SemaTemplate.cpp revision 6217b80b7a1379b74cced1c076338262c3c980b3
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2 3// 4// The LLVM Compiler Infrastructure 5// 6// This file is distributed under the University of Illinois Open Source 7// License. See LICENSE.TXT for details. 8//===----------------------------------------------------------------------===/ 9 10// 11// This file implements semantic analysis for C++ templates. 12//===----------------------------------------------------------------------===/ 13 14#include "Sema.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclTemplate.h" 19#include "clang/Parse/DeclSpec.h" 20#include "clang/Basic/LangOptions.h" 21 22using namespace clang; 23 24/// isTemplateName - Determines whether the identifier II is a 25/// template name in the current scope, and returns the template 26/// declaration if II names a template. An optional CXXScope can be 27/// passed to indicate the C++ scope in which the identifier will be 28/// found. 29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S, 30 TemplateTy &TemplateResult, 31 const CXXScopeSpec *SS) { 32 NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName); 33 34 TemplateNameKind TNK = TNK_Non_template; 35 TemplateDecl *Template = 0; 36 37 if (IIDecl) { 38 if ((Template = dyn_cast<TemplateDecl>(IIDecl))) { 39 if (isa<FunctionTemplateDecl>(IIDecl)) 40 TNK = TNK_Function_template; 41 else if (isa<ClassTemplateDecl>(IIDecl) || 42 isa<TemplateTemplateParmDecl>(IIDecl)) 43 TNK = TNK_Type_template; 44 else 45 assert(false && "Unknown template declaration kind"); 46 } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) { 47 // C++ [temp.local]p1: 48 // Like normal (non-template) classes, class templates have an 49 // injected-class-name (Clause 9). The injected-class-name 50 // can be used with or without a template-argument-list. When 51 // it is used without a template-argument-list, it is 52 // equivalent to the injected-class-name followed by the 53 // template-parameters of the class template enclosed in 54 // <>. When it is used with a template-argument-list, it 55 // refers to the specified class template specialization, 56 // which could be the current specialization or another 57 // specialization. 58 if (Record->isInjectedClassName()) { 59 Record = cast<CXXRecordDecl>(Record->getCanonicalDecl()); 60 if ((Template = Record->getDescribedClassTemplate())) 61 TNK = TNK_Type_template; 62 else if (ClassTemplateSpecializationDecl *Spec 63 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 64 Template = Spec->getSpecializedTemplate(); 65 TNK = TNK_Type_template; 66 } 67 } 68 } else if (OverloadedFunctionDecl *Ovl 69 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) { 70 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), 71 FEnd = Ovl->function_end(); 72 F != FEnd; ++F) { 73 if (FunctionTemplateDecl *FuncTmpl 74 = dyn_cast<FunctionTemplateDecl>(*F)) { 75 // We've found a function template. Determine whether there are 76 // any other function templates we need to bundle together in an 77 // OverloadedFunctionDecl 78 for (++F; F != FEnd; ++F) { 79 if (isa<FunctionTemplateDecl>(*F)) 80 break; 81 } 82 83 if (F != FEnd) { 84 // Build an overloaded function decl containing only the 85 // function templates in Ovl. 86 OverloadedFunctionDecl *OvlTemplate 87 = OverloadedFunctionDecl::Create(Context, 88 Ovl->getDeclContext(), 89 Ovl->getDeclName()); 90 OvlTemplate->addOverload(FuncTmpl); 91 OvlTemplate->addOverload(*F); 92 for (++F; F != FEnd; ++F) { 93 if (isa<FunctionTemplateDecl>(*F)) 94 OvlTemplate->addOverload(*F); 95 } 96 97 // Form the resulting TemplateName 98 if (SS && SS->isSet() && !SS->isInvalid()) { 99 NestedNameSpecifier *Qualifier 100 = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); 101 TemplateResult 102 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, 103 false, 104 OvlTemplate)); 105 } else { 106 TemplateResult = TemplateTy::make(TemplateName(OvlTemplate)); 107 } 108 return TNK_Function_template; 109 } 110 111 TNK = TNK_Function_template; 112 Template = FuncTmpl; 113 break; 114 } 115 } 116 } 117 118 if (TNK != TNK_Non_template) { 119 if (SS && SS->isSet() && !SS->isInvalid()) { 120 NestedNameSpecifier *Qualifier 121 = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); 122 TemplateResult 123 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, 124 false, 125 Template)); 126 } else 127 TemplateResult = TemplateTy::make(TemplateName(Template)); 128 } 129 } 130 return TNK; 131} 132 133/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 134/// that the template parameter 'PrevDecl' is being shadowed by a new 135/// declaration at location Loc. Returns true to indicate that this is 136/// an error, and false otherwise. 137bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 138 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 139 140 // Microsoft Visual C++ permits template parameters to be shadowed. 141 if (getLangOptions().Microsoft) 142 return false; 143 144 // C++ [temp.local]p4: 145 // A template-parameter shall not be redeclared within its 146 // scope (including nested scopes). 147 Diag(Loc, diag::err_template_param_shadow) 148 << cast<NamedDecl>(PrevDecl)->getDeclName(); 149 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 150 return true; 151} 152 153/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 154/// the parameter D to reference the templated declaration and return a pointer 155/// to the template declaration. Otherwise, do nothing to D and return null. 156TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 157 if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) { 158 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 159 return Temp; 160 } 161 return 0; 162} 163 164/// ActOnTypeParameter - Called when a C++ template type parameter 165/// (e.g., "typename T") has been parsed. Typename specifies whether 166/// the keyword "typename" was used to declare the type parameter 167/// (otherwise, "class" was used), and KeyLoc is the location of the 168/// "class" or "typename" keyword. ParamName is the name of the 169/// parameter (NULL indicates an unnamed template parameter) and 170/// ParamName is the location of the parameter name (if any). 171/// If the type parameter has a default argument, it will be added 172/// later via ActOnTypeParameterDefault. 173Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 174 SourceLocation EllipsisLoc, 175 SourceLocation KeyLoc, 176 IdentifierInfo *ParamName, 177 SourceLocation ParamNameLoc, 178 unsigned Depth, unsigned Position) { 179 assert(S->isTemplateParamScope() && 180 "Template type parameter not in template parameter scope!"); 181 bool Invalid = false; 182 183 if (ParamName) { 184 NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName); 185 if (PrevDecl && PrevDecl->isTemplateParameter()) 186 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 187 PrevDecl); 188 } 189 190 SourceLocation Loc = ParamNameLoc; 191 if (!ParamName) 192 Loc = KeyLoc; 193 194 TemplateTypeParmDecl *Param 195 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 196 Depth, Position, ParamName, Typename, 197 Ellipsis); 198 if (Invalid) 199 Param->setInvalidDecl(); 200 201 if (ParamName) { 202 // Add the template parameter into the current scope. 203 S->AddDecl(DeclPtrTy::make(Param)); 204 IdResolver.AddDecl(Param); 205 } 206 207 return DeclPtrTy::make(Param); 208} 209 210/// ActOnTypeParameterDefault - Adds a default argument (the type 211/// Default) to the given template type parameter (TypeParam). 212void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 213 SourceLocation EqualLoc, 214 SourceLocation DefaultLoc, 215 TypeTy *DefaultT) { 216 TemplateTypeParmDecl *Parm 217 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 218 QualType Default = QualType::getFromOpaquePtr(DefaultT); 219 220 // C++0x [temp.param]p9: 221 // A default template-argument may be specified for any kind of 222 // template-parameter that is not a template parameter pack. 223 if (Parm->isParameterPack()) { 224 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 225 return; 226 } 227 228 // C++ [temp.param]p14: 229 // A template-parameter shall not be used in its own default argument. 230 // FIXME: Implement this check! Needs a recursive walk over the types. 231 232 // Check the template argument itself. 233 if (CheckTemplateArgument(Parm, Default, DefaultLoc)) { 234 Parm->setInvalidDecl(); 235 return; 236 } 237 238 Parm->setDefaultArgument(Default, DefaultLoc, false); 239} 240 241/// \brief Check that the type of a non-type template parameter is 242/// well-formed. 243/// 244/// \returns the (possibly-promoted) parameter type if valid; 245/// otherwise, produces a diagnostic and returns a NULL type. 246QualType 247Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 248 // C++ [temp.param]p4: 249 // 250 // A non-type template-parameter shall have one of the following 251 // (optionally cv-qualified) types: 252 // 253 // -- integral or enumeration type, 254 if (T->isIntegralType() || T->isEnumeralType() || 255 // -- pointer to object or pointer to function, 256 (T->isPointerType() && 257 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 258 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 259 // -- reference to object or reference to function, 260 T->isReferenceType() || 261 // -- pointer to member. 262 T->isMemberPointerType() || 263 // If T is a dependent type, we can't do the check now, so we 264 // assume that it is well-formed. 265 T->isDependentType()) 266 return T; 267 // C++ [temp.param]p8: 268 // 269 // A non-type template-parameter of type "array of T" or 270 // "function returning T" is adjusted to be of type "pointer to 271 // T" or "pointer to function returning T", respectively. 272 else if (T->isArrayType()) 273 // FIXME: Keep the type prior to promotion? 274 return Context.getArrayDecayedType(T); 275 else if (T->isFunctionType()) 276 // FIXME: Keep the type prior to promotion? 277 return Context.getPointerType(T); 278 279 Diag(Loc, diag::err_template_nontype_parm_bad_type) 280 << T; 281 282 return QualType(); 283} 284 285/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 286/// template parameter (e.g., "int Size" in "template<int Size> 287/// class Array") has been parsed. S is the current scope and D is 288/// the parsed declarator. 289Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 290 unsigned Depth, 291 unsigned Position) { 292 QualType T = GetTypeForDeclarator(D, S); 293 294 assert(S->isTemplateParamScope() && 295 "Non-type template parameter not in template parameter scope!"); 296 bool Invalid = false; 297 298 IdentifierInfo *ParamName = D.getIdentifier(); 299 if (ParamName) { 300 NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName); 301 if (PrevDecl && PrevDecl->isTemplateParameter()) 302 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 303 PrevDecl); 304 } 305 306 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 307 if (T.isNull()) { 308 T = Context.IntTy; // Recover with an 'int' type. 309 Invalid = true; 310 } 311 312 NonTypeTemplateParmDecl *Param 313 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 314 Depth, Position, ParamName, T); 315 if (Invalid) 316 Param->setInvalidDecl(); 317 318 if (D.getIdentifier()) { 319 // Add the template parameter into the current scope. 320 S->AddDecl(DeclPtrTy::make(Param)); 321 IdResolver.AddDecl(Param); 322 } 323 return DeclPtrTy::make(Param); 324} 325 326/// \brief Adds a default argument to the given non-type template 327/// parameter. 328void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 329 SourceLocation EqualLoc, 330 ExprArg DefaultE) { 331 NonTypeTemplateParmDecl *TemplateParm 332 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 333 Expr *Default = static_cast<Expr *>(DefaultE.get()); 334 335 // C++ [temp.param]p14: 336 // A template-parameter shall not be used in its own default argument. 337 // FIXME: Implement this check! Needs a recursive walk over the types. 338 339 // Check the well-formedness of the default template argument. 340 TemplateArgument Converted; 341 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 342 Converted)) { 343 TemplateParm->setInvalidDecl(); 344 return; 345 } 346 347 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 348} 349 350 351/// ActOnTemplateTemplateParameter - Called when a C++ template template 352/// parameter (e.g. T in template <template <typename> class T> class array) 353/// has been parsed. S is the current scope. 354Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 355 SourceLocation TmpLoc, 356 TemplateParamsTy *Params, 357 IdentifierInfo *Name, 358 SourceLocation NameLoc, 359 unsigned Depth, 360 unsigned Position) 361{ 362 assert(S->isTemplateParamScope() && 363 "Template template parameter not in template parameter scope!"); 364 365 // Construct the parameter object. 366 TemplateTemplateParmDecl *Param = 367 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 368 Position, Name, 369 (TemplateParameterList*)Params); 370 371 // Make sure the parameter is valid. 372 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 373 // do anything yet. However, if the template parameter list or (eventual) 374 // default value is ever invalidated, that will propagate here. 375 bool Invalid = false; 376 if (Invalid) { 377 Param->setInvalidDecl(); 378 } 379 380 // If the tt-param has a name, then link the identifier into the scope 381 // and lookup mechanisms. 382 if (Name) { 383 S->AddDecl(DeclPtrTy::make(Param)); 384 IdResolver.AddDecl(Param); 385 } 386 387 return DeclPtrTy::make(Param); 388} 389 390/// \brief Adds a default argument to the given template template 391/// parameter. 392void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 393 SourceLocation EqualLoc, 394 ExprArg DefaultE) { 395 TemplateTemplateParmDecl *TemplateParm 396 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 397 398 // Since a template-template parameter's default argument is an 399 // id-expression, it must be a DeclRefExpr. 400 DeclRefExpr *Default 401 = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get())); 402 403 // C++ [temp.param]p14: 404 // A template-parameter shall not be used in its own default argument. 405 // FIXME: Implement this check! Needs a recursive walk over the types. 406 407 // Check the well-formedness of the template argument. 408 if (!isa<TemplateDecl>(Default->getDecl())) { 409 Diag(Default->getSourceRange().getBegin(), 410 diag::err_template_arg_must_be_template) 411 << Default->getSourceRange(); 412 TemplateParm->setInvalidDecl(); 413 return; 414 } 415 if (CheckTemplateArgument(TemplateParm, Default)) { 416 TemplateParm->setInvalidDecl(); 417 return; 418 } 419 420 DefaultE.release(); 421 TemplateParm->setDefaultArgument(Default); 422} 423 424/// ActOnTemplateParameterList - Builds a TemplateParameterList that 425/// contains the template parameters in Params/NumParams. 426Sema::TemplateParamsTy * 427Sema::ActOnTemplateParameterList(unsigned Depth, 428 SourceLocation ExportLoc, 429 SourceLocation TemplateLoc, 430 SourceLocation LAngleLoc, 431 DeclPtrTy *Params, unsigned NumParams, 432 SourceLocation RAngleLoc) { 433 if (ExportLoc.isValid()) 434 Diag(ExportLoc, diag::note_template_export_unsupported); 435 436 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 437 (Decl**)Params, NumParams, RAngleLoc); 438} 439 440Sema::DeclResult 441Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagKind TK, 442 SourceLocation KWLoc, const CXXScopeSpec &SS, 443 IdentifierInfo *Name, SourceLocation NameLoc, 444 AttributeList *Attr, 445 MultiTemplateParamsArg TemplateParameterLists, 446 AccessSpecifier AS) { 447 assert(TemplateParameterLists.size() > 0 && "No template parameter lists?"); 448 assert(TK != TK_Reference && "Can only declare or define class templates"); 449 bool Invalid = false; 450 451 // Check that we can declare a template here. 452 if (CheckTemplateDeclScope(S, TemplateParameterLists)) 453 return true; 454 455 TagDecl::TagKind Kind; 456 switch (TagSpec) { 457 default: assert(0 && "Unknown tag type!"); 458 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 459 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 460 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 461 } 462 463 // There is no such thing as an unnamed class template. 464 if (!Name) { 465 Diag(KWLoc, diag::err_template_unnamed_class); 466 return true; 467 } 468 469 // Find any previous declaration with this name. 470 LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName, 471 true); 472 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 473 NamedDecl *PrevDecl = 0; 474 if (Previous.begin() != Previous.end()) 475 PrevDecl = *Previous.begin(); 476 477 if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S)) 478 PrevDecl = 0; 479 480 DeclContext *SemanticContext = CurContext; 481 if (SS.isNotEmpty() && !SS.isInvalid()) { 482 SemanticContext = computeDeclContext(SS); 483 484 // FIXME: need to match up several levels of template parameter lists here. 485 } 486 487 // FIXME: member templates! 488 TemplateParameterList *TemplateParams 489 = static_cast<TemplateParameterList *>(*TemplateParameterLists.release()); 490 491 // If there is a previous declaration with the same name, check 492 // whether this is a valid redeclaration. 493 ClassTemplateDecl *PrevClassTemplate 494 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 495 if (PrevClassTemplate) { 496 // Ensure that the template parameter lists are compatible. 497 if (!TemplateParameterListsAreEqual(TemplateParams, 498 PrevClassTemplate->getTemplateParameters(), 499 /*Complain=*/true)) 500 return true; 501 502 // C++ [temp.class]p4: 503 // In a redeclaration, partial specialization, explicit 504 // specialization or explicit instantiation of a class template, 505 // the class-key shall agree in kind with the original class 506 // template declaration (7.1.5.3). 507 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 508 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 509 Diag(KWLoc, diag::err_use_with_wrong_tag) 510 << Name 511 << CodeModificationHint::CreateReplacement(KWLoc, 512 PrevRecordDecl->getKindName()); 513 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 514 Kind = PrevRecordDecl->getTagKind(); 515 } 516 517 // Check for redefinition of this class template. 518 if (TK == TK_Definition) { 519 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 520 Diag(NameLoc, diag::err_redefinition) << Name; 521 Diag(Def->getLocation(), diag::note_previous_definition); 522 // FIXME: Would it make sense to try to "forget" the previous 523 // definition, as part of error recovery? 524 return true; 525 } 526 } 527 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 528 // Maybe we will complain about the shadowed template parameter. 529 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 530 // Just pretend that we didn't see the previous declaration. 531 PrevDecl = 0; 532 } else if (PrevDecl) { 533 // C++ [temp]p5: 534 // A class template shall not have the same name as any other 535 // template, class, function, object, enumeration, enumerator, 536 // namespace, or type in the same scope (3.3), except as specified 537 // in (14.5.4). 538 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 539 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 540 return true; 541 } 542 543 // Check the template parameter list of this declaration, possibly 544 // merging in the template parameter list from the previous class 545 // template declaration. 546 if (CheckTemplateParameterList(TemplateParams, 547 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0)) 548 Invalid = true; 549 550 // FIXME: If we had a scope specifier, we better have a previous template 551 // declaration! 552 553 CXXRecordDecl *NewClass = 554 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 555 PrevClassTemplate? 556 PrevClassTemplate->getTemplatedDecl() : 0, 557 /*DelayTypeCreation=*/true); 558 559 ClassTemplateDecl *NewTemplate 560 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 561 DeclarationName(Name), TemplateParams, 562 NewClass, PrevClassTemplate); 563 NewClass->setDescribedClassTemplate(NewTemplate); 564 565 // Build the type for the class template declaration now. 566 QualType T = 567 Context.getTypeDeclType(NewClass, 568 PrevClassTemplate? 569 PrevClassTemplate->getTemplatedDecl() : 0); 570 assert(T->isDependentType() && "Class template type is not dependent?"); 571 (void)T; 572 573 // Set the access specifier. 574 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 575 576 // Set the lexical context of these templates 577 NewClass->setLexicalDeclContext(CurContext); 578 NewTemplate->setLexicalDeclContext(CurContext); 579 580 if (TK == TK_Definition) 581 NewClass->startDefinition(); 582 583 if (Attr) 584 ProcessDeclAttributeList(S, NewClass, Attr); 585 586 PushOnScopeChains(NewTemplate, S); 587 588 if (Invalid) { 589 NewTemplate->setInvalidDecl(); 590 NewClass->setInvalidDecl(); 591 } 592 return DeclPtrTy::make(NewTemplate); 593} 594 595/// \brief Checks the validity of a template parameter list, possibly 596/// considering the template parameter list from a previous 597/// declaration. 598/// 599/// If an "old" template parameter list is provided, it must be 600/// equivalent (per TemplateParameterListsAreEqual) to the "new" 601/// template parameter list. 602/// 603/// \param NewParams Template parameter list for a new template 604/// declaration. This template parameter list will be updated with any 605/// default arguments that are carried through from the previous 606/// template parameter list. 607/// 608/// \param OldParams If provided, template parameter list from a 609/// previous declaration of the same template. Default template 610/// arguments will be merged from the old template parameter list to 611/// the new template parameter list. 612/// 613/// \returns true if an error occurred, false otherwise. 614bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 615 TemplateParameterList *OldParams) { 616 bool Invalid = false; 617 618 // C++ [temp.param]p10: 619 // The set of default template-arguments available for use with a 620 // template declaration or definition is obtained by merging the 621 // default arguments from the definition (if in scope) and all 622 // declarations in scope in the same way default function 623 // arguments are (8.3.6). 624 bool SawDefaultArgument = false; 625 SourceLocation PreviousDefaultArgLoc; 626 627 bool SawParameterPack = false; 628 SourceLocation ParameterPackLoc; 629 630 // Dummy initialization to avoid warnings. 631 TemplateParameterList::iterator OldParam = NewParams->end(); 632 if (OldParams) 633 OldParam = OldParams->begin(); 634 635 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 636 NewParamEnd = NewParams->end(); 637 NewParam != NewParamEnd; ++NewParam) { 638 // Variables used to diagnose redundant default arguments 639 bool RedundantDefaultArg = false; 640 SourceLocation OldDefaultLoc; 641 SourceLocation NewDefaultLoc; 642 643 // Variables used to diagnose missing default arguments 644 bool MissingDefaultArg = false; 645 646 // C++0x [temp.param]p11: 647 // If a template parameter of a class template is a template parameter pack, 648 // it must be the last template parameter. 649 if (SawParameterPack) { 650 Diag(ParameterPackLoc, 651 diag::err_template_param_pack_must_be_last_template_parameter); 652 Invalid = true; 653 } 654 655 // Merge default arguments for template type parameters. 656 if (TemplateTypeParmDecl *NewTypeParm 657 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 658 TemplateTypeParmDecl *OldTypeParm 659 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 660 661 if (NewTypeParm->isParameterPack()) { 662 assert(!NewTypeParm->hasDefaultArgument() && 663 "Parameter packs can't have a default argument!"); 664 SawParameterPack = true; 665 ParameterPackLoc = NewTypeParm->getLocation(); 666 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 667 NewTypeParm->hasDefaultArgument()) { 668 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 669 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 670 SawDefaultArgument = true; 671 RedundantDefaultArg = true; 672 PreviousDefaultArgLoc = NewDefaultLoc; 673 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 674 // Merge the default argument from the old declaration to the 675 // new declaration. 676 SawDefaultArgument = true; 677 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(), 678 OldTypeParm->getDefaultArgumentLoc(), 679 true); 680 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 681 } else if (NewTypeParm->hasDefaultArgument()) { 682 SawDefaultArgument = true; 683 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 684 } else if (SawDefaultArgument) 685 MissingDefaultArg = true; 686 } 687 // Merge default arguments for non-type template parameters 688 else if (NonTypeTemplateParmDecl *NewNonTypeParm 689 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 690 NonTypeTemplateParmDecl *OldNonTypeParm 691 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 692 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 693 NewNonTypeParm->hasDefaultArgument()) { 694 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 695 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 696 SawDefaultArgument = true; 697 RedundantDefaultArg = true; 698 PreviousDefaultArgLoc = NewDefaultLoc; 699 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 700 // Merge the default argument from the old declaration to the 701 // new declaration. 702 SawDefaultArgument = true; 703 // FIXME: We need to create a new kind of "default argument" 704 // expression that points to a previous template template 705 // parameter. 706 NewNonTypeParm->setDefaultArgument( 707 OldNonTypeParm->getDefaultArgument()); 708 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 709 } else if (NewNonTypeParm->hasDefaultArgument()) { 710 SawDefaultArgument = true; 711 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 712 } else if (SawDefaultArgument) 713 MissingDefaultArg = true; 714 } 715 // Merge default arguments for template template parameters 716 else { 717 TemplateTemplateParmDecl *NewTemplateParm 718 = cast<TemplateTemplateParmDecl>(*NewParam); 719 TemplateTemplateParmDecl *OldTemplateParm 720 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 721 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 722 NewTemplateParm->hasDefaultArgument()) { 723 OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc(); 724 NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc(); 725 SawDefaultArgument = true; 726 RedundantDefaultArg = true; 727 PreviousDefaultArgLoc = NewDefaultLoc; 728 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 729 // Merge the default argument from the old declaration to the 730 // new declaration. 731 SawDefaultArgument = true; 732 // FIXME: We need to create a new kind of "default argument" expression 733 // that points to a previous template template parameter. 734 NewTemplateParm->setDefaultArgument( 735 OldTemplateParm->getDefaultArgument()); 736 PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc(); 737 } else if (NewTemplateParm->hasDefaultArgument()) { 738 SawDefaultArgument = true; 739 PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc(); 740 } else if (SawDefaultArgument) 741 MissingDefaultArg = true; 742 } 743 744 if (RedundantDefaultArg) { 745 // C++ [temp.param]p12: 746 // A template-parameter shall not be given default arguments 747 // by two different declarations in the same scope. 748 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 749 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 750 Invalid = true; 751 } else if (MissingDefaultArg) { 752 // C++ [temp.param]p11: 753 // If a template-parameter has a default template-argument, 754 // all subsequent template-parameters shall have a default 755 // template-argument supplied. 756 Diag((*NewParam)->getLocation(), 757 diag::err_template_param_default_arg_missing); 758 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 759 Invalid = true; 760 } 761 762 // If we have an old template parameter list that we're merging 763 // in, move on to the next parameter. 764 if (OldParams) 765 ++OldParam; 766 } 767 768 return Invalid; 769} 770 771/// \brief Match the given template parameter lists to the given scope 772/// specifier, returning the template parameter list that applies to the 773/// name. 774/// 775/// \param DeclStartLoc the start of the declaration that has a scope 776/// specifier or a template parameter list. 777/// 778/// \param SS the scope specifier that will be matched to the given template 779/// parameter lists. This scope specifier precedes a qualified name that is 780/// being declared. 781/// 782/// \param ParamLists the template parameter lists, from the outermost to the 783/// innermost template parameter lists. 784/// 785/// \param NumParamLists the number of template parameter lists in ParamLists. 786/// 787/// \returns the template parameter list, if any, that corresponds to the 788/// name that is preceded by the scope specifier @p SS. This template 789/// parameter list may be have template parameters (if we're declaring a 790/// template) or may have no template parameters (if we're declaring a 791/// template specialization), or may be NULL (if we were's declaring isn't 792/// itself a template). 793TemplateParameterList * 794Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 795 const CXXScopeSpec &SS, 796 TemplateParameterList **ParamLists, 797 unsigned NumParamLists) { 798 // FIXME: This routine will need a lot more testing once we have support for 799 // member templates. 800 801 // Find the template-ids that occur within the nested-name-specifier. These 802 // template-ids will match up with the template parameter lists. 803 llvm::SmallVector<const TemplateSpecializationType *, 4> 804 TemplateIdsInSpecifier; 805 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 806 NNS; NNS = NNS->getPrefix()) { 807 if (const TemplateSpecializationType *SpecType 808 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 809 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 810 if (!Template) 811 continue; // FIXME: should this be an error? probably... 812 813 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 814 ClassTemplateSpecializationDecl *SpecDecl 815 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 816 // If the nested name specifier refers to an explicit specialization, 817 // we don't need a template<> header. 818 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) 819 continue; 820 } 821 822 TemplateIdsInSpecifier.push_back(SpecType); 823 } 824 } 825 826 // Reverse the list of template-ids in the scope specifier, so that we can 827 // more easily match up the template-ids and the template parameter lists. 828 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 829 830 SourceLocation FirstTemplateLoc = DeclStartLoc; 831 if (NumParamLists) 832 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 833 834 // Match the template-ids found in the specifier to the template parameter 835 // lists. 836 unsigned Idx = 0; 837 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 838 Idx != NumTemplateIds; ++Idx) { 839 bool DependentTemplateId = TemplateIdsInSpecifier[Idx]->isDependentType(); 840 if (Idx >= NumParamLists) { 841 // We have a template-id without a corresponding template parameter 842 // list. 843 if (DependentTemplateId) { 844 // FIXME: the location information here isn't great. 845 Diag(SS.getRange().getBegin(), 846 diag::err_template_spec_needs_template_parameters) 847 << QualType(TemplateIdsInSpecifier[Idx], 0) 848 << SS.getRange(); 849 } else { 850 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 851 << SS.getRange() 852 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 853 "template<> "); 854 } 855 return 0; 856 } 857 858 // Check the template parameter list against its corresponding template-id. 859 TemplateDecl *Template 860 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 861 TemplateParameterListsAreEqual(ParamLists[Idx], 862 Template->getTemplateParameters(), 863 true); 864 } 865 866 // If there were at least as many template-ids as there were template 867 // parameter lists, then there are no template parameter lists remaining for 868 // the declaration itself. 869 if (Idx >= NumParamLists) 870 return 0; 871 872 // If there were too many template parameter lists, complain about that now. 873 if (Idx != NumParamLists - 1) { 874 while (Idx < NumParamLists - 1) { 875 Diag(ParamLists[Idx]->getTemplateLoc(), 876 diag::err_template_spec_extra_headers) 877 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 878 ParamLists[Idx]->getRAngleLoc()); 879 ++Idx; 880 } 881 } 882 883 // Return the last template parameter list, which corresponds to the 884 // entity being declared. 885 return ParamLists[NumParamLists - 1]; 886} 887 888/// \brief Translates template arguments as provided by the parser 889/// into template arguments used by semantic analysis. 890static void 891translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 892 SourceLocation *TemplateArgLocs, 893 llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) { 894 TemplateArgs.reserve(TemplateArgsIn.size()); 895 896 void **Args = TemplateArgsIn.getArgs(); 897 bool *ArgIsType = TemplateArgsIn.getArgIsType(); 898 for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) { 899 TemplateArgs.push_back( 900 ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg], 901 QualType::getFromOpaquePtr(Args[Arg])) 902 : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg]))); 903 } 904} 905 906QualType Sema::CheckTemplateIdType(TemplateName Name, 907 SourceLocation TemplateLoc, 908 SourceLocation LAngleLoc, 909 const TemplateArgument *TemplateArgs, 910 unsigned NumTemplateArgs, 911 SourceLocation RAngleLoc) { 912 TemplateDecl *Template = Name.getAsTemplateDecl(); 913 if (!Template) { 914 // The template name does not resolve to a template, so we just 915 // build a dependent template-id type. 916 return Context.getTemplateSpecializationType(Name, TemplateArgs, 917 NumTemplateArgs); 918 } 919 920 // Check that the template argument list is well-formed for this 921 // template. 922 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 923 NumTemplateArgs); 924 if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 925 TemplateArgs, NumTemplateArgs, RAngleLoc, 926 false, Converted)) 927 return QualType(); 928 929 assert((Converted.structuredSize() == 930 Template->getTemplateParameters()->size()) && 931 "Converted template argument list is too short!"); 932 933 QualType CanonType; 934 935 if (TemplateSpecializationType::anyDependentTemplateArguments( 936 TemplateArgs, 937 NumTemplateArgs)) { 938 // This class template specialization is a dependent 939 // type. Therefore, its canonical type is another class template 940 // specialization type that contains all of the converted 941 // arguments in canonical form. This ensures that, e.g., A<T> and 942 // A<T, T> have identical types when A is declared as: 943 // 944 // template<typename T, typename U = T> struct A; 945 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 946 CanonType = Context.getTemplateSpecializationType(CanonName, 947 Converted.getFlatArguments(), 948 Converted.flatSize()); 949 950 // FIXME: CanonType is not actually the canonical type, and unfortunately 951 // it is a TemplateTypeSpecializationType that we will never use again. 952 // In the future, we need to teach getTemplateSpecializationType to only 953 // build the canonical type and return that to us. 954 CanonType = Context.getCanonicalType(CanonType); 955 } else if (ClassTemplateDecl *ClassTemplate 956 = dyn_cast<ClassTemplateDecl>(Template)) { 957 // Find the class template specialization declaration that 958 // corresponds to these arguments. 959 llvm::FoldingSetNodeID ID; 960 ClassTemplateSpecializationDecl::Profile(ID, 961 Converted.getFlatArguments(), 962 Converted.flatSize(), 963 Context); 964 void *InsertPos = 0; 965 ClassTemplateSpecializationDecl *Decl 966 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 967 if (!Decl) { 968 // This is the first time we have referenced this class template 969 // specialization. Create the canonical declaration and add it to 970 // the set of specializations. 971 Decl = ClassTemplateSpecializationDecl::Create(Context, 972 ClassTemplate->getDeclContext(), 973 TemplateLoc, 974 ClassTemplate, 975 Converted, 0); 976 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 977 Decl->setLexicalDeclContext(CurContext); 978 } 979 980 CanonType = Context.getTypeDeclType(Decl); 981 } 982 983 // Build the fully-sugared type for this class template 984 // specialization, which refers back to the class template 985 // specialization we created or found. 986 return Context.getTemplateSpecializationType(Name, TemplateArgs, 987 NumTemplateArgs, CanonType); 988} 989 990Action::TypeResult 991Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 992 SourceLocation LAngleLoc, 993 ASTTemplateArgsPtr TemplateArgsIn, 994 SourceLocation *TemplateArgLocs, 995 SourceLocation RAngleLoc) { 996 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 997 998 // Translate the parser's template argument list in our AST format. 999 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1000 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1001 1002 QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc, 1003 TemplateArgs.data(), 1004 TemplateArgs.size(), 1005 RAngleLoc); 1006 TemplateArgsIn.release(); 1007 1008 if (Result.isNull()) 1009 return true; 1010 1011 return Result.getAsOpaquePtr(); 1012} 1013 1014Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template, 1015 SourceLocation TemplateNameLoc, 1016 SourceLocation LAngleLoc, 1017 const TemplateArgument *TemplateArgs, 1018 unsigned NumTemplateArgs, 1019 SourceLocation RAngleLoc) { 1020 // FIXME: Can we do any checking at this point? I guess we could check the 1021 // template arguments that we have against the template name, if the template 1022 // name refers to a single template. That's not a terribly common case, 1023 // though. 1024 return Owned(TemplateIdRefExpr::Create(Context, 1025 /*FIXME: New type?*/Context.OverloadTy, 1026 /*FIXME: Necessary?*/0, 1027 /*FIXME: Necessary?*/SourceRange(), 1028 Template, TemplateNameLoc, LAngleLoc, 1029 TemplateArgs, 1030 NumTemplateArgs, RAngleLoc)); 1031} 1032 1033Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD, 1034 SourceLocation TemplateNameLoc, 1035 SourceLocation LAngleLoc, 1036 ASTTemplateArgsPtr TemplateArgsIn, 1037 SourceLocation *TemplateArgLocs, 1038 SourceLocation RAngleLoc) { 1039 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1040 1041 // Translate the parser's template argument list in our AST format. 1042 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1043 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1044 TemplateArgsIn.release(); 1045 1046 return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc, 1047 TemplateArgs.data(), TemplateArgs.size(), 1048 RAngleLoc); 1049} 1050 1051/// \brief Form a dependent template name. 1052/// 1053/// This action forms a dependent template name given the template 1054/// name and its (presumably dependent) scope specifier. For 1055/// example, given "MetaFun::template apply", the scope specifier \p 1056/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1057/// of the "template" keyword, and "apply" is the \p Name. 1058Sema::TemplateTy 1059Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1060 const IdentifierInfo &Name, 1061 SourceLocation NameLoc, 1062 const CXXScopeSpec &SS) { 1063 if (!SS.isSet() || SS.isInvalid()) 1064 return TemplateTy(); 1065 1066 NestedNameSpecifier *Qualifier 1067 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1068 1069 // FIXME: member of the current instantiation 1070 1071 if (!Qualifier->isDependent()) { 1072 // C++0x [temp.names]p5: 1073 // If a name prefixed by the keyword template is not the name of 1074 // a template, the program is ill-formed. [Note: the keyword 1075 // template may not be applied to non-template members of class 1076 // templates. -end note ] [ Note: as is the case with the 1077 // typename prefix, the template prefix is allowed in cases 1078 // where it is not strictly necessary; i.e., when the 1079 // nested-name-specifier or the expression on the left of the -> 1080 // or . is not dependent on a template-parameter, or the use 1081 // does not appear in the scope of a template. -end note] 1082 // 1083 // Note: C++03 was more strict here, because it banned the use of 1084 // the "template" keyword prior to a template-name that was not a 1085 // dependent name. C++ DR468 relaxed this requirement (the 1086 // "template" keyword is now permitted). We follow the C++0x 1087 // rules, even in C++03 mode, retroactively applying the DR. 1088 TemplateTy Template; 1089 TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS); 1090 if (TNK == TNK_Non_template) { 1091 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1092 << &Name; 1093 return TemplateTy(); 1094 } 1095 1096 return Template; 1097 } 1098 1099 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name)); 1100} 1101 1102bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1103 const TemplateArgument &Arg, 1104 TemplateArgumentListBuilder &Converted) { 1105 // Check template type parameter. 1106 if (Arg.getKind() != TemplateArgument::Type) { 1107 // C++ [temp.arg.type]p1: 1108 // A template-argument for a template-parameter which is a 1109 // type shall be a type-id. 1110 1111 // We have a template type parameter but the template argument 1112 // is not a type. 1113 Diag(Arg.getLocation(), diag::err_template_arg_must_be_type); 1114 Diag(Param->getLocation(), diag::note_template_param_here); 1115 1116 return true; 1117 } 1118 1119 if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation())) 1120 return true; 1121 1122 // Add the converted template type argument. 1123 Converted.Append( 1124 TemplateArgument(Arg.getLocation(), 1125 Context.getCanonicalType(Arg.getAsType()))); 1126 return false; 1127} 1128 1129/// \brief Check that the given template argument list is well-formed 1130/// for specializing the given template. 1131bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1132 SourceLocation TemplateLoc, 1133 SourceLocation LAngleLoc, 1134 const TemplateArgument *TemplateArgs, 1135 unsigned NumTemplateArgs, 1136 SourceLocation RAngleLoc, 1137 bool PartialTemplateArgs, 1138 TemplateArgumentListBuilder &Converted) { 1139 TemplateParameterList *Params = Template->getTemplateParameters(); 1140 unsigned NumParams = Params->size(); 1141 unsigned NumArgs = NumTemplateArgs; 1142 bool Invalid = false; 1143 1144 bool HasParameterPack = 1145 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 1146 1147 if ((NumArgs > NumParams && !HasParameterPack) || 1148 (NumArgs < Params->getMinRequiredArguments() && 1149 !PartialTemplateArgs)) { 1150 // FIXME: point at either the first arg beyond what we can handle, 1151 // or the '>', depending on whether we have too many or too few 1152 // arguments. 1153 SourceRange Range; 1154 if (NumArgs > NumParams) 1155 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 1156 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 1157 << (NumArgs > NumParams) 1158 << (isa<ClassTemplateDecl>(Template)? 0 : 1159 isa<FunctionTemplateDecl>(Template)? 1 : 1160 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 1161 << Template << Range; 1162 Diag(Template->getLocation(), diag::note_template_decl_here) 1163 << Params->getSourceRange(); 1164 Invalid = true; 1165 } 1166 1167 // C++ [temp.arg]p1: 1168 // [...] The type and form of each template-argument specified in 1169 // a template-id shall match the type and form specified for the 1170 // corresponding parameter declared by the template in its 1171 // template-parameter-list. 1172 unsigned ArgIdx = 0; 1173 for (TemplateParameterList::iterator Param = Params->begin(), 1174 ParamEnd = Params->end(); 1175 Param != ParamEnd; ++Param, ++ArgIdx) { 1176 if (ArgIdx > NumArgs && PartialTemplateArgs) 1177 break; 1178 1179 // Decode the template argument 1180 TemplateArgument Arg; 1181 if (ArgIdx >= NumArgs) { 1182 // Retrieve the default template argument from the template 1183 // parameter. 1184 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1185 if (TTP->isParameterPack()) { 1186 // We have an empty argument pack. 1187 Converted.BeginPack(); 1188 Converted.EndPack(); 1189 break; 1190 } 1191 1192 if (!TTP->hasDefaultArgument()) 1193 break; 1194 1195 QualType ArgType = TTP->getDefaultArgument(); 1196 1197 // If the argument type is dependent, instantiate it now based 1198 // on the previously-computed template arguments. 1199 if (ArgType->isDependentType()) { 1200 InstantiatingTemplate Inst(*this, TemplateLoc, 1201 Template, Converted.getFlatArguments(), 1202 Converted.flatSize(), 1203 SourceRange(TemplateLoc, RAngleLoc)); 1204 1205 TemplateArgumentList TemplateArgs(Context, Converted, 1206 /*TakeArgs=*/false); 1207 ArgType = InstantiateType(ArgType, TemplateArgs, 1208 TTP->getDefaultArgumentLoc(), 1209 TTP->getDeclName()); 1210 } 1211 1212 if (ArgType.isNull()) 1213 return true; 1214 1215 Arg = TemplateArgument(TTP->getLocation(), ArgType); 1216 } else if (NonTypeTemplateParmDecl *NTTP 1217 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1218 if (!NTTP->hasDefaultArgument()) 1219 break; 1220 1221 InstantiatingTemplate Inst(*this, TemplateLoc, 1222 Template, Converted.getFlatArguments(), 1223 Converted.flatSize(), 1224 SourceRange(TemplateLoc, RAngleLoc)); 1225 1226 TemplateArgumentList TemplateArgs(Context, Converted, 1227 /*TakeArgs=*/false); 1228 1229 Sema::OwningExprResult E = InstantiateExpr(NTTP->getDefaultArgument(), 1230 TemplateArgs); 1231 if (E.isInvalid()) 1232 return true; 1233 1234 Arg = TemplateArgument(E.takeAs<Expr>()); 1235 } else { 1236 TemplateTemplateParmDecl *TempParm 1237 = cast<TemplateTemplateParmDecl>(*Param); 1238 1239 if (!TempParm->hasDefaultArgument()) 1240 break; 1241 1242 // FIXME: Instantiate default argument 1243 Arg = TemplateArgument(TempParm->getDefaultArgument()); 1244 } 1245 } else { 1246 // Retrieve the template argument produced by the user. 1247 Arg = TemplateArgs[ArgIdx]; 1248 } 1249 1250 1251 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1252 if (TTP->isParameterPack()) { 1253 Converted.BeginPack(); 1254 // Check all the remaining arguments (if any). 1255 for (; ArgIdx < NumArgs; ++ArgIdx) { 1256 if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted)) 1257 Invalid = true; 1258 } 1259 1260 Converted.EndPack(); 1261 } else { 1262 if (CheckTemplateTypeArgument(TTP, Arg, Converted)) 1263 Invalid = true; 1264 } 1265 } else if (NonTypeTemplateParmDecl *NTTP 1266 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1267 // Check non-type template parameters. 1268 1269 // Instantiate the type of the non-type template parameter with 1270 // the template arguments we've seen thus far. 1271 QualType NTTPType = NTTP->getType(); 1272 if (NTTPType->isDependentType()) { 1273 // Instantiate the type of the non-type template parameter. 1274 InstantiatingTemplate Inst(*this, TemplateLoc, 1275 Template, Converted.getFlatArguments(), 1276 Converted.flatSize(), 1277 SourceRange(TemplateLoc, RAngleLoc)); 1278 1279 TemplateArgumentList TemplateArgs(Context, Converted, 1280 /*TakeArgs=*/false); 1281 NTTPType = InstantiateType(NTTPType, TemplateArgs, 1282 NTTP->getLocation(), 1283 NTTP->getDeclName()); 1284 // If that worked, check the non-type template parameter type 1285 // for validity. 1286 if (!NTTPType.isNull()) 1287 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1288 NTTP->getLocation()); 1289 if (NTTPType.isNull()) { 1290 Invalid = true; 1291 break; 1292 } 1293 } 1294 1295 switch (Arg.getKind()) { 1296 case TemplateArgument::Null: 1297 assert(false && "Should never see a NULL template argument here"); 1298 break; 1299 1300 case TemplateArgument::Expression: { 1301 Expr *E = Arg.getAsExpr(); 1302 TemplateArgument Result; 1303 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1304 Invalid = true; 1305 else 1306 Converted.Append(Result); 1307 break; 1308 } 1309 1310 case TemplateArgument::Declaration: 1311 case TemplateArgument::Integral: 1312 // We've already checked this template argument, so just copy 1313 // it to the list of converted arguments. 1314 Converted.Append(Arg); 1315 break; 1316 1317 case TemplateArgument::Type: 1318 // We have a non-type template parameter but the template 1319 // argument is a type. 1320 1321 // C++ [temp.arg]p2: 1322 // In a template-argument, an ambiguity between a type-id and 1323 // an expression is resolved to a type-id, regardless of the 1324 // form of the corresponding template-parameter. 1325 // 1326 // We warn specifically about this case, since it can be rather 1327 // confusing for users. 1328 if (Arg.getAsType()->isFunctionType()) 1329 Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig) 1330 << Arg.getAsType(); 1331 else 1332 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr); 1333 Diag((*Param)->getLocation(), diag::note_template_param_here); 1334 Invalid = true; 1335 break; 1336 1337 case TemplateArgument::Pack: 1338 assert(0 && "FIXME: Implement!"); 1339 break; 1340 } 1341 } else { 1342 // Check template template parameters. 1343 TemplateTemplateParmDecl *TempParm 1344 = cast<TemplateTemplateParmDecl>(*Param); 1345 1346 switch (Arg.getKind()) { 1347 case TemplateArgument::Null: 1348 assert(false && "Should never see a NULL template argument here"); 1349 break; 1350 1351 case TemplateArgument::Expression: { 1352 Expr *ArgExpr = Arg.getAsExpr(); 1353 if (ArgExpr && isa<DeclRefExpr>(ArgExpr) && 1354 isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) { 1355 if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr))) 1356 Invalid = true; 1357 1358 // Add the converted template argument. 1359 Decl *D 1360 = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl(); 1361 Converted.Append(TemplateArgument(Arg.getLocation(), D)); 1362 continue; 1363 } 1364 } 1365 // fall through 1366 1367 case TemplateArgument::Type: { 1368 // We have a template template parameter but the template 1369 // argument does not refer to a template. 1370 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1371 Invalid = true; 1372 break; 1373 } 1374 1375 case TemplateArgument::Declaration: 1376 // We've already checked this template argument, so just copy 1377 // it to the list of converted arguments. 1378 Converted.Append(Arg); 1379 break; 1380 1381 case TemplateArgument::Integral: 1382 assert(false && "Integral argument with template template parameter"); 1383 break; 1384 1385 case TemplateArgument::Pack: 1386 assert(0 && "FIXME: Implement!"); 1387 break; 1388 } 1389 } 1390 } 1391 1392 return Invalid; 1393} 1394 1395/// \brief Check a template argument against its corresponding 1396/// template type parameter. 1397/// 1398/// This routine implements the semantics of C++ [temp.arg.type]. It 1399/// returns true if an error occurred, and false otherwise. 1400bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 1401 QualType Arg, SourceLocation ArgLoc) { 1402 // C++ [temp.arg.type]p2: 1403 // A local type, a type with no linkage, an unnamed type or a type 1404 // compounded from any of these types shall not be used as a 1405 // template-argument for a template type-parameter. 1406 // 1407 // FIXME: Perform the recursive and no-linkage type checks. 1408 const TagType *Tag = 0; 1409 if (const EnumType *EnumT = Arg->getAsEnumType()) 1410 Tag = EnumT; 1411 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 1412 Tag = RecordT; 1413 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) 1414 return Diag(ArgLoc, diag::err_template_arg_local_type) 1415 << QualType(Tag, 0); 1416 else if (Tag && !Tag->getDecl()->getDeclName() && 1417 !Tag->getDecl()->getTypedefForAnonDecl()) { 1418 Diag(ArgLoc, diag::err_template_arg_unnamed_type); 1419 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 1420 return true; 1421 } 1422 1423 return false; 1424} 1425 1426/// \brief Checks whether the given template argument is the address 1427/// of an object or function according to C++ [temp.arg.nontype]p1. 1428bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 1429 NamedDecl *&Entity) { 1430 bool Invalid = false; 1431 1432 // See through any implicit casts we added to fix the type. 1433 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1434 Arg = Cast->getSubExpr(); 1435 1436 // C++0x allows nullptr, and there's no further checking to be done for that. 1437 if (Arg->getType()->isNullPtrType()) 1438 return false; 1439 1440 // C++ [temp.arg.nontype]p1: 1441 // 1442 // A template-argument for a non-type, non-template 1443 // template-parameter shall be one of: [...] 1444 // 1445 // -- the address of an object or function with external 1446 // linkage, including function templates and function 1447 // template-ids but excluding non-static class members, 1448 // expressed as & id-expression where the & is optional if 1449 // the name refers to a function or array, or if the 1450 // corresponding template-parameter is a reference; or 1451 DeclRefExpr *DRE = 0; 1452 1453 // Ignore (and complain about) any excess parentheses. 1454 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1455 if (!Invalid) { 1456 Diag(Arg->getSourceRange().getBegin(), 1457 diag::err_template_arg_extra_parens) 1458 << Arg->getSourceRange(); 1459 Invalid = true; 1460 } 1461 1462 Arg = Parens->getSubExpr(); 1463 } 1464 1465 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 1466 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1467 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1468 } else 1469 DRE = dyn_cast<DeclRefExpr>(Arg); 1470 1471 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 1472 return Diag(Arg->getSourceRange().getBegin(), 1473 diag::err_template_arg_not_object_or_func_form) 1474 << Arg->getSourceRange(); 1475 1476 // Cannot refer to non-static data members 1477 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 1478 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 1479 << Field << Arg->getSourceRange(); 1480 1481 // Cannot refer to non-static member functions 1482 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 1483 if (!Method->isStatic()) 1484 return Diag(Arg->getSourceRange().getBegin(), 1485 diag::err_template_arg_method) 1486 << Method << Arg->getSourceRange(); 1487 1488 // Functions must have external linkage. 1489 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 1490 if (Func->getStorageClass() == FunctionDecl::Static) { 1491 Diag(Arg->getSourceRange().getBegin(), 1492 diag::err_template_arg_function_not_extern) 1493 << Func << Arg->getSourceRange(); 1494 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 1495 << true; 1496 return true; 1497 } 1498 1499 // Okay: we've named a function with external linkage. 1500 Entity = Func; 1501 return Invalid; 1502 } 1503 1504 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 1505 if (!Var->hasGlobalStorage()) { 1506 Diag(Arg->getSourceRange().getBegin(), 1507 diag::err_template_arg_object_not_extern) 1508 << Var << Arg->getSourceRange(); 1509 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 1510 << true; 1511 return true; 1512 } 1513 1514 // Okay: we've named an object with external linkage 1515 Entity = Var; 1516 return Invalid; 1517 } 1518 1519 // We found something else, but we don't know specifically what it is. 1520 Diag(Arg->getSourceRange().getBegin(), 1521 diag::err_template_arg_not_object_or_func) 1522 << Arg->getSourceRange(); 1523 Diag(DRE->getDecl()->getLocation(), 1524 diag::note_template_arg_refers_here); 1525 return true; 1526} 1527 1528/// \brief Checks whether the given template argument is a pointer to 1529/// member constant according to C++ [temp.arg.nontype]p1. 1530bool 1531Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) { 1532 bool Invalid = false; 1533 1534 // See through any implicit casts we added to fix the type. 1535 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1536 Arg = Cast->getSubExpr(); 1537 1538 // C++0x allows nullptr, and there's no further checking to be done for that. 1539 if (Arg->getType()->isNullPtrType()) 1540 return false; 1541 1542 // C++ [temp.arg.nontype]p1: 1543 // 1544 // A template-argument for a non-type, non-template 1545 // template-parameter shall be one of: [...] 1546 // 1547 // -- a pointer to member expressed as described in 5.3.1. 1548 QualifiedDeclRefExpr *DRE = 0; 1549 1550 // Ignore (and complain about) any excess parentheses. 1551 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1552 if (!Invalid) { 1553 Diag(Arg->getSourceRange().getBegin(), 1554 diag::err_template_arg_extra_parens) 1555 << Arg->getSourceRange(); 1556 Invalid = true; 1557 } 1558 1559 Arg = Parens->getSubExpr(); 1560 } 1561 1562 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) 1563 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1564 DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr()); 1565 1566 if (!DRE) 1567 return Diag(Arg->getSourceRange().getBegin(), 1568 diag::err_template_arg_not_pointer_to_member_form) 1569 << Arg->getSourceRange(); 1570 1571 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 1572 assert((isa<FieldDecl>(DRE->getDecl()) || 1573 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 1574 "Only non-static member pointers can make it here"); 1575 1576 // Okay: this is the address of a non-static member, and therefore 1577 // a member pointer constant. 1578 Member = DRE->getDecl(); 1579 return Invalid; 1580 } 1581 1582 // We found something else, but we don't know specifically what it is. 1583 Diag(Arg->getSourceRange().getBegin(), 1584 diag::err_template_arg_not_pointer_to_member_form) 1585 << Arg->getSourceRange(); 1586 Diag(DRE->getDecl()->getLocation(), 1587 diag::note_template_arg_refers_here); 1588 return true; 1589} 1590 1591/// \brief Check a template argument against its corresponding 1592/// non-type template parameter. 1593/// 1594/// This routine implements the semantics of C++ [temp.arg.nontype]. 1595/// It returns true if an error occurred, and false otherwise. \p 1596/// InstantiatedParamType is the type of the non-type template 1597/// parameter after it has been instantiated. 1598/// 1599/// If no error was detected, Converted receives the converted template argument. 1600bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 1601 QualType InstantiatedParamType, Expr *&Arg, 1602 TemplateArgument &Converted) { 1603 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 1604 1605 // If either the parameter has a dependent type or the argument is 1606 // type-dependent, there's nothing we can check now. 1607 // FIXME: Add template argument to Converted! 1608 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 1609 // FIXME: Produce a cloned, canonical expression? 1610 Converted = TemplateArgument(Arg); 1611 return false; 1612 } 1613 1614 // C++ [temp.arg.nontype]p5: 1615 // The following conversions are performed on each expression used 1616 // as a non-type template-argument. If a non-type 1617 // template-argument cannot be converted to the type of the 1618 // corresponding template-parameter then the program is 1619 // ill-formed. 1620 // 1621 // -- for a non-type template-parameter of integral or 1622 // enumeration type, integral promotions (4.5) and integral 1623 // conversions (4.7) are applied. 1624 QualType ParamType = InstantiatedParamType; 1625 QualType ArgType = Arg->getType(); 1626 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 1627 // C++ [temp.arg.nontype]p1: 1628 // A template-argument for a non-type, non-template 1629 // template-parameter shall be one of: 1630 // 1631 // -- an integral constant-expression of integral or enumeration 1632 // type; or 1633 // -- the name of a non-type template-parameter; or 1634 SourceLocation NonConstantLoc; 1635 llvm::APSInt Value; 1636 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 1637 Diag(Arg->getSourceRange().getBegin(), 1638 diag::err_template_arg_not_integral_or_enumeral) 1639 << ArgType << Arg->getSourceRange(); 1640 Diag(Param->getLocation(), diag::note_template_param_here); 1641 return true; 1642 } else if (!Arg->isValueDependent() && 1643 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 1644 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 1645 << ArgType << Arg->getSourceRange(); 1646 return true; 1647 } 1648 1649 // FIXME: We need some way to more easily get the unqualified form 1650 // of the types without going all the way to the 1651 // canonical type. 1652 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 1653 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 1654 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 1655 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 1656 1657 // Try to convert the argument to the parameter's type. 1658 if (ParamType == ArgType) { 1659 // Okay: no conversion necessary 1660 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 1661 !ParamType->isEnumeralType()) { 1662 // This is an integral promotion or conversion. 1663 ImpCastExprToType(Arg, ParamType); 1664 } else { 1665 // We can't perform this conversion. 1666 Diag(Arg->getSourceRange().getBegin(), 1667 diag::err_template_arg_not_convertible) 1668 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1669 Diag(Param->getLocation(), diag::note_template_param_here); 1670 return true; 1671 } 1672 1673 QualType IntegerType = Context.getCanonicalType(ParamType); 1674 if (const EnumType *Enum = IntegerType->getAsEnumType()) 1675 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 1676 1677 if (!Arg->isValueDependent()) { 1678 // Check that an unsigned parameter does not receive a negative 1679 // value. 1680 if (IntegerType->isUnsignedIntegerType() 1681 && (Value.isSigned() && Value.isNegative())) { 1682 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 1683 << Value.toString(10) << Param->getType() 1684 << Arg->getSourceRange(); 1685 Diag(Param->getLocation(), diag::note_template_param_here); 1686 return true; 1687 } 1688 1689 // Check that we don't overflow the template parameter type. 1690 unsigned AllowedBits = Context.getTypeSize(IntegerType); 1691 if (Value.getActiveBits() > AllowedBits) { 1692 Diag(Arg->getSourceRange().getBegin(), 1693 diag::err_template_arg_too_large) 1694 << Value.toString(10) << Param->getType() 1695 << Arg->getSourceRange(); 1696 Diag(Param->getLocation(), diag::note_template_param_here); 1697 return true; 1698 } 1699 1700 if (Value.getBitWidth() != AllowedBits) 1701 Value.extOrTrunc(AllowedBits); 1702 Value.setIsSigned(IntegerType->isSignedIntegerType()); 1703 } 1704 1705 // Add the value of this argument to the list of converted 1706 // arguments. We use the bitwidth and signedness of the template 1707 // parameter. 1708 if (Arg->isValueDependent()) { 1709 // The argument is value-dependent. Create a new 1710 // TemplateArgument with the converted expression. 1711 Converted = TemplateArgument(Arg); 1712 return false; 1713 } 1714 1715 Converted = TemplateArgument(StartLoc, Value, 1716 ParamType->isEnumeralType() ? ParamType 1717 : IntegerType); 1718 return false; 1719 } 1720 1721 // Handle pointer-to-function, reference-to-function, and 1722 // pointer-to-member-function all in (roughly) the same way. 1723 if (// -- For a non-type template-parameter of type pointer to 1724 // function, only the function-to-pointer conversion (4.3) is 1725 // applied. If the template-argument represents a set of 1726 // overloaded functions (or a pointer to such), the matching 1727 // function is selected from the set (13.4). 1728 // In C++0x, any std::nullptr_t value can be converted. 1729 (ParamType->isPointerType() && 1730 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 1731 // -- For a non-type template-parameter of type reference to 1732 // function, no conversions apply. If the template-argument 1733 // represents a set of overloaded functions, the matching 1734 // function is selected from the set (13.4). 1735 (ParamType->isReferenceType() && 1736 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 1737 // -- For a non-type template-parameter of type pointer to 1738 // member function, no conversions apply. If the 1739 // template-argument represents a set of overloaded member 1740 // functions, the matching member function is selected from 1741 // the set (13.4). 1742 // Again, C++0x allows a std::nullptr_t value. 1743 (ParamType->isMemberPointerType() && 1744 ParamType->getAs<MemberPointerType>()->getPointeeType() 1745 ->isFunctionType())) { 1746 if (Context.hasSameUnqualifiedType(ArgType, 1747 ParamType.getNonReferenceType())) { 1748 // We don't have to do anything: the types already match. 1749 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 1750 ParamType->isMemberPointerType())) { 1751 ArgType = ParamType; 1752 ImpCastExprToType(Arg, ParamType); 1753 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 1754 ArgType = Context.getPointerType(ArgType); 1755 ImpCastExprToType(Arg, ArgType); 1756 } else if (FunctionDecl *Fn 1757 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 1758 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 1759 return true; 1760 1761 FixOverloadedFunctionReference(Arg, Fn); 1762 ArgType = Arg->getType(); 1763 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 1764 ArgType = Context.getPointerType(Arg->getType()); 1765 ImpCastExprToType(Arg, ArgType); 1766 } 1767 } 1768 1769 if (!Context.hasSameUnqualifiedType(ArgType, 1770 ParamType.getNonReferenceType())) { 1771 // We can't perform this conversion. 1772 Diag(Arg->getSourceRange().getBegin(), 1773 diag::err_template_arg_not_convertible) 1774 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1775 Diag(Param->getLocation(), diag::note_template_param_here); 1776 return true; 1777 } 1778 1779 if (ParamType->isMemberPointerType()) { 1780 NamedDecl *Member = 0; 1781 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 1782 return true; 1783 1784 if (Member) 1785 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 1786 Converted = TemplateArgument(StartLoc, Member); 1787 return false; 1788 } 1789 1790 NamedDecl *Entity = 0; 1791 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 1792 return true; 1793 1794 if (Entity) 1795 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 1796 Converted = TemplateArgument(StartLoc, Entity); 1797 return false; 1798 } 1799 1800 if (ParamType->isPointerType()) { 1801 // -- for a non-type template-parameter of type pointer to 1802 // object, qualification conversions (4.4) and the 1803 // array-to-pointer conversion (4.2) are applied. 1804 // C++0x also allows a value of std::nullptr_t. 1805 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 1806 "Only object pointers allowed here"); 1807 1808 if (ArgType->isNullPtrType()) { 1809 ArgType = ParamType; 1810 ImpCastExprToType(Arg, ParamType); 1811 } else if (ArgType->isArrayType()) { 1812 ArgType = Context.getArrayDecayedType(ArgType); 1813 ImpCastExprToType(Arg, ArgType); 1814 } 1815 1816 if (IsQualificationConversion(ArgType, ParamType)) { 1817 ArgType = ParamType; 1818 ImpCastExprToType(Arg, ParamType); 1819 } 1820 1821 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 1822 // We can't perform this conversion. 1823 Diag(Arg->getSourceRange().getBegin(), 1824 diag::err_template_arg_not_convertible) 1825 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1826 Diag(Param->getLocation(), diag::note_template_param_here); 1827 return true; 1828 } 1829 1830 NamedDecl *Entity = 0; 1831 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 1832 return true; 1833 1834 if (Entity) 1835 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 1836 Converted = TemplateArgument(StartLoc, Entity); 1837 return false; 1838 } 1839 1840 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 1841 // -- For a non-type template-parameter of type reference to 1842 // object, no conversions apply. The type referred to by the 1843 // reference may be more cv-qualified than the (otherwise 1844 // identical) type of the template-argument. The 1845 // template-parameter is bound directly to the 1846 // template-argument, which must be an lvalue. 1847 assert(ParamRefType->getPointeeType()->isObjectType() && 1848 "Only object references allowed here"); 1849 1850 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 1851 Diag(Arg->getSourceRange().getBegin(), 1852 diag::err_template_arg_no_ref_bind) 1853 << InstantiatedParamType << Arg->getType() 1854 << Arg->getSourceRange(); 1855 Diag(Param->getLocation(), diag::note_template_param_here); 1856 return true; 1857 } 1858 1859 unsigned ParamQuals 1860 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 1861 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 1862 1863 if ((ParamQuals | ArgQuals) != ParamQuals) { 1864 Diag(Arg->getSourceRange().getBegin(), 1865 diag::err_template_arg_ref_bind_ignores_quals) 1866 << InstantiatedParamType << Arg->getType() 1867 << Arg->getSourceRange(); 1868 Diag(Param->getLocation(), diag::note_template_param_here); 1869 return true; 1870 } 1871 1872 NamedDecl *Entity = 0; 1873 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 1874 return true; 1875 1876 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 1877 Converted = TemplateArgument(StartLoc, Entity); 1878 return false; 1879 } 1880 1881 // -- For a non-type template-parameter of type pointer to data 1882 // member, qualification conversions (4.4) are applied. 1883 // C++0x allows std::nullptr_t values. 1884 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 1885 1886 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 1887 // Types match exactly: nothing more to do here. 1888 } else if (ArgType->isNullPtrType()) { 1889 ImpCastExprToType(Arg, ParamType); 1890 } else if (IsQualificationConversion(ArgType, ParamType)) { 1891 ImpCastExprToType(Arg, ParamType); 1892 } else { 1893 // We can't perform this conversion. 1894 Diag(Arg->getSourceRange().getBegin(), 1895 diag::err_template_arg_not_convertible) 1896 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1897 Diag(Param->getLocation(), diag::note_template_param_here); 1898 return true; 1899 } 1900 1901 NamedDecl *Member = 0; 1902 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 1903 return true; 1904 1905 if (Member) 1906 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 1907 Converted = TemplateArgument(StartLoc, Member); 1908 return false; 1909} 1910 1911/// \brief Check a template argument against its corresponding 1912/// template template parameter. 1913/// 1914/// This routine implements the semantics of C++ [temp.arg.template]. 1915/// It returns true if an error occurred, and false otherwise. 1916bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 1917 DeclRefExpr *Arg) { 1918 assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed"); 1919 TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl()); 1920 1921 // C++ [temp.arg.template]p1: 1922 // A template-argument for a template template-parameter shall be 1923 // the name of a class template, expressed as id-expression. Only 1924 // primary class templates are considered when matching the 1925 // template template argument with the corresponding parameter; 1926 // partial specializations are not considered even if their 1927 // parameter lists match that of the template template parameter. 1928 // 1929 // Note that we also allow template template parameters here, which 1930 // will happen when we are dealing with, e.g., class template 1931 // partial specializations. 1932 if (!isa<ClassTemplateDecl>(Template) && 1933 !isa<TemplateTemplateParmDecl>(Template)) { 1934 assert(isa<FunctionTemplateDecl>(Template) && 1935 "Only function templates are possible here"); 1936 Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template); 1937 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 1938 << Template; 1939 } 1940 1941 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 1942 Param->getTemplateParameters(), 1943 true, true, 1944 Arg->getSourceRange().getBegin()); 1945} 1946 1947/// \brief Determine whether the given template parameter lists are 1948/// equivalent. 1949/// 1950/// \param New The new template parameter list, typically written in the 1951/// source code as part of a new template declaration. 1952/// 1953/// \param Old The old template parameter list, typically found via 1954/// name lookup of the template declared with this template parameter 1955/// list. 1956/// 1957/// \param Complain If true, this routine will produce a diagnostic if 1958/// the template parameter lists are not equivalent. 1959/// 1960/// \param IsTemplateTemplateParm If true, this routine is being 1961/// called to compare the template parameter lists of a template 1962/// template parameter. 1963/// 1964/// \param TemplateArgLoc If this source location is valid, then we 1965/// are actually checking the template parameter list of a template 1966/// argument (New) against the template parameter list of its 1967/// corresponding template template parameter (Old). We produce 1968/// slightly different diagnostics in this scenario. 1969/// 1970/// \returns True if the template parameter lists are equal, false 1971/// otherwise. 1972bool 1973Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 1974 TemplateParameterList *Old, 1975 bool Complain, 1976 bool IsTemplateTemplateParm, 1977 SourceLocation TemplateArgLoc) { 1978 if (Old->size() != New->size()) { 1979 if (Complain) { 1980 unsigned NextDiag = diag::err_template_param_list_different_arity; 1981 if (TemplateArgLoc.isValid()) { 1982 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 1983 NextDiag = diag::note_template_param_list_different_arity; 1984 } 1985 Diag(New->getTemplateLoc(), NextDiag) 1986 << (New->size() > Old->size()) 1987 << IsTemplateTemplateParm 1988 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 1989 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 1990 << IsTemplateTemplateParm 1991 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 1992 } 1993 1994 return false; 1995 } 1996 1997 for (TemplateParameterList::iterator OldParm = Old->begin(), 1998 OldParmEnd = Old->end(), NewParm = New->begin(); 1999 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2000 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2001 if (Complain) { 2002 unsigned NextDiag = diag::err_template_param_different_kind; 2003 if (TemplateArgLoc.isValid()) { 2004 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2005 NextDiag = diag::note_template_param_different_kind; 2006 } 2007 Diag((*NewParm)->getLocation(), NextDiag) 2008 << IsTemplateTemplateParm; 2009 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2010 << IsTemplateTemplateParm; 2011 } 2012 return false; 2013 } 2014 2015 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2016 // Okay; all template type parameters are equivalent (since we 2017 // know we're at the same index). 2018#if 0 2019 // FIXME: Enable this code in debug mode *after* we properly go through 2020 // and "instantiate" the template parameter lists of template template 2021 // parameters. It's only after this instantiation that (1) any dependent 2022 // types within the template parameter list of the template template 2023 // parameter can be checked, and (2) the template type parameter depths 2024 // will match up. 2025 QualType OldParmType 2026 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm)); 2027 QualType NewParmType 2028 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm)); 2029 assert(Context.getCanonicalType(OldParmType) == 2030 Context.getCanonicalType(NewParmType) && 2031 "type parameter mismatch?"); 2032#endif 2033 } else if (NonTypeTemplateParmDecl *OldNTTP 2034 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2035 // The types of non-type template parameters must agree. 2036 NonTypeTemplateParmDecl *NewNTTP 2037 = cast<NonTypeTemplateParmDecl>(*NewParm); 2038 if (Context.getCanonicalType(OldNTTP->getType()) != 2039 Context.getCanonicalType(NewNTTP->getType())) { 2040 if (Complain) { 2041 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2042 if (TemplateArgLoc.isValid()) { 2043 Diag(TemplateArgLoc, 2044 diag::err_template_arg_template_params_mismatch); 2045 NextDiag = diag::note_template_nontype_parm_different_type; 2046 } 2047 Diag(NewNTTP->getLocation(), NextDiag) 2048 << NewNTTP->getType() 2049 << IsTemplateTemplateParm; 2050 Diag(OldNTTP->getLocation(), 2051 diag::note_template_nontype_parm_prev_declaration) 2052 << OldNTTP->getType(); 2053 } 2054 return false; 2055 } 2056 } else { 2057 // The template parameter lists of template template 2058 // parameters must agree. 2059 // FIXME: Could we perform a faster "type" comparison here? 2060 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2061 "Only template template parameters handled here"); 2062 TemplateTemplateParmDecl *OldTTP 2063 = cast<TemplateTemplateParmDecl>(*OldParm); 2064 TemplateTemplateParmDecl *NewTTP 2065 = cast<TemplateTemplateParmDecl>(*NewParm); 2066 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2067 OldTTP->getTemplateParameters(), 2068 Complain, 2069 /*IsTemplateTemplateParm=*/true, 2070 TemplateArgLoc)) 2071 return false; 2072 } 2073 } 2074 2075 return true; 2076} 2077 2078/// \brief Check whether a template can be declared within this scope. 2079/// 2080/// If the template declaration is valid in this scope, returns 2081/// false. Otherwise, issues a diagnostic and returns true. 2082bool 2083Sema::CheckTemplateDeclScope(Scope *S, 2084 MultiTemplateParamsArg &TemplateParameterLists) { 2085 assert(TemplateParameterLists.size() > 0 && "Not a template"); 2086 2087 // Find the nearest enclosing declaration scope. 2088 while ((S->getFlags() & Scope::DeclScope) == 0 || 2089 (S->getFlags() & Scope::TemplateParamScope) != 0) 2090 S = S->getParent(); 2091 2092 TemplateParameterList *TemplateParams = 2093 static_cast<TemplateParameterList*>(*TemplateParameterLists.get()); 2094 SourceLocation TemplateLoc = TemplateParams->getTemplateLoc(); 2095 SourceRange TemplateRange 2096 = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc()); 2097 2098 // C++ [temp]p2: 2099 // A template-declaration can appear only as a namespace scope or 2100 // class scope declaration. 2101 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2102 while (Ctx && isa<LinkageSpecDecl>(Ctx)) { 2103 if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2104 return Diag(TemplateLoc, diag::err_template_linkage) 2105 << TemplateRange; 2106 2107 Ctx = Ctx->getParent(); 2108 } 2109 2110 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2111 return false; 2112 2113 return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope) 2114 << TemplateRange; 2115} 2116 2117/// \brief Check whether a class template specialization or explicit 2118/// instantiation in the current context is well-formed. 2119/// 2120/// This routine determines whether a class template specialization or 2121/// explicit instantiation can be declared in the current context 2122/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits 2123/// appropriate diagnostics if there was an error. It returns true if 2124// there was an error that we cannot recover from, and false otherwise. 2125bool 2126Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate, 2127 ClassTemplateSpecializationDecl *PrevDecl, 2128 SourceLocation TemplateNameLoc, 2129 SourceRange ScopeSpecifierRange, 2130 bool PartialSpecialization, 2131 bool ExplicitInstantiation) { 2132 // C++ [temp.expl.spec]p2: 2133 // An explicit specialization shall be declared in the namespace 2134 // of which the template is a member, or, for member templates, in 2135 // the namespace of which the enclosing class or enclosing class 2136 // template is a member. An explicit specialization of a member 2137 // function, member class or static data member of a class 2138 // template shall be declared in the namespace of which the class 2139 // template is a member. Such a declaration may also be a 2140 // definition. If the declaration is not a definition, the 2141 // specialization may be defined later in the name- space in which 2142 // the explicit specialization was declared, or in a namespace 2143 // that encloses the one in which the explicit specialization was 2144 // declared. 2145 if (CurContext->getLookupContext()->isFunctionOrMethod()) { 2146 int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0; 2147 Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope) 2148 << Kind << ClassTemplate; 2149 return true; 2150 } 2151 2152 DeclContext *DC = CurContext->getEnclosingNamespaceContext(); 2153 DeclContext *TemplateContext 2154 = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext(); 2155 if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) && 2156 !ExplicitInstantiation) { 2157 // There is no prior declaration of this entity, so this 2158 // specialization must be in the same context as the template 2159 // itself. 2160 if (DC != TemplateContext) { 2161 if (isa<TranslationUnitDecl>(TemplateContext)) 2162 Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global) 2163 << PartialSpecialization 2164 << ClassTemplate << ScopeSpecifierRange; 2165 else if (isa<NamespaceDecl>(TemplateContext)) 2166 Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope) 2167 << PartialSpecialization << ClassTemplate 2168 << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange; 2169 2170 Diag(ClassTemplate->getLocation(), diag::note_template_decl_here); 2171 } 2172 2173 return false; 2174 } 2175 2176 // We have a previous declaration of this entity. Make sure that 2177 // this redeclaration (or definition) occurs in an enclosing namespace. 2178 if (!CurContext->Encloses(TemplateContext)) { 2179 // FIXME: In C++98, we would like to turn these errors into warnings, 2180 // dependent on a -Wc++0x flag. 2181 bool SuppressedDiag = false; 2182 int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0; 2183 if (isa<TranslationUnitDecl>(TemplateContext)) { 2184 if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x) 2185 Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope) 2186 << Kind << ClassTemplate << ScopeSpecifierRange; 2187 else 2188 SuppressedDiag = true; 2189 } else if (isa<NamespaceDecl>(TemplateContext)) { 2190 if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x) 2191 Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope) 2192 << Kind << ClassTemplate 2193 << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange; 2194 else 2195 SuppressedDiag = true; 2196 } 2197 2198 if (!SuppressedDiag) 2199 Diag(ClassTemplate->getLocation(), diag::note_template_decl_here); 2200 } 2201 2202 return false; 2203} 2204 2205/// \brief Check the non-type template arguments of a class template 2206/// partial specialization according to C++ [temp.class.spec]p9. 2207/// 2208/// \param TemplateParams the template parameters of the primary class 2209/// template. 2210/// 2211/// \param TemplateArg the template arguments of the class template 2212/// partial specialization. 2213/// 2214/// \param MirrorsPrimaryTemplate will be set true if the class 2215/// template partial specialization arguments are identical to the 2216/// implicit template arguments of the primary template. This is not 2217/// necessarily an error (C++0x), and it is left to the caller to diagnose 2218/// this condition when it is an error. 2219/// 2220/// \returns true if there was an error, false otherwise. 2221bool Sema::CheckClassTemplatePartialSpecializationArgs( 2222 TemplateParameterList *TemplateParams, 2223 const TemplateArgumentListBuilder &TemplateArgs, 2224 bool &MirrorsPrimaryTemplate) { 2225 // FIXME: the interface to this function will have to change to 2226 // accommodate variadic templates. 2227 MirrorsPrimaryTemplate = true; 2228 2229 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 2230 2231 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2232 // Determine whether the template argument list of the partial 2233 // specialization is identical to the implicit argument list of 2234 // the primary template. The caller may need to diagnostic this as 2235 // an error per C++ [temp.class.spec]p9b3. 2236 if (MirrorsPrimaryTemplate) { 2237 if (TemplateTypeParmDecl *TTP 2238 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 2239 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 2240 Context.getCanonicalType(ArgList[I].getAsType())) 2241 MirrorsPrimaryTemplate = false; 2242 } else if (TemplateTemplateParmDecl *TTP 2243 = dyn_cast<TemplateTemplateParmDecl>( 2244 TemplateParams->getParam(I))) { 2245 // FIXME: We should settle on either Declaration storage or 2246 // Expression storage for template template parameters. 2247 TemplateTemplateParmDecl *ArgDecl 2248 = dyn_cast_or_null<TemplateTemplateParmDecl>( 2249 ArgList[I].getAsDecl()); 2250 if (!ArgDecl) 2251 if (DeclRefExpr *DRE 2252 = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr())) 2253 ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl()); 2254 2255 if (!ArgDecl || 2256 ArgDecl->getIndex() != TTP->getIndex() || 2257 ArgDecl->getDepth() != TTP->getDepth()) 2258 MirrorsPrimaryTemplate = false; 2259 } 2260 } 2261 2262 NonTypeTemplateParmDecl *Param 2263 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 2264 if (!Param) { 2265 continue; 2266 } 2267 2268 Expr *ArgExpr = ArgList[I].getAsExpr(); 2269 if (!ArgExpr) { 2270 MirrorsPrimaryTemplate = false; 2271 continue; 2272 } 2273 2274 // C++ [temp.class.spec]p8: 2275 // A non-type argument is non-specialized if it is the name of a 2276 // non-type parameter. All other non-type arguments are 2277 // specialized. 2278 // 2279 // Below, we check the two conditions that only apply to 2280 // specialized non-type arguments, so skip any non-specialized 2281 // arguments. 2282 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 2283 if (NonTypeTemplateParmDecl *NTTP 2284 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 2285 if (MirrorsPrimaryTemplate && 2286 (Param->getIndex() != NTTP->getIndex() || 2287 Param->getDepth() != NTTP->getDepth())) 2288 MirrorsPrimaryTemplate = false; 2289 2290 continue; 2291 } 2292 2293 // C++ [temp.class.spec]p9: 2294 // Within the argument list of a class template partial 2295 // specialization, the following restrictions apply: 2296 // -- A partially specialized non-type argument expression 2297 // shall not involve a template parameter of the partial 2298 // specialization except when the argument expression is a 2299 // simple identifier. 2300 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 2301 Diag(ArgExpr->getLocStart(), 2302 diag::err_dependent_non_type_arg_in_partial_spec) 2303 << ArgExpr->getSourceRange(); 2304 return true; 2305 } 2306 2307 // -- The type of a template parameter corresponding to a 2308 // specialized non-type argument shall not be dependent on a 2309 // parameter of the specialization. 2310 if (Param->getType()->isDependentType()) { 2311 Diag(ArgExpr->getLocStart(), 2312 diag::err_dependent_typed_non_type_arg_in_partial_spec) 2313 << Param->getType() 2314 << ArgExpr->getSourceRange(); 2315 Diag(Param->getLocation(), diag::note_template_param_here); 2316 return true; 2317 } 2318 2319 MirrorsPrimaryTemplate = false; 2320 } 2321 2322 return false; 2323} 2324 2325Sema::DeclResult 2326Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK, 2327 SourceLocation KWLoc, 2328 const CXXScopeSpec &SS, 2329 TemplateTy TemplateD, 2330 SourceLocation TemplateNameLoc, 2331 SourceLocation LAngleLoc, 2332 ASTTemplateArgsPtr TemplateArgsIn, 2333 SourceLocation *TemplateArgLocs, 2334 SourceLocation RAngleLoc, 2335 AttributeList *Attr, 2336 MultiTemplateParamsArg TemplateParameterLists) { 2337 // Find the class template we're specializing 2338 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2339 ClassTemplateDecl *ClassTemplate 2340 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2341 2342 bool isPartialSpecialization = false; 2343 2344 // Check the validity of the template headers that introduce this 2345 // template. 2346 // FIXME: Once we have member templates, we'll need to check 2347 // C++ [temp.expl.spec]p17-18, where we could have multiple levels of 2348 // template<> headers. 2349 if (TemplateParameterLists.size() == 0) 2350 Diag(KWLoc, diag::err_template_spec_needs_header) 2351 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 2352 else { 2353 TemplateParameterList *TemplateParams 2354 = static_cast<TemplateParameterList*>(*TemplateParameterLists.get()); 2355 if (TemplateParameterLists.size() > 1) { 2356 Diag(TemplateParams->getTemplateLoc(), 2357 diag::err_template_spec_extra_headers); 2358 return true; 2359 } 2360 2361 if (TemplateParams->size() > 0) { 2362 isPartialSpecialization = true; 2363 2364 // C++ [temp.class.spec]p10: 2365 // The template parameter list of a specialization shall not 2366 // contain default template argument values. 2367 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2368 Decl *Param = TemplateParams->getParam(I); 2369 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 2370 if (TTP->hasDefaultArgument()) { 2371 Diag(TTP->getDefaultArgumentLoc(), 2372 diag::err_default_arg_in_partial_spec); 2373 TTP->setDefaultArgument(QualType(), SourceLocation(), false); 2374 } 2375 } else if (NonTypeTemplateParmDecl *NTTP 2376 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2377 if (Expr *DefArg = NTTP->getDefaultArgument()) { 2378 Diag(NTTP->getDefaultArgumentLoc(), 2379 diag::err_default_arg_in_partial_spec) 2380 << DefArg->getSourceRange(); 2381 NTTP->setDefaultArgument(0); 2382 DefArg->Destroy(Context); 2383 } 2384 } else { 2385 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 2386 if (Expr *DefArg = TTP->getDefaultArgument()) { 2387 Diag(TTP->getDefaultArgumentLoc(), 2388 diag::err_default_arg_in_partial_spec) 2389 << DefArg->getSourceRange(); 2390 TTP->setDefaultArgument(0); 2391 DefArg->Destroy(Context); 2392 } 2393 } 2394 } 2395 } 2396 } 2397 2398 // Check that the specialization uses the same tag kind as the 2399 // original template. 2400 TagDecl::TagKind Kind; 2401 switch (TagSpec) { 2402 default: assert(0 && "Unknown tag type!"); 2403 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2404 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2405 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2406 } 2407 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2408 Kind, KWLoc, 2409 *ClassTemplate->getIdentifier())) { 2410 Diag(KWLoc, diag::err_use_with_wrong_tag) 2411 << ClassTemplate 2412 << CodeModificationHint::CreateReplacement(KWLoc, 2413 ClassTemplate->getTemplatedDecl()->getKindName()); 2414 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2415 diag::note_previous_use); 2416 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2417 } 2418 2419 // Translate the parser's template argument list in our AST format. 2420 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2421 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2422 2423 // Check that the template argument list is well-formed for this 2424 // template. 2425 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2426 TemplateArgs.size()); 2427 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2428 TemplateArgs.data(), TemplateArgs.size(), 2429 RAngleLoc, false, Converted)) 2430 return true; 2431 2432 assert((Converted.structuredSize() == 2433 ClassTemplate->getTemplateParameters()->size()) && 2434 "Converted template argument list is too short!"); 2435 2436 // Find the class template (partial) specialization declaration that 2437 // corresponds to these arguments. 2438 llvm::FoldingSetNodeID ID; 2439 if (isPartialSpecialization) { 2440 bool MirrorsPrimaryTemplate; 2441 if (CheckClassTemplatePartialSpecializationArgs( 2442 ClassTemplate->getTemplateParameters(), 2443 Converted, MirrorsPrimaryTemplate)) 2444 return true; 2445 2446 if (MirrorsPrimaryTemplate) { 2447 // C++ [temp.class.spec]p9b3: 2448 // 2449 // -- The argument list of the specialization shall not be identical 2450 // to the implicit argument list of the primary template. 2451 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 2452 << (TK == TK_Definition) 2453 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 2454 RAngleLoc)); 2455 return CheckClassTemplate(S, TagSpec, TK, KWLoc, SS, 2456 ClassTemplate->getIdentifier(), 2457 TemplateNameLoc, 2458 Attr, 2459 move(TemplateParameterLists), 2460 AS_none); 2461 } 2462 2463 // FIXME: Template parameter list matters, too 2464 ClassTemplatePartialSpecializationDecl::Profile(ID, 2465 Converted.getFlatArguments(), 2466 Converted.flatSize(), 2467 Context); 2468 } 2469 else 2470 ClassTemplateSpecializationDecl::Profile(ID, 2471 Converted.getFlatArguments(), 2472 Converted.flatSize(), 2473 Context); 2474 void *InsertPos = 0; 2475 ClassTemplateSpecializationDecl *PrevDecl = 0; 2476 2477 if (isPartialSpecialization) 2478 PrevDecl 2479 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 2480 InsertPos); 2481 else 2482 PrevDecl 2483 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2484 2485 ClassTemplateSpecializationDecl *Specialization = 0; 2486 2487 // Check whether we can declare a class template specialization in 2488 // the current scope. 2489 if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl, 2490 TemplateNameLoc, 2491 SS.getRange(), 2492 isPartialSpecialization, 2493 /*ExplicitInstantiation=*/false)) 2494 return true; 2495 2496 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 2497 // Since the only prior class template specialization with these 2498 // arguments was referenced but not declared, reuse that 2499 // declaration node as our own, updating its source location to 2500 // reflect our new declaration. 2501 Specialization = PrevDecl; 2502 Specialization->setLocation(TemplateNameLoc); 2503 PrevDecl = 0; 2504 } else if (isPartialSpecialization) { 2505 // Create a new class template partial specialization declaration node. 2506 TemplateParameterList *TemplateParams 2507 = static_cast<TemplateParameterList*>(*TemplateParameterLists.get()); 2508 ClassTemplatePartialSpecializationDecl *PrevPartial 2509 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 2510 ClassTemplatePartialSpecializationDecl *Partial 2511 = ClassTemplatePartialSpecializationDecl::Create(Context, 2512 ClassTemplate->getDeclContext(), 2513 TemplateNameLoc, 2514 TemplateParams, 2515 ClassTemplate, 2516 Converted, 2517 PrevPartial); 2518 2519 if (PrevPartial) { 2520 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 2521 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 2522 } else { 2523 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 2524 } 2525 Specialization = Partial; 2526 2527 // Check that all of the template parameters of the class template 2528 // partial specialization are deducible from the template 2529 // arguments. If not, this class template partial specialization 2530 // will never be used. 2531 llvm::SmallVector<bool, 8> DeducibleParams; 2532 DeducibleParams.resize(TemplateParams->size()); 2533 MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams); 2534 unsigned NumNonDeducible = 0; 2535 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 2536 if (!DeducibleParams[I]) 2537 ++NumNonDeducible; 2538 2539 if (NumNonDeducible) { 2540 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2541 << (NumNonDeducible > 1) 2542 << SourceRange(TemplateNameLoc, RAngleLoc); 2543 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2544 if (!DeducibleParams[I]) { 2545 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2546 if (Param->getDeclName()) 2547 Diag(Param->getLocation(), 2548 diag::note_partial_spec_unused_parameter) 2549 << Param->getDeclName(); 2550 else 2551 Diag(Param->getLocation(), 2552 diag::note_partial_spec_unused_parameter) 2553 << std::string("<anonymous>"); 2554 } 2555 } 2556 } 2557 2558 } else { 2559 // Create a new class template specialization declaration node for 2560 // this explicit specialization. 2561 Specialization 2562 = ClassTemplateSpecializationDecl::Create(Context, 2563 ClassTemplate->getDeclContext(), 2564 TemplateNameLoc, 2565 ClassTemplate, 2566 Converted, 2567 PrevDecl); 2568 2569 if (PrevDecl) { 2570 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 2571 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 2572 } else { 2573 ClassTemplate->getSpecializations().InsertNode(Specialization, 2574 InsertPos); 2575 } 2576 } 2577 2578 // Note that this is an explicit specialization. 2579 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 2580 2581 // Check that this isn't a redefinition of this specialization. 2582 if (TK == TK_Definition) { 2583 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 2584 // FIXME: Should also handle explicit specialization after implicit 2585 // instantiation with a special diagnostic. 2586 SourceRange Range(TemplateNameLoc, RAngleLoc); 2587 Diag(TemplateNameLoc, diag::err_redefinition) 2588 << Context.getTypeDeclType(Specialization) << Range; 2589 Diag(Def->getLocation(), diag::note_previous_definition); 2590 Specialization->setInvalidDecl(); 2591 return true; 2592 } 2593 } 2594 2595 // Build the fully-sugared type for this class template 2596 // specialization as the user wrote in the specialization 2597 // itself. This means that we'll pretty-print the type retrieved 2598 // from the specialization's declaration the way that the user 2599 // actually wrote the specialization, rather than formatting the 2600 // name based on the "canonical" representation used to store the 2601 // template arguments in the specialization. 2602 QualType WrittenTy 2603 = Context.getTemplateSpecializationType(Name, 2604 TemplateArgs.data(), 2605 TemplateArgs.size(), 2606 Context.getTypeDeclType(Specialization)); 2607 Specialization->setTypeAsWritten(WrittenTy); 2608 TemplateArgsIn.release(); 2609 2610 // C++ [temp.expl.spec]p9: 2611 // A template explicit specialization is in the scope of the 2612 // namespace in which the template was defined. 2613 // 2614 // We actually implement this paragraph where we set the semantic 2615 // context (in the creation of the ClassTemplateSpecializationDecl), 2616 // but we also maintain the lexical context where the actual 2617 // definition occurs. 2618 Specialization->setLexicalDeclContext(CurContext); 2619 2620 // We may be starting the definition of this specialization. 2621 if (TK == TK_Definition) 2622 Specialization->startDefinition(); 2623 2624 // Add the specialization into its lexical context, so that it can 2625 // be seen when iterating through the list of declarations in that 2626 // context. However, specializations are not found by name lookup. 2627 CurContext->addDecl(Specialization); 2628 return DeclPtrTy::make(Specialization); 2629} 2630 2631Sema::DeclPtrTy 2632Sema::ActOnTemplateDeclarator(Scope *S, 2633 MultiTemplateParamsArg TemplateParameterLists, 2634 Declarator &D) { 2635 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 2636} 2637 2638Sema::DeclPtrTy 2639Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 2640 MultiTemplateParamsArg TemplateParameterLists, 2641 Declarator &D) { 2642 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 2643 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 2644 "Not a function declarator!"); 2645 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 2646 2647 if (FTI.hasPrototype) { 2648 // FIXME: Diagnose arguments without names in C. 2649 } 2650 2651 Scope *ParentScope = FnBodyScope->getParent(); 2652 2653 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 2654 move(TemplateParameterLists), 2655 /*IsFunctionDefinition=*/true); 2656 if (FunctionTemplateDecl *FunctionTemplate 2657 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 2658 return ActOnStartOfFunctionDef(FnBodyScope, 2659 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 2660 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 2661 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 2662 return DeclPtrTy(); 2663} 2664 2665// Explicit instantiation of a class template specialization 2666Sema::DeclResult 2667Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc, 2668 unsigned TagSpec, 2669 SourceLocation KWLoc, 2670 const CXXScopeSpec &SS, 2671 TemplateTy TemplateD, 2672 SourceLocation TemplateNameLoc, 2673 SourceLocation LAngleLoc, 2674 ASTTemplateArgsPtr TemplateArgsIn, 2675 SourceLocation *TemplateArgLocs, 2676 SourceLocation RAngleLoc, 2677 AttributeList *Attr) { 2678 // Find the class template we're specializing 2679 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2680 ClassTemplateDecl *ClassTemplate 2681 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2682 2683 // Check that the specialization uses the same tag kind as the 2684 // original template. 2685 TagDecl::TagKind Kind; 2686 switch (TagSpec) { 2687 default: assert(0 && "Unknown tag type!"); 2688 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2689 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2690 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2691 } 2692 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2693 Kind, KWLoc, 2694 *ClassTemplate->getIdentifier())) { 2695 Diag(KWLoc, diag::err_use_with_wrong_tag) 2696 << ClassTemplate 2697 << CodeModificationHint::CreateReplacement(KWLoc, 2698 ClassTemplate->getTemplatedDecl()->getKindName()); 2699 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2700 diag::note_previous_use); 2701 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2702 } 2703 2704 // C++0x [temp.explicit]p2: 2705 // [...] An explicit instantiation shall appear in an enclosing 2706 // namespace of its template. [...] 2707 // 2708 // This is C++ DR 275. 2709 if (CheckClassTemplateSpecializationScope(ClassTemplate, 0, 2710 TemplateNameLoc, 2711 SS.getRange(), 2712 /*PartialSpecialization=*/false, 2713 /*ExplicitInstantiation=*/true)) 2714 return true; 2715 2716 // Translate the parser's template argument list in our AST format. 2717 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2718 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2719 2720 // Check that the template argument list is well-formed for this 2721 // template. 2722 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2723 TemplateArgs.size()); 2724 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2725 TemplateArgs.data(), TemplateArgs.size(), 2726 RAngleLoc, false, Converted)) 2727 return true; 2728 2729 assert((Converted.structuredSize() == 2730 ClassTemplate->getTemplateParameters()->size()) && 2731 "Converted template argument list is too short!"); 2732 2733 // Find the class template specialization declaration that 2734 // corresponds to these arguments. 2735 llvm::FoldingSetNodeID ID; 2736 ClassTemplateSpecializationDecl::Profile(ID, 2737 Converted.getFlatArguments(), 2738 Converted.flatSize(), 2739 Context); 2740 void *InsertPos = 0; 2741 ClassTemplateSpecializationDecl *PrevDecl 2742 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2743 2744 ClassTemplateSpecializationDecl *Specialization = 0; 2745 2746 bool SpecializationRequiresInstantiation = true; 2747 if (PrevDecl) { 2748 if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) { 2749 // This particular specialization has already been declared or 2750 // instantiated. We cannot explicitly instantiate it. 2751 Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate) 2752 << Context.getTypeDeclType(PrevDecl); 2753 Diag(PrevDecl->getLocation(), 2754 diag::note_previous_explicit_instantiation); 2755 return DeclPtrTy::make(PrevDecl); 2756 } 2757 2758 if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 2759 // C++ DR 259, C++0x [temp.explicit]p4: 2760 // For a given set of template parameters, if an explicit 2761 // instantiation of a template appears after a declaration of 2762 // an explicit specialization for that template, the explicit 2763 // instantiation has no effect. 2764 if (!getLangOptions().CPlusPlus0x) { 2765 Diag(TemplateNameLoc, 2766 diag::ext_explicit_instantiation_after_specialization) 2767 << Context.getTypeDeclType(PrevDecl); 2768 Diag(PrevDecl->getLocation(), 2769 diag::note_previous_template_specialization); 2770 } 2771 2772 // Create a new class template specialization declaration node 2773 // for this explicit specialization. This node is only used to 2774 // record the existence of this explicit instantiation for 2775 // accurate reproduction of the source code; we don't actually 2776 // use it for anything, since it is semantically irrelevant. 2777 Specialization 2778 = ClassTemplateSpecializationDecl::Create(Context, 2779 ClassTemplate->getDeclContext(), 2780 TemplateNameLoc, 2781 ClassTemplate, 2782 Converted, 0); 2783 Specialization->setLexicalDeclContext(CurContext); 2784 CurContext->addDecl(Specialization); 2785 return DeclPtrTy::make(Specialization); 2786 } 2787 2788 // If we have already (implicitly) instantiated this 2789 // specialization, there is less work to do. 2790 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation) 2791 SpecializationRequiresInstantiation = false; 2792 2793 // Since the only prior class template specialization with these 2794 // arguments was referenced but not declared, reuse that 2795 // declaration node as our own, updating its source location to 2796 // reflect our new declaration. 2797 Specialization = PrevDecl; 2798 Specialization->setLocation(TemplateNameLoc); 2799 PrevDecl = 0; 2800 } else { 2801 // Create a new class template specialization declaration node for 2802 // this explicit specialization. 2803 Specialization 2804 = ClassTemplateSpecializationDecl::Create(Context, 2805 ClassTemplate->getDeclContext(), 2806 TemplateNameLoc, 2807 ClassTemplate, 2808 Converted, 0); 2809 2810 ClassTemplate->getSpecializations().InsertNode(Specialization, 2811 InsertPos); 2812 } 2813 2814 // Build the fully-sugared type for this explicit instantiation as 2815 // the user wrote in the explicit instantiation itself. This means 2816 // that we'll pretty-print the type retrieved from the 2817 // specialization's declaration the way that the user actually wrote 2818 // the explicit instantiation, rather than formatting the name based 2819 // on the "canonical" representation used to store the template 2820 // arguments in the specialization. 2821 QualType WrittenTy 2822 = Context.getTemplateSpecializationType(Name, 2823 TemplateArgs.data(), 2824 TemplateArgs.size(), 2825 Context.getTypeDeclType(Specialization)); 2826 Specialization->setTypeAsWritten(WrittenTy); 2827 TemplateArgsIn.release(); 2828 2829 // Add the explicit instantiation into its lexical context. However, 2830 // since explicit instantiations are never found by name lookup, we 2831 // just put it into the declaration context directly. 2832 Specialization->setLexicalDeclContext(CurContext); 2833 CurContext->addDecl(Specialization); 2834 2835 // C++ [temp.explicit]p3: 2836 // A definition of a class template or class member template 2837 // shall be in scope at the point of the explicit instantiation of 2838 // the class template or class member template. 2839 // 2840 // This check comes when we actually try to perform the 2841 // instantiation. 2842 if (SpecializationRequiresInstantiation) 2843 InstantiateClassTemplateSpecialization(Specialization, true); 2844 else // Instantiate the members of this class template specialization. 2845 InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization); 2846 2847 return DeclPtrTy::make(Specialization); 2848} 2849 2850// Explicit instantiation of a member class of a class template. 2851Sema::DeclResult 2852Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc, 2853 unsigned TagSpec, 2854 SourceLocation KWLoc, 2855 const CXXScopeSpec &SS, 2856 IdentifierInfo *Name, 2857 SourceLocation NameLoc, 2858 AttributeList *Attr) { 2859 2860 bool Owned = false; 2861 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TK_Reference, 2862 KWLoc, SS, Name, NameLoc, Attr, AS_none, 2863 MultiTemplateParamsArg(*this, 0, 0), Owned); 2864 if (!TagD) 2865 return true; 2866 2867 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 2868 if (Tag->isEnum()) { 2869 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 2870 << Context.getTypeDeclType(Tag); 2871 return true; 2872 } 2873 2874 if (Tag->isInvalidDecl()) 2875 return true; 2876 2877 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 2878 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 2879 if (!Pattern) { 2880 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 2881 << Context.getTypeDeclType(Record); 2882 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 2883 return true; 2884 } 2885 2886 // C++0x [temp.explicit]p2: 2887 // [...] An explicit instantiation shall appear in an enclosing 2888 // namespace of its template. [...] 2889 // 2890 // This is C++ DR 275. 2891 if (getLangOptions().CPlusPlus0x) { 2892 // FIXME: In C++98, we would like to turn these errors into warnings, 2893 // dependent on a -Wc++0x flag. 2894 DeclContext *PatternContext 2895 = Pattern->getDeclContext()->getEnclosingNamespaceContext(); 2896 if (!CurContext->Encloses(PatternContext)) { 2897 Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope) 2898 << Record << cast<NamedDecl>(PatternContext) << SS.getRange(); 2899 Diag(Pattern->getLocation(), diag::note_previous_declaration); 2900 } 2901 } 2902 2903 if (!Record->getDefinition(Context)) { 2904 // If the class has a definition, instantiate it (and all of its 2905 // members, recursively). 2906 Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 2907 if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern, 2908 getTemplateInstantiationArgs(Record), 2909 /*ExplicitInstantiation=*/true)) 2910 return true; 2911 } else // Instantiate all of the members of class. 2912 InstantiateClassMembers(TemplateLoc, Record, 2913 getTemplateInstantiationArgs(Record)); 2914 2915 // FIXME: We don't have any representation for explicit instantiations of 2916 // member classes. Such a representation is not needed for compilation, but it 2917 // should be available for clients that want to see all of the declarations in 2918 // the source code. 2919 return TagD; 2920} 2921 2922Sema::TypeResult 2923Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 2924 const IdentifierInfo &II, SourceLocation IdLoc) { 2925 NestedNameSpecifier *NNS 2926 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2927 if (!NNS) 2928 return true; 2929 2930 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 2931 if (T.isNull()) 2932 return true; 2933 return T.getAsOpaquePtr(); 2934} 2935 2936Sema::TypeResult 2937Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 2938 SourceLocation TemplateLoc, TypeTy *Ty) { 2939 QualType T = QualType::getFromOpaquePtr(Ty); 2940 NestedNameSpecifier *NNS 2941 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2942 const TemplateSpecializationType *TemplateId 2943 = T->getAsTemplateSpecializationType(); 2944 assert(TemplateId && "Expected a template specialization type"); 2945 2946 if (NNS->isDependent()) 2947 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 2948 2949 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 2950} 2951 2952/// \brief Build the type that describes a C++ typename specifier, 2953/// e.g., "typename T::type". 2954QualType 2955Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 2956 SourceRange Range) { 2957 CXXRecordDecl *CurrentInstantiation = 0; 2958 if (NNS->isDependent()) { 2959 CurrentInstantiation = getCurrentInstantiationOf(NNS); 2960 2961 // If the nested-name-specifier does not refer to the current 2962 // instantiation, then build a typename type. 2963 if (!CurrentInstantiation) 2964 return Context.getTypenameType(NNS, &II); 2965 } 2966 2967 DeclContext *Ctx = 0; 2968 2969 if (CurrentInstantiation) 2970 Ctx = CurrentInstantiation; 2971 else { 2972 CXXScopeSpec SS; 2973 SS.setScopeRep(NNS); 2974 SS.setRange(Range); 2975 if (RequireCompleteDeclContext(SS)) 2976 return QualType(); 2977 2978 Ctx = computeDeclContext(SS); 2979 } 2980 assert(Ctx && "No declaration context?"); 2981 2982 DeclarationName Name(&II); 2983 LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName, 2984 false); 2985 unsigned DiagID = 0; 2986 Decl *Referenced = 0; 2987 switch (Result.getKind()) { 2988 case LookupResult::NotFound: 2989 if (Ctx->isTranslationUnit()) 2990 DiagID = diag::err_typename_nested_not_found_global; 2991 else 2992 DiagID = diag::err_typename_nested_not_found; 2993 break; 2994 2995 case LookupResult::Found: 2996 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) { 2997 // We found a type. Build a QualifiedNameType, since the 2998 // typename-specifier was just sugar. FIXME: Tell 2999 // QualifiedNameType that it has a "typename" prefix. 3000 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 3001 } 3002 3003 DiagID = diag::err_typename_nested_not_type; 3004 Referenced = Result.getAsDecl(); 3005 break; 3006 3007 case LookupResult::FoundOverloaded: 3008 DiagID = diag::err_typename_nested_not_type; 3009 Referenced = *Result.begin(); 3010 break; 3011 3012 case LookupResult::AmbiguousBaseSubobjectTypes: 3013 case LookupResult::AmbiguousBaseSubobjects: 3014 case LookupResult::AmbiguousReference: 3015 DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range); 3016 return QualType(); 3017 } 3018 3019 // If we get here, it's because name lookup did not find a 3020 // type. Emit an appropriate diagnostic and return an error. 3021 if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx)) 3022 Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx; 3023 else 3024 Diag(Range.getEnd(), DiagID) << Range << Name; 3025 if (Referenced) 3026 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 3027 << Name; 3028 return QualType(); 3029} 3030