// argument (New) against the template parameter list of its 2854/// corresponding template template parameter (Old). We produce 2855/// slightly different diagnostics in this scenario. 2856/// 2857/// \returns True if the template parameter lists are equal, false 2858/// otherwise. 2859bool 2860Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2861 TemplateParameterList *Old, 2862 bool Complain, 2863 TemplateParameterListEqualKind Kind, 2864 SourceLocation TemplateArgLoc) { 2865 if (Old->size() != New->size()) { 2866 if (Complain) { 2867 unsigned NextDiag = diag::err_template_param_list_different_arity; 2868 if (TemplateArgLoc.isValid()) { 2869 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2870 NextDiag = diag::note_template_param_list_different_arity; 2871 } 2872 Diag(New->getTemplateLoc(), NextDiag) 2873 << (New->size() > Old->size()) 2874 << (Kind != TPL_TemplateMatch) 2875 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2876 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2877 << (Kind != TPL_TemplateMatch) 2878 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2879 } 2880 2881 return false; 2882 } 2883 2884 for (TemplateParameterList::iterator OldParm = Old->begin(), 2885 OldParmEnd = Old->end(), NewParm = New->begin(); 2886 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2887 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2888 if (Complain) { 2889 unsigned NextDiag = diag::err_template_param_different_kind; 2890 if (TemplateArgLoc.isValid()) { 2891 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2892 NextDiag = diag::note_template_param_different_kind; 2893 } 2894 Diag((*NewParm)->getLocation(), NextDiag) 2895 << (Kind != TPL_TemplateMatch); 2896 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2897 << (Kind != TPL_TemplateMatch); 2898 } 2899 return false; 2900 } 2901 2902 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2903 // Okay; all template type parameters are equivalent (since we 2904 // know we're at the same index). 2905 } else if (NonTypeTemplateParmDecl *OldNTTP 2906 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2907 // The types of non-type template parameters must agree. 2908 NonTypeTemplateParmDecl *NewNTTP 2909 = cast<NonTypeTemplateParmDecl>(*NewParm); 2910 2911 // If we are matching a template template argument to a template 2912 // template parameter and one of the non-type template parameter types 2913 // is dependent, then we must wait until template instantiation time 2914 // to actually compare the arguments. 2915 if (Kind == TPL_TemplateTemplateArgumentMatch && 2916 (OldNTTP->getType()->isDependentType() || 2917 NewNTTP->getType()->isDependentType())) 2918 continue; 2919 2920 if (Context.getCanonicalType(OldNTTP->getType()) != 2921 Context.getCanonicalType(NewNTTP->getType())) { 2922 if (Complain) { 2923 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2924 if (TemplateArgLoc.isValid()) { 2925 Diag(TemplateArgLoc, 2926 diag::err_template_arg_template_params_mismatch); 2927 NextDiag = diag::note_template_nontype_parm_different_type; 2928 } 2929 Diag(NewNTTP->getLocation(), NextDiag) 2930 << NewNTTP->getType() 2931 << (Kind != TPL_TemplateMatch); 2932 Diag(OldNTTP->getLocation(), 2933 diag::note_template_nontype_parm_prev_declaration) 2934 << OldNTTP->getType(); 2935 } 2936 return false; 2937 } 2938 } else { 2939 // The template parameter lists of template template 2940 // parameters must agree. 2941 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2942 "Only template template parameters handled here"); 2943 TemplateTemplateParmDecl *OldTTP 2944 = cast<TemplateTemplateParmDecl>(*OldParm); 2945 TemplateTemplateParmDecl *NewTTP 2946 = cast<TemplateTemplateParmDecl>(*NewParm); 2947 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2948 OldTTP->getTemplateParameters(), 2949 Complain, 2950 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 2951 TemplateArgLoc)) 2952 return false; 2953 } 2954 } 2955 2956 return true; 2957} 2958 2959/// \brief Check whether a template can be declared within this scope. 2960/// 2961/// If the template declaration is valid in this scope, returns 2962/// false. Otherwise, issues a diagnostic and returns true. 2963bool 2964Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2965 // Find the nearest enclosing declaration scope. 2966 while ((S->getFlags() & Scope::DeclScope) == 0 || 2967 (S->getFlags() & Scope::TemplateParamScope) != 0) 2968 S = S->getParent(); 2969 2970 // C++ [temp]p2: 2971 // A template-declaration can appear only as a namespace scope or 2972 // class scope declaration. 2973 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2974 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2975 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2976 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2977 << TemplateParams->getSourceRange(); 2978 2979 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2980 Ctx = Ctx->getParent(); 2981 2982 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2983 return false; 2984 2985 return Diag(TemplateParams->getTemplateLoc(), 2986 diag::err_template_outside_namespace_or_class_scope) 2987 << TemplateParams->getSourceRange(); 2988} 2989 2990/// \brief Determine what kind of template specialization the given declaration 2991/// is. 2992static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2993 if (!D) 2994 return TSK_Undeclared; 2995 2996 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 2997 return Record->getTemplateSpecializationKind(); 2998 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2999 return Function->getTemplateSpecializationKind(); 3000 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3001 return Var->getTemplateSpecializationKind(); 3002 3003 return TSK_Undeclared; 3004} 3005 3006/// \brief Check whether a specialization is well-formed in the current 3007/// context. 3008/// 3009/// This routine determines whether a template specialization can be declared 3010/// in the current context (C++ [temp.expl.spec]p2). 3011/// 3012/// \param S the semantic analysis object for which this check is being 3013/// performed. 3014/// 3015/// \param Specialized the entity being specialized or instantiated, which 3016/// may be a kind of template (class template, function template, etc.) or 3017/// a member of a class template (member function, static data member, 3018/// member class). 3019/// 3020/// \param PrevDecl the previous declaration of this entity, if any. 3021/// 3022/// \param Loc the location of the explicit specialization or instantiation of 3023/// this entity. 3024/// 3025/// \param IsPartialSpecialization whether this is a partial specialization of 3026/// a class template. 3027/// 3028/// \returns true if there was an error that we cannot recover from, false 3029/// otherwise. 3030static bool CheckTemplateSpecializationScope(Sema &S, 3031 NamedDecl *Specialized, 3032 NamedDecl *PrevDecl, 3033 SourceLocation Loc, 3034 bool IsPartialSpecialization) { 3035 // Keep these "kind" numbers in sync with the %select statements in the 3036 // various diagnostics emitted by this routine. 3037 int EntityKind = 0; 3038 bool isTemplateSpecialization = false; 3039 if (isa<ClassTemplateDecl>(Specialized)) { 3040 EntityKind = IsPartialSpecialization? 1 : 0; 3041 isTemplateSpecialization = true; 3042 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3043 EntityKind = 2; 3044 isTemplateSpecialization = true; 3045 } else if (isa<CXXMethodDecl>(Specialized)) 3046 EntityKind = 3; 3047 else if (isa<VarDecl>(Specialized)) 3048 EntityKind = 4; 3049 else if (isa<RecordDecl>(Specialized)) 3050 EntityKind = 5; 3051 else { 3052 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3053 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3054 return true; 3055 } 3056 3057 // C++ [temp.expl.spec]p2: 3058 // An explicit specialization shall be declared in the namespace 3059 // of which the template is a member, or, for member templates, in 3060 // the namespace of which the enclosing class or enclosing class 3061 // template is a member. An explicit specialization of a member 3062 // function, member class or static data member of a class 3063 // template shall be declared in the namespace of which the class 3064 // template is a member. Such a declaration may also be a 3065 // definition. If the declaration is not a definition, the 3066 // specialization may be defined later in the name- space in which 3067 // the explicit specialization was declared, or in a namespace 3068 // that encloses the one in which the explicit specialization was 3069 // declared. 3070 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3071 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3072 << Specialized; 3073 return true; 3074 } 3075 3076 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3077 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3078 << Specialized; 3079 return true; 3080 } 3081 3082 // C++ [temp.class.spec]p6: 3083 // A class template partial specialization may be declared or redeclared 3084 // in any namespace scope in which its definition may be defined (14.5.1 3085 // and 14.5.2). 3086 bool ComplainedAboutScope = false; 3087 DeclContext *SpecializedContext 3088 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3089 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3090 if ((!PrevDecl || 3091 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3092 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3093 // There is no prior declaration of this entity, so this 3094 // specialization must be in the same context as the template 3095 // itself. 3096 if (!DC->Equals(SpecializedContext)) { 3097 if (isa<TranslationUnitDecl>(SpecializedContext)) 3098 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3099 << EntityKind << Specialized; 3100 else if (isa<NamespaceDecl>(SpecializedContext)) 3101 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3102 << EntityKind << Specialized 3103 << cast<NamedDecl>(SpecializedContext); 3104 3105 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3106 ComplainedAboutScope = true; 3107 } 3108 } 3109 3110 // Make sure that this redeclaration (or definition) occurs in an enclosing 3111 // namespace. 3112 // Note that HandleDeclarator() performs this check for explicit 3113 // specializations of function templates, static data members, and member 3114 // functions, so we skip the check here for those kinds of entities. 3115 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3116 // Should we refactor that check, so that it occurs later? 3117 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3118 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3119 isa<FunctionDecl>(Specialized))) { 3120 if (isa<TranslationUnitDecl>(SpecializedContext)) 3121 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3122 << EntityKind << Specialized; 3123 else if (isa<NamespaceDecl>(SpecializedContext)) 3124 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3125 << EntityKind << Specialized 3126 << cast<NamedDecl>(SpecializedContext); 3127 3128 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3129 } 3130 3131 // FIXME: check for specialization-after-instantiation errors and such. 3132 3133 return false; 3134} 3135 3136/// \brief Check the non-type template arguments of a class template 3137/// partial specialization according to C++ [temp.class.spec]p9. 3138/// 3139/// \param TemplateParams the template parameters of the primary class 3140/// template. 3141/// 3142/// \param TemplateArg the template arguments of the class template 3143/// partial specialization. 3144/// 3145/// \param MirrorsPrimaryTemplate will be set true if the class 3146/// template partial specialization arguments are identical to the 3147/// implicit template arguments of the primary template. This is not 3148/// necessarily an error (C++0x), and it is left to the caller to diagnose 3149/// this condition when it is an error. 3150/// 3151/// \returns true if there was an error, false otherwise. 3152bool Sema::CheckClassTemplatePartialSpecializationArgs( 3153 TemplateParameterList *TemplateParams, 3154 const TemplateArgumentListBuilder &TemplateArgs, 3155 bool &MirrorsPrimaryTemplate) { 3156 // FIXME: the interface to this function will have to change to 3157 // accommodate variadic templates. 3158 MirrorsPrimaryTemplate = true; 3159 3160 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3161 3162 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3163 // Determine whether the template argument list of the partial 3164 // specialization is identical to the implicit argument list of 3165 // the primary template. The caller may need to diagnostic this as 3166 // an error per C++ [temp.class.spec]p9b3. 3167 if (MirrorsPrimaryTemplate) { 3168 if (TemplateTypeParmDecl *TTP 3169 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3170 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3171 Context.getCanonicalType(ArgList[I].getAsType())) 3172 MirrorsPrimaryTemplate = false; 3173 } else if (TemplateTemplateParmDecl *TTP 3174 = dyn_cast<TemplateTemplateParmDecl>( 3175 TemplateParams->getParam(I))) { 3176 TemplateName Name = ArgList[I].getAsTemplate(); 3177 TemplateTemplateParmDecl *ArgDecl 3178 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3179 if (!ArgDecl || 3180 ArgDecl->getIndex() != TTP->getIndex() || 3181 ArgDecl->getDepth() != TTP->getDepth()) 3182 MirrorsPrimaryTemplate = false; 3183 } 3184 } 3185 3186 NonTypeTemplateParmDecl *Param 3187 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3188 if (!Param) { 3189 continue; 3190 } 3191 3192 Expr *ArgExpr = ArgList[I].getAsExpr(); 3193 if (!ArgExpr) { 3194 MirrorsPrimaryTemplate = false; 3195 continue; 3196 } 3197 3198 // C++ [temp.class.spec]p8: 3199 // A non-type argument is non-specialized if it is the name of a 3200 // non-type parameter. All other non-type arguments are 3201 // specialized. 3202 // 3203 // Below, we check the two conditions that only apply to 3204 // specialized non-type arguments, so skip any non-specialized 3205 // arguments. 3206 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3207 if (NonTypeTemplateParmDecl *NTTP 3208 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3209 if (MirrorsPrimaryTemplate && 3210 (Param->getIndex() != NTTP->getIndex() || 3211 Param->getDepth() != NTTP->getDepth())) 3212 MirrorsPrimaryTemplate = false; 3213 3214 continue; 3215 } 3216 3217 // C++ [temp.class.spec]p9: 3218 // Within the argument list of a class template partial 3219 // specialization, the following restrictions apply: 3220 // -- A partially specialized non-type argument expression 3221 // shall not involve a template parameter of the partial 3222 // specialization except when the argument expression is a 3223 // simple identifier. 3224 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3225 Diag(ArgExpr->getLocStart(), 3226 diag::err_dependent_non_type_arg_in_partial_spec) 3227 << ArgExpr->getSourceRange(); 3228 return true; 3229 } 3230 3231 // -- The type of a template parameter corresponding to a 3232 // specialized non-type argument shall not be dependent on a 3233 // parameter of the specialization. 3234 if (Param->getType()->isDependentType()) { 3235 Diag(ArgExpr->getLocStart(), 3236 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3237 << Param->getType() 3238 << ArgExpr->getSourceRange(); 3239 Diag(Param->getLocation(), diag::note_template_param_here); 3240 return true; 3241 } 3242 3243 MirrorsPrimaryTemplate = false; 3244 } 3245 3246 return false; 3247} 3248 3249Sema::DeclResult 3250Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3251 TagUseKind TUK, 3252 SourceLocation KWLoc, 3253 const CXXScopeSpec &SS, 3254 TemplateTy TemplateD, 3255 SourceLocation TemplateNameLoc, 3256 SourceLocation LAngleLoc, 3257 ASTTemplateArgsPtr TemplateArgsIn, 3258 SourceLocation RAngleLoc, 3259 AttributeList *Attr, 3260 MultiTemplateParamsArg TemplateParameterLists) { 3261 assert(TUK != TUK_Reference && "References are not specializations"); 3262 3263 // Find the class template we're specializing 3264 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3265 ClassTemplateDecl *ClassTemplate 3266 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3267 3268 if (!ClassTemplate) { 3269 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3270 << (Name.getAsTemplateDecl() && 3271 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3272 return true; 3273 } 3274 3275 bool isExplicitSpecialization = false; 3276 bool isPartialSpecialization = false; 3277 3278 // Check the validity of the template headers that introduce this 3279 // template. 3280 // FIXME: We probably shouldn't complain about these headers for 3281 // friend declarations. 3282 TemplateParameterList *TemplateParams 3283 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3284 (TemplateParameterList**)TemplateParameterLists.get(), 3285 TemplateParameterLists.size(), 3286 isExplicitSpecialization); 3287 if (TemplateParams && TemplateParams->size() > 0) { 3288 isPartialSpecialization = true; 3289 3290 // C++ [temp.class.spec]p10: 3291 // The template parameter list of a specialization shall not 3292 // contain default template argument values. 3293 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3294 Decl *Param = TemplateParams->getParam(I); 3295 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3296 if (TTP->hasDefaultArgument()) { 3297 Diag(TTP->getDefaultArgumentLoc(), 3298 diag::err_default_arg_in_partial_spec); 3299 TTP->removeDefaultArgument(); 3300 } 3301 } else if (NonTypeTemplateParmDecl *NTTP 3302 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3303 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3304 Diag(NTTP->getDefaultArgumentLoc(), 3305 diag::err_default_arg_in_partial_spec) 3306 << DefArg->getSourceRange(); 3307 NTTP->setDefaultArgument(0); 3308 DefArg->Destroy(Context); 3309 } 3310 } else { 3311 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3312 if (TTP->hasDefaultArgument()) { 3313 Diag(TTP->getDefaultArgument().getLocation(), 3314 diag::err_default_arg_in_partial_spec) 3315 << TTP->getDefaultArgument().getSourceRange(); 3316 TTP->setDefaultArgument(TemplateArgumentLoc()); 3317 } 3318 } 3319 } 3320 } else if (TemplateParams) { 3321 if (TUK == TUK_Friend) 3322 Diag(KWLoc, diag::err_template_spec_friend) 3323 << CodeModificationHint::CreateRemoval( 3324 SourceRange(TemplateParams->getTemplateLoc(), 3325 TemplateParams->getRAngleLoc())) 3326 << SourceRange(LAngleLoc, RAngleLoc); 3327 else 3328 isExplicitSpecialization = true; 3329 } else if (TUK != TUK_Friend) { 3330 Diag(KWLoc, diag::err_template_spec_needs_header) 3331 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 3332 isExplicitSpecialization = true; 3333 } 3334 3335 // Check that the specialization uses the same tag kind as the 3336 // original template. 3337 TagDecl::TagKind Kind; 3338 switch (TagSpec) { 3339 default: assert(0 && "Unknown tag type!"); 3340 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3341 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3342 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3343 } 3344 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3345 Kind, KWLoc, 3346 *ClassTemplate->getIdentifier())) { 3347 Diag(KWLoc, diag::err_use_with_wrong_tag) 3348 << ClassTemplate 3349 << CodeModificationHint::CreateReplacement(KWLoc, 3350 ClassTemplate->getTemplatedDecl()->getKindName()); 3351 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3352 diag::note_previous_use); 3353 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3354 } 3355 3356 // Translate the parser's template argument list in our AST format. 3357 TemplateArgumentListInfo TemplateArgs; 3358 TemplateArgs.setLAngleLoc(LAngleLoc); 3359 TemplateArgs.setRAngleLoc(RAngleLoc); 3360 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3361 3362 // Check that the template argument list is well-formed for this 3363 // template. 3364 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3365 TemplateArgs.size()); 3366 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3367 TemplateArgs, false, Converted)) 3368 return true; 3369 3370 assert((Converted.structuredSize() == 3371 ClassTemplate->getTemplateParameters()->size()) && 3372 "Converted template argument list is too short!"); 3373 3374 // Find the class template (partial) specialization declaration that 3375 // corresponds to these arguments. 3376 llvm::FoldingSetNodeID ID; 3377 if (isPartialSpecialization) { 3378 bool MirrorsPrimaryTemplate; 3379 if (CheckClassTemplatePartialSpecializationArgs( 3380 ClassTemplate->getTemplateParameters(), 3381 Converted, MirrorsPrimaryTemplate)) 3382 return true; 3383 3384 if (MirrorsPrimaryTemplate) { 3385 // C++ [temp.class.spec]p9b3: 3386 // 3387 // -- The argument list of the specialization shall not be identical 3388 // to the implicit argument list of the primary template. 3389 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3390 << (TUK == TUK_Definition) 3391 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 3392 RAngleLoc)); 3393 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3394 ClassTemplate->getIdentifier(), 3395 TemplateNameLoc, 3396 Attr, 3397 TemplateParams, 3398 AS_none); 3399 } 3400 3401 // FIXME: Diagnose friend partial specializations 3402 3403 // FIXME: Template parameter list matters, too 3404 ClassTemplatePartialSpecializationDecl::Profile(ID, 3405 Converted.getFlatArguments(), 3406 Converted.flatSize(), 3407 Context); 3408 } else 3409 ClassTemplateSpecializationDecl::Profile(ID, 3410 Converted.getFlatArguments(), 3411 Converted.flatSize(), 3412 Context); 3413 void *InsertPos = 0; 3414 ClassTemplateSpecializationDecl *PrevDecl = 0; 3415 3416 if (isPartialSpecialization) 3417 PrevDecl 3418 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3419 InsertPos); 3420 else 3421 PrevDecl 3422 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3423 3424 ClassTemplateSpecializationDecl *Specialization = 0; 3425 3426 // Check whether we can declare a class template specialization in 3427 // the current scope. 3428 if (TUK != TUK_Friend && 3429 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3430 TemplateNameLoc, 3431 isPartialSpecialization)) 3432 return true; 3433 3434 // The canonical type 3435 QualType CanonType; 3436 if (PrevDecl && 3437 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3438 TUK == TUK_Friend)) { 3439 // Since the only prior class template specialization with these 3440 // arguments was referenced but not declared, or we're only 3441 // referencing this specialization as a friend, reuse that 3442 // declaration node as our own, updating its source location to 3443 // reflect our new declaration. 3444 Specialization = PrevDecl; 3445 Specialization->setLocation(TemplateNameLoc); 3446 PrevDecl = 0; 3447 CanonType = Context.getTypeDeclType(Specialization); 3448 } else if (isPartialSpecialization) { 3449 // Build the canonical type that describes the converted template 3450 // arguments of the class template partial specialization. 3451 CanonType = Context.getTemplateSpecializationType( 3452 TemplateName(ClassTemplate), 3453 Converted.getFlatArguments(), 3454 Converted.flatSize()); 3455 3456 // Create a new class template partial specialization declaration node. 3457 ClassTemplatePartialSpecializationDecl *PrevPartial 3458 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3459 ClassTemplatePartialSpecializationDecl *Partial 3460 = ClassTemplatePartialSpecializationDecl::Create(Context, 3461 ClassTemplate->getDeclContext(), 3462 TemplateNameLoc, 3463 TemplateParams, 3464 ClassTemplate, 3465 Converted, 3466 TemplateArgs, 3467 PrevPartial); 3468 3469 if (PrevPartial) { 3470 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3471 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3472 } else { 3473 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3474 } 3475 Specialization = Partial; 3476 3477 // If we are providing an explicit specialization of a member class 3478 // template specialization, make a note of that. 3479 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3480 PrevPartial->setMemberSpecialization(); 3481 3482 // Check that all of the template parameters of the class template 3483 // partial specialization are deducible from the template 3484 // arguments. If not, this class template partial specialization 3485 // will never be used. 3486 llvm::SmallVector<bool, 8> DeducibleParams; 3487 DeducibleParams.resize(TemplateParams->size()); 3488 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3489 TemplateParams->getDepth(), 3490 DeducibleParams); 3491 unsigned NumNonDeducible = 0; 3492 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3493 if (!DeducibleParams[I]) 3494 ++NumNonDeducible; 3495 3496 if (NumNonDeducible) { 3497 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3498 << (NumNonDeducible > 1) 3499 << SourceRange(TemplateNameLoc, RAngleLoc); 3500 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3501 if (!DeducibleParams[I]) { 3502 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3503 if (Param->getDeclName()) 3504 Diag(Param->getLocation(), 3505 diag::note_partial_spec_unused_parameter) 3506 << Param->getDeclName(); 3507 else 3508 Diag(Param->getLocation(), 3509 diag::note_partial_spec_unused_parameter) 3510 << std::string("<anonymous>"); 3511 } 3512 } 3513 } 3514 } else { 3515 // Create a new class template specialization declaration node for 3516 // this explicit specialization or friend declaration. 3517 Specialization 3518 = ClassTemplateSpecializationDecl::Create(Context, 3519 ClassTemplate->getDeclContext(), 3520 TemplateNameLoc, 3521 ClassTemplate, 3522 Converted, 3523 PrevDecl); 3524 3525 if (PrevDecl) { 3526 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3527 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3528 } else { 3529 ClassTemplate->getSpecializations().InsertNode(Specialization, 3530 InsertPos); 3531 } 3532 3533 CanonType = Context.getTypeDeclType(Specialization); 3534 } 3535 3536 // C++ [temp.expl.spec]p6: 3537 // If a template, a member template or the member of a class template is 3538 // explicitly specialized then that specialization shall be declared 3539 // before the first use of that specialization that would cause an implicit 3540 // instantiation to take place, in every translation unit in which such a 3541 // use occurs; no diagnostic is required. 3542 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3543 SourceRange Range(TemplateNameLoc, RAngleLoc); 3544 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3545 << Context.getTypeDeclType(Specialization) << Range; 3546 3547 Diag(PrevDecl->getPointOfInstantiation(), 3548 diag::note_instantiation_required_here) 3549 << (PrevDecl->getTemplateSpecializationKind() 3550 != TSK_ImplicitInstantiation); 3551 return true; 3552 } 3553 3554 // If this is not a friend, note that this is an explicit specialization. 3555 if (TUK != TUK_Friend) 3556 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3557 3558 // Check that this isn't a redefinition of this specialization. 3559 if (TUK == TUK_Definition) { 3560 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 3561 SourceRange Range(TemplateNameLoc, RAngleLoc); 3562 Diag(TemplateNameLoc, diag::err_redefinition) 3563 << Context.getTypeDeclType(Specialization) << Range; 3564 Diag(Def->getLocation(), diag::note_previous_definition); 3565 Specialization->setInvalidDecl(); 3566 return true; 3567 } 3568 } 3569 3570 // Build the fully-sugared type for this class template 3571 // specialization as the user wrote in the specialization 3572 // itself. This means that we'll pretty-print the type retrieved 3573 // from the specialization's declaration the way that the user 3574 // actually wrote the specialization, rather than formatting the 3575 // name based on the "canonical" representation used to store the 3576 // template arguments in the specialization. 3577 QualType WrittenTy 3578 = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 3579 if (TUK != TUK_Friend) 3580 Specialization->setTypeAsWritten(WrittenTy); 3581 TemplateArgsIn.release(); 3582 3583 // C++ [temp.expl.spec]p9: 3584 // A template explicit specialization is in the scope of the 3585 // namespace in which the template was defined. 3586 // 3587 // We actually implement this paragraph where we set the semantic 3588 // context (in the creation of the ClassTemplateSpecializationDecl), 3589 // but we also maintain the lexical context where the actual 3590 // definition occurs. 3591 Specialization->setLexicalDeclContext(CurContext); 3592 3593 // We may be starting the definition of this specialization. 3594 if (TUK == TUK_Definition) 3595 Specialization->startDefinition(); 3596 3597 if (TUK == TUK_Friend) { 3598 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3599 TemplateNameLoc, 3600 WrittenTy.getTypePtr(), 3601 /*FIXME:*/KWLoc); 3602 Friend->setAccess(AS_public); 3603 CurContext->addDecl(Friend); 3604 } else { 3605 // Add the specialization into its lexical context, so that it can 3606 // be seen when iterating through the list of declarations in that 3607 // context. However, specializations are not found by name lookup. 3608 CurContext->addDecl(Specialization); 3609 } 3610 return DeclPtrTy::make(Specialization); 3611} 3612 3613Sema::DeclPtrTy 3614Sema::ActOnTemplateDeclarator(Scope *S, 3615 MultiTemplateParamsArg TemplateParameterLists, 3616 Declarator &D) { 3617 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3618} 3619 3620Sema::DeclPtrTy 3621Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3622 MultiTemplateParamsArg TemplateParameterLists, 3623 Declarator &D) { 3624 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3625 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3626 "Not a function declarator!"); 3627 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3628 3629 if (FTI.hasPrototype) { 3630 // FIXME: Diagnose arguments without names in C. 3631 } 3632 3633 Scope *ParentScope = FnBodyScope->getParent(); 3634 3635 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3636 move(TemplateParameterLists), 3637 /*IsFunctionDefinition=*/true); 3638 if (FunctionTemplateDecl *FunctionTemplate 3639 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3640 return ActOnStartOfFunctionDef(FnBodyScope, 3641 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3642 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3643 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3644 return DeclPtrTy(); 3645} 3646 3647/// \brief Diagnose cases where we have an explicit template specialization 3648/// before/after an explicit template instantiation, producing diagnostics 3649/// for those cases where they are required and determining whether the 3650/// new specialization/instantiation will have any effect. 3651/// 3652/// \param NewLoc the location of the new explicit specialization or 3653/// instantiation. 3654/// 3655/// \param NewTSK the kind of the new explicit specialization or instantiation. 3656/// 3657/// \param PrevDecl the previous declaration of the entity. 3658/// 3659/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3660/// 3661/// \param PrevPointOfInstantiation if valid, indicates where the previus 3662/// declaration was instantiated (either implicitly or explicitly). 3663/// 3664/// \param SuppressNew will be set to true to indicate that the new 3665/// specialization or instantiation has no effect and should be ignored. 3666/// 3667/// \returns true if there was an error that should prevent the introduction of 3668/// the new declaration into the AST, false otherwise. 3669bool 3670Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3671 TemplateSpecializationKind NewTSK, 3672 NamedDecl *PrevDecl, 3673 TemplateSpecializationKind PrevTSK, 3674 SourceLocation PrevPointOfInstantiation, 3675 bool &SuppressNew) { 3676 SuppressNew = false; 3677 3678 switch (NewTSK) { 3679 case TSK_Undeclared: 3680 case TSK_ImplicitInstantiation: 3681 assert(false && "Don't check implicit instantiations here"); 3682 return false; 3683 3684 case TSK_ExplicitSpecialization: 3685 switch (PrevTSK) { 3686 case TSK_Undeclared: 3687 case TSK_ExplicitSpecialization: 3688 // Okay, we're just specializing something that is either already 3689 // explicitly specialized or has merely been mentioned without any 3690 // instantiation. 3691 return false; 3692 3693 case TSK_ImplicitInstantiation: 3694 if (PrevPointOfInstantiation.isInvalid()) { 3695 // The declaration itself has not actually been instantiated, so it is 3696 // still okay to specialize it. 3697 return false; 3698 } 3699 // Fall through 3700 3701 case TSK_ExplicitInstantiationDeclaration: 3702 case TSK_ExplicitInstantiationDefinition: 3703 assert((PrevTSK == TSK_ImplicitInstantiation || 3704 PrevPointOfInstantiation.isValid()) && 3705 "Explicit instantiation without point of instantiation?"); 3706 3707 // C++ [temp.expl.spec]p6: 3708 // If a template, a member template or the member of a class template 3709 // is explicitly specialized then that specialization shall be declared 3710 // before the first use of that specialization that would cause an 3711 // implicit instantiation to take place, in every translation unit in 3712 // which such a use occurs; no diagnostic is required. 3713 Diag(NewLoc, diag::err_specialization_after_instantiation) 3714 << PrevDecl; 3715 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3716 << (PrevTSK != TSK_ImplicitInstantiation); 3717 3718 return true; 3719 } 3720 break; 3721 3722 case TSK_ExplicitInstantiationDeclaration: 3723 switch (PrevTSK) { 3724 case TSK_ExplicitInstantiationDeclaration: 3725 // This explicit instantiation declaration is redundant (that's okay). 3726 SuppressNew = true; 3727 return false; 3728 3729 case TSK_Undeclared: 3730 case TSK_ImplicitInstantiation: 3731 // We're explicitly instantiating something that may have already been 3732 // implicitly instantiated; that's fine. 3733 return false; 3734 3735 case TSK_ExplicitSpecialization: 3736 // C++0x [temp.explicit]p4: 3737 // For a given set of template parameters, if an explicit instantiation 3738 // of a template appears after a declaration of an explicit 3739 // specialization for that template, the explicit instantiation has no 3740 // effect. 3741 return false; 3742 3743 case TSK_ExplicitInstantiationDefinition: 3744 // C++0x [temp.explicit]p10: 3745 // If an entity is the subject of both an explicit instantiation 3746 // declaration and an explicit instantiation definition in the same 3747 // translation unit, the definition shall follow the declaration. 3748 Diag(NewLoc, 3749 diag::err_explicit_instantiation_declaration_after_definition); 3750 Diag(PrevPointOfInstantiation, 3751 diag::note_explicit_instantiation_definition_here); 3752 assert(PrevPointOfInstantiation.isValid() && 3753 "Explicit instantiation without point of instantiation?"); 3754 SuppressNew = true; 3755 return false; 3756 } 3757 break; 3758 3759 case TSK_ExplicitInstantiationDefinition: 3760 switch (PrevTSK) { 3761 case TSK_Undeclared: 3762 case TSK_ImplicitInstantiation: 3763 // We're explicitly instantiating something that may have already been 3764 // implicitly instantiated; that's fine. 3765 return false; 3766 3767 case TSK_ExplicitSpecialization: 3768 // C++ DR 259, C++0x [temp.explicit]p4: 3769 // For a given set of template parameters, if an explicit 3770 // instantiation of a template appears after a declaration of 3771 // an explicit specialization for that template, the explicit 3772 // instantiation has no effect. 3773 // 3774 // In C++98/03 mode, we only give an extension warning here, because it 3775 // is not not harmful to try to explicitly instantiate something that 3776 // has been explicitly specialized. 3777 if (!getLangOptions().CPlusPlus0x) { 3778 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3779 << PrevDecl; 3780 Diag(PrevDecl->getLocation(), 3781 diag::note_previous_template_specialization); 3782 } 3783 SuppressNew = true; 3784 return false; 3785 3786 case TSK_ExplicitInstantiationDeclaration: 3787 // We're explicity instantiating a definition for something for which we 3788 // were previously asked to suppress instantiations. That's fine. 3789 return false; 3790 3791 case TSK_ExplicitInstantiationDefinition: 3792 // C++0x [temp.spec]p5: 3793 // For a given template and a given set of template-arguments, 3794 // - an explicit instantiation definition shall appear at most once 3795 // in a program, 3796 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3797 << PrevDecl; 3798 Diag(PrevPointOfInstantiation, 3799 diag::note_previous_explicit_instantiation); 3800 SuppressNew = true; 3801 return false; 3802 } 3803 break; 3804 } 3805 3806 assert(false && "Missing specialization/instantiation case?"); 3807 3808 return false; 3809} 3810 3811/// \brief Perform semantic analysis for the given function template 3812/// specialization. 3813/// 3814/// This routine performs all of the semantic analysis required for an 3815/// explicit function template specialization. On successful completion, 3816/// the function declaration \p FD will become a function template 3817/// specialization. 3818/// 3819/// \param FD the function declaration, which will be updated to become a 3820/// function template specialization. 3821/// 3822/// \param HasExplicitTemplateArgs whether any template arguments were 3823/// explicitly provided. 3824/// 3825/// \param LAngleLoc the location of the left angle bracket ('<'), if 3826/// template arguments were explicitly provided. 3827/// 3828/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3829/// if any. 3830/// 3831/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3832/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3833/// true as in, e.g., \c void sort<>(char*, char*); 3834/// 3835/// \param RAngleLoc the location of the right angle bracket ('>'), if 3836/// template arguments were explicitly provided. 3837/// 3838/// \param PrevDecl the set of declarations that 3839bool 3840Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3841 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3842 LookupResult &Previous) { 3843 // The set of function template specializations that could match this 3844 // explicit function template specialization. 3845 UnresolvedSet<8> Candidates; 3846 3847 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3848 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3849 I != E; ++I) { 3850 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 3851 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 3852 // Only consider templates found within the same semantic lookup scope as 3853 // FD. 3854 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3855 continue; 3856 3857 // C++ [temp.expl.spec]p11: 3858 // A trailing template-argument can be left unspecified in the 3859 // template-id naming an explicit function template specialization 3860 // provided it can be deduced from the function argument type. 3861 // Perform template argument deduction to determine whether we may be 3862 // specializing this template. 3863 // FIXME: It is somewhat wasteful to build 3864 TemplateDeductionInfo Info(Context, FD->getLocation()); 3865 FunctionDecl *Specialization = 0; 3866 if (TemplateDeductionResult TDK 3867 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 3868 FD->getType(), 3869 Specialization, 3870 Info)) { 3871 // FIXME: Template argument deduction failed; record why it failed, so 3872 // that we can provide nifty diagnostics. 3873 (void)TDK; 3874 continue; 3875 } 3876 3877 // Record this candidate. 3878 Candidates.addDecl(Specialization, I.getAccess()); 3879 } 3880 } 3881 3882 // Find the most specialized function template. 3883 UnresolvedSetIterator Result 3884 = getMostSpecialized(Candidates.begin(), Candidates.end(), 3885 TPOC_Other, FD->getLocation(), 3886 PartialDiagnostic(diag::err_function_template_spec_no_match) 3887 << FD->getDeclName(), 3888 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3889 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 3890 PartialDiagnostic(diag::note_function_template_spec_matched)); 3891 if (Result == Candidates.end()) 3892 return true; 3893 3894 // Ignore access information; it doesn't figure into redeclaration checking. 3895 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 3896 3897 // FIXME: Check if the prior specialization has a point of instantiation. 3898 // If so, we have run afoul of . 3899 3900 // Check the scope of this explicit specialization. 3901 if (CheckTemplateSpecializationScope(*this, 3902 Specialization->getPrimaryTemplate(), 3903 Specialization, FD->getLocation(), 3904 false)) 3905 return true; 3906 3907 // C++ [temp.expl.spec]p6: 3908 // If a template, a member template or the member of a class template is 3909 // explicitly specialized then that specialization shall be declared 3910 // before the first use of that specialization that would cause an implicit 3911 // instantiation to take place, in every translation unit in which such a 3912 // use occurs; no diagnostic is required. 3913 FunctionTemplateSpecializationInfo *SpecInfo 3914 = Specialization->getTemplateSpecializationInfo(); 3915 assert(SpecInfo && "Function template specialization info missing?"); 3916 if (SpecInfo->getPointOfInstantiation().isValid()) { 3917 Diag(FD->getLocation(), diag::err_specialization_after_instantiation) 3918 << FD; 3919 Diag(SpecInfo->getPointOfInstantiation(), 3920 diag::note_instantiation_required_here) 3921 << (Specialization->getTemplateSpecializationKind() 3922 != TSK_ImplicitInstantiation); 3923 return true; 3924 } 3925 3926 // Mark the prior declaration as an explicit specialization, so that later 3927 // clients know that this is an explicit specialization. 3928 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3929 3930 // Turn the given function declaration into a function template 3931 // specialization, with the template arguments from the previous 3932 // specialization. 3933 FD->setFunctionTemplateSpecialization(Context, 3934 Specialization->getPrimaryTemplate(), 3935 new (Context) TemplateArgumentList( 3936 *Specialization->getTemplateSpecializationArgs()), 3937 /*InsertPos=*/0, 3938 TSK_ExplicitSpecialization); 3939 3940 // The "previous declaration" for this function template specialization is 3941 // the prior function template specialization. 3942 Previous.clear(); 3943 Previous.addDecl(Specialization); 3944 return false; 3945} 3946 3947/// \brief Perform semantic analysis for the given non-template member 3948/// specialization. 3949/// 3950/// This routine performs all of the semantic analysis required for an 3951/// explicit member function specialization. On successful completion, 3952/// the function declaration \p FD will become a member function 3953/// specialization. 3954/// 3955/// \param Member the member declaration, which will be updated to become a 3956/// specialization. 3957/// 3958/// \param Previous the set of declarations, one of which may be specialized 3959/// by this function specialization; the set will be modified to contain the 3960/// redeclared member. 3961bool 3962Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 3963 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 3964 3965 // Try to find the member we are instantiating. 3966 NamedDecl *Instantiation = 0; 3967 NamedDecl *InstantiatedFrom = 0; 3968 MemberSpecializationInfo *MSInfo = 0; 3969 3970 if (Previous.empty()) { 3971 // Nowhere to look anyway. 3972 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 3973 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3974 I != E; ++I) { 3975 NamedDecl *D = (*I)->getUnderlyingDecl(); 3976 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 3977 if (Context.hasSameType(Function->getType(), Method->getType())) { 3978 Instantiation = Method; 3979 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 3980 MSInfo = Method->getMemberSpecializationInfo(); 3981 break; 3982 } 3983 } 3984 } 3985 } else if (isa<VarDecl>(Member)) { 3986 VarDecl *PrevVar; 3987 if (Previous.isSingleResult() && 3988 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 3989 if (PrevVar->isStaticDataMember()) { 3990 Instantiation = PrevVar; 3991 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 3992 MSInfo = PrevVar->getMemberSpecializationInfo(); 3993 } 3994 } else if (isa<RecordDecl>(Member)) { 3995 CXXRecordDecl *PrevRecord; 3996 if (Previous.isSingleResult() && 3997 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 3998 Instantiation = PrevRecord; 3999 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4000 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4001 } 4002 } 4003 4004 if (!Instantiation) { 4005 // There is no previous declaration that matches. Since member 4006 // specializations are always out-of-line, the caller will complain about 4007 // this mismatch later. 4008 return false; 4009 } 4010 4011 // Make sure that this is a specialization of a member. 4012 if (!InstantiatedFrom) { 4013 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4014 << Member; 4015 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4016 return true; 4017 } 4018 4019 // C++ [temp.expl.spec]p6: 4020 // If a template, a member template or the member of a class template is 4021 // explicitly specialized then that spe- cialization shall be declared 4022 // before the first use of that specialization that would cause an implicit 4023 // instantiation to take place, in every translation unit in which such a 4024 // use occurs; no diagnostic is required. 4025 assert(MSInfo && "Member specialization info missing?"); 4026 if (MSInfo->getPointOfInstantiation().isValid()) { 4027 Diag(Member->getLocation(), diag::err_specialization_after_instantiation) 4028 << Member; 4029 Diag(MSInfo->getPointOfInstantiation(), 4030 diag::note_instantiation_required_here) 4031 << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation); 4032 return true; 4033 } 4034 4035 // Check the scope of this explicit specialization. 4036 if (CheckTemplateSpecializationScope(*this, 4037 InstantiatedFrom, 4038 Instantiation, Member->getLocation(), 4039 false)) 4040 return true; 4041 4042 // Note that this is an explicit instantiation of a member. 4043 // the original declaration to note that it is an explicit specialization 4044 // (if it was previously an implicit instantiation). This latter step 4045 // makes bookkeeping easier. 4046 if (isa<FunctionDecl>(Member)) { 4047 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4048 if (InstantiationFunction->getTemplateSpecializationKind() == 4049 TSK_ImplicitInstantiation) { 4050 InstantiationFunction->setTemplateSpecializationKind( 4051 TSK_ExplicitSpecialization); 4052 InstantiationFunction->setLocation(Member->getLocation()); 4053 } 4054 4055 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4056 cast<CXXMethodDecl>(InstantiatedFrom), 4057 TSK_ExplicitSpecialization); 4058 } else if (isa<VarDecl>(Member)) { 4059 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4060 if (InstantiationVar->getTemplateSpecializationKind() == 4061 TSK_ImplicitInstantiation) { 4062 InstantiationVar->setTemplateSpecializationKind( 4063 TSK_ExplicitSpecialization); 4064 InstantiationVar->setLocation(Member->getLocation()); 4065 } 4066 4067 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4068 cast<VarDecl>(InstantiatedFrom), 4069 TSK_ExplicitSpecialization); 4070 } else { 4071 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4072 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4073 if (InstantiationClass->getTemplateSpecializationKind() == 4074 TSK_ImplicitInstantiation) { 4075 InstantiationClass->setTemplateSpecializationKind( 4076 TSK_ExplicitSpecialization); 4077 InstantiationClass->setLocation(Member->getLocation()); 4078 } 4079 4080 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4081 cast<CXXRecordDecl>(InstantiatedFrom), 4082 TSK_ExplicitSpecialization); 4083 } 4084 4085 // Save the caller the trouble of having to figure out which declaration 4086 // this specialization matches. 4087 Previous.clear(); 4088 Previous.addDecl(Instantiation); 4089 return false; 4090} 4091 4092/// \brief Check the scope of an explicit instantiation. 4093static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4094 SourceLocation InstLoc, 4095 bool WasQualifiedName) { 4096 DeclContext *ExpectedContext 4097 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4098 DeclContext *CurContext = S.CurContext->getLookupContext(); 4099 4100 // C++0x [temp.explicit]p2: 4101 // An explicit instantiation shall appear in an enclosing namespace of its 4102 // template. 4103 // 4104 // This is DR275, which we do not retroactively apply to C++98/03. 4105 if (S.getLangOptions().CPlusPlus0x && 4106 !CurContext->Encloses(ExpectedContext)) { 4107 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4108 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 4109 << D << NS; 4110 else 4111 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 4112 << D; 4113 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4114 return; 4115 } 4116 4117 // C++0x [temp.explicit]p2: 4118 // If the name declared in the explicit instantiation is an unqualified 4119 // name, the explicit instantiation shall appear in the namespace where 4120 // its template is declared or, if that namespace is inline (7.3.1), any 4121 // namespace from its enclosing namespace set. 4122 if (WasQualifiedName) 4123 return; 4124 4125 if (CurContext->Equals(ExpectedContext)) 4126 return; 4127 4128 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4129 << D << ExpectedContext; 4130 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4131} 4132 4133/// \brief Determine whether the given scope specifier has a template-id in it. 4134static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4135 if (!SS.isSet()) 4136 return false; 4137 4138 // C++0x [temp.explicit]p2: 4139 // If the explicit instantiation is for a member function, a member class 4140 // or a static data member of a class template specialization, the name of 4141 // the class template specialization in the qualified-id for the member 4142 // name shall be a simple-template-id. 4143 // 4144 // C++98 has the same restriction, just worded differently. 4145 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4146 NNS; NNS = NNS->getPrefix()) 4147 if (Type *T = NNS->getAsType()) 4148 if (isa<TemplateSpecializationType>(T)) 4149 return true; 4150 4151 return false; 4152} 4153 4154// Explicit instantiation of a class template specialization 4155// FIXME: Implement extern template semantics 4156Sema::DeclResult 4157Sema::ActOnExplicitInstantiation(Scope *S, 4158 SourceLocation ExternLoc, 4159 SourceLocation TemplateLoc, 4160 unsigned TagSpec, 4161 SourceLocation KWLoc, 4162 const CXXScopeSpec &SS, 4163 TemplateTy TemplateD, 4164 SourceLocation TemplateNameLoc, 4165 SourceLocation LAngleLoc, 4166 ASTTemplateArgsPtr TemplateArgsIn, 4167 SourceLocation RAngleLoc, 4168 AttributeList *Attr) { 4169 // Find the class template we're specializing 4170 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4171 ClassTemplateDecl *ClassTemplate 4172 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4173 4174 // Check that the specialization uses the same tag kind as the 4175 // original template. 4176 TagDecl::TagKind Kind; 4177 switch (TagSpec) { 4178 default: assert(0 && "Unknown tag type!"); 4179 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4180 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4181 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4182 } 4183 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4184 Kind, KWLoc, 4185 *ClassTemplate->getIdentifier())) { 4186 Diag(KWLoc, diag::err_use_with_wrong_tag) 4187 << ClassTemplate 4188 << CodeModificationHint::CreateReplacement(KWLoc, 4189 ClassTemplate->getTemplatedDecl()->getKindName()); 4190 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4191 diag::note_previous_use); 4192 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4193 } 4194 4195 // C++0x [temp.explicit]p2: 4196 // There are two forms of explicit instantiation: an explicit instantiation 4197 // definition and an explicit instantiation declaration. An explicit 4198 // instantiation declaration begins with the extern keyword. [...] 4199 TemplateSpecializationKind TSK 4200 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4201 : TSK_ExplicitInstantiationDeclaration; 4202 4203 // Translate the parser's template argument list in our AST format. 4204 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4205 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4206 4207 // Check that the template argument list is well-formed for this 4208 // template. 4209 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4210 TemplateArgs.size()); 4211 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4212 TemplateArgs, false, Converted)) 4213 return true; 4214 4215 assert((Converted.structuredSize() == 4216 ClassTemplate->getTemplateParameters()->size()) && 4217 "Converted template argument list is too short!"); 4218 4219 // Find the class template specialization declaration that 4220 // corresponds to these arguments. 4221 llvm::FoldingSetNodeID ID; 4222 ClassTemplateSpecializationDecl::Profile(ID, 4223 Converted.getFlatArguments(), 4224 Converted.flatSize(), 4225 Context); 4226 void *InsertPos = 0; 4227 ClassTemplateSpecializationDecl *PrevDecl 4228 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4229 4230 // C++0x [temp.explicit]p2: 4231 // [...] An explicit instantiation shall appear in an enclosing 4232 // namespace of its template. [...] 4233 // 4234 // This is C++ DR 275. 4235 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4236 SS.isSet()); 4237 4238 ClassTemplateSpecializationDecl *Specialization = 0; 4239 4240 bool ReusedDecl = false; 4241 if (PrevDecl) { 4242 bool SuppressNew = false; 4243 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4244 PrevDecl, 4245 PrevDecl->getSpecializationKind(), 4246 PrevDecl->getPointOfInstantiation(), 4247 SuppressNew)) 4248 return DeclPtrTy::make(PrevDecl); 4249 4250 if (SuppressNew) 4251 return DeclPtrTy::make(PrevDecl); 4252 4253 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4254 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4255 // Since the only prior class template specialization with these 4256 // arguments was referenced but not declared, reuse that 4257 // declaration node as our own, updating its source location to 4258 // reflect our new declaration. 4259 Specialization = PrevDecl; 4260 Specialization->setLocation(TemplateNameLoc); 4261 PrevDecl = 0; 4262 ReusedDecl = true; 4263 } 4264 } 4265 4266 if (!Specialization) { 4267 // Create a new class template specialization declaration node for 4268 // this explicit specialization. 4269 Specialization 4270 = ClassTemplateSpecializationDecl::Create(Context, 4271 ClassTemplate->getDeclContext(), 4272 TemplateNameLoc, 4273 ClassTemplate, 4274 Converted, PrevDecl); 4275 4276 if (PrevDecl) { 4277 // Remove the previous declaration from the folding set, since we want 4278 // to introduce a new declaration. 4279 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4280 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4281 } 4282 4283 // Insert the new specialization. 4284 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4285 } 4286 4287 // Build the fully-sugared type for this explicit instantiation as 4288 // the user wrote in the explicit instantiation itself. This means 4289 // that we'll pretty-print the type retrieved from the 4290 // specialization's declaration the way that the user actually wrote 4291 // the explicit instantiation, rather than formatting the name based 4292 // on the "canonical" representation used to store the template 4293 // arguments in the specialization. 4294 QualType WrittenTy 4295 = Context.getTemplateSpecializationType(Name, TemplateArgs, 4296 Context.getTypeDeclType(Specialization)); 4297 Specialization->setTypeAsWritten(WrittenTy); 4298 TemplateArgsIn.release(); 4299 4300 if (!ReusedDecl) { 4301 // Add the explicit instantiation into its lexical context. However, 4302 // since explicit instantiations are never found by name lookup, we 4303 // just put it into the declaration context directly. 4304 Specialization->setLexicalDeclContext(CurContext); 4305 CurContext->addDecl(Specialization); 4306 } 4307 4308 // C++ [temp.explicit]p3: 4309 // A definition of a class template or class member template 4310 // shall be in scope at the point of the explicit instantiation of 4311 // the class template or class member template. 4312 // 4313 // This check comes when we actually try to perform the 4314 // instantiation. 4315 ClassTemplateSpecializationDecl *Def 4316 = cast_or_null<ClassTemplateSpecializationDecl>( 4317 Specialization->getDefinition(Context)); 4318 if (!Def) 4319 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4320 4321 // Instantiate the members of this class template specialization. 4322 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4323 Specialization->getDefinition(Context)); 4324 if (Def) 4325 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4326 4327 return DeclPtrTy::make(Specialization); 4328} 4329 4330// Explicit instantiation of a member class of a class template. 4331Sema::DeclResult 4332Sema::ActOnExplicitInstantiation(Scope *S, 4333 SourceLocation ExternLoc, 4334 SourceLocation TemplateLoc, 4335 unsigned TagSpec, 4336 SourceLocation KWLoc, 4337 const CXXScopeSpec &SS, 4338 IdentifierInfo *Name, 4339 SourceLocation NameLoc, 4340 AttributeList *Attr) { 4341 4342 bool Owned = false; 4343 bool IsDependent = false; 4344 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4345 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4346 MultiTemplateParamsArg(*this, 0, 0), 4347 Owned, IsDependent); 4348 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4349 4350 if (!TagD) 4351 return true; 4352 4353 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4354 if (Tag->isEnum()) { 4355 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4356 << Context.getTypeDeclType(Tag); 4357 return true; 4358 } 4359 4360 if (Tag->isInvalidDecl()) 4361 return true; 4362 4363 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4364 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4365 if (!Pattern) { 4366 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4367 << Context.getTypeDeclType(Record); 4368 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4369 return true; 4370 } 4371 4372 // C++0x [temp.explicit]p2: 4373 // If the explicit instantiation is for a class or member class, the 4374 // elaborated-type-specifier in the declaration shall include a 4375 // simple-template-id. 4376 // 4377 // C++98 has the same restriction, just worded differently. 4378 if (!ScopeSpecifierHasTemplateId(SS)) 4379 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4380 << Record << SS.getRange(); 4381 4382 // C++0x [temp.explicit]p2: 4383 // There are two forms of explicit instantiation: an explicit instantiation 4384 // definition and an explicit instantiation declaration. An explicit 4385 // instantiation declaration begins with the extern keyword. [...] 4386 TemplateSpecializationKind TSK 4387 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4388 : TSK_ExplicitInstantiationDeclaration; 4389 4390 // C++0x [temp.explicit]p2: 4391 // [...] An explicit instantiation shall appear in an enclosing 4392 // namespace of its template. [...] 4393 // 4394 // This is C++ DR 275. 4395 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4396 4397 // Verify that it is okay to explicitly instantiate here. 4398 CXXRecordDecl *PrevDecl 4399 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4400 if (!PrevDecl && Record->getDefinition(Context)) 4401 PrevDecl = Record; 4402 if (PrevDecl) { 4403 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4404 bool SuppressNew = false; 4405 assert(MSInfo && "No member specialization information?"); 4406 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4407 PrevDecl, 4408 MSInfo->getTemplateSpecializationKind(), 4409 MSInfo->getPointOfInstantiation(), 4410 SuppressNew)) 4411 return true; 4412 if (SuppressNew) 4413 return TagD; 4414 } 4415 4416 CXXRecordDecl *RecordDef 4417 = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 4418 if (!RecordDef) { 4419 // C++ [temp.explicit]p3: 4420 // A definition of a member class of a class template shall be in scope 4421 // at the point of an explicit instantiation of the member class. 4422 CXXRecordDecl *Def 4423 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 4424 if (!Def) { 4425 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4426 << 0 << Record->getDeclName() << Record->getDeclContext(); 4427 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4428 << Pattern; 4429 return true; 4430 } else { 4431 if (InstantiateClass(NameLoc, Record, Def, 4432 getTemplateInstantiationArgs(Record), 4433 TSK)) 4434 return true; 4435 4436 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context)); 4437 if (!RecordDef) 4438 return true; 4439 } 4440 } 4441 4442 // Instantiate all of the members of the class. 4443 InstantiateClassMembers(NameLoc, RecordDef, 4444 getTemplateInstantiationArgs(Record), TSK); 4445 4446 // FIXME: We don't have any representation for explicit instantiations of 4447 // member classes. Such a representation is not needed for compilation, but it 4448 // should be available for clients that want to see all of the declarations in 4449 // the source code. 4450 return TagD; 4451} 4452 4453Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4454 SourceLocation ExternLoc, 4455 SourceLocation TemplateLoc, 4456 Declarator &D) { 4457 // Explicit instantiations always require a name. 4458 DeclarationName Name = GetNameForDeclarator(D); 4459 if (!Name) { 4460 if (!D.isInvalidType()) 4461 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4462 diag::err_explicit_instantiation_requires_name) 4463 << D.getDeclSpec().getSourceRange() 4464 << D.getSourceRange(); 4465 4466 return true; 4467 } 4468 4469 // The scope passed in may not be a decl scope. Zip up the scope tree until 4470 // we find one that is. 4471 while ((S->getFlags() & Scope::DeclScope) == 0 || 4472 (S->getFlags() & Scope::TemplateParamScope) != 0) 4473 S = S->getParent(); 4474 4475 // Determine the type of the declaration. 4476 QualType R = GetTypeForDeclarator(D, S, 0); 4477 if (R.isNull()) 4478 return true; 4479 4480 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4481 // Cannot explicitly instantiate a typedef. 4482 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4483 << Name; 4484 return true; 4485 } 4486 4487 // C++0x [temp.explicit]p1: 4488 // [...] An explicit instantiation of a function template shall not use the 4489 // inline or constexpr specifiers. 4490 // Presumably, this also applies to member functions of class templates as 4491 // well. 4492 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4493 Diag(D.getDeclSpec().getInlineSpecLoc(), 4494 diag::err_explicit_instantiation_inline) 4495 <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4496 4497 // FIXME: check for constexpr specifier. 4498 4499 // C++0x [temp.explicit]p2: 4500 // There are two forms of explicit instantiation: an explicit instantiation 4501 // definition and an explicit instantiation declaration. An explicit 4502 // instantiation declaration begins with the extern keyword. [...] 4503 TemplateSpecializationKind TSK 4504 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4505 : TSK_ExplicitInstantiationDeclaration; 4506 4507 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4508 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4509 4510 if (!R->isFunctionType()) { 4511 // C++ [temp.explicit]p1: 4512 // A [...] static data member of a class template can be explicitly 4513 // instantiated from the member definition associated with its class 4514 // template. 4515 if (Previous.isAmbiguous()) 4516 return true; 4517 4518 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4519 if (!Prev || !Prev->isStaticDataMember()) { 4520 // We expect to see a data data member here. 4521 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4522 << Name; 4523 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4524 P != PEnd; ++P) 4525 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4526 return true; 4527 } 4528 4529 if (!Prev->getInstantiatedFromStaticDataMember()) { 4530 // FIXME: Check for explicit specialization? 4531 Diag(D.getIdentifierLoc(), 4532 diag::err_explicit_instantiation_data_member_not_instantiated) 4533 << Prev; 4534 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4535 // FIXME: Can we provide a note showing where this was declared? 4536 return true; 4537 } 4538 4539 // C++0x [temp.explicit]p2: 4540 // If the explicit instantiation is for a member function, a member class 4541 // or a static data member of a class template specialization, the name of 4542 // the class template specialization in the qualified-id for the member 4543 // name shall be a simple-template-id. 4544 // 4545 // C++98 has the same restriction, just worded differently. 4546 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4547 Diag(D.getIdentifierLoc(), 4548 diag::err_explicit_instantiation_without_qualified_id) 4549 << Prev << D.getCXXScopeSpec().getRange(); 4550 4551 // Check the scope of this explicit instantiation. 4552 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4553 4554 // Verify that it is okay to explicitly instantiate here. 4555 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4556 assert(MSInfo && "Missing static data member specialization info?"); 4557 bool SuppressNew = false; 4558 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4559 MSInfo->getTemplateSpecializationKind(), 4560 MSInfo->getPointOfInstantiation(), 4561 SuppressNew)) 4562 return true; 4563 if (SuppressNew) 4564 return DeclPtrTy(); 4565 4566 // Instantiate static data member. 4567 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4568 if (TSK == TSK_ExplicitInstantiationDefinition) 4569 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4570 /*DefinitionRequired=*/true); 4571 4572 // FIXME: Create an ExplicitInstantiation node? 4573 return DeclPtrTy(); 4574 } 4575 4576 // If the declarator is a template-id, translate the parser's template 4577 // argument list into our AST format. 4578 bool HasExplicitTemplateArgs = false; 4579 TemplateArgumentListInfo TemplateArgs; 4580 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4581 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4582 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 4583 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 4584 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4585 TemplateId->getTemplateArgs(), 4586 TemplateId->NumArgs); 4587 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 4588 HasExplicitTemplateArgs = true; 4589 TemplateArgsPtr.release(); 4590 } 4591 4592 // C++ [temp.explicit]p1: 4593 // A [...] function [...] can be explicitly instantiated from its template. 4594 // A member function [...] of a class template can be explicitly 4595 // instantiated from the member definition associated with its class 4596 // template. 4597 UnresolvedSet<8> Matches; 4598 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4599 P != PEnd; ++P) { 4600 NamedDecl *Prev = *P; 4601 if (!HasExplicitTemplateArgs) { 4602 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4603 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4604 Matches.clear(); 4605 4606 Matches.addDecl(Method, P.getAccess()); 4607 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 4608 break; 4609 } 4610 } 4611 } 4612 4613 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4614 if (!FunTmpl) 4615 continue; 4616 4617 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 4618 FunctionDecl *Specialization = 0; 4619 if (TemplateDeductionResult TDK 4620 = DeduceTemplateArguments(FunTmpl, 4621 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 4622 R, Specialization, Info)) { 4623 // FIXME: Keep track of almost-matches? 4624 (void)TDK; 4625 continue; 4626 } 4627 4628 Matches.addDecl(Specialization, P.getAccess()); 4629 } 4630 4631 // Find the most specialized function template specialization. 4632 UnresolvedSetIterator Result 4633 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 4634 D.getIdentifierLoc(), 4635 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4636 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4637 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4638 4639 if (Result == Matches.end()) 4640 return true; 4641 4642 // Ignore access control bits, we don't need them for redeclaration checking. 4643 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4644 4645 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4646 Diag(D.getIdentifierLoc(), 4647 diag::err_explicit_instantiation_member_function_not_instantiated) 4648 << Specialization 4649 << (Specialization->getTemplateSpecializationKind() == 4650 TSK_ExplicitSpecialization); 4651 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4652 return true; 4653 } 4654 4655 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4656 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4657 PrevDecl = Specialization; 4658 4659 if (PrevDecl) { 4660 bool SuppressNew = false; 4661 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4662 PrevDecl, 4663 PrevDecl->getTemplateSpecializationKind(), 4664 PrevDecl->getPointOfInstantiation(), 4665 SuppressNew)) 4666 return true; 4667 4668 // FIXME: We may still want to build some representation of this 4669 // explicit specialization. 4670 if (SuppressNew) 4671 return DeclPtrTy(); 4672 } 4673 4674 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4675 4676 if (TSK == TSK_ExplicitInstantiationDefinition) 4677 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4678 false, /*DefinitionRequired=*/true); 4679 4680 // C++0x [temp.explicit]p2: 4681 // If the explicit instantiation is for a member function, a member class 4682 // or a static data member of a class template specialization, the name of 4683 // the class template specialization in the qualified-id for the member 4684 // name shall be a simple-template-id. 4685 // 4686 // C++98 has the same restriction, just worded differently. 4687 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4688 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4689 D.getCXXScopeSpec().isSet() && 4690 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4691 Diag(D.getIdentifierLoc(), 4692 diag::err_explicit_instantiation_without_qualified_id) 4693 << Specialization << D.getCXXScopeSpec().getRange(); 4694 4695 CheckExplicitInstantiationScope(*this, 4696 FunTmpl? (NamedDecl *)FunTmpl 4697 : Specialization->getInstantiatedFromMemberFunction(), 4698 D.getIdentifierLoc(), 4699 D.getCXXScopeSpec().isSet()); 4700 4701 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4702 return DeclPtrTy(); 4703} 4704 4705Sema::TypeResult 4706Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4707 const CXXScopeSpec &SS, IdentifierInfo *Name, 4708 SourceLocation TagLoc, SourceLocation NameLoc) { 4709 // This has to hold, because SS is expected to be defined. 4710 assert(Name && "Expected a name in a dependent tag"); 4711 4712 NestedNameSpecifier *NNS 4713 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4714 if (!NNS) 4715 return true; 4716 4717 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4718 if (T.isNull()) 4719 return true; 4720 4721 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4722 QualType ElabType = Context.getElaboratedType(T, TagKind); 4723 4724 return ElabType.getAsOpaquePtr(); 4725} 4726 4727Sema::TypeResult 4728Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4729 const IdentifierInfo &II, SourceLocation IdLoc) { 4730 NestedNameSpecifier *NNS 4731 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4732 if (!NNS) 4733 return true; 4734 4735 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4736 if (T.isNull()) 4737 return true; 4738 return T.getAsOpaquePtr(); 4739} 4740 4741Sema::TypeResult 4742Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4743 SourceLocation TemplateLoc, TypeTy *Ty) { 4744 QualType T = GetTypeFromParser(Ty); 4745 NestedNameSpecifier *NNS 4746 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4747 const TemplateSpecializationType *TemplateId 4748 = T->getAs<TemplateSpecializationType>(); 4749 assert(TemplateId && "Expected a template specialization type"); 4750 4751 if (computeDeclContext(SS, false)) { 4752 // If we can compute a declaration context, then the "typename" 4753 // keyword was superfluous. Just build a QualifiedNameType to keep 4754 // track of the nested-name-specifier. 4755 4756 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4757 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4758 } 4759 4760 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4761} 4762 4763/// \brief Build the type that describes a C++ typename specifier, 4764/// e.g., "typename T::type". 4765QualType 4766Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4767 SourceRange Range) { 4768 CXXRecordDecl *CurrentInstantiation = 0; 4769 if (NNS->isDependent()) { 4770 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4771 4772 // If the nested-name-specifier does not refer to the current 4773 // instantiation, then build a typename type. 4774 if (!CurrentInstantiation) 4775 return Context.getTypenameType(NNS, &II); 4776 4777 // The nested-name-specifier refers to the current instantiation, so the 4778 // "typename" keyword itself is superfluous. In C++03, the program is 4779 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4780 // extraneous "typename" keywords, and we retroactively apply this DR to 4781 // C++03 code. 4782 } 4783 4784 DeclContext *Ctx = 0; 4785 4786 if (CurrentInstantiation) 4787 Ctx = CurrentInstantiation; 4788 else { 4789 CXXScopeSpec SS; 4790 SS.setScopeRep(NNS); 4791 SS.setRange(Range); 4792 if (RequireCompleteDeclContext(SS)) 4793 return QualType(); 4794 4795 Ctx = computeDeclContext(SS); 4796 } 4797 assert(Ctx && "No declaration context?"); 4798 4799 DeclarationName Name(&II); 4800 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 4801 LookupQualifiedName(Result, Ctx); 4802 unsigned DiagID = 0; 4803 Decl *Referenced = 0; 4804 switch (Result.getResultKind()) { 4805 case LookupResult::NotFound: 4806 DiagID = diag::err_typename_nested_not_found; 4807 break; 4808 4809 case LookupResult::NotFoundInCurrentInstantiation: 4810 // Okay, it's a member of an unknown instantiation. 4811 return Context.getTypenameType(NNS, &II); 4812 4813 case LookupResult::Found: 4814 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4815 // We found a type. Build a QualifiedNameType, since the 4816 // typename-specifier was just sugar. FIXME: Tell 4817 // QualifiedNameType that it has a "typename" prefix. 4818 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4819 } 4820 4821 DiagID = diag::err_typename_nested_not_type; 4822 Referenced = Result.getFoundDecl(); 4823 break; 4824 4825 case LookupResult::FoundUnresolvedValue: 4826 llvm_unreachable("unresolved using decl in non-dependent context"); 4827 return QualType(); 4828 4829 case LookupResult::FoundOverloaded: 4830 DiagID = diag::err_typename_nested_not_type; 4831 Referenced = *Result.begin(); 4832 break; 4833 4834 case LookupResult::Ambiguous: 4835 return QualType(); 4836 } 4837 4838 // If we get here, it's because name lookup did not find a 4839 // type. Emit an appropriate diagnostic and return an error. 4840 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4841 if (Referenced) 4842 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4843 << Name; 4844 return QualType(); 4845} 4846 4847namespace { 4848 // See Sema::RebuildTypeInCurrentInstantiation 4849 class CurrentInstantiationRebuilder 4850 : public TreeTransform<CurrentInstantiationRebuilder> { 4851 SourceLocation Loc; 4852 DeclarationName Entity; 4853 4854 public: 4855 CurrentInstantiationRebuilder(Sema &SemaRef, 4856 SourceLocation Loc, 4857 DeclarationName Entity) 4858 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4859 Loc(Loc), Entity(Entity) { } 4860 4861 /// \brief Determine whether the given type \p T has already been 4862 /// transformed. 4863 /// 4864 /// For the purposes of type reconstruction, a type has already been 4865 /// transformed if it is NULL or if it is not dependent. 4866 bool AlreadyTransformed(QualType T) { 4867 return T.isNull() || !T->isDependentType(); 4868 } 4869 4870 /// \brief Returns the location of the entity whose type is being 4871 /// rebuilt. 4872 SourceLocation getBaseLocation() { return Loc; } 4873 4874 /// \brief Returns the name of the entity whose type is being rebuilt. 4875 DeclarationName getBaseEntity() { return Entity; } 4876 4877 /// \brief Sets the "base" location and entity when that 4878 /// information is known based on another transformation. 4879 void setBase(SourceLocation Loc, DeclarationName Entity) { 4880 this->Loc = Loc; 4881 this->Entity = Entity; 4882 } 4883 4884 /// \brief Transforms an expression by returning the expression itself 4885 /// (an identity function). 4886 /// 4887 /// FIXME: This is completely unsafe; we will need to actually clone the 4888 /// expressions. 4889 Sema::OwningExprResult TransformExpr(Expr *E) { 4890 return getSema().Owned(E); 4891 } 4892 4893 /// \brief Transforms a typename type by determining whether the type now 4894 /// refers to a member of the current instantiation, and then 4895 /// type-checking and building a QualifiedNameType (when possible). 4896 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL); 4897 }; 4898} 4899 4900QualType 4901CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4902 TypenameTypeLoc TL) { 4903 TypenameType *T = TL.getTypePtr(); 4904 4905 NestedNameSpecifier *NNS 4906 = TransformNestedNameSpecifier(T->getQualifier(), 4907 /*FIXME:*/SourceRange(getBaseLocation())); 4908 if (!NNS) 4909 return QualType(); 4910 4911 // If the nested-name-specifier did not change, and we cannot compute the 4912 // context corresponding to the nested-name-specifier, then this 4913 // typename type will not change; exit early. 4914 CXXScopeSpec SS; 4915 SS.setRange(SourceRange(getBaseLocation())); 4916 SS.setScopeRep(NNS); 4917 4918 QualType Result; 4919 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4920 Result = QualType(T, 0); 4921 4922 // Rebuild the typename type, which will probably turn into a 4923 // QualifiedNameType. 4924 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4925 QualType NewTemplateId 4926 = TransformType(QualType(TemplateId, 0)); 4927 if (NewTemplateId.isNull()) 4928 return QualType(); 4929 4930 if (NNS == T->getQualifier() && 4931 NewTemplateId == QualType(TemplateId, 0)) 4932 Result = QualType(T, 0); 4933 else 4934 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); 4935 } else 4936 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), 4937 SourceRange(TL.getNameLoc())); 4938 4939 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 4940 NewTL.setNameLoc(TL.getNameLoc()); 4941 return Result; 4942} 4943 4944/// \brief Rebuilds a type within the context of the current instantiation. 4945/// 4946/// The type \p T is part of the type of an out-of-line member definition of 4947/// a class template (or class template partial specialization) that was parsed 4948/// and constructed before we entered the scope of the class template (or 4949/// partial specialization thereof). This routine will rebuild that type now 4950/// that we have entered the declarator's scope, which may produce different 4951/// canonical types, e.g., 4952/// 4953/// \code 4954/// template<typename T> 4955/// struct X { 4956/// typedef T* pointer; 4957/// pointer data(); 4958/// }; 4959/// 4960/// template<typename T> 4961/// typename X<T>::pointer X<T>::data() { ... } 4962/// \endcode 4963/// 4964/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 4965/// since we do not know that we can look into X<T> when we parsed the type. 4966/// This function will rebuild the type, performing the lookup of "pointer" 4967/// in X<T> and returning a QualifiedNameType whose canonical type is the same 4968/// as the canonical type of T*, allowing the return types of the out-of-line 4969/// definition and the declaration to match. 4970QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 4971 DeclarationName Name) { 4972 if (T.isNull() || !T->isDependentType()) 4973 return T; 4974 4975 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 4976 return Rebuilder.TransformType(T); 4977} 4978 4979/// \brief Produces a formatted string that describes the binding of 4980/// template parameters to template arguments. 4981std::string 4982Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4983 const TemplateArgumentList &Args) { 4984 // FIXME: For variadic templates, we'll need to get the structured list. 4985 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 4986 Args.flat_size()); 4987} 4988 4989std::string 4990Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 4991 const TemplateArgument *Args, 4992 unsigned NumArgs) { 4993 std::string Result; 4994 4995 if (!Params || Params->size() == 0 || NumArgs == 0) 4996 return Result; 4997 4998 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 4999 if (I >= NumArgs) 5000 break; 5001 5002 if (I == 0) 5003 Result += "[with "; 5004 else 5005 Result += ", "; 5006 5007 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5008 Result += Id->getName(); 5009 } else { 5010 Result += '$'; 5011 Result += llvm::utostr(I); 5012 } 5013 5014 Result += " = "; 5015 5016 switch (Args[I].getKind()) { 5017 case TemplateArgument::Null: 5018 Result += "<no value>"; 5019 break; 5020 5021 case TemplateArgument::Type: { 5022 std::string TypeStr; 5023 Args[I].getAsType().getAsStringInternal(TypeStr, 5024 Context.PrintingPolicy); 5025 Result += TypeStr; 5026 break; 5027 } 5028 5029 case TemplateArgument::Declaration: { 5030 bool Unnamed = true; 5031 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5032 if (ND->getDeclName()) { 5033 Unnamed = false; 5034 Result += ND->getNameAsString(); 5035 } 5036 } 5037 5038 if (Unnamed) { 5039 Result += "<anonymous>"; 5040 } 5041 break; 5042 } 5043 5044 case TemplateArgument::Template: { 5045 std::string Str; 5046 llvm::raw_string_ostream OS(Str); 5047 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5048 Result += OS.str(); 5049 break; 5050 } 5051 5052 case TemplateArgument::Integral: { 5053 Result += Args[I].getAsIntegral()->toString(10); 5054 break; 5055 } 5056 5057 case TemplateArgument::Expression: { 5058 assert(false && "No expressions in deduced template arguments!"); 5059 Result += "<expression>"; 5060 break; 5061 } 5062 5063 case TemplateArgument::Pack: 5064 // FIXME: Format template argument packs 5065 Result += "<template argument pack>"; 5066 break; 5067 } 5068 } 5069 5070 Result += ']'; 5071 return Result; 5072} 5073