SemaTemplate.cpp revision 6946baf3542dcb1ed0d98d0fdda451d1c39a49c2
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "TreeTransform.h" 14#include "clang/AST/ASTContext.h" 15#include "clang/AST/Expr.h" 16#include "clang/AST/ExprCXX.h" 17#include "clang/AST/DeclTemplate.h" 18#include "clang/Parse/DeclSpec.h" 19#include "clang/Basic/LangOptions.h" 20#include "llvm/Support/Compiler.h" 21 22using namespace clang; 23 24/// isTemplateName - Determines whether the identifier II is a 25/// template name in the current scope, and returns the template 26/// declaration if II names a template. An optional CXXScope can be 27/// passed to indicate the C++ scope in which the identifier will be 28/// found. 29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S, 30 const CXXScopeSpec *SS, 31 bool EnteringContext, 32 TemplateTy &TemplateResult) { 33 LookupResult Found = LookupParsedName(S, SS, &II, LookupOrdinaryName, 34 false, false, SourceLocation(), 35 EnteringContext); 36 37 // FIXME: Cope with ambiguous name-lookup results. 38 assert(!Found.isAmbiguous() && 39 "Cannot handle template name-lookup ambiguities"); 40 41 NamedDecl *IIDecl = Found; 42 43 TemplateNameKind TNK = TNK_Non_template; 44 TemplateDecl *Template = 0; 45 46 if (IIDecl) { 47 if ((Template = dyn_cast<TemplateDecl>(IIDecl))) { 48 if (isa<FunctionTemplateDecl>(IIDecl)) 49 TNK = TNK_Function_template; 50 else if (isa<ClassTemplateDecl>(IIDecl) || 51 isa<TemplateTemplateParmDecl>(IIDecl)) 52 TNK = TNK_Type_template; 53 else 54 assert(false && "Unknown template declaration kind"); 55 } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) { 56 // C++ [temp.local]p1: 57 // Like normal (non-template) classes, class templates have an 58 // injected-class-name (Clause 9). The injected-class-name 59 // can be used with or without a template-argument-list. When 60 // it is used without a template-argument-list, it is 61 // equivalent to the injected-class-name followed by the 62 // template-parameters of the class template enclosed in 63 // <>. When it is used with a template-argument-list, it 64 // refers to the specified class template specialization, 65 // which could be the current specialization or another 66 // specialization. 67 if (Record->isInjectedClassName()) { 68 Record = cast<CXXRecordDecl>(Record->getCanonicalDecl()); 69 if ((Template = Record->getDescribedClassTemplate())) 70 TNK = TNK_Type_template; 71 else if (ClassTemplateSpecializationDecl *Spec 72 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 73 Template = Spec->getSpecializedTemplate(); 74 TNK = TNK_Type_template; 75 } 76 } 77 } else if (OverloadedFunctionDecl *Ovl 78 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) { 79 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), 80 FEnd = Ovl->function_end(); 81 F != FEnd; ++F) { 82 if (FunctionTemplateDecl *FuncTmpl 83 = dyn_cast<FunctionTemplateDecl>(*F)) { 84 // We've found a function template. Determine whether there are 85 // any other function templates we need to bundle together in an 86 // OverloadedFunctionDecl 87 for (++F; F != FEnd; ++F) { 88 if (isa<FunctionTemplateDecl>(*F)) 89 break; 90 } 91 92 if (F != FEnd) { 93 // Build an overloaded function decl containing only the 94 // function templates in Ovl. 95 OverloadedFunctionDecl *OvlTemplate 96 = OverloadedFunctionDecl::Create(Context, 97 Ovl->getDeclContext(), 98 Ovl->getDeclName()); 99 OvlTemplate->addOverload(FuncTmpl); 100 OvlTemplate->addOverload(*F); 101 for (++F; F != FEnd; ++F) { 102 if (isa<FunctionTemplateDecl>(*F)) 103 OvlTemplate->addOverload(*F); 104 } 105 106 // Form the resulting TemplateName 107 if (SS && SS->isSet() && !SS->isInvalid()) { 108 NestedNameSpecifier *Qualifier 109 = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); 110 TemplateResult 111 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, 112 false, 113 OvlTemplate)); 114 } else { 115 TemplateResult = TemplateTy::make(TemplateName(OvlTemplate)); 116 } 117 return TNK_Function_template; 118 } 119 120 TNK = TNK_Function_template; 121 Template = FuncTmpl; 122 break; 123 } 124 } 125 } 126 127 if (TNK != TNK_Non_template) { 128 if (SS && SS->isSet() && !SS->isInvalid()) { 129 NestedNameSpecifier *Qualifier 130 = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); 131 TemplateResult 132 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, 133 false, 134 Template)); 135 } else 136 TemplateResult = TemplateTy::make(TemplateName(Template)); 137 } 138 } 139 return TNK; 140} 141 142/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 143/// that the template parameter 'PrevDecl' is being shadowed by a new 144/// declaration at location Loc. Returns true to indicate that this is 145/// an error, and false otherwise. 146bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 147 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 148 149 // Microsoft Visual C++ permits template parameters to be shadowed. 150 if (getLangOptions().Microsoft) 151 return false; 152 153 // C++ [temp.local]p4: 154 // A template-parameter shall not be redeclared within its 155 // scope (including nested scopes). 156 Diag(Loc, diag::err_template_param_shadow) 157 << cast<NamedDecl>(PrevDecl)->getDeclName(); 158 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 159 return true; 160} 161 162/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 163/// the parameter D to reference the templated declaration and return a pointer 164/// to the template declaration. Otherwise, do nothing to D and return null. 165TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 166 if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) { 167 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 168 return Temp; 169 } 170 return 0; 171} 172 173/// ActOnTypeParameter - Called when a C++ template type parameter 174/// (e.g., "typename T") has been parsed. Typename specifies whether 175/// the keyword "typename" was used to declare the type parameter 176/// (otherwise, "class" was used), and KeyLoc is the location of the 177/// "class" or "typename" keyword. ParamName is the name of the 178/// parameter (NULL indicates an unnamed template parameter) and 179/// ParamName is the location of the parameter name (if any). 180/// If the type parameter has a default argument, it will be added 181/// later via ActOnTypeParameterDefault. 182Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 183 SourceLocation EllipsisLoc, 184 SourceLocation KeyLoc, 185 IdentifierInfo *ParamName, 186 SourceLocation ParamNameLoc, 187 unsigned Depth, unsigned Position) { 188 assert(S->isTemplateParamScope() && 189 "Template type parameter not in template parameter scope!"); 190 bool Invalid = false; 191 192 if (ParamName) { 193 NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName); 194 if (PrevDecl && PrevDecl->isTemplateParameter()) 195 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 196 PrevDecl); 197 } 198 199 SourceLocation Loc = ParamNameLoc; 200 if (!ParamName) 201 Loc = KeyLoc; 202 203 TemplateTypeParmDecl *Param 204 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 205 Depth, Position, ParamName, Typename, 206 Ellipsis); 207 if (Invalid) 208 Param->setInvalidDecl(); 209 210 if (ParamName) { 211 // Add the template parameter into the current scope. 212 S->AddDecl(DeclPtrTy::make(Param)); 213 IdResolver.AddDecl(Param); 214 } 215 216 return DeclPtrTy::make(Param); 217} 218 219/// ActOnTypeParameterDefault - Adds a default argument (the type 220/// Default) to the given template type parameter (TypeParam). 221void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 222 SourceLocation EqualLoc, 223 SourceLocation DefaultLoc, 224 TypeTy *DefaultT) { 225 TemplateTypeParmDecl *Parm 226 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 227 // FIXME: Preserve type source info. 228 QualType Default = GetTypeFromParser(DefaultT); 229 230 // C++0x [temp.param]p9: 231 // A default template-argument may be specified for any kind of 232 // template-parameter that is not a template parameter pack. 233 if (Parm->isParameterPack()) { 234 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 235 return; 236 } 237 238 // C++ [temp.param]p14: 239 // A template-parameter shall not be used in its own default argument. 240 // FIXME: Implement this check! Needs a recursive walk over the types. 241 242 // Check the template argument itself. 243 if (CheckTemplateArgument(Parm, Default, DefaultLoc)) { 244 Parm->setInvalidDecl(); 245 return; 246 } 247 248 Parm->setDefaultArgument(Default, DefaultLoc, false); 249} 250 251/// \brief Check that the type of a non-type template parameter is 252/// well-formed. 253/// 254/// \returns the (possibly-promoted) parameter type if valid; 255/// otherwise, produces a diagnostic and returns a NULL type. 256QualType 257Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 258 // C++ [temp.param]p4: 259 // 260 // A non-type template-parameter shall have one of the following 261 // (optionally cv-qualified) types: 262 // 263 // -- integral or enumeration type, 264 if (T->isIntegralType() || T->isEnumeralType() || 265 // -- pointer to object or pointer to function, 266 (T->isPointerType() && 267 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 268 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 269 // -- reference to object or reference to function, 270 T->isReferenceType() || 271 // -- pointer to member. 272 T->isMemberPointerType() || 273 // If T is a dependent type, we can't do the check now, so we 274 // assume that it is well-formed. 275 T->isDependentType()) 276 return T; 277 // C++ [temp.param]p8: 278 // 279 // A non-type template-parameter of type "array of T" or 280 // "function returning T" is adjusted to be of type "pointer to 281 // T" or "pointer to function returning T", respectively. 282 else if (T->isArrayType()) 283 // FIXME: Keep the type prior to promotion? 284 return Context.getArrayDecayedType(T); 285 else if (T->isFunctionType()) 286 // FIXME: Keep the type prior to promotion? 287 return Context.getPointerType(T); 288 289 Diag(Loc, diag::err_template_nontype_parm_bad_type) 290 << T; 291 292 return QualType(); 293} 294 295/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 296/// template parameter (e.g., "int Size" in "template<int Size> 297/// class Array") has been parsed. S is the current scope and D is 298/// the parsed declarator. 299Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 300 unsigned Depth, 301 unsigned Position) { 302 DeclaratorInfo *DInfo = 0; 303 QualType T = GetTypeForDeclarator(D, S, &DInfo); 304 305 assert(S->isTemplateParamScope() && 306 "Non-type template parameter not in template parameter scope!"); 307 bool Invalid = false; 308 309 IdentifierInfo *ParamName = D.getIdentifier(); 310 if (ParamName) { 311 NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName); 312 if (PrevDecl && PrevDecl->isTemplateParameter()) 313 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 314 PrevDecl); 315 } 316 317 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 318 if (T.isNull()) { 319 T = Context.IntTy; // Recover with an 'int' type. 320 Invalid = true; 321 } 322 323 NonTypeTemplateParmDecl *Param 324 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 325 Depth, Position, ParamName, T, DInfo); 326 if (Invalid) 327 Param->setInvalidDecl(); 328 329 if (D.getIdentifier()) { 330 // Add the template parameter into the current scope. 331 S->AddDecl(DeclPtrTy::make(Param)); 332 IdResolver.AddDecl(Param); 333 } 334 return DeclPtrTy::make(Param); 335} 336 337/// \brief Adds a default argument to the given non-type template 338/// parameter. 339void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 340 SourceLocation EqualLoc, 341 ExprArg DefaultE) { 342 NonTypeTemplateParmDecl *TemplateParm 343 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 344 Expr *Default = static_cast<Expr *>(DefaultE.get()); 345 346 // C++ [temp.param]p14: 347 // A template-parameter shall not be used in its own default argument. 348 // FIXME: Implement this check! Needs a recursive walk over the types. 349 350 // Check the well-formedness of the default template argument. 351 TemplateArgument Converted; 352 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 353 Converted)) { 354 TemplateParm->setInvalidDecl(); 355 return; 356 } 357 358 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 359} 360 361 362/// ActOnTemplateTemplateParameter - Called when a C++ template template 363/// parameter (e.g. T in template <template <typename> class T> class array) 364/// has been parsed. S is the current scope. 365Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 366 SourceLocation TmpLoc, 367 TemplateParamsTy *Params, 368 IdentifierInfo *Name, 369 SourceLocation NameLoc, 370 unsigned Depth, 371 unsigned Position) 372{ 373 assert(S->isTemplateParamScope() && 374 "Template template parameter not in template parameter scope!"); 375 376 // Construct the parameter object. 377 TemplateTemplateParmDecl *Param = 378 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 379 Position, Name, 380 (TemplateParameterList*)Params); 381 382 // Make sure the parameter is valid. 383 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 384 // do anything yet. However, if the template parameter list or (eventual) 385 // default value is ever invalidated, that will propagate here. 386 bool Invalid = false; 387 if (Invalid) { 388 Param->setInvalidDecl(); 389 } 390 391 // If the tt-param has a name, then link the identifier into the scope 392 // and lookup mechanisms. 393 if (Name) { 394 S->AddDecl(DeclPtrTy::make(Param)); 395 IdResolver.AddDecl(Param); 396 } 397 398 return DeclPtrTy::make(Param); 399} 400 401/// \brief Adds a default argument to the given template template 402/// parameter. 403void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 404 SourceLocation EqualLoc, 405 ExprArg DefaultE) { 406 TemplateTemplateParmDecl *TemplateParm 407 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 408 409 // Since a template-template parameter's default argument is an 410 // id-expression, it must be a DeclRefExpr. 411 DeclRefExpr *Default 412 = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get())); 413 414 // C++ [temp.param]p14: 415 // A template-parameter shall not be used in its own default argument. 416 // FIXME: Implement this check! Needs a recursive walk over the types. 417 418 // Check the well-formedness of the template argument. 419 if (!isa<TemplateDecl>(Default->getDecl())) { 420 Diag(Default->getSourceRange().getBegin(), 421 diag::err_template_arg_must_be_template) 422 << Default->getSourceRange(); 423 TemplateParm->setInvalidDecl(); 424 return; 425 } 426 if (CheckTemplateArgument(TemplateParm, Default)) { 427 TemplateParm->setInvalidDecl(); 428 return; 429 } 430 431 DefaultE.release(); 432 TemplateParm->setDefaultArgument(Default); 433} 434 435/// ActOnTemplateParameterList - Builds a TemplateParameterList that 436/// contains the template parameters in Params/NumParams. 437Sema::TemplateParamsTy * 438Sema::ActOnTemplateParameterList(unsigned Depth, 439 SourceLocation ExportLoc, 440 SourceLocation TemplateLoc, 441 SourceLocation LAngleLoc, 442 DeclPtrTy *Params, unsigned NumParams, 443 SourceLocation RAngleLoc) { 444 if (ExportLoc.isValid()) 445 Diag(ExportLoc, diag::note_template_export_unsupported); 446 447 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 448 (Decl**)Params, NumParams, RAngleLoc); 449} 450 451Sema::DeclResult 452Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 453 SourceLocation KWLoc, const CXXScopeSpec &SS, 454 IdentifierInfo *Name, SourceLocation NameLoc, 455 AttributeList *Attr, 456 TemplateParameterList *TemplateParams, 457 AccessSpecifier AS) { 458 assert(TemplateParams && TemplateParams->size() > 0 && 459 "No template parameters"); 460 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 461 bool Invalid = false; 462 463 // Check that we can declare a template here. 464 if (CheckTemplateDeclScope(S, TemplateParams)) 465 return true; 466 467 TagDecl::TagKind Kind; 468 switch (TagSpec) { 469 default: assert(0 && "Unknown tag type!"); 470 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 471 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 472 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 473 } 474 475 // There is no such thing as an unnamed class template. 476 if (!Name) { 477 Diag(KWLoc, diag::err_template_unnamed_class); 478 return true; 479 } 480 481 // Find any previous declaration with this name. 482 DeclContext *SemanticContext; 483 LookupResult Previous; 484 if (SS.isNotEmpty() && !SS.isInvalid()) { 485 SemanticContext = computeDeclContext(SS, true); 486 if (!SemanticContext) { 487 // FIXME: Produce a reasonable diagnostic here 488 return true; 489 } 490 491 Previous = LookupQualifiedName(SemanticContext, Name, LookupOrdinaryName, 492 true); 493 } else { 494 SemanticContext = CurContext; 495 Previous = LookupName(S, Name, LookupOrdinaryName, true); 496 } 497 498 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 499 NamedDecl *PrevDecl = 0; 500 if (Previous.begin() != Previous.end()) 501 PrevDecl = *Previous.begin(); 502 503 if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 504 PrevDecl = 0; 505 506 // If there is a previous declaration with the same name, check 507 // whether this is a valid redeclaration. 508 ClassTemplateDecl *PrevClassTemplate 509 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 510 if (PrevClassTemplate) { 511 // Ensure that the template parameter lists are compatible. 512 if (!TemplateParameterListsAreEqual(TemplateParams, 513 PrevClassTemplate->getTemplateParameters(), 514 /*Complain=*/true)) 515 return true; 516 517 // C++ [temp.class]p4: 518 // In a redeclaration, partial specialization, explicit 519 // specialization or explicit instantiation of a class template, 520 // the class-key shall agree in kind with the original class 521 // template declaration (7.1.5.3). 522 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 523 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 524 Diag(KWLoc, diag::err_use_with_wrong_tag) 525 << Name 526 << CodeModificationHint::CreateReplacement(KWLoc, 527 PrevRecordDecl->getKindName()); 528 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 529 Kind = PrevRecordDecl->getTagKind(); 530 } 531 532 // Check for redefinition of this class template. 533 if (TUK == TUK_Definition) { 534 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 535 Diag(NameLoc, diag::err_redefinition) << Name; 536 Diag(Def->getLocation(), diag::note_previous_definition); 537 // FIXME: Would it make sense to try to "forget" the previous 538 // definition, as part of error recovery? 539 return true; 540 } 541 } 542 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 543 // Maybe we will complain about the shadowed template parameter. 544 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 545 // Just pretend that we didn't see the previous declaration. 546 PrevDecl = 0; 547 } else if (PrevDecl) { 548 // C++ [temp]p5: 549 // A class template shall not have the same name as any other 550 // template, class, function, object, enumeration, enumerator, 551 // namespace, or type in the same scope (3.3), except as specified 552 // in (14.5.4). 553 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 554 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 555 return true; 556 } 557 558 // Check the template parameter list of this declaration, possibly 559 // merging in the template parameter list from the previous class 560 // template declaration. 561 if (CheckTemplateParameterList(TemplateParams, 562 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0)) 563 Invalid = true; 564 565 // FIXME: If we had a scope specifier, we better have a previous template 566 // declaration! 567 568 CXXRecordDecl *NewClass = 569 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 570 PrevClassTemplate? 571 PrevClassTemplate->getTemplatedDecl() : 0, 572 /*DelayTypeCreation=*/true); 573 574 ClassTemplateDecl *NewTemplate 575 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 576 DeclarationName(Name), TemplateParams, 577 NewClass, PrevClassTemplate); 578 NewClass->setDescribedClassTemplate(NewTemplate); 579 580 // Build the type for the class template declaration now. 581 QualType T = 582 Context.getTypeDeclType(NewClass, 583 PrevClassTemplate? 584 PrevClassTemplate->getTemplatedDecl() : 0); 585 assert(T->isDependentType() && "Class template type is not dependent?"); 586 (void)T; 587 588 // Set the access specifier. 589 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 590 591 // Set the lexical context of these templates 592 NewClass->setLexicalDeclContext(CurContext); 593 NewTemplate->setLexicalDeclContext(CurContext); 594 595 if (TUK == TUK_Definition) 596 NewClass->startDefinition(); 597 598 if (Attr) 599 ProcessDeclAttributeList(S, NewClass, Attr); 600 601 PushOnScopeChains(NewTemplate, S); 602 603 if (Invalid) { 604 NewTemplate->setInvalidDecl(); 605 NewClass->setInvalidDecl(); 606 } 607 return DeclPtrTy::make(NewTemplate); 608} 609 610/// \brief Checks the validity of a template parameter list, possibly 611/// considering the template parameter list from a previous 612/// declaration. 613/// 614/// If an "old" template parameter list is provided, it must be 615/// equivalent (per TemplateParameterListsAreEqual) to the "new" 616/// template parameter list. 617/// 618/// \param NewParams Template parameter list for a new template 619/// declaration. This template parameter list will be updated with any 620/// default arguments that are carried through from the previous 621/// template parameter list. 622/// 623/// \param OldParams If provided, template parameter list from a 624/// previous declaration of the same template. Default template 625/// arguments will be merged from the old template parameter list to 626/// the new template parameter list. 627/// 628/// \returns true if an error occurred, false otherwise. 629bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 630 TemplateParameterList *OldParams) { 631 bool Invalid = false; 632 633 // C++ [temp.param]p10: 634 // The set of default template-arguments available for use with a 635 // template declaration or definition is obtained by merging the 636 // default arguments from the definition (if in scope) and all 637 // declarations in scope in the same way default function 638 // arguments are (8.3.6). 639 bool SawDefaultArgument = false; 640 SourceLocation PreviousDefaultArgLoc; 641 642 bool SawParameterPack = false; 643 SourceLocation ParameterPackLoc; 644 645 // Dummy initialization to avoid warnings. 646 TemplateParameterList::iterator OldParam = NewParams->end(); 647 if (OldParams) 648 OldParam = OldParams->begin(); 649 650 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 651 NewParamEnd = NewParams->end(); 652 NewParam != NewParamEnd; ++NewParam) { 653 // Variables used to diagnose redundant default arguments 654 bool RedundantDefaultArg = false; 655 SourceLocation OldDefaultLoc; 656 SourceLocation NewDefaultLoc; 657 658 // Variables used to diagnose missing default arguments 659 bool MissingDefaultArg = false; 660 661 // C++0x [temp.param]p11: 662 // If a template parameter of a class template is a template parameter pack, 663 // it must be the last template parameter. 664 if (SawParameterPack) { 665 Diag(ParameterPackLoc, 666 diag::err_template_param_pack_must_be_last_template_parameter); 667 Invalid = true; 668 } 669 670 // Merge default arguments for template type parameters. 671 if (TemplateTypeParmDecl *NewTypeParm 672 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 673 TemplateTypeParmDecl *OldTypeParm 674 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 675 676 if (NewTypeParm->isParameterPack()) { 677 assert(!NewTypeParm->hasDefaultArgument() && 678 "Parameter packs can't have a default argument!"); 679 SawParameterPack = true; 680 ParameterPackLoc = NewTypeParm->getLocation(); 681 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 682 NewTypeParm->hasDefaultArgument()) { 683 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 684 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 685 SawDefaultArgument = true; 686 RedundantDefaultArg = true; 687 PreviousDefaultArgLoc = NewDefaultLoc; 688 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 689 // Merge the default argument from the old declaration to the 690 // new declaration. 691 SawDefaultArgument = true; 692 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(), 693 OldTypeParm->getDefaultArgumentLoc(), 694 true); 695 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 696 } else if (NewTypeParm->hasDefaultArgument()) { 697 SawDefaultArgument = true; 698 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 699 } else if (SawDefaultArgument) 700 MissingDefaultArg = true; 701 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 702 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 703 // Merge default arguments for non-type template parameters 704 NonTypeTemplateParmDecl *OldNonTypeParm 705 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 706 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 707 NewNonTypeParm->hasDefaultArgument()) { 708 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 709 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 710 SawDefaultArgument = true; 711 RedundantDefaultArg = true; 712 PreviousDefaultArgLoc = NewDefaultLoc; 713 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 714 // Merge the default argument from the old declaration to the 715 // new declaration. 716 SawDefaultArgument = true; 717 // FIXME: We need to create a new kind of "default argument" 718 // expression that points to a previous template template 719 // parameter. 720 NewNonTypeParm->setDefaultArgument( 721 OldNonTypeParm->getDefaultArgument()); 722 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 723 } else if (NewNonTypeParm->hasDefaultArgument()) { 724 SawDefaultArgument = true; 725 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 726 } else if (SawDefaultArgument) 727 MissingDefaultArg = true; 728 } else { 729 // Merge default arguments for template template parameters 730 TemplateTemplateParmDecl *NewTemplateParm 731 = cast<TemplateTemplateParmDecl>(*NewParam); 732 TemplateTemplateParmDecl *OldTemplateParm 733 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 734 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 735 NewTemplateParm->hasDefaultArgument()) { 736 OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc(); 737 NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc(); 738 SawDefaultArgument = true; 739 RedundantDefaultArg = true; 740 PreviousDefaultArgLoc = NewDefaultLoc; 741 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 742 // Merge the default argument from the old declaration to the 743 // new declaration. 744 SawDefaultArgument = true; 745 // FIXME: We need to create a new kind of "default argument" expression 746 // that points to a previous template template parameter. 747 NewTemplateParm->setDefaultArgument( 748 OldTemplateParm->getDefaultArgument()); 749 PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc(); 750 } else if (NewTemplateParm->hasDefaultArgument()) { 751 SawDefaultArgument = true; 752 PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc(); 753 } else if (SawDefaultArgument) 754 MissingDefaultArg = true; 755 } 756 757 if (RedundantDefaultArg) { 758 // C++ [temp.param]p12: 759 // A template-parameter shall not be given default arguments 760 // by two different declarations in the same scope. 761 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 762 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 763 Invalid = true; 764 } else if (MissingDefaultArg) { 765 // C++ [temp.param]p11: 766 // If a template-parameter has a default template-argument, 767 // all subsequent template-parameters shall have a default 768 // template-argument supplied. 769 Diag((*NewParam)->getLocation(), 770 diag::err_template_param_default_arg_missing); 771 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 772 Invalid = true; 773 } 774 775 // If we have an old template parameter list that we're merging 776 // in, move on to the next parameter. 777 if (OldParams) 778 ++OldParam; 779 } 780 781 return Invalid; 782} 783 784/// \brief Match the given template parameter lists to the given scope 785/// specifier, returning the template parameter list that applies to the 786/// name. 787/// 788/// \param DeclStartLoc the start of the declaration that has a scope 789/// specifier or a template parameter list. 790/// 791/// \param SS the scope specifier that will be matched to the given template 792/// parameter lists. This scope specifier precedes a qualified name that is 793/// being declared. 794/// 795/// \param ParamLists the template parameter lists, from the outermost to the 796/// innermost template parameter lists. 797/// 798/// \param NumParamLists the number of template parameter lists in ParamLists. 799/// 800/// \returns the template parameter list, if any, that corresponds to the 801/// name that is preceded by the scope specifier @p SS. This template 802/// parameter list may be have template parameters (if we're declaring a 803/// template) or may have no template parameters (if we're declaring a 804/// template specialization), or may be NULL (if we were's declaring isn't 805/// itself a template). 806TemplateParameterList * 807Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 808 const CXXScopeSpec &SS, 809 TemplateParameterList **ParamLists, 810 unsigned NumParamLists) { 811 // Find the template-ids that occur within the nested-name-specifier. These 812 // template-ids will match up with the template parameter lists. 813 llvm::SmallVector<const TemplateSpecializationType *, 4> 814 TemplateIdsInSpecifier; 815 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 816 NNS; NNS = NNS->getPrefix()) { 817 if (const TemplateSpecializationType *SpecType 818 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 819 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 820 if (!Template) 821 continue; // FIXME: should this be an error? probably... 822 823 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 824 ClassTemplateSpecializationDecl *SpecDecl 825 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 826 // If the nested name specifier refers to an explicit specialization, 827 // we don't need a template<> header. 828 // FIXME: revisit this approach once we cope with specialization 829 // properly. 830 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) 831 continue; 832 } 833 834 TemplateIdsInSpecifier.push_back(SpecType); 835 } 836 } 837 838 // Reverse the list of template-ids in the scope specifier, so that we can 839 // more easily match up the template-ids and the template parameter lists. 840 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 841 842 SourceLocation FirstTemplateLoc = DeclStartLoc; 843 if (NumParamLists) 844 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 845 846 // Match the template-ids found in the specifier to the template parameter 847 // lists. 848 unsigned Idx = 0; 849 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 850 Idx != NumTemplateIds; ++Idx) { 851 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 852 bool DependentTemplateId = TemplateId->isDependentType(); 853 if (Idx >= NumParamLists) { 854 // We have a template-id without a corresponding template parameter 855 // list. 856 if (DependentTemplateId) { 857 // FIXME: the location information here isn't great. 858 Diag(SS.getRange().getBegin(), 859 diag::err_template_spec_needs_template_parameters) 860 << TemplateId 861 << SS.getRange(); 862 } else { 863 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 864 << SS.getRange() 865 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 866 "template<> "); 867 } 868 return 0; 869 } 870 871 // Check the template parameter list against its corresponding template-id. 872 if (DependentTemplateId) { 873 TemplateDecl *Template 874 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 875 876 if (ClassTemplateDecl *ClassTemplate 877 = dyn_cast<ClassTemplateDecl>(Template)) { 878 TemplateParameterList *ExpectedTemplateParams = 0; 879 // Is this template-id naming the primary template? 880 if (Context.hasSameType(TemplateId, 881 ClassTemplate->getInjectedClassNameType(Context))) 882 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 883 // ... or a partial specialization? 884 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 885 = ClassTemplate->findPartialSpecialization(TemplateId)) 886 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 887 888 if (ExpectedTemplateParams) 889 TemplateParameterListsAreEqual(ParamLists[Idx], 890 ExpectedTemplateParams, 891 true); 892 } 893 } else if (ParamLists[Idx]->size() > 0) 894 Diag(ParamLists[Idx]->getTemplateLoc(), 895 diag::err_template_param_list_matches_nontemplate) 896 << TemplateId 897 << ParamLists[Idx]->getSourceRange(); 898 } 899 900 // If there were at least as many template-ids as there were template 901 // parameter lists, then there are no template parameter lists remaining for 902 // the declaration itself. 903 if (Idx >= NumParamLists) 904 return 0; 905 906 // If there were too many template parameter lists, complain about that now. 907 if (Idx != NumParamLists - 1) { 908 while (Idx < NumParamLists - 1) { 909 Diag(ParamLists[Idx]->getTemplateLoc(), 910 diag::err_template_spec_extra_headers) 911 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 912 ParamLists[Idx]->getRAngleLoc()); 913 ++Idx; 914 } 915 } 916 917 // Return the last template parameter list, which corresponds to the 918 // entity being declared. 919 return ParamLists[NumParamLists - 1]; 920} 921 922/// \brief Translates template arguments as provided by the parser 923/// into template arguments used by semantic analysis. 924static void 925translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 926 SourceLocation *TemplateArgLocs, 927 llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) { 928 TemplateArgs.reserve(TemplateArgsIn.size()); 929 930 void **Args = TemplateArgsIn.getArgs(); 931 bool *ArgIsType = TemplateArgsIn.getArgIsType(); 932 for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) { 933 TemplateArgs.push_back( 934 ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg], 935 //FIXME: Preserve type source info. 936 Sema::GetTypeFromParser(Args[Arg])) 937 : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg]))); 938 } 939} 940 941QualType Sema::CheckTemplateIdType(TemplateName Name, 942 SourceLocation TemplateLoc, 943 SourceLocation LAngleLoc, 944 const TemplateArgument *TemplateArgs, 945 unsigned NumTemplateArgs, 946 SourceLocation RAngleLoc) { 947 TemplateDecl *Template = Name.getAsTemplateDecl(); 948 if (!Template) { 949 // The template name does not resolve to a template, so we just 950 // build a dependent template-id type. 951 return Context.getTemplateSpecializationType(Name, TemplateArgs, 952 NumTemplateArgs); 953 } 954 955 // Check that the template argument list is well-formed for this 956 // template. 957 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 958 NumTemplateArgs); 959 if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 960 TemplateArgs, NumTemplateArgs, RAngleLoc, 961 false, Converted)) 962 return QualType(); 963 964 assert((Converted.structuredSize() == 965 Template->getTemplateParameters()->size()) && 966 "Converted template argument list is too short!"); 967 968 QualType CanonType; 969 970 if (TemplateSpecializationType::anyDependentTemplateArguments( 971 TemplateArgs, 972 NumTemplateArgs)) { 973 // This class template specialization is a dependent 974 // type. Therefore, its canonical type is another class template 975 // specialization type that contains all of the converted 976 // arguments in canonical form. This ensures that, e.g., A<T> and 977 // A<T, T> have identical types when A is declared as: 978 // 979 // template<typename T, typename U = T> struct A; 980 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 981 CanonType = Context.getTemplateSpecializationType(CanonName, 982 Converted.getFlatArguments(), 983 Converted.flatSize()); 984 985 // FIXME: CanonType is not actually the canonical type, and unfortunately 986 // it is a TemplateTypeSpecializationType that we will never use again. 987 // In the future, we need to teach getTemplateSpecializationType to only 988 // build the canonical type and return that to us. 989 CanonType = Context.getCanonicalType(CanonType); 990 } else if (ClassTemplateDecl *ClassTemplate 991 = dyn_cast<ClassTemplateDecl>(Template)) { 992 // Find the class template specialization declaration that 993 // corresponds to these arguments. 994 llvm::FoldingSetNodeID ID; 995 ClassTemplateSpecializationDecl::Profile(ID, 996 Converted.getFlatArguments(), 997 Converted.flatSize(), 998 Context); 999 void *InsertPos = 0; 1000 ClassTemplateSpecializationDecl *Decl 1001 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1002 if (!Decl) { 1003 // This is the first time we have referenced this class template 1004 // specialization. Create the canonical declaration and add it to 1005 // the set of specializations. 1006 Decl = ClassTemplateSpecializationDecl::Create(Context, 1007 ClassTemplate->getDeclContext(), 1008 TemplateLoc, 1009 ClassTemplate, 1010 Converted, 0); 1011 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1012 Decl->setLexicalDeclContext(CurContext); 1013 } 1014 1015 CanonType = Context.getTypeDeclType(Decl); 1016 } 1017 1018 // Build the fully-sugared type for this class template 1019 // specialization, which refers back to the class template 1020 // specialization we created or found. 1021 //FIXME: Preserve type source info. 1022 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1023 NumTemplateArgs, CanonType); 1024} 1025 1026Action::TypeResult 1027Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1028 SourceLocation LAngleLoc, 1029 ASTTemplateArgsPtr TemplateArgsIn, 1030 SourceLocation *TemplateArgLocs, 1031 SourceLocation RAngleLoc) { 1032 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1033 1034 // Translate the parser's template argument list in our AST format. 1035 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1036 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1037 1038 QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc, 1039 TemplateArgs.data(), 1040 TemplateArgs.size(), 1041 RAngleLoc); 1042 TemplateArgsIn.release(); 1043 1044 if (Result.isNull()) 1045 return true; 1046 1047 return Result.getAsOpaquePtr(); 1048} 1049 1050Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template, 1051 SourceLocation TemplateNameLoc, 1052 SourceLocation LAngleLoc, 1053 const TemplateArgument *TemplateArgs, 1054 unsigned NumTemplateArgs, 1055 SourceLocation RAngleLoc) { 1056 // FIXME: Can we do any checking at this point? I guess we could check the 1057 // template arguments that we have against the template name, if the template 1058 // name refers to a single template. That's not a terribly common case, 1059 // though. 1060 return Owned(TemplateIdRefExpr::Create(Context, 1061 /*FIXME: New type?*/Context.OverloadTy, 1062 /*FIXME: Necessary?*/0, 1063 /*FIXME: Necessary?*/SourceRange(), 1064 Template, TemplateNameLoc, LAngleLoc, 1065 TemplateArgs, 1066 NumTemplateArgs, RAngleLoc)); 1067} 1068 1069Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD, 1070 SourceLocation TemplateNameLoc, 1071 SourceLocation LAngleLoc, 1072 ASTTemplateArgsPtr TemplateArgsIn, 1073 SourceLocation *TemplateArgLocs, 1074 SourceLocation RAngleLoc) { 1075 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1076 1077 // Translate the parser's template argument list in our AST format. 1078 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1079 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1080 TemplateArgsIn.release(); 1081 1082 return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc, 1083 TemplateArgs.data(), TemplateArgs.size(), 1084 RAngleLoc); 1085} 1086 1087Sema::OwningExprResult 1088Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base, 1089 SourceLocation OpLoc, 1090 tok::TokenKind OpKind, 1091 const CXXScopeSpec &SS, 1092 TemplateTy TemplateD, 1093 SourceLocation TemplateNameLoc, 1094 SourceLocation LAngleLoc, 1095 ASTTemplateArgsPtr TemplateArgsIn, 1096 SourceLocation *TemplateArgLocs, 1097 SourceLocation RAngleLoc) { 1098 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1099 1100 // FIXME: We're going to end up looking up the template based on its name, 1101 // twice! 1102 DeclarationName Name; 1103 if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl()) 1104 Name = ActualTemplate->getDeclName(); 1105 else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl()) 1106 Name = Ovl->getDeclName(); 1107 else 1108 assert(false && "Cannot support dependent template names yet"); 1109 1110 // Translate the parser's template argument list in our AST format. 1111 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1112 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1113 TemplateArgsIn.release(); 1114 1115 // Do we have the save the actual template name? We might need it... 1116 return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc, 1117 Name, true, LAngleLoc, 1118 TemplateArgs.data(), TemplateArgs.size(), 1119 RAngleLoc, DeclPtrTy(), &SS); 1120} 1121 1122/// \brief Form a dependent template name. 1123/// 1124/// This action forms a dependent template name given the template 1125/// name and its (presumably dependent) scope specifier. For 1126/// example, given "MetaFun::template apply", the scope specifier \p 1127/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1128/// of the "template" keyword, and "apply" is the \p Name. 1129Sema::TemplateTy 1130Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1131 const IdentifierInfo &Name, 1132 SourceLocation NameLoc, 1133 const CXXScopeSpec &SS) { 1134 if (!SS.isSet() || SS.isInvalid()) 1135 return TemplateTy(); 1136 1137 NestedNameSpecifier *Qualifier 1138 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1139 1140 if (computeDeclContext(SS, false)) { 1141 // C++0x [temp.names]p5: 1142 // If a name prefixed by the keyword template is not the name of 1143 // a template, the program is ill-formed. [Note: the keyword 1144 // template may not be applied to non-template members of class 1145 // templates. -end note ] [ Note: as is the case with the 1146 // typename prefix, the template prefix is allowed in cases 1147 // where it is not strictly necessary; i.e., when the 1148 // nested-name-specifier or the expression on the left of the -> 1149 // or . is not dependent on a template-parameter, or the use 1150 // does not appear in the scope of a template. -end note] 1151 // 1152 // Note: C++03 was more strict here, because it banned the use of 1153 // the "template" keyword prior to a template-name that was not a 1154 // dependent name. C++ DR468 relaxed this requirement (the 1155 // "template" keyword is now permitted). We follow the C++0x 1156 // rules, even in C++03 mode, retroactively applying the DR. 1157 TemplateTy Template; 1158 TemplateNameKind TNK = isTemplateName(Name, 0, &SS, false, Template); 1159 if (TNK == TNK_Non_template) { 1160 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1161 << &Name; 1162 return TemplateTy(); 1163 } 1164 1165 return Template; 1166 } 1167 1168 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name)); 1169} 1170 1171bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1172 const TemplateArgument &Arg, 1173 TemplateArgumentListBuilder &Converted) { 1174 // Check template type parameter. 1175 if (Arg.getKind() != TemplateArgument::Type) { 1176 // C++ [temp.arg.type]p1: 1177 // A template-argument for a template-parameter which is a 1178 // type shall be a type-id. 1179 1180 // We have a template type parameter but the template argument 1181 // is not a type. 1182 Diag(Arg.getLocation(), diag::err_template_arg_must_be_type); 1183 Diag(Param->getLocation(), diag::note_template_param_here); 1184 1185 return true; 1186 } 1187 1188 if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation())) 1189 return true; 1190 1191 // Add the converted template type argument. 1192 Converted.Append( 1193 TemplateArgument(Arg.getLocation(), 1194 Context.getCanonicalType(Arg.getAsType()))); 1195 return false; 1196} 1197 1198/// \brief Check that the given template argument list is well-formed 1199/// for specializing the given template. 1200bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1201 SourceLocation TemplateLoc, 1202 SourceLocation LAngleLoc, 1203 const TemplateArgument *TemplateArgs, 1204 unsigned NumTemplateArgs, 1205 SourceLocation RAngleLoc, 1206 bool PartialTemplateArgs, 1207 TemplateArgumentListBuilder &Converted) { 1208 TemplateParameterList *Params = Template->getTemplateParameters(); 1209 unsigned NumParams = Params->size(); 1210 unsigned NumArgs = NumTemplateArgs; 1211 bool Invalid = false; 1212 1213 bool HasParameterPack = 1214 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 1215 1216 if ((NumArgs > NumParams && !HasParameterPack) || 1217 (NumArgs < Params->getMinRequiredArguments() && 1218 !PartialTemplateArgs)) { 1219 // FIXME: point at either the first arg beyond what we can handle, 1220 // or the '>', depending on whether we have too many or too few 1221 // arguments. 1222 SourceRange Range; 1223 if (NumArgs > NumParams) 1224 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 1225 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 1226 << (NumArgs > NumParams) 1227 << (isa<ClassTemplateDecl>(Template)? 0 : 1228 isa<FunctionTemplateDecl>(Template)? 1 : 1229 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 1230 << Template << Range; 1231 Diag(Template->getLocation(), diag::note_template_decl_here) 1232 << Params->getSourceRange(); 1233 Invalid = true; 1234 } 1235 1236 // C++ [temp.arg]p1: 1237 // [...] The type and form of each template-argument specified in 1238 // a template-id shall match the type and form specified for the 1239 // corresponding parameter declared by the template in its 1240 // template-parameter-list. 1241 unsigned ArgIdx = 0; 1242 for (TemplateParameterList::iterator Param = Params->begin(), 1243 ParamEnd = Params->end(); 1244 Param != ParamEnd; ++Param, ++ArgIdx) { 1245 if (ArgIdx > NumArgs && PartialTemplateArgs) 1246 break; 1247 1248 // Decode the template argument 1249 TemplateArgument Arg; 1250 if (ArgIdx >= NumArgs) { 1251 // Retrieve the default template argument from the template 1252 // parameter. 1253 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1254 if (TTP->isParameterPack()) { 1255 // We have an empty argument pack. 1256 Converted.BeginPack(); 1257 Converted.EndPack(); 1258 break; 1259 } 1260 1261 if (!TTP->hasDefaultArgument()) 1262 break; 1263 1264 QualType ArgType = TTP->getDefaultArgument(); 1265 1266 // If the argument type is dependent, instantiate it now based 1267 // on the previously-computed template arguments. 1268 if (ArgType->isDependentType()) { 1269 InstantiatingTemplate Inst(*this, TemplateLoc, 1270 Template, Converted.getFlatArguments(), 1271 Converted.flatSize(), 1272 SourceRange(TemplateLoc, RAngleLoc)); 1273 1274 TemplateArgumentList TemplateArgs(Context, Converted, 1275 /*TakeArgs=*/false); 1276 ArgType = SubstType(ArgType, 1277 MultiLevelTemplateArgumentList(TemplateArgs), 1278 TTP->getDefaultArgumentLoc(), 1279 TTP->getDeclName()); 1280 } 1281 1282 if (ArgType.isNull()) 1283 return true; 1284 1285 Arg = TemplateArgument(TTP->getLocation(), ArgType); 1286 } else if (NonTypeTemplateParmDecl *NTTP 1287 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1288 if (!NTTP->hasDefaultArgument()) 1289 break; 1290 1291 InstantiatingTemplate Inst(*this, TemplateLoc, 1292 Template, Converted.getFlatArguments(), 1293 Converted.flatSize(), 1294 SourceRange(TemplateLoc, RAngleLoc)); 1295 1296 TemplateArgumentList TemplateArgs(Context, Converted, 1297 /*TakeArgs=*/false); 1298 1299 Sema::OwningExprResult E 1300 = SubstExpr(NTTP->getDefaultArgument(), 1301 MultiLevelTemplateArgumentList(TemplateArgs)); 1302 if (E.isInvalid()) 1303 return true; 1304 1305 Arg = TemplateArgument(E.takeAs<Expr>()); 1306 } else { 1307 TemplateTemplateParmDecl *TempParm 1308 = cast<TemplateTemplateParmDecl>(*Param); 1309 1310 if (!TempParm->hasDefaultArgument()) 1311 break; 1312 1313 // FIXME: Subst default argument 1314 Arg = TemplateArgument(TempParm->getDefaultArgument()); 1315 } 1316 } else { 1317 // Retrieve the template argument produced by the user. 1318 Arg = TemplateArgs[ArgIdx]; 1319 } 1320 1321 1322 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1323 if (TTP->isParameterPack()) { 1324 Converted.BeginPack(); 1325 // Check all the remaining arguments (if any). 1326 for (; ArgIdx < NumArgs; ++ArgIdx) { 1327 if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted)) 1328 Invalid = true; 1329 } 1330 1331 Converted.EndPack(); 1332 } else { 1333 if (CheckTemplateTypeArgument(TTP, Arg, Converted)) 1334 Invalid = true; 1335 } 1336 } else if (NonTypeTemplateParmDecl *NTTP 1337 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1338 // Check non-type template parameters. 1339 1340 // Do substitution on the type of the non-type template parameter 1341 // with the template arguments we've seen thus far. 1342 QualType NTTPType = NTTP->getType(); 1343 if (NTTPType->isDependentType()) { 1344 // Do substitution on the type of the non-type template parameter. 1345 InstantiatingTemplate Inst(*this, TemplateLoc, 1346 Template, Converted.getFlatArguments(), 1347 Converted.flatSize(), 1348 SourceRange(TemplateLoc, RAngleLoc)); 1349 1350 TemplateArgumentList TemplateArgs(Context, Converted, 1351 /*TakeArgs=*/false); 1352 NTTPType = SubstType(NTTPType, 1353 MultiLevelTemplateArgumentList(TemplateArgs), 1354 NTTP->getLocation(), 1355 NTTP->getDeclName()); 1356 // If that worked, check the non-type template parameter type 1357 // for validity. 1358 if (!NTTPType.isNull()) 1359 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1360 NTTP->getLocation()); 1361 if (NTTPType.isNull()) { 1362 Invalid = true; 1363 break; 1364 } 1365 } 1366 1367 switch (Arg.getKind()) { 1368 case TemplateArgument::Null: 1369 assert(false && "Should never see a NULL template argument here"); 1370 break; 1371 1372 case TemplateArgument::Expression: { 1373 Expr *E = Arg.getAsExpr(); 1374 TemplateArgument Result; 1375 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1376 Invalid = true; 1377 else 1378 Converted.Append(Result); 1379 break; 1380 } 1381 1382 case TemplateArgument::Declaration: 1383 case TemplateArgument::Integral: 1384 // We've already checked this template argument, so just copy 1385 // it to the list of converted arguments. 1386 Converted.Append(Arg); 1387 break; 1388 1389 case TemplateArgument::Type: 1390 // We have a non-type template parameter but the template 1391 // argument is a type. 1392 1393 // C++ [temp.arg]p2: 1394 // In a template-argument, an ambiguity between a type-id and 1395 // an expression is resolved to a type-id, regardless of the 1396 // form of the corresponding template-parameter. 1397 // 1398 // We warn specifically about this case, since it can be rather 1399 // confusing for users. 1400 if (Arg.getAsType()->isFunctionType()) 1401 Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig) 1402 << Arg.getAsType(); 1403 else 1404 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr); 1405 Diag((*Param)->getLocation(), diag::note_template_param_here); 1406 Invalid = true; 1407 break; 1408 1409 case TemplateArgument::Pack: 1410 assert(0 && "FIXME: Implement!"); 1411 break; 1412 } 1413 } else { 1414 // Check template template parameters. 1415 TemplateTemplateParmDecl *TempParm 1416 = cast<TemplateTemplateParmDecl>(*Param); 1417 1418 switch (Arg.getKind()) { 1419 case TemplateArgument::Null: 1420 assert(false && "Should never see a NULL template argument here"); 1421 break; 1422 1423 case TemplateArgument::Expression: { 1424 Expr *ArgExpr = Arg.getAsExpr(); 1425 if (ArgExpr && isa<DeclRefExpr>(ArgExpr) && 1426 isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) { 1427 if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr))) 1428 Invalid = true; 1429 1430 // Add the converted template argument. 1431 Decl *D 1432 = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl(); 1433 Converted.Append(TemplateArgument(Arg.getLocation(), D)); 1434 continue; 1435 } 1436 } 1437 // fall through 1438 1439 case TemplateArgument::Type: { 1440 // We have a template template parameter but the template 1441 // argument does not refer to a template. 1442 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1443 Invalid = true; 1444 break; 1445 } 1446 1447 case TemplateArgument::Declaration: 1448 // We've already checked this template argument, so just copy 1449 // it to the list of converted arguments. 1450 Converted.Append(Arg); 1451 break; 1452 1453 case TemplateArgument::Integral: 1454 assert(false && "Integral argument with template template parameter"); 1455 break; 1456 1457 case TemplateArgument::Pack: 1458 assert(0 && "FIXME: Implement!"); 1459 break; 1460 } 1461 } 1462 } 1463 1464 return Invalid; 1465} 1466 1467/// \brief Check a template argument against its corresponding 1468/// template type parameter. 1469/// 1470/// This routine implements the semantics of C++ [temp.arg.type]. It 1471/// returns true if an error occurred, and false otherwise. 1472bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 1473 QualType Arg, SourceLocation ArgLoc) { 1474 // C++ [temp.arg.type]p2: 1475 // A local type, a type with no linkage, an unnamed type or a type 1476 // compounded from any of these types shall not be used as a 1477 // template-argument for a template type-parameter. 1478 // 1479 // FIXME: Perform the recursive and no-linkage type checks. 1480 const TagType *Tag = 0; 1481 if (const EnumType *EnumT = Arg->getAsEnumType()) 1482 Tag = EnumT; 1483 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 1484 Tag = RecordT; 1485 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) 1486 return Diag(ArgLoc, diag::err_template_arg_local_type) 1487 << QualType(Tag, 0); 1488 else if (Tag && !Tag->getDecl()->getDeclName() && 1489 !Tag->getDecl()->getTypedefForAnonDecl()) { 1490 Diag(ArgLoc, diag::err_template_arg_unnamed_type); 1491 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 1492 return true; 1493 } 1494 1495 return false; 1496} 1497 1498/// \brief Checks whether the given template argument is the address 1499/// of an object or function according to C++ [temp.arg.nontype]p1. 1500bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 1501 NamedDecl *&Entity) { 1502 bool Invalid = false; 1503 1504 // See through any implicit casts we added to fix the type. 1505 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1506 Arg = Cast->getSubExpr(); 1507 1508 // C++0x allows nullptr, and there's no further checking to be done for that. 1509 if (Arg->getType()->isNullPtrType()) 1510 return false; 1511 1512 // C++ [temp.arg.nontype]p1: 1513 // 1514 // A template-argument for a non-type, non-template 1515 // template-parameter shall be one of: [...] 1516 // 1517 // -- the address of an object or function with external 1518 // linkage, including function templates and function 1519 // template-ids but excluding non-static class members, 1520 // expressed as & id-expression where the & is optional if 1521 // the name refers to a function or array, or if the 1522 // corresponding template-parameter is a reference; or 1523 DeclRefExpr *DRE = 0; 1524 1525 // Ignore (and complain about) any excess parentheses. 1526 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1527 if (!Invalid) { 1528 Diag(Arg->getSourceRange().getBegin(), 1529 diag::err_template_arg_extra_parens) 1530 << Arg->getSourceRange(); 1531 Invalid = true; 1532 } 1533 1534 Arg = Parens->getSubExpr(); 1535 } 1536 1537 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 1538 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1539 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1540 } else 1541 DRE = dyn_cast<DeclRefExpr>(Arg); 1542 1543 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 1544 return Diag(Arg->getSourceRange().getBegin(), 1545 diag::err_template_arg_not_object_or_func_form) 1546 << Arg->getSourceRange(); 1547 1548 // Cannot refer to non-static data members 1549 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 1550 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 1551 << Field << Arg->getSourceRange(); 1552 1553 // Cannot refer to non-static member functions 1554 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 1555 if (!Method->isStatic()) 1556 return Diag(Arg->getSourceRange().getBegin(), 1557 diag::err_template_arg_method) 1558 << Method << Arg->getSourceRange(); 1559 1560 // Functions must have external linkage. 1561 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 1562 if (Func->getStorageClass() == FunctionDecl::Static) { 1563 Diag(Arg->getSourceRange().getBegin(), 1564 diag::err_template_arg_function_not_extern) 1565 << Func << Arg->getSourceRange(); 1566 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 1567 << true; 1568 return true; 1569 } 1570 1571 // Okay: we've named a function with external linkage. 1572 Entity = Func; 1573 return Invalid; 1574 } 1575 1576 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 1577 if (!Var->hasGlobalStorage()) { 1578 Diag(Arg->getSourceRange().getBegin(), 1579 diag::err_template_arg_object_not_extern) 1580 << Var << Arg->getSourceRange(); 1581 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 1582 << true; 1583 return true; 1584 } 1585 1586 // Okay: we've named an object with external linkage 1587 Entity = Var; 1588 return Invalid; 1589 } 1590 1591 // We found something else, but we don't know specifically what it is. 1592 Diag(Arg->getSourceRange().getBegin(), 1593 diag::err_template_arg_not_object_or_func) 1594 << Arg->getSourceRange(); 1595 Diag(DRE->getDecl()->getLocation(), 1596 diag::note_template_arg_refers_here); 1597 return true; 1598} 1599 1600/// \brief Checks whether the given template argument is a pointer to 1601/// member constant according to C++ [temp.arg.nontype]p1. 1602bool 1603Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) { 1604 bool Invalid = false; 1605 1606 // See through any implicit casts we added to fix the type. 1607 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1608 Arg = Cast->getSubExpr(); 1609 1610 // C++0x allows nullptr, and there's no further checking to be done for that. 1611 if (Arg->getType()->isNullPtrType()) 1612 return false; 1613 1614 // C++ [temp.arg.nontype]p1: 1615 // 1616 // A template-argument for a non-type, non-template 1617 // template-parameter shall be one of: [...] 1618 // 1619 // -- a pointer to member expressed as described in 5.3.1. 1620 QualifiedDeclRefExpr *DRE = 0; 1621 1622 // Ignore (and complain about) any excess parentheses. 1623 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1624 if (!Invalid) { 1625 Diag(Arg->getSourceRange().getBegin(), 1626 diag::err_template_arg_extra_parens) 1627 << Arg->getSourceRange(); 1628 Invalid = true; 1629 } 1630 1631 Arg = Parens->getSubExpr(); 1632 } 1633 1634 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) 1635 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1636 DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr()); 1637 1638 if (!DRE) 1639 return Diag(Arg->getSourceRange().getBegin(), 1640 diag::err_template_arg_not_pointer_to_member_form) 1641 << Arg->getSourceRange(); 1642 1643 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 1644 assert((isa<FieldDecl>(DRE->getDecl()) || 1645 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 1646 "Only non-static member pointers can make it here"); 1647 1648 // Okay: this is the address of a non-static member, and therefore 1649 // a member pointer constant. 1650 Member = DRE->getDecl(); 1651 return Invalid; 1652 } 1653 1654 // We found something else, but we don't know specifically what it is. 1655 Diag(Arg->getSourceRange().getBegin(), 1656 diag::err_template_arg_not_pointer_to_member_form) 1657 << Arg->getSourceRange(); 1658 Diag(DRE->getDecl()->getLocation(), 1659 diag::note_template_arg_refers_here); 1660 return true; 1661} 1662 1663/// \brief Check a template argument against its corresponding 1664/// non-type template parameter. 1665/// 1666/// This routine implements the semantics of C++ [temp.arg.nontype]. 1667/// It returns true if an error occurred, and false otherwise. \p 1668/// InstantiatedParamType is the type of the non-type template 1669/// parameter after it has been instantiated. 1670/// 1671/// If no error was detected, Converted receives the converted template argument. 1672bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 1673 QualType InstantiatedParamType, Expr *&Arg, 1674 TemplateArgument &Converted) { 1675 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 1676 1677 // If either the parameter has a dependent type or the argument is 1678 // type-dependent, there's nothing we can check now. 1679 // FIXME: Add template argument to Converted! 1680 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 1681 // FIXME: Produce a cloned, canonical expression? 1682 Converted = TemplateArgument(Arg); 1683 return false; 1684 } 1685 1686 // C++ [temp.arg.nontype]p5: 1687 // The following conversions are performed on each expression used 1688 // as a non-type template-argument. If a non-type 1689 // template-argument cannot be converted to the type of the 1690 // corresponding template-parameter then the program is 1691 // ill-formed. 1692 // 1693 // -- for a non-type template-parameter of integral or 1694 // enumeration type, integral promotions (4.5) and integral 1695 // conversions (4.7) are applied. 1696 QualType ParamType = InstantiatedParamType; 1697 QualType ArgType = Arg->getType(); 1698 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 1699 // C++ [temp.arg.nontype]p1: 1700 // A template-argument for a non-type, non-template 1701 // template-parameter shall be one of: 1702 // 1703 // -- an integral constant-expression of integral or enumeration 1704 // type; or 1705 // -- the name of a non-type template-parameter; or 1706 SourceLocation NonConstantLoc; 1707 llvm::APSInt Value; 1708 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 1709 Diag(Arg->getSourceRange().getBegin(), 1710 diag::err_template_arg_not_integral_or_enumeral) 1711 << ArgType << Arg->getSourceRange(); 1712 Diag(Param->getLocation(), diag::note_template_param_here); 1713 return true; 1714 } else if (!Arg->isValueDependent() && 1715 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 1716 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 1717 << ArgType << Arg->getSourceRange(); 1718 return true; 1719 } 1720 1721 // FIXME: We need some way to more easily get the unqualified form 1722 // of the types without going all the way to the 1723 // canonical type. 1724 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 1725 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 1726 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 1727 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 1728 1729 // Try to convert the argument to the parameter's type. 1730 if (ParamType == ArgType) { 1731 // Okay: no conversion necessary 1732 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 1733 !ParamType->isEnumeralType()) { 1734 // This is an integral promotion or conversion. 1735 ImpCastExprToType(Arg, ParamType); 1736 } else { 1737 // We can't perform this conversion. 1738 Diag(Arg->getSourceRange().getBegin(), 1739 diag::err_template_arg_not_convertible) 1740 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1741 Diag(Param->getLocation(), diag::note_template_param_here); 1742 return true; 1743 } 1744 1745 QualType IntegerType = Context.getCanonicalType(ParamType); 1746 if (const EnumType *Enum = IntegerType->getAsEnumType()) 1747 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 1748 1749 if (!Arg->isValueDependent()) { 1750 // Check that an unsigned parameter does not receive a negative 1751 // value. 1752 if (IntegerType->isUnsignedIntegerType() 1753 && (Value.isSigned() && Value.isNegative())) { 1754 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 1755 << Value.toString(10) << Param->getType() 1756 << Arg->getSourceRange(); 1757 Diag(Param->getLocation(), diag::note_template_param_here); 1758 return true; 1759 } 1760 1761 // Check that we don't overflow the template parameter type. 1762 unsigned AllowedBits = Context.getTypeSize(IntegerType); 1763 if (Value.getActiveBits() > AllowedBits) { 1764 Diag(Arg->getSourceRange().getBegin(), 1765 diag::err_template_arg_too_large) 1766 << Value.toString(10) << Param->getType() 1767 << Arg->getSourceRange(); 1768 Diag(Param->getLocation(), diag::note_template_param_here); 1769 return true; 1770 } 1771 1772 if (Value.getBitWidth() != AllowedBits) 1773 Value.extOrTrunc(AllowedBits); 1774 Value.setIsSigned(IntegerType->isSignedIntegerType()); 1775 } 1776 1777 // Add the value of this argument to the list of converted 1778 // arguments. We use the bitwidth and signedness of the template 1779 // parameter. 1780 if (Arg->isValueDependent()) { 1781 // The argument is value-dependent. Create a new 1782 // TemplateArgument with the converted expression. 1783 Converted = TemplateArgument(Arg); 1784 return false; 1785 } 1786 1787 Converted = TemplateArgument(StartLoc, Value, 1788 ParamType->isEnumeralType() ? ParamType 1789 : IntegerType); 1790 return false; 1791 } 1792 1793 // Handle pointer-to-function, reference-to-function, and 1794 // pointer-to-member-function all in (roughly) the same way. 1795 if (// -- For a non-type template-parameter of type pointer to 1796 // function, only the function-to-pointer conversion (4.3) is 1797 // applied. If the template-argument represents a set of 1798 // overloaded functions (or a pointer to such), the matching 1799 // function is selected from the set (13.4). 1800 // In C++0x, any std::nullptr_t value can be converted. 1801 (ParamType->isPointerType() && 1802 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 1803 // -- For a non-type template-parameter of type reference to 1804 // function, no conversions apply. If the template-argument 1805 // represents a set of overloaded functions, the matching 1806 // function is selected from the set (13.4). 1807 (ParamType->isReferenceType() && 1808 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 1809 // -- For a non-type template-parameter of type pointer to 1810 // member function, no conversions apply. If the 1811 // template-argument represents a set of overloaded member 1812 // functions, the matching member function is selected from 1813 // the set (13.4). 1814 // Again, C++0x allows a std::nullptr_t value. 1815 (ParamType->isMemberPointerType() && 1816 ParamType->getAs<MemberPointerType>()->getPointeeType() 1817 ->isFunctionType())) { 1818 if (Context.hasSameUnqualifiedType(ArgType, 1819 ParamType.getNonReferenceType())) { 1820 // We don't have to do anything: the types already match. 1821 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 1822 ParamType->isMemberPointerType())) { 1823 ArgType = ParamType; 1824 ImpCastExprToType(Arg, ParamType); 1825 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 1826 ArgType = Context.getPointerType(ArgType); 1827 ImpCastExprToType(Arg, ArgType); 1828 } else if (FunctionDecl *Fn 1829 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 1830 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 1831 return true; 1832 1833 FixOverloadedFunctionReference(Arg, Fn); 1834 ArgType = Arg->getType(); 1835 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 1836 ArgType = Context.getPointerType(Arg->getType()); 1837 ImpCastExprToType(Arg, ArgType); 1838 } 1839 } 1840 1841 if (!Context.hasSameUnqualifiedType(ArgType, 1842 ParamType.getNonReferenceType())) { 1843 // We can't perform this conversion. 1844 Diag(Arg->getSourceRange().getBegin(), 1845 diag::err_template_arg_not_convertible) 1846 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1847 Diag(Param->getLocation(), diag::note_template_param_here); 1848 return true; 1849 } 1850 1851 if (ParamType->isMemberPointerType()) { 1852 NamedDecl *Member = 0; 1853 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 1854 return true; 1855 1856 if (Member) 1857 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 1858 Converted = TemplateArgument(StartLoc, Member); 1859 return false; 1860 } 1861 1862 NamedDecl *Entity = 0; 1863 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 1864 return true; 1865 1866 if (Entity) 1867 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 1868 Converted = TemplateArgument(StartLoc, Entity); 1869 return false; 1870 } 1871 1872 if (ParamType->isPointerType()) { 1873 // -- for a non-type template-parameter of type pointer to 1874 // object, qualification conversions (4.4) and the 1875 // array-to-pointer conversion (4.2) are applied. 1876 // C++0x also allows a value of std::nullptr_t. 1877 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 1878 "Only object pointers allowed here"); 1879 1880 if (ArgType->isNullPtrType()) { 1881 ArgType = ParamType; 1882 ImpCastExprToType(Arg, ParamType); 1883 } else if (ArgType->isArrayType()) { 1884 ArgType = Context.getArrayDecayedType(ArgType); 1885 ImpCastExprToType(Arg, ArgType); 1886 } 1887 1888 if (IsQualificationConversion(ArgType, ParamType)) { 1889 ArgType = ParamType; 1890 ImpCastExprToType(Arg, ParamType); 1891 } 1892 1893 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 1894 // We can't perform this conversion. 1895 Diag(Arg->getSourceRange().getBegin(), 1896 diag::err_template_arg_not_convertible) 1897 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1898 Diag(Param->getLocation(), diag::note_template_param_here); 1899 return true; 1900 } 1901 1902 NamedDecl *Entity = 0; 1903 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 1904 return true; 1905 1906 if (Entity) 1907 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 1908 Converted = TemplateArgument(StartLoc, Entity); 1909 return false; 1910 } 1911 1912 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 1913 // -- For a non-type template-parameter of type reference to 1914 // object, no conversions apply. The type referred to by the 1915 // reference may be more cv-qualified than the (otherwise 1916 // identical) type of the template-argument. The 1917 // template-parameter is bound directly to the 1918 // template-argument, which must be an lvalue. 1919 assert(ParamRefType->getPointeeType()->isObjectType() && 1920 "Only object references allowed here"); 1921 1922 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 1923 Diag(Arg->getSourceRange().getBegin(), 1924 diag::err_template_arg_no_ref_bind) 1925 << InstantiatedParamType << Arg->getType() 1926 << Arg->getSourceRange(); 1927 Diag(Param->getLocation(), diag::note_template_param_here); 1928 return true; 1929 } 1930 1931 unsigned ParamQuals 1932 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 1933 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 1934 1935 if ((ParamQuals | ArgQuals) != ParamQuals) { 1936 Diag(Arg->getSourceRange().getBegin(), 1937 diag::err_template_arg_ref_bind_ignores_quals) 1938 << InstantiatedParamType << Arg->getType() 1939 << Arg->getSourceRange(); 1940 Diag(Param->getLocation(), diag::note_template_param_here); 1941 return true; 1942 } 1943 1944 NamedDecl *Entity = 0; 1945 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 1946 return true; 1947 1948 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 1949 Converted = TemplateArgument(StartLoc, Entity); 1950 return false; 1951 } 1952 1953 // -- For a non-type template-parameter of type pointer to data 1954 // member, qualification conversions (4.4) are applied. 1955 // C++0x allows std::nullptr_t values. 1956 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 1957 1958 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 1959 // Types match exactly: nothing more to do here. 1960 } else if (ArgType->isNullPtrType()) { 1961 ImpCastExprToType(Arg, ParamType); 1962 } else if (IsQualificationConversion(ArgType, ParamType)) { 1963 ImpCastExprToType(Arg, ParamType); 1964 } else { 1965 // We can't perform this conversion. 1966 Diag(Arg->getSourceRange().getBegin(), 1967 diag::err_template_arg_not_convertible) 1968 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1969 Diag(Param->getLocation(), diag::note_template_param_here); 1970 return true; 1971 } 1972 1973 NamedDecl *Member = 0; 1974 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 1975 return true; 1976 1977 if (Member) 1978 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 1979 Converted = TemplateArgument(StartLoc, Member); 1980 return false; 1981} 1982 1983/// \brief Check a template argument against its corresponding 1984/// template template parameter. 1985/// 1986/// This routine implements the semantics of C++ [temp.arg.template]. 1987/// It returns true if an error occurred, and false otherwise. 1988bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 1989 DeclRefExpr *Arg) { 1990 assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed"); 1991 TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl()); 1992 1993 // C++ [temp.arg.template]p1: 1994 // A template-argument for a template template-parameter shall be 1995 // the name of a class template, expressed as id-expression. Only 1996 // primary class templates are considered when matching the 1997 // template template argument with the corresponding parameter; 1998 // partial specializations are not considered even if their 1999 // parameter lists match that of the template template parameter. 2000 // 2001 // Note that we also allow template template parameters here, which 2002 // will happen when we are dealing with, e.g., class template 2003 // partial specializations. 2004 if (!isa<ClassTemplateDecl>(Template) && 2005 !isa<TemplateTemplateParmDecl>(Template)) { 2006 assert(isa<FunctionTemplateDecl>(Template) && 2007 "Only function templates are possible here"); 2008 Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template); 2009 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2010 << Template; 2011 } 2012 2013 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2014 Param->getTemplateParameters(), 2015 true, true, 2016 Arg->getSourceRange().getBegin()); 2017} 2018 2019/// \brief Determine whether the given template parameter lists are 2020/// equivalent. 2021/// 2022/// \param New The new template parameter list, typically written in the 2023/// source code as part of a new template declaration. 2024/// 2025/// \param Old The old template parameter list, typically found via 2026/// name lookup of the template declared with this template parameter 2027/// list. 2028/// 2029/// \param Complain If true, this routine will produce a diagnostic if 2030/// the template parameter lists are not equivalent. 2031/// 2032/// \param IsTemplateTemplateParm If true, this routine is being 2033/// called to compare the template parameter lists of a template 2034/// template parameter. 2035/// 2036/// \param TemplateArgLoc If this source location is valid, then we 2037/// are actually checking the template parameter list of a template 2038/// argument (New) against the template parameter list of its 2039/// corresponding template template parameter (Old). We produce 2040/// slightly different diagnostics in this scenario. 2041/// 2042/// \returns True if the template parameter lists are equal, false 2043/// otherwise. 2044bool 2045Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2046 TemplateParameterList *Old, 2047 bool Complain, 2048 bool IsTemplateTemplateParm, 2049 SourceLocation TemplateArgLoc) { 2050 if (Old->size() != New->size()) { 2051 if (Complain) { 2052 unsigned NextDiag = diag::err_template_param_list_different_arity; 2053 if (TemplateArgLoc.isValid()) { 2054 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2055 NextDiag = diag::note_template_param_list_different_arity; 2056 } 2057 Diag(New->getTemplateLoc(), NextDiag) 2058 << (New->size() > Old->size()) 2059 << IsTemplateTemplateParm 2060 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2061 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2062 << IsTemplateTemplateParm 2063 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2064 } 2065 2066 return false; 2067 } 2068 2069 for (TemplateParameterList::iterator OldParm = Old->begin(), 2070 OldParmEnd = Old->end(), NewParm = New->begin(); 2071 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2072 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2073 if (Complain) { 2074 unsigned NextDiag = diag::err_template_param_different_kind; 2075 if (TemplateArgLoc.isValid()) { 2076 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2077 NextDiag = diag::note_template_param_different_kind; 2078 } 2079 Diag((*NewParm)->getLocation(), NextDiag) 2080 << IsTemplateTemplateParm; 2081 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2082 << IsTemplateTemplateParm; 2083 } 2084 return false; 2085 } 2086 2087 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2088 // Okay; all template type parameters are equivalent (since we 2089 // know we're at the same index). 2090#if 0 2091 // FIXME: Enable this code in debug mode *after* we properly go through 2092 // and "instantiate" the template parameter lists of template template 2093 // parameters. It's only after this instantiation that (1) any dependent 2094 // types within the template parameter list of the template template 2095 // parameter can be checked, and (2) the template type parameter depths 2096 // will match up. 2097 QualType OldParmType 2098 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm)); 2099 QualType NewParmType 2100 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm)); 2101 assert(Context.getCanonicalType(OldParmType) == 2102 Context.getCanonicalType(NewParmType) && 2103 "type parameter mismatch?"); 2104#endif 2105 } else if (NonTypeTemplateParmDecl *OldNTTP 2106 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2107 // The types of non-type template parameters must agree. 2108 NonTypeTemplateParmDecl *NewNTTP 2109 = cast<NonTypeTemplateParmDecl>(*NewParm); 2110 if (Context.getCanonicalType(OldNTTP->getType()) != 2111 Context.getCanonicalType(NewNTTP->getType())) { 2112 if (Complain) { 2113 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2114 if (TemplateArgLoc.isValid()) { 2115 Diag(TemplateArgLoc, 2116 diag::err_template_arg_template_params_mismatch); 2117 NextDiag = diag::note_template_nontype_parm_different_type; 2118 } 2119 Diag(NewNTTP->getLocation(), NextDiag) 2120 << NewNTTP->getType() 2121 << IsTemplateTemplateParm; 2122 Diag(OldNTTP->getLocation(), 2123 diag::note_template_nontype_parm_prev_declaration) 2124 << OldNTTP->getType(); 2125 } 2126 return false; 2127 } 2128 } else { 2129 // The template parameter lists of template template 2130 // parameters must agree. 2131 // FIXME: Could we perform a faster "type" comparison here? 2132 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2133 "Only template template parameters handled here"); 2134 TemplateTemplateParmDecl *OldTTP 2135 = cast<TemplateTemplateParmDecl>(*OldParm); 2136 TemplateTemplateParmDecl *NewTTP 2137 = cast<TemplateTemplateParmDecl>(*NewParm); 2138 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2139 OldTTP->getTemplateParameters(), 2140 Complain, 2141 /*IsTemplateTemplateParm=*/true, 2142 TemplateArgLoc)) 2143 return false; 2144 } 2145 } 2146 2147 return true; 2148} 2149 2150/// \brief Check whether a template can be declared within this scope. 2151/// 2152/// If the template declaration is valid in this scope, returns 2153/// false. Otherwise, issues a diagnostic and returns true. 2154bool 2155Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2156 // Find the nearest enclosing declaration scope. 2157 while ((S->getFlags() & Scope::DeclScope) == 0 || 2158 (S->getFlags() & Scope::TemplateParamScope) != 0) 2159 S = S->getParent(); 2160 2161 // C++ [temp]p2: 2162 // A template-declaration can appear only as a namespace scope or 2163 // class scope declaration. 2164 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2165 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2166 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2167 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2168 << TemplateParams->getSourceRange(); 2169 2170 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2171 Ctx = Ctx->getParent(); 2172 2173 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2174 return false; 2175 2176 return Diag(TemplateParams->getTemplateLoc(), 2177 diag::err_template_outside_namespace_or_class_scope) 2178 << TemplateParams->getSourceRange(); 2179} 2180 2181/// \brief Check whether a class template specialization or explicit 2182/// instantiation in the current context is well-formed. 2183/// 2184/// This routine determines whether a class template specialization or 2185/// explicit instantiation can be declared in the current context 2186/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits 2187/// appropriate diagnostics if there was an error. It returns true if 2188// there was an error that we cannot recover from, and false otherwise. 2189bool 2190Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate, 2191 ClassTemplateSpecializationDecl *PrevDecl, 2192 SourceLocation TemplateNameLoc, 2193 SourceRange ScopeSpecifierRange, 2194 bool PartialSpecialization, 2195 bool ExplicitInstantiation) { 2196 // C++ [temp.expl.spec]p2: 2197 // An explicit specialization shall be declared in the namespace 2198 // of which the template is a member, or, for member templates, in 2199 // the namespace of which the enclosing class or enclosing class 2200 // template is a member. An explicit specialization of a member 2201 // function, member class or static data member of a class 2202 // template shall be declared in the namespace of which the class 2203 // template is a member. Such a declaration may also be a 2204 // definition. If the declaration is not a definition, the 2205 // specialization may be defined later in the name- space in which 2206 // the explicit specialization was declared, or in a namespace 2207 // that encloses the one in which the explicit specialization was 2208 // declared. 2209 if (CurContext->getLookupContext()->isFunctionOrMethod()) { 2210 int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0; 2211 Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope) 2212 << Kind << ClassTemplate; 2213 return true; 2214 } 2215 2216 DeclContext *DC = CurContext->getEnclosingNamespaceContext(); 2217 DeclContext *TemplateContext 2218 = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext(); 2219 if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) && 2220 !ExplicitInstantiation) { 2221 // There is no prior declaration of this entity, so this 2222 // specialization must be in the same context as the template 2223 // itself. 2224 if (DC != TemplateContext) { 2225 if (isa<TranslationUnitDecl>(TemplateContext)) 2226 Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global) 2227 << PartialSpecialization 2228 << ClassTemplate << ScopeSpecifierRange; 2229 else if (isa<NamespaceDecl>(TemplateContext)) 2230 Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope) 2231 << PartialSpecialization << ClassTemplate 2232 << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange; 2233 2234 Diag(ClassTemplate->getLocation(), diag::note_template_decl_here); 2235 } 2236 2237 return false; 2238 } 2239 2240 // We have a previous declaration of this entity. Make sure that 2241 // this redeclaration (or definition) occurs in an enclosing namespace. 2242 if (!CurContext->Encloses(TemplateContext)) { 2243 // FIXME: In C++98, we would like to turn these errors into warnings, 2244 // dependent on a -Wc++0x flag. 2245 bool SuppressedDiag = false; 2246 int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0; 2247 if (isa<TranslationUnitDecl>(TemplateContext)) { 2248 if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x) 2249 Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope) 2250 << Kind << ClassTemplate << ScopeSpecifierRange; 2251 else 2252 SuppressedDiag = true; 2253 } else if (isa<NamespaceDecl>(TemplateContext)) { 2254 if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x) 2255 Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope) 2256 << Kind << ClassTemplate 2257 << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange; 2258 else 2259 SuppressedDiag = true; 2260 } 2261 2262 if (!SuppressedDiag) 2263 Diag(ClassTemplate->getLocation(), diag::note_template_decl_here); 2264 } 2265 2266 return false; 2267} 2268 2269/// \brief Check the non-type template arguments of a class template 2270/// partial specialization according to C++ [temp.class.spec]p9. 2271/// 2272/// \param TemplateParams the template parameters of the primary class 2273/// template. 2274/// 2275/// \param TemplateArg the template arguments of the class template 2276/// partial specialization. 2277/// 2278/// \param MirrorsPrimaryTemplate will be set true if the class 2279/// template partial specialization arguments are identical to the 2280/// implicit template arguments of the primary template. This is not 2281/// necessarily an error (C++0x), and it is left to the caller to diagnose 2282/// this condition when it is an error. 2283/// 2284/// \returns true if there was an error, false otherwise. 2285bool Sema::CheckClassTemplatePartialSpecializationArgs( 2286 TemplateParameterList *TemplateParams, 2287 const TemplateArgumentListBuilder &TemplateArgs, 2288 bool &MirrorsPrimaryTemplate) { 2289 // FIXME: the interface to this function will have to change to 2290 // accommodate variadic templates. 2291 MirrorsPrimaryTemplate = true; 2292 2293 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 2294 2295 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2296 // Determine whether the template argument list of the partial 2297 // specialization is identical to the implicit argument list of 2298 // the primary template. The caller may need to diagnostic this as 2299 // an error per C++ [temp.class.spec]p9b3. 2300 if (MirrorsPrimaryTemplate) { 2301 if (TemplateTypeParmDecl *TTP 2302 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 2303 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 2304 Context.getCanonicalType(ArgList[I].getAsType())) 2305 MirrorsPrimaryTemplate = false; 2306 } else if (TemplateTemplateParmDecl *TTP 2307 = dyn_cast<TemplateTemplateParmDecl>( 2308 TemplateParams->getParam(I))) { 2309 // FIXME: We should settle on either Declaration storage or 2310 // Expression storage for template template parameters. 2311 TemplateTemplateParmDecl *ArgDecl 2312 = dyn_cast_or_null<TemplateTemplateParmDecl>( 2313 ArgList[I].getAsDecl()); 2314 if (!ArgDecl) 2315 if (DeclRefExpr *DRE 2316 = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr())) 2317 ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl()); 2318 2319 if (!ArgDecl || 2320 ArgDecl->getIndex() != TTP->getIndex() || 2321 ArgDecl->getDepth() != TTP->getDepth()) 2322 MirrorsPrimaryTemplate = false; 2323 } 2324 } 2325 2326 NonTypeTemplateParmDecl *Param 2327 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 2328 if (!Param) { 2329 continue; 2330 } 2331 2332 Expr *ArgExpr = ArgList[I].getAsExpr(); 2333 if (!ArgExpr) { 2334 MirrorsPrimaryTemplate = false; 2335 continue; 2336 } 2337 2338 // C++ [temp.class.spec]p8: 2339 // A non-type argument is non-specialized if it is the name of a 2340 // non-type parameter. All other non-type arguments are 2341 // specialized. 2342 // 2343 // Below, we check the two conditions that only apply to 2344 // specialized non-type arguments, so skip any non-specialized 2345 // arguments. 2346 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 2347 if (NonTypeTemplateParmDecl *NTTP 2348 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 2349 if (MirrorsPrimaryTemplate && 2350 (Param->getIndex() != NTTP->getIndex() || 2351 Param->getDepth() != NTTP->getDepth())) 2352 MirrorsPrimaryTemplate = false; 2353 2354 continue; 2355 } 2356 2357 // C++ [temp.class.spec]p9: 2358 // Within the argument list of a class template partial 2359 // specialization, the following restrictions apply: 2360 // -- A partially specialized non-type argument expression 2361 // shall not involve a template parameter of the partial 2362 // specialization except when the argument expression is a 2363 // simple identifier. 2364 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 2365 Diag(ArgExpr->getLocStart(), 2366 diag::err_dependent_non_type_arg_in_partial_spec) 2367 << ArgExpr->getSourceRange(); 2368 return true; 2369 } 2370 2371 // -- The type of a template parameter corresponding to a 2372 // specialized non-type argument shall not be dependent on a 2373 // parameter of the specialization. 2374 if (Param->getType()->isDependentType()) { 2375 Diag(ArgExpr->getLocStart(), 2376 diag::err_dependent_typed_non_type_arg_in_partial_spec) 2377 << Param->getType() 2378 << ArgExpr->getSourceRange(); 2379 Diag(Param->getLocation(), diag::note_template_param_here); 2380 return true; 2381 } 2382 2383 MirrorsPrimaryTemplate = false; 2384 } 2385 2386 return false; 2387} 2388 2389Sema::DeclResult 2390Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 2391 TagUseKind TUK, 2392 SourceLocation KWLoc, 2393 const CXXScopeSpec &SS, 2394 TemplateTy TemplateD, 2395 SourceLocation TemplateNameLoc, 2396 SourceLocation LAngleLoc, 2397 ASTTemplateArgsPtr TemplateArgsIn, 2398 SourceLocation *TemplateArgLocs, 2399 SourceLocation RAngleLoc, 2400 AttributeList *Attr, 2401 MultiTemplateParamsArg TemplateParameterLists) { 2402 // Find the class template we're specializing 2403 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2404 ClassTemplateDecl *ClassTemplate 2405 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2406 2407 bool isPartialSpecialization = false; 2408 2409 // Check the validity of the template headers that introduce this 2410 // template. 2411 TemplateParameterList *TemplateParams 2412 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 2413 (TemplateParameterList**)TemplateParameterLists.get(), 2414 TemplateParameterLists.size()); 2415 if (TemplateParams && TemplateParams->size() > 0) { 2416 isPartialSpecialization = true; 2417 2418 // C++ [temp.class.spec]p10: 2419 // The template parameter list of a specialization shall not 2420 // contain default template argument values. 2421 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2422 Decl *Param = TemplateParams->getParam(I); 2423 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 2424 if (TTP->hasDefaultArgument()) { 2425 Diag(TTP->getDefaultArgumentLoc(), 2426 diag::err_default_arg_in_partial_spec); 2427 TTP->setDefaultArgument(QualType(), SourceLocation(), false); 2428 } 2429 } else if (NonTypeTemplateParmDecl *NTTP 2430 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2431 if (Expr *DefArg = NTTP->getDefaultArgument()) { 2432 Diag(NTTP->getDefaultArgumentLoc(), 2433 diag::err_default_arg_in_partial_spec) 2434 << DefArg->getSourceRange(); 2435 NTTP->setDefaultArgument(0); 2436 DefArg->Destroy(Context); 2437 } 2438 } else { 2439 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 2440 if (Expr *DefArg = TTP->getDefaultArgument()) { 2441 Diag(TTP->getDefaultArgumentLoc(), 2442 diag::err_default_arg_in_partial_spec) 2443 << DefArg->getSourceRange(); 2444 TTP->setDefaultArgument(0); 2445 DefArg->Destroy(Context); 2446 } 2447 } 2448 } 2449 } else if (!TemplateParams) 2450 Diag(KWLoc, diag::err_template_spec_needs_header) 2451 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 2452 2453 // Check that the specialization uses the same tag kind as the 2454 // original template. 2455 TagDecl::TagKind Kind; 2456 switch (TagSpec) { 2457 default: assert(0 && "Unknown tag type!"); 2458 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2459 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2460 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2461 } 2462 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2463 Kind, KWLoc, 2464 *ClassTemplate->getIdentifier())) { 2465 Diag(KWLoc, diag::err_use_with_wrong_tag) 2466 << ClassTemplate 2467 << CodeModificationHint::CreateReplacement(KWLoc, 2468 ClassTemplate->getTemplatedDecl()->getKindName()); 2469 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2470 diag::note_previous_use); 2471 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2472 } 2473 2474 // Translate the parser's template argument list in our AST format. 2475 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2476 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2477 2478 // Check that the template argument list is well-formed for this 2479 // template. 2480 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2481 TemplateArgs.size()); 2482 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2483 TemplateArgs.data(), TemplateArgs.size(), 2484 RAngleLoc, false, Converted)) 2485 return true; 2486 2487 assert((Converted.structuredSize() == 2488 ClassTemplate->getTemplateParameters()->size()) && 2489 "Converted template argument list is too short!"); 2490 2491 // Find the class template (partial) specialization declaration that 2492 // corresponds to these arguments. 2493 llvm::FoldingSetNodeID ID; 2494 if (isPartialSpecialization) { 2495 bool MirrorsPrimaryTemplate; 2496 if (CheckClassTemplatePartialSpecializationArgs( 2497 ClassTemplate->getTemplateParameters(), 2498 Converted, MirrorsPrimaryTemplate)) 2499 return true; 2500 2501 if (MirrorsPrimaryTemplate) { 2502 // C++ [temp.class.spec]p9b3: 2503 // 2504 // -- The argument list of the specialization shall not be identical 2505 // to the implicit argument list of the primary template. 2506 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 2507 << (TUK == TUK_Definition) 2508 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 2509 RAngleLoc)); 2510 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 2511 ClassTemplate->getIdentifier(), 2512 TemplateNameLoc, 2513 Attr, 2514 TemplateParams, 2515 AS_none); 2516 } 2517 2518 // FIXME: Template parameter list matters, too 2519 ClassTemplatePartialSpecializationDecl::Profile(ID, 2520 Converted.getFlatArguments(), 2521 Converted.flatSize(), 2522 Context); 2523 } else 2524 ClassTemplateSpecializationDecl::Profile(ID, 2525 Converted.getFlatArguments(), 2526 Converted.flatSize(), 2527 Context); 2528 void *InsertPos = 0; 2529 ClassTemplateSpecializationDecl *PrevDecl = 0; 2530 2531 if (isPartialSpecialization) 2532 PrevDecl 2533 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 2534 InsertPos); 2535 else 2536 PrevDecl 2537 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2538 2539 ClassTemplateSpecializationDecl *Specialization = 0; 2540 2541 // Check whether we can declare a class template specialization in 2542 // the current scope. 2543 if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl, 2544 TemplateNameLoc, 2545 SS.getRange(), 2546 isPartialSpecialization, 2547 /*ExplicitInstantiation=*/false)) 2548 return true; 2549 2550 // The canonical type 2551 QualType CanonType; 2552 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 2553 // Since the only prior class template specialization with these 2554 // arguments was referenced but not declared, reuse that 2555 // declaration node as our own, updating its source location to 2556 // reflect our new declaration. 2557 Specialization = PrevDecl; 2558 Specialization->setLocation(TemplateNameLoc); 2559 PrevDecl = 0; 2560 CanonType = Context.getTypeDeclType(Specialization); 2561 } else if (isPartialSpecialization) { 2562 // Build the canonical type that describes the converted template 2563 // arguments of the class template partial specialization. 2564 CanonType = Context.getTemplateSpecializationType( 2565 TemplateName(ClassTemplate), 2566 Converted.getFlatArguments(), 2567 Converted.flatSize()); 2568 2569 // Create a new class template partial specialization declaration node. 2570 TemplateParameterList *TemplateParams 2571 = static_cast<TemplateParameterList*>(*TemplateParameterLists.get()); 2572 ClassTemplatePartialSpecializationDecl *PrevPartial 2573 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 2574 ClassTemplatePartialSpecializationDecl *Partial 2575 = ClassTemplatePartialSpecializationDecl::Create(Context, 2576 ClassTemplate->getDeclContext(), 2577 TemplateNameLoc, 2578 TemplateParams, 2579 ClassTemplate, 2580 Converted, 2581 PrevPartial); 2582 2583 if (PrevPartial) { 2584 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 2585 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 2586 } else { 2587 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 2588 } 2589 Specialization = Partial; 2590 2591 // Check that all of the template parameters of the class template 2592 // partial specialization are deducible from the template 2593 // arguments. If not, this class template partial specialization 2594 // will never be used. 2595 llvm::SmallVector<bool, 8> DeducibleParams; 2596 DeducibleParams.resize(TemplateParams->size()); 2597 MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams); 2598 unsigned NumNonDeducible = 0; 2599 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 2600 if (!DeducibleParams[I]) 2601 ++NumNonDeducible; 2602 2603 if (NumNonDeducible) { 2604 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2605 << (NumNonDeducible > 1) 2606 << SourceRange(TemplateNameLoc, RAngleLoc); 2607 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2608 if (!DeducibleParams[I]) { 2609 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2610 if (Param->getDeclName()) 2611 Diag(Param->getLocation(), 2612 diag::note_partial_spec_unused_parameter) 2613 << Param->getDeclName(); 2614 else 2615 Diag(Param->getLocation(), 2616 diag::note_partial_spec_unused_parameter) 2617 << std::string("<anonymous>"); 2618 } 2619 } 2620 } 2621 } else { 2622 // Create a new class template specialization declaration node for 2623 // this explicit specialization. 2624 Specialization 2625 = ClassTemplateSpecializationDecl::Create(Context, 2626 ClassTemplate->getDeclContext(), 2627 TemplateNameLoc, 2628 ClassTemplate, 2629 Converted, 2630 PrevDecl); 2631 2632 if (PrevDecl) { 2633 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 2634 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 2635 } else { 2636 ClassTemplate->getSpecializations().InsertNode(Specialization, 2637 InsertPos); 2638 } 2639 2640 CanonType = Context.getTypeDeclType(Specialization); 2641 } 2642 2643 // Note that this is an explicit specialization. 2644 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 2645 2646 // Check that this isn't a redefinition of this specialization. 2647 if (TUK == TUK_Definition) { 2648 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 2649 // FIXME: Should also handle explicit specialization after implicit 2650 // instantiation with a special diagnostic. 2651 SourceRange Range(TemplateNameLoc, RAngleLoc); 2652 Diag(TemplateNameLoc, diag::err_redefinition) 2653 << Context.getTypeDeclType(Specialization) << Range; 2654 Diag(Def->getLocation(), diag::note_previous_definition); 2655 Specialization->setInvalidDecl(); 2656 return true; 2657 } 2658 } 2659 2660 // Build the fully-sugared type for this class template 2661 // specialization as the user wrote in the specialization 2662 // itself. This means that we'll pretty-print the type retrieved 2663 // from the specialization's declaration the way that the user 2664 // actually wrote the specialization, rather than formatting the 2665 // name based on the "canonical" representation used to store the 2666 // template arguments in the specialization. 2667 QualType WrittenTy 2668 = Context.getTemplateSpecializationType(Name, 2669 TemplateArgs.data(), 2670 TemplateArgs.size(), 2671 CanonType); 2672 Specialization->setTypeAsWritten(WrittenTy); 2673 TemplateArgsIn.release(); 2674 2675 // C++ [temp.expl.spec]p9: 2676 // A template explicit specialization is in the scope of the 2677 // namespace in which the template was defined. 2678 // 2679 // We actually implement this paragraph where we set the semantic 2680 // context (in the creation of the ClassTemplateSpecializationDecl), 2681 // but we also maintain the lexical context where the actual 2682 // definition occurs. 2683 Specialization->setLexicalDeclContext(CurContext); 2684 2685 // We may be starting the definition of this specialization. 2686 if (TUK == TUK_Definition) 2687 Specialization->startDefinition(); 2688 2689 // Add the specialization into its lexical context, so that it can 2690 // be seen when iterating through the list of declarations in that 2691 // context. However, specializations are not found by name lookup. 2692 CurContext->addDecl(Specialization); 2693 return DeclPtrTy::make(Specialization); 2694} 2695 2696Sema::DeclPtrTy 2697Sema::ActOnTemplateDeclarator(Scope *S, 2698 MultiTemplateParamsArg TemplateParameterLists, 2699 Declarator &D) { 2700 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 2701} 2702 2703Sema::DeclPtrTy 2704Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 2705 MultiTemplateParamsArg TemplateParameterLists, 2706 Declarator &D) { 2707 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 2708 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 2709 "Not a function declarator!"); 2710 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 2711 2712 if (FTI.hasPrototype) { 2713 // FIXME: Diagnose arguments without names in C. 2714 } 2715 2716 Scope *ParentScope = FnBodyScope->getParent(); 2717 2718 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 2719 move(TemplateParameterLists), 2720 /*IsFunctionDefinition=*/true); 2721 if (FunctionTemplateDecl *FunctionTemplate 2722 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 2723 return ActOnStartOfFunctionDef(FnBodyScope, 2724 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 2725 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 2726 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 2727 return DeclPtrTy(); 2728} 2729 2730// Explicit instantiation of a class template specialization 2731Sema::DeclResult 2732Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc, 2733 unsigned TagSpec, 2734 SourceLocation KWLoc, 2735 const CXXScopeSpec &SS, 2736 TemplateTy TemplateD, 2737 SourceLocation TemplateNameLoc, 2738 SourceLocation LAngleLoc, 2739 ASTTemplateArgsPtr TemplateArgsIn, 2740 SourceLocation *TemplateArgLocs, 2741 SourceLocation RAngleLoc, 2742 AttributeList *Attr) { 2743 // Find the class template we're specializing 2744 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2745 ClassTemplateDecl *ClassTemplate 2746 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2747 2748 // Check that the specialization uses the same tag kind as the 2749 // original template. 2750 TagDecl::TagKind Kind; 2751 switch (TagSpec) { 2752 default: assert(0 && "Unknown tag type!"); 2753 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2754 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2755 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2756 } 2757 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2758 Kind, KWLoc, 2759 *ClassTemplate->getIdentifier())) { 2760 Diag(KWLoc, diag::err_use_with_wrong_tag) 2761 << ClassTemplate 2762 << CodeModificationHint::CreateReplacement(KWLoc, 2763 ClassTemplate->getTemplatedDecl()->getKindName()); 2764 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2765 diag::note_previous_use); 2766 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2767 } 2768 2769 // C++0x [temp.explicit]p2: 2770 // [...] An explicit instantiation shall appear in an enclosing 2771 // namespace of its template. [...] 2772 // 2773 // This is C++ DR 275. 2774 if (CheckClassTemplateSpecializationScope(ClassTemplate, 0, 2775 TemplateNameLoc, 2776 SS.getRange(), 2777 /*PartialSpecialization=*/false, 2778 /*ExplicitInstantiation=*/true)) 2779 return true; 2780 2781 // Translate the parser's template argument list in our AST format. 2782 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2783 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2784 2785 // Check that the template argument list is well-formed for this 2786 // template. 2787 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2788 TemplateArgs.size()); 2789 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2790 TemplateArgs.data(), TemplateArgs.size(), 2791 RAngleLoc, false, Converted)) 2792 return true; 2793 2794 assert((Converted.structuredSize() == 2795 ClassTemplate->getTemplateParameters()->size()) && 2796 "Converted template argument list is too short!"); 2797 2798 // Find the class template specialization declaration that 2799 // corresponds to these arguments. 2800 llvm::FoldingSetNodeID ID; 2801 ClassTemplateSpecializationDecl::Profile(ID, 2802 Converted.getFlatArguments(), 2803 Converted.flatSize(), 2804 Context); 2805 void *InsertPos = 0; 2806 ClassTemplateSpecializationDecl *PrevDecl 2807 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2808 2809 ClassTemplateSpecializationDecl *Specialization = 0; 2810 2811 bool SpecializationRequiresInstantiation = true; 2812 if (PrevDecl) { 2813 if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) { 2814 // This particular specialization has already been declared or 2815 // instantiated. We cannot explicitly instantiate it. 2816 Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate) 2817 << Context.getTypeDeclType(PrevDecl); 2818 Diag(PrevDecl->getLocation(), 2819 diag::note_previous_explicit_instantiation); 2820 return DeclPtrTy::make(PrevDecl); 2821 } 2822 2823 if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 2824 // C++ DR 259, C++0x [temp.explicit]p4: 2825 // For a given set of template parameters, if an explicit 2826 // instantiation of a template appears after a declaration of 2827 // an explicit specialization for that template, the explicit 2828 // instantiation has no effect. 2829 if (!getLangOptions().CPlusPlus0x) { 2830 Diag(TemplateNameLoc, 2831 diag::ext_explicit_instantiation_after_specialization) 2832 << Context.getTypeDeclType(PrevDecl); 2833 Diag(PrevDecl->getLocation(), 2834 diag::note_previous_template_specialization); 2835 } 2836 2837 // Create a new class template specialization declaration node 2838 // for this explicit specialization. This node is only used to 2839 // record the existence of this explicit instantiation for 2840 // accurate reproduction of the source code; we don't actually 2841 // use it for anything, since it is semantically irrelevant. 2842 Specialization 2843 = ClassTemplateSpecializationDecl::Create(Context, 2844 ClassTemplate->getDeclContext(), 2845 TemplateNameLoc, 2846 ClassTemplate, 2847 Converted, 0); 2848 Specialization->setLexicalDeclContext(CurContext); 2849 CurContext->addDecl(Specialization); 2850 return DeclPtrTy::make(Specialization); 2851 } 2852 2853 // If we have already (implicitly) instantiated this 2854 // specialization, there is less work to do. 2855 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation) 2856 SpecializationRequiresInstantiation = false; 2857 2858 // Since the only prior class template specialization with these 2859 // arguments was referenced but not declared, reuse that 2860 // declaration node as our own, updating its source location to 2861 // reflect our new declaration. 2862 Specialization = PrevDecl; 2863 Specialization->setLocation(TemplateNameLoc); 2864 PrevDecl = 0; 2865 } else { 2866 // Create a new class template specialization declaration node for 2867 // this explicit specialization. 2868 Specialization 2869 = ClassTemplateSpecializationDecl::Create(Context, 2870 ClassTemplate->getDeclContext(), 2871 TemplateNameLoc, 2872 ClassTemplate, 2873 Converted, 0); 2874 2875 ClassTemplate->getSpecializations().InsertNode(Specialization, 2876 InsertPos); 2877 } 2878 2879 // Build the fully-sugared type for this explicit instantiation as 2880 // the user wrote in the explicit instantiation itself. This means 2881 // that we'll pretty-print the type retrieved from the 2882 // specialization's declaration the way that the user actually wrote 2883 // the explicit instantiation, rather than formatting the name based 2884 // on the "canonical" representation used to store the template 2885 // arguments in the specialization. 2886 QualType WrittenTy 2887 = Context.getTemplateSpecializationType(Name, 2888 TemplateArgs.data(), 2889 TemplateArgs.size(), 2890 Context.getTypeDeclType(Specialization)); 2891 Specialization->setTypeAsWritten(WrittenTy); 2892 TemplateArgsIn.release(); 2893 2894 // Add the explicit instantiation into its lexical context. However, 2895 // since explicit instantiations are never found by name lookup, we 2896 // just put it into the declaration context directly. 2897 Specialization->setLexicalDeclContext(CurContext); 2898 CurContext->addDecl(Specialization); 2899 2900 // C++ [temp.explicit]p3: 2901 // A definition of a class template or class member template 2902 // shall be in scope at the point of the explicit instantiation of 2903 // the class template or class member template. 2904 // 2905 // This check comes when we actually try to perform the 2906 // instantiation. 2907 if (SpecializationRequiresInstantiation) 2908 InstantiateClassTemplateSpecialization(Specialization, true); 2909 else // Instantiate the members of this class template specialization. 2910 InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization); 2911 2912 return DeclPtrTy::make(Specialization); 2913} 2914 2915// Explicit instantiation of a member class of a class template. 2916Sema::DeclResult 2917Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc, 2918 unsigned TagSpec, 2919 SourceLocation KWLoc, 2920 const CXXScopeSpec &SS, 2921 IdentifierInfo *Name, 2922 SourceLocation NameLoc, 2923 AttributeList *Attr) { 2924 2925 bool Owned = false; 2926 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 2927 KWLoc, SS, Name, NameLoc, Attr, AS_none, 2928 MultiTemplateParamsArg(*this, 0, 0), Owned); 2929 if (!TagD) 2930 return true; 2931 2932 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 2933 if (Tag->isEnum()) { 2934 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 2935 << Context.getTypeDeclType(Tag); 2936 return true; 2937 } 2938 2939 if (Tag->isInvalidDecl()) 2940 return true; 2941 2942 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 2943 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 2944 if (!Pattern) { 2945 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 2946 << Context.getTypeDeclType(Record); 2947 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 2948 return true; 2949 } 2950 2951 // C++0x [temp.explicit]p2: 2952 // [...] An explicit instantiation shall appear in an enclosing 2953 // namespace of its template. [...] 2954 // 2955 // This is C++ DR 275. 2956 if (getLangOptions().CPlusPlus0x) { 2957 // FIXME: In C++98, we would like to turn these errors into warnings, 2958 // dependent on a -Wc++0x flag. 2959 DeclContext *PatternContext 2960 = Pattern->getDeclContext()->getEnclosingNamespaceContext(); 2961 if (!CurContext->Encloses(PatternContext)) { 2962 Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope) 2963 << Record << cast<NamedDecl>(PatternContext) << SS.getRange(); 2964 Diag(Pattern->getLocation(), diag::note_previous_declaration); 2965 } 2966 } 2967 2968 if (!Record->getDefinition(Context)) { 2969 // If the class has a definition, instantiate it (and all of its 2970 // members, recursively). 2971 Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 2972 if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern, 2973 getTemplateInstantiationArgs(Record), 2974 /*ExplicitInstantiation=*/true)) 2975 return true; 2976 } else // Instantiate all of the members of the class. 2977 InstantiateClassMembers(TemplateLoc, Record, 2978 getTemplateInstantiationArgs(Record)); 2979 2980 // FIXME: We don't have any representation for explicit instantiations of 2981 // member classes. Such a representation is not needed for compilation, but it 2982 // should be available for clients that want to see all of the declarations in 2983 // the source code. 2984 return TagD; 2985} 2986 2987Sema::TypeResult 2988Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 2989 const IdentifierInfo &II, SourceLocation IdLoc) { 2990 NestedNameSpecifier *NNS 2991 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2992 if (!NNS) 2993 return true; 2994 2995 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 2996 if (T.isNull()) 2997 return true; 2998 return T.getAsOpaquePtr(); 2999} 3000 3001Sema::TypeResult 3002Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 3003 SourceLocation TemplateLoc, TypeTy *Ty) { 3004 QualType T = GetTypeFromParser(Ty); 3005 NestedNameSpecifier *NNS 3006 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 3007 const TemplateSpecializationType *TemplateId 3008 = T->getAsTemplateSpecializationType(); 3009 assert(TemplateId && "Expected a template specialization type"); 3010 3011 if (computeDeclContext(SS, false)) { 3012 // If we can compute a declaration context, then the "typename" 3013 // keyword was superfluous. Just build a QualifiedNameType to keep 3014 // track of the nested-name-specifier. 3015 3016 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 3017 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 3018 } 3019 3020 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 3021} 3022 3023/// \brief Build the type that describes a C++ typename specifier, 3024/// e.g., "typename T::type". 3025QualType 3026Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 3027 SourceRange Range) { 3028 CXXRecordDecl *CurrentInstantiation = 0; 3029 if (NNS->isDependent()) { 3030 CurrentInstantiation = getCurrentInstantiationOf(NNS); 3031 3032 // If the nested-name-specifier does not refer to the current 3033 // instantiation, then build a typename type. 3034 if (!CurrentInstantiation) 3035 return Context.getTypenameType(NNS, &II); 3036 } 3037 3038 DeclContext *Ctx = 0; 3039 3040 if (CurrentInstantiation) 3041 Ctx = CurrentInstantiation; 3042 else { 3043 CXXScopeSpec SS; 3044 SS.setScopeRep(NNS); 3045 SS.setRange(Range); 3046 if (RequireCompleteDeclContext(SS)) 3047 return QualType(); 3048 3049 Ctx = computeDeclContext(SS); 3050 } 3051 assert(Ctx && "No declaration context?"); 3052 3053 DeclarationName Name(&II); 3054 LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName, 3055 false); 3056 unsigned DiagID = 0; 3057 Decl *Referenced = 0; 3058 switch (Result.getKind()) { 3059 case LookupResult::NotFound: 3060 if (Ctx->isTranslationUnit()) 3061 DiagID = diag::err_typename_nested_not_found_global; 3062 else 3063 DiagID = diag::err_typename_nested_not_found; 3064 break; 3065 3066 case LookupResult::Found: 3067 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) { 3068 // We found a type. Build a QualifiedNameType, since the 3069 // typename-specifier was just sugar. FIXME: Tell 3070 // QualifiedNameType that it has a "typename" prefix. 3071 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 3072 } 3073 3074 DiagID = diag::err_typename_nested_not_type; 3075 Referenced = Result.getAsDecl(); 3076 break; 3077 3078 case LookupResult::FoundOverloaded: 3079 DiagID = diag::err_typename_nested_not_type; 3080 Referenced = *Result.begin(); 3081 break; 3082 3083 case LookupResult::AmbiguousBaseSubobjectTypes: 3084 case LookupResult::AmbiguousBaseSubobjects: 3085 case LookupResult::AmbiguousReference: 3086 DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range); 3087 return QualType(); 3088 } 3089 3090 // If we get here, it's because name lookup did not find a 3091 // type. Emit an appropriate diagnostic and return an error. 3092 if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx)) 3093 Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx; 3094 else 3095 Diag(Range.getEnd(), DiagID) << Range << Name; 3096 if (Referenced) 3097 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 3098 << Name; 3099 return QualType(); 3100} 3101 3102namespace { 3103 // See Sema::RebuildTypeInCurrentInstantiation 3104 class VISIBILITY_HIDDEN CurrentInstantiationRebuilder 3105 : public TreeTransform<CurrentInstantiationRebuilder> 3106 { 3107 SourceLocation Loc; 3108 DeclarationName Entity; 3109 3110 public: 3111 CurrentInstantiationRebuilder(Sema &SemaRef, 3112 SourceLocation Loc, 3113 DeclarationName Entity) 3114 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 3115 Loc(Loc), Entity(Entity) { } 3116 3117 /// \brief Determine whether the given type \p T has already been 3118 /// transformed. 3119 /// 3120 /// For the purposes of type reconstruction, a type has already been 3121 /// transformed if it is NULL or if it is not dependent. 3122 bool AlreadyTransformed(QualType T) { 3123 return T.isNull() || !T->isDependentType(); 3124 } 3125 3126 /// \brief Returns the location of the entity whose type is being 3127 /// rebuilt. 3128 SourceLocation getBaseLocation() { return Loc; } 3129 3130 /// \brief Returns the name of the entity whose type is being rebuilt. 3131 DeclarationName getBaseEntity() { return Entity; } 3132 3133 /// \brief Transforms an expression by returning the expression itself 3134 /// (an identity function). 3135 /// 3136 /// FIXME: This is completely unsafe; we will need to actually clone the 3137 /// expressions. 3138 Sema::OwningExprResult TransformExpr(Expr *E) { 3139 return getSema().Owned(E); 3140 } 3141 3142 /// \brief Transforms a typename type by determining whether the type now 3143 /// refers to a member of the current instantiation, and then 3144 /// type-checking and building a QualifiedNameType (when possible). 3145 QualType TransformTypenameType(const TypenameType *T); 3146 }; 3147} 3148 3149QualType 3150CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) { 3151 NestedNameSpecifier *NNS 3152 = TransformNestedNameSpecifier(T->getQualifier(), 3153 /*FIXME:*/SourceRange(getBaseLocation())); 3154 if (!NNS) 3155 return QualType(); 3156 3157 // If the nested-name-specifier did not change, and we cannot compute the 3158 // context corresponding to the nested-name-specifier, then this 3159 // typename type will not change; exit early. 3160 CXXScopeSpec SS; 3161 SS.setRange(SourceRange(getBaseLocation())); 3162 SS.setScopeRep(NNS); 3163 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 3164 return QualType(T, 0); 3165 3166 // Rebuild the typename type, which will probably turn into a 3167 // QualifiedNameType. 3168 if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 3169 QualType NewTemplateId 3170 = TransformType(QualType(TemplateId, 0)); 3171 if (NewTemplateId.isNull()) 3172 return QualType(); 3173 3174 if (NNS == T->getQualifier() && 3175 NewTemplateId == QualType(TemplateId, 0)) 3176 return QualType(T, 0); 3177 3178 return getDerived().RebuildTypenameType(NNS, NewTemplateId); 3179 } 3180 3181 return getDerived().RebuildTypenameType(NNS, T->getIdentifier()); 3182} 3183 3184/// \brief Rebuilds a type within the context of the current instantiation. 3185/// 3186/// The type \p T is part of the type of an out-of-line member definition of 3187/// a class template (or class template partial specialization) that was parsed 3188/// and constructed before we entered the scope of the class template (or 3189/// partial specialization thereof). This routine will rebuild that type now 3190/// that we have entered the declarator's scope, which may produce different 3191/// canonical types, e.g., 3192/// 3193/// \code 3194/// template<typename T> 3195/// struct X { 3196/// typedef T* pointer; 3197/// pointer data(); 3198/// }; 3199/// 3200/// template<typename T> 3201/// typename X<T>::pointer X<T>::data() { ... } 3202/// \endcode 3203/// 3204/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 3205/// since we do not know that we can look into X<T> when we parsed the type. 3206/// This function will rebuild the type, performing the lookup of "pointer" 3207/// in X<T> and returning a QualifiedNameType whose canonical type is the same 3208/// as the canonical type of T*, allowing the return types of the out-of-line 3209/// definition and the declaration to match. 3210QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 3211 DeclarationName Name) { 3212 if (T.isNull() || !T->isDependentType()) 3213 return T; 3214 3215 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 3216 return Rebuilder.TransformType(T); 3217} 3218