SemaTemplate.cpp revision 59e7c56806590a80c06b70a2d76888744b9ff9aa
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is used as a template-name, the reference refers to the class
96      //   template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
99        if (!ClassTemplates.insert(ClassTmpl)) {
100          filter.erase();
101          continue;
102        }
103
104      // FIXME: we promote access to public here as a workaround to
105      // the fact that LookupResult doesn't let us remember that we
106      // found this template through a particular injected class name,
107      // which means we end up doing nasty things to the invariants.
108      // Pretending that access is public is *much* safer.
109      filter.replace(Repl, AS_public);
110    }
111  }
112  filter.done();
113}
114
115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
116  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
117    if (isAcceptableTemplateName(Context, *I))
118      return true;
119
120  return false;
121}
122
123TemplateNameKind Sema::isTemplateName(Scope *S,
124                                      CXXScopeSpec &SS,
125                                      bool hasTemplateKeyword,
126                                      UnqualifiedId &Name,
127                                      ParsedType ObjectTypePtr,
128                                      bool EnteringContext,
129                                      TemplateTy &TemplateResult,
130                                      bool &MemberOfUnknownSpecialization) {
131  assert(getLangOptions().CPlusPlus && "No template names in C!");
132
133  DeclarationName TName;
134  MemberOfUnknownSpecialization = false;
135
136  switch (Name.getKind()) {
137  case UnqualifiedId::IK_Identifier:
138    TName = DeclarationName(Name.Identifier);
139    break;
140
141  case UnqualifiedId::IK_OperatorFunctionId:
142    TName = Context.DeclarationNames.getCXXOperatorName(
143                                              Name.OperatorFunctionId.Operator);
144    break;
145
146  case UnqualifiedId::IK_LiteralOperatorId:
147    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
148    break;
149
150  default:
151    return TNK_Non_template;
152  }
153
154  QualType ObjectType = ObjectTypePtr.get();
155
156  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
157                 LookupOrdinaryName);
158  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
159                     MemberOfUnknownSpecialization);
160  if (R.empty()) return TNK_Non_template;
161  if (R.isAmbiguous()) {
162    // Suppress diagnostics;  we'll redo this lookup later.
163    R.suppressDiagnostics();
164
165    // FIXME: we might have ambiguous templates, in which case we
166    // should at least parse them properly!
167    return TNK_Non_template;
168  }
169
170  TemplateName Template;
171  TemplateNameKind TemplateKind;
172
173  unsigned ResultCount = R.end() - R.begin();
174  if (ResultCount > 1) {
175    // We assume that we'll preserve the qualifier from a function
176    // template name in other ways.
177    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
178    TemplateKind = TNK_Function_template;
179
180    // We'll do this lookup again later.
181    R.suppressDiagnostics();
182  } else {
183    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
184
185    if (SS.isSet() && !SS.isInvalid()) {
186      NestedNameSpecifier *Qualifier
187        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
188      Template = Context.getQualifiedTemplateName(Qualifier,
189                                                  hasTemplateKeyword, TD);
190    } else {
191      Template = TemplateName(TD);
192    }
193
194    if (isa<FunctionTemplateDecl>(TD)) {
195      TemplateKind = TNK_Function_template;
196
197      // We'll do this lookup again later.
198      R.suppressDiagnostics();
199    } else {
200      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
201             isa<TypeAliasTemplateDecl>(TD));
202      TemplateKind = TNK_Type_template;
203    }
204  }
205
206  TemplateResult = TemplateTy::make(Template);
207  return TemplateKind;
208}
209
210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
211                                       SourceLocation IILoc,
212                                       Scope *S,
213                                       const CXXScopeSpec *SS,
214                                       TemplateTy &SuggestedTemplate,
215                                       TemplateNameKind &SuggestedKind) {
216  // We can't recover unless there's a dependent scope specifier preceding the
217  // template name.
218  // FIXME: Typo correction?
219  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
220      computeDeclContext(*SS))
221    return false;
222
223  // The code is missing a 'template' keyword prior to the dependent template
224  // name.
225  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
226  Diag(IILoc, diag::err_template_kw_missing)
227    << Qualifier << II.getName()
228    << FixItHint::CreateInsertion(IILoc, "template ");
229  SuggestedTemplate
230    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
231  SuggestedKind = TNK_Dependent_template_name;
232  return true;
233}
234
235void Sema::LookupTemplateName(LookupResult &Found,
236                              Scope *S, CXXScopeSpec &SS,
237                              QualType ObjectType,
238                              bool EnteringContext,
239                              bool &MemberOfUnknownSpecialization) {
240  // Determine where to perform name lookup
241  MemberOfUnknownSpecialization = false;
242  DeclContext *LookupCtx = 0;
243  bool isDependent = false;
244  if (!ObjectType.isNull()) {
245    // This nested-name-specifier occurs in a member access expression, e.g.,
246    // x->B::f, and we are looking into the type of the object.
247    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
248    LookupCtx = computeDeclContext(ObjectType);
249    isDependent = ObjectType->isDependentType();
250    assert((isDependent || !ObjectType->isIncompleteType()) &&
251           "Caller should have completed object type");
252  } else if (SS.isSet()) {
253    // This nested-name-specifier occurs after another nested-name-specifier,
254    // so long into the context associated with the prior nested-name-specifier.
255    LookupCtx = computeDeclContext(SS, EnteringContext);
256    isDependent = isDependentScopeSpecifier(SS);
257
258    // The declaration context must be complete.
259    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
260      return;
261  }
262
263  bool ObjectTypeSearchedInScope = false;
264  if (LookupCtx) {
265    // Perform "qualified" name lookup into the declaration context we
266    // computed, which is either the type of the base of a member access
267    // expression or the declaration context associated with a prior
268    // nested-name-specifier.
269    LookupQualifiedName(Found, LookupCtx);
270
271    if (!ObjectType.isNull() && Found.empty()) {
272      // C++ [basic.lookup.classref]p1:
273      //   In a class member access expression (5.2.5), if the . or -> token is
274      //   immediately followed by an identifier followed by a <, the
275      //   identifier must be looked up to determine whether the < is the
276      //   beginning of a template argument list (14.2) or a less-than operator.
277      //   The identifier is first looked up in the class of the object
278      //   expression. If the identifier is not found, it is then looked up in
279      //   the context of the entire postfix-expression and shall name a class
280      //   or function template.
281      if (S) LookupName(Found, S);
282      ObjectTypeSearchedInScope = true;
283    }
284  } else if (isDependent && (!S || ObjectType.isNull())) {
285    // We cannot look into a dependent object type or nested nme
286    // specifier.
287    MemberOfUnknownSpecialization = true;
288    return;
289  } else {
290    // Perform unqualified name lookup in the current scope.
291    LookupName(Found, S);
292  }
293
294  if (Found.empty() && !isDependent) {
295    // If we did not find any names, attempt to correct any typos.
296    DeclarationName Name = Found.getLookupName();
297    Found.clear();
298    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
299                                               Found.getLookupKind(), S, &SS,
300                                               LookupCtx, false,
301                                               CTC_CXXCasts)) {
302      Found.setLookupName(Corrected.getCorrection());
303      if (Corrected.getCorrectionDecl())
304        Found.addDecl(Corrected.getCorrectionDecl());
305      FilterAcceptableTemplateNames(Found);
306      if (!Found.empty()) {
307        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
308        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
309        if (LookupCtx)
310          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
311            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
312            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
313        else
314          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
315            << Name << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
317        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
318          Diag(Template->getLocation(), diag::note_previous_decl)
319            << CorrectedQuotedStr;
320      }
321    } else {
322      Found.setLookupName(Name);
323    }
324  }
325
326  FilterAcceptableTemplateNames(Found);
327  if (Found.empty()) {
328    if (isDependent)
329      MemberOfUnknownSpecialization = true;
330    return;
331  }
332
333  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
334    // C++ [basic.lookup.classref]p1:
335    //   [...] If the lookup in the class of the object expression finds a
336    //   template, the name is also looked up in the context of the entire
337    //   postfix-expression and [...]
338    //
339    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
340                            LookupOrdinaryName);
341    LookupName(FoundOuter, S);
342    FilterAcceptableTemplateNames(FoundOuter);
343
344    if (FoundOuter.empty()) {
345      //   - if the name is not found, the name found in the class of the
346      //     object expression is used, otherwise
347    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
348      //   - if the name is found in the context of the entire
349      //     postfix-expression and does not name a class template, the name
350      //     found in the class of the object expression is used, otherwise
351    } else if (!Found.isSuppressingDiagnostics()) {
352      //   - if the name found is a class template, it must refer to the same
353      //     entity as the one found in the class of the object expression,
354      //     otherwise the program is ill-formed.
355      if (!Found.isSingleResult() ||
356          Found.getFoundDecl()->getCanonicalDecl()
357            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
358        Diag(Found.getNameLoc(),
359             diag::ext_nested_name_member_ref_lookup_ambiguous)
360          << Found.getLookupName()
361          << ObjectType;
362        Diag(Found.getRepresentativeDecl()->getLocation(),
363             diag::note_ambig_member_ref_object_type)
364          << ObjectType;
365        Diag(FoundOuter.getFoundDecl()->getLocation(),
366             diag::note_ambig_member_ref_scope);
367
368        // Recover by taking the template that we found in the object
369        // expression's type.
370      }
371    }
372  }
373}
374
375/// ActOnDependentIdExpression - Handle a dependent id-expression that
376/// was just parsed.  This is only possible with an explicit scope
377/// specifier naming a dependent type.
378ExprResult
379Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
380                                 const DeclarationNameInfo &NameInfo,
381                                 bool isAddressOfOperand,
382                           const TemplateArgumentListInfo *TemplateArgs) {
383  DeclContext *DC = getFunctionLevelDeclContext();
384
385  if (!isAddressOfOperand &&
386      isa<CXXMethodDecl>(DC) &&
387      cast<CXXMethodDecl>(DC)->isInstance()) {
388    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
389
390    // Since the 'this' expression is synthesized, we don't need to
391    // perform the double-lookup check.
392    NamedDecl *FirstQualifierInScope = 0;
393
394    return Owned(CXXDependentScopeMemberExpr::Create(Context,
395                                                     /*This*/ 0, ThisType,
396                                                     /*IsArrow*/ true,
397                                                     /*Op*/ SourceLocation(),
398                                               SS.getWithLocInContext(Context),
399                                                     FirstQualifierInScope,
400                                                     NameInfo,
401                                                     TemplateArgs));
402  }
403
404  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
405}
406
407ExprResult
408Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
409                                const DeclarationNameInfo &NameInfo,
410                                const TemplateArgumentListInfo *TemplateArgs) {
411  return Owned(DependentScopeDeclRefExpr::Create(Context,
412                                               SS.getWithLocInContext(Context),
413                                                 NameInfo,
414                                                 TemplateArgs));
415}
416
417/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
418/// that the template parameter 'PrevDecl' is being shadowed by a new
419/// declaration at location Loc. Returns true to indicate that this is
420/// an error, and false otherwise.
421bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
422  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
423
424  // Microsoft Visual C++ permits template parameters to be shadowed.
425  if (getLangOptions().Microsoft)
426    return false;
427
428  // C++ [temp.local]p4:
429  //   A template-parameter shall not be redeclared within its
430  //   scope (including nested scopes).
431  Diag(Loc, diag::err_template_param_shadow)
432    << cast<NamedDecl>(PrevDecl)->getDeclName();
433  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
434  return true;
435}
436
437/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
438/// the parameter D to reference the templated declaration and return a pointer
439/// to the template declaration. Otherwise, do nothing to D and return null.
440TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
441  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
442    D = Temp->getTemplatedDecl();
443    return Temp;
444  }
445  return 0;
446}
447
448ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
449                                             SourceLocation EllipsisLoc) const {
450  assert(Kind == Template &&
451         "Only template template arguments can be pack expansions here");
452  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
453         "Template template argument pack expansion without packs");
454  ParsedTemplateArgument Result(*this);
455  Result.EllipsisLoc = EllipsisLoc;
456  return Result;
457}
458
459static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
460                                            const ParsedTemplateArgument &Arg) {
461
462  switch (Arg.getKind()) {
463  case ParsedTemplateArgument::Type: {
464    TypeSourceInfo *DI;
465    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
466    if (!DI)
467      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
468    return TemplateArgumentLoc(TemplateArgument(T), DI);
469  }
470
471  case ParsedTemplateArgument::NonType: {
472    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
473    return TemplateArgumentLoc(TemplateArgument(E), E);
474  }
475
476  case ParsedTemplateArgument::Template: {
477    TemplateName Template = Arg.getAsTemplate().get();
478    TemplateArgument TArg;
479    if (Arg.getEllipsisLoc().isValid())
480      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
481    else
482      TArg = Template;
483    return TemplateArgumentLoc(TArg,
484                               Arg.getScopeSpec().getWithLocInContext(
485                                                              SemaRef.Context),
486                               Arg.getLocation(),
487                               Arg.getEllipsisLoc());
488  }
489  }
490
491  llvm_unreachable("Unhandled parsed template argument");
492  return TemplateArgumentLoc();
493}
494
495/// \brief Translates template arguments as provided by the parser
496/// into template arguments used by semantic analysis.
497void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
498                                      TemplateArgumentListInfo &TemplateArgs) {
499 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
500   TemplateArgs.addArgument(translateTemplateArgument(*this,
501                                                      TemplateArgsIn[I]));
502}
503
504/// ActOnTypeParameter - Called when a C++ template type parameter
505/// (e.g., "typename T") has been parsed. Typename specifies whether
506/// the keyword "typename" was used to declare the type parameter
507/// (otherwise, "class" was used), and KeyLoc is the location of the
508/// "class" or "typename" keyword. ParamName is the name of the
509/// parameter (NULL indicates an unnamed template parameter) and
510/// ParamNameLoc is the location of the parameter name (if any).
511/// If the type parameter has a default argument, it will be added
512/// later via ActOnTypeParameterDefault.
513Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
514                               SourceLocation EllipsisLoc,
515                               SourceLocation KeyLoc,
516                               IdentifierInfo *ParamName,
517                               SourceLocation ParamNameLoc,
518                               unsigned Depth, unsigned Position,
519                               SourceLocation EqualLoc,
520                               ParsedType DefaultArg) {
521  assert(S->isTemplateParamScope() &&
522         "Template type parameter not in template parameter scope!");
523  bool Invalid = false;
524
525  if (ParamName) {
526    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
527                                           LookupOrdinaryName,
528                                           ForRedeclaration);
529    if (PrevDecl && PrevDecl->isTemplateParameter())
530      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
531                                                           PrevDecl);
532  }
533
534  SourceLocation Loc = ParamNameLoc;
535  if (!ParamName)
536    Loc = KeyLoc;
537
538  TemplateTypeParmDecl *Param
539    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
540                                   KeyLoc, Loc, Depth, Position, ParamName,
541                                   Typename, Ellipsis);
542  Param->setAccess(AS_public);
543  if (Invalid)
544    Param->setInvalidDecl();
545
546  if (ParamName) {
547    // Add the template parameter into the current scope.
548    S->AddDecl(Param);
549    IdResolver.AddDecl(Param);
550  }
551
552  // C++0x [temp.param]p9:
553  //   A default template-argument may be specified for any kind of
554  //   template-parameter that is not a template parameter pack.
555  if (DefaultArg && Ellipsis) {
556    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
557    DefaultArg = ParsedType();
558  }
559
560  // Handle the default argument, if provided.
561  if (DefaultArg) {
562    TypeSourceInfo *DefaultTInfo;
563    GetTypeFromParser(DefaultArg, &DefaultTInfo);
564
565    assert(DefaultTInfo && "expected source information for type");
566
567    // Check for unexpanded parameter packs.
568    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
569                                        UPPC_DefaultArgument))
570      return Param;
571
572    // Check the template argument itself.
573    if (CheckTemplateArgument(Param, DefaultTInfo)) {
574      Param->setInvalidDecl();
575      return Param;
576    }
577
578    Param->setDefaultArgument(DefaultTInfo, false);
579  }
580
581  return Param;
582}
583
584/// \brief Check that the type of a non-type template parameter is
585/// well-formed.
586///
587/// \returns the (possibly-promoted) parameter type if valid;
588/// otherwise, produces a diagnostic and returns a NULL type.
589QualType
590Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
591  // We don't allow variably-modified types as the type of non-type template
592  // parameters.
593  if (T->isVariablyModifiedType()) {
594    Diag(Loc, diag::err_variably_modified_nontype_template_param)
595      << T;
596    return QualType();
597  }
598
599  // C++ [temp.param]p4:
600  //
601  // A non-type template-parameter shall have one of the following
602  // (optionally cv-qualified) types:
603  //
604  //       -- integral or enumeration type,
605  if (T->isIntegralOrEnumerationType() ||
606      //   -- pointer to object or pointer to function,
607      T->isPointerType() ||
608      //   -- reference to object or reference to function,
609      T->isReferenceType() ||
610      //   -- pointer to member,
611      T->isMemberPointerType() ||
612      //   -- std::nullptr_t.
613      T->isNullPtrType() ||
614      // If T is a dependent type, we can't do the check now, so we
615      // assume that it is well-formed.
616      T->isDependentType())
617    return T;
618  // C++ [temp.param]p8:
619  //
620  //   A non-type template-parameter of type "array of T" or
621  //   "function returning T" is adjusted to be of type "pointer to
622  //   T" or "pointer to function returning T", respectively.
623  else if (T->isArrayType())
624    // FIXME: Keep the type prior to promotion?
625    return Context.getArrayDecayedType(T);
626  else if (T->isFunctionType())
627    // FIXME: Keep the type prior to promotion?
628    return Context.getPointerType(T);
629
630  Diag(Loc, diag::err_template_nontype_parm_bad_type)
631    << T;
632
633  return QualType();
634}
635
636Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
637                                          unsigned Depth,
638                                          unsigned Position,
639                                          SourceLocation EqualLoc,
640                                          Expr *Default) {
641  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
642  QualType T = TInfo->getType();
643
644  assert(S->isTemplateParamScope() &&
645         "Non-type template parameter not in template parameter scope!");
646  bool Invalid = false;
647
648  IdentifierInfo *ParamName = D.getIdentifier();
649  if (ParamName) {
650    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
651                                           LookupOrdinaryName,
652                                           ForRedeclaration);
653    if (PrevDecl && PrevDecl->isTemplateParameter())
654      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
655                                                           PrevDecl);
656  }
657
658  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
659  if (T.isNull()) {
660    T = Context.IntTy; // Recover with an 'int' type.
661    Invalid = true;
662  }
663
664  bool IsParameterPack = D.hasEllipsis();
665  NonTypeTemplateParmDecl *Param
666    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
667                                      D.getSourceRange().getBegin(),
668                                      D.getIdentifierLoc(),
669                                      Depth, Position, ParamName, T,
670                                      IsParameterPack, TInfo);
671  Param->setAccess(AS_public);
672
673  if (Invalid)
674    Param->setInvalidDecl();
675
676  if (D.getIdentifier()) {
677    // Add the template parameter into the current scope.
678    S->AddDecl(Param);
679    IdResolver.AddDecl(Param);
680  }
681
682  // C++0x [temp.param]p9:
683  //   A default template-argument may be specified for any kind of
684  //   template-parameter that is not a template parameter pack.
685  if (Default && IsParameterPack) {
686    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
687    Default = 0;
688  }
689
690  // Check the well-formedness of the default template argument, if provided.
691  if (Default) {
692    // Check for unexpanded parameter packs.
693    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
694      return Param;
695
696    TemplateArgument Converted;
697    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
698    if (DefaultRes.isInvalid()) {
699      Param->setInvalidDecl();
700      return Param;
701    }
702    Default = DefaultRes.take();
703
704    Param->setDefaultArgument(Default, false);
705  }
706
707  return Param;
708}
709
710/// ActOnTemplateTemplateParameter - Called when a C++ template template
711/// parameter (e.g. T in template <template <typename> class T> class array)
712/// has been parsed. S is the current scope.
713Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
714                                           SourceLocation TmpLoc,
715                                           TemplateParamsTy *Params,
716                                           SourceLocation EllipsisLoc,
717                                           IdentifierInfo *Name,
718                                           SourceLocation NameLoc,
719                                           unsigned Depth,
720                                           unsigned Position,
721                                           SourceLocation EqualLoc,
722                                           ParsedTemplateArgument Default) {
723  assert(S->isTemplateParamScope() &&
724         "Template template parameter not in template parameter scope!");
725
726  // Construct the parameter object.
727  bool IsParameterPack = EllipsisLoc.isValid();
728  TemplateTemplateParmDecl *Param =
729    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
730                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
731                                     Depth, Position, IsParameterPack,
732                                     Name, Params);
733  Param->setAccess(AS_public);
734
735  // If the template template parameter has a name, then link the identifier
736  // into the scope and lookup mechanisms.
737  if (Name) {
738    S->AddDecl(Param);
739    IdResolver.AddDecl(Param);
740  }
741
742  if (Params->size() == 0) {
743    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
744    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
745    Param->setInvalidDecl();
746  }
747
748  // C++0x [temp.param]p9:
749  //   A default template-argument may be specified for any kind of
750  //   template-parameter that is not a template parameter pack.
751  if (IsParameterPack && !Default.isInvalid()) {
752    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
753    Default = ParsedTemplateArgument();
754  }
755
756  if (!Default.isInvalid()) {
757    // Check only that we have a template template argument. We don't want to
758    // try to check well-formedness now, because our template template parameter
759    // might have dependent types in its template parameters, which we wouldn't
760    // be able to match now.
761    //
762    // If none of the template template parameter's template arguments mention
763    // other template parameters, we could actually perform more checking here.
764    // However, it isn't worth doing.
765    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
766    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
767      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
768        << DefaultArg.getSourceRange();
769      return Param;
770    }
771
772    // Check for unexpanded parameter packs.
773    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
774                                        DefaultArg.getArgument().getAsTemplate(),
775                                        UPPC_DefaultArgument))
776      return Param;
777
778    Param->setDefaultArgument(DefaultArg, false);
779  }
780
781  return Param;
782}
783
784/// ActOnTemplateParameterList - Builds a TemplateParameterList that
785/// contains the template parameters in Params/NumParams.
786Sema::TemplateParamsTy *
787Sema::ActOnTemplateParameterList(unsigned Depth,
788                                 SourceLocation ExportLoc,
789                                 SourceLocation TemplateLoc,
790                                 SourceLocation LAngleLoc,
791                                 Decl **Params, unsigned NumParams,
792                                 SourceLocation RAngleLoc) {
793  if (ExportLoc.isValid())
794    Diag(ExportLoc, diag::warn_template_export_unsupported);
795
796  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
797                                       (NamedDecl**)Params, NumParams,
798                                       RAngleLoc);
799}
800
801static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
802  if (SS.isSet())
803    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
804}
805
806DeclResult
807Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
808                         SourceLocation KWLoc, CXXScopeSpec &SS,
809                         IdentifierInfo *Name, SourceLocation NameLoc,
810                         AttributeList *Attr,
811                         TemplateParameterList *TemplateParams,
812                         AccessSpecifier AS,
813                         unsigned NumOuterTemplateParamLists,
814                         TemplateParameterList** OuterTemplateParamLists) {
815  assert(TemplateParams && TemplateParams->size() > 0 &&
816         "No template parameters");
817  assert(TUK != TUK_Reference && "Can only declare or define class templates");
818  bool Invalid = false;
819
820  // Check that we can declare a template here.
821  if (CheckTemplateDeclScope(S, TemplateParams))
822    return true;
823
824  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
825  assert(Kind != TTK_Enum && "can't build template of enumerated type");
826
827  // There is no such thing as an unnamed class template.
828  if (!Name) {
829    Diag(KWLoc, diag::err_template_unnamed_class);
830    return true;
831  }
832
833  // Find any previous declaration with this name.
834  DeclContext *SemanticContext;
835  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
836                        ForRedeclaration);
837  if (SS.isNotEmpty() && !SS.isInvalid()) {
838    SemanticContext = computeDeclContext(SS, true);
839    if (!SemanticContext) {
840      // FIXME: Produce a reasonable diagnostic here
841      return true;
842    }
843
844    if (RequireCompleteDeclContext(SS, SemanticContext))
845      return true;
846
847    LookupQualifiedName(Previous, SemanticContext);
848  } else {
849    SemanticContext = CurContext;
850    LookupName(Previous, S);
851  }
852
853  if (Previous.isAmbiguous())
854    return true;
855
856  NamedDecl *PrevDecl = 0;
857  if (Previous.begin() != Previous.end())
858    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
859
860  // If there is a previous declaration with the same name, check
861  // whether this is a valid redeclaration.
862  ClassTemplateDecl *PrevClassTemplate
863    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
864
865  // We may have found the injected-class-name of a class template,
866  // class template partial specialization, or class template specialization.
867  // In these cases, grab the template that is being defined or specialized.
868  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
869      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
870    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
871    PrevClassTemplate
872      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
873    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
874      PrevClassTemplate
875        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
876            ->getSpecializedTemplate();
877    }
878  }
879
880  if (TUK == TUK_Friend) {
881    // C++ [namespace.memdef]p3:
882    //   [...] When looking for a prior declaration of a class or a function
883    //   declared as a friend, and when the name of the friend class or
884    //   function is neither a qualified name nor a template-id, scopes outside
885    //   the innermost enclosing namespace scope are not considered.
886    if (!SS.isSet()) {
887      DeclContext *OutermostContext = CurContext;
888      while (!OutermostContext->isFileContext())
889        OutermostContext = OutermostContext->getLookupParent();
890
891      if (PrevDecl &&
892          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
893           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
894        SemanticContext = PrevDecl->getDeclContext();
895      } else {
896        // Declarations in outer scopes don't matter. However, the outermost
897        // context we computed is the semantic context for our new
898        // declaration.
899        PrevDecl = PrevClassTemplate = 0;
900        SemanticContext = OutermostContext;
901      }
902    }
903
904    if (CurContext->isDependentContext()) {
905      // If this is a dependent context, we don't want to link the friend
906      // class template to the template in scope, because that would perform
907      // checking of the template parameter lists that can't be performed
908      // until the outer context is instantiated.
909      PrevDecl = PrevClassTemplate = 0;
910    }
911  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
912    PrevDecl = PrevClassTemplate = 0;
913
914  if (PrevClassTemplate) {
915    // Ensure that the template parameter lists are compatible.
916    if (!TemplateParameterListsAreEqual(TemplateParams,
917                                   PrevClassTemplate->getTemplateParameters(),
918                                        /*Complain=*/true,
919                                        TPL_TemplateMatch))
920      return true;
921
922    // C++ [temp.class]p4:
923    //   In a redeclaration, partial specialization, explicit
924    //   specialization or explicit instantiation of a class template,
925    //   the class-key shall agree in kind with the original class
926    //   template declaration (7.1.5.3).
927    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
928    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
929                                      TUK == TUK_Definition,  KWLoc, *Name)) {
930      Diag(KWLoc, diag::err_use_with_wrong_tag)
931        << Name
932        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
933      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
934      Kind = PrevRecordDecl->getTagKind();
935    }
936
937    // Check for redefinition of this class template.
938    if (TUK == TUK_Definition) {
939      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
940        Diag(NameLoc, diag::err_redefinition) << Name;
941        Diag(Def->getLocation(), diag::note_previous_definition);
942        // FIXME: Would it make sense to try to "forget" the previous
943        // definition, as part of error recovery?
944        return true;
945      }
946    }
947  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
948    // Maybe we will complain about the shadowed template parameter.
949    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
950    // Just pretend that we didn't see the previous declaration.
951    PrevDecl = 0;
952  } else if (PrevDecl) {
953    // C++ [temp]p5:
954    //   A class template shall not have the same name as any other
955    //   template, class, function, object, enumeration, enumerator,
956    //   namespace, or type in the same scope (3.3), except as specified
957    //   in (14.5.4).
958    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
959    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
960    return true;
961  }
962
963  // Check the template parameter list of this declaration, possibly
964  // merging in the template parameter list from the previous class
965  // template declaration.
966  if (CheckTemplateParameterList(TemplateParams,
967            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
968                                 (SS.isSet() && SemanticContext &&
969                                  SemanticContext->isRecord() &&
970                                  SemanticContext->isDependentContext())
971                                   ? TPC_ClassTemplateMember
972                                   : TPC_ClassTemplate))
973    Invalid = true;
974
975  if (SS.isSet()) {
976    // If the name of the template was qualified, we must be defining the
977    // template out-of-line.
978    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
979        !(TUK == TUK_Friend && CurContext->isDependentContext()))
980      Diag(NameLoc, diag::err_member_def_does_not_match)
981        << Name << SemanticContext << SS.getRange();
982  }
983
984  CXXRecordDecl *NewClass =
985    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
986                          PrevClassTemplate?
987                            PrevClassTemplate->getTemplatedDecl() : 0,
988                          /*DelayTypeCreation=*/true);
989  SetNestedNameSpecifier(NewClass, SS);
990  if (NumOuterTemplateParamLists > 0)
991    NewClass->setTemplateParameterListsInfo(Context,
992                                            NumOuterTemplateParamLists,
993                                            OuterTemplateParamLists);
994
995  ClassTemplateDecl *NewTemplate
996    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
997                                DeclarationName(Name), TemplateParams,
998                                NewClass, PrevClassTemplate);
999  NewClass->setDescribedClassTemplate(NewTemplate);
1000
1001  // Build the type for the class template declaration now.
1002  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1003  T = Context.getInjectedClassNameType(NewClass, T);
1004  assert(T->isDependentType() && "Class template type is not dependent?");
1005  (void)T;
1006
1007  // If we are providing an explicit specialization of a member that is a
1008  // class template, make a note of that.
1009  if (PrevClassTemplate &&
1010      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1011    PrevClassTemplate->setMemberSpecialization();
1012
1013  // Set the access specifier.
1014  if (!Invalid && TUK != TUK_Friend)
1015    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1016
1017  // Set the lexical context of these templates
1018  NewClass->setLexicalDeclContext(CurContext);
1019  NewTemplate->setLexicalDeclContext(CurContext);
1020
1021  if (TUK == TUK_Definition)
1022    NewClass->startDefinition();
1023
1024  if (Attr)
1025    ProcessDeclAttributeList(S, NewClass, Attr);
1026
1027  if (TUK != TUK_Friend)
1028    PushOnScopeChains(NewTemplate, S);
1029  else {
1030    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1031      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1032      NewClass->setAccess(PrevClassTemplate->getAccess());
1033    }
1034
1035    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1036                                       PrevClassTemplate != NULL);
1037
1038    // Friend templates are visible in fairly strange ways.
1039    if (!CurContext->isDependentContext()) {
1040      DeclContext *DC = SemanticContext->getRedeclContext();
1041      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1042      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1043        PushOnScopeChains(NewTemplate, EnclosingScope,
1044                          /* AddToContext = */ false);
1045    }
1046
1047    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1048                                            NewClass->getLocation(),
1049                                            NewTemplate,
1050                                    /*FIXME:*/NewClass->getLocation());
1051    Friend->setAccess(AS_public);
1052    CurContext->addDecl(Friend);
1053  }
1054
1055  if (Invalid) {
1056    NewTemplate->setInvalidDecl();
1057    NewClass->setInvalidDecl();
1058  }
1059  return NewTemplate;
1060}
1061
1062/// \brief Diagnose the presence of a default template argument on a
1063/// template parameter, which is ill-formed in certain contexts.
1064///
1065/// \returns true if the default template argument should be dropped.
1066static bool DiagnoseDefaultTemplateArgument(Sema &S,
1067                                            Sema::TemplateParamListContext TPC,
1068                                            SourceLocation ParamLoc,
1069                                            SourceRange DefArgRange) {
1070  switch (TPC) {
1071  case Sema::TPC_ClassTemplate:
1072  case Sema::TPC_TypeAliasTemplate:
1073    return false;
1074
1075  case Sema::TPC_FunctionTemplate:
1076  case Sema::TPC_FriendFunctionTemplateDefinition:
1077    // C++ [temp.param]p9:
1078    //   A default template-argument shall not be specified in a
1079    //   function template declaration or a function template
1080    //   definition [...]
1081    //   If a friend function template declaration specifies a default
1082    //   template-argument, that declaration shall be a definition and shall be
1083    //   the only declaration of the function template in the translation unit.
1084    // (C++98/03 doesn't have this wording; see DR226).
1085    if (!S.getLangOptions().CPlusPlus0x)
1086      S.Diag(ParamLoc,
1087             diag::ext_template_parameter_default_in_function_template)
1088        << DefArgRange;
1089    return false;
1090
1091  case Sema::TPC_ClassTemplateMember:
1092    // C++0x [temp.param]p9:
1093    //   A default template-argument shall not be specified in the
1094    //   template-parameter-lists of the definition of a member of a
1095    //   class template that appears outside of the member's class.
1096    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1097      << DefArgRange;
1098    return true;
1099
1100  case Sema::TPC_FriendFunctionTemplate:
1101    // C++ [temp.param]p9:
1102    //   A default template-argument shall not be specified in a
1103    //   friend template declaration.
1104    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1105      << DefArgRange;
1106    return true;
1107
1108    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1109    // for friend function templates if there is only a single
1110    // declaration (and it is a definition). Strange!
1111  }
1112
1113  return false;
1114}
1115
1116/// \brief Check for unexpanded parameter packs within the template parameters
1117/// of a template template parameter, recursively.
1118static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1119                                             TemplateTemplateParmDecl *TTP) {
1120  TemplateParameterList *Params = TTP->getTemplateParameters();
1121  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1122    NamedDecl *P = Params->getParam(I);
1123    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1124      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1125                                            NTTP->getTypeSourceInfo(),
1126                                      Sema::UPPC_NonTypeTemplateParameterType))
1127        return true;
1128
1129      continue;
1130    }
1131
1132    if (TemplateTemplateParmDecl *InnerTTP
1133                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1134      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1135        return true;
1136  }
1137
1138  return false;
1139}
1140
1141/// \brief Checks the validity of a template parameter list, possibly
1142/// considering the template parameter list from a previous
1143/// declaration.
1144///
1145/// If an "old" template parameter list is provided, it must be
1146/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1147/// template parameter list.
1148///
1149/// \param NewParams Template parameter list for a new template
1150/// declaration. This template parameter list will be updated with any
1151/// default arguments that are carried through from the previous
1152/// template parameter list.
1153///
1154/// \param OldParams If provided, template parameter list from a
1155/// previous declaration of the same template. Default template
1156/// arguments will be merged from the old template parameter list to
1157/// the new template parameter list.
1158///
1159/// \param TPC Describes the context in which we are checking the given
1160/// template parameter list.
1161///
1162/// \returns true if an error occurred, false otherwise.
1163bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1164                                      TemplateParameterList *OldParams,
1165                                      TemplateParamListContext TPC) {
1166  bool Invalid = false;
1167
1168  // C++ [temp.param]p10:
1169  //   The set of default template-arguments available for use with a
1170  //   template declaration or definition is obtained by merging the
1171  //   default arguments from the definition (if in scope) and all
1172  //   declarations in scope in the same way default function
1173  //   arguments are (8.3.6).
1174  bool SawDefaultArgument = false;
1175  SourceLocation PreviousDefaultArgLoc;
1176
1177  bool SawParameterPack = false;
1178  SourceLocation ParameterPackLoc;
1179
1180  // Dummy initialization to avoid warnings.
1181  TemplateParameterList::iterator OldParam = NewParams->end();
1182  if (OldParams)
1183    OldParam = OldParams->begin();
1184
1185  bool RemoveDefaultArguments = false;
1186  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1187                                    NewParamEnd = NewParams->end();
1188       NewParam != NewParamEnd; ++NewParam) {
1189    // Variables used to diagnose redundant default arguments
1190    bool RedundantDefaultArg = false;
1191    SourceLocation OldDefaultLoc;
1192    SourceLocation NewDefaultLoc;
1193
1194    // Variables used to diagnose missing default arguments
1195    bool MissingDefaultArg = false;
1196
1197    // C++0x [temp.param]p11:
1198    //   If a template parameter of a primary class template or alias template
1199    //   is a template parameter pack, it shall be the last template parameter.
1200    if (SawParameterPack &&
1201        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1202      Diag(ParameterPackLoc,
1203           diag::err_template_param_pack_must_be_last_template_parameter);
1204      Invalid = true;
1205    }
1206
1207    if (TemplateTypeParmDecl *NewTypeParm
1208          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1209      // Check the presence of a default argument here.
1210      if (NewTypeParm->hasDefaultArgument() &&
1211          DiagnoseDefaultTemplateArgument(*this, TPC,
1212                                          NewTypeParm->getLocation(),
1213               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1214                                                       .getSourceRange()))
1215        NewTypeParm->removeDefaultArgument();
1216
1217      // Merge default arguments for template type parameters.
1218      TemplateTypeParmDecl *OldTypeParm
1219          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1220
1221      if (NewTypeParm->isParameterPack()) {
1222        assert(!NewTypeParm->hasDefaultArgument() &&
1223               "Parameter packs can't have a default argument!");
1224        SawParameterPack = true;
1225        ParameterPackLoc = NewTypeParm->getLocation();
1226      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1227                 NewTypeParm->hasDefaultArgument()) {
1228        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1229        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1230        SawDefaultArgument = true;
1231        RedundantDefaultArg = true;
1232        PreviousDefaultArgLoc = NewDefaultLoc;
1233      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1234        // Merge the default argument from the old declaration to the
1235        // new declaration.
1236        SawDefaultArgument = true;
1237        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1238                                        true);
1239        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1240      } else if (NewTypeParm->hasDefaultArgument()) {
1241        SawDefaultArgument = true;
1242        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1243      } else if (SawDefaultArgument)
1244        MissingDefaultArg = true;
1245    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1246               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1247      // Check for unexpanded parameter packs.
1248      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1249                                          NewNonTypeParm->getTypeSourceInfo(),
1250                                          UPPC_NonTypeTemplateParameterType)) {
1251        Invalid = true;
1252        continue;
1253      }
1254
1255      // Check the presence of a default argument here.
1256      if (NewNonTypeParm->hasDefaultArgument() &&
1257          DiagnoseDefaultTemplateArgument(*this, TPC,
1258                                          NewNonTypeParm->getLocation(),
1259                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1260        NewNonTypeParm->removeDefaultArgument();
1261      }
1262
1263      // Merge default arguments for non-type template parameters
1264      NonTypeTemplateParmDecl *OldNonTypeParm
1265        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1266      if (NewNonTypeParm->isParameterPack()) {
1267        assert(!NewNonTypeParm->hasDefaultArgument() &&
1268               "Parameter packs can't have a default argument!");
1269        SawParameterPack = true;
1270        ParameterPackLoc = NewNonTypeParm->getLocation();
1271      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1272          NewNonTypeParm->hasDefaultArgument()) {
1273        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1274        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1275        SawDefaultArgument = true;
1276        RedundantDefaultArg = true;
1277        PreviousDefaultArgLoc = NewDefaultLoc;
1278      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1279        // Merge the default argument from the old declaration to the
1280        // new declaration.
1281        SawDefaultArgument = true;
1282        // FIXME: We need to create a new kind of "default argument"
1283        // expression that points to a previous non-type template
1284        // parameter.
1285        NewNonTypeParm->setDefaultArgument(
1286                                         OldNonTypeParm->getDefaultArgument(),
1287                                         /*Inherited=*/ true);
1288        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1289      } else if (NewNonTypeParm->hasDefaultArgument()) {
1290        SawDefaultArgument = true;
1291        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1292      } else if (SawDefaultArgument)
1293        MissingDefaultArg = true;
1294    } else {
1295      // Check the presence of a default argument here.
1296      TemplateTemplateParmDecl *NewTemplateParm
1297        = cast<TemplateTemplateParmDecl>(*NewParam);
1298
1299      // Check for unexpanded parameter packs, recursively.
1300      if (DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1301        Invalid = true;
1302        continue;
1303      }
1304
1305      if (NewTemplateParm->hasDefaultArgument() &&
1306          DiagnoseDefaultTemplateArgument(*this, TPC,
1307                                          NewTemplateParm->getLocation(),
1308                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1309        NewTemplateParm->removeDefaultArgument();
1310
1311      // Merge default arguments for template template parameters
1312      TemplateTemplateParmDecl *OldTemplateParm
1313        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1314      if (NewTemplateParm->isParameterPack()) {
1315        assert(!NewTemplateParm->hasDefaultArgument() &&
1316               "Parameter packs can't have a default argument!");
1317        SawParameterPack = true;
1318        ParameterPackLoc = NewTemplateParm->getLocation();
1319      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1320          NewTemplateParm->hasDefaultArgument()) {
1321        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1322        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1323        SawDefaultArgument = true;
1324        RedundantDefaultArg = true;
1325        PreviousDefaultArgLoc = NewDefaultLoc;
1326      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1327        // Merge the default argument from the old declaration to the
1328        // new declaration.
1329        SawDefaultArgument = true;
1330        // FIXME: We need to create a new kind of "default argument" expression
1331        // that points to a previous template template parameter.
1332        NewTemplateParm->setDefaultArgument(
1333                                          OldTemplateParm->getDefaultArgument(),
1334                                          /*Inherited=*/ true);
1335        PreviousDefaultArgLoc
1336          = OldTemplateParm->getDefaultArgument().getLocation();
1337      } else if (NewTemplateParm->hasDefaultArgument()) {
1338        SawDefaultArgument = true;
1339        PreviousDefaultArgLoc
1340          = NewTemplateParm->getDefaultArgument().getLocation();
1341      } else if (SawDefaultArgument)
1342        MissingDefaultArg = true;
1343    }
1344
1345    if (RedundantDefaultArg) {
1346      // C++ [temp.param]p12:
1347      //   A template-parameter shall not be given default arguments
1348      //   by two different declarations in the same scope.
1349      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1350      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1351      Invalid = true;
1352    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1353      // C++ [temp.param]p11:
1354      //   If a template-parameter of a class template has a default
1355      //   template-argument, each subsequent template-parameter shall either
1356      //   have a default template-argument supplied or be a template parameter
1357      //   pack.
1358      Diag((*NewParam)->getLocation(),
1359           diag::err_template_param_default_arg_missing);
1360      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1361      Invalid = true;
1362      RemoveDefaultArguments = true;
1363    }
1364
1365    // If we have an old template parameter list that we're merging
1366    // in, move on to the next parameter.
1367    if (OldParams)
1368      ++OldParam;
1369  }
1370
1371  // We were missing some default arguments at the end of the list, so remove
1372  // all of the default arguments.
1373  if (RemoveDefaultArguments) {
1374    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1375                                      NewParamEnd = NewParams->end();
1376         NewParam != NewParamEnd; ++NewParam) {
1377      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1378        TTP->removeDefaultArgument();
1379      else if (NonTypeTemplateParmDecl *NTTP
1380                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1381        NTTP->removeDefaultArgument();
1382      else
1383        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1384    }
1385  }
1386
1387  return Invalid;
1388}
1389
1390namespace {
1391
1392/// A class which looks for a use of a certain level of template
1393/// parameter.
1394struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1395  typedef RecursiveASTVisitor<DependencyChecker> super;
1396
1397  unsigned Depth;
1398  bool Match;
1399
1400  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1401    NamedDecl *ND = Params->getParam(0);
1402    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1403      Depth = PD->getDepth();
1404    } else if (NonTypeTemplateParmDecl *PD =
1405                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1406      Depth = PD->getDepth();
1407    } else {
1408      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1409    }
1410  }
1411
1412  bool Matches(unsigned ParmDepth) {
1413    if (ParmDepth >= Depth) {
1414      Match = true;
1415      return true;
1416    }
1417    return false;
1418  }
1419
1420  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1421    return !Matches(T->getDepth());
1422  }
1423
1424  bool TraverseTemplateName(TemplateName N) {
1425    if (TemplateTemplateParmDecl *PD =
1426          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1427      if (Matches(PD->getDepth())) return false;
1428    return super::TraverseTemplateName(N);
1429  }
1430
1431  bool VisitDeclRefExpr(DeclRefExpr *E) {
1432    if (NonTypeTemplateParmDecl *PD =
1433          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1434      if (PD->getDepth() == Depth) {
1435        Match = true;
1436        return false;
1437      }
1438    }
1439    return super::VisitDeclRefExpr(E);
1440  }
1441
1442  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1443    return TraverseType(T->getInjectedSpecializationType());
1444  }
1445};
1446}
1447
1448/// Determines whether a given type depends on the given parameter
1449/// list.
1450static bool
1451DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1452  DependencyChecker Checker(Params);
1453  Checker.TraverseType(T);
1454  return Checker.Match;
1455}
1456
1457// Find the source range corresponding to the named type in the given
1458// nested-name-specifier, if any.
1459static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1460                                                       QualType T,
1461                                                       const CXXScopeSpec &SS) {
1462  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1463  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1464    if (const Type *CurType = NNS->getAsType()) {
1465      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1466        return NNSLoc.getTypeLoc().getSourceRange();
1467    } else
1468      break;
1469
1470    NNSLoc = NNSLoc.getPrefix();
1471  }
1472
1473  return SourceRange();
1474}
1475
1476/// \brief Match the given template parameter lists to the given scope
1477/// specifier, returning the template parameter list that applies to the
1478/// name.
1479///
1480/// \param DeclStartLoc the start of the declaration that has a scope
1481/// specifier or a template parameter list.
1482///
1483/// \param DeclLoc The location of the declaration itself.
1484///
1485/// \param SS the scope specifier that will be matched to the given template
1486/// parameter lists. This scope specifier precedes a qualified name that is
1487/// being declared.
1488///
1489/// \param ParamLists the template parameter lists, from the outermost to the
1490/// innermost template parameter lists.
1491///
1492/// \param NumParamLists the number of template parameter lists in ParamLists.
1493///
1494/// \param IsFriend Whether to apply the slightly different rules for
1495/// matching template parameters to scope specifiers in friend
1496/// declarations.
1497///
1498/// \param IsExplicitSpecialization will be set true if the entity being
1499/// declared is an explicit specialization, false otherwise.
1500///
1501/// \returns the template parameter list, if any, that corresponds to the
1502/// name that is preceded by the scope specifier @p SS. This template
1503/// parameter list may have template parameters (if we're declaring a
1504/// template) or may have no template parameters (if we're declaring a
1505/// template specialization), or may be NULL (if what we're declaring isn't
1506/// itself a template).
1507TemplateParameterList *
1508Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1509                                              SourceLocation DeclLoc,
1510                                              const CXXScopeSpec &SS,
1511                                          TemplateParameterList **ParamLists,
1512                                              unsigned NumParamLists,
1513                                              bool IsFriend,
1514                                              bool &IsExplicitSpecialization,
1515                                              bool &Invalid) {
1516  IsExplicitSpecialization = false;
1517  Invalid = false;
1518
1519  // The sequence of nested types to which we will match up the template
1520  // parameter lists. We first build this list by starting with the type named
1521  // by the nested-name-specifier and walking out until we run out of types.
1522  llvm::SmallVector<QualType, 4> NestedTypes;
1523  QualType T;
1524  if (SS.getScopeRep()) {
1525    if (CXXRecordDecl *Record
1526              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1527      T = Context.getTypeDeclType(Record);
1528    else
1529      T = QualType(SS.getScopeRep()->getAsType(), 0);
1530  }
1531
1532  // If we found an explicit specialization that prevents us from needing
1533  // 'template<>' headers, this will be set to the location of that
1534  // explicit specialization.
1535  SourceLocation ExplicitSpecLoc;
1536
1537  while (!T.isNull()) {
1538    NestedTypes.push_back(T);
1539
1540    // Retrieve the parent of a record type.
1541    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1542      // If this type is an explicit specialization, we're done.
1543      if (ClassTemplateSpecializationDecl *Spec
1544          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1545        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1546            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1547          ExplicitSpecLoc = Spec->getLocation();
1548          break;
1549        }
1550      } else if (Record->getTemplateSpecializationKind()
1551                                                == TSK_ExplicitSpecialization) {
1552        ExplicitSpecLoc = Record->getLocation();
1553        break;
1554      }
1555
1556      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1557        T = Context.getTypeDeclType(Parent);
1558      else
1559        T = QualType();
1560      continue;
1561    }
1562
1563    if (const TemplateSpecializationType *TST
1564                                     = T->getAs<TemplateSpecializationType>()) {
1565      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1566        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1567          T = Context.getTypeDeclType(Parent);
1568        else
1569          T = QualType();
1570        continue;
1571      }
1572    }
1573
1574    // Look one step prior in a dependent template specialization type.
1575    if (const DependentTemplateSpecializationType *DependentTST
1576                          = T->getAs<DependentTemplateSpecializationType>()) {
1577      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1578        T = QualType(NNS->getAsType(), 0);
1579      else
1580        T = QualType();
1581      continue;
1582    }
1583
1584    // Look one step prior in a dependent name type.
1585    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1586      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1587        T = QualType(NNS->getAsType(), 0);
1588      else
1589        T = QualType();
1590      continue;
1591    }
1592
1593    // Retrieve the parent of an enumeration type.
1594    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1595      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1596      // check here.
1597      EnumDecl *Enum = EnumT->getDecl();
1598
1599      // Get to the parent type.
1600      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1601        T = Context.getTypeDeclType(Parent);
1602      else
1603        T = QualType();
1604      continue;
1605    }
1606
1607    T = QualType();
1608  }
1609  // Reverse the nested types list, since we want to traverse from the outermost
1610  // to the innermost while checking template-parameter-lists.
1611  std::reverse(NestedTypes.begin(), NestedTypes.end());
1612
1613  // C++0x [temp.expl.spec]p17:
1614  //   A member or a member template may be nested within many
1615  //   enclosing class templates. In an explicit specialization for
1616  //   such a member, the member declaration shall be preceded by a
1617  //   template<> for each enclosing class template that is
1618  //   explicitly specialized.
1619  bool SawNonEmptyTemplateParameterList = false;
1620  unsigned ParamIdx = 0;
1621  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1622       ++TypeIdx) {
1623    T = NestedTypes[TypeIdx];
1624
1625    // Whether we expect a 'template<>' header.
1626    bool NeedEmptyTemplateHeader = false;
1627
1628    // Whether we expect a template header with parameters.
1629    bool NeedNonemptyTemplateHeader = false;
1630
1631    // For a dependent type, the set of template parameters that we
1632    // expect to see.
1633    TemplateParameterList *ExpectedTemplateParams = 0;
1634
1635    // C++0x [temp.expl.spec]p15:
1636    //   A member or a member template may be nested within many enclosing
1637    //   class templates. In an explicit specialization for such a member, the
1638    //   member declaration shall be preceded by a template<> for each
1639    //   enclosing class template that is explicitly specialized.
1640    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1641      if (ClassTemplatePartialSpecializationDecl *Partial
1642            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1643        ExpectedTemplateParams = Partial->getTemplateParameters();
1644        NeedNonemptyTemplateHeader = true;
1645      } else if (Record->isDependentType()) {
1646        if (Record->getDescribedClassTemplate()) {
1647          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1648                                                      ->getTemplateParameters();
1649          NeedNonemptyTemplateHeader = true;
1650        }
1651      } else if (ClassTemplateSpecializationDecl *Spec
1652                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1653        // C++0x [temp.expl.spec]p4:
1654        //   Members of an explicitly specialized class template are defined
1655        //   in the same manner as members of normal classes, and not using
1656        //   the template<> syntax.
1657        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1658          NeedEmptyTemplateHeader = true;
1659        else
1660          continue;
1661      } else if (Record->getTemplateSpecializationKind()) {
1662        if (Record->getTemplateSpecializationKind()
1663                                                != TSK_ExplicitSpecialization &&
1664            TypeIdx == NumTypes - 1)
1665          IsExplicitSpecialization = true;
1666
1667        continue;
1668      }
1669    } else if (const TemplateSpecializationType *TST
1670                                     = T->getAs<TemplateSpecializationType>()) {
1671      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1672        ExpectedTemplateParams = Template->getTemplateParameters();
1673        NeedNonemptyTemplateHeader = true;
1674      }
1675    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1676      // FIXME:  We actually could/should check the template arguments here
1677      // against the corresponding template parameter list.
1678      NeedNonemptyTemplateHeader = false;
1679    }
1680
1681    // C++ [temp.expl.spec]p16:
1682    //   In an explicit specialization declaration for a member of a class
1683    //   template or a member template that ap- pears in namespace scope, the
1684    //   member template and some of its enclosing class templates may remain
1685    //   unspecialized, except that the declaration shall not explicitly
1686    //   specialize a class member template if its en- closing class templates
1687    //   are not explicitly specialized as well.
1688    if (ParamIdx < NumParamLists) {
1689      if (ParamLists[ParamIdx]->size() == 0) {
1690        if (SawNonEmptyTemplateParameterList) {
1691          Diag(DeclLoc, diag::err_specialize_member_of_template)
1692            << ParamLists[ParamIdx]->getSourceRange();
1693          Invalid = true;
1694          IsExplicitSpecialization = false;
1695          return 0;
1696        }
1697      } else
1698        SawNonEmptyTemplateParameterList = true;
1699    }
1700
1701    if (NeedEmptyTemplateHeader) {
1702      // If we're on the last of the types, and we need a 'template<>' header
1703      // here, then it's an explicit specialization.
1704      if (TypeIdx == NumTypes - 1)
1705        IsExplicitSpecialization = true;
1706
1707      if (ParamIdx < NumParamLists) {
1708        if (ParamLists[ParamIdx]->size() > 0) {
1709          // The header has template parameters when it shouldn't. Complain.
1710          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1711               diag::err_template_param_list_matches_nontemplate)
1712            << T
1713            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1714                           ParamLists[ParamIdx]->getRAngleLoc())
1715            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1716          Invalid = true;
1717          return 0;
1718        }
1719
1720        // Consume this template header.
1721        ++ParamIdx;
1722        continue;
1723      }
1724
1725      if (!IsFriend) {
1726        // We don't have a template header, but we should.
1727        SourceLocation ExpectedTemplateLoc;
1728        if (NumParamLists > 0)
1729          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1730        else
1731          ExpectedTemplateLoc = DeclStartLoc;
1732
1733        Diag(DeclLoc, diag::err_template_spec_needs_header)
1734          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1735          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1736      }
1737
1738      continue;
1739    }
1740
1741    if (NeedNonemptyTemplateHeader) {
1742      // In friend declarations we can have template-ids which don't
1743      // depend on the corresponding template parameter lists.  But
1744      // assume that empty parameter lists are supposed to match this
1745      // template-id.
1746      if (IsFriend && T->isDependentType()) {
1747        if (ParamIdx < NumParamLists &&
1748            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1749          ExpectedTemplateParams = 0;
1750        else
1751          continue;
1752      }
1753
1754      if (ParamIdx < NumParamLists) {
1755        // Check the template parameter list, if we can.
1756        if (ExpectedTemplateParams &&
1757            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1758                                            ExpectedTemplateParams,
1759                                            true, TPL_TemplateMatch))
1760          Invalid = true;
1761
1762        if (!Invalid &&
1763            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1764                                       TPC_ClassTemplateMember))
1765          Invalid = true;
1766
1767        ++ParamIdx;
1768        continue;
1769      }
1770
1771      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1772        << T
1773        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1774      Invalid = true;
1775      continue;
1776    }
1777  }
1778
1779  // If there were at least as many template-ids as there were template
1780  // parameter lists, then there are no template parameter lists remaining for
1781  // the declaration itself.
1782  if (ParamIdx >= NumParamLists)
1783    return 0;
1784
1785  // If there were too many template parameter lists, complain about that now.
1786  if (ParamIdx < NumParamLists - 1) {
1787    bool HasAnyExplicitSpecHeader = false;
1788    bool AllExplicitSpecHeaders = true;
1789    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1790      if (ParamLists[I]->size() == 0)
1791        HasAnyExplicitSpecHeader = true;
1792      else
1793        AllExplicitSpecHeaders = false;
1794    }
1795
1796    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1797         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1798                               : diag::err_template_spec_extra_headers)
1799      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1800                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1801
1802    // If there was a specialization somewhere, such that 'template<>' is
1803    // not required, and there were any 'template<>' headers, note where the
1804    // specialization occurred.
1805    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1806      Diag(ExplicitSpecLoc,
1807           diag::note_explicit_template_spec_does_not_need_header)
1808        << NestedTypes.back();
1809
1810    // We have a template parameter list with no corresponding scope, which
1811    // means that the resulting template declaration can't be instantiated
1812    // properly (we'll end up with dependent nodes when we shouldn't).
1813    if (!AllExplicitSpecHeaders)
1814      Invalid = true;
1815  }
1816
1817  // C++ [temp.expl.spec]p16:
1818  //   In an explicit specialization declaration for a member of a class
1819  //   template or a member template that ap- pears in namespace scope, the
1820  //   member template and some of its enclosing class templates may remain
1821  //   unspecialized, except that the declaration shall not explicitly
1822  //   specialize a class member template if its en- closing class templates
1823  //   are not explicitly specialized as well.
1824  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1825      SawNonEmptyTemplateParameterList) {
1826    Diag(DeclLoc, diag::err_specialize_member_of_template)
1827      << ParamLists[ParamIdx]->getSourceRange();
1828    Invalid = true;
1829    IsExplicitSpecialization = false;
1830    return 0;
1831  }
1832
1833  // Return the last template parameter list, which corresponds to the
1834  // entity being declared.
1835  return ParamLists[NumParamLists - 1];
1836}
1837
1838void Sema::NoteAllFoundTemplates(TemplateName Name) {
1839  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1840    Diag(Template->getLocation(), diag::note_template_declared_here)
1841      << (isa<FunctionTemplateDecl>(Template)? 0
1842          : isa<ClassTemplateDecl>(Template)? 1
1843          : isa<TypeAliasTemplateDecl>(Template)? 2
1844          : 3)
1845      << Template->getDeclName();
1846    return;
1847  }
1848
1849  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1850    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1851                                          IEnd = OST->end();
1852         I != IEnd; ++I)
1853      Diag((*I)->getLocation(), diag::note_template_declared_here)
1854        << 0 << (*I)->getDeclName();
1855
1856    return;
1857  }
1858}
1859
1860
1861QualType Sema::CheckTemplateIdType(TemplateName Name,
1862                                   SourceLocation TemplateLoc,
1863                                   TemplateArgumentListInfo &TemplateArgs) {
1864  DependentTemplateName *DTN
1865    = Name.getUnderlying().getAsDependentTemplateName();
1866  if (DTN && DTN->isIdentifier())
1867    // When building a template-id where the template-name is dependent,
1868    // assume the template is a type template. Either our assumption is
1869    // correct, or the code is ill-formed and will be diagnosed when the
1870    // dependent name is substituted.
1871    return Context.getDependentTemplateSpecializationType(ETK_None,
1872                                                          DTN->getQualifier(),
1873                                                          DTN->getIdentifier(),
1874                                                          TemplateArgs);
1875
1876  TemplateDecl *Template = Name.getAsTemplateDecl();
1877  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1878    // We might have a substituted template template parameter pack. If so,
1879    // build a template specialization type for it.
1880    if (Name.getAsSubstTemplateTemplateParmPack())
1881      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1882
1883    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1884      << Name;
1885    NoteAllFoundTemplates(Name);
1886    return QualType();
1887  }
1888
1889  // Check that the template argument list is well-formed for this
1890  // template.
1891  llvm::SmallVector<TemplateArgument, 4> Converted;
1892  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1893                                false, Converted))
1894    return QualType();
1895
1896  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1897         "Converted template argument list is too short!");
1898
1899  QualType CanonType;
1900
1901  bool InstantiationDependent = false;
1902  if (TypeAliasTemplateDecl *AliasTemplate
1903        = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1904    // Find the canonical type for this type alias template specialization.
1905    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1906    if (Pattern->isInvalidDecl())
1907      return QualType();
1908
1909    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1910                                      Converted.data(), Converted.size());
1911
1912    // Only substitute for the innermost template argument list.
1913    MultiLevelTemplateArgumentList TemplateArgLists;
1914    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1915    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1916    for (unsigned I = 0; I < Depth; ++I)
1917      TemplateArgLists.addOuterTemplateArguments(0, 0);
1918
1919    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1920    CanonType = SubstType(Pattern->getUnderlyingType(),
1921                          TemplateArgLists, AliasTemplate->getLocation(),
1922                          AliasTemplate->getDeclName());
1923    if (CanonType.isNull())
1924      return QualType();
1925  } else if (Name.isDependent() ||
1926             TemplateSpecializationType::anyDependentTemplateArguments(
1927               TemplateArgs, InstantiationDependent)) {
1928    // This class template specialization is a dependent
1929    // type. Therefore, its canonical type is another class template
1930    // specialization type that contains all of the converted
1931    // arguments in canonical form. This ensures that, e.g., A<T> and
1932    // A<T, T> have identical types when A is declared as:
1933    //
1934    //   template<typename T, typename U = T> struct A;
1935    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1936    CanonType = Context.getTemplateSpecializationType(CanonName,
1937                                                      Converted.data(),
1938                                                      Converted.size());
1939
1940    // FIXME: CanonType is not actually the canonical type, and unfortunately
1941    // it is a TemplateSpecializationType that we will never use again.
1942    // In the future, we need to teach getTemplateSpecializationType to only
1943    // build the canonical type and return that to us.
1944    CanonType = Context.getCanonicalType(CanonType);
1945
1946    // This might work out to be a current instantiation, in which
1947    // case the canonical type needs to be the InjectedClassNameType.
1948    //
1949    // TODO: in theory this could be a simple hashtable lookup; most
1950    // changes to CurContext don't change the set of current
1951    // instantiations.
1952    if (isa<ClassTemplateDecl>(Template)) {
1953      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1954        // If we get out to a namespace, we're done.
1955        if (Ctx->isFileContext()) break;
1956
1957        // If this isn't a record, keep looking.
1958        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1959        if (!Record) continue;
1960
1961        // Look for one of the two cases with InjectedClassNameTypes
1962        // and check whether it's the same template.
1963        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1964            !Record->getDescribedClassTemplate())
1965          continue;
1966
1967        // Fetch the injected class name type and check whether its
1968        // injected type is equal to the type we just built.
1969        QualType ICNT = Context.getTypeDeclType(Record);
1970        QualType Injected = cast<InjectedClassNameType>(ICNT)
1971          ->getInjectedSpecializationType();
1972
1973        if (CanonType != Injected->getCanonicalTypeInternal())
1974          continue;
1975
1976        // If so, the canonical type of this TST is the injected
1977        // class name type of the record we just found.
1978        assert(ICNT.isCanonical());
1979        CanonType = ICNT;
1980        break;
1981      }
1982    }
1983  } else if (ClassTemplateDecl *ClassTemplate
1984               = dyn_cast<ClassTemplateDecl>(Template)) {
1985    // Find the class template specialization declaration that
1986    // corresponds to these arguments.
1987    void *InsertPos = 0;
1988    ClassTemplateSpecializationDecl *Decl
1989      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1990                                          InsertPos);
1991    if (!Decl) {
1992      // This is the first time we have referenced this class template
1993      // specialization. Create the canonical declaration and add it to
1994      // the set of specializations.
1995      Decl = ClassTemplateSpecializationDecl::Create(Context,
1996                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1997                                                ClassTemplate->getDeclContext(),
1998                                                ClassTemplate->getLocation(),
1999                                                ClassTemplate->getLocation(),
2000                                                     ClassTemplate,
2001                                                     Converted.data(),
2002                                                     Converted.size(), 0);
2003      ClassTemplate->AddSpecialization(Decl, InsertPos);
2004      Decl->setLexicalDeclContext(CurContext);
2005    }
2006
2007    CanonType = Context.getTypeDeclType(Decl);
2008    assert(isa<RecordType>(CanonType) &&
2009           "type of non-dependent specialization is not a RecordType");
2010  }
2011
2012  // Build the fully-sugared type for this class template
2013  // specialization, which refers back to the class template
2014  // specialization we created or found.
2015  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2016}
2017
2018TypeResult
2019Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
2020                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2021                          SourceLocation LAngleLoc,
2022                          ASTTemplateArgsPtr TemplateArgsIn,
2023                          SourceLocation RAngleLoc) {
2024  if (SS.isInvalid())
2025    return true;
2026
2027  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2028
2029  // Translate the parser's template argument list in our AST format.
2030  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2031  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2032
2033  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2034    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
2035                                                           DTN->getQualifier(),
2036                                                           DTN->getIdentifier(),
2037                                                                TemplateArgs);
2038
2039    // Build type-source information.
2040    TypeLocBuilder TLB;
2041    DependentTemplateSpecializationTypeLoc SpecTL
2042      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2043    SpecTL.setKeywordLoc(SourceLocation());
2044    SpecTL.setNameLoc(TemplateLoc);
2045    SpecTL.setLAngleLoc(LAngleLoc);
2046    SpecTL.setRAngleLoc(RAngleLoc);
2047    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2048    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2049      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2050    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2051  }
2052
2053  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2054  TemplateArgsIn.release();
2055
2056  if (Result.isNull())
2057    return true;
2058
2059  // Build type-source information.
2060  TypeLocBuilder TLB;
2061  TemplateSpecializationTypeLoc SpecTL
2062    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2063  SpecTL.setTemplateNameLoc(TemplateLoc);
2064  SpecTL.setLAngleLoc(LAngleLoc);
2065  SpecTL.setRAngleLoc(RAngleLoc);
2066  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2067    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2068
2069  if (SS.isNotEmpty()) {
2070    // Create an elaborated-type-specifier containing the nested-name-specifier.
2071    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2072    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2073    ElabTL.setKeywordLoc(SourceLocation());
2074    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2075  }
2076
2077  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2078}
2079
2080TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2081                                        TypeSpecifierType TagSpec,
2082                                        SourceLocation TagLoc,
2083                                        CXXScopeSpec &SS,
2084                                        TemplateTy TemplateD,
2085                                        SourceLocation TemplateLoc,
2086                                        SourceLocation LAngleLoc,
2087                                        ASTTemplateArgsPtr TemplateArgsIn,
2088                                        SourceLocation RAngleLoc) {
2089  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2090
2091  // Translate the parser's template argument list in our AST format.
2092  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2093  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2094
2095  // Determine the tag kind
2096  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2097  ElaboratedTypeKeyword Keyword
2098    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2099
2100  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2101    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2102                                                          DTN->getQualifier(),
2103                                                          DTN->getIdentifier(),
2104                                                                TemplateArgs);
2105
2106    // Build type-source information.
2107    TypeLocBuilder TLB;
2108    DependentTemplateSpecializationTypeLoc SpecTL
2109    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2110    SpecTL.setKeywordLoc(TagLoc);
2111    SpecTL.setNameLoc(TemplateLoc);
2112    SpecTL.setLAngleLoc(LAngleLoc);
2113    SpecTL.setRAngleLoc(RAngleLoc);
2114    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2115    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2116      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2117    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2118  }
2119
2120  if (TypeAliasTemplateDecl *TAT =
2121        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2122    // C++0x [dcl.type.elab]p2:
2123    //   If the identifier resolves to a typedef-name or the simple-template-id
2124    //   resolves to an alias template specialization, the
2125    //   elaborated-type-specifier is ill-formed.
2126    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2127    Diag(TAT->getLocation(), diag::note_declared_at);
2128  }
2129
2130  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2131  if (Result.isNull())
2132    return TypeResult();
2133
2134  // Check the tag kind
2135  if (const RecordType *RT = Result->getAs<RecordType>()) {
2136    RecordDecl *D = RT->getDecl();
2137
2138    IdentifierInfo *Id = D->getIdentifier();
2139    assert(Id && "templated class must have an identifier");
2140
2141    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2142                                      TagLoc, *Id)) {
2143      Diag(TagLoc, diag::err_use_with_wrong_tag)
2144        << Result
2145        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2146      Diag(D->getLocation(), diag::note_previous_use);
2147    }
2148  }
2149
2150  // Provide source-location information for the template specialization.
2151  TypeLocBuilder TLB;
2152  TemplateSpecializationTypeLoc SpecTL
2153    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2154  SpecTL.setTemplateNameLoc(TemplateLoc);
2155  SpecTL.setLAngleLoc(LAngleLoc);
2156  SpecTL.setRAngleLoc(RAngleLoc);
2157  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2158    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2159
2160  // Construct an elaborated type containing the nested-name-specifier (if any)
2161  // and keyword.
2162  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2163  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2164  ElabTL.setKeywordLoc(TagLoc);
2165  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2166  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2167}
2168
2169ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2170                                     LookupResult &R,
2171                                     bool RequiresADL,
2172                                 const TemplateArgumentListInfo &TemplateArgs) {
2173  // FIXME: Can we do any checking at this point? I guess we could check the
2174  // template arguments that we have against the template name, if the template
2175  // name refers to a single template. That's not a terribly common case,
2176  // though.
2177  // foo<int> could identify a single function unambiguously
2178  // This approach does NOT work, since f<int>(1);
2179  // gets resolved prior to resorting to overload resolution
2180  // i.e., template<class T> void f(double);
2181  //       vs template<class T, class U> void f(U);
2182
2183  // These should be filtered out by our callers.
2184  assert(!R.empty() && "empty lookup results when building templateid");
2185  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2186
2187  // We don't want lookup warnings at this point.
2188  R.suppressDiagnostics();
2189
2190  UnresolvedLookupExpr *ULE
2191    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2192                                   SS.getWithLocInContext(Context),
2193                                   R.getLookupNameInfo(),
2194                                   RequiresADL, TemplateArgs,
2195                                   R.begin(), R.end());
2196
2197  return Owned(ULE);
2198}
2199
2200// We actually only call this from template instantiation.
2201ExprResult
2202Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2203                                   const DeclarationNameInfo &NameInfo,
2204                             const TemplateArgumentListInfo &TemplateArgs) {
2205  DeclContext *DC;
2206  if (!(DC = computeDeclContext(SS, false)) ||
2207      DC->isDependentContext() ||
2208      RequireCompleteDeclContext(SS, DC))
2209    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
2210
2211  bool MemberOfUnknownSpecialization;
2212  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2213  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2214                     MemberOfUnknownSpecialization);
2215
2216  if (R.isAmbiguous())
2217    return ExprError();
2218
2219  if (R.empty()) {
2220    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2221      << NameInfo.getName() << SS.getRange();
2222    return ExprError();
2223  }
2224
2225  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2226    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2227      << (NestedNameSpecifier*) SS.getScopeRep()
2228      << NameInfo.getName() << SS.getRange();
2229    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2230    return ExprError();
2231  }
2232
2233  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
2234}
2235
2236/// \brief Form a dependent template name.
2237///
2238/// This action forms a dependent template name given the template
2239/// name and its (presumably dependent) scope specifier. For
2240/// example, given "MetaFun::template apply", the scope specifier \p
2241/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2242/// of the "template" keyword, and "apply" is the \p Name.
2243TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2244                                                  SourceLocation TemplateKWLoc,
2245                                                  CXXScopeSpec &SS,
2246                                                  UnqualifiedId &Name,
2247                                                  ParsedType ObjectType,
2248                                                  bool EnteringContext,
2249                                                  TemplateTy &Result) {
2250  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
2251      !getLangOptions().CPlusPlus0x)
2252    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
2253      << FixItHint::CreateRemoval(TemplateKWLoc);
2254
2255  DeclContext *LookupCtx = 0;
2256  if (SS.isSet())
2257    LookupCtx = computeDeclContext(SS, EnteringContext);
2258  if (!LookupCtx && ObjectType)
2259    LookupCtx = computeDeclContext(ObjectType.get());
2260  if (LookupCtx) {
2261    // C++0x [temp.names]p5:
2262    //   If a name prefixed by the keyword template is not the name of
2263    //   a template, the program is ill-formed. [Note: the keyword
2264    //   template may not be applied to non-template members of class
2265    //   templates. -end note ] [ Note: as is the case with the
2266    //   typename prefix, the template prefix is allowed in cases
2267    //   where it is not strictly necessary; i.e., when the
2268    //   nested-name-specifier or the expression on the left of the ->
2269    //   or . is not dependent on a template-parameter, or the use
2270    //   does not appear in the scope of a template. -end note]
2271    //
2272    // Note: C++03 was more strict here, because it banned the use of
2273    // the "template" keyword prior to a template-name that was not a
2274    // dependent name. C++ DR468 relaxed this requirement (the
2275    // "template" keyword is now permitted). We follow the C++0x
2276    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2277    bool MemberOfUnknownSpecialization;
2278    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2279                                          ObjectType, EnteringContext, Result,
2280                                          MemberOfUnknownSpecialization);
2281    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2282        isa<CXXRecordDecl>(LookupCtx) &&
2283        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2284         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2285      // This is a dependent template. Handle it below.
2286    } else if (TNK == TNK_Non_template) {
2287      Diag(Name.getSourceRange().getBegin(),
2288           diag::err_template_kw_refers_to_non_template)
2289        << GetNameFromUnqualifiedId(Name).getName()
2290        << Name.getSourceRange()
2291        << TemplateKWLoc;
2292      return TNK_Non_template;
2293    } else {
2294      // We found something; return it.
2295      return TNK;
2296    }
2297  }
2298
2299  NestedNameSpecifier *Qualifier
2300    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2301
2302  switch (Name.getKind()) {
2303  case UnqualifiedId::IK_Identifier:
2304    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2305                                                              Name.Identifier));
2306    return TNK_Dependent_template_name;
2307
2308  case UnqualifiedId::IK_OperatorFunctionId:
2309    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2310                                             Name.OperatorFunctionId.Operator));
2311    return TNK_Dependent_template_name;
2312
2313  case UnqualifiedId::IK_LiteralOperatorId:
2314    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
2315
2316  default:
2317    break;
2318  }
2319
2320  Diag(Name.getSourceRange().getBegin(),
2321       diag::err_template_kw_refers_to_non_template)
2322    << GetNameFromUnqualifiedId(Name).getName()
2323    << Name.getSourceRange()
2324    << TemplateKWLoc;
2325  return TNK_Non_template;
2326}
2327
2328bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2329                                     const TemplateArgumentLoc &AL,
2330                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2331  const TemplateArgument &Arg = AL.getArgument();
2332
2333  // Check template type parameter.
2334  switch(Arg.getKind()) {
2335  case TemplateArgument::Type:
2336    // C++ [temp.arg.type]p1:
2337    //   A template-argument for a template-parameter which is a
2338    //   type shall be a type-id.
2339    break;
2340  case TemplateArgument::Template: {
2341    // We have a template type parameter but the template argument
2342    // is a template without any arguments.
2343    SourceRange SR = AL.getSourceRange();
2344    TemplateName Name = Arg.getAsTemplate();
2345    Diag(SR.getBegin(), diag::err_template_missing_args)
2346      << Name << SR;
2347    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2348      Diag(Decl->getLocation(), diag::note_template_decl_here);
2349
2350    return true;
2351  }
2352  default: {
2353    // We have a template type parameter but the template argument
2354    // is not a type.
2355    SourceRange SR = AL.getSourceRange();
2356    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2357    Diag(Param->getLocation(), diag::note_template_param_here);
2358
2359    return true;
2360  }
2361  }
2362
2363  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2364    return true;
2365
2366  // Add the converted template type argument.
2367  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2368
2369  // Objective-C ARC:
2370  //   If an explicitly-specified template argument type is a lifetime type
2371  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2372  if (getLangOptions().ObjCAutoRefCount &&
2373      ArgType->isObjCLifetimeType() &&
2374      !ArgType.getObjCLifetime()) {
2375    Qualifiers Qs;
2376    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2377    ArgType = Context.getQualifiedType(ArgType, Qs);
2378  }
2379
2380  Converted.push_back(TemplateArgument(ArgType));
2381  return false;
2382}
2383
2384/// \brief Substitute template arguments into the default template argument for
2385/// the given template type parameter.
2386///
2387/// \param SemaRef the semantic analysis object for which we are performing
2388/// the substitution.
2389///
2390/// \param Template the template that we are synthesizing template arguments
2391/// for.
2392///
2393/// \param TemplateLoc the location of the template name that started the
2394/// template-id we are checking.
2395///
2396/// \param RAngleLoc the location of the right angle bracket ('>') that
2397/// terminates the template-id.
2398///
2399/// \param Param the template template parameter whose default we are
2400/// substituting into.
2401///
2402/// \param Converted the list of template arguments provided for template
2403/// parameters that precede \p Param in the template parameter list.
2404/// \returns the substituted template argument, or NULL if an error occurred.
2405static TypeSourceInfo *
2406SubstDefaultTemplateArgument(Sema &SemaRef,
2407                             TemplateDecl *Template,
2408                             SourceLocation TemplateLoc,
2409                             SourceLocation RAngleLoc,
2410                             TemplateTypeParmDecl *Param,
2411                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2412  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2413
2414  // If the argument type is dependent, instantiate it now based
2415  // on the previously-computed template arguments.
2416  if (ArgType->getType()->isDependentType()) {
2417    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2418                                      Converted.data(), Converted.size());
2419
2420    MultiLevelTemplateArgumentList AllTemplateArgs
2421      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2422
2423    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2424                                     Template, Converted.data(),
2425                                     Converted.size(),
2426                                     SourceRange(TemplateLoc, RAngleLoc));
2427
2428    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2429                                Param->getDefaultArgumentLoc(),
2430                                Param->getDeclName());
2431  }
2432
2433  return ArgType;
2434}
2435
2436/// \brief Substitute template arguments into the default template argument for
2437/// the given non-type template parameter.
2438///
2439/// \param SemaRef the semantic analysis object for which we are performing
2440/// the substitution.
2441///
2442/// \param Template the template that we are synthesizing template arguments
2443/// for.
2444///
2445/// \param TemplateLoc the location of the template name that started the
2446/// template-id we are checking.
2447///
2448/// \param RAngleLoc the location of the right angle bracket ('>') that
2449/// terminates the template-id.
2450///
2451/// \param Param the non-type template parameter whose default we are
2452/// substituting into.
2453///
2454/// \param Converted the list of template arguments provided for template
2455/// parameters that precede \p Param in the template parameter list.
2456///
2457/// \returns the substituted template argument, or NULL if an error occurred.
2458static ExprResult
2459SubstDefaultTemplateArgument(Sema &SemaRef,
2460                             TemplateDecl *Template,
2461                             SourceLocation TemplateLoc,
2462                             SourceLocation RAngleLoc,
2463                             NonTypeTemplateParmDecl *Param,
2464                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2465  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2466                                    Converted.data(), Converted.size());
2467
2468  MultiLevelTemplateArgumentList AllTemplateArgs
2469    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2470
2471  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2472                                   Template, Converted.data(),
2473                                   Converted.size(),
2474                                   SourceRange(TemplateLoc, RAngleLoc));
2475
2476  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2477}
2478
2479/// \brief Substitute template arguments into the default template argument for
2480/// the given template template parameter.
2481///
2482/// \param SemaRef the semantic analysis object for which we are performing
2483/// the substitution.
2484///
2485/// \param Template the template that we are synthesizing template arguments
2486/// for.
2487///
2488/// \param TemplateLoc the location of the template name that started the
2489/// template-id we are checking.
2490///
2491/// \param RAngleLoc the location of the right angle bracket ('>') that
2492/// terminates the template-id.
2493///
2494/// \param Param the template template parameter whose default we are
2495/// substituting into.
2496///
2497/// \param Converted the list of template arguments provided for template
2498/// parameters that precede \p Param in the template parameter list.
2499///
2500/// \param QualifierLoc Will be set to the nested-name-specifier (with
2501/// source-location information) that precedes the template name.
2502///
2503/// \returns the substituted template argument, or NULL if an error occurred.
2504static TemplateName
2505SubstDefaultTemplateArgument(Sema &SemaRef,
2506                             TemplateDecl *Template,
2507                             SourceLocation TemplateLoc,
2508                             SourceLocation RAngleLoc,
2509                             TemplateTemplateParmDecl *Param,
2510                       llvm::SmallVectorImpl<TemplateArgument> &Converted,
2511                             NestedNameSpecifierLoc &QualifierLoc) {
2512  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2513                                    Converted.data(), Converted.size());
2514
2515  MultiLevelTemplateArgumentList AllTemplateArgs
2516    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2517
2518  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2519                                   Template, Converted.data(),
2520                                   Converted.size(),
2521                                   SourceRange(TemplateLoc, RAngleLoc));
2522
2523  // Substitute into the nested-name-specifier first,
2524  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2525  if (QualifierLoc) {
2526    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2527                                                       AllTemplateArgs);
2528    if (!QualifierLoc)
2529      return TemplateName();
2530  }
2531
2532  return SemaRef.SubstTemplateName(QualifierLoc,
2533                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2534                              Param->getDefaultArgument().getTemplateNameLoc(),
2535                                   AllTemplateArgs);
2536}
2537
2538/// \brief If the given template parameter has a default template
2539/// argument, substitute into that default template argument and
2540/// return the corresponding template argument.
2541TemplateArgumentLoc
2542Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2543                                              SourceLocation TemplateLoc,
2544                                              SourceLocation RAngleLoc,
2545                                              Decl *Param,
2546                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2547   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2548    if (!TypeParm->hasDefaultArgument())
2549      return TemplateArgumentLoc();
2550
2551    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2552                                                      TemplateLoc,
2553                                                      RAngleLoc,
2554                                                      TypeParm,
2555                                                      Converted);
2556    if (DI)
2557      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2558
2559    return TemplateArgumentLoc();
2560  }
2561
2562  if (NonTypeTemplateParmDecl *NonTypeParm
2563        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2564    if (!NonTypeParm->hasDefaultArgument())
2565      return TemplateArgumentLoc();
2566
2567    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2568                                                  TemplateLoc,
2569                                                  RAngleLoc,
2570                                                  NonTypeParm,
2571                                                  Converted);
2572    if (Arg.isInvalid())
2573      return TemplateArgumentLoc();
2574
2575    Expr *ArgE = Arg.takeAs<Expr>();
2576    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2577  }
2578
2579  TemplateTemplateParmDecl *TempTempParm
2580    = cast<TemplateTemplateParmDecl>(Param);
2581  if (!TempTempParm->hasDefaultArgument())
2582    return TemplateArgumentLoc();
2583
2584
2585  NestedNameSpecifierLoc QualifierLoc;
2586  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2587                                                    TemplateLoc,
2588                                                    RAngleLoc,
2589                                                    TempTempParm,
2590                                                    Converted,
2591                                                    QualifierLoc);
2592  if (TName.isNull())
2593    return TemplateArgumentLoc();
2594
2595  return TemplateArgumentLoc(TemplateArgument(TName),
2596                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2597                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2598}
2599
2600/// \brief Check that the given template argument corresponds to the given
2601/// template parameter.
2602///
2603/// \param Param The template parameter against which the argument will be
2604/// checked.
2605///
2606/// \param Arg The template argument.
2607///
2608/// \param Template The template in which the template argument resides.
2609///
2610/// \param TemplateLoc The location of the template name for the template
2611/// whose argument list we're matching.
2612///
2613/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2614/// the template argument list.
2615///
2616/// \param ArgumentPackIndex The index into the argument pack where this
2617/// argument will be placed. Only valid if the parameter is a parameter pack.
2618///
2619/// \param Converted The checked, converted argument will be added to the
2620/// end of this small vector.
2621///
2622/// \param CTAK Describes how we arrived at this particular template argument:
2623/// explicitly written, deduced, etc.
2624///
2625/// \returns true on error, false otherwise.
2626bool Sema::CheckTemplateArgument(NamedDecl *Param,
2627                                 const TemplateArgumentLoc &Arg,
2628                                 NamedDecl *Template,
2629                                 SourceLocation TemplateLoc,
2630                                 SourceLocation RAngleLoc,
2631                                 unsigned ArgumentPackIndex,
2632                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2633                                 CheckTemplateArgumentKind CTAK) {
2634  // Check template type parameters.
2635  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2636    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2637
2638  // Check non-type template parameters.
2639  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2640    // Do substitution on the type of the non-type template parameter
2641    // with the template arguments we've seen thus far.  But if the
2642    // template has a dependent context then we cannot substitute yet.
2643    QualType NTTPType = NTTP->getType();
2644    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2645      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2646
2647    if (NTTPType->isDependentType() &&
2648        !isa<TemplateTemplateParmDecl>(Template) &&
2649        !Template->getDeclContext()->isDependentContext()) {
2650      // Do substitution on the type of the non-type template parameter.
2651      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2652                                 NTTP, Converted.data(), Converted.size(),
2653                                 SourceRange(TemplateLoc, RAngleLoc));
2654
2655      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2656                                        Converted.data(), Converted.size());
2657      NTTPType = SubstType(NTTPType,
2658                           MultiLevelTemplateArgumentList(TemplateArgs),
2659                           NTTP->getLocation(),
2660                           NTTP->getDeclName());
2661      // If that worked, check the non-type template parameter type
2662      // for validity.
2663      if (!NTTPType.isNull())
2664        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2665                                                     NTTP->getLocation());
2666      if (NTTPType.isNull())
2667        return true;
2668    }
2669
2670    switch (Arg.getArgument().getKind()) {
2671    case TemplateArgument::Null:
2672      assert(false && "Should never see a NULL template argument here");
2673      return true;
2674
2675    case TemplateArgument::Expression: {
2676      TemplateArgument Result;
2677      ExprResult Res =
2678        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2679                              Result, CTAK);
2680      if (Res.isInvalid())
2681        return true;
2682
2683      Converted.push_back(Result);
2684      break;
2685    }
2686
2687    case TemplateArgument::Declaration:
2688    case TemplateArgument::Integral:
2689      // We've already checked this template argument, so just copy
2690      // it to the list of converted arguments.
2691      Converted.push_back(Arg.getArgument());
2692      break;
2693
2694    case TemplateArgument::Template:
2695    case TemplateArgument::TemplateExpansion:
2696      // We were given a template template argument. It may not be ill-formed;
2697      // see below.
2698      if (DependentTemplateName *DTN
2699            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2700                                              .getAsDependentTemplateName()) {
2701        // We have a template argument such as \c T::template X, which we
2702        // parsed as a template template argument. However, since we now
2703        // know that we need a non-type template argument, convert this
2704        // template name into an expression.
2705
2706        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2707                                     Arg.getTemplateNameLoc());
2708
2709        CXXScopeSpec SS;
2710        SS.Adopt(Arg.getTemplateQualifierLoc());
2711        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2712                                                SS.getWithLocInContext(Context),
2713                                                    NameInfo));
2714
2715        // If we parsed the template argument as a pack expansion, create a
2716        // pack expansion expression.
2717        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2718          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2719          if (E.isInvalid())
2720            return true;
2721        }
2722
2723        TemplateArgument Result;
2724        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2725        if (E.isInvalid())
2726          return true;
2727
2728        Converted.push_back(Result);
2729        break;
2730      }
2731
2732      // We have a template argument that actually does refer to a class
2733      // template, alias template, or template template parameter, and
2734      // therefore cannot be a non-type template argument.
2735      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2736        << Arg.getSourceRange();
2737
2738      Diag(Param->getLocation(), diag::note_template_param_here);
2739      return true;
2740
2741    case TemplateArgument::Type: {
2742      // We have a non-type template parameter but the template
2743      // argument is a type.
2744
2745      // C++ [temp.arg]p2:
2746      //   In a template-argument, an ambiguity between a type-id and
2747      //   an expression is resolved to a type-id, regardless of the
2748      //   form of the corresponding template-parameter.
2749      //
2750      // We warn specifically about this case, since it can be rather
2751      // confusing for users.
2752      QualType T = Arg.getArgument().getAsType();
2753      SourceRange SR = Arg.getSourceRange();
2754      if (T->isFunctionType())
2755        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2756      else
2757        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2758      Diag(Param->getLocation(), diag::note_template_param_here);
2759      return true;
2760    }
2761
2762    case TemplateArgument::Pack:
2763      llvm_unreachable("Caller must expand template argument packs");
2764      break;
2765    }
2766
2767    return false;
2768  }
2769
2770
2771  // Check template template parameters.
2772  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2773
2774  // Substitute into the template parameter list of the template
2775  // template parameter, since previously-supplied template arguments
2776  // may appear within the template template parameter.
2777  {
2778    // Set up a template instantiation context.
2779    LocalInstantiationScope Scope(*this);
2780    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2781                               TempParm, Converted.data(), Converted.size(),
2782                               SourceRange(TemplateLoc, RAngleLoc));
2783
2784    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2785                                      Converted.data(), Converted.size());
2786    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2787                      SubstDecl(TempParm, CurContext,
2788                                MultiLevelTemplateArgumentList(TemplateArgs)));
2789    if (!TempParm)
2790      return true;
2791  }
2792
2793  switch (Arg.getArgument().getKind()) {
2794  case TemplateArgument::Null:
2795    assert(false && "Should never see a NULL template argument here");
2796    return true;
2797
2798  case TemplateArgument::Template:
2799  case TemplateArgument::TemplateExpansion:
2800    if (CheckTemplateArgument(TempParm, Arg))
2801      return true;
2802
2803    Converted.push_back(Arg.getArgument());
2804    break;
2805
2806  case TemplateArgument::Expression:
2807  case TemplateArgument::Type:
2808    // We have a template template parameter but the template
2809    // argument does not refer to a template.
2810    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2811      << getLangOptions().CPlusPlus0x;
2812    return true;
2813
2814  case TemplateArgument::Declaration:
2815    llvm_unreachable(
2816                       "Declaration argument with template template parameter");
2817    break;
2818  case TemplateArgument::Integral:
2819    llvm_unreachable(
2820                          "Integral argument with template template parameter");
2821    break;
2822
2823  case TemplateArgument::Pack:
2824    llvm_unreachable("Caller must expand template argument packs");
2825    break;
2826  }
2827
2828  return false;
2829}
2830
2831/// \brief Check that the given template argument list is well-formed
2832/// for specializing the given template.
2833bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2834                                     SourceLocation TemplateLoc,
2835                                     TemplateArgumentListInfo &TemplateArgs,
2836                                     bool PartialTemplateArgs,
2837                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2838  TemplateParameterList *Params = Template->getTemplateParameters();
2839  unsigned NumParams = Params->size();
2840  unsigned NumArgs = TemplateArgs.size();
2841  bool Invalid = false;
2842
2843  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2844
2845  bool HasParameterPack =
2846    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2847
2848  if ((NumArgs > NumParams && !HasParameterPack) ||
2849      (NumArgs < Params->getMinRequiredArguments() &&
2850       !PartialTemplateArgs)) {
2851    // FIXME: point at either the first arg beyond what we can handle,
2852    // or the '>', depending on whether we have too many or too few
2853    // arguments.
2854    SourceRange Range;
2855    if (NumArgs > NumParams)
2856      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2857    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2858      << (NumArgs > NumParams)
2859      << (isa<ClassTemplateDecl>(Template)? 0 :
2860          isa<FunctionTemplateDecl>(Template)? 1 :
2861          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2862      << Template << Range;
2863    Diag(Template->getLocation(), diag::note_template_decl_here)
2864      << Params->getSourceRange();
2865    Invalid = true;
2866  }
2867
2868  // C++ [temp.arg]p1:
2869  //   [...] The type and form of each template-argument specified in
2870  //   a template-id shall match the type and form specified for the
2871  //   corresponding parameter declared by the template in its
2872  //   template-parameter-list.
2873  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2874  llvm::SmallVector<TemplateArgument, 2> ArgumentPack;
2875  TemplateParameterList::iterator Param = Params->begin(),
2876                               ParamEnd = Params->end();
2877  unsigned ArgIdx = 0;
2878  LocalInstantiationScope InstScope(*this, true);
2879  while (Param != ParamEnd) {
2880    if (ArgIdx < NumArgs) {
2881      // If we have an expanded parameter pack, make sure we don't have too
2882      // many arguments.
2883      if (NonTypeTemplateParmDecl *NTTP
2884                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2885        if (NTTP->isExpandedParameterPack() &&
2886            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2887          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2888            << true
2889            << (isa<ClassTemplateDecl>(Template)? 0 :
2890                isa<FunctionTemplateDecl>(Template)? 1 :
2891                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2892            << Template;
2893          Diag(Template->getLocation(), diag::note_template_decl_here)
2894            << Params->getSourceRange();
2895          return true;
2896        }
2897      }
2898
2899      // Check the template argument we were given.
2900      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2901                                TemplateLoc, RAngleLoc,
2902                                ArgumentPack.size(), Converted))
2903        return true;
2904
2905      if ((*Param)->isTemplateParameterPack()) {
2906        // The template parameter was a template parameter pack, so take the
2907        // deduced argument and place it on the argument pack. Note that we
2908        // stay on the same template parameter so that we can deduce more
2909        // arguments.
2910        ArgumentPack.push_back(Converted.back());
2911        Converted.pop_back();
2912      } else {
2913        // Move to the next template parameter.
2914        ++Param;
2915      }
2916      ++ArgIdx;
2917      continue;
2918    }
2919
2920    // If we're checking a partial template argument list, we're done.
2921    if (PartialTemplateArgs) {
2922      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
2923        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2924                                                         ArgumentPack.data(),
2925                                                         ArgumentPack.size()));
2926
2927      return Invalid;
2928    }
2929
2930    // If we have a template parameter pack with no more corresponding
2931    // arguments, just break out now and we'll fill in the argument pack below.
2932    if ((*Param)->isTemplateParameterPack())
2933      break;
2934
2935    // We have a default template argument that we will use.
2936    TemplateArgumentLoc Arg;
2937
2938    // Retrieve the default template argument from the template
2939    // parameter. For each kind of template parameter, we substitute the
2940    // template arguments provided thus far and any "outer" template arguments
2941    // (when the template parameter was part of a nested template) into
2942    // the default argument.
2943    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2944      if (!TTP->hasDefaultArgument()) {
2945        assert(Invalid && "Missing default argument");
2946        break;
2947      }
2948
2949      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2950                                                             Template,
2951                                                             TemplateLoc,
2952                                                             RAngleLoc,
2953                                                             TTP,
2954                                                             Converted);
2955      if (!ArgType)
2956        return true;
2957
2958      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2959                                ArgType);
2960    } else if (NonTypeTemplateParmDecl *NTTP
2961                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2962      if (!NTTP->hasDefaultArgument()) {
2963        assert(Invalid && "Missing default argument");
2964        break;
2965      }
2966
2967      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2968                                                              TemplateLoc,
2969                                                              RAngleLoc,
2970                                                              NTTP,
2971                                                              Converted);
2972      if (E.isInvalid())
2973        return true;
2974
2975      Expr *Ex = E.takeAs<Expr>();
2976      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2977    } else {
2978      TemplateTemplateParmDecl *TempParm
2979        = cast<TemplateTemplateParmDecl>(*Param);
2980
2981      if (!TempParm->hasDefaultArgument()) {
2982        assert(Invalid && "Missing default argument");
2983        break;
2984      }
2985
2986      NestedNameSpecifierLoc QualifierLoc;
2987      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2988                                                       TemplateLoc,
2989                                                       RAngleLoc,
2990                                                       TempParm,
2991                                                       Converted,
2992                                                       QualifierLoc);
2993      if (Name.isNull())
2994        return true;
2995
2996      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
2997                           TempParm->getDefaultArgument().getTemplateNameLoc());
2998    }
2999
3000    // Introduce an instantiation record that describes where we are using
3001    // the default template argument.
3002    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3003                                        Converted.data(), Converted.size(),
3004                                        SourceRange(TemplateLoc, RAngleLoc));
3005
3006    // Check the default template argument.
3007    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3008                              RAngleLoc, 0, Converted))
3009      return true;
3010
3011    // Core issue 150 (assumed resolution): if this is a template template
3012    // parameter, keep track of the default template arguments from the
3013    // template definition.
3014    if (isTemplateTemplateParameter)
3015      TemplateArgs.addArgument(Arg);
3016
3017    // Move to the next template parameter and argument.
3018    ++Param;
3019    ++ArgIdx;
3020  }
3021
3022  // Form argument packs for each of the parameter packs remaining.
3023  while (Param != ParamEnd) {
3024    // If we're checking a partial list of template arguments, don't fill
3025    // in arguments for non-template parameter packs.
3026
3027    if ((*Param)->isTemplateParameterPack()) {
3028      if (ArgumentPack.empty())
3029        Converted.push_back(TemplateArgument(0, 0));
3030      else {
3031        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3032                                                          ArgumentPack.data(),
3033                                                         ArgumentPack.size()));
3034        ArgumentPack.clear();
3035      }
3036    }
3037
3038    ++Param;
3039  }
3040
3041  return Invalid;
3042}
3043
3044namespace {
3045  class UnnamedLocalNoLinkageFinder
3046    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3047  {
3048    Sema &S;
3049    SourceRange SR;
3050
3051    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3052
3053  public:
3054    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3055
3056    bool Visit(QualType T) {
3057      return inherited::Visit(T.getTypePtr());
3058    }
3059
3060#define TYPE(Class, Parent) \
3061    bool Visit##Class##Type(const Class##Type *);
3062#define ABSTRACT_TYPE(Class, Parent) \
3063    bool Visit##Class##Type(const Class##Type *) { return false; }
3064#define NON_CANONICAL_TYPE(Class, Parent) \
3065    bool Visit##Class##Type(const Class##Type *) { return false; }
3066#include "clang/AST/TypeNodes.def"
3067
3068    bool VisitTagDecl(const TagDecl *Tag);
3069    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3070  };
3071}
3072
3073bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3074  return false;
3075}
3076
3077bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3078  return Visit(T->getElementType());
3079}
3080
3081bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3082  return Visit(T->getPointeeType());
3083}
3084
3085bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3086                                                    const BlockPointerType* T) {
3087  return Visit(T->getPointeeType());
3088}
3089
3090bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3091                                                const LValueReferenceType* T) {
3092  return Visit(T->getPointeeType());
3093}
3094
3095bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3096                                                const RValueReferenceType* T) {
3097  return Visit(T->getPointeeType());
3098}
3099
3100bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3101                                                  const MemberPointerType* T) {
3102  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3103}
3104
3105bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3106                                                  const ConstantArrayType* T) {
3107  return Visit(T->getElementType());
3108}
3109
3110bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3111                                                 const IncompleteArrayType* T) {
3112  return Visit(T->getElementType());
3113}
3114
3115bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3116                                                   const VariableArrayType* T) {
3117  return Visit(T->getElementType());
3118}
3119
3120bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3121                                            const DependentSizedArrayType* T) {
3122  return Visit(T->getElementType());
3123}
3124
3125bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3126                                         const DependentSizedExtVectorType* T) {
3127  return Visit(T->getElementType());
3128}
3129
3130bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3131  return Visit(T->getElementType());
3132}
3133
3134bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3135  return Visit(T->getElementType());
3136}
3137
3138bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3139                                                  const FunctionProtoType* T) {
3140  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3141                                         AEnd = T->arg_type_end();
3142       A != AEnd; ++A) {
3143    if (Visit(*A))
3144      return true;
3145  }
3146
3147  return Visit(T->getResultType());
3148}
3149
3150bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3151                                               const FunctionNoProtoType* T) {
3152  return Visit(T->getResultType());
3153}
3154
3155bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3156                                                  const UnresolvedUsingType*) {
3157  return false;
3158}
3159
3160bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3161  return false;
3162}
3163
3164bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3165  return Visit(T->getUnderlyingType());
3166}
3167
3168bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3169  return false;
3170}
3171
3172bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3173                                                    const UnaryTransformType*) {
3174  return false;
3175}
3176
3177bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3178  return Visit(T->getDeducedType());
3179}
3180
3181bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3182  return VisitTagDecl(T->getDecl());
3183}
3184
3185bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3186  return VisitTagDecl(T->getDecl());
3187}
3188
3189bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3190                                                 const TemplateTypeParmType*) {
3191  return false;
3192}
3193
3194bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3195                                        const SubstTemplateTypeParmPackType *) {
3196  return false;
3197}
3198
3199bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3200                                            const TemplateSpecializationType*) {
3201  return false;
3202}
3203
3204bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3205                                              const InjectedClassNameType* T) {
3206  return VisitTagDecl(T->getDecl());
3207}
3208
3209bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3210                                                   const DependentNameType* T) {
3211  return VisitNestedNameSpecifier(T->getQualifier());
3212}
3213
3214bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3215                                 const DependentTemplateSpecializationType* T) {
3216  return VisitNestedNameSpecifier(T->getQualifier());
3217}
3218
3219bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3220                                                   const PackExpansionType* T) {
3221  return Visit(T->getPattern());
3222}
3223
3224bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3225  return false;
3226}
3227
3228bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3229                                                   const ObjCInterfaceType *) {
3230  return false;
3231}
3232
3233bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3234                                                const ObjCObjectPointerType *) {
3235  return false;
3236}
3237
3238bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3239  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3240    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
3241      << S.Context.getTypeDeclType(Tag) << SR;
3242    return true;
3243  }
3244
3245  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3246    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
3247    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3248    return true;
3249  }
3250
3251  return false;
3252}
3253
3254bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3255                                                    NestedNameSpecifier *NNS) {
3256  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3257    return true;
3258
3259  switch (NNS->getKind()) {
3260  case NestedNameSpecifier::Identifier:
3261  case NestedNameSpecifier::Namespace:
3262  case NestedNameSpecifier::NamespaceAlias:
3263  case NestedNameSpecifier::Global:
3264    return false;
3265
3266  case NestedNameSpecifier::TypeSpec:
3267  case NestedNameSpecifier::TypeSpecWithTemplate:
3268    return Visit(QualType(NNS->getAsType(), 0));
3269  }
3270  return false;
3271}
3272
3273
3274/// \brief Check a template argument against its corresponding
3275/// template type parameter.
3276///
3277/// This routine implements the semantics of C++ [temp.arg.type]. It
3278/// returns true if an error occurred, and false otherwise.
3279bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3280                                 TypeSourceInfo *ArgInfo) {
3281  assert(ArgInfo && "invalid TypeSourceInfo");
3282  QualType Arg = ArgInfo->getType();
3283  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3284
3285  if (Arg->isVariablyModifiedType()) {
3286    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3287  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3288    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3289  }
3290
3291  // C++03 [temp.arg.type]p2:
3292  //   A local type, a type with no linkage, an unnamed type or a type
3293  //   compounded from any of these types shall not be used as a
3294  //   template-argument for a template type-parameter.
3295  //
3296  // C++0x allows these, and even in C++03 we allow them as an extension with
3297  // a warning.
3298  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
3299    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3300    (void)Finder.Visit(Context.getCanonicalType(Arg));
3301  }
3302
3303  return false;
3304}
3305
3306/// \brief Checks whether the given template argument is the address
3307/// of an object or function according to C++ [temp.arg.nontype]p1.
3308static bool
3309CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3310                                               NonTypeTemplateParmDecl *Param,
3311                                               QualType ParamType,
3312                                               Expr *ArgIn,
3313                                               TemplateArgument &Converted) {
3314  bool Invalid = false;
3315  Expr *Arg = ArgIn;
3316  QualType ArgType = Arg->getType();
3317
3318  // See through any implicit casts we added to fix the type.
3319  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3320    Arg = Cast->getSubExpr();
3321
3322  // C++ [temp.arg.nontype]p1:
3323  //
3324  //   A template-argument for a non-type, non-template
3325  //   template-parameter shall be one of: [...]
3326  //
3327  //     -- the address of an object or function with external
3328  //        linkage, including function templates and function
3329  //        template-ids but excluding non-static class members,
3330  //        expressed as & id-expression where the & is optional if
3331  //        the name refers to a function or array, or if the
3332  //        corresponding template-parameter is a reference; or
3333  DeclRefExpr *DRE = 0;
3334
3335  // In C++98/03 mode, give an extension warning on any extra parentheses.
3336  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3337  bool ExtraParens = false;
3338  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3339    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
3340      S.Diag(Arg->getSourceRange().getBegin(),
3341             diag::ext_template_arg_extra_parens)
3342        << Arg->getSourceRange();
3343      ExtraParens = true;
3344    }
3345
3346    Arg = Parens->getSubExpr();
3347  }
3348
3349  bool AddressTaken = false;
3350  SourceLocation AddrOpLoc;
3351  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3352    if (UnOp->getOpcode() == UO_AddrOf) {
3353      // Support &__uuidof(class_with_uuid) as a non-type template argument.
3354      // Very common in Microsoft COM headers.
3355      if (S.getLangOptions().Microsoft &&
3356        isa<CXXUuidofExpr>(UnOp->getSubExpr())) {
3357        Converted = TemplateArgument(ArgIn);
3358        return false;
3359      }
3360
3361      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3362      AddressTaken = true;
3363      AddrOpLoc = UnOp->getOperatorLoc();
3364    }
3365  } else {
3366    if (S.getLangOptions().Microsoft && isa<CXXUuidofExpr>(Arg)) {
3367      Converted = TemplateArgument(ArgIn);
3368      return false;
3369    }
3370    DRE = dyn_cast<DeclRefExpr>(Arg);
3371  }
3372  if (!DRE) {
3373    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3374      << Arg->getSourceRange();
3375    S.Diag(Param->getLocation(), diag::note_template_param_here);
3376    return true;
3377  }
3378
3379  // Stop checking the precise nature of the argument if it is value dependent,
3380  // it should be checked when instantiated.
3381  if (Arg->isValueDependent()) {
3382    Converted = TemplateArgument(ArgIn);
3383    return false;
3384  }
3385
3386  if (!isa<ValueDecl>(DRE->getDecl())) {
3387    S.Diag(Arg->getSourceRange().getBegin(),
3388           diag::err_template_arg_not_object_or_func_form)
3389      << Arg->getSourceRange();
3390    S.Diag(Param->getLocation(), diag::note_template_param_here);
3391    return true;
3392  }
3393
3394  NamedDecl *Entity = 0;
3395
3396  // Cannot refer to non-static data members
3397  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3398    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3399      << Field << Arg->getSourceRange();
3400    S.Diag(Param->getLocation(), diag::note_template_param_here);
3401    return true;
3402  }
3403
3404  // Cannot refer to non-static member functions
3405  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3406    if (!Method->isStatic()) {
3407      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3408        << Method << Arg->getSourceRange();
3409      S.Diag(Param->getLocation(), diag::note_template_param_here);
3410      return true;
3411    }
3412
3413  // Functions must have external linkage.
3414  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3415    if (!isExternalLinkage(Func->getLinkage())) {
3416      S.Diag(Arg->getSourceRange().getBegin(),
3417             diag::err_template_arg_function_not_extern)
3418        << Func << Arg->getSourceRange();
3419      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3420        << true;
3421      return true;
3422    }
3423
3424    // Okay: we've named a function with external linkage.
3425    Entity = Func;
3426
3427    // If the template parameter has pointer type, the function decays.
3428    if (ParamType->isPointerType() && !AddressTaken)
3429      ArgType = S.Context.getPointerType(Func->getType());
3430    else if (AddressTaken && ParamType->isReferenceType()) {
3431      // If we originally had an address-of operator, but the
3432      // parameter has reference type, complain and (if things look
3433      // like they will work) drop the address-of operator.
3434      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3435                                            ParamType.getNonReferenceType())) {
3436        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3437          << ParamType;
3438        S.Diag(Param->getLocation(), diag::note_template_param_here);
3439        return true;
3440      }
3441
3442      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3443        << ParamType
3444        << FixItHint::CreateRemoval(AddrOpLoc);
3445      S.Diag(Param->getLocation(), diag::note_template_param_here);
3446
3447      ArgType = Func->getType();
3448    }
3449  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3450    if (!isExternalLinkage(Var->getLinkage())) {
3451      S.Diag(Arg->getSourceRange().getBegin(),
3452             diag::err_template_arg_object_not_extern)
3453        << Var << Arg->getSourceRange();
3454      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3455        << true;
3456      return true;
3457    }
3458
3459    // A value of reference type is not an object.
3460    if (Var->getType()->isReferenceType()) {
3461      S.Diag(Arg->getSourceRange().getBegin(),
3462             diag::err_template_arg_reference_var)
3463        << Var->getType() << Arg->getSourceRange();
3464      S.Diag(Param->getLocation(), diag::note_template_param_here);
3465      return true;
3466    }
3467
3468    // Okay: we've named an object with external linkage
3469    Entity = Var;
3470
3471    // If the template parameter has pointer type, we must have taken
3472    // the address of this object.
3473    if (ParamType->isReferenceType()) {
3474      if (AddressTaken) {
3475        // If we originally had an address-of operator, but the
3476        // parameter has reference type, complain and (if things look
3477        // like they will work) drop the address-of operator.
3478        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3479                                            ParamType.getNonReferenceType())) {
3480          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3481            << ParamType;
3482          S.Diag(Param->getLocation(), diag::note_template_param_here);
3483          return true;
3484        }
3485
3486        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3487          << ParamType
3488          << FixItHint::CreateRemoval(AddrOpLoc);
3489        S.Diag(Param->getLocation(), diag::note_template_param_here);
3490
3491        ArgType = Var->getType();
3492      }
3493    } else if (!AddressTaken && ParamType->isPointerType()) {
3494      if (Var->getType()->isArrayType()) {
3495        // Array-to-pointer decay.
3496        ArgType = S.Context.getArrayDecayedType(Var->getType());
3497      } else {
3498        // If the template parameter has pointer type but the address of
3499        // this object was not taken, complain and (possibly) recover by
3500        // taking the address of the entity.
3501        ArgType = S.Context.getPointerType(Var->getType());
3502        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3503          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3504            << ParamType;
3505          S.Diag(Param->getLocation(), diag::note_template_param_here);
3506          return true;
3507        }
3508
3509        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3510          << ParamType
3511          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3512
3513        S.Diag(Param->getLocation(), diag::note_template_param_here);
3514      }
3515    }
3516  } else {
3517    // We found something else, but we don't know specifically what it is.
3518    S.Diag(Arg->getSourceRange().getBegin(),
3519           diag::err_template_arg_not_object_or_func)
3520      << Arg->getSourceRange();
3521    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3522    return true;
3523  }
3524
3525  bool ObjCLifetimeConversion;
3526  if (ParamType->isPointerType() &&
3527      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3528      S.IsQualificationConversion(ArgType, ParamType, false,
3529                                  ObjCLifetimeConversion)) {
3530    // For pointer-to-object types, qualification conversions are
3531    // permitted.
3532  } else {
3533    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3534      if (!ParamRef->getPointeeType()->isFunctionType()) {
3535        // C++ [temp.arg.nontype]p5b3:
3536        //   For a non-type template-parameter of type reference to
3537        //   object, no conversions apply. The type referred to by the
3538        //   reference may be more cv-qualified than the (otherwise
3539        //   identical) type of the template- argument. The
3540        //   template-parameter is bound directly to the
3541        //   template-argument, which shall be an lvalue.
3542
3543        // FIXME: Other qualifiers?
3544        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3545        unsigned ArgQuals = ArgType.getCVRQualifiers();
3546
3547        if ((ParamQuals | ArgQuals) != ParamQuals) {
3548          S.Diag(Arg->getSourceRange().getBegin(),
3549                 diag::err_template_arg_ref_bind_ignores_quals)
3550            << ParamType << Arg->getType()
3551            << Arg->getSourceRange();
3552          S.Diag(Param->getLocation(), diag::note_template_param_here);
3553          return true;
3554        }
3555      }
3556    }
3557
3558    // At this point, the template argument refers to an object or
3559    // function with external linkage. We now need to check whether the
3560    // argument and parameter types are compatible.
3561    if (!S.Context.hasSameUnqualifiedType(ArgType,
3562                                          ParamType.getNonReferenceType())) {
3563      // We can't perform this conversion or binding.
3564      if (ParamType->isReferenceType())
3565        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3566          << ParamType << Arg->getType() << Arg->getSourceRange();
3567      else
3568        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3569          << Arg->getType() << ParamType << Arg->getSourceRange();
3570      S.Diag(Param->getLocation(), diag::note_template_param_here);
3571      return true;
3572    }
3573  }
3574
3575  // Create the template argument.
3576  Converted = TemplateArgument(Entity->getCanonicalDecl());
3577  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3578  return false;
3579}
3580
3581/// \brief Checks whether the given template argument is a pointer to
3582/// member constant according to C++ [temp.arg.nontype]p1.
3583bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3584                                                TemplateArgument &Converted) {
3585  bool Invalid = false;
3586
3587  // See through any implicit casts we added to fix the type.
3588  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3589    Arg = Cast->getSubExpr();
3590
3591  // C++ [temp.arg.nontype]p1:
3592  //
3593  //   A template-argument for a non-type, non-template
3594  //   template-parameter shall be one of: [...]
3595  //
3596  //     -- a pointer to member expressed as described in 5.3.1.
3597  DeclRefExpr *DRE = 0;
3598
3599  // In C++98/03 mode, give an extension warning on any extra parentheses.
3600  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3601  bool ExtraParens = false;
3602  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3603    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
3604      Diag(Arg->getSourceRange().getBegin(),
3605           diag::ext_template_arg_extra_parens)
3606        << Arg->getSourceRange();
3607      ExtraParens = true;
3608    }
3609
3610    Arg = Parens->getSubExpr();
3611  }
3612
3613  // A pointer-to-member constant written &Class::member.
3614  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3615    if (UnOp->getOpcode() == UO_AddrOf) {
3616      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3617      if (DRE && !DRE->getQualifier())
3618        DRE = 0;
3619    }
3620  }
3621  // A constant of pointer-to-member type.
3622  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3623    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3624      if (VD->getType()->isMemberPointerType()) {
3625        if (isa<NonTypeTemplateParmDecl>(VD) ||
3626            (isa<VarDecl>(VD) &&
3627             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3628          if (Arg->isTypeDependent() || Arg->isValueDependent())
3629            Converted = TemplateArgument(Arg);
3630          else
3631            Converted = TemplateArgument(VD->getCanonicalDecl());
3632          return Invalid;
3633        }
3634      }
3635    }
3636
3637    DRE = 0;
3638  }
3639
3640  if (!DRE)
3641    return Diag(Arg->getSourceRange().getBegin(),
3642                diag::err_template_arg_not_pointer_to_member_form)
3643      << Arg->getSourceRange();
3644
3645  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3646    assert((isa<FieldDecl>(DRE->getDecl()) ||
3647            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3648           "Only non-static member pointers can make it here");
3649
3650    // Okay: this is the address of a non-static member, and therefore
3651    // a member pointer constant.
3652    if (Arg->isTypeDependent() || Arg->isValueDependent())
3653      Converted = TemplateArgument(Arg);
3654    else
3655      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3656    return Invalid;
3657  }
3658
3659  // We found something else, but we don't know specifically what it is.
3660  Diag(Arg->getSourceRange().getBegin(),
3661       diag::err_template_arg_not_pointer_to_member_form)
3662      << Arg->getSourceRange();
3663  Diag(DRE->getDecl()->getLocation(),
3664       diag::note_template_arg_refers_here);
3665  return true;
3666}
3667
3668/// \brief Check a template argument against its corresponding
3669/// non-type template parameter.
3670///
3671/// This routine implements the semantics of C++ [temp.arg.nontype].
3672/// If an error occurred, it returns ExprError(); otherwise, it
3673/// returns the converted template argument. \p
3674/// InstantiatedParamType is the type of the non-type template
3675/// parameter after it has been instantiated.
3676ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3677                                       QualType InstantiatedParamType, Expr *Arg,
3678                                       TemplateArgument &Converted,
3679                                       CheckTemplateArgumentKind CTAK) {
3680  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3681
3682  // If either the parameter has a dependent type or the argument is
3683  // type-dependent, there's nothing we can check now.
3684  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3685    // FIXME: Produce a cloned, canonical expression?
3686    Converted = TemplateArgument(Arg);
3687    return Owned(Arg);
3688  }
3689
3690  // C++ [temp.arg.nontype]p5:
3691  //   The following conversions are performed on each expression used
3692  //   as a non-type template-argument. If a non-type
3693  //   template-argument cannot be converted to the type of the
3694  //   corresponding template-parameter then the program is
3695  //   ill-formed.
3696  //
3697  //     -- for a non-type template-parameter of integral or
3698  //        enumeration type, integral promotions (4.5) and integral
3699  //        conversions (4.7) are applied.
3700  QualType ParamType = InstantiatedParamType;
3701  QualType ArgType = Arg->getType();
3702  if (ParamType->isIntegralOrEnumerationType()) {
3703    // C++ [temp.arg.nontype]p1:
3704    //   A template-argument for a non-type, non-template
3705    //   template-parameter shall be one of:
3706    //
3707    //     -- an integral constant-expression of integral or enumeration
3708    //        type; or
3709    //     -- the name of a non-type template-parameter; or
3710    SourceLocation NonConstantLoc;
3711    llvm::APSInt Value;
3712    if (!ArgType->isIntegralOrEnumerationType()) {
3713      Diag(Arg->getSourceRange().getBegin(),
3714           diag::err_template_arg_not_integral_or_enumeral)
3715        << ArgType << Arg->getSourceRange();
3716      Diag(Param->getLocation(), diag::note_template_param_here);
3717      return ExprError();
3718    } else if (!Arg->isValueDependent() &&
3719               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3720      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3721        << ArgType << Arg->getSourceRange();
3722      return ExprError();
3723    }
3724
3725    // From here on out, all we care about are the unqualified forms
3726    // of the parameter and argument types.
3727    ParamType = ParamType.getUnqualifiedType();
3728    ArgType = ArgType.getUnqualifiedType();
3729
3730    // Try to convert the argument to the parameter's type.
3731    if (Context.hasSameType(ParamType, ArgType)) {
3732      // Okay: no conversion necessary
3733    } else if (CTAK == CTAK_Deduced) {
3734      // C++ [temp.deduct.type]p17:
3735      //   If, in the declaration of a function template with a non-type
3736      //   template-parameter, the non-type template- parameter is used
3737      //   in an expression in the function parameter-list and, if the
3738      //   corresponding template-argument is deduced, the
3739      //   template-argument type shall match the type of the
3740      //   template-parameter exactly, except that a template-argument
3741      //   deduced from an array bound may be of any integral type.
3742      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3743        << ArgType << ParamType;
3744      Diag(Param->getLocation(), diag::note_template_param_here);
3745      return ExprError();
3746    } else if (ParamType->isBooleanType()) {
3747      // This is an integral-to-boolean conversion.
3748      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3749    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3750               !ParamType->isEnumeralType()) {
3751      // This is an integral promotion or conversion.
3752      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3753    } else {
3754      // We can't perform this conversion.
3755      Diag(Arg->getSourceRange().getBegin(),
3756           diag::err_template_arg_not_convertible)
3757        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3758      Diag(Param->getLocation(), diag::note_template_param_here);
3759      return ExprError();
3760    }
3761
3762    // Add the value of this argument to the list of converted
3763    // arguments. We use the bitwidth and signedness of the template
3764    // parameter.
3765    if (Arg->isValueDependent()) {
3766      // The argument is value-dependent. Create a new
3767      // TemplateArgument with the converted expression.
3768      Converted = TemplateArgument(Arg);
3769      return Owned(Arg);
3770    }
3771
3772    QualType IntegerType = Context.getCanonicalType(ParamType);
3773    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3774      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3775
3776    if (ParamType->isBooleanType()) {
3777      // Value must be zero or one.
3778      Value = Value != 0;
3779      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3780      if (Value.getBitWidth() != AllowedBits)
3781        Value = Value.extOrTrunc(AllowedBits);
3782      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3783    } else {
3784      llvm::APSInt OldValue = Value;
3785
3786      // Coerce the template argument's value to the value it will have
3787      // based on the template parameter's type.
3788      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3789      if (Value.getBitWidth() != AllowedBits)
3790        Value = Value.extOrTrunc(AllowedBits);
3791      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3792
3793      // Complain if an unsigned parameter received a negative value.
3794      if (IntegerType->isUnsignedIntegerOrEnumerationType()
3795               && (OldValue.isSigned() && OldValue.isNegative())) {
3796        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3797          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3798          << Arg->getSourceRange();
3799        Diag(Param->getLocation(), diag::note_template_param_here);
3800      }
3801
3802      // Complain if we overflowed the template parameter's type.
3803      unsigned RequiredBits;
3804      if (IntegerType->isUnsignedIntegerOrEnumerationType())
3805        RequiredBits = OldValue.getActiveBits();
3806      else if (OldValue.isUnsigned())
3807        RequiredBits = OldValue.getActiveBits() + 1;
3808      else
3809        RequiredBits = OldValue.getMinSignedBits();
3810      if (RequiredBits > AllowedBits) {
3811        Diag(Arg->getSourceRange().getBegin(),
3812             diag::warn_template_arg_too_large)
3813          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3814          << Arg->getSourceRange();
3815        Diag(Param->getLocation(), diag::note_template_param_here);
3816      }
3817    }
3818
3819    Converted = TemplateArgument(Value,
3820                                 ParamType->isEnumeralType() ? ParamType
3821                                                             : IntegerType);
3822    return Owned(Arg);
3823  }
3824
3825  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3826
3827  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3828  // from a template argument of type std::nullptr_t to a non-type
3829  // template parameter of type pointer to object, pointer to
3830  // function, or pointer-to-member, respectively.
3831  if (ArgType->isNullPtrType()) {
3832    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
3833      Converted = TemplateArgument((NamedDecl *)0);
3834      return Owned(Arg);
3835    }
3836
3837    if (ParamType->isNullPtrType()) {
3838      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
3839      Converted = TemplateArgument(Zero, Context.NullPtrTy);
3840      return Owned(Arg);
3841    }
3842  }
3843
3844  // Handle pointer-to-function, reference-to-function, and
3845  // pointer-to-member-function all in (roughly) the same way.
3846  if (// -- For a non-type template-parameter of type pointer to
3847      //    function, only the function-to-pointer conversion (4.3) is
3848      //    applied. If the template-argument represents a set of
3849      //    overloaded functions (or a pointer to such), the matching
3850      //    function is selected from the set (13.4).
3851      (ParamType->isPointerType() &&
3852       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3853      // -- For a non-type template-parameter of type reference to
3854      //    function, no conversions apply. If the template-argument
3855      //    represents a set of overloaded functions, the matching
3856      //    function is selected from the set (13.4).
3857      (ParamType->isReferenceType() &&
3858       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3859      // -- For a non-type template-parameter of type pointer to
3860      //    member function, no conversions apply. If the
3861      //    template-argument represents a set of overloaded member
3862      //    functions, the matching member function is selected from
3863      //    the set (13.4).
3864      (ParamType->isMemberPointerType() &&
3865       ParamType->getAs<MemberPointerType>()->getPointeeType()
3866         ->isFunctionType())) {
3867
3868    if (Arg->getType() == Context.OverloadTy) {
3869      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3870                                                                true,
3871                                                                FoundResult)) {
3872        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3873          return ExprError();
3874
3875        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3876        ArgType = Arg->getType();
3877      } else
3878        return ExprError();
3879    }
3880
3881    if (!ParamType->isMemberPointerType()) {
3882      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3883                                                         ParamType,
3884                                                         Arg, Converted))
3885        return ExprError();
3886      return Owned(Arg);
3887    }
3888
3889    bool ObjCLifetimeConversion;
3890    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3891                                  false, ObjCLifetimeConversion)) {
3892      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3893    } else if (!Context.hasSameUnqualifiedType(ArgType,
3894                                           ParamType.getNonReferenceType())) {
3895      // We can't perform this conversion.
3896      Diag(Arg->getSourceRange().getBegin(),
3897           diag::err_template_arg_not_convertible)
3898        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3899      Diag(Param->getLocation(), diag::note_template_param_here);
3900      return ExprError();
3901    }
3902
3903    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3904      return ExprError();
3905    return Owned(Arg);
3906  }
3907
3908  if (ParamType->isPointerType()) {
3909    //   -- for a non-type template-parameter of type pointer to
3910    //      object, qualification conversions (4.4) and the
3911    //      array-to-pointer conversion (4.2) are applied.
3912    // C++0x also allows a value of std::nullptr_t.
3913    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3914           "Only object pointers allowed here");
3915
3916    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3917                                                       ParamType,
3918                                                       Arg, Converted))
3919      return ExprError();
3920    return Owned(Arg);
3921  }
3922
3923  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3924    //   -- For a non-type template-parameter of type reference to
3925    //      object, no conversions apply. The type referred to by the
3926    //      reference may be more cv-qualified than the (otherwise
3927    //      identical) type of the template-argument. The
3928    //      template-parameter is bound directly to the
3929    //      template-argument, which must be an lvalue.
3930    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3931           "Only object references allowed here");
3932
3933    if (Arg->getType() == Context.OverloadTy) {
3934      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3935                                                 ParamRefType->getPointeeType(),
3936                                                                true,
3937                                                                FoundResult)) {
3938        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3939          return ExprError();
3940
3941        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3942        ArgType = Arg->getType();
3943      } else
3944        return ExprError();
3945    }
3946
3947    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3948                                                       ParamType,
3949                                                       Arg, Converted))
3950      return ExprError();
3951    return Owned(Arg);
3952  }
3953
3954  //     -- For a non-type template-parameter of type pointer to data
3955  //        member, qualification conversions (4.4) are applied.
3956  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3957
3958  bool ObjCLifetimeConversion;
3959  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3960    // Types match exactly: nothing more to do here.
3961  } else if (IsQualificationConversion(ArgType, ParamType, false,
3962                                       ObjCLifetimeConversion)) {
3963    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg)).take();
3964  } else {
3965    // We can't perform this conversion.
3966    Diag(Arg->getSourceRange().getBegin(),
3967         diag::err_template_arg_not_convertible)
3968      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3969    Diag(Param->getLocation(), diag::note_template_param_here);
3970    return ExprError();
3971  }
3972
3973  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3974    return ExprError();
3975  return Owned(Arg);
3976}
3977
3978/// \brief Check a template argument against its corresponding
3979/// template template parameter.
3980///
3981/// This routine implements the semantics of C++ [temp.arg.template].
3982/// It returns true if an error occurred, and false otherwise.
3983bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3984                                 const TemplateArgumentLoc &Arg) {
3985  TemplateName Name = Arg.getArgument().getAsTemplate();
3986  TemplateDecl *Template = Name.getAsTemplateDecl();
3987  if (!Template) {
3988    // Any dependent template name is fine.
3989    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3990    return false;
3991  }
3992
3993  // C++0x [temp.arg.template]p1:
3994  //   A template-argument for a template template-parameter shall be
3995  //   the name of a class template or an alias template, expressed as an
3996  //   id-expression. When the template-argument names a class template, only
3997  //   primary class templates are considered when matching the
3998  //   template template argument with the corresponding parameter;
3999  //   partial specializations are not considered even if their
4000  //   parameter lists match that of the template template parameter.
4001  //
4002  // Note that we also allow template template parameters here, which
4003  // will happen when we are dealing with, e.g., class template
4004  // partial specializations.
4005  if (!isa<ClassTemplateDecl>(Template) &&
4006      !isa<TemplateTemplateParmDecl>(Template) &&
4007      !isa<TypeAliasTemplateDecl>(Template)) {
4008    assert(isa<FunctionTemplateDecl>(Template) &&
4009           "Only function templates are possible here");
4010    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4011    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4012      << Template;
4013  }
4014
4015  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4016                                         Param->getTemplateParameters(),
4017                                         true,
4018                                         TPL_TemplateTemplateArgumentMatch,
4019                                         Arg.getLocation());
4020}
4021
4022/// \brief Given a non-type template argument that refers to a
4023/// declaration and the type of its corresponding non-type template
4024/// parameter, produce an expression that properly refers to that
4025/// declaration.
4026ExprResult
4027Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4028                                              QualType ParamType,
4029                                              SourceLocation Loc) {
4030  assert(Arg.getKind() == TemplateArgument::Declaration &&
4031         "Only declaration template arguments permitted here");
4032  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4033
4034  if (VD->getDeclContext()->isRecord() &&
4035      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4036    // If the value is a class member, we might have a pointer-to-member.
4037    // Determine whether the non-type template template parameter is of
4038    // pointer-to-member type. If so, we need to build an appropriate
4039    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4040    // would refer to the member itself.
4041    if (ParamType->isMemberPointerType()) {
4042      QualType ClassType
4043        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4044      NestedNameSpecifier *Qualifier
4045        = NestedNameSpecifier::Create(Context, 0, false,
4046                                      ClassType.getTypePtr());
4047      CXXScopeSpec SS;
4048      SS.MakeTrivial(Context, Qualifier, Loc);
4049
4050      // The actual value-ness of this is unimportant, but for
4051      // internal consistency's sake, references to instance methods
4052      // are r-values.
4053      ExprValueKind VK = VK_LValue;
4054      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4055        VK = VK_RValue;
4056
4057      ExprResult RefExpr = BuildDeclRefExpr(VD,
4058                                            VD->getType().getNonReferenceType(),
4059                                            VK,
4060                                            Loc,
4061                                            &SS);
4062      if (RefExpr.isInvalid())
4063        return ExprError();
4064
4065      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4066
4067      // We might need to perform a trailing qualification conversion, since
4068      // the element type on the parameter could be more qualified than the
4069      // element type in the expression we constructed.
4070      bool ObjCLifetimeConversion;
4071      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4072                                    ParamType.getUnqualifiedType(), false,
4073                                    ObjCLifetimeConversion))
4074        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4075
4076      assert(!RefExpr.isInvalid() &&
4077             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4078                                 ParamType.getUnqualifiedType()));
4079      return move(RefExpr);
4080    }
4081  }
4082
4083  QualType T = VD->getType().getNonReferenceType();
4084  if (ParamType->isPointerType()) {
4085    // When the non-type template parameter is a pointer, take the
4086    // address of the declaration.
4087    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4088    if (RefExpr.isInvalid())
4089      return ExprError();
4090
4091    if (T->isFunctionType() || T->isArrayType()) {
4092      // Decay functions and arrays.
4093      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4094      if (RefExpr.isInvalid())
4095        return ExprError();
4096
4097      return move(RefExpr);
4098    }
4099
4100    // Take the address of everything else
4101    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4102  }
4103
4104  ExprValueKind VK = VK_RValue;
4105
4106  // If the non-type template parameter has reference type, qualify the
4107  // resulting declaration reference with the extra qualifiers on the
4108  // type that the reference refers to.
4109  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4110    VK = VK_LValue;
4111    T = Context.getQualifiedType(T,
4112                              TargetRef->getPointeeType().getQualifiers());
4113  }
4114
4115  return BuildDeclRefExpr(VD, T, VK, Loc);
4116}
4117
4118/// \brief Construct a new expression that refers to the given
4119/// integral template argument with the given source-location
4120/// information.
4121///
4122/// This routine takes care of the mapping from an integral template
4123/// argument (which may have any integral type) to the appropriate
4124/// literal value.
4125ExprResult
4126Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4127                                                  SourceLocation Loc) {
4128  assert(Arg.getKind() == TemplateArgument::Integral &&
4129         "Operation is only valid for integral template arguments");
4130  QualType T = Arg.getIntegralType();
4131  if (T->isCharType() || T->isWideCharType())
4132    return Owned(new (Context) CharacterLiteral(
4133                                             Arg.getAsIntegral()->getZExtValue(),
4134                                             T->isWideCharType(), T, Loc));
4135  if (T->isBooleanType())
4136    return Owned(new (Context) CXXBoolLiteralExpr(
4137                                            Arg.getAsIntegral()->getBoolValue(),
4138                                            T, Loc));
4139
4140  if (T->isNullPtrType())
4141    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4142
4143  // If this is an enum type that we're instantiating, we need to use an integer
4144  // type the same size as the enumerator.  We don't want to build an
4145  // IntegerLiteral with enum type.
4146  QualType BT;
4147  if (const EnumType *ET = T->getAs<EnumType>())
4148    BT = ET->getDecl()->getIntegerType();
4149  else
4150    BT = T;
4151
4152  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4153  if (T->isEnumeralType()) {
4154    // FIXME: This is a hack. We need a better way to handle substituted
4155    // non-type template parameters.
4156    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4157                               Context.getTrivialTypeSourceInfo(T, Loc),
4158                               Loc, Loc);
4159  }
4160
4161  return Owned(E);
4162}
4163
4164/// \brief Match two template parameters within template parameter lists.
4165static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4166                                       bool Complain,
4167                                     Sema::TemplateParameterListEqualKind Kind,
4168                                       SourceLocation TemplateArgLoc) {
4169  // Check the actual kind (type, non-type, template).
4170  if (Old->getKind() != New->getKind()) {
4171    if (Complain) {
4172      unsigned NextDiag = diag::err_template_param_different_kind;
4173      if (TemplateArgLoc.isValid()) {
4174        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4175        NextDiag = diag::note_template_param_different_kind;
4176      }
4177      S.Diag(New->getLocation(), NextDiag)
4178        << (Kind != Sema::TPL_TemplateMatch);
4179      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4180        << (Kind != Sema::TPL_TemplateMatch);
4181    }
4182
4183    return false;
4184  }
4185
4186  // Check that both are parameter packs are neither are parameter packs.
4187  // However, if we are matching a template template argument to a
4188  // template template parameter, the template template parameter can have
4189  // a parameter pack where the template template argument does not.
4190  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4191      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4192        Old->isTemplateParameterPack())) {
4193    if (Complain) {
4194      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4195      if (TemplateArgLoc.isValid()) {
4196        S.Diag(TemplateArgLoc,
4197             diag::err_template_arg_template_params_mismatch);
4198        NextDiag = diag::note_template_parameter_pack_non_pack;
4199      }
4200
4201      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4202                      : isa<NonTypeTemplateParmDecl>(New)? 1
4203                      : 2;
4204      S.Diag(New->getLocation(), NextDiag)
4205        << ParamKind << New->isParameterPack();
4206      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4207        << ParamKind << Old->isParameterPack();
4208    }
4209
4210    return false;
4211  }
4212
4213  // For non-type template parameters, check the type of the parameter.
4214  if (NonTypeTemplateParmDecl *OldNTTP
4215                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4216    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4217
4218    // If we are matching a template template argument to a template
4219    // template parameter and one of the non-type template parameter types
4220    // is dependent, then we must wait until template instantiation time
4221    // to actually compare the arguments.
4222    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4223        (OldNTTP->getType()->isDependentType() ||
4224         NewNTTP->getType()->isDependentType()))
4225      return true;
4226
4227    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4228      if (Complain) {
4229        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4230        if (TemplateArgLoc.isValid()) {
4231          S.Diag(TemplateArgLoc,
4232                 diag::err_template_arg_template_params_mismatch);
4233          NextDiag = diag::note_template_nontype_parm_different_type;
4234        }
4235        S.Diag(NewNTTP->getLocation(), NextDiag)
4236          << NewNTTP->getType()
4237          << (Kind != Sema::TPL_TemplateMatch);
4238        S.Diag(OldNTTP->getLocation(),
4239               diag::note_template_nontype_parm_prev_declaration)
4240          << OldNTTP->getType();
4241      }
4242
4243      return false;
4244    }
4245
4246    return true;
4247  }
4248
4249  // For template template parameters, check the template parameter types.
4250  // The template parameter lists of template template
4251  // parameters must agree.
4252  if (TemplateTemplateParmDecl *OldTTP
4253                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4254    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4255    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4256                                            OldTTP->getTemplateParameters(),
4257                                            Complain,
4258                                        (Kind == Sema::TPL_TemplateMatch
4259                                           ? Sema::TPL_TemplateTemplateParmMatch
4260                                           : Kind),
4261                                            TemplateArgLoc);
4262  }
4263
4264  return true;
4265}
4266
4267/// \brief Diagnose a known arity mismatch when comparing template argument
4268/// lists.
4269static
4270void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4271                                                TemplateParameterList *New,
4272                                                TemplateParameterList *Old,
4273                                      Sema::TemplateParameterListEqualKind Kind,
4274                                                SourceLocation TemplateArgLoc) {
4275  unsigned NextDiag = diag::err_template_param_list_different_arity;
4276  if (TemplateArgLoc.isValid()) {
4277    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4278    NextDiag = diag::note_template_param_list_different_arity;
4279  }
4280  S.Diag(New->getTemplateLoc(), NextDiag)
4281    << (New->size() > Old->size())
4282    << (Kind != Sema::TPL_TemplateMatch)
4283    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4284  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4285    << (Kind != Sema::TPL_TemplateMatch)
4286    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4287}
4288
4289/// \brief Determine whether the given template parameter lists are
4290/// equivalent.
4291///
4292/// \param New  The new template parameter list, typically written in the
4293/// source code as part of a new template declaration.
4294///
4295/// \param Old  The old template parameter list, typically found via
4296/// name lookup of the template declared with this template parameter
4297/// list.
4298///
4299/// \param Complain  If true, this routine will produce a diagnostic if
4300/// the template parameter lists are not equivalent.
4301///
4302/// \param Kind describes how we are to match the template parameter lists.
4303///
4304/// \param TemplateArgLoc If this source location is valid, then we
4305/// are actually checking the template parameter list of a template
4306/// argument (New) against the template parameter list of its
4307/// corresponding template template parameter (Old). We produce
4308/// slightly different diagnostics in this scenario.
4309///
4310/// \returns True if the template parameter lists are equal, false
4311/// otherwise.
4312bool
4313Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4314                                     TemplateParameterList *Old,
4315                                     bool Complain,
4316                                     TemplateParameterListEqualKind Kind,
4317                                     SourceLocation TemplateArgLoc) {
4318  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4319    if (Complain)
4320      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4321                                                 TemplateArgLoc);
4322
4323    return false;
4324  }
4325
4326  // C++0x [temp.arg.template]p3:
4327  //   A template-argument matches a template template-parameter (call it P)
4328  //   when each of the template parameters in the template-parameter-list of
4329  //   the template-argument's corresponding class template or alias template
4330  //   (call it A) matches the corresponding template parameter in the
4331  //   template-parameter-list of P. [...]
4332  TemplateParameterList::iterator NewParm = New->begin();
4333  TemplateParameterList::iterator NewParmEnd = New->end();
4334  for (TemplateParameterList::iterator OldParm = Old->begin(),
4335                                    OldParmEnd = Old->end();
4336       OldParm != OldParmEnd; ++OldParm) {
4337    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4338        !(*OldParm)->isTemplateParameterPack()) {
4339      if (NewParm == NewParmEnd) {
4340        if (Complain)
4341          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4342                                                     TemplateArgLoc);
4343
4344        return false;
4345      }
4346
4347      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4348                                      Kind, TemplateArgLoc))
4349        return false;
4350
4351      ++NewParm;
4352      continue;
4353    }
4354
4355    // C++0x [temp.arg.template]p3:
4356    //   [...] When P's template- parameter-list contains a template parameter
4357    //   pack (14.5.3), the template parameter pack will match zero or more
4358    //   template parameters or template parameter packs in the
4359    //   template-parameter-list of A with the same type and form as the
4360    //   template parameter pack in P (ignoring whether those template
4361    //   parameters are template parameter packs).
4362    for (; NewParm != NewParmEnd; ++NewParm) {
4363      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4364                                      Kind, TemplateArgLoc))
4365        return false;
4366    }
4367  }
4368
4369  // Make sure we exhausted all of the arguments.
4370  if (NewParm != NewParmEnd) {
4371    if (Complain)
4372      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4373                                                 TemplateArgLoc);
4374
4375    return false;
4376  }
4377
4378  return true;
4379}
4380
4381/// \brief Check whether a template can be declared within this scope.
4382///
4383/// If the template declaration is valid in this scope, returns
4384/// false. Otherwise, issues a diagnostic and returns true.
4385bool
4386Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4387  // Find the nearest enclosing declaration scope.
4388  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4389         (S->getFlags() & Scope::TemplateParamScope) != 0)
4390    S = S->getParent();
4391
4392  // C++ [temp]p2:
4393  //   A template-declaration can appear only as a namespace scope or
4394  //   class scope declaration.
4395  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4396  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4397      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4398    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4399             << TemplateParams->getSourceRange();
4400
4401  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4402    Ctx = Ctx->getParent();
4403
4404  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4405    return false;
4406
4407  return Diag(TemplateParams->getTemplateLoc(),
4408              diag::err_template_outside_namespace_or_class_scope)
4409    << TemplateParams->getSourceRange();
4410}
4411
4412/// \brief Determine what kind of template specialization the given declaration
4413/// is.
4414static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
4415  if (!D)
4416    return TSK_Undeclared;
4417
4418  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4419    return Record->getTemplateSpecializationKind();
4420  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4421    return Function->getTemplateSpecializationKind();
4422  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4423    return Var->getTemplateSpecializationKind();
4424
4425  return TSK_Undeclared;
4426}
4427
4428/// \brief Check whether a specialization is well-formed in the current
4429/// context.
4430///
4431/// This routine determines whether a template specialization can be declared
4432/// in the current context (C++ [temp.expl.spec]p2).
4433///
4434/// \param S the semantic analysis object for which this check is being
4435/// performed.
4436///
4437/// \param Specialized the entity being specialized or instantiated, which
4438/// may be a kind of template (class template, function template, etc.) or
4439/// a member of a class template (member function, static data member,
4440/// member class).
4441///
4442/// \param PrevDecl the previous declaration of this entity, if any.
4443///
4444/// \param Loc the location of the explicit specialization or instantiation of
4445/// this entity.
4446///
4447/// \param IsPartialSpecialization whether this is a partial specialization of
4448/// a class template.
4449///
4450/// \returns true if there was an error that we cannot recover from, false
4451/// otherwise.
4452static bool CheckTemplateSpecializationScope(Sema &S,
4453                                             NamedDecl *Specialized,
4454                                             NamedDecl *PrevDecl,
4455                                             SourceLocation Loc,
4456                                             bool IsPartialSpecialization) {
4457  // Keep these "kind" numbers in sync with the %select statements in the
4458  // various diagnostics emitted by this routine.
4459  int EntityKind = 0;
4460  if (isa<ClassTemplateDecl>(Specialized))
4461    EntityKind = IsPartialSpecialization? 1 : 0;
4462  else if (isa<FunctionTemplateDecl>(Specialized))
4463    EntityKind = 2;
4464  else if (isa<CXXMethodDecl>(Specialized))
4465    EntityKind = 3;
4466  else if (isa<VarDecl>(Specialized))
4467    EntityKind = 4;
4468  else if (isa<RecordDecl>(Specialized))
4469    EntityKind = 5;
4470  else {
4471    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4472    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4473    return true;
4474  }
4475
4476  // C++ [temp.expl.spec]p2:
4477  //   An explicit specialization shall be declared in the namespace
4478  //   of which the template is a member, or, for member templates, in
4479  //   the namespace of which the enclosing class or enclosing class
4480  //   template is a member. An explicit specialization of a member
4481  //   function, member class or static data member of a class
4482  //   template shall be declared in the namespace of which the class
4483  //   template is a member. Such a declaration may also be a
4484  //   definition. If the declaration is not a definition, the
4485  //   specialization may be defined later in the name- space in which
4486  //   the explicit specialization was declared, or in a namespace
4487  //   that encloses the one in which the explicit specialization was
4488  //   declared.
4489  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4490    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4491      << Specialized;
4492    return true;
4493  }
4494
4495  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4496    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4497      << Specialized;
4498    return true;
4499  }
4500
4501  // C++ [temp.class.spec]p6:
4502  //   A class template partial specialization may be declared or redeclared
4503  //   in any namespace scope in which its definition may be defined (14.5.1
4504  //   and 14.5.2).
4505  bool ComplainedAboutScope = false;
4506  DeclContext *SpecializedContext
4507    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4508  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4509  if ((!PrevDecl ||
4510       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4511       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4512    // C++ [temp.exp.spec]p2:
4513    //   An explicit specialization shall be declared in the namespace of which
4514    //   the template is a member, or, for member templates, in the namespace
4515    //   of which the enclosing class or enclosing class template is a member.
4516    //   An explicit specialization of a member function, member class or
4517    //   static data member of a class template shall be declared in the
4518    //   namespace of which the class template is a member.
4519    //
4520    // C++0x [temp.expl.spec]p2:
4521    //   An explicit specialization shall be declared in a namespace enclosing
4522    //   the specialized template.
4523    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
4524        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
4525      bool IsCPlusPlus0xExtension
4526        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
4527      if (isa<TranslationUnitDecl>(SpecializedContext))
4528        S.Diag(Loc, IsCPlusPlus0xExtension
4529                      ? diag::ext_template_spec_decl_out_of_scope_global
4530                      : diag::err_template_spec_decl_out_of_scope_global)
4531          << EntityKind << Specialized;
4532      else if (isa<NamespaceDecl>(SpecializedContext))
4533        S.Diag(Loc, IsCPlusPlus0xExtension
4534                      ? diag::ext_template_spec_decl_out_of_scope
4535                      : diag::err_template_spec_decl_out_of_scope)
4536          << EntityKind << Specialized
4537          << cast<NamedDecl>(SpecializedContext);
4538
4539      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4540      ComplainedAboutScope = true;
4541    }
4542  }
4543
4544  // Make sure that this redeclaration (or definition) occurs in an enclosing
4545  // namespace.
4546  // Note that HandleDeclarator() performs this check for explicit
4547  // specializations of function templates, static data members, and member
4548  // functions, so we skip the check here for those kinds of entities.
4549  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4550  // Should we refactor that check, so that it occurs later?
4551  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4552      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4553        isa<FunctionDecl>(Specialized))) {
4554    if (isa<TranslationUnitDecl>(SpecializedContext))
4555      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4556        << EntityKind << Specialized;
4557    else if (isa<NamespaceDecl>(SpecializedContext))
4558      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4559        << EntityKind << Specialized
4560        << cast<NamedDecl>(SpecializedContext);
4561
4562    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4563  }
4564
4565  // FIXME: check for specialization-after-instantiation errors and such.
4566
4567  return false;
4568}
4569
4570/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4571/// that checks non-type template partial specialization arguments.
4572static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4573                                                NonTypeTemplateParmDecl *Param,
4574                                                  const TemplateArgument *Args,
4575                                                        unsigned NumArgs) {
4576  for (unsigned I = 0; I != NumArgs; ++I) {
4577    if (Args[I].getKind() == TemplateArgument::Pack) {
4578      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4579                                                           Args[I].pack_begin(),
4580                                                           Args[I].pack_size()))
4581        return true;
4582
4583      continue;
4584    }
4585
4586    Expr *ArgExpr = Args[I].getAsExpr();
4587    if (!ArgExpr) {
4588      continue;
4589    }
4590
4591    // We can have a pack expansion of any of the bullets below.
4592    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4593      ArgExpr = Expansion->getPattern();
4594
4595    // Strip off any implicit casts we added as part of type checking.
4596    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4597      ArgExpr = ICE->getSubExpr();
4598
4599    // C++ [temp.class.spec]p8:
4600    //   A non-type argument is non-specialized if it is the name of a
4601    //   non-type parameter. All other non-type arguments are
4602    //   specialized.
4603    //
4604    // Below, we check the two conditions that only apply to
4605    // specialized non-type arguments, so skip any non-specialized
4606    // arguments.
4607    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4608      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4609        continue;
4610
4611    // C++ [temp.class.spec]p9:
4612    //   Within the argument list of a class template partial
4613    //   specialization, the following restrictions apply:
4614    //     -- A partially specialized non-type argument expression
4615    //        shall not involve a template parameter of the partial
4616    //        specialization except when the argument expression is a
4617    //        simple identifier.
4618    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4619      S.Diag(ArgExpr->getLocStart(),
4620           diag::err_dependent_non_type_arg_in_partial_spec)
4621        << ArgExpr->getSourceRange();
4622      return true;
4623    }
4624
4625    //     -- The type of a template parameter corresponding to a
4626    //        specialized non-type argument shall not be dependent on a
4627    //        parameter of the specialization.
4628    if (Param->getType()->isDependentType()) {
4629      S.Diag(ArgExpr->getLocStart(),
4630           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4631        << Param->getType()
4632        << ArgExpr->getSourceRange();
4633      S.Diag(Param->getLocation(), diag::note_template_param_here);
4634      return true;
4635    }
4636  }
4637
4638  return false;
4639}
4640
4641/// \brief Check the non-type template arguments of a class template
4642/// partial specialization according to C++ [temp.class.spec]p9.
4643///
4644/// \param TemplateParams the template parameters of the primary class
4645/// template.
4646///
4647/// \param TemplateArg the template arguments of the class template
4648/// partial specialization.
4649///
4650/// \returns true if there was an error, false otherwise.
4651static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4652                                        TemplateParameterList *TemplateParams,
4653                       llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4654  const TemplateArgument *ArgList = TemplateArgs.data();
4655
4656  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4657    NonTypeTemplateParmDecl *Param
4658      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4659    if (!Param)
4660      continue;
4661
4662    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4663                                                           &ArgList[I], 1))
4664      return true;
4665  }
4666
4667  return false;
4668}
4669
4670/// \brief Retrieve the previous declaration of the given declaration.
4671static NamedDecl *getPreviousDecl(NamedDecl *ND) {
4672  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
4673    return VD->getPreviousDeclaration();
4674  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
4675    return FD->getPreviousDeclaration();
4676  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
4677    return TD->getPreviousDeclaration();
4678  if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
4679    return TD->getPreviousDeclaration();
4680  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4681    return FTD->getPreviousDeclaration();
4682  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
4683    return CTD->getPreviousDeclaration();
4684  return 0;
4685}
4686
4687DeclResult
4688Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4689                                       TagUseKind TUK,
4690                                       SourceLocation KWLoc,
4691                                       CXXScopeSpec &SS,
4692                                       TemplateTy TemplateD,
4693                                       SourceLocation TemplateNameLoc,
4694                                       SourceLocation LAngleLoc,
4695                                       ASTTemplateArgsPtr TemplateArgsIn,
4696                                       SourceLocation RAngleLoc,
4697                                       AttributeList *Attr,
4698                               MultiTemplateParamsArg TemplateParameterLists) {
4699  assert(TUK != TUK_Reference && "References are not specializations");
4700
4701  // NOTE: KWLoc is the location of the tag keyword. This will instead
4702  // store the location of the outermost template keyword in the declaration.
4703  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4704    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4705
4706  // Find the class template we're specializing
4707  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4708  ClassTemplateDecl *ClassTemplate
4709    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4710
4711  if (!ClassTemplate) {
4712    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4713      << (Name.getAsTemplateDecl() &&
4714          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4715    return true;
4716  }
4717
4718  bool isExplicitSpecialization = false;
4719  bool isPartialSpecialization = false;
4720
4721  // Check the validity of the template headers that introduce this
4722  // template.
4723  // FIXME: We probably shouldn't complain about these headers for
4724  // friend declarations.
4725  bool Invalid = false;
4726  TemplateParameterList *TemplateParams
4727    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4728                                              TemplateNameLoc,
4729                                              SS,
4730                        (TemplateParameterList**)TemplateParameterLists.get(),
4731                                              TemplateParameterLists.size(),
4732                                              TUK == TUK_Friend,
4733                                              isExplicitSpecialization,
4734                                              Invalid);
4735  if (Invalid)
4736    return true;
4737
4738  if (TemplateParams && TemplateParams->size() > 0) {
4739    isPartialSpecialization = true;
4740
4741    if (TUK == TUK_Friend) {
4742      Diag(KWLoc, diag::err_partial_specialization_friend)
4743        << SourceRange(LAngleLoc, RAngleLoc);
4744      return true;
4745    }
4746
4747    // C++ [temp.class.spec]p10:
4748    //   The template parameter list of a specialization shall not
4749    //   contain default template argument values.
4750    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4751      Decl *Param = TemplateParams->getParam(I);
4752      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4753        if (TTP->hasDefaultArgument()) {
4754          Diag(TTP->getDefaultArgumentLoc(),
4755               diag::err_default_arg_in_partial_spec);
4756          TTP->removeDefaultArgument();
4757        }
4758      } else if (NonTypeTemplateParmDecl *NTTP
4759                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4760        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4761          Diag(NTTP->getDefaultArgumentLoc(),
4762               diag::err_default_arg_in_partial_spec)
4763            << DefArg->getSourceRange();
4764          NTTP->removeDefaultArgument();
4765        }
4766      } else {
4767        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4768        if (TTP->hasDefaultArgument()) {
4769          Diag(TTP->getDefaultArgument().getLocation(),
4770               diag::err_default_arg_in_partial_spec)
4771            << TTP->getDefaultArgument().getSourceRange();
4772          TTP->removeDefaultArgument();
4773        }
4774      }
4775    }
4776  } else if (TemplateParams) {
4777    if (TUK == TUK_Friend)
4778      Diag(KWLoc, diag::err_template_spec_friend)
4779        << FixItHint::CreateRemoval(
4780                                SourceRange(TemplateParams->getTemplateLoc(),
4781                                            TemplateParams->getRAngleLoc()))
4782        << SourceRange(LAngleLoc, RAngleLoc);
4783    else
4784      isExplicitSpecialization = true;
4785  } else if (TUK != TUK_Friend) {
4786    Diag(KWLoc, diag::err_template_spec_needs_header)
4787      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4788    isExplicitSpecialization = true;
4789  }
4790
4791  // Check that the specialization uses the same tag kind as the
4792  // original template.
4793  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4794  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4795  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4796                                    Kind, TUK == TUK_Definition, KWLoc,
4797                                    *ClassTemplate->getIdentifier())) {
4798    Diag(KWLoc, diag::err_use_with_wrong_tag)
4799      << ClassTemplate
4800      << FixItHint::CreateReplacement(KWLoc,
4801                            ClassTemplate->getTemplatedDecl()->getKindName());
4802    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4803         diag::note_previous_use);
4804    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4805  }
4806
4807  // Translate the parser's template argument list in our AST format.
4808  TemplateArgumentListInfo TemplateArgs;
4809  TemplateArgs.setLAngleLoc(LAngleLoc);
4810  TemplateArgs.setRAngleLoc(RAngleLoc);
4811  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4812
4813  // Check for unexpanded parameter packs in any of the template arguments.
4814  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4815    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4816                                        UPPC_PartialSpecialization))
4817      return true;
4818
4819  // Check that the template argument list is well-formed for this
4820  // template.
4821  llvm::SmallVector<TemplateArgument, 4> Converted;
4822  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4823                                TemplateArgs, false, Converted))
4824    return true;
4825
4826  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4827         "Converted template argument list is too short!");
4828
4829  // Find the class template (partial) specialization declaration that
4830  // corresponds to these arguments.
4831  if (isPartialSpecialization) {
4832    if (CheckClassTemplatePartialSpecializationArgs(*this,
4833                                         ClassTemplate->getTemplateParameters(),
4834                                         Converted))
4835      return true;
4836
4837    bool InstantiationDependent;
4838    if (!Name.isDependent() &&
4839        !TemplateSpecializationType::anyDependentTemplateArguments(
4840                                             TemplateArgs.getArgumentArray(),
4841                                                         TemplateArgs.size(),
4842                                                     InstantiationDependent)) {
4843      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4844        << ClassTemplate->getDeclName();
4845      isPartialSpecialization = false;
4846    }
4847  }
4848
4849  void *InsertPos = 0;
4850  ClassTemplateSpecializationDecl *PrevDecl = 0;
4851
4852  if (isPartialSpecialization)
4853    // FIXME: Template parameter list matters, too
4854    PrevDecl
4855      = ClassTemplate->findPartialSpecialization(Converted.data(),
4856                                                 Converted.size(),
4857                                                 InsertPos);
4858  else
4859    PrevDecl
4860      = ClassTemplate->findSpecialization(Converted.data(),
4861                                          Converted.size(), InsertPos);
4862
4863  ClassTemplateSpecializationDecl *Specialization = 0;
4864
4865  // Check whether we can declare a class template specialization in
4866  // the current scope.
4867  if (TUK != TUK_Friend &&
4868      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4869                                       TemplateNameLoc,
4870                                       isPartialSpecialization))
4871    return true;
4872
4873  // The canonical type
4874  QualType CanonType;
4875  if (PrevDecl &&
4876      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4877               TUK == TUK_Friend)) {
4878    // Since the only prior class template specialization with these
4879    // arguments was referenced but not declared, or we're only
4880    // referencing this specialization as a friend, reuse that
4881    // declaration node as our own, updating its source location and
4882    // the list of outer template parameters to reflect our new declaration.
4883    Specialization = PrevDecl;
4884    Specialization->setLocation(TemplateNameLoc);
4885    if (TemplateParameterLists.size() > 0) {
4886      Specialization->setTemplateParameterListsInfo(Context,
4887                                              TemplateParameterLists.size(),
4888                    (TemplateParameterList**) TemplateParameterLists.release());
4889    }
4890    PrevDecl = 0;
4891    CanonType = Context.getTypeDeclType(Specialization);
4892  } else if (isPartialSpecialization) {
4893    // Build the canonical type that describes the converted template
4894    // arguments of the class template partial specialization.
4895    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4896    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4897                                                      Converted.data(),
4898                                                      Converted.size());
4899
4900    if (Context.hasSameType(CanonType,
4901                        ClassTemplate->getInjectedClassNameSpecialization())) {
4902      // C++ [temp.class.spec]p9b3:
4903      //
4904      //   -- The argument list of the specialization shall not be identical
4905      //      to the implicit argument list of the primary template.
4906      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4907      << (TUK == TUK_Definition)
4908      << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4909      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4910                                ClassTemplate->getIdentifier(),
4911                                TemplateNameLoc,
4912                                Attr,
4913                                TemplateParams,
4914                                AS_none,
4915                                TemplateParameterLists.size() - 1,
4916                  (TemplateParameterList**) TemplateParameterLists.release());
4917    }
4918
4919    // Create a new class template partial specialization declaration node.
4920    ClassTemplatePartialSpecializationDecl *PrevPartial
4921      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4922    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4923                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4924    ClassTemplatePartialSpecializationDecl *Partial
4925      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4926                                             ClassTemplate->getDeclContext(),
4927                                                       KWLoc, TemplateNameLoc,
4928                                                       TemplateParams,
4929                                                       ClassTemplate,
4930                                                       Converted.data(),
4931                                                       Converted.size(),
4932                                                       TemplateArgs,
4933                                                       CanonType,
4934                                                       PrevPartial,
4935                                                       SequenceNumber);
4936    SetNestedNameSpecifier(Partial, SS);
4937    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
4938      Partial->setTemplateParameterListsInfo(Context,
4939                                             TemplateParameterLists.size() - 1,
4940                    (TemplateParameterList**) TemplateParameterLists.release());
4941    }
4942
4943    if (!PrevPartial)
4944      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4945    Specialization = Partial;
4946
4947    // If we are providing an explicit specialization of a member class
4948    // template specialization, make a note of that.
4949    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4950      PrevPartial->setMemberSpecialization();
4951
4952    // Check that all of the template parameters of the class template
4953    // partial specialization are deducible from the template
4954    // arguments. If not, this class template partial specialization
4955    // will never be used.
4956    llvm::SmallVector<bool, 8> DeducibleParams;
4957    DeducibleParams.resize(TemplateParams->size());
4958    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4959                               TemplateParams->getDepth(),
4960                               DeducibleParams);
4961    unsigned NumNonDeducible = 0;
4962    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4963      if (!DeducibleParams[I])
4964        ++NumNonDeducible;
4965
4966    if (NumNonDeducible) {
4967      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4968        << (NumNonDeducible > 1)
4969        << SourceRange(TemplateNameLoc, RAngleLoc);
4970      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4971        if (!DeducibleParams[I]) {
4972          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4973          if (Param->getDeclName())
4974            Diag(Param->getLocation(),
4975                 diag::note_partial_spec_unused_parameter)
4976              << Param->getDeclName();
4977          else
4978            Diag(Param->getLocation(),
4979                 diag::note_partial_spec_unused_parameter)
4980              << "<anonymous>";
4981        }
4982      }
4983    }
4984  } else {
4985    // Create a new class template specialization declaration node for
4986    // this explicit specialization or friend declaration.
4987    Specialization
4988      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4989                                             ClassTemplate->getDeclContext(),
4990                                                KWLoc, TemplateNameLoc,
4991                                                ClassTemplate,
4992                                                Converted.data(),
4993                                                Converted.size(),
4994                                                PrevDecl);
4995    SetNestedNameSpecifier(Specialization, SS);
4996    if (TemplateParameterLists.size() > 0) {
4997      Specialization->setTemplateParameterListsInfo(Context,
4998                                              TemplateParameterLists.size(),
4999                    (TemplateParameterList**) TemplateParameterLists.release());
5000    }
5001
5002    if (!PrevDecl)
5003      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5004
5005    CanonType = Context.getTypeDeclType(Specialization);
5006  }
5007
5008  // C++ [temp.expl.spec]p6:
5009  //   If a template, a member template or the member of a class template is
5010  //   explicitly specialized then that specialization shall be declared
5011  //   before the first use of that specialization that would cause an implicit
5012  //   instantiation to take place, in every translation unit in which such a
5013  //   use occurs; no diagnostic is required.
5014  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5015    bool Okay = false;
5016    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5017      // Is there any previous explicit specialization declaration?
5018      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5019        Okay = true;
5020        break;
5021      }
5022    }
5023
5024    if (!Okay) {
5025      SourceRange Range(TemplateNameLoc, RAngleLoc);
5026      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5027        << Context.getTypeDeclType(Specialization) << Range;
5028
5029      Diag(PrevDecl->getPointOfInstantiation(),
5030           diag::note_instantiation_required_here)
5031        << (PrevDecl->getTemplateSpecializationKind()
5032                                                != TSK_ImplicitInstantiation);
5033      return true;
5034    }
5035  }
5036
5037  // If this is not a friend, note that this is an explicit specialization.
5038  if (TUK != TUK_Friend)
5039    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5040
5041  // Check that this isn't a redefinition of this specialization.
5042  if (TUK == TUK_Definition) {
5043    if (RecordDecl *Def = Specialization->getDefinition()) {
5044      SourceRange Range(TemplateNameLoc, RAngleLoc);
5045      Diag(TemplateNameLoc, diag::err_redefinition)
5046        << Context.getTypeDeclType(Specialization) << Range;
5047      Diag(Def->getLocation(), diag::note_previous_definition);
5048      Specialization->setInvalidDecl();
5049      return true;
5050    }
5051  }
5052
5053  if (Attr)
5054    ProcessDeclAttributeList(S, Specialization, Attr);
5055
5056  // Build the fully-sugared type for this class template
5057  // specialization as the user wrote in the specialization
5058  // itself. This means that we'll pretty-print the type retrieved
5059  // from the specialization's declaration the way that the user
5060  // actually wrote the specialization, rather than formatting the
5061  // name based on the "canonical" representation used to store the
5062  // template arguments in the specialization.
5063  TypeSourceInfo *WrittenTy
5064    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5065                                                TemplateArgs, CanonType);
5066  if (TUK != TUK_Friend) {
5067    Specialization->setTypeAsWritten(WrittenTy);
5068    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5069  }
5070  TemplateArgsIn.release();
5071
5072  // C++ [temp.expl.spec]p9:
5073  //   A template explicit specialization is in the scope of the
5074  //   namespace in which the template was defined.
5075  //
5076  // We actually implement this paragraph where we set the semantic
5077  // context (in the creation of the ClassTemplateSpecializationDecl),
5078  // but we also maintain the lexical context where the actual
5079  // definition occurs.
5080  Specialization->setLexicalDeclContext(CurContext);
5081
5082  // We may be starting the definition of this specialization.
5083  if (TUK == TUK_Definition)
5084    Specialization->startDefinition();
5085
5086  if (TUK == TUK_Friend) {
5087    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5088                                            TemplateNameLoc,
5089                                            WrittenTy,
5090                                            /*FIXME:*/KWLoc);
5091    Friend->setAccess(AS_public);
5092    CurContext->addDecl(Friend);
5093  } else {
5094    // Add the specialization into its lexical context, so that it can
5095    // be seen when iterating through the list of declarations in that
5096    // context. However, specializations are not found by name lookup.
5097    CurContext->addDecl(Specialization);
5098  }
5099  return Specialization;
5100}
5101
5102Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5103                              MultiTemplateParamsArg TemplateParameterLists,
5104                                    Declarator &D) {
5105  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
5106}
5107
5108Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5109                               MultiTemplateParamsArg TemplateParameterLists,
5110                                            Declarator &D) {
5111  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5112  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5113
5114  if (FTI.hasPrototype) {
5115    // FIXME: Diagnose arguments without names in C.
5116  }
5117
5118  Scope *ParentScope = FnBodyScope->getParent();
5119
5120  Decl *DP = HandleDeclarator(ParentScope, D,
5121                              move(TemplateParameterLists),
5122                              /*IsFunctionDefinition=*/true);
5123  if (FunctionTemplateDecl *FunctionTemplate
5124        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5125    return ActOnStartOfFunctionDef(FnBodyScope,
5126                                   FunctionTemplate->getTemplatedDecl());
5127  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5128    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5129  return 0;
5130}
5131
5132/// \brief Strips various properties off an implicit instantiation
5133/// that has just been explicitly specialized.
5134static void StripImplicitInstantiation(NamedDecl *D) {
5135  D->dropAttrs();
5136
5137  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5138    FD->setInlineSpecified(false);
5139  }
5140}
5141
5142/// \brief Diagnose cases where we have an explicit template specialization
5143/// before/after an explicit template instantiation, producing diagnostics
5144/// for those cases where they are required and determining whether the
5145/// new specialization/instantiation will have any effect.
5146///
5147/// \param NewLoc the location of the new explicit specialization or
5148/// instantiation.
5149///
5150/// \param NewTSK the kind of the new explicit specialization or instantiation.
5151///
5152/// \param PrevDecl the previous declaration of the entity.
5153///
5154/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5155///
5156/// \param PrevPointOfInstantiation if valid, indicates where the previus
5157/// declaration was instantiated (either implicitly or explicitly).
5158///
5159/// \param HasNoEffect will be set to true to indicate that the new
5160/// specialization or instantiation has no effect and should be ignored.
5161///
5162/// \returns true if there was an error that should prevent the introduction of
5163/// the new declaration into the AST, false otherwise.
5164bool
5165Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5166                                             TemplateSpecializationKind NewTSK,
5167                                             NamedDecl *PrevDecl,
5168                                             TemplateSpecializationKind PrevTSK,
5169                                        SourceLocation PrevPointOfInstantiation,
5170                                             bool &HasNoEffect) {
5171  HasNoEffect = false;
5172
5173  switch (NewTSK) {
5174  case TSK_Undeclared:
5175  case TSK_ImplicitInstantiation:
5176    assert(false && "Don't check implicit instantiations here");
5177    return false;
5178
5179  case TSK_ExplicitSpecialization:
5180    switch (PrevTSK) {
5181    case TSK_Undeclared:
5182    case TSK_ExplicitSpecialization:
5183      // Okay, we're just specializing something that is either already
5184      // explicitly specialized or has merely been mentioned without any
5185      // instantiation.
5186      return false;
5187
5188    case TSK_ImplicitInstantiation:
5189      if (PrevPointOfInstantiation.isInvalid()) {
5190        // The declaration itself has not actually been instantiated, so it is
5191        // still okay to specialize it.
5192        StripImplicitInstantiation(PrevDecl);
5193        return false;
5194      }
5195      // Fall through
5196
5197    case TSK_ExplicitInstantiationDeclaration:
5198    case TSK_ExplicitInstantiationDefinition:
5199      assert((PrevTSK == TSK_ImplicitInstantiation ||
5200              PrevPointOfInstantiation.isValid()) &&
5201             "Explicit instantiation without point of instantiation?");
5202
5203      // C++ [temp.expl.spec]p6:
5204      //   If a template, a member template or the member of a class template
5205      //   is explicitly specialized then that specialization shall be declared
5206      //   before the first use of that specialization that would cause an
5207      //   implicit instantiation to take place, in every translation unit in
5208      //   which such a use occurs; no diagnostic is required.
5209      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
5210        // Is there any previous explicit specialization declaration?
5211        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5212          return false;
5213      }
5214
5215      Diag(NewLoc, diag::err_specialization_after_instantiation)
5216        << PrevDecl;
5217      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5218        << (PrevTSK != TSK_ImplicitInstantiation);
5219
5220      return true;
5221    }
5222    break;
5223
5224  case TSK_ExplicitInstantiationDeclaration:
5225    switch (PrevTSK) {
5226    case TSK_ExplicitInstantiationDeclaration:
5227      // This explicit instantiation declaration is redundant (that's okay).
5228      HasNoEffect = true;
5229      return false;
5230
5231    case TSK_Undeclared:
5232    case TSK_ImplicitInstantiation:
5233      // We're explicitly instantiating something that may have already been
5234      // implicitly instantiated; that's fine.
5235      return false;
5236
5237    case TSK_ExplicitSpecialization:
5238      // C++0x [temp.explicit]p4:
5239      //   For a given set of template parameters, if an explicit instantiation
5240      //   of a template appears after a declaration of an explicit
5241      //   specialization for that template, the explicit instantiation has no
5242      //   effect.
5243      HasNoEffect = true;
5244      return false;
5245
5246    case TSK_ExplicitInstantiationDefinition:
5247      // C++0x [temp.explicit]p10:
5248      //   If an entity is the subject of both an explicit instantiation
5249      //   declaration and an explicit instantiation definition in the same
5250      //   translation unit, the definition shall follow the declaration.
5251      Diag(NewLoc,
5252           diag::err_explicit_instantiation_declaration_after_definition);
5253      Diag(PrevPointOfInstantiation,
5254           diag::note_explicit_instantiation_definition_here);
5255      assert(PrevPointOfInstantiation.isValid() &&
5256             "Explicit instantiation without point of instantiation?");
5257      HasNoEffect = true;
5258      return false;
5259    }
5260    break;
5261
5262  case TSK_ExplicitInstantiationDefinition:
5263    switch (PrevTSK) {
5264    case TSK_Undeclared:
5265    case TSK_ImplicitInstantiation:
5266      // We're explicitly instantiating something that may have already been
5267      // implicitly instantiated; that's fine.
5268      return false;
5269
5270    case TSK_ExplicitSpecialization:
5271      // C++ DR 259, C++0x [temp.explicit]p4:
5272      //   For a given set of template parameters, if an explicit
5273      //   instantiation of a template appears after a declaration of
5274      //   an explicit specialization for that template, the explicit
5275      //   instantiation has no effect.
5276      //
5277      // In C++98/03 mode, we only give an extension warning here, because it
5278      // is not harmful to try to explicitly instantiate something that
5279      // has been explicitly specialized.
5280      if (!getLangOptions().CPlusPlus0x) {
5281        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
5282          << PrevDecl;
5283        Diag(PrevDecl->getLocation(),
5284             diag::note_previous_template_specialization);
5285      }
5286      HasNoEffect = true;
5287      return false;
5288
5289    case TSK_ExplicitInstantiationDeclaration:
5290      // We're explicity instantiating a definition for something for which we
5291      // were previously asked to suppress instantiations. That's fine.
5292      return false;
5293
5294    case TSK_ExplicitInstantiationDefinition:
5295      // C++0x [temp.spec]p5:
5296      //   For a given template and a given set of template-arguments,
5297      //     - an explicit instantiation definition shall appear at most once
5298      //       in a program,
5299      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5300        << PrevDecl;
5301      Diag(PrevPointOfInstantiation,
5302           diag::note_previous_explicit_instantiation);
5303      HasNoEffect = true;
5304      return false;
5305    }
5306    break;
5307  }
5308
5309  assert(false && "Missing specialization/instantiation case?");
5310
5311  return false;
5312}
5313
5314/// \brief Perform semantic analysis for the given dependent function
5315/// template specialization.  The only possible way to get a dependent
5316/// function template specialization is with a friend declaration,
5317/// like so:
5318///
5319///   template <class T> void foo(T);
5320///   template <class T> class A {
5321///     friend void foo<>(T);
5322///   };
5323///
5324/// There really isn't any useful analysis we can do here, so we
5325/// just store the information.
5326bool
5327Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5328                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5329                                                   LookupResult &Previous) {
5330  // Remove anything from Previous that isn't a function template in
5331  // the correct context.
5332  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5333  LookupResult::Filter F = Previous.makeFilter();
5334  while (F.hasNext()) {
5335    NamedDecl *D = F.next()->getUnderlyingDecl();
5336    if (!isa<FunctionTemplateDecl>(D) ||
5337        !FDLookupContext->InEnclosingNamespaceSetOf(
5338                              D->getDeclContext()->getRedeclContext()))
5339      F.erase();
5340  }
5341  F.done();
5342
5343  // Should this be diagnosed here?
5344  if (Previous.empty()) return true;
5345
5346  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5347                                         ExplicitTemplateArgs);
5348  return false;
5349}
5350
5351/// \brief Perform semantic analysis for the given function template
5352/// specialization.
5353///
5354/// This routine performs all of the semantic analysis required for an
5355/// explicit function template specialization. On successful completion,
5356/// the function declaration \p FD will become a function template
5357/// specialization.
5358///
5359/// \param FD the function declaration, which will be updated to become a
5360/// function template specialization.
5361///
5362/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5363/// if any. Note that this may be valid info even when 0 arguments are
5364/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5365/// as it anyway contains info on the angle brackets locations.
5366///
5367/// \param Previous the set of declarations that may be specialized by
5368/// this function specialization.
5369bool
5370Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5371                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5372                                          LookupResult &Previous) {
5373  // The set of function template specializations that could match this
5374  // explicit function template specialization.
5375  UnresolvedSet<8> Candidates;
5376
5377  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5378  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5379         I != E; ++I) {
5380    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5381    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5382      // Only consider templates found within the same semantic lookup scope as
5383      // FD.
5384      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5385                                Ovl->getDeclContext()->getRedeclContext()))
5386        continue;
5387
5388      // C++ [temp.expl.spec]p11:
5389      //   A trailing template-argument can be left unspecified in the
5390      //   template-id naming an explicit function template specialization
5391      //   provided it can be deduced from the function argument type.
5392      // Perform template argument deduction to determine whether we may be
5393      // specializing this template.
5394      // FIXME: It is somewhat wasteful to build
5395      TemplateDeductionInfo Info(Context, FD->getLocation());
5396      FunctionDecl *Specialization = 0;
5397      if (TemplateDeductionResult TDK
5398            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5399                                      FD->getType(),
5400                                      Specialization,
5401                                      Info)) {
5402        // FIXME: Template argument deduction failed; record why it failed, so
5403        // that we can provide nifty diagnostics.
5404        (void)TDK;
5405        continue;
5406      }
5407
5408      // Record this candidate.
5409      Candidates.addDecl(Specialization, I.getAccess());
5410    }
5411  }
5412
5413  // Find the most specialized function template.
5414  UnresolvedSetIterator Result
5415    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5416                         TPOC_Other, 0, FD->getLocation(),
5417                  PDiag(diag::err_function_template_spec_no_match)
5418                    << FD->getDeclName(),
5419                  PDiag(diag::err_function_template_spec_ambiguous)
5420                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5421                  PDiag(diag::note_function_template_spec_matched));
5422  if (Result == Candidates.end())
5423    return true;
5424
5425  // Ignore access information;  it doesn't figure into redeclaration checking.
5426  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5427
5428  FunctionTemplateSpecializationInfo *SpecInfo
5429    = Specialization->getTemplateSpecializationInfo();
5430  assert(SpecInfo && "Function template specialization info missing?");
5431
5432  // Note: do not overwrite location info if previous template
5433  // specialization kind was explicit.
5434  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5435  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5436    Specialization->setLocation(FD->getLocation());
5437
5438  // FIXME: Check if the prior specialization has a point of instantiation.
5439  // If so, we have run afoul of .
5440
5441  // If this is a friend declaration, then we're not really declaring
5442  // an explicit specialization.
5443  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5444
5445  // Check the scope of this explicit specialization.
5446  if (!isFriend &&
5447      CheckTemplateSpecializationScope(*this,
5448                                       Specialization->getPrimaryTemplate(),
5449                                       Specialization, FD->getLocation(),
5450                                       false))
5451    return true;
5452
5453  // C++ [temp.expl.spec]p6:
5454  //   If a template, a member template or the member of a class template is
5455  //   explicitly specialized then that specialization shall be declared
5456  //   before the first use of that specialization that would cause an implicit
5457  //   instantiation to take place, in every translation unit in which such a
5458  //   use occurs; no diagnostic is required.
5459  bool HasNoEffect = false;
5460  if (!isFriend &&
5461      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5462                                             TSK_ExplicitSpecialization,
5463                                             Specialization,
5464                                   SpecInfo->getTemplateSpecializationKind(),
5465                                         SpecInfo->getPointOfInstantiation(),
5466                                             HasNoEffect))
5467    return true;
5468
5469  // Mark the prior declaration as an explicit specialization, so that later
5470  // clients know that this is an explicit specialization.
5471  if (!isFriend) {
5472    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5473    MarkUnusedFileScopedDecl(Specialization);
5474  }
5475
5476  // Turn the given function declaration into a function template
5477  // specialization, with the template arguments from the previous
5478  // specialization.
5479  // Take copies of (semantic and syntactic) template argument lists.
5480  const TemplateArgumentList* TemplArgs = new (Context)
5481    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5482  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
5483    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
5484  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5485                                        TemplArgs, /*InsertPos=*/0,
5486                                    SpecInfo->getTemplateSpecializationKind(),
5487                                        TemplArgsAsWritten);
5488  FD->setStorageClass(Specialization->getStorageClass());
5489
5490  // The "previous declaration" for this function template specialization is
5491  // the prior function template specialization.
5492  Previous.clear();
5493  Previous.addDecl(Specialization);
5494  return false;
5495}
5496
5497/// \brief Perform semantic analysis for the given non-template member
5498/// specialization.
5499///
5500/// This routine performs all of the semantic analysis required for an
5501/// explicit member function specialization. On successful completion,
5502/// the function declaration \p FD will become a member function
5503/// specialization.
5504///
5505/// \param Member the member declaration, which will be updated to become a
5506/// specialization.
5507///
5508/// \param Previous the set of declarations, one of which may be specialized
5509/// by this function specialization;  the set will be modified to contain the
5510/// redeclared member.
5511bool
5512Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5513  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5514
5515  // Try to find the member we are instantiating.
5516  NamedDecl *Instantiation = 0;
5517  NamedDecl *InstantiatedFrom = 0;
5518  MemberSpecializationInfo *MSInfo = 0;
5519
5520  if (Previous.empty()) {
5521    // Nowhere to look anyway.
5522  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5523    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5524           I != E; ++I) {
5525      NamedDecl *D = (*I)->getUnderlyingDecl();
5526      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5527        if (Context.hasSameType(Function->getType(), Method->getType())) {
5528          Instantiation = Method;
5529          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5530          MSInfo = Method->getMemberSpecializationInfo();
5531          break;
5532        }
5533      }
5534    }
5535  } else if (isa<VarDecl>(Member)) {
5536    VarDecl *PrevVar;
5537    if (Previous.isSingleResult() &&
5538        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5539      if (PrevVar->isStaticDataMember()) {
5540        Instantiation = PrevVar;
5541        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5542        MSInfo = PrevVar->getMemberSpecializationInfo();
5543      }
5544  } else if (isa<RecordDecl>(Member)) {
5545    CXXRecordDecl *PrevRecord;
5546    if (Previous.isSingleResult() &&
5547        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5548      Instantiation = PrevRecord;
5549      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5550      MSInfo = PrevRecord->getMemberSpecializationInfo();
5551    }
5552  }
5553
5554  if (!Instantiation) {
5555    // There is no previous declaration that matches. Since member
5556    // specializations are always out-of-line, the caller will complain about
5557    // this mismatch later.
5558    return false;
5559  }
5560
5561  // If this is a friend, just bail out here before we start turning
5562  // things into explicit specializations.
5563  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5564    // Preserve instantiation information.
5565    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5566      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5567                                      cast<CXXMethodDecl>(InstantiatedFrom),
5568        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5569    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5570      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5571                                      cast<CXXRecordDecl>(InstantiatedFrom),
5572        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5573    }
5574
5575    Previous.clear();
5576    Previous.addDecl(Instantiation);
5577    return false;
5578  }
5579
5580  // Make sure that this is a specialization of a member.
5581  if (!InstantiatedFrom) {
5582    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5583      << Member;
5584    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5585    return true;
5586  }
5587
5588  // C++ [temp.expl.spec]p6:
5589  //   If a template, a member template or the member of a class template is
5590  //   explicitly specialized then that spe- cialization shall be declared
5591  //   before the first use of that specialization that would cause an implicit
5592  //   instantiation to take place, in every translation unit in which such a
5593  //   use occurs; no diagnostic is required.
5594  assert(MSInfo && "Member specialization info missing?");
5595
5596  bool HasNoEffect = false;
5597  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5598                                             TSK_ExplicitSpecialization,
5599                                             Instantiation,
5600                                     MSInfo->getTemplateSpecializationKind(),
5601                                           MSInfo->getPointOfInstantiation(),
5602                                             HasNoEffect))
5603    return true;
5604
5605  // Check the scope of this explicit specialization.
5606  if (CheckTemplateSpecializationScope(*this,
5607                                       InstantiatedFrom,
5608                                       Instantiation, Member->getLocation(),
5609                                       false))
5610    return true;
5611
5612  // Note that this is an explicit instantiation of a member.
5613  // the original declaration to note that it is an explicit specialization
5614  // (if it was previously an implicit instantiation). This latter step
5615  // makes bookkeeping easier.
5616  if (isa<FunctionDecl>(Member)) {
5617    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5618    if (InstantiationFunction->getTemplateSpecializationKind() ==
5619          TSK_ImplicitInstantiation) {
5620      InstantiationFunction->setTemplateSpecializationKind(
5621                                                  TSK_ExplicitSpecialization);
5622      InstantiationFunction->setLocation(Member->getLocation());
5623    }
5624
5625    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5626                                        cast<CXXMethodDecl>(InstantiatedFrom),
5627                                                  TSK_ExplicitSpecialization);
5628    MarkUnusedFileScopedDecl(InstantiationFunction);
5629  } else if (isa<VarDecl>(Member)) {
5630    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5631    if (InstantiationVar->getTemplateSpecializationKind() ==
5632          TSK_ImplicitInstantiation) {
5633      InstantiationVar->setTemplateSpecializationKind(
5634                                                  TSK_ExplicitSpecialization);
5635      InstantiationVar->setLocation(Member->getLocation());
5636    }
5637
5638    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5639                                                cast<VarDecl>(InstantiatedFrom),
5640                                                TSK_ExplicitSpecialization);
5641    MarkUnusedFileScopedDecl(InstantiationVar);
5642  } else {
5643    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5644    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5645    if (InstantiationClass->getTemplateSpecializationKind() ==
5646          TSK_ImplicitInstantiation) {
5647      InstantiationClass->setTemplateSpecializationKind(
5648                                                   TSK_ExplicitSpecialization);
5649      InstantiationClass->setLocation(Member->getLocation());
5650    }
5651
5652    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5653                                        cast<CXXRecordDecl>(InstantiatedFrom),
5654                                                   TSK_ExplicitSpecialization);
5655  }
5656
5657  // Save the caller the trouble of having to figure out which declaration
5658  // this specialization matches.
5659  Previous.clear();
5660  Previous.addDecl(Instantiation);
5661  return false;
5662}
5663
5664/// \brief Check the scope of an explicit instantiation.
5665///
5666/// \returns true if a serious error occurs, false otherwise.
5667static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5668                                            SourceLocation InstLoc,
5669                                            bool WasQualifiedName) {
5670  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5671  DeclContext *CurContext = S.CurContext->getRedeclContext();
5672
5673  if (CurContext->isRecord()) {
5674    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5675      << D;
5676    return true;
5677  }
5678
5679  // C++0x [temp.explicit]p2:
5680  //   An explicit instantiation shall appear in an enclosing namespace of its
5681  //   template.
5682  //
5683  // This is DR275, which we do not retroactively apply to C++98/03.
5684  if (S.getLangOptions().CPlusPlus0x &&
5685      !CurContext->Encloses(OrigContext)) {
5686    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
5687      S.Diag(InstLoc,
5688             S.getLangOptions().CPlusPlus0x?
5689                 diag::err_explicit_instantiation_out_of_scope
5690               : diag::warn_explicit_instantiation_out_of_scope_0x)
5691        << D << NS;
5692    else
5693      S.Diag(InstLoc,
5694             S.getLangOptions().CPlusPlus0x?
5695                 diag::err_explicit_instantiation_must_be_global
5696               : diag::warn_explicit_instantiation_out_of_scope_0x)
5697        << D;
5698    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5699    return false;
5700  }
5701
5702  // C++0x [temp.explicit]p2:
5703  //   If the name declared in the explicit instantiation is an unqualified
5704  //   name, the explicit instantiation shall appear in the namespace where
5705  //   its template is declared or, if that namespace is inline (7.3.1), any
5706  //   namespace from its enclosing namespace set.
5707  if (WasQualifiedName)
5708    return false;
5709
5710  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5711    return false;
5712
5713  S.Diag(InstLoc,
5714         S.getLangOptions().CPlusPlus0x?
5715             diag::err_explicit_instantiation_unqualified_wrong_namespace
5716           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5717    << D << OrigContext;
5718  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5719  return false;
5720}
5721
5722/// \brief Determine whether the given scope specifier has a template-id in it.
5723static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5724  if (!SS.isSet())
5725    return false;
5726
5727  // C++0x [temp.explicit]p2:
5728  //   If the explicit instantiation is for a member function, a member class
5729  //   or a static data member of a class template specialization, the name of
5730  //   the class template specialization in the qualified-id for the member
5731  //   name shall be a simple-template-id.
5732  //
5733  // C++98 has the same restriction, just worded differently.
5734  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5735       NNS; NNS = NNS->getPrefix())
5736    if (const Type *T = NNS->getAsType())
5737      if (isa<TemplateSpecializationType>(T))
5738        return true;
5739
5740  return false;
5741}
5742
5743// Explicit instantiation of a class template specialization
5744DeclResult
5745Sema::ActOnExplicitInstantiation(Scope *S,
5746                                 SourceLocation ExternLoc,
5747                                 SourceLocation TemplateLoc,
5748                                 unsigned TagSpec,
5749                                 SourceLocation KWLoc,
5750                                 const CXXScopeSpec &SS,
5751                                 TemplateTy TemplateD,
5752                                 SourceLocation TemplateNameLoc,
5753                                 SourceLocation LAngleLoc,
5754                                 ASTTemplateArgsPtr TemplateArgsIn,
5755                                 SourceLocation RAngleLoc,
5756                                 AttributeList *Attr) {
5757  // Find the class template we're specializing
5758  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5759  ClassTemplateDecl *ClassTemplate
5760    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5761
5762  // Check that the specialization uses the same tag kind as the
5763  // original template.
5764  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5765  assert(Kind != TTK_Enum &&
5766         "Invalid enum tag in class template explicit instantiation!");
5767  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5768                                    Kind, /*isDefinition*/false, KWLoc,
5769                                    *ClassTemplate->getIdentifier())) {
5770    Diag(KWLoc, diag::err_use_with_wrong_tag)
5771      << ClassTemplate
5772      << FixItHint::CreateReplacement(KWLoc,
5773                            ClassTemplate->getTemplatedDecl()->getKindName());
5774    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5775         diag::note_previous_use);
5776    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5777  }
5778
5779  // C++0x [temp.explicit]p2:
5780  //   There are two forms of explicit instantiation: an explicit instantiation
5781  //   definition and an explicit instantiation declaration. An explicit
5782  //   instantiation declaration begins with the extern keyword. [...]
5783  TemplateSpecializationKind TSK
5784    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5785                           : TSK_ExplicitInstantiationDeclaration;
5786
5787  // Translate the parser's template argument list in our AST format.
5788  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5789  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5790
5791  // Check that the template argument list is well-formed for this
5792  // template.
5793  llvm::SmallVector<TemplateArgument, 4> Converted;
5794  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5795                                TemplateArgs, false, Converted))
5796    return true;
5797
5798  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5799         "Converted template argument list is too short!");
5800
5801  // Find the class template specialization declaration that
5802  // corresponds to these arguments.
5803  void *InsertPos = 0;
5804  ClassTemplateSpecializationDecl *PrevDecl
5805    = ClassTemplate->findSpecialization(Converted.data(),
5806                                        Converted.size(), InsertPos);
5807
5808  TemplateSpecializationKind PrevDecl_TSK
5809    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5810
5811  // C++0x [temp.explicit]p2:
5812  //   [...] An explicit instantiation shall appear in an enclosing
5813  //   namespace of its template. [...]
5814  //
5815  // This is C++ DR 275.
5816  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5817                                      SS.isSet()))
5818    return true;
5819
5820  ClassTemplateSpecializationDecl *Specialization = 0;
5821
5822  bool HasNoEffect = false;
5823  if (PrevDecl) {
5824    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5825                                               PrevDecl, PrevDecl_TSK,
5826                                            PrevDecl->getPointOfInstantiation(),
5827                                               HasNoEffect))
5828      return PrevDecl;
5829
5830    // Even though HasNoEffect == true means that this explicit instantiation
5831    // has no effect on semantics, we go on to put its syntax in the AST.
5832
5833    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5834        PrevDecl_TSK == TSK_Undeclared) {
5835      // Since the only prior class template specialization with these
5836      // arguments was referenced but not declared, reuse that
5837      // declaration node as our own, updating the source location
5838      // for the template name to reflect our new declaration.
5839      // (Other source locations will be updated later.)
5840      Specialization = PrevDecl;
5841      Specialization->setLocation(TemplateNameLoc);
5842      PrevDecl = 0;
5843    }
5844  }
5845
5846  if (!Specialization) {
5847    // Create a new class template specialization declaration node for
5848    // this explicit specialization.
5849    Specialization
5850      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5851                                             ClassTemplate->getDeclContext(),
5852                                                KWLoc, TemplateNameLoc,
5853                                                ClassTemplate,
5854                                                Converted.data(),
5855                                                Converted.size(),
5856                                                PrevDecl);
5857    SetNestedNameSpecifier(Specialization, SS);
5858
5859    if (!HasNoEffect && !PrevDecl) {
5860      // Insert the new specialization.
5861      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5862    }
5863  }
5864
5865  // Build the fully-sugared type for this explicit instantiation as
5866  // the user wrote in the explicit instantiation itself. This means
5867  // that we'll pretty-print the type retrieved from the
5868  // specialization's declaration the way that the user actually wrote
5869  // the explicit instantiation, rather than formatting the name based
5870  // on the "canonical" representation used to store the template
5871  // arguments in the specialization.
5872  TypeSourceInfo *WrittenTy
5873    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5874                                                TemplateArgs,
5875                                  Context.getTypeDeclType(Specialization));
5876  Specialization->setTypeAsWritten(WrittenTy);
5877  TemplateArgsIn.release();
5878
5879  // Set source locations for keywords.
5880  Specialization->setExternLoc(ExternLoc);
5881  Specialization->setTemplateKeywordLoc(TemplateLoc);
5882
5883  // Add the explicit instantiation into its lexical context. However,
5884  // since explicit instantiations are never found by name lookup, we
5885  // just put it into the declaration context directly.
5886  Specialization->setLexicalDeclContext(CurContext);
5887  CurContext->addDecl(Specialization);
5888
5889  // Syntax is now OK, so return if it has no other effect on semantics.
5890  if (HasNoEffect) {
5891    // Set the template specialization kind.
5892    Specialization->setTemplateSpecializationKind(TSK);
5893    return Specialization;
5894  }
5895
5896  // C++ [temp.explicit]p3:
5897  //   A definition of a class template or class member template
5898  //   shall be in scope at the point of the explicit instantiation of
5899  //   the class template or class member template.
5900  //
5901  // This check comes when we actually try to perform the
5902  // instantiation.
5903  ClassTemplateSpecializationDecl *Def
5904    = cast_or_null<ClassTemplateSpecializationDecl>(
5905                                              Specialization->getDefinition());
5906  if (!Def)
5907    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5908  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5909    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5910    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5911  }
5912
5913  // Instantiate the members of this class template specialization.
5914  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5915                                       Specialization->getDefinition());
5916  if (Def) {
5917    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5918
5919    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5920    // TSK_ExplicitInstantiationDefinition
5921    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5922        TSK == TSK_ExplicitInstantiationDefinition)
5923      Def->setTemplateSpecializationKind(TSK);
5924
5925    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5926  }
5927
5928  // Set the template specialization kind.
5929  Specialization->setTemplateSpecializationKind(TSK);
5930  return Specialization;
5931}
5932
5933// Explicit instantiation of a member class of a class template.
5934DeclResult
5935Sema::ActOnExplicitInstantiation(Scope *S,
5936                                 SourceLocation ExternLoc,
5937                                 SourceLocation TemplateLoc,
5938                                 unsigned TagSpec,
5939                                 SourceLocation KWLoc,
5940                                 CXXScopeSpec &SS,
5941                                 IdentifierInfo *Name,
5942                                 SourceLocation NameLoc,
5943                                 AttributeList *Attr) {
5944
5945  bool Owned = false;
5946  bool IsDependent = false;
5947  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5948                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5949                        MultiTemplateParamsArg(*this, 0, 0),
5950                        Owned, IsDependent, false, false,
5951                        TypeResult());
5952  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5953
5954  if (!TagD)
5955    return true;
5956
5957  TagDecl *Tag = cast<TagDecl>(TagD);
5958  if (Tag->isEnum()) {
5959    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5960      << Context.getTypeDeclType(Tag);
5961    return true;
5962  }
5963
5964  if (Tag->isInvalidDecl())
5965    return true;
5966
5967  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5968  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5969  if (!Pattern) {
5970    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5971      << Context.getTypeDeclType(Record);
5972    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5973    return true;
5974  }
5975
5976  // C++0x [temp.explicit]p2:
5977  //   If the explicit instantiation is for a class or member class, the
5978  //   elaborated-type-specifier in the declaration shall include a
5979  //   simple-template-id.
5980  //
5981  // C++98 has the same restriction, just worded differently.
5982  if (!ScopeSpecifierHasTemplateId(SS))
5983    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5984      << Record << SS.getRange();
5985
5986  // C++0x [temp.explicit]p2:
5987  //   There are two forms of explicit instantiation: an explicit instantiation
5988  //   definition and an explicit instantiation declaration. An explicit
5989  //   instantiation declaration begins with the extern keyword. [...]
5990  TemplateSpecializationKind TSK
5991    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5992                           : TSK_ExplicitInstantiationDeclaration;
5993
5994  // C++0x [temp.explicit]p2:
5995  //   [...] An explicit instantiation shall appear in an enclosing
5996  //   namespace of its template. [...]
5997  //
5998  // This is C++ DR 275.
5999  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6000
6001  // Verify that it is okay to explicitly instantiate here.
6002  CXXRecordDecl *PrevDecl
6003    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
6004  if (!PrevDecl && Record->getDefinition())
6005    PrevDecl = Record;
6006  if (PrevDecl) {
6007    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6008    bool HasNoEffect = false;
6009    assert(MSInfo && "No member specialization information?");
6010    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6011                                               PrevDecl,
6012                                        MSInfo->getTemplateSpecializationKind(),
6013                                             MSInfo->getPointOfInstantiation(),
6014                                               HasNoEffect))
6015      return true;
6016    if (HasNoEffect)
6017      return TagD;
6018  }
6019
6020  CXXRecordDecl *RecordDef
6021    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6022  if (!RecordDef) {
6023    // C++ [temp.explicit]p3:
6024    //   A definition of a member class of a class template shall be in scope
6025    //   at the point of an explicit instantiation of the member class.
6026    CXXRecordDecl *Def
6027      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6028    if (!Def) {
6029      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6030        << 0 << Record->getDeclName() << Record->getDeclContext();
6031      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6032        << Pattern;
6033      return true;
6034    } else {
6035      if (InstantiateClass(NameLoc, Record, Def,
6036                           getTemplateInstantiationArgs(Record),
6037                           TSK))
6038        return true;
6039
6040      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6041      if (!RecordDef)
6042        return true;
6043    }
6044  }
6045
6046  // Instantiate all of the members of the class.
6047  InstantiateClassMembers(NameLoc, RecordDef,
6048                          getTemplateInstantiationArgs(Record), TSK);
6049
6050  if (TSK == TSK_ExplicitInstantiationDefinition)
6051    MarkVTableUsed(NameLoc, RecordDef, true);
6052
6053  // FIXME: We don't have any representation for explicit instantiations of
6054  // member classes. Such a representation is not needed for compilation, but it
6055  // should be available for clients that want to see all of the declarations in
6056  // the source code.
6057  return TagD;
6058}
6059
6060DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6061                                            SourceLocation ExternLoc,
6062                                            SourceLocation TemplateLoc,
6063                                            Declarator &D) {
6064  // Explicit instantiations always require a name.
6065  // TODO: check if/when DNInfo should replace Name.
6066  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6067  DeclarationName Name = NameInfo.getName();
6068  if (!Name) {
6069    if (!D.isInvalidType())
6070      Diag(D.getDeclSpec().getSourceRange().getBegin(),
6071           diag::err_explicit_instantiation_requires_name)
6072        << D.getDeclSpec().getSourceRange()
6073        << D.getSourceRange();
6074
6075    return true;
6076  }
6077
6078  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6079  // we find one that is.
6080  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6081         (S->getFlags() & Scope::TemplateParamScope) != 0)
6082    S = S->getParent();
6083
6084  // Determine the type of the declaration.
6085  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6086  QualType R = T->getType();
6087  if (R.isNull())
6088    return true;
6089
6090  // C++ [dcl.stc]p1:
6091  //   A storage-class-specifier shall not be specified in [...] an explicit
6092  //   instantiation (14.7.2) directive.
6093  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6094    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6095      << Name;
6096    return true;
6097  } else if (D.getDeclSpec().getStorageClassSpec()
6098                                                != DeclSpec::SCS_unspecified) {
6099    // Complain about then remove the storage class specifier.
6100    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6101      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6102
6103    D.getMutableDeclSpec().ClearStorageClassSpecs();
6104  }
6105
6106  // C++0x [temp.explicit]p1:
6107  //   [...] An explicit instantiation of a function template shall not use the
6108  //   inline or constexpr specifiers.
6109  // Presumably, this also applies to member functions of class templates as
6110  // well.
6111  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
6112    Diag(D.getDeclSpec().getInlineSpecLoc(),
6113         diag::err_explicit_instantiation_inline)
6114      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6115
6116  // FIXME: check for constexpr specifier.
6117
6118  // C++0x [temp.explicit]p2:
6119  //   There are two forms of explicit instantiation: an explicit instantiation
6120  //   definition and an explicit instantiation declaration. An explicit
6121  //   instantiation declaration begins with the extern keyword. [...]
6122  TemplateSpecializationKind TSK
6123    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6124                           : TSK_ExplicitInstantiationDeclaration;
6125
6126  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6127  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6128
6129  if (!R->isFunctionType()) {
6130    // C++ [temp.explicit]p1:
6131    //   A [...] static data member of a class template can be explicitly
6132    //   instantiated from the member definition associated with its class
6133    //   template.
6134    if (Previous.isAmbiguous())
6135      return true;
6136
6137    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6138    if (!Prev || !Prev->isStaticDataMember()) {
6139      // We expect to see a data data member here.
6140      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6141        << Name;
6142      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6143           P != PEnd; ++P)
6144        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6145      return true;
6146    }
6147
6148    if (!Prev->getInstantiatedFromStaticDataMember()) {
6149      // FIXME: Check for explicit specialization?
6150      Diag(D.getIdentifierLoc(),
6151           diag::err_explicit_instantiation_data_member_not_instantiated)
6152        << Prev;
6153      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6154      // FIXME: Can we provide a note showing where this was declared?
6155      return true;
6156    }
6157
6158    // C++0x [temp.explicit]p2:
6159    //   If the explicit instantiation is for a member function, a member class
6160    //   or a static data member of a class template specialization, the name of
6161    //   the class template specialization in the qualified-id for the member
6162    //   name shall be a simple-template-id.
6163    //
6164    // C++98 has the same restriction, just worded differently.
6165    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6166      Diag(D.getIdentifierLoc(),
6167           diag::ext_explicit_instantiation_without_qualified_id)
6168        << Prev << D.getCXXScopeSpec().getRange();
6169
6170    // Check the scope of this explicit instantiation.
6171    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6172
6173    // Verify that it is okay to explicitly instantiate here.
6174    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6175    assert(MSInfo && "Missing static data member specialization info?");
6176    bool HasNoEffect = false;
6177    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6178                                        MSInfo->getTemplateSpecializationKind(),
6179                                              MSInfo->getPointOfInstantiation(),
6180                                               HasNoEffect))
6181      return true;
6182    if (HasNoEffect)
6183      return (Decl*) 0;
6184
6185    // Instantiate static data member.
6186    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6187    if (TSK == TSK_ExplicitInstantiationDefinition)
6188      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6189
6190    // FIXME: Create an ExplicitInstantiation node?
6191    return (Decl*) 0;
6192  }
6193
6194  // If the declarator is a template-id, translate the parser's template
6195  // argument list into our AST format.
6196  bool HasExplicitTemplateArgs = false;
6197  TemplateArgumentListInfo TemplateArgs;
6198  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6199    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6200    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6201    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6202    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6203                                       TemplateId->getTemplateArgs(),
6204                                       TemplateId->NumArgs);
6205    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6206    HasExplicitTemplateArgs = true;
6207    TemplateArgsPtr.release();
6208  }
6209
6210  // C++ [temp.explicit]p1:
6211  //   A [...] function [...] can be explicitly instantiated from its template.
6212  //   A member function [...] of a class template can be explicitly
6213  //  instantiated from the member definition associated with its class
6214  //  template.
6215  UnresolvedSet<8> Matches;
6216  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6217       P != PEnd; ++P) {
6218    NamedDecl *Prev = *P;
6219    if (!HasExplicitTemplateArgs) {
6220      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6221        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6222          Matches.clear();
6223
6224          Matches.addDecl(Method, P.getAccess());
6225          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6226            break;
6227        }
6228      }
6229    }
6230
6231    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6232    if (!FunTmpl)
6233      continue;
6234
6235    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6236    FunctionDecl *Specialization = 0;
6237    if (TemplateDeductionResult TDK
6238          = DeduceTemplateArguments(FunTmpl,
6239                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6240                                    R, Specialization, Info)) {
6241      // FIXME: Keep track of almost-matches?
6242      (void)TDK;
6243      continue;
6244    }
6245
6246    Matches.addDecl(Specialization, P.getAccess());
6247  }
6248
6249  // Find the most specialized function template specialization.
6250  UnresolvedSetIterator Result
6251    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6252                         D.getIdentifierLoc(),
6253                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6254                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6255                         PDiag(diag::note_explicit_instantiation_candidate));
6256
6257  if (Result == Matches.end())
6258    return true;
6259
6260  // Ignore access control bits, we don't need them for redeclaration checking.
6261  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6262
6263  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6264    Diag(D.getIdentifierLoc(),
6265         diag::err_explicit_instantiation_member_function_not_instantiated)
6266      << Specialization
6267      << (Specialization->getTemplateSpecializationKind() ==
6268          TSK_ExplicitSpecialization);
6269    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6270    return true;
6271  }
6272
6273  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
6274  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6275    PrevDecl = Specialization;
6276
6277  if (PrevDecl) {
6278    bool HasNoEffect = false;
6279    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6280                                               PrevDecl,
6281                                     PrevDecl->getTemplateSpecializationKind(),
6282                                          PrevDecl->getPointOfInstantiation(),
6283                                               HasNoEffect))
6284      return true;
6285
6286    // FIXME: We may still want to build some representation of this
6287    // explicit specialization.
6288    if (HasNoEffect)
6289      return (Decl*) 0;
6290  }
6291
6292  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6293
6294  if (TSK == TSK_ExplicitInstantiationDefinition)
6295    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6296
6297  // C++0x [temp.explicit]p2:
6298  //   If the explicit instantiation is for a member function, a member class
6299  //   or a static data member of a class template specialization, the name of
6300  //   the class template specialization in the qualified-id for the member
6301  //   name shall be a simple-template-id.
6302  //
6303  // C++98 has the same restriction, just worded differently.
6304  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6305  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6306      D.getCXXScopeSpec().isSet() &&
6307      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6308    Diag(D.getIdentifierLoc(),
6309         diag::ext_explicit_instantiation_without_qualified_id)
6310    << Specialization << D.getCXXScopeSpec().getRange();
6311
6312  CheckExplicitInstantiationScope(*this,
6313                   FunTmpl? (NamedDecl *)FunTmpl
6314                          : Specialization->getInstantiatedFromMemberFunction(),
6315                                  D.getIdentifierLoc(),
6316                                  D.getCXXScopeSpec().isSet());
6317
6318  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6319  return (Decl*) 0;
6320}
6321
6322TypeResult
6323Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6324                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6325                        SourceLocation TagLoc, SourceLocation NameLoc) {
6326  // This has to hold, because SS is expected to be defined.
6327  assert(Name && "Expected a name in a dependent tag");
6328
6329  NestedNameSpecifier *NNS
6330    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6331  if (!NNS)
6332    return true;
6333
6334  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6335
6336  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6337    Diag(NameLoc, diag::err_dependent_tag_decl)
6338      << (TUK == TUK_Definition) << Kind << SS.getRange();
6339    return true;
6340  }
6341
6342  // Create the resulting type.
6343  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6344  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6345
6346  // Create type-source location information for this type.
6347  TypeLocBuilder TLB;
6348  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6349  TL.setKeywordLoc(TagLoc);
6350  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6351  TL.setNameLoc(NameLoc);
6352  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6353}
6354
6355TypeResult
6356Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6357                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6358                        SourceLocation IdLoc) {
6359  if (SS.isInvalid())
6360    return true;
6361
6362  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6363      !getLangOptions().CPlusPlus0x)
6364    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6365      << FixItHint::CreateRemoval(TypenameLoc);
6366
6367  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6368  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6369                                 TypenameLoc, QualifierLoc, II, IdLoc);
6370  if (T.isNull())
6371    return true;
6372
6373  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6374  if (isa<DependentNameType>(T)) {
6375    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6376    TL.setKeywordLoc(TypenameLoc);
6377    TL.setQualifierLoc(QualifierLoc);
6378    TL.setNameLoc(IdLoc);
6379  } else {
6380    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6381    TL.setKeywordLoc(TypenameLoc);
6382    TL.setQualifierLoc(QualifierLoc);
6383    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6384  }
6385
6386  return CreateParsedType(T, TSI);
6387}
6388
6389TypeResult
6390Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6391                        const CXXScopeSpec &SS,
6392                        SourceLocation TemplateLoc,
6393                        TemplateTy TemplateIn,
6394                        SourceLocation TemplateNameLoc,
6395                        SourceLocation LAngleLoc,
6396                        ASTTemplateArgsPtr TemplateArgsIn,
6397                        SourceLocation RAngleLoc) {
6398  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
6399      !getLangOptions().CPlusPlus0x)
6400    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
6401    << FixItHint::CreateRemoval(TypenameLoc);
6402
6403  // Translate the parser's template argument list in our AST format.
6404  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6405  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6406
6407  TemplateName Template = TemplateIn.get();
6408  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6409    // Construct a dependent template specialization type.
6410    assert(DTN && "dependent template has non-dependent name?");
6411    assert(DTN->getQualifier()
6412           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6413    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6414                                                          DTN->getQualifier(),
6415                                                          DTN->getIdentifier(),
6416                                                                TemplateArgs);
6417
6418    // Create source-location information for this type.
6419    TypeLocBuilder Builder;
6420    DependentTemplateSpecializationTypeLoc SpecTL
6421    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6422    SpecTL.setLAngleLoc(LAngleLoc);
6423    SpecTL.setRAngleLoc(RAngleLoc);
6424    SpecTL.setKeywordLoc(TypenameLoc);
6425    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6426    SpecTL.setNameLoc(TemplateNameLoc);
6427    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6428      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6429    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6430  }
6431
6432  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6433  if (T.isNull())
6434    return true;
6435
6436  // Provide source-location information for the template specialization
6437  // type.
6438  TypeLocBuilder Builder;
6439  TemplateSpecializationTypeLoc SpecTL
6440    = Builder.push<TemplateSpecializationTypeLoc>(T);
6441
6442  // FIXME: No place to set the location of the 'template' keyword!
6443  SpecTL.setLAngleLoc(LAngleLoc);
6444  SpecTL.setRAngleLoc(RAngleLoc);
6445  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6446  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6447    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6448
6449  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6450  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6451  TL.setKeywordLoc(TypenameLoc);
6452  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6453
6454  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6455  return CreateParsedType(T, TSI);
6456}
6457
6458
6459/// \brief Build the type that describes a C++ typename specifier,
6460/// e.g., "typename T::type".
6461QualType
6462Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6463                        SourceLocation KeywordLoc,
6464                        NestedNameSpecifierLoc QualifierLoc,
6465                        const IdentifierInfo &II,
6466                        SourceLocation IILoc) {
6467  CXXScopeSpec SS;
6468  SS.Adopt(QualifierLoc);
6469
6470  DeclContext *Ctx = computeDeclContext(SS);
6471  if (!Ctx) {
6472    // If the nested-name-specifier is dependent and couldn't be
6473    // resolved to a type, build a typename type.
6474    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6475    return Context.getDependentNameType(Keyword,
6476                                        QualifierLoc.getNestedNameSpecifier(),
6477                                        &II);
6478  }
6479
6480  // If the nested-name-specifier refers to the current instantiation,
6481  // the "typename" keyword itself is superfluous. In C++03, the
6482  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6483  // allows such extraneous "typename" keywords, and we retroactively
6484  // apply this DR to C++03 code with only a warning. In any case we continue.
6485
6486  if (RequireCompleteDeclContext(SS, Ctx))
6487    return QualType();
6488
6489  DeclarationName Name(&II);
6490  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6491  LookupQualifiedName(Result, Ctx);
6492  unsigned DiagID = 0;
6493  Decl *Referenced = 0;
6494  switch (Result.getResultKind()) {
6495  case LookupResult::NotFound:
6496    DiagID = diag::err_typename_nested_not_found;
6497    break;
6498
6499  case LookupResult::FoundUnresolvedValue: {
6500    // We found a using declaration that is a value. Most likely, the using
6501    // declaration itself is meant to have the 'typename' keyword.
6502    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6503                          IILoc);
6504    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6505      << Name << Ctx << FullRange;
6506    if (UnresolvedUsingValueDecl *Using
6507          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6508      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6509      Diag(Loc, diag::note_using_value_decl_missing_typename)
6510        << FixItHint::CreateInsertion(Loc, "typename ");
6511    }
6512  }
6513  // Fall through to create a dependent typename type, from which we can recover
6514  // better.
6515
6516  case LookupResult::NotFoundInCurrentInstantiation:
6517    // Okay, it's a member of an unknown instantiation.
6518    return Context.getDependentNameType(Keyword,
6519                                        QualifierLoc.getNestedNameSpecifier(),
6520                                        &II);
6521
6522  case LookupResult::Found:
6523    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6524      // We found a type. Build an ElaboratedType, since the
6525      // typename-specifier was just sugar.
6526      return Context.getElaboratedType(ETK_Typename,
6527                                       QualifierLoc.getNestedNameSpecifier(),
6528                                       Context.getTypeDeclType(Type));
6529    }
6530
6531    DiagID = diag::err_typename_nested_not_type;
6532    Referenced = Result.getFoundDecl();
6533    break;
6534
6535
6536    llvm_unreachable("unresolved using decl in non-dependent context");
6537    return QualType();
6538
6539  case LookupResult::FoundOverloaded:
6540    DiagID = diag::err_typename_nested_not_type;
6541    Referenced = *Result.begin();
6542    break;
6543
6544  case LookupResult::Ambiguous:
6545    return QualType();
6546  }
6547
6548  // If we get here, it's because name lookup did not find a
6549  // type. Emit an appropriate diagnostic and return an error.
6550  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6551                        IILoc);
6552  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6553  if (Referenced)
6554    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6555      << Name;
6556  return QualType();
6557}
6558
6559namespace {
6560  // See Sema::RebuildTypeInCurrentInstantiation
6561  class CurrentInstantiationRebuilder
6562    : public TreeTransform<CurrentInstantiationRebuilder> {
6563    SourceLocation Loc;
6564    DeclarationName Entity;
6565
6566  public:
6567    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6568
6569    CurrentInstantiationRebuilder(Sema &SemaRef,
6570                                  SourceLocation Loc,
6571                                  DeclarationName Entity)
6572    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6573      Loc(Loc), Entity(Entity) { }
6574
6575    /// \brief Determine whether the given type \p T has already been
6576    /// transformed.
6577    ///
6578    /// For the purposes of type reconstruction, a type has already been
6579    /// transformed if it is NULL or if it is not dependent.
6580    bool AlreadyTransformed(QualType T) {
6581      return T.isNull() || !T->isDependentType();
6582    }
6583
6584    /// \brief Returns the location of the entity whose type is being
6585    /// rebuilt.
6586    SourceLocation getBaseLocation() { return Loc; }
6587
6588    /// \brief Returns the name of the entity whose type is being rebuilt.
6589    DeclarationName getBaseEntity() { return Entity; }
6590
6591    /// \brief Sets the "base" location and entity when that
6592    /// information is known based on another transformation.
6593    void setBase(SourceLocation Loc, DeclarationName Entity) {
6594      this->Loc = Loc;
6595      this->Entity = Entity;
6596    }
6597  };
6598}
6599
6600/// \brief Rebuilds a type within the context of the current instantiation.
6601///
6602/// The type \p T is part of the type of an out-of-line member definition of
6603/// a class template (or class template partial specialization) that was parsed
6604/// and constructed before we entered the scope of the class template (or
6605/// partial specialization thereof). This routine will rebuild that type now
6606/// that we have entered the declarator's scope, which may produce different
6607/// canonical types, e.g.,
6608///
6609/// \code
6610/// template<typename T>
6611/// struct X {
6612///   typedef T* pointer;
6613///   pointer data();
6614/// };
6615///
6616/// template<typename T>
6617/// typename X<T>::pointer X<T>::data() { ... }
6618/// \endcode
6619///
6620/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6621/// since we do not know that we can look into X<T> when we parsed the type.
6622/// This function will rebuild the type, performing the lookup of "pointer"
6623/// in X<T> and returning an ElaboratedType whose canonical type is the same
6624/// as the canonical type of T*, allowing the return types of the out-of-line
6625/// definition and the declaration to match.
6626TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6627                                                        SourceLocation Loc,
6628                                                        DeclarationName Name) {
6629  if (!T || !T->getType()->isDependentType())
6630    return T;
6631
6632  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6633  return Rebuilder.TransformType(T);
6634}
6635
6636ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6637  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6638                                          DeclarationName());
6639  return Rebuilder.TransformExpr(E);
6640}
6641
6642bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6643  if (SS.isInvalid())
6644    return true;
6645
6646  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6647  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6648                                          DeclarationName());
6649  NestedNameSpecifierLoc Rebuilt
6650    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6651  if (!Rebuilt)
6652    return true;
6653
6654  SS.Adopt(Rebuilt);
6655  return false;
6656}
6657
6658/// \brief Produces a formatted string that describes the binding of
6659/// template parameters to template arguments.
6660std::string
6661Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6662                                      const TemplateArgumentList &Args) {
6663  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6664}
6665
6666std::string
6667Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6668                                      const TemplateArgument *Args,
6669                                      unsigned NumArgs) {
6670  llvm::SmallString<128> Str;
6671  llvm::raw_svector_ostream Out(Str);
6672
6673  if (!Params || Params->size() == 0 || NumArgs == 0)
6674    return std::string();
6675
6676  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6677    if (I >= NumArgs)
6678      break;
6679
6680    if (I == 0)
6681      Out << "[with ";
6682    else
6683      Out << ", ";
6684
6685    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6686      Out << Id->getName();
6687    } else {
6688      Out << '$' << I;
6689    }
6690
6691    Out << " = ";
6692    Args[I].print(Context.PrintingPolicy, Out);
6693  }
6694
6695  Out << ']';
6696  return Out.str();
6697}
6698
6699void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6700  if (!FD)
6701    return;
6702  FD->setLateTemplateParsed(Flag);
6703}
6704
6705bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6706  DeclContext *DC = CurContext;
6707
6708  while (DC) {
6709    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6710      const FunctionDecl *FD = RD->isLocalClass();
6711      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6712    } else if (DC->isTranslationUnit() || DC->isNamespace())
6713      return false;
6714
6715    DC = DC->getParent();
6716  }
6717  return false;
6718}
6719