SemaTemplate.cpp revision 6964b3f80ce1ba489e7e25e7cd58062699af9b0c
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32using namespace clang;
33using namespace sema;
34
35// Exported for use by Parser.
36SourceRange
37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38                              unsigned N) {
39  if (!N) return SourceRange();
40  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41}
42
43/// \brief Determine whether the declaration found is acceptable as the name
44/// of a template and, if so, return that template declaration. Otherwise,
45/// returns NULL.
46static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47                                           NamedDecl *Orig,
48                                           bool AllowFunctionTemplates) {
49  NamedDecl *D = Orig->getUnderlyingDecl();
50
51  if (isa<TemplateDecl>(D)) {
52    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53      return 0;
54
55    return Orig;
56  }
57
58  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59    // C++ [temp.local]p1:
60    //   Like normal (non-template) classes, class templates have an
61    //   injected-class-name (Clause 9). The injected-class-name
62    //   can be used with or without a template-argument-list. When
63    //   it is used without a template-argument-list, it is
64    //   equivalent to the injected-class-name followed by the
65    //   template-parameters of the class template enclosed in
66    //   <>. When it is used with a template-argument-list, it
67    //   refers to the specified class template specialization,
68    //   which could be the current specialization or another
69    //   specialization.
70    if (Record->isInjectedClassName()) {
71      Record = cast<CXXRecordDecl>(Record->getDeclContext());
72      if (Record->getDescribedClassTemplate())
73        return Record->getDescribedClassTemplate();
74
75      if (ClassTemplateSpecializationDecl *Spec
76            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77        return Spec->getSpecializedTemplate();
78    }
79
80    return 0;
81  }
82
83  return 0;
84}
85
86void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87                                         bool AllowFunctionTemplates) {
88  // The set of class templates we've already seen.
89  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90  LookupResult::Filter filter = R.makeFilter();
91  while (filter.hasNext()) {
92    NamedDecl *Orig = filter.next();
93    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94                                               AllowFunctionTemplates);
95    if (!Repl)
96      filter.erase();
97    else if (Repl != Orig) {
98
99      // C++ [temp.local]p3:
100      //   A lookup that finds an injected-class-name (10.2) can result in an
101      //   ambiguity in certain cases (for example, if it is found in more than
102      //   one base class). If all of the injected-class-names that are found
103      //   refer to specializations of the same class template, and if the name
104      //   is used as a template-name, the reference refers to the class
105      //   template itself and not a specialization thereof, and is not
106      //   ambiguous.
107      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108        if (!ClassTemplates.insert(ClassTmpl)) {
109          filter.erase();
110          continue;
111        }
112
113      // FIXME: we promote access to public here as a workaround to
114      // the fact that LookupResult doesn't let us remember that we
115      // found this template through a particular injected class name,
116      // which means we end up doing nasty things to the invariants.
117      // Pretending that access is public is *much* safer.
118      filter.replace(Repl, AS_public);
119    }
120  }
121  filter.done();
122}
123
124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                         bool AllowFunctionTemplates) {
126  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128      return true;
129
130  return false;
131}
132
133TemplateNameKind Sema::isTemplateName(Scope *S,
134                                      CXXScopeSpec &SS,
135                                      bool hasTemplateKeyword,
136                                      UnqualifiedId &Name,
137                                      ParsedType ObjectTypePtr,
138                                      bool EnteringContext,
139                                      TemplateTy &TemplateResult,
140                                      bool &MemberOfUnknownSpecialization) {
141  assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143  DeclarationName TName;
144  MemberOfUnknownSpecialization = false;
145
146  switch (Name.getKind()) {
147  case UnqualifiedId::IK_Identifier:
148    TName = DeclarationName(Name.Identifier);
149    break;
150
151  case UnqualifiedId::IK_OperatorFunctionId:
152    TName = Context.DeclarationNames.getCXXOperatorName(
153                                              Name.OperatorFunctionId.Operator);
154    break;
155
156  case UnqualifiedId::IK_LiteralOperatorId:
157    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158    break;
159
160  default:
161    return TNK_Non_template;
162  }
163
164  QualType ObjectType = ObjectTypePtr.get();
165
166  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                     MemberOfUnknownSpecialization);
169  if (R.empty()) return TNK_Non_template;
170  if (R.isAmbiguous()) {
171    // Suppress diagnostics;  we'll redo this lookup later.
172    R.suppressDiagnostics();
173
174    // FIXME: we might have ambiguous templates, in which case we
175    // should at least parse them properly!
176    return TNK_Non_template;
177  }
178
179  TemplateName Template;
180  TemplateNameKind TemplateKind;
181
182  unsigned ResultCount = R.end() - R.begin();
183  if (ResultCount > 1) {
184    // We assume that we'll preserve the qualifier from a function
185    // template name in other ways.
186    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187    TemplateKind = TNK_Function_template;
188
189    // We'll do this lookup again later.
190    R.suppressDiagnostics();
191  } else {
192    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194    if (SS.isSet() && !SS.isInvalid()) {
195      NestedNameSpecifier *Qualifier
196        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197      Template = Context.getQualifiedTemplateName(Qualifier,
198                                                  hasTemplateKeyword, TD);
199    } else {
200      Template = TemplateName(TD);
201    }
202
203    if (isa<FunctionTemplateDecl>(TD)) {
204      TemplateKind = TNK_Function_template;
205
206      // We'll do this lookup again later.
207      R.suppressDiagnostics();
208    } else {
209      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210             isa<TypeAliasTemplateDecl>(TD));
211      TemplateKind = TNK_Type_template;
212    }
213  }
214
215  TemplateResult = TemplateTy::make(Template);
216  return TemplateKind;
217}
218
219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                       SourceLocation IILoc,
221                                       Scope *S,
222                                       const CXXScopeSpec *SS,
223                                       TemplateTy &SuggestedTemplate,
224                                       TemplateNameKind &SuggestedKind) {
225  // We can't recover unless there's a dependent scope specifier preceding the
226  // template name.
227  // FIXME: Typo correction?
228  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229      computeDeclContext(*SS))
230    return false;
231
232  // The code is missing a 'template' keyword prior to the dependent template
233  // name.
234  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235  Diag(IILoc, diag::err_template_kw_missing)
236    << Qualifier << II.getName()
237    << FixItHint::CreateInsertion(IILoc, "template ");
238  SuggestedTemplate
239    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240  SuggestedKind = TNK_Dependent_template_name;
241  return true;
242}
243
244void Sema::LookupTemplateName(LookupResult &Found,
245                              Scope *S, CXXScopeSpec &SS,
246                              QualType ObjectType,
247                              bool EnteringContext,
248                              bool &MemberOfUnknownSpecialization) {
249  // Determine where to perform name lookup
250  MemberOfUnknownSpecialization = false;
251  DeclContext *LookupCtx = 0;
252  bool isDependent = false;
253  if (!ObjectType.isNull()) {
254    // This nested-name-specifier occurs in a member access expression, e.g.,
255    // x->B::f, and we are looking into the type of the object.
256    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257    LookupCtx = computeDeclContext(ObjectType);
258    isDependent = ObjectType->isDependentType();
259    assert((isDependent || !ObjectType->isIncompleteType()) &&
260           "Caller should have completed object type");
261
262    // Template names cannot appear inside an Objective-C class or object type.
263    if (ObjectType->isObjCObjectOrInterfaceType()) {
264      Found.clear();
265      return;
266    }
267  } else if (SS.isSet()) {
268    // This nested-name-specifier occurs after another nested-name-specifier,
269    // so long into the context associated with the prior nested-name-specifier.
270    LookupCtx = computeDeclContext(SS, EnteringContext);
271    isDependent = isDependentScopeSpecifier(SS);
272
273    // The declaration context must be complete.
274    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275      return;
276  }
277
278  bool ObjectTypeSearchedInScope = false;
279  bool AllowFunctionTemplatesInLookup = true;
280  if (LookupCtx) {
281    // Perform "qualified" name lookup into the declaration context we
282    // computed, which is either the type of the base of a member access
283    // expression or the declaration context associated with a prior
284    // nested-name-specifier.
285    LookupQualifiedName(Found, LookupCtx);
286    if (!ObjectType.isNull() && Found.empty()) {
287      // C++ [basic.lookup.classref]p1:
288      //   In a class member access expression (5.2.5), if the . or -> token is
289      //   immediately followed by an identifier followed by a <, the
290      //   identifier must be looked up to determine whether the < is the
291      //   beginning of a template argument list (14.2) or a less-than operator.
292      //   The identifier is first looked up in the class of the object
293      //   expression. If the identifier is not found, it is then looked up in
294      //   the context of the entire postfix-expression and shall name a class
295      //   or function template.
296      if (S) LookupName(Found, S);
297      ObjectTypeSearchedInScope = true;
298      AllowFunctionTemplatesInLookup = false;
299    }
300  } else if (isDependent && (!S || ObjectType.isNull())) {
301    // We cannot look into a dependent object type or nested nme
302    // specifier.
303    MemberOfUnknownSpecialization = true;
304    return;
305  } else {
306    // Perform unqualified name lookup in the current scope.
307    LookupName(Found, S);
308
309    if (!ObjectType.isNull())
310      AllowFunctionTemplatesInLookup = false;
311  }
312
313  if (Found.empty() && !isDependent) {
314    // If we did not find any names, attempt to correct any typos.
315    DeclarationName Name = Found.getLookupName();
316    Found.clear();
317    // Simple filter callback that, for keywords, only accepts the C++ *_cast
318    CorrectionCandidateCallback FilterCCC;
319    FilterCCC.WantTypeSpecifiers = false;
320    FilterCCC.WantExpressionKeywords = false;
321    FilterCCC.WantRemainingKeywords = false;
322    FilterCCC.WantCXXNamedCasts = true;
323    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324                                               Found.getLookupKind(), S, &SS,
325                                               FilterCCC, LookupCtx)) {
326      Found.setLookupName(Corrected.getCorrection());
327      if (Corrected.getCorrectionDecl())
328        Found.addDecl(Corrected.getCorrectionDecl());
329      FilterAcceptableTemplateNames(Found);
330      if (!Found.empty()) {
331        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333        if (LookupCtx)
334          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337        else
338          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339            << Name << CorrectedQuotedStr
340            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342          Diag(Template->getLocation(), diag::note_previous_decl)
343            << CorrectedQuotedStr;
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
358      !(getLangOpts().CPlusPlus0x && !Found.empty())) {
359    // C++03 [basic.lookup.classref]p1:
360    //   [...] If the lookup in the class of the object expression finds a
361    //   template, the name is also looked up in the context of the entire
362    //   postfix-expression and [...]
363    //
364    // Note: C++11 does not perform this second lookup.
365    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
366                            LookupOrdinaryName);
367    LookupName(FoundOuter, S);
368    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
369
370    if (FoundOuter.empty()) {
371      //   - if the name is not found, the name found in the class of the
372      //     object expression is used, otherwise
373    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
374               FoundOuter.isAmbiguous()) {
375      //   - if the name is found in the context of the entire
376      //     postfix-expression and does not name a class template, the name
377      //     found in the class of the object expression is used, otherwise
378      FoundOuter.clear();
379    } else if (!Found.isSuppressingDiagnostics()) {
380      //   - if the name found is a class template, it must refer to the same
381      //     entity as the one found in the class of the object expression,
382      //     otherwise the program is ill-formed.
383      if (!Found.isSingleResult() ||
384          Found.getFoundDecl()->getCanonicalDecl()
385            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
386        Diag(Found.getNameLoc(),
387             diag::ext_nested_name_member_ref_lookup_ambiguous)
388          << Found.getLookupName()
389          << ObjectType;
390        Diag(Found.getRepresentativeDecl()->getLocation(),
391             diag::note_ambig_member_ref_object_type)
392          << ObjectType;
393        Diag(FoundOuter.getFoundDecl()->getLocation(),
394             diag::note_ambig_member_ref_scope);
395
396        // Recover by taking the template that we found in the object
397        // expression's type.
398      }
399    }
400  }
401}
402
403/// ActOnDependentIdExpression - Handle a dependent id-expression that
404/// was just parsed.  This is only possible with an explicit scope
405/// specifier naming a dependent type.
406ExprResult
407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
408                                 SourceLocation TemplateKWLoc,
409                                 const DeclarationNameInfo &NameInfo,
410                                 bool isAddressOfOperand,
411                           const TemplateArgumentListInfo *TemplateArgs) {
412  DeclContext *DC = getFunctionLevelDeclContext();
413
414  if (!isAddressOfOperand &&
415      isa<CXXMethodDecl>(DC) &&
416      cast<CXXMethodDecl>(DC)->isInstance()) {
417    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
418
419    // Since the 'this' expression is synthesized, we don't need to
420    // perform the double-lookup check.
421    NamedDecl *FirstQualifierInScope = 0;
422
423    return Owned(CXXDependentScopeMemberExpr::Create(Context,
424                                                     /*This*/ 0, ThisType,
425                                                     /*IsArrow*/ true,
426                                                     /*Op*/ SourceLocation(),
427                                               SS.getWithLocInContext(Context),
428                                                     TemplateKWLoc,
429                                                     FirstQualifierInScope,
430                                                     NameInfo,
431                                                     TemplateArgs));
432  }
433
434  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
435}
436
437ExprResult
438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
439                                SourceLocation TemplateKWLoc,
440                                const DeclarationNameInfo &NameInfo,
441                                const TemplateArgumentListInfo *TemplateArgs) {
442  return Owned(DependentScopeDeclRefExpr::Create(Context,
443                                               SS.getWithLocInContext(Context),
444                                                 TemplateKWLoc,
445                                                 NameInfo,
446                                                 TemplateArgs));
447}
448
449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
450/// that the template parameter 'PrevDecl' is being shadowed by a new
451/// declaration at location Loc. Returns true to indicate that this is
452/// an error, and false otherwise.
453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
454  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
455
456  // Microsoft Visual C++ permits template parameters to be shadowed.
457  if (getLangOpts().MicrosoftExt)
458    return;
459
460  // C++ [temp.local]p4:
461  //   A template-parameter shall not be redeclared within its
462  //   scope (including nested scopes).
463  Diag(Loc, diag::err_template_param_shadow)
464    << cast<NamedDecl>(PrevDecl)->getDeclName();
465  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
466  return;
467}
468
469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
470/// the parameter D to reference the templated declaration and return a pointer
471/// to the template declaration. Otherwise, do nothing to D and return null.
472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
473  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
474    D = Temp->getTemplatedDecl();
475    return Temp;
476  }
477  return 0;
478}
479
480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
481                                             SourceLocation EllipsisLoc) const {
482  assert(Kind == Template &&
483         "Only template template arguments can be pack expansions here");
484  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
485         "Template template argument pack expansion without packs");
486  ParsedTemplateArgument Result(*this);
487  Result.EllipsisLoc = EllipsisLoc;
488  return Result;
489}
490
491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
492                                            const ParsedTemplateArgument &Arg) {
493
494  switch (Arg.getKind()) {
495  case ParsedTemplateArgument::Type: {
496    TypeSourceInfo *DI;
497    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
498    if (!DI)
499      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
500    return TemplateArgumentLoc(TemplateArgument(T), DI);
501  }
502
503  case ParsedTemplateArgument::NonType: {
504    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
505    return TemplateArgumentLoc(TemplateArgument(E), E);
506  }
507
508  case ParsedTemplateArgument::Template: {
509    TemplateName Template = Arg.getAsTemplate().get();
510    TemplateArgument TArg;
511    if (Arg.getEllipsisLoc().isValid())
512      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
513    else
514      TArg = Template;
515    return TemplateArgumentLoc(TArg,
516                               Arg.getScopeSpec().getWithLocInContext(
517                                                              SemaRef.Context),
518                               Arg.getLocation(),
519                               Arg.getEllipsisLoc());
520  }
521  }
522
523  llvm_unreachable("Unhandled parsed template argument");
524}
525
526/// \brief Translates template arguments as provided by the parser
527/// into template arguments used by semantic analysis.
528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
529                                      TemplateArgumentListInfo &TemplateArgs) {
530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
531   TemplateArgs.addArgument(translateTemplateArgument(*this,
532                                                      TemplateArgsIn[I]));
533}
534
535/// ActOnTypeParameter - Called when a C++ template type parameter
536/// (e.g., "typename T") has been parsed. Typename specifies whether
537/// the keyword "typename" was used to declare the type parameter
538/// (otherwise, "class" was used), and KeyLoc is the location of the
539/// "class" or "typename" keyword. ParamName is the name of the
540/// parameter (NULL indicates an unnamed template parameter) and
541/// ParamNameLoc is the location of the parameter name (if any).
542/// If the type parameter has a default argument, it will be added
543/// later via ActOnTypeParameterDefault.
544Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
545                               SourceLocation EllipsisLoc,
546                               SourceLocation KeyLoc,
547                               IdentifierInfo *ParamName,
548                               SourceLocation ParamNameLoc,
549                               unsigned Depth, unsigned Position,
550                               SourceLocation EqualLoc,
551                               ParsedType DefaultArg) {
552  assert(S->isTemplateParamScope() &&
553         "Template type parameter not in template parameter scope!");
554  bool Invalid = false;
555
556  if (ParamName) {
557    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
558                                           LookupOrdinaryName,
559                                           ForRedeclaration);
560    if (PrevDecl && PrevDecl->isTemplateParameter()) {
561      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
562      PrevDecl = 0;
563    }
564  }
565
566  SourceLocation Loc = ParamNameLoc;
567  if (!ParamName)
568    Loc = KeyLoc;
569
570  TemplateTypeParmDecl *Param
571    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
572                                   KeyLoc, Loc, Depth, Position, ParamName,
573                                   Typename, Ellipsis);
574  Param->setAccess(AS_public);
575  if (Invalid)
576    Param->setInvalidDecl();
577
578  if (ParamName) {
579    // Add the template parameter into the current scope.
580    S->AddDecl(Param);
581    IdResolver.AddDecl(Param);
582  }
583
584  // C++0x [temp.param]p9:
585  //   A default template-argument may be specified for any kind of
586  //   template-parameter that is not a template parameter pack.
587  if (DefaultArg && Ellipsis) {
588    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
589    DefaultArg = ParsedType();
590  }
591
592  // Handle the default argument, if provided.
593  if (DefaultArg) {
594    TypeSourceInfo *DefaultTInfo;
595    GetTypeFromParser(DefaultArg, &DefaultTInfo);
596
597    assert(DefaultTInfo && "expected source information for type");
598
599    // Check for unexpanded parameter packs.
600    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
601                                        UPPC_DefaultArgument))
602      return Param;
603
604    // Check the template argument itself.
605    if (CheckTemplateArgument(Param, DefaultTInfo)) {
606      Param->setInvalidDecl();
607      return Param;
608    }
609
610    Param->setDefaultArgument(DefaultTInfo, false);
611  }
612
613  return Param;
614}
615
616/// \brief Check that the type of a non-type template parameter is
617/// well-formed.
618///
619/// \returns the (possibly-promoted) parameter type if valid;
620/// otherwise, produces a diagnostic and returns a NULL type.
621QualType
622Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
623  // We don't allow variably-modified types as the type of non-type template
624  // parameters.
625  if (T->isVariablyModifiedType()) {
626    Diag(Loc, diag::err_variably_modified_nontype_template_param)
627      << T;
628    return QualType();
629  }
630
631  // C++ [temp.param]p4:
632  //
633  // A non-type template-parameter shall have one of the following
634  // (optionally cv-qualified) types:
635  //
636  //       -- integral or enumeration type,
637  if (T->isIntegralOrEnumerationType() ||
638      //   -- pointer to object or pointer to function,
639      T->isPointerType() ||
640      //   -- reference to object or reference to function,
641      T->isReferenceType() ||
642      //   -- pointer to member,
643      T->isMemberPointerType() ||
644      //   -- std::nullptr_t.
645      T->isNullPtrType() ||
646      // If T is a dependent type, we can't do the check now, so we
647      // assume that it is well-formed.
648      T->isDependentType()) {
649    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
650    // are ignored when determining its type.
651    return T.getUnqualifiedType();
652  }
653
654  // C++ [temp.param]p8:
655  //
656  //   A non-type template-parameter of type "array of T" or
657  //   "function returning T" is adjusted to be of type "pointer to
658  //   T" or "pointer to function returning T", respectively.
659  else if (T->isArrayType())
660    // FIXME: Keep the type prior to promotion?
661    return Context.getArrayDecayedType(T);
662  else if (T->isFunctionType())
663    // FIXME: Keep the type prior to promotion?
664    return Context.getPointerType(T);
665
666  Diag(Loc, diag::err_template_nontype_parm_bad_type)
667    << T;
668
669  return QualType();
670}
671
672Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
673                                          unsigned Depth,
674                                          unsigned Position,
675                                          SourceLocation EqualLoc,
676                                          Expr *Default) {
677  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
678  QualType T = TInfo->getType();
679
680  assert(S->isTemplateParamScope() &&
681         "Non-type template parameter not in template parameter scope!");
682  bool Invalid = false;
683
684  IdentifierInfo *ParamName = D.getIdentifier();
685  if (ParamName) {
686    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
687                                           LookupOrdinaryName,
688                                           ForRedeclaration);
689    if (PrevDecl && PrevDecl->isTemplateParameter()) {
690      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
691      PrevDecl = 0;
692    }
693  }
694
695  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
696  if (T.isNull()) {
697    T = Context.IntTy; // Recover with an 'int' type.
698    Invalid = true;
699  }
700
701  bool IsParameterPack = D.hasEllipsis();
702  NonTypeTemplateParmDecl *Param
703    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
704                                      D.getLocStart(),
705                                      D.getIdentifierLoc(),
706                                      Depth, Position, ParamName, T,
707                                      IsParameterPack, TInfo);
708  Param->setAccess(AS_public);
709
710  if (Invalid)
711    Param->setInvalidDecl();
712
713  if (D.getIdentifier()) {
714    // Add the template parameter into the current scope.
715    S->AddDecl(Param);
716    IdResolver.AddDecl(Param);
717  }
718
719  // C++0x [temp.param]p9:
720  //   A default template-argument may be specified for any kind of
721  //   template-parameter that is not a template parameter pack.
722  if (Default && IsParameterPack) {
723    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
724    Default = 0;
725  }
726
727  // Check the well-formedness of the default template argument, if provided.
728  if (Default) {
729    // Check for unexpanded parameter packs.
730    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
731      return Param;
732
733    TemplateArgument Converted;
734    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
735    if (DefaultRes.isInvalid()) {
736      Param->setInvalidDecl();
737      return Param;
738    }
739    Default = DefaultRes.take();
740
741    Param->setDefaultArgument(Default, false);
742  }
743
744  return Param;
745}
746
747/// ActOnTemplateTemplateParameter - Called when a C++ template template
748/// parameter (e.g. T in template <template \<typename> class T> class array)
749/// has been parsed. S is the current scope.
750Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
751                                           SourceLocation TmpLoc,
752                                           TemplateParameterList *Params,
753                                           SourceLocation EllipsisLoc,
754                                           IdentifierInfo *Name,
755                                           SourceLocation NameLoc,
756                                           unsigned Depth,
757                                           unsigned Position,
758                                           SourceLocation EqualLoc,
759                                           ParsedTemplateArgument Default) {
760  assert(S->isTemplateParamScope() &&
761         "Template template parameter not in template parameter scope!");
762
763  // Construct the parameter object.
764  bool IsParameterPack = EllipsisLoc.isValid();
765  TemplateTemplateParmDecl *Param =
766    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
767                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
768                                     Depth, Position, IsParameterPack,
769                                     Name, Params);
770  Param->setAccess(AS_public);
771
772  // If the template template parameter has a name, then link the identifier
773  // into the scope and lookup mechanisms.
774  if (Name) {
775    S->AddDecl(Param);
776    IdResolver.AddDecl(Param);
777  }
778
779  if (Params->size() == 0) {
780    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
781    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
782    Param->setInvalidDecl();
783  }
784
785  // C++0x [temp.param]p9:
786  //   A default template-argument may be specified for any kind of
787  //   template-parameter that is not a template parameter pack.
788  if (IsParameterPack && !Default.isInvalid()) {
789    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
790    Default = ParsedTemplateArgument();
791  }
792
793  if (!Default.isInvalid()) {
794    // Check only that we have a template template argument. We don't want to
795    // try to check well-formedness now, because our template template parameter
796    // might have dependent types in its template parameters, which we wouldn't
797    // be able to match now.
798    //
799    // If none of the template template parameter's template arguments mention
800    // other template parameters, we could actually perform more checking here.
801    // However, it isn't worth doing.
802    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
803    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
804      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
805        << DefaultArg.getSourceRange();
806      return Param;
807    }
808
809    // Check for unexpanded parameter packs.
810    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
811                                        DefaultArg.getArgument().getAsTemplate(),
812                                        UPPC_DefaultArgument))
813      return Param;
814
815    Param->setDefaultArgument(DefaultArg, false);
816  }
817
818  return Param;
819}
820
821/// ActOnTemplateParameterList - Builds a TemplateParameterList that
822/// contains the template parameters in Params/NumParams.
823TemplateParameterList *
824Sema::ActOnTemplateParameterList(unsigned Depth,
825                                 SourceLocation ExportLoc,
826                                 SourceLocation TemplateLoc,
827                                 SourceLocation LAngleLoc,
828                                 Decl **Params, unsigned NumParams,
829                                 SourceLocation RAngleLoc) {
830  if (ExportLoc.isValid())
831    Diag(ExportLoc, diag::warn_template_export_unsupported);
832
833  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
834                                       (NamedDecl**)Params, NumParams,
835                                       RAngleLoc);
836}
837
838static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
839  if (SS.isSet())
840    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
841}
842
843DeclResult
844Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
845                         SourceLocation KWLoc, CXXScopeSpec &SS,
846                         IdentifierInfo *Name, SourceLocation NameLoc,
847                         AttributeList *Attr,
848                         TemplateParameterList *TemplateParams,
849                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
850                         unsigned NumOuterTemplateParamLists,
851                         TemplateParameterList** OuterTemplateParamLists) {
852  assert(TemplateParams && TemplateParams->size() > 0 &&
853         "No template parameters");
854  assert(TUK != TUK_Reference && "Can only declare or define class templates");
855  bool Invalid = false;
856
857  // Check that we can declare a template here.
858  if (CheckTemplateDeclScope(S, TemplateParams))
859    return true;
860
861  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
862  assert(Kind != TTK_Enum && "can't build template of enumerated type");
863
864  // There is no such thing as an unnamed class template.
865  if (!Name) {
866    Diag(KWLoc, diag::err_template_unnamed_class);
867    return true;
868  }
869
870  // Find any previous declaration with this name. For a friend with no
871  // scope explicitly specified, we only look for tag declarations (per
872  // C++11 [basic.lookup.elab]p2).
873  DeclContext *SemanticContext;
874  LookupResult Previous(*this, Name, NameLoc,
875                        (SS.isEmpty() && TUK == TUK_Friend)
876                          ? LookupTagName : LookupOrdinaryName,
877                        ForRedeclaration);
878  if (SS.isNotEmpty() && !SS.isInvalid()) {
879    SemanticContext = computeDeclContext(SS, true);
880    if (!SemanticContext) {
881      // FIXME: Horrible, horrible hack! We can't currently represent this
882      // in the AST, and historically we have just ignored such friend
883      // class templates, so don't complain here.
884      if (TUK != TUK_Friend)
885        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
886          << SS.getScopeRep() << SS.getRange();
887      return true;
888    }
889
890    if (RequireCompleteDeclContext(SS, SemanticContext))
891      return true;
892
893    // If we're adding a template to a dependent context, we may need to
894    // rebuilding some of the types used within the template parameter list,
895    // now that we know what the current instantiation is.
896    if (SemanticContext->isDependentContext()) {
897      ContextRAII SavedContext(*this, SemanticContext);
898      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
899        Invalid = true;
900    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
901      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
902
903    LookupQualifiedName(Previous, SemanticContext);
904  } else {
905    SemanticContext = CurContext;
906    LookupName(Previous, S);
907  }
908
909  if (Previous.isAmbiguous())
910    return true;
911
912  NamedDecl *PrevDecl = 0;
913  if (Previous.begin() != Previous.end())
914    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
915
916  // If there is a previous declaration with the same name, check
917  // whether this is a valid redeclaration.
918  ClassTemplateDecl *PrevClassTemplate
919    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
920
921  // We may have found the injected-class-name of a class template,
922  // class template partial specialization, or class template specialization.
923  // In these cases, grab the template that is being defined or specialized.
924  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
925      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
926    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
927    PrevClassTemplate
928      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
929    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
930      PrevClassTemplate
931        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
932            ->getSpecializedTemplate();
933    }
934  }
935
936  if (TUK == TUK_Friend) {
937    // C++ [namespace.memdef]p3:
938    //   [...] When looking for a prior declaration of a class or a function
939    //   declared as a friend, and when the name of the friend class or
940    //   function is neither a qualified name nor a template-id, scopes outside
941    //   the innermost enclosing namespace scope are not considered.
942    if (!SS.isSet()) {
943      DeclContext *OutermostContext = CurContext;
944      while (!OutermostContext->isFileContext())
945        OutermostContext = OutermostContext->getLookupParent();
946
947      if (PrevDecl &&
948          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
949           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
950        SemanticContext = PrevDecl->getDeclContext();
951      } else {
952        // Declarations in outer scopes don't matter. However, the outermost
953        // context we computed is the semantic context for our new
954        // declaration.
955        PrevDecl = PrevClassTemplate = 0;
956        SemanticContext = OutermostContext;
957
958        // Check that the chosen semantic context doesn't already contain a
959        // declaration of this name as a non-tag type.
960        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
961                              ForRedeclaration);
962        DeclContext *LookupContext = SemanticContext;
963        while (LookupContext->isTransparentContext())
964          LookupContext = LookupContext->getLookupParent();
965        LookupQualifiedName(Previous, LookupContext);
966
967        if (Previous.isAmbiguous())
968          return true;
969
970        if (Previous.begin() != Previous.end())
971          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
972      }
973    }
974  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
975    PrevDecl = PrevClassTemplate = 0;
976
977  if (PrevClassTemplate) {
978    // Ensure that the template parameter lists are compatible. Skip this check
979    // for a friend in a dependent context: the template parameter list itself
980    // could be dependent.
981    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
982        !TemplateParameterListsAreEqual(TemplateParams,
983                                   PrevClassTemplate->getTemplateParameters(),
984                                        /*Complain=*/true,
985                                        TPL_TemplateMatch))
986      return true;
987
988    // C++ [temp.class]p4:
989    //   In a redeclaration, partial specialization, explicit
990    //   specialization or explicit instantiation of a class template,
991    //   the class-key shall agree in kind with the original class
992    //   template declaration (7.1.5.3).
993    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
994    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
995                                      TUK == TUK_Definition,  KWLoc, *Name)) {
996      Diag(KWLoc, diag::err_use_with_wrong_tag)
997        << Name
998        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
999      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1000      Kind = PrevRecordDecl->getTagKind();
1001    }
1002
1003    // Check for redefinition of this class template.
1004    if (TUK == TUK_Definition) {
1005      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1006        Diag(NameLoc, diag::err_redefinition) << Name;
1007        Diag(Def->getLocation(), diag::note_previous_definition);
1008        // FIXME: Would it make sense to try to "forget" the previous
1009        // definition, as part of error recovery?
1010        return true;
1011      }
1012    }
1013  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1014    // Maybe we will complain about the shadowed template parameter.
1015    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1016    // Just pretend that we didn't see the previous declaration.
1017    PrevDecl = 0;
1018  } else if (PrevDecl) {
1019    // C++ [temp]p5:
1020    //   A class template shall not have the same name as any other
1021    //   template, class, function, object, enumeration, enumerator,
1022    //   namespace, or type in the same scope (3.3), except as specified
1023    //   in (14.5.4).
1024    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1025    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1026    return true;
1027  }
1028
1029  // Check the template parameter list of this declaration, possibly
1030  // merging in the template parameter list from the previous class
1031  // template declaration. Skip this check for a friend in a dependent
1032  // context, because the template parameter list might be dependent.
1033  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1034      CheckTemplateParameterList(TemplateParams,
1035            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1036                                 (SS.isSet() && SemanticContext &&
1037                                  SemanticContext->isRecord() &&
1038                                  SemanticContext->isDependentContext())
1039                                   ? TPC_ClassTemplateMember
1040                                   : TPC_ClassTemplate))
1041    Invalid = true;
1042
1043  if (SS.isSet()) {
1044    // If the name of the template was qualified, we must be defining the
1045    // template out-of-line.
1046    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1047      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1048                                      : diag::err_member_def_does_not_match)
1049        << Name << SemanticContext << SS.getRange();
1050      Invalid = true;
1051    }
1052  }
1053
1054  CXXRecordDecl *NewClass =
1055    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1056                          PrevClassTemplate?
1057                            PrevClassTemplate->getTemplatedDecl() : 0,
1058                          /*DelayTypeCreation=*/true);
1059  SetNestedNameSpecifier(NewClass, SS);
1060  if (NumOuterTemplateParamLists > 0)
1061    NewClass->setTemplateParameterListsInfo(Context,
1062                                            NumOuterTemplateParamLists,
1063                                            OuterTemplateParamLists);
1064
1065  // Add alignment attributes if necessary; these attributes are checked when
1066  // the ASTContext lays out the structure.
1067  if (TUK == TUK_Definition) {
1068    AddAlignmentAttributesForRecord(NewClass);
1069    AddMsStructLayoutForRecord(NewClass);
1070  }
1071
1072  ClassTemplateDecl *NewTemplate
1073    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1074                                DeclarationName(Name), TemplateParams,
1075                                NewClass, PrevClassTemplate);
1076  NewClass->setDescribedClassTemplate(NewTemplate);
1077
1078  if (ModulePrivateLoc.isValid())
1079    NewTemplate->setModulePrivate();
1080
1081  // Build the type for the class template declaration now.
1082  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1083  T = Context.getInjectedClassNameType(NewClass, T);
1084  assert(T->isDependentType() && "Class template type is not dependent?");
1085  (void)T;
1086
1087  // If we are providing an explicit specialization of a member that is a
1088  // class template, make a note of that.
1089  if (PrevClassTemplate &&
1090      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1091    PrevClassTemplate->setMemberSpecialization();
1092
1093  // Set the access specifier.
1094  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1095    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1096
1097  // Set the lexical context of these templates
1098  NewClass->setLexicalDeclContext(CurContext);
1099  NewTemplate->setLexicalDeclContext(CurContext);
1100
1101  if (TUK == TUK_Definition)
1102    NewClass->startDefinition();
1103
1104  if (Attr)
1105    ProcessDeclAttributeList(S, NewClass, Attr);
1106
1107  if (PrevClassTemplate)
1108    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1109
1110  AddPushedVisibilityAttribute(NewClass);
1111
1112  if (TUK != TUK_Friend)
1113    PushOnScopeChains(NewTemplate, S);
1114  else {
1115    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1116      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1117      NewClass->setAccess(PrevClassTemplate->getAccess());
1118    }
1119
1120    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1121                                       PrevClassTemplate != NULL);
1122
1123    // Friend templates are visible in fairly strange ways.
1124    if (!CurContext->isDependentContext()) {
1125      DeclContext *DC = SemanticContext->getRedeclContext();
1126      DC->makeDeclVisibleInContext(NewTemplate);
1127      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1128        PushOnScopeChains(NewTemplate, EnclosingScope,
1129                          /* AddToContext = */ false);
1130    }
1131
1132    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1133                                            NewClass->getLocation(),
1134                                            NewTemplate,
1135                                    /*FIXME:*/NewClass->getLocation());
1136    Friend->setAccess(AS_public);
1137    CurContext->addDecl(Friend);
1138  }
1139
1140  if (Invalid) {
1141    NewTemplate->setInvalidDecl();
1142    NewClass->setInvalidDecl();
1143  }
1144
1145  ActOnDocumentableDecl(NewTemplate);
1146
1147  return NewTemplate;
1148}
1149
1150/// \brief Diagnose the presence of a default template argument on a
1151/// template parameter, which is ill-formed in certain contexts.
1152///
1153/// \returns true if the default template argument should be dropped.
1154static bool DiagnoseDefaultTemplateArgument(Sema &S,
1155                                            Sema::TemplateParamListContext TPC,
1156                                            SourceLocation ParamLoc,
1157                                            SourceRange DefArgRange) {
1158  switch (TPC) {
1159  case Sema::TPC_ClassTemplate:
1160  case Sema::TPC_TypeAliasTemplate:
1161    return false;
1162
1163  case Sema::TPC_FunctionTemplate:
1164  case Sema::TPC_FriendFunctionTemplateDefinition:
1165    // C++ [temp.param]p9:
1166    //   A default template-argument shall not be specified in a
1167    //   function template declaration or a function template
1168    //   definition [...]
1169    //   If a friend function template declaration specifies a default
1170    //   template-argument, that declaration shall be a definition and shall be
1171    //   the only declaration of the function template in the translation unit.
1172    // (C++98/03 doesn't have this wording; see DR226).
1173    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1174         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1175           : diag::ext_template_parameter_default_in_function_template)
1176      << DefArgRange;
1177    return false;
1178
1179  case Sema::TPC_ClassTemplateMember:
1180    // C++0x [temp.param]p9:
1181    //   A default template-argument shall not be specified in the
1182    //   template-parameter-lists of the definition of a member of a
1183    //   class template that appears outside of the member's class.
1184    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1185      << DefArgRange;
1186    return true;
1187
1188  case Sema::TPC_FriendFunctionTemplate:
1189    // C++ [temp.param]p9:
1190    //   A default template-argument shall not be specified in a
1191    //   friend template declaration.
1192    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1193      << DefArgRange;
1194    return true;
1195
1196    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1197    // for friend function templates if there is only a single
1198    // declaration (and it is a definition). Strange!
1199  }
1200
1201  llvm_unreachable("Invalid TemplateParamListContext!");
1202}
1203
1204/// \brief Check for unexpanded parameter packs within the template parameters
1205/// of a template template parameter, recursively.
1206static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1207                                             TemplateTemplateParmDecl *TTP) {
1208  // A template template parameter which is a parameter pack is also a pack
1209  // expansion.
1210  if (TTP->isParameterPack())
1211    return false;
1212
1213  TemplateParameterList *Params = TTP->getTemplateParameters();
1214  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1215    NamedDecl *P = Params->getParam(I);
1216    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1217      if (!NTTP->isParameterPack() &&
1218          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1219                                            NTTP->getTypeSourceInfo(),
1220                                      Sema::UPPC_NonTypeTemplateParameterType))
1221        return true;
1222
1223      continue;
1224    }
1225
1226    if (TemplateTemplateParmDecl *InnerTTP
1227                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1228      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1229        return true;
1230  }
1231
1232  return false;
1233}
1234
1235/// \brief Checks the validity of a template parameter list, possibly
1236/// considering the template parameter list from a previous
1237/// declaration.
1238///
1239/// If an "old" template parameter list is provided, it must be
1240/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1241/// template parameter list.
1242///
1243/// \param NewParams Template parameter list for a new template
1244/// declaration. This template parameter list will be updated with any
1245/// default arguments that are carried through from the previous
1246/// template parameter list.
1247///
1248/// \param OldParams If provided, template parameter list from a
1249/// previous declaration of the same template. Default template
1250/// arguments will be merged from the old template parameter list to
1251/// the new template parameter list.
1252///
1253/// \param TPC Describes the context in which we are checking the given
1254/// template parameter list.
1255///
1256/// \returns true if an error occurred, false otherwise.
1257bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1258                                      TemplateParameterList *OldParams,
1259                                      TemplateParamListContext TPC) {
1260  bool Invalid = false;
1261
1262  // C++ [temp.param]p10:
1263  //   The set of default template-arguments available for use with a
1264  //   template declaration or definition is obtained by merging the
1265  //   default arguments from the definition (if in scope) and all
1266  //   declarations in scope in the same way default function
1267  //   arguments are (8.3.6).
1268  bool SawDefaultArgument = false;
1269  SourceLocation PreviousDefaultArgLoc;
1270
1271  // Dummy initialization to avoid warnings.
1272  TemplateParameterList::iterator OldParam = NewParams->end();
1273  if (OldParams)
1274    OldParam = OldParams->begin();
1275
1276  bool RemoveDefaultArguments = false;
1277  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1278                                    NewParamEnd = NewParams->end();
1279       NewParam != NewParamEnd; ++NewParam) {
1280    // Variables used to diagnose redundant default arguments
1281    bool RedundantDefaultArg = false;
1282    SourceLocation OldDefaultLoc;
1283    SourceLocation NewDefaultLoc;
1284
1285    // Variable used to diagnose missing default arguments
1286    bool MissingDefaultArg = false;
1287
1288    // Variable used to diagnose non-final parameter packs
1289    bool SawParameterPack = false;
1290
1291    if (TemplateTypeParmDecl *NewTypeParm
1292          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1293      // Check the presence of a default argument here.
1294      if (NewTypeParm->hasDefaultArgument() &&
1295          DiagnoseDefaultTemplateArgument(*this, TPC,
1296                                          NewTypeParm->getLocation(),
1297               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1298                                                       .getSourceRange()))
1299        NewTypeParm->removeDefaultArgument();
1300
1301      // Merge default arguments for template type parameters.
1302      TemplateTypeParmDecl *OldTypeParm
1303          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1304
1305      if (NewTypeParm->isParameterPack()) {
1306        assert(!NewTypeParm->hasDefaultArgument() &&
1307               "Parameter packs can't have a default argument!");
1308        SawParameterPack = true;
1309      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1310                 NewTypeParm->hasDefaultArgument()) {
1311        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1312        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1313        SawDefaultArgument = true;
1314        RedundantDefaultArg = true;
1315        PreviousDefaultArgLoc = NewDefaultLoc;
1316      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1317        // Merge the default argument from the old declaration to the
1318        // new declaration.
1319        SawDefaultArgument = true;
1320        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1321                                        true);
1322        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1323      } else if (NewTypeParm->hasDefaultArgument()) {
1324        SawDefaultArgument = true;
1325        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1326      } else if (SawDefaultArgument)
1327        MissingDefaultArg = true;
1328    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1329               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1330      // Check for unexpanded parameter packs.
1331      if (!NewNonTypeParm->isParameterPack() &&
1332          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1333                                          NewNonTypeParm->getTypeSourceInfo(),
1334                                          UPPC_NonTypeTemplateParameterType)) {
1335        Invalid = true;
1336        continue;
1337      }
1338
1339      // Check the presence of a default argument here.
1340      if (NewNonTypeParm->hasDefaultArgument() &&
1341          DiagnoseDefaultTemplateArgument(*this, TPC,
1342                                          NewNonTypeParm->getLocation(),
1343                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1344        NewNonTypeParm->removeDefaultArgument();
1345      }
1346
1347      // Merge default arguments for non-type template parameters
1348      NonTypeTemplateParmDecl *OldNonTypeParm
1349        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1350      if (NewNonTypeParm->isParameterPack()) {
1351        assert(!NewNonTypeParm->hasDefaultArgument() &&
1352               "Parameter packs can't have a default argument!");
1353        if (!NewNonTypeParm->isPackExpansion())
1354          SawParameterPack = true;
1355      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1356          NewNonTypeParm->hasDefaultArgument()) {
1357        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1358        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1359        SawDefaultArgument = true;
1360        RedundantDefaultArg = true;
1361        PreviousDefaultArgLoc = NewDefaultLoc;
1362      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1363        // Merge the default argument from the old declaration to the
1364        // new declaration.
1365        SawDefaultArgument = true;
1366        // FIXME: We need to create a new kind of "default argument"
1367        // expression that points to a previous non-type template
1368        // parameter.
1369        NewNonTypeParm->setDefaultArgument(
1370                                         OldNonTypeParm->getDefaultArgument(),
1371                                         /*Inherited=*/ true);
1372        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1373      } else if (NewNonTypeParm->hasDefaultArgument()) {
1374        SawDefaultArgument = true;
1375        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1376      } else if (SawDefaultArgument)
1377        MissingDefaultArg = true;
1378    } else {
1379      TemplateTemplateParmDecl *NewTemplateParm
1380        = cast<TemplateTemplateParmDecl>(*NewParam);
1381
1382      // Check for unexpanded parameter packs, recursively.
1383      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1384        Invalid = true;
1385        continue;
1386      }
1387
1388      // Check the presence of a default argument here.
1389      if (NewTemplateParm->hasDefaultArgument() &&
1390          DiagnoseDefaultTemplateArgument(*this, TPC,
1391                                          NewTemplateParm->getLocation(),
1392                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1393        NewTemplateParm->removeDefaultArgument();
1394
1395      // Merge default arguments for template template parameters
1396      TemplateTemplateParmDecl *OldTemplateParm
1397        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1398      if (NewTemplateParm->isParameterPack()) {
1399        assert(!NewTemplateParm->hasDefaultArgument() &&
1400               "Parameter packs can't have a default argument!");
1401        if (!NewTemplateParm->isPackExpansion())
1402          SawParameterPack = true;
1403      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1404          NewTemplateParm->hasDefaultArgument()) {
1405        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1406        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1407        SawDefaultArgument = true;
1408        RedundantDefaultArg = true;
1409        PreviousDefaultArgLoc = NewDefaultLoc;
1410      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1411        // Merge the default argument from the old declaration to the
1412        // new declaration.
1413        SawDefaultArgument = true;
1414        // FIXME: We need to create a new kind of "default argument" expression
1415        // that points to a previous template template parameter.
1416        NewTemplateParm->setDefaultArgument(
1417                                          OldTemplateParm->getDefaultArgument(),
1418                                          /*Inherited=*/ true);
1419        PreviousDefaultArgLoc
1420          = OldTemplateParm->getDefaultArgument().getLocation();
1421      } else if (NewTemplateParm->hasDefaultArgument()) {
1422        SawDefaultArgument = true;
1423        PreviousDefaultArgLoc
1424          = NewTemplateParm->getDefaultArgument().getLocation();
1425      } else if (SawDefaultArgument)
1426        MissingDefaultArg = true;
1427    }
1428
1429    // C++11 [temp.param]p11:
1430    //   If a template parameter of a primary class template or alias template
1431    //   is a template parameter pack, it shall be the last template parameter.
1432    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1433        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1434      Diag((*NewParam)->getLocation(),
1435           diag::err_template_param_pack_must_be_last_template_parameter);
1436      Invalid = true;
1437    }
1438
1439    if (RedundantDefaultArg) {
1440      // C++ [temp.param]p12:
1441      //   A template-parameter shall not be given default arguments
1442      //   by two different declarations in the same scope.
1443      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1444      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1445      Invalid = true;
1446    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1447      // C++ [temp.param]p11:
1448      //   If a template-parameter of a class template has a default
1449      //   template-argument, each subsequent template-parameter shall either
1450      //   have a default template-argument supplied or be a template parameter
1451      //   pack.
1452      Diag((*NewParam)->getLocation(),
1453           diag::err_template_param_default_arg_missing);
1454      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1455      Invalid = true;
1456      RemoveDefaultArguments = true;
1457    }
1458
1459    // If we have an old template parameter list that we're merging
1460    // in, move on to the next parameter.
1461    if (OldParams)
1462      ++OldParam;
1463  }
1464
1465  // We were missing some default arguments at the end of the list, so remove
1466  // all of the default arguments.
1467  if (RemoveDefaultArguments) {
1468    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1469                                      NewParamEnd = NewParams->end();
1470         NewParam != NewParamEnd; ++NewParam) {
1471      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1472        TTP->removeDefaultArgument();
1473      else if (NonTypeTemplateParmDecl *NTTP
1474                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1475        NTTP->removeDefaultArgument();
1476      else
1477        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1478    }
1479  }
1480
1481  return Invalid;
1482}
1483
1484namespace {
1485
1486/// A class which looks for a use of a certain level of template
1487/// parameter.
1488struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1489  typedef RecursiveASTVisitor<DependencyChecker> super;
1490
1491  unsigned Depth;
1492  bool Match;
1493
1494  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1495    NamedDecl *ND = Params->getParam(0);
1496    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1497      Depth = PD->getDepth();
1498    } else if (NonTypeTemplateParmDecl *PD =
1499                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1500      Depth = PD->getDepth();
1501    } else {
1502      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1503    }
1504  }
1505
1506  bool Matches(unsigned ParmDepth) {
1507    if (ParmDepth >= Depth) {
1508      Match = true;
1509      return true;
1510    }
1511    return false;
1512  }
1513
1514  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1515    return !Matches(T->getDepth());
1516  }
1517
1518  bool TraverseTemplateName(TemplateName N) {
1519    if (TemplateTemplateParmDecl *PD =
1520          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1521      if (Matches(PD->getDepth())) return false;
1522    return super::TraverseTemplateName(N);
1523  }
1524
1525  bool VisitDeclRefExpr(DeclRefExpr *E) {
1526    if (NonTypeTemplateParmDecl *PD =
1527          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1528      if (PD->getDepth() == Depth) {
1529        Match = true;
1530        return false;
1531      }
1532    }
1533    return super::VisitDeclRefExpr(E);
1534  }
1535
1536  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1537    return TraverseType(T->getInjectedSpecializationType());
1538  }
1539};
1540}
1541
1542/// Determines whether a given type depends on the given parameter
1543/// list.
1544static bool
1545DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1546  DependencyChecker Checker(Params);
1547  Checker.TraverseType(T);
1548  return Checker.Match;
1549}
1550
1551// Find the source range corresponding to the named type in the given
1552// nested-name-specifier, if any.
1553static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1554                                                       QualType T,
1555                                                       const CXXScopeSpec &SS) {
1556  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1557  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1558    if (const Type *CurType = NNS->getAsType()) {
1559      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1560        return NNSLoc.getTypeLoc().getSourceRange();
1561    } else
1562      break;
1563
1564    NNSLoc = NNSLoc.getPrefix();
1565  }
1566
1567  return SourceRange();
1568}
1569
1570/// \brief Match the given template parameter lists to the given scope
1571/// specifier, returning the template parameter list that applies to the
1572/// name.
1573///
1574/// \param DeclStartLoc the start of the declaration that has a scope
1575/// specifier or a template parameter list.
1576///
1577/// \param DeclLoc The location of the declaration itself.
1578///
1579/// \param SS the scope specifier that will be matched to the given template
1580/// parameter lists. This scope specifier precedes a qualified name that is
1581/// being declared.
1582///
1583/// \param ParamLists the template parameter lists, from the outermost to the
1584/// innermost template parameter lists.
1585///
1586/// \param NumParamLists the number of template parameter lists in ParamLists.
1587///
1588/// \param IsFriend Whether to apply the slightly different rules for
1589/// matching template parameters to scope specifiers in friend
1590/// declarations.
1591///
1592/// \param IsExplicitSpecialization will be set true if the entity being
1593/// declared is an explicit specialization, false otherwise.
1594///
1595/// \returns the template parameter list, if any, that corresponds to the
1596/// name that is preceded by the scope specifier @p SS. This template
1597/// parameter list may have template parameters (if we're declaring a
1598/// template) or may have no template parameters (if we're declaring a
1599/// template specialization), or may be NULL (if what we're declaring isn't
1600/// itself a template).
1601TemplateParameterList *
1602Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1603                                              SourceLocation DeclLoc,
1604                                              const CXXScopeSpec &SS,
1605                                          TemplateParameterList **ParamLists,
1606                                              unsigned NumParamLists,
1607                                              bool IsFriend,
1608                                              bool &IsExplicitSpecialization,
1609                                              bool &Invalid) {
1610  IsExplicitSpecialization = false;
1611  Invalid = false;
1612
1613  // The sequence of nested types to which we will match up the template
1614  // parameter lists. We first build this list by starting with the type named
1615  // by the nested-name-specifier and walking out until we run out of types.
1616  SmallVector<QualType, 4> NestedTypes;
1617  QualType T;
1618  if (SS.getScopeRep()) {
1619    if (CXXRecordDecl *Record
1620              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1621      T = Context.getTypeDeclType(Record);
1622    else
1623      T = QualType(SS.getScopeRep()->getAsType(), 0);
1624  }
1625
1626  // If we found an explicit specialization that prevents us from needing
1627  // 'template<>' headers, this will be set to the location of that
1628  // explicit specialization.
1629  SourceLocation ExplicitSpecLoc;
1630
1631  while (!T.isNull()) {
1632    NestedTypes.push_back(T);
1633
1634    // Retrieve the parent of a record type.
1635    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1636      // If this type is an explicit specialization, we're done.
1637      if (ClassTemplateSpecializationDecl *Spec
1638          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1639        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1640            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1641          ExplicitSpecLoc = Spec->getLocation();
1642          break;
1643        }
1644      } else if (Record->getTemplateSpecializationKind()
1645                                                == TSK_ExplicitSpecialization) {
1646        ExplicitSpecLoc = Record->getLocation();
1647        break;
1648      }
1649
1650      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1651        T = Context.getTypeDeclType(Parent);
1652      else
1653        T = QualType();
1654      continue;
1655    }
1656
1657    if (const TemplateSpecializationType *TST
1658                                     = T->getAs<TemplateSpecializationType>()) {
1659      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1660        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1661          T = Context.getTypeDeclType(Parent);
1662        else
1663          T = QualType();
1664        continue;
1665      }
1666    }
1667
1668    // Look one step prior in a dependent template specialization type.
1669    if (const DependentTemplateSpecializationType *DependentTST
1670                          = T->getAs<DependentTemplateSpecializationType>()) {
1671      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1672        T = QualType(NNS->getAsType(), 0);
1673      else
1674        T = QualType();
1675      continue;
1676    }
1677
1678    // Look one step prior in a dependent name type.
1679    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1680      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1681        T = QualType(NNS->getAsType(), 0);
1682      else
1683        T = QualType();
1684      continue;
1685    }
1686
1687    // Retrieve the parent of an enumeration type.
1688    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1689      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1690      // check here.
1691      EnumDecl *Enum = EnumT->getDecl();
1692
1693      // Get to the parent type.
1694      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1695        T = Context.getTypeDeclType(Parent);
1696      else
1697        T = QualType();
1698      continue;
1699    }
1700
1701    T = QualType();
1702  }
1703  // Reverse the nested types list, since we want to traverse from the outermost
1704  // to the innermost while checking template-parameter-lists.
1705  std::reverse(NestedTypes.begin(), NestedTypes.end());
1706
1707  // C++0x [temp.expl.spec]p17:
1708  //   A member or a member template may be nested within many
1709  //   enclosing class templates. In an explicit specialization for
1710  //   such a member, the member declaration shall be preceded by a
1711  //   template<> for each enclosing class template that is
1712  //   explicitly specialized.
1713  bool SawNonEmptyTemplateParameterList = false;
1714  unsigned ParamIdx = 0;
1715  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1716       ++TypeIdx) {
1717    T = NestedTypes[TypeIdx];
1718
1719    // Whether we expect a 'template<>' header.
1720    bool NeedEmptyTemplateHeader = false;
1721
1722    // Whether we expect a template header with parameters.
1723    bool NeedNonemptyTemplateHeader = false;
1724
1725    // For a dependent type, the set of template parameters that we
1726    // expect to see.
1727    TemplateParameterList *ExpectedTemplateParams = 0;
1728
1729    // C++0x [temp.expl.spec]p15:
1730    //   A member or a member template may be nested within many enclosing
1731    //   class templates. In an explicit specialization for such a member, the
1732    //   member declaration shall be preceded by a template<> for each
1733    //   enclosing class template that is explicitly specialized.
1734    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1735      if (ClassTemplatePartialSpecializationDecl *Partial
1736            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1737        ExpectedTemplateParams = Partial->getTemplateParameters();
1738        NeedNonemptyTemplateHeader = true;
1739      } else if (Record->isDependentType()) {
1740        if (Record->getDescribedClassTemplate()) {
1741          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1742                                                      ->getTemplateParameters();
1743          NeedNonemptyTemplateHeader = true;
1744        }
1745      } else if (ClassTemplateSpecializationDecl *Spec
1746                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1747        // C++0x [temp.expl.spec]p4:
1748        //   Members of an explicitly specialized class template are defined
1749        //   in the same manner as members of normal classes, and not using
1750        //   the template<> syntax.
1751        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1752          NeedEmptyTemplateHeader = true;
1753        else
1754          continue;
1755      } else if (Record->getTemplateSpecializationKind()) {
1756        if (Record->getTemplateSpecializationKind()
1757                                                != TSK_ExplicitSpecialization &&
1758            TypeIdx == NumTypes - 1)
1759          IsExplicitSpecialization = true;
1760
1761        continue;
1762      }
1763    } else if (const TemplateSpecializationType *TST
1764                                     = T->getAs<TemplateSpecializationType>()) {
1765      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1766        ExpectedTemplateParams = Template->getTemplateParameters();
1767        NeedNonemptyTemplateHeader = true;
1768      }
1769    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1770      // FIXME:  We actually could/should check the template arguments here
1771      // against the corresponding template parameter list.
1772      NeedNonemptyTemplateHeader = false;
1773    }
1774
1775    // C++ [temp.expl.spec]p16:
1776    //   In an explicit specialization declaration for a member of a class
1777    //   template or a member template that ap- pears in namespace scope, the
1778    //   member template and some of its enclosing class templates may remain
1779    //   unspecialized, except that the declaration shall not explicitly
1780    //   specialize a class member template if its en- closing class templates
1781    //   are not explicitly specialized as well.
1782    if (ParamIdx < NumParamLists) {
1783      if (ParamLists[ParamIdx]->size() == 0) {
1784        if (SawNonEmptyTemplateParameterList) {
1785          Diag(DeclLoc, diag::err_specialize_member_of_template)
1786            << ParamLists[ParamIdx]->getSourceRange();
1787          Invalid = true;
1788          IsExplicitSpecialization = false;
1789          return 0;
1790        }
1791      } else
1792        SawNonEmptyTemplateParameterList = true;
1793    }
1794
1795    if (NeedEmptyTemplateHeader) {
1796      // If we're on the last of the types, and we need a 'template<>' header
1797      // here, then it's an explicit specialization.
1798      if (TypeIdx == NumTypes - 1)
1799        IsExplicitSpecialization = true;
1800
1801      if (ParamIdx < NumParamLists) {
1802        if (ParamLists[ParamIdx]->size() > 0) {
1803          // The header has template parameters when it shouldn't. Complain.
1804          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1805               diag::err_template_param_list_matches_nontemplate)
1806            << T
1807            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1808                           ParamLists[ParamIdx]->getRAngleLoc())
1809            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1810          Invalid = true;
1811          return 0;
1812        }
1813
1814        // Consume this template header.
1815        ++ParamIdx;
1816        continue;
1817      }
1818
1819      if (!IsFriend) {
1820        // We don't have a template header, but we should.
1821        SourceLocation ExpectedTemplateLoc;
1822        if (NumParamLists > 0)
1823          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1824        else
1825          ExpectedTemplateLoc = DeclStartLoc;
1826
1827        Diag(DeclLoc, diag::err_template_spec_needs_header)
1828          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1829          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1830      }
1831
1832      continue;
1833    }
1834
1835    if (NeedNonemptyTemplateHeader) {
1836      // In friend declarations we can have template-ids which don't
1837      // depend on the corresponding template parameter lists.  But
1838      // assume that empty parameter lists are supposed to match this
1839      // template-id.
1840      if (IsFriend && T->isDependentType()) {
1841        if (ParamIdx < NumParamLists &&
1842            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1843          ExpectedTemplateParams = 0;
1844        else
1845          continue;
1846      }
1847
1848      if (ParamIdx < NumParamLists) {
1849        // Check the template parameter list, if we can.
1850        if (ExpectedTemplateParams &&
1851            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1852                                            ExpectedTemplateParams,
1853                                            true, TPL_TemplateMatch))
1854          Invalid = true;
1855
1856        if (!Invalid &&
1857            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1858                                       TPC_ClassTemplateMember))
1859          Invalid = true;
1860
1861        ++ParamIdx;
1862        continue;
1863      }
1864
1865      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1866        << T
1867        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1868      Invalid = true;
1869      continue;
1870    }
1871  }
1872
1873  // If there were at least as many template-ids as there were template
1874  // parameter lists, then there are no template parameter lists remaining for
1875  // the declaration itself.
1876  if (ParamIdx >= NumParamLists)
1877    return 0;
1878
1879  // If there were too many template parameter lists, complain about that now.
1880  if (ParamIdx < NumParamLists - 1) {
1881    bool HasAnyExplicitSpecHeader = false;
1882    bool AllExplicitSpecHeaders = true;
1883    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1884      if (ParamLists[I]->size() == 0)
1885        HasAnyExplicitSpecHeader = true;
1886      else
1887        AllExplicitSpecHeaders = false;
1888    }
1889
1890    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1891         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1892                               : diag::err_template_spec_extra_headers)
1893      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1894                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1895
1896    // If there was a specialization somewhere, such that 'template<>' is
1897    // not required, and there were any 'template<>' headers, note where the
1898    // specialization occurred.
1899    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1900      Diag(ExplicitSpecLoc,
1901           diag::note_explicit_template_spec_does_not_need_header)
1902        << NestedTypes.back();
1903
1904    // We have a template parameter list with no corresponding scope, which
1905    // means that the resulting template declaration can't be instantiated
1906    // properly (we'll end up with dependent nodes when we shouldn't).
1907    if (!AllExplicitSpecHeaders)
1908      Invalid = true;
1909  }
1910
1911  // C++ [temp.expl.spec]p16:
1912  //   In an explicit specialization declaration for a member of a class
1913  //   template or a member template that ap- pears in namespace scope, the
1914  //   member template and some of its enclosing class templates may remain
1915  //   unspecialized, except that the declaration shall not explicitly
1916  //   specialize a class member template if its en- closing class templates
1917  //   are not explicitly specialized as well.
1918  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1919      SawNonEmptyTemplateParameterList) {
1920    Diag(DeclLoc, diag::err_specialize_member_of_template)
1921      << ParamLists[ParamIdx]->getSourceRange();
1922    Invalid = true;
1923    IsExplicitSpecialization = false;
1924    return 0;
1925  }
1926
1927  // Return the last template parameter list, which corresponds to the
1928  // entity being declared.
1929  return ParamLists[NumParamLists - 1];
1930}
1931
1932void Sema::NoteAllFoundTemplates(TemplateName Name) {
1933  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1934    Diag(Template->getLocation(), diag::note_template_declared_here)
1935      << (isa<FunctionTemplateDecl>(Template)? 0
1936          : isa<ClassTemplateDecl>(Template)? 1
1937          : isa<TypeAliasTemplateDecl>(Template)? 2
1938          : 3)
1939      << Template->getDeclName();
1940    return;
1941  }
1942
1943  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1944    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1945                                          IEnd = OST->end();
1946         I != IEnd; ++I)
1947      Diag((*I)->getLocation(), diag::note_template_declared_here)
1948        << 0 << (*I)->getDeclName();
1949
1950    return;
1951  }
1952}
1953
1954QualType Sema::CheckTemplateIdType(TemplateName Name,
1955                                   SourceLocation TemplateLoc,
1956                                   TemplateArgumentListInfo &TemplateArgs) {
1957  DependentTemplateName *DTN
1958    = Name.getUnderlying().getAsDependentTemplateName();
1959  if (DTN && DTN->isIdentifier())
1960    // When building a template-id where the template-name is dependent,
1961    // assume the template is a type template. Either our assumption is
1962    // correct, or the code is ill-formed and will be diagnosed when the
1963    // dependent name is substituted.
1964    return Context.getDependentTemplateSpecializationType(ETK_None,
1965                                                          DTN->getQualifier(),
1966                                                          DTN->getIdentifier(),
1967                                                          TemplateArgs);
1968
1969  TemplateDecl *Template = Name.getAsTemplateDecl();
1970  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1971    // We might have a substituted template template parameter pack. If so,
1972    // build a template specialization type for it.
1973    if (Name.getAsSubstTemplateTemplateParmPack())
1974      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1975
1976    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1977      << Name;
1978    NoteAllFoundTemplates(Name);
1979    return QualType();
1980  }
1981
1982  // Check that the template argument list is well-formed for this
1983  // template.
1984  SmallVector<TemplateArgument, 4> Converted;
1985  bool ExpansionIntoFixedList = false;
1986  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1987                                false, Converted, &ExpansionIntoFixedList))
1988    return QualType();
1989
1990  QualType CanonType;
1991
1992  bool InstantiationDependent = false;
1993  TypeAliasTemplateDecl *AliasTemplate = 0;
1994  if (!ExpansionIntoFixedList &&
1995      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1996    // Find the canonical type for this type alias template specialization.
1997    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1998    if (Pattern->isInvalidDecl())
1999      return QualType();
2000
2001    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2002                                      Converted.data(), Converted.size());
2003
2004    // Only substitute for the innermost template argument list.
2005    MultiLevelTemplateArgumentList TemplateArgLists;
2006    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2007    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2008    for (unsigned I = 0; I < Depth; ++I)
2009      TemplateArgLists.addOuterTemplateArguments(0, 0);
2010
2011    LocalInstantiationScope Scope(*this);
2012    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2013    if (Inst)
2014      return QualType();
2015
2016    CanonType = SubstType(Pattern->getUnderlyingType(),
2017                          TemplateArgLists, AliasTemplate->getLocation(),
2018                          AliasTemplate->getDeclName());
2019    if (CanonType.isNull())
2020      return QualType();
2021  } else if (Name.isDependent() ||
2022             TemplateSpecializationType::anyDependentTemplateArguments(
2023               TemplateArgs, InstantiationDependent)) {
2024    // This class template specialization is a dependent
2025    // type. Therefore, its canonical type is another class template
2026    // specialization type that contains all of the converted
2027    // arguments in canonical form. This ensures that, e.g., A<T> and
2028    // A<T, T> have identical types when A is declared as:
2029    //
2030    //   template<typename T, typename U = T> struct A;
2031    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2032    CanonType = Context.getTemplateSpecializationType(CanonName,
2033                                                      Converted.data(),
2034                                                      Converted.size());
2035
2036    // FIXME: CanonType is not actually the canonical type, and unfortunately
2037    // it is a TemplateSpecializationType that we will never use again.
2038    // In the future, we need to teach getTemplateSpecializationType to only
2039    // build the canonical type and return that to us.
2040    CanonType = Context.getCanonicalType(CanonType);
2041
2042    // This might work out to be a current instantiation, in which
2043    // case the canonical type needs to be the InjectedClassNameType.
2044    //
2045    // TODO: in theory this could be a simple hashtable lookup; most
2046    // changes to CurContext don't change the set of current
2047    // instantiations.
2048    if (isa<ClassTemplateDecl>(Template)) {
2049      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2050        // If we get out to a namespace, we're done.
2051        if (Ctx->isFileContext()) break;
2052
2053        // If this isn't a record, keep looking.
2054        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2055        if (!Record) continue;
2056
2057        // Look for one of the two cases with InjectedClassNameTypes
2058        // and check whether it's the same template.
2059        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2060            !Record->getDescribedClassTemplate())
2061          continue;
2062
2063        // Fetch the injected class name type and check whether its
2064        // injected type is equal to the type we just built.
2065        QualType ICNT = Context.getTypeDeclType(Record);
2066        QualType Injected = cast<InjectedClassNameType>(ICNT)
2067          ->getInjectedSpecializationType();
2068
2069        if (CanonType != Injected->getCanonicalTypeInternal())
2070          continue;
2071
2072        // If so, the canonical type of this TST is the injected
2073        // class name type of the record we just found.
2074        assert(ICNT.isCanonical());
2075        CanonType = ICNT;
2076        break;
2077      }
2078    }
2079  } else if (ClassTemplateDecl *ClassTemplate
2080               = dyn_cast<ClassTemplateDecl>(Template)) {
2081    // Find the class template specialization declaration that
2082    // corresponds to these arguments.
2083    void *InsertPos = 0;
2084    ClassTemplateSpecializationDecl *Decl
2085      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2086                                          InsertPos);
2087    if (!Decl) {
2088      // This is the first time we have referenced this class template
2089      // specialization. Create the canonical declaration and add it to
2090      // the set of specializations.
2091      Decl = ClassTemplateSpecializationDecl::Create(Context,
2092                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2093                                                ClassTemplate->getDeclContext(),
2094                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2095                                                ClassTemplate->getLocation(),
2096                                                     ClassTemplate,
2097                                                     Converted.data(),
2098                                                     Converted.size(), 0);
2099      ClassTemplate->AddSpecialization(Decl, InsertPos);
2100      if (ClassTemplate->isOutOfLine())
2101        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2102    }
2103
2104    CanonType = Context.getTypeDeclType(Decl);
2105    assert(isa<RecordType>(CanonType) &&
2106           "type of non-dependent specialization is not a RecordType");
2107  }
2108
2109  // Build the fully-sugared type for this class template
2110  // specialization, which refers back to the class template
2111  // specialization we created or found.
2112  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2113}
2114
2115TypeResult
2116Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2117                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2118                          SourceLocation LAngleLoc,
2119                          ASTTemplateArgsPtr TemplateArgsIn,
2120                          SourceLocation RAngleLoc,
2121                          bool IsCtorOrDtorName) {
2122  if (SS.isInvalid())
2123    return true;
2124
2125  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2126
2127  // Translate the parser's template argument list in our AST format.
2128  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2129  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2130
2131  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2132    QualType T
2133      = Context.getDependentTemplateSpecializationType(ETK_None,
2134                                                       DTN->getQualifier(),
2135                                                       DTN->getIdentifier(),
2136                                                       TemplateArgs);
2137    // Build type-source information.
2138    TypeLocBuilder TLB;
2139    DependentTemplateSpecializationTypeLoc SpecTL
2140      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2141    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2142    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2143    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2144    SpecTL.setTemplateNameLoc(TemplateLoc);
2145    SpecTL.setLAngleLoc(LAngleLoc);
2146    SpecTL.setRAngleLoc(RAngleLoc);
2147    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2148      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2149    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2150  }
2151
2152  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2153
2154  if (Result.isNull())
2155    return true;
2156
2157  // Build type-source information.
2158  TypeLocBuilder TLB;
2159  TemplateSpecializationTypeLoc SpecTL
2160    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2161  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2162  SpecTL.setTemplateNameLoc(TemplateLoc);
2163  SpecTL.setLAngleLoc(LAngleLoc);
2164  SpecTL.setRAngleLoc(RAngleLoc);
2165  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2166    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2167
2168  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2169  // constructor or destructor name (in such a case, the scope specifier
2170  // will be attached to the enclosing Decl or Expr node).
2171  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2172    // Create an elaborated-type-specifier containing the nested-name-specifier.
2173    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2174    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2175    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2176    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2177  }
2178
2179  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2180}
2181
2182TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2183                                        TypeSpecifierType TagSpec,
2184                                        SourceLocation TagLoc,
2185                                        CXXScopeSpec &SS,
2186                                        SourceLocation TemplateKWLoc,
2187                                        TemplateTy TemplateD,
2188                                        SourceLocation TemplateLoc,
2189                                        SourceLocation LAngleLoc,
2190                                        ASTTemplateArgsPtr TemplateArgsIn,
2191                                        SourceLocation RAngleLoc) {
2192  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2193
2194  // Translate the parser's template argument list in our AST format.
2195  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2196  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2197
2198  // Determine the tag kind
2199  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2200  ElaboratedTypeKeyword Keyword
2201    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2202
2203  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2204    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2205                                                          DTN->getQualifier(),
2206                                                          DTN->getIdentifier(),
2207                                                                TemplateArgs);
2208
2209    // Build type-source information.
2210    TypeLocBuilder TLB;
2211    DependentTemplateSpecializationTypeLoc SpecTL
2212      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2213    SpecTL.setElaboratedKeywordLoc(TagLoc);
2214    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2215    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2216    SpecTL.setTemplateNameLoc(TemplateLoc);
2217    SpecTL.setLAngleLoc(LAngleLoc);
2218    SpecTL.setRAngleLoc(RAngleLoc);
2219    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2220      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2221    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2222  }
2223
2224  if (TypeAliasTemplateDecl *TAT =
2225        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2226    // C++0x [dcl.type.elab]p2:
2227    //   If the identifier resolves to a typedef-name or the simple-template-id
2228    //   resolves to an alias template specialization, the
2229    //   elaborated-type-specifier is ill-formed.
2230    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2231    Diag(TAT->getLocation(), diag::note_declared_at);
2232  }
2233
2234  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2235  if (Result.isNull())
2236    return TypeResult(true);
2237
2238  // Check the tag kind
2239  if (const RecordType *RT = Result->getAs<RecordType>()) {
2240    RecordDecl *D = RT->getDecl();
2241
2242    IdentifierInfo *Id = D->getIdentifier();
2243    assert(Id && "templated class must have an identifier");
2244
2245    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2246                                      TagLoc, *Id)) {
2247      Diag(TagLoc, diag::err_use_with_wrong_tag)
2248        << Result
2249        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2250      Diag(D->getLocation(), diag::note_previous_use);
2251    }
2252  }
2253
2254  // Provide source-location information for the template specialization.
2255  TypeLocBuilder TLB;
2256  TemplateSpecializationTypeLoc SpecTL
2257    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2258  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2259  SpecTL.setTemplateNameLoc(TemplateLoc);
2260  SpecTL.setLAngleLoc(LAngleLoc);
2261  SpecTL.setRAngleLoc(RAngleLoc);
2262  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2263    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2264
2265  // Construct an elaborated type containing the nested-name-specifier (if any)
2266  // and tag keyword.
2267  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2268  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2269  ElabTL.setElaboratedKeywordLoc(TagLoc);
2270  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2271  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2272}
2273
2274ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2275                                     SourceLocation TemplateKWLoc,
2276                                     LookupResult &R,
2277                                     bool RequiresADL,
2278                                 const TemplateArgumentListInfo *TemplateArgs) {
2279  // FIXME: Can we do any checking at this point? I guess we could check the
2280  // template arguments that we have against the template name, if the template
2281  // name refers to a single template. That's not a terribly common case,
2282  // though.
2283  // foo<int> could identify a single function unambiguously
2284  // This approach does NOT work, since f<int>(1);
2285  // gets resolved prior to resorting to overload resolution
2286  // i.e., template<class T> void f(double);
2287  //       vs template<class T, class U> void f(U);
2288
2289  // These should be filtered out by our callers.
2290  assert(!R.empty() && "empty lookup results when building templateid");
2291  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2292
2293  // We don't want lookup warnings at this point.
2294  R.suppressDiagnostics();
2295
2296  UnresolvedLookupExpr *ULE
2297    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2298                                   SS.getWithLocInContext(Context),
2299                                   TemplateKWLoc,
2300                                   R.getLookupNameInfo(),
2301                                   RequiresADL, TemplateArgs,
2302                                   R.begin(), R.end());
2303
2304  return Owned(ULE);
2305}
2306
2307// We actually only call this from template instantiation.
2308ExprResult
2309Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2310                                   SourceLocation TemplateKWLoc,
2311                                   const DeclarationNameInfo &NameInfo,
2312                             const TemplateArgumentListInfo *TemplateArgs) {
2313  assert(TemplateArgs || TemplateKWLoc.isValid());
2314  DeclContext *DC;
2315  if (!(DC = computeDeclContext(SS, false)) ||
2316      DC->isDependentContext() ||
2317      RequireCompleteDeclContext(SS, DC))
2318    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2319
2320  bool MemberOfUnknownSpecialization;
2321  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2322  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2323                     MemberOfUnknownSpecialization);
2324
2325  if (R.isAmbiguous())
2326    return ExprError();
2327
2328  if (R.empty()) {
2329    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2330      << NameInfo.getName() << SS.getRange();
2331    return ExprError();
2332  }
2333
2334  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2335    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2336      << (NestedNameSpecifier*) SS.getScopeRep()
2337      << NameInfo.getName() << SS.getRange();
2338    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2339    return ExprError();
2340  }
2341
2342  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2343}
2344
2345/// \brief Form a dependent template name.
2346///
2347/// This action forms a dependent template name given the template
2348/// name and its (presumably dependent) scope specifier. For
2349/// example, given "MetaFun::template apply", the scope specifier \p
2350/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2351/// of the "template" keyword, and "apply" is the \p Name.
2352TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2353                                                  CXXScopeSpec &SS,
2354                                                  SourceLocation TemplateKWLoc,
2355                                                  UnqualifiedId &Name,
2356                                                  ParsedType ObjectType,
2357                                                  bool EnteringContext,
2358                                                  TemplateTy &Result) {
2359  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2360    Diag(TemplateKWLoc,
2361         getLangOpts().CPlusPlus0x ?
2362           diag::warn_cxx98_compat_template_outside_of_template :
2363           diag::ext_template_outside_of_template)
2364      << FixItHint::CreateRemoval(TemplateKWLoc);
2365
2366  DeclContext *LookupCtx = 0;
2367  if (SS.isSet())
2368    LookupCtx = computeDeclContext(SS, EnteringContext);
2369  if (!LookupCtx && ObjectType)
2370    LookupCtx = computeDeclContext(ObjectType.get());
2371  if (LookupCtx) {
2372    // C++0x [temp.names]p5:
2373    //   If a name prefixed by the keyword template is not the name of
2374    //   a template, the program is ill-formed. [Note: the keyword
2375    //   template may not be applied to non-template members of class
2376    //   templates. -end note ] [ Note: as is the case with the
2377    //   typename prefix, the template prefix is allowed in cases
2378    //   where it is not strictly necessary; i.e., when the
2379    //   nested-name-specifier or the expression on the left of the ->
2380    //   or . is not dependent on a template-parameter, or the use
2381    //   does not appear in the scope of a template. -end note]
2382    //
2383    // Note: C++03 was more strict here, because it banned the use of
2384    // the "template" keyword prior to a template-name that was not a
2385    // dependent name. C++ DR468 relaxed this requirement (the
2386    // "template" keyword is now permitted). We follow the C++0x
2387    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2388    bool MemberOfUnknownSpecialization;
2389    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2390                                          ObjectType, EnteringContext, Result,
2391                                          MemberOfUnknownSpecialization);
2392    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2393        isa<CXXRecordDecl>(LookupCtx) &&
2394        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2395         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2396      // This is a dependent template. Handle it below.
2397    } else if (TNK == TNK_Non_template) {
2398      Diag(Name.getLocStart(),
2399           diag::err_template_kw_refers_to_non_template)
2400        << GetNameFromUnqualifiedId(Name).getName()
2401        << Name.getSourceRange()
2402        << TemplateKWLoc;
2403      return TNK_Non_template;
2404    } else {
2405      // We found something; return it.
2406      return TNK;
2407    }
2408  }
2409
2410  NestedNameSpecifier *Qualifier
2411    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2412
2413  switch (Name.getKind()) {
2414  case UnqualifiedId::IK_Identifier:
2415    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2416                                                              Name.Identifier));
2417    return TNK_Dependent_template_name;
2418
2419  case UnqualifiedId::IK_OperatorFunctionId:
2420    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2421                                             Name.OperatorFunctionId.Operator));
2422    return TNK_Dependent_template_name;
2423
2424  case UnqualifiedId::IK_LiteralOperatorId:
2425    llvm_unreachable(
2426            "We don't support these; Parse shouldn't have allowed propagation");
2427
2428  default:
2429    break;
2430  }
2431
2432  Diag(Name.getLocStart(),
2433       diag::err_template_kw_refers_to_non_template)
2434    << GetNameFromUnqualifiedId(Name).getName()
2435    << Name.getSourceRange()
2436    << TemplateKWLoc;
2437  return TNK_Non_template;
2438}
2439
2440bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2441                                     const TemplateArgumentLoc &AL,
2442                          SmallVectorImpl<TemplateArgument> &Converted) {
2443  const TemplateArgument &Arg = AL.getArgument();
2444
2445  // Check template type parameter.
2446  switch(Arg.getKind()) {
2447  case TemplateArgument::Type:
2448    // C++ [temp.arg.type]p1:
2449    //   A template-argument for a template-parameter which is a
2450    //   type shall be a type-id.
2451    break;
2452  case TemplateArgument::Template: {
2453    // We have a template type parameter but the template argument
2454    // is a template without any arguments.
2455    SourceRange SR = AL.getSourceRange();
2456    TemplateName Name = Arg.getAsTemplate();
2457    Diag(SR.getBegin(), diag::err_template_missing_args)
2458      << Name << SR;
2459    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2460      Diag(Decl->getLocation(), diag::note_template_decl_here);
2461
2462    return true;
2463  }
2464  case TemplateArgument::Expression: {
2465    // We have a template type parameter but the template argument is an
2466    // expression; see if maybe it is missing the "typename" keyword.
2467    CXXScopeSpec SS;
2468    DeclarationNameInfo NameInfo;
2469
2470    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2471      SS.Adopt(ArgExpr->getQualifierLoc());
2472      NameInfo = ArgExpr->getNameInfo();
2473    } else if (DependentScopeDeclRefExpr *ArgExpr =
2474               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2475      SS.Adopt(ArgExpr->getQualifierLoc());
2476      NameInfo = ArgExpr->getNameInfo();
2477    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2478               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2479      if (ArgExpr->isImplicitAccess()) {
2480        SS.Adopt(ArgExpr->getQualifierLoc());
2481        NameInfo = ArgExpr->getMemberNameInfo();
2482      }
2483    }
2484
2485    if (NameInfo.getName().isIdentifier()) {
2486      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2487      LookupParsedName(Result, CurScope, &SS);
2488
2489      if (Result.getAsSingle<TypeDecl>() ||
2490          Result.getResultKind() ==
2491            LookupResult::NotFoundInCurrentInstantiation) {
2492        // FIXME: Add a FixIt and fix up the template argument for recovery.
2493        SourceLocation Loc = AL.getSourceRange().getBegin();
2494        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2495        Diag(Param->getLocation(), diag::note_template_param_here);
2496        return true;
2497      }
2498    }
2499    // fallthrough
2500  }
2501  default: {
2502    // We have a template type parameter but the template argument
2503    // is not a type.
2504    SourceRange SR = AL.getSourceRange();
2505    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2506    Diag(Param->getLocation(), diag::note_template_param_here);
2507
2508    return true;
2509  }
2510  }
2511
2512  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2513    return true;
2514
2515  // Add the converted template type argument.
2516  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2517
2518  // Objective-C ARC:
2519  //   If an explicitly-specified template argument type is a lifetime type
2520  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2521  if (getLangOpts().ObjCAutoRefCount &&
2522      ArgType->isObjCLifetimeType() &&
2523      !ArgType.getObjCLifetime()) {
2524    Qualifiers Qs;
2525    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2526    ArgType = Context.getQualifiedType(ArgType, Qs);
2527  }
2528
2529  Converted.push_back(TemplateArgument(ArgType));
2530  return false;
2531}
2532
2533/// \brief Substitute template arguments into the default template argument for
2534/// the given template type parameter.
2535///
2536/// \param SemaRef the semantic analysis object for which we are performing
2537/// the substitution.
2538///
2539/// \param Template the template that we are synthesizing template arguments
2540/// for.
2541///
2542/// \param TemplateLoc the location of the template name that started the
2543/// template-id we are checking.
2544///
2545/// \param RAngleLoc the location of the right angle bracket ('>') that
2546/// terminates the template-id.
2547///
2548/// \param Param the template template parameter whose default we are
2549/// substituting into.
2550///
2551/// \param Converted the list of template arguments provided for template
2552/// parameters that precede \p Param in the template parameter list.
2553/// \returns the substituted template argument, or NULL if an error occurred.
2554static TypeSourceInfo *
2555SubstDefaultTemplateArgument(Sema &SemaRef,
2556                             TemplateDecl *Template,
2557                             SourceLocation TemplateLoc,
2558                             SourceLocation RAngleLoc,
2559                             TemplateTypeParmDecl *Param,
2560                         SmallVectorImpl<TemplateArgument> &Converted) {
2561  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2562
2563  // If the argument type is dependent, instantiate it now based
2564  // on the previously-computed template arguments.
2565  if (ArgType->getType()->isDependentType()) {
2566    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2567                                      Converted.data(), Converted.size());
2568
2569    MultiLevelTemplateArgumentList AllTemplateArgs
2570      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2571
2572    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2573                                     Template, Converted,
2574                                     SourceRange(TemplateLoc, RAngleLoc));
2575    if (Inst)
2576      return 0;
2577
2578    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2579    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2580                                Param->getDefaultArgumentLoc(),
2581                                Param->getDeclName());
2582  }
2583
2584  return ArgType;
2585}
2586
2587/// \brief Substitute template arguments into the default template argument for
2588/// the given non-type template parameter.
2589///
2590/// \param SemaRef the semantic analysis object for which we are performing
2591/// the substitution.
2592///
2593/// \param Template the template that we are synthesizing template arguments
2594/// for.
2595///
2596/// \param TemplateLoc the location of the template name that started the
2597/// template-id we are checking.
2598///
2599/// \param RAngleLoc the location of the right angle bracket ('>') that
2600/// terminates the template-id.
2601///
2602/// \param Param the non-type template parameter whose default we are
2603/// substituting into.
2604///
2605/// \param Converted the list of template arguments provided for template
2606/// parameters that precede \p Param in the template parameter list.
2607///
2608/// \returns the substituted template argument, or NULL if an error occurred.
2609static ExprResult
2610SubstDefaultTemplateArgument(Sema &SemaRef,
2611                             TemplateDecl *Template,
2612                             SourceLocation TemplateLoc,
2613                             SourceLocation RAngleLoc,
2614                             NonTypeTemplateParmDecl *Param,
2615                        SmallVectorImpl<TemplateArgument> &Converted) {
2616  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2617                                    Converted.data(), Converted.size());
2618
2619  MultiLevelTemplateArgumentList AllTemplateArgs
2620    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2621
2622  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2623                                   Template, Converted,
2624                                   SourceRange(TemplateLoc, RAngleLoc));
2625  if (Inst)
2626    return ExprError();
2627
2628  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2629  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
2630  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2631}
2632
2633/// \brief Substitute template arguments into the default template argument for
2634/// the given template template parameter.
2635///
2636/// \param SemaRef the semantic analysis object for which we are performing
2637/// the substitution.
2638///
2639/// \param Template the template that we are synthesizing template arguments
2640/// for.
2641///
2642/// \param TemplateLoc the location of the template name that started the
2643/// template-id we are checking.
2644///
2645/// \param RAngleLoc the location of the right angle bracket ('>') that
2646/// terminates the template-id.
2647///
2648/// \param Param the template template parameter whose default we are
2649/// substituting into.
2650///
2651/// \param Converted the list of template arguments provided for template
2652/// parameters that precede \p Param in the template parameter list.
2653///
2654/// \param QualifierLoc Will be set to the nested-name-specifier (with
2655/// source-location information) that precedes the template name.
2656///
2657/// \returns the substituted template argument, or NULL if an error occurred.
2658static TemplateName
2659SubstDefaultTemplateArgument(Sema &SemaRef,
2660                             TemplateDecl *Template,
2661                             SourceLocation TemplateLoc,
2662                             SourceLocation RAngleLoc,
2663                             TemplateTemplateParmDecl *Param,
2664                       SmallVectorImpl<TemplateArgument> &Converted,
2665                             NestedNameSpecifierLoc &QualifierLoc) {
2666  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2667                                    Converted.data(), Converted.size());
2668
2669  MultiLevelTemplateArgumentList AllTemplateArgs
2670    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2671
2672  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2673                                   Template, Converted,
2674                                   SourceRange(TemplateLoc, RAngleLoc));
2675  if (Inst)
2676    return TemplateName();
2677
2678  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2679  // Substitute into the nested-name-specifier first,
2680  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2681  if (QualifierLoc) {
2682    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2683                                                       AllTemplateArgs);
2684    if (!QualifierLoc)
2685      return TemplateName();
2686  }
2687
2688  return SemaRef.SubstTemplateName(QualifierLoc,
2689                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2690                              Param->getDefaultArgument().getTemplateNameLoc(),
2691                                   AllTemplateArgs);
2692}
2693
2694/// \brief If the given template parameter has a default template
2695/// argument, substitute into that default template argument and
2696/// return the corresponding template argument.
2697TemplateArgumentLoc
2698Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2699                                              SourceLocation TemplateLoc,
2700                                              SourceLocation RAngleLoc,
2701                                              Decl *Param,
2702                      SmallVectorImpl<TemplateArgument> &Converted) {
2703   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2704    if (!TypeParm->hasDefaultArgument())
2705      return TemplateArgumentLoc();
2706
2707    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2708                                                      TemplateLoc,
2709                                                      RAngleLoc,
2710                                                      TypeParm,
2711                                                      Converted);
2712    if (DI)
2713      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2714
2715    return TemplateArgumentLoc();
2716  }
2717
2718  if (NonTypeTemplateParmDecl *NonTypeParm
2719        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2720    if (!NonTypeParm->hasDefaultArgument())
2721      return TemplateArgumentLoc();
2722
2723    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2724                                                  TemplateLoc,
2725                                                  RAngleLoc,
2726                                                  NonTypeParm,
2727                                                  Converted);
2728    if (Arg.isInvalid())
2729      return TemplateArgumentLoc();
2730
2731    Expr *ArgE = Arg.takeAs<Expr>();
2732    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2733  }
2734
2735  TemplateTemplateParmDecl *TempTempParm
2736    = cast<TemplateTemplateParmDecl>(Param);
2737  if (!TempTempParm->hasDefaultArgument())
2738    return TemplateArgumentLoc();
2739
2740
2741  NestedNameSpecifierLoc QualifierLoc;
2742  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2743                                                    TemplateLoc,
2744                                                    RAngleLoc,
2745                                                    TempTempParm,
2746                                                    Converted,
2747                                                    QualifierLoc);
2748  if (TName.isNull())
2749    return TemplateArgumentLoc();
2750
2751  return TemplateArgumentLoc(TemplateArgument(TName),
2752                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2753                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2754}
2755
2756/// \brief Check that the given template argument corresponds to the given
2757/// template parameter.
2758///
2759/// \param Param The template parameter against which the argument will be
2760/// checked.
2761///
2762/// \param Arg The template argument.
2763///
2764/// \param Template The template in which the template argument resides.
2765///
2766/// \param TemplateLoc The location of the template name for the template
2767/// whose argument list we're matching.
2768///
2769/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2770/// the template argument list.
2771///
2772/// \param ArgumentPackIndex The index into the argument pack where this
2773/// argument will be placed. Only valid if the parameter is a parameter pack.
2774///
2775/// \param Converted The checked, converted argument will be added to the
2776/// end of this small vector.
2777///
2778/// \param CTAK Describes how we arrived at this particular template argument:
2779/// explicitly written, deduced, etc.
2780///
2781/// \returns true on error, false otherwise.
2782bool Sema::CheckTemplateArgument(NamedDecl *Param,
2783                                 const TemplateArgumentLoc &Arg,
2784                                 NamedDecl *Template,
2785                                 SourceLocation TemplateLoc,
2786                                 SourceLocation RAngleLoc,
2787                                 unsigned ArgumentPackIndex,
2788                            SmallVectorImpl<TemplateArgument> &Converted,
2789                                 CheckTemplateArgumentKind CTAK) {
2790  // Check template type parameters.
2791  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2792    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2793
2794  // Check non-type template parameters.
2795  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2796    // Do substitution on the type of the non-type template parameter
2797    // with the template arguments we've seen thus far.  But if the
2798    // template has a dependent context then we cannot substitute yet.
2799    QualType NTTPType = NTTP->getType();
2800    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2801      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2802
2803    if (NTTPType->isDependentType() &&
2804        !isa<TemplateTemplateParmDecl>(Template) &&
2805        !Template->getDeclContext()->isDependentContext()) {
2806      // Do substitution on the type of the non-type template parameter.
2807      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2808                                 NTTP, Converted,
2809                                 SourceRange(TemplateLoc, RAngleLoc));
2810      if (Inst)
2811        return true;
2812
2813      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2814                                        Converted.data(), Converted.size());
2815      NTTPType = SubstType(NTTPType,
2816                           MultiLevelTemplateArgumentList(TemplateArgs),
2817                           NTTP->getLocation(),
2818                           NTTP->getDeclName());
2819      // If that worked, check the non-type template parameter type
2820      // for validity.
2821      if (!NTTPType.isNull())
2822        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2823                                                     NTTP->getLocation());
2824      if (NTTPType.isNull())
2825        return true;
2826    }
2827
2828    switch (Arg.getArgument().getKind()) {
2829    case TemplateArgument::Null:
2830      llvm_unreachable("Should never see a NULL template argument here");
2831
2832    case TemplateArgument::Expression: {
2833      TemplateArgument Result;
2834      ExprResult Res =
2835        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2836                              Result, CTAK);
2837      if (Res.isInvalid())
2838        return true;
2839
2840      Converted.push_back(Result);
2841      break;
2842    }
2843
2844    case TemplateArgument::Declaration:
2845    case TemplateArgument::Integral:
2846      // We've already checked this template argument, so just copy
2847      // it to the list of converted arguments.
2848      Converted.push_back(Arg.getArgument());
2849      break;
2850
2851    case TemplateArgument::Template:
2852    case TemplateArgument::TemplateExpansion:
2853      // We were given a template template argument. It may not be ill-formed;
2854      // see below.
2855      if (DependentTemplateName *DTN
2856            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2857                                              .getAsDependentTemplateName()) {
2858        // We have a template argument such as \c T::template X, which we
2859        // parsed as a template template argument. However, since we now
2860        // know that we need a non-type template argument, convert this
2861        // template name into an expression.
2862
2863        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2864                                     Arg.getTemplateNameLoc());
2865
2866        CXXScopeSpec SS;
2867        SS.Adopt(Arg.getTemplateQualifierLoc());
2868        // FIXME: the template-template arg was a DependentTemplateName,
2869        // so it was provided with a template keyword. However, its source
2870        // location is not stored in the template argument structure.
2871        SourceLocation TemplateKWLoc;
2872        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2873                                                SS.getWithLocInContext(Context),
2874                                                               TemplateKWLoc,
2875                                                               NameInfo, 0));
2876
2877        // If we parsed the template argument as a pack expansion, create a
2878        // pack expansion expression.
2879        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2880          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2881          if (E.isInvalid())
2882            return true;
2883        }
2884
2885        TemplateArgument Result;
2886        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2887        if (E.isInvalid())
2888          return true;
2889
2890        Converted.push_back(Result);
2891        break;
2892      }
2893
2894      // We have a template argument that actually does refer to a class
2895      // template, alias template, or template template parameter, and
2896      // therefore cannot be a non-type template argument.
2897      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2898        << Arg.getSourceRange();
2899
2900      Diag(Param->getLocation(), diag::note_template_param_here);
2901      return true;
2902
2903    case TemplateArgument::Type: {
2904      // We have a non-type template parameter but the template
2905      // argument is a type.
2906
2907      // C++ [temp.arg]p2:
2908      //   In a template-argument, an ambiguity between a type-id and
2909      //   an expression is resolved to a type-id, regardless of the
2910      //   form of the corresponding template-parameter.
2911      //
2912      // We warn specifically about this case, since it can be rather
2913      // confusing for users.
2914      QualType T = Arg.getArgument().getAsType();
2915      SourceRange SR = Arg.getSourceRange();
2916      if (T->isFunctionType())
2917        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2918      else
2919        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2920      Diag(Param->getLocation(), diag::note_template_param_here);
2921      return true;
2922    }
2923
2924    case TemplateArgument::Pack:
2925      llvm_unreachable("Caller must expand template argument packs");
2926    }
2927
2928    return false;
2929  }
2930
2931
2932  // Check template template parameters.
2933  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2934
2935  // Substitute into the template parameter list of the template
2936  // template parameter, since previously-supplied template arguments
2937  // may appear within the template template parameter.
2938  {
2939    // Set up a template instantiation context.
2940    LocalInstantiationScope Scope(*this);
2941    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2942                               TempParm, Converted,
2943                               SourceRange(TemplateLoc, RAngleLoc));
2944    if (Inst)
2945      return true;
2946
2947    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2948                                      Converted.data(), Converted.size());
2949    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2950                      SubstDecl(TempParm, CurContext,
2951                                MultiLevelTemplateArgumentList(TemplateArgs)));
2952    if (!TempParm)
2953      return true;
2954  }
2955
2956  switch (Arg.getArgument().getKind()) {
2957  case TemplateArgument::Null:
2958    llvm_unreachable("Should never see a NULL template argument here");
2959
2960  case TemplateArgument::Template:
2961  case TemplateArgument::TemplateExpansion:
2962    if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
2963      return true;
2964
2965    Converted.push_back(Arg.getArgument());
2966    break;
2967
2968  case TemplateArgument::Expression:
2969  case TemplateArgument::Type:
2970    // We have a template template parameter but the template
2971    // argument does not refer to a template.
2972    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2973      << getLangOpts().CPlusPlus0x;
2974    return true;
2975
2976  case TemplateArgument::Declaration:
2977    llvm_unreachable("Declaration argument with template template parameter");
2978  case TemplateArgument::Integral:
2979    llvm_unreachable("Integral argument with template template parameter");
2980
2981  case TemplateArgument::Pack:
2982    llvm_unreachable("Caller must expand template argument packs");
2983  }
2984
2985  return false;
2986}
2987
2988/// \brief Diagnose an arity mismatch in the
2989static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2990                                  SourceLocation TemplateLoc,
2991                                  TemplateArgumentListInfo &TemplateArgs) {
2992  TemplateParameterList *Params = Template->getTemplateParameters();
2993  unsigned NumParams = Params->size();
2994  unsigned NumArgs = TemplateArgs.size();
2995
2996  SourceRange Range;
2997  if (NumArgs > NumParams)
2998    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2999                        TemplateArgs.getRAngleLoc());
3000  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3001    << (NumArgs > NumParams)
3002    << (isa<ClassTemplateDecl>(Template)? 0 :
3003        isa<FunctionTemplateDecl>(Template)? 1 :
3004        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3005    << Template << Range;
3006  S.Diag(Template->getLocation(), diag::note_template_decl_here)
3007    << Params->getSourceRange();
3008  return true;
3009}
3010
3011/// \brief Check whether the template parameter is a pack expansion, and if so,
3012/// determine the number of parameters produced by that expansion. For instance:
3013///
3014/// \code
3015/// template<typename ...Ts> struct A {
3016///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3017/// };
3018/// \endcode
3019///
3020/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3021/// is not a pack expansion, so returns an empty Optional.
3022static llvm::Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3023  if (NonTypeTemplateParmDecl *NTTP
3024        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3025    if (NTTP->isExpandedParameterPack())
3026      return NTTP->getNumExpansionTypes();
3027  }
3028
3029  if (TemplateTemplateParmDecl *TTP
3030        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3031    if (TTP->isExpandedParameterPack())
3032      return TTP->getNumExpansionTemplateParameters();
3033  }
3034
3035  return llvm::Optional<unsigned>();
3036}
3037
3038/// \brief Check that the given template argument list is well-formed
3039/// for specializing the given template.
3040bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3041                                     SourceLocation TemplateLoc,
3042                                     TemplateArgumentListInfo &TemplateArgs,
3043                                     bool PartialTemplateArgs,
3044                          SmallVectorImpl<TemplateArgument> &Converted,
3045                                     bool *ExpansionIntoFixedList) {
3046  if (ExpansionIntoFixedList)
3047    *ExpansionIntoFixedList = false;
3048
3049  TemplateParameterList *Params = Template->getTemplateParameters();
3050
3051  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3052
3053  // C++ [temp.arg]p1:
3054  //   [...] The type and form of each template-argument specified in
3055  //   a template-id shall match the type and form specified for the
3056  //   corresponding parameter declared by the template in its
3057  //   template-parameter-list.
3058  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3059  SmallVector<TemplateArgument, 2> ArgumentPack;
3060  unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3061  LocalInstantiationScope InstScope(*this, true);
3062  for (TemplateParameterList::iterator Param = Params->begin(),
3063                                       ParamEnd = Params->end();
3064       Param != ParamEnd; /* increment in loop */) {
3065    // If we have an expanded parameter pack, make sure we don't have too
3066    // many arguments.
3067    if (llvm::Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3068      if (*Expansions == ArgumentPack.size()) {
3069        // We're done with this parameter pack. Pack up its arguments and add
3070        // them to the list.
3071        if (ArgumentPack.empty())
3072          Converted.push_back(TemplateArgument(0, 0));
3073        else {
3074          Converted.push_back(
3075            TemplateArgument::CreatePackCopy(Context,
3076                                             ArgumentPack.data(),
3077                                             ArgumentPack.size()));
3078          ArgumentPack.clear();
3079        }
3080        // This argument is assigned to the next parameter.
3081        ++Param;
3082        continue;
3083      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3084        // Not enough arguments for this parameter pack.
3085        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3086          << false
3087          << (isa<ClassTemplateDecl>(Template)? 0 :
3088              isa<FunctionTemplateDecl>(Template)? 1 :
3089              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3090          << Template;
3091        Diag(Template->getLocation(), diag::note_template_decl_here)
3092          << Params->getSourceRange();
3093        return true;
3094      }
3095    }
3096
3097    if (ArgIdx < NumArgs) {
3098      // Check the template argument we were given.
3099      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3100                                TemplateLoc, RAngleLoc,
3101                                ArgumentPack.size(), Converted))
3102        return true;
3103
3104      // We're now done with this argument.
3105      ++ArgIdx;
3106
3107      if ((*Param)->isTemplateParameterPack()) {
3108        // The template parameter was a template parameter pack, so take the
3109        // deduced argument and place it on the argument pack. Note that we
3110        // stay on the same template parameter so that we can deduce more
3111        // arguments.
3112        ArgumentPack.push_back(Converted.back());
3113        Converted.pop_back();
3114      } else {
3115        // Move to the next template parameter.
3116        ++Param;
3117      }
3118
3119      // If we just saw a pack expansion, then directly convert the remaining
3120      // arguments, because we don't know what parameters they'll match up
3121      // with.
3122      if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3123        bool InFinalParameterPack = Param != ParamEnd &&
3124                                    Param + 1 == ParamEnd &&
3125                                    (*Param)->isTemplateParameterPack() &&
3126                                    !getExpandedPackSize(*Param);
3127
3128        if (!InFinalParameterPack && !ArgumentPack.empty()) {
3129          // If we were part way through filling in an expanded parameter pack,
3130          // fall back to just producing individual arguments.
3131          Converted.insert(Converted.end(),
3132                           ArgumentPack.begin(), ArgumentPack.end());
3133          ArgumentPack.clear();
3134        }
3135
3136        while (ArgIdx < NumArgs) {
3137          if (InFinalParameterPack)
3138            ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3139          else
3140            Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3141          ++ArgIdx;
3142        }
3143
3144        // Push the argument pack onto the list of converted arguments.
3145        if (InFinalParameterPack) {
3146          if (ArgumentPack.empty())
3147            Converted.push_back(TemplateArgument(0, 0));
3148          else {
3149            Converted.push_back(
3150              TemplateArgument::CreatePackCopy(Context,
3151                                               ArgumentPack.data(),
3152                                               ArgumentPack.size()));
3153            ArgumentPack.clear();
3154          }
3155        } else if (ExpansionIntoFixedList) {
3156          // We have expanded a pack into a fixed list.
3157          *ExpansionIntoFixedList = true;
3158        }
3159
3160        return false;
3161      }
3162
3163      continue;
3164    }
3165
3166    // If we're checking a partial template argument list, we're done.
3167    if (PartialTemplateArgs) {
3168      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3169        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3170                                                         ArgumentPack.data(),
3171                                                         ArgumentPack.size()));
3172
3173      return false;
3174    }
3175
3176    // If we have a template parameter pack with no more corresponding
3177    // arguments, just break out now and we'll fill in the argument pack below.
3178    if ((*Param)->isTemplateParameterPack()) {
3179      assert(!getExpandedPackSize(*Param) &&
3180             "Should have dealt with this already");
3181
3182      // A non-expanded parameter pack before the end of the parameter list
3183      // only occurs for an ill-formed template parameter list, unless we've
3184      // got a partial argument list for a function template, so just bail out.
3185      if (Param + 1 != ParamEnd)
3186        return true;
3187
3188      if (ArgumentPack.empty())
3189        Converted.push_back(TemplateArgument(0, 0));
3190      else {
3191        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3192                                                         ArgumentPack.data(),
3193                                                         ArgumentPack.size()));
3194        ArgumentPack.clear();
3195      }
3196
3197      ++Param;
3198      continue;
3199    }
3200
3201    // Check whether we have a default argument.
3202    TemplateArgumentLoc Arg;
3203
3204    // Retrieve the default template argument from the template
3205    // parameter. For each kind of template parameter, we substitute the
3206    // template arguments provided thus far and any "outer" template arguments
3207    // (when the template parameter was part of a nested template) into
3208    // the default argument.
3209    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3210      if (!TTP->hasDefaultArgument())
3211        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3212                                     TemplateArgs);
3213
3214      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3215                                                             Template,
3216                                                             TemplateLoc,
3217                                                             RAngleLoc,
3218                                                             TTP,
3219                                                             Converted);
3220      if (!ArgType)
3221        return true;
3222
3223      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3224                                ArgType);
3225    } else if (NonTypeTemplateParmDecl *NTTP
3226                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3227      if (!NTTP->hasDefaultArgument())
3228        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3229                                     TemplateArgs);
3230
3231      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3232                                                              TemplateLoc,
3233                                                              RAngleLoc,
3234                                                              NTTP,
3235                                                              Converted);
3236      if (E.isInvalid())
3237        return true;
3238
3239      Expr *Ex = E.takeAs<Expr>();
3240      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3241    } else {
3242      TemplateTemplateParmDecl *TempParm
3243        = cast<TemplateTemplateParmDecl>(*Param);
3244
3245      if (!TempParm->hasDefaultArgument())
3246        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3247                                     TemplateArgs);
3248
3249      NestedNameSpecifierLoc QualifierLoc;
3250      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3251                                                       TemplateLoc,
3252                                                       RAngleLoc,
3253                                                       TempParm,
3254                                                       Converted,
3255                                                       QualifierLoc);
3256      if (Name.isNull())
3257        return true;
3258
3259      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3260                           TempParm->getDefaultArgument().getTemplateNameLoc());
3261    }
3262
3263    // Introduce an instantiation record that describes where we are using
3264    // the default template argument.
3265    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3266                                        *Param, Converted,
3267                                        SourceRange(TemplateLoc, RAngleLoc));
3268    if (Instantiating)
3269      return true;
3270
3271    // Check the default template argument.
3272    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3273                              RAngleLoc, 0, Converted))
3274      return true;
3275
3276    // Core issue 150 (assumed resolution): if this is a template template
3277    // parameter, keep track of the default template arguments from the
3278    // template definition.
3279    if (isTemplateTemplateParameter)
3280      TemplateArgs.addArgument(Arg);
3281
3282    // Move to the next template parameter and argument.
3283    ++Param;
3284    ++ArgIdx;
3285  }
3286
3287  // If we have any leftover arguments, then there were too many arguments.
3288  // Complain and fail.
3289  if (ArgIdx < NumArgs)
3290    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3291
3292  return false;
3293}
3294
3295namespace {
3296  class UnnamedLocalNoLinkageFinder
3297    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3298  {
3299    Sema &S;
3300    SourceRange SR;
3301
3302    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3303
3304  public:
3305    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3306
3307    bool Visit(QualType T) {
3308      return inherited::Visit(T.getTypePtr());
3309    }
3310
3311#define TYPE(Class, Parent) \
3312    bool Visit##Class##Type(const Class##Type *);
3313#define ABSTRACT_TYPE(Class, Parent) \
3314    bool Visit##Class##Type(const Class##Type *) { return false; }
3315#define NON_CANONICAL_TYPE(Class, Parent) \
3316    bool Visit##Class##Type(const Class##Type *) { return false; }
3317#include "clang/AST/TypeNodes.def"
3318
3319    bool VisitTagDecl(const TagDecl *Tag);
3320    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3321  };
3322}
3323
3324bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3325  return false;
3326}
3327
3328bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3329  return Visit(T->getElementType());
3330}
3331
3332bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3333  return Visit(T->getPointeeType());
3334}
3335
3336bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3337                                                    const BlockPointerType* T) {
3338  return Visit(T->getPointeeType());
3339}
3340
3341bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3342                                                const LValueReferenceType* T) {
3343  return Visit(T->getPointeeType());
3344}
3345
3346bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3347                                                const RValueReferenceType* T) {
3348  return Visit(T->getPointeeType());
3349}
3350
3351bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3352                                                  const MemberPointerType* T) {
3353  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3354}
3355
3356bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3357                                                  const ConstantArrayType* T) {
3358  return Visit(T->getElementType());
3359}
3360
3361bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3362                                                 const IncompleteArrayType* T) {
3363  return Visit(T->getElementType());
3364}
3365
3366bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3367                                                   const VariableArrayType* T) {
3368  return Visit(T->getElementType());
3369}
3370
3371bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3372                                            const DependentSizedArrayType* T) {
3373  return Visit(T->getElementType());
3374}
3375
3376bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3377                                         const DependentSizedExtVectorType* T) {
3378  return Visit(T->getElementType());
3379}
3380
3381bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3382  return Visit(T->getElementType());
3383}
3384
3385bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3386  return Visit(T->getElementType());
3387}
3388
3389bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3390                                                  const FunctionProtoType* T) {
3391  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3392                                         AEnd = T->arg_type_end();
3393       A != AEnd; ++A) {
3394    if (Visit(*A))
3395      return true;
3396  }
3397
3398  return Visit(T->getResultType());
3399}
3400
3401bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3402                                               const FunctionNoProtoType* T) {
3403  return Visit(T->getResultType());
3404}
3405
3406bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3407                                                  const UnresolvedUsingType*) {
3408  return false;
3409}
3410
3411bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3412  return false;
3413}
3414
3415bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3416  return Visit(T->getUnderlyingType());
3417}
3418
3419bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3420  return false;
3421}
3422
3423bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3424                                                    const UnaryTransformType*) {
3425  return false;
3426}
3427
3428bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3429  return Visit(T->getDeducedType());
3430}
3431
3432bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3433  return VisitTagDecl(T->getDecl());
3434}
3435
3436bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3437  return VisitTagDecl(T->getDecl());
3438}
3439
3440bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3441                                                 const TemplateTypeParmType*) {
3442  return false;
3443}
3444
3445bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3446                                        const SubstTemplateTypeParmPackType *) {
3447  return false;
3448}
3449
3450bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3451                                            const TemplateSpecializationType*) {
3452  return false;
3453}
3454
3455bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3456                                              const InjectedClassNameType* T) {
3457  return VisitTagDecl(T->getDecl());
3458}
3459
3460bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3461                                                   const DependentNameType* T) {
3462  return VisitNestedNameSpecifier(T->getQualifier());
3463}
3464
3465bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3466                                 const DependentTemplateSpecializationType* T) {
3467  return VisitNestedNameSpecifier(T->getQualifier());
3468}
3469
3470bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3471                                                   const PackExpansionType* T) {
3472  return Visit(T->getPattern());
3473}
3474
3475bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3476  return false;
3477}
3478
3479bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3480                                                   const ObjCInterfaceType *) {
3481  return false;
3482}
3483
3484bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3485                                                const ObjCObjectPointerType *) {
3486  return false;
3487}
3488
3489bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3490  return Visit(T->getValueType());
3491}
3492
3493bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3494  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3495    S.Diag(SR.getBegin(),
3496           S.getLangOpts().CPlusPlus0x ?
3497             diag::warn_cxx98_compat_template_arg_local_type :
3498             diag::ext_template_arg_local_type)
3499      << S.Context.getTypeDeclType(Tag) << SR;
3500    return true;
3501  }
3502
3503  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3504    S.Diag(SR.getBegin(),
3505           S.getLangOpts().CPlusPlus0x ?
3506             diag::warn_cxx98_compat_template_arg_unnamed_type :
3507             diag::ext_template_arg_unnamed_type) << SR;
3508    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3509    return true;
3510  }
3511
3512  return false;
3513}
3514
3515bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3516                                                    NestedNameSpecifier *NNS) {
3517  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3518    return true;
3519
3520  switch (NNS->getKind()) {
3521  case NestedNameSpecifier::Identifier:
3522  case NestedNameSpecifier::Namespace:
3523  case NestedNameSpecifier::NamespaceAlias:
3524  case NestedNameSpecifier::Global:
3525    return false;
3526
3527  case NestedNameSpecifier::TypeSpec:
3528  case NestedNameSpecifier::TypeSpecWithTemplate:
3529    return Visit(QualType(NNS->getAsType(), 0));
3530  }
3531  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3532}
3533
3534
3535/// \brief Check a template argument against its corresponding
3536/// template type parameter.
3537///
3538/// This routine implements the semantics of C++ [temp.arg.type]. It
3539/// returns true if an error occurred, and false otherwise.
3540bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3541                                 TypeSourceInfo *ArgInfo) {
3542  assert(ArgInfo && "invalid TypeSourceInfo");
3543  QualType Arg = ArgInfo->getType();
3544  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3545
3546  if (Arg->isVariablyModifiedType()) {
3547    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3548  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3549    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3550  }
3551
3552  // C++03 [temp.arg.type]p2:
3553  //   A local type, a type with no linkage, an unnamed type or a type
3554  //   compounded from any of these types shall not be used as a
3555  //   template-argument for a template type-parameter.
3556  //
3557  // C++11 allows these, and even in C++03 we allow them as an extension with
3558  // a warning.
3559  if (LangOpts.CPlusPlus0x ?
3560     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3561                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3562      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3563                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3564      Arg->hasUnnamedOrLocalType()) {
3565    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3566    (void)Finder.Visit(Context.getCanonicalType(Arg));
3567  }
3568
3569  return false;
3570}
3571
3572enum NullPointerValueKind {
3573  NPV_NotNullPointer,
3574  NPV_NullPointer,
3575  NPV_Error
3576};
3577
3578/// \brief Determine whether the given template argument is a null pointer
3579/// value of the appropriate type.
3580static NullPointerValueKind
3581isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3582                                   QualType ParamType, Expr *Arg) {
3583  if (Arg->isValueDependent() || Arg->isTypeDependent())
3584    return NPV_NotNullPointer;
3585
3586  if (!S.getLangOpts().CPlusPlus0x)
3587    return NPV_NotNullPointer;
3588
3589  // Determine whether we have a constant expression.
3590  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
3591  if (ArgRV.isInvalid())
3592    return NPV_Error;
3593  Arg = ArgRV.take();
3594
3595  Expr::EvalResult EvalResult;
3596  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3597  EvalResult.Diag = &Notes;
3598  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3599      EvalResult.HasSideEffects) {
3600    SourceLocation DiagLoc = Arg->getExprLoc();
3601
3602    // If our only note is the usual "invalid subexpression" note, just point
3603    // the caret at its location rather than producing an essentially
3604    // redundant note.
3605    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
3606        diag::note_invalid_subexpr_in_const_expr) {
3607      DiagLoc = Notes[0].first;
3608      Notes.clear();
3609    }
3610
3611    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
3612      << Arg->getType() << Arg->getSourceRange();
3613    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
3614      S.Diag(Notes[I].first, Notes[I].second);
3615
3616    S.Diag(Param->getLocation(), diag::note_template_param_here);
3617    return NPV_Error;
3618  }
3619
3620  // C++11 [temp.arg.nontype]p1:
3621  //   - an address constant expression of type std::nullptr_t
3622  if (Arg->getType()->isNullPtrType())
3623    return NPV_NullPointer;
3624
3625  //   - a constant expression that evaluates to a null pointer value (4.10); or
3626  //   - a constant expression that evaluates to a null member pointer value
3627  //     (4.11); or
3628  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3629      (EvalResult.Val.isMemberPointer() &&
3630       !EvalResult.Val.getMemberPointerDecl())) {
3631    // If our expression has an appropriate type, we've succeeded.
3632    bool ObjCLifetimeConversion;
3633    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3634        S.IsQualificationConversion(Arg->getType(), ParamType, false,
3635                                     ObjCLifetimeConversion))
3636      return NPV_NullPointer;
3637
3638    // The types didn't match, but we know we got a null pointer; complain,
3639    // then recover as if the types were correct.
3640    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3641      << Arg->getType() << ParamType << Arg->getSourceRange();
3642    S.Diag(Param->getLocation(), diag::note_template_param_here);
3643    return NPV_NullPointer;
3644  }
3645
3646  // If we don't have a null pointer value, but we do have a NULL pointer
3647  // constant, suggest a cast to the appropriate type.
3648  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3649    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3650    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3651      << ParamType
3652      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3653      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3654                                    ")");
3655    S.Diag(Param->getLocation(), diag::note_template_param_here);
3656    return NPV_NullPointer;
3657  }
3658
3659  // FIXME: If we ever want to support general, address-constant expressions
3660  // as non-type template arguments, we should return the ExprResult here to
3661  // be interpreted by the caller.
3662  return NPV_NotNullPointer;
3663}
3664
3665/// \brief Checks whether the given template argument is the address
3666/// of an object or function according to C++ [temp.arg.nontype]p1.
3667static bool
3668CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3669                                               NonTypeTemplateParmDecl *Param,
3670                                               QualType ParamType,
3671                                               Expr *ArgIn,
3672                                               TemplateArgument &Converted) {
3673  bool Invalid = false;
3674  Expr *Arg = ArgIn;
3675  QualType ArgType = Arg->getType();
3676
3677  // If our parameter has pointer type, check for a null template value.
3678  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3679    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3680    case NPV_NullPointer:
3681      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3682      Converted = TemplateArgument((Decl *)0);
3683      return false;
3684
3685    case NPV_Error:
3686      return true;
3687
3688    case NPV_NotNullPointer:
3689      break;
3690    }
3691  }
3692
3693  // See through any implicit casts we added to fix the type.
3694  Arg = Arg->IgnoreImpCasts();
3695
3696  // C++ [temp.arg.nontype]p1:
3697  //
3698  //   A template-argument for a non-type, non-template
3699  //   template-parameter shall be one of: [...]
3700  //
3701  //     -- the address of an object or function with external
3702  //        linkage, including function templates and function
3703  //        template-ids but excluding non-static class members,
3704  //        expressed as & id-expression where the & is optional if
3705  //        the name refers to a function or array, or if the
3706  //        corresponding template-parameter is a reference; or
3707
3708  // In C++98/03 mode, give an extension warning on any extra parentheses.
3709  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3710  bool ExtraParens = false;
3711  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3712    if (!Invalid && !ExtraParens) {
3713      S.Diag(Arg->getLocStart(),
3714             S.getLangOpts().CPlusPlus0x ?
3715               diag::warn_cxx98_compat_template_arg_extra_parens :
3716               diag::ext_template_arg_extra_parens)
3717        << Arg->getSourceRange();
3718      ExtraParens = true;
3719    }
3720
3721    Arg = Parens->getSubExpr();
3722  }
3723
3724  while (SubstNonTypeTemplateParmExpr *subst =
3725           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3726    Arg = subst->getReplacement()->IgnoreImpCasts();
3727
3728  bool AddressTaken = false;
3729  SourceLocation AddrOpLoc;
3730  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3731    if (UnOp->getOpcode() == UO_AddrOf) {
3732      Arg = UnOp->getSubExpr();
3733      AddressTaken = true;
3734      AddrOpLoc = UnOp->getOperatorLoc();
3735    }
3736  }
3737
3738  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3739    Converted = TemplateArgument(ArgIn);
3740    return false;
3741  }
3742
3743  while (SubstNonTypeTemplateParmExpr *subst =
3744           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3745    Arg = subst->getReplacement()->IgnoreImpCasts();
3746
3747  // Stop checking the precise nature of the argument if it is value dependent,
3748  // it should be checked when instantiated.
3749  if (Arg->isValueDependent()) {
3750    Converted = TemplateArgument(ArgIn);
3751    return false;
3752  }
3753
3754  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3755  if (!DRE) {
3756    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3757    << Arg->getSourceRange();
3758    S.Diag(Param->getLocation(), diag::note_template_param_here);
3759    return true;
3760  }
3761
3762  if (!isa<ValueDecl>(DRE->getDecl())) {
3763    S.Diag(Arg->getLocStart(),
3764           diag::err_template_arg_not_object_or_func_form)
3765      << Arg->getSourceRange();
3766    S.Diag(Param->getLocation(), diag::note_template_param_here);
3767    return true;
3768  }
3769
3770  NamedDecl *Entity = DRE->getDecl();
3771
3772  // Cannot refer to non-static data members
3773  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3774    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3775      << Field << Arg->getSourceRange();
3776    S.Diag(Param->getLocation(), diag::note_template_param_here);
3777    return true;
3778  }
3779
3780  // Cannot refer to non-static member functions
3781  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3782    if (!Method->isStatic()) {
3783      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3784        << Method << Arg->getSourceRange();
3785      S.Diag(Param->getLocation(), diag::note_template_param_here);
3786      return true;
3787    }
3788  }
3789
3790  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3791  VarDecl *Var = dyn_cast<VarDecl>(Entity);
3792
3793  // A non-type template argument must refer to an object or function.
3794  if (!Func && !Var) {
3795    // We found something, but we don't know specifically what it is.
3796    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3797      << Arg->getSourceRange();
3798    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3799    return true;
3800  }
3801
3802  // Address / reference template args must have external linkage in C++98.
3803  if (Entity->getLinkage() == InternalLinkage) {
3804    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
3805             diag::warn_cxx98_compat_template_arg_object_internal :
3806             diag::ext_template_arg_object_internal)
3807      << !Func << Entity << Arg->getSourceRange();
3808    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3809      << !Func;
3810  } else if (Entity->getLinkage() == NoLinkage) {
3811    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3812      << !Func << Entity << Arg->getSourceRange();
3813    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3814      << !Func;
3815    return true;
3816  }
3817
3818  if (Func) {
3819    // If the template parameter has pointer type, the function decays.
3820    if (ParamType->isPointerType() && !AddressTaken)
3821      ArgType = S.Context.getPointerType(Func->getType());
3822    else if (AddressTaken && ParamType->isReferenceType()) {
3823      // If we originally had an address-of operator, but the
3824      // parameter has reference type, complain and (if things look
3825      // like they will work) drop the address-of operator.
3826      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3827                                            ParamType.getNonReferenceType())) {
3828        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3829          << ParamType;
3830        S.Diag(Param->getLocation(), diag::note_template_param_here);
3831        return true;
3832      }
3833
3834      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3835        << ParamType
3836        << FixItHint::CreateRemoval(AddrOpLoc);
3837      S.Diag(Param->getLocation(), diag::note_template_param_here);
3838
3839      ArgType = Func->getType();
3840    }
3841  } else {
3842    // A value of reference type is not an object.
3843    if (Var->getType()->isReferenceType()) {
3844      S.Diag(Arg->getLocStart(),
3845             diag::err_template_arg_reference_var)
3846        << Var->getType() << Arg->getSourceRange();
3847      S.Diag(Param->getLocation(), diag::note_template_param_here);
3848      return true;
3849    }
3850
3851    // A template argument must have static storage duration.
3852    // FIXME: Ensure this works for thread_local as well as __thread.
3853    if (Var->isThreadSpecified()) {
3854      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3855        << Arg->getSourceRange();
3856      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3857      return true;
3858    }
3859
3860    // If the template parameter has pointer type, we must have taken
3861    // the address of this object.
3862    if (ParamType->isReferenceType()) {
3863      if (AddressTaken) {
3864        // If we originally had an address-of operator, but the
3865        // parameter has reference type, complain and (if things look
3866        // like they will work) drop the address-of operator.
3867        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3868                                            ParamType.getNonReferenceType())) {
3869          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3870            << ParamType;
3871          S.Diag(Param->getLocation(), diag::note_template_param_here);
3872          return true;
3873        }
3874
3875        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3876          << ParamType
3877          << FixItHint::CreateRemoval(AddrOpLoc);
3878        S.Diag(Param->getLocation(), diag::note_template_param_here);
3879
3880        ArgType = Var->getType();
3881      }
3882    } else if (!AddressTaken && ParamType->isPointerType()) {
3883      if (Var->getType()->isArrayType()) {
3884        // Array-to-pointer decay.
3885        ArgType = S.Context.getArrayDecayedType(Var->getType());
3886      } else {
3887        // If the template parameter has pointer type but the address of
3888        // this object was not taken, complain and (possibly) recover by
3889        // taking the address of the entity.
3890        ArgType = S.Context.getPointerType(Var->getType());
3891        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3892          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3893            << ParamType;
3894          S.Diag(Param->getLocation(), diag::note_template_param_here);
3895          return true;
3896        }
3897
3898        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3899          << ParamType
3900          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3901
3902        S.Diag(Param->getLocation(), diag::note_template_param_here);
3903      }
3904    }
3905  }
3906
3907  bool ObjCLifetimeConversion;
3908  if (ParamType->isPointerType() &&
3909      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3910      S.IsQualificationConversion(ArgType, ParamType, false,
3911                                  ObjCLifetimeConversion)) {
3912    // For pointer-to-object types, qualification conversions are
3913    // permitted.
3914  } else {
3915    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3916      if (!ParamRef->getPointeeType()->isFunctionType()) {
3917        // C++ [temp.arg.nontype]p5b3:
3918        //   For a non-type template-parameter of type reference to
3919        //   object, no conversions apply. The type referred to by the
3920        //   reference may be more cv-qualified than the (otherwise
3921        //   identical) type of the template- argument. The
3922        //   template-parameter is bound directly to the
3923        //   template-argument, which shall be an lvalue.
3924
3925        // FIXME: Other qualifiers?
3926        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3927        unsigned ArgQuals = ArgType.getCVRQualifiers();
3928
3929        if ((ParamQuals | ArgQuals) != ParamQuals) {
3930          S.Diag(Arg->getLocStart(),
3931                 diag::err_template_arg_ref_bind_ignores_quals)
3932            << ParamType << Arg->getType()
3933            << Arg->getSourceRange();
3934          S.Diag(Param->getLocation(), diag::note_template_param_here);
3935          return true;
3936        }
3937      }
3938    }
3939
3940    // At this point, the template argument refers to an object or
3941    // function with external linkage. We now need to check whether the
3942    // argument and parameter types are compatible.
3943    if (!S.Context.hasSameUnqualifiedType(ArgType,
3944                                          ParamType.getNonReferenceType())) {
3945      // We can't perform this conversion or binding.
3946      if (ParamType->isReferenceType())
3947        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3948          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3949      else
3950        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3951          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3952      S.Diag(Param->getLocation(), diag::note_template_param_here);
3953      return true;
3954    }
3955  }
3956
3957  // Create the template argument.
3958  Converted = TemplateArgument(Entity->getCanonicalDecl());
3959  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3960  return false;
3961}
3962
3963/// \brief Checks whether the given template argument is a pointer to
3964/// member constant according to C++ [temp.arg.nontype]p1.
3965static bool CheckTemplateArgumentPointerToMember(Sema &S,
3966                                                 NonTypeTemplateParmDecl *Param,
3967                                                 QualType ParamType,
3968                                                 Expr *&ResultArg,
3969                                                 TemplateArgument &Converted) {
3970  bool Invalid = false;
3971
3972  // Check for a null pointer value.
3973  Expr *Arg = ResultArg;
3974  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3975  case NPV_Error:
3976    return true;
3977  case NPV_NullPointer:
3978    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3979    Converted = TemplateArgument((Decl *)0);
3980    return false;
3981  case NPV_NotNullPointer:
3982    break;
3983  }
3984
3985  bool ObjCLifetimeConversion;
3986  if (S.IsQualificationConversion(Arg->getType(),
3987                                  ParamType.getNonReferenceType(),
3988                                  false, ObjCLifetimeConversion)) {
3989    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3990                              Arg->getValueKind()).take();
3991    ResultArg = Arg;
3992  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3993                ParamType.getNonReferenceType())) {
3994    // We can't perform this conversion.
3995    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3996      << Arg->getType() << ParamType << Arg->getSourceRange();
3997    S.Diag(Param->getLocation(), diag::note_template_param_here);
3998    return true;
3999  }
4000
4001  // See through any implicit casts we added to fix the type.
4002  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4003    Arg = Cast->getSubExpr();
4004
4005  // C++ [temp.arg.nontype]p1:
4006  //
4007  //   A template-argument for a non-type, non-template
4008  //   template-parameter shall be one of: [...]
4009  //
4010  //     -- a pointer to member expressed as described in 5.3.1.
4011  DeclRefExpr *DRE = 0;
4012
4013  // In C++98/03 mode, give an extension warning on any extra parentheses.
4014  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4015  bool ExtraParens = false;
4016  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4017    if (!Invalid && !ExtraParens) {
4018      S.Diag(Arg->getLocStart(),
4019             S.getLangOpts().CPlusPlus0x ?
4020               diag::warn_cxx98_compat_template_arg_extra_parens :
4021               diag::ext_template_arg_extra_parens)
4022        << Arg->getSourceRange();
4023      ExtraParens = true;
4024    }
4025
4026    Arg = Parens->getSubExpr();
4027  }
4028
4029  while (SubstNonTypeTemplateParmExpr *subst =
4030           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4031    Arg = subst->getReplacement()->IgnoreImpCasts();
4032
4033  // A pointer-to-member constant written &Class::member.
4034  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4035    if (UnOp->getOpcode() == UO_AddrOf) {
4036      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4037      if (DRE && !DRE->getQualifier())
4038        DRE = 0;
4039    }
4040  }
4041  // A constant of pointer-to-member type.
4042  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4043    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4044      if (VD->getType()->isMemberPointerType()) {
4045        if (isa<NonTypeTemplateParmDecl>(VD) ||
4046            (isa<VarDecl>(VD) &&
4047             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4048          if (Arg->isTypeDependent() || Arg->isValueDependent())
4049            Converted = TemplateArgument(Arg);
4050          else
4051            Converted = TemplateArgument(VD->getCanonicalDecl());
4052          return Invalid;
4053        }
4054      }
4055    }
4056
4057    DRE = 0;
4058  }
4059
4060  if (!DRE)
4061    return S.Diag(Arg->getLocStart(),
4062                  diag::err_template_arg_not_pointer_to_member_form)
4063      << Arg->getSourceRange();
4064
4065  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4066    assert((isa<FieldDecl>(DRE->getDecl()) ||
4067            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4068           "Only non-static member pointers can make it here");
4069
4070    // Okay: this is the address of a non-static member, and therefore
4071    // a member pointer constant.
4072    if (Arg->isTypeDependent() || Arg->isValueDependent())
4073      Converted = TemplateArgument(Arg);
4074    else
4075      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
4076    return Invalid;
4077  }
4078
4079  // We found something else, but we don't know specifically what it is.
4080  S.Diag(Arg->getLocStart(),
4081         diag::err_template_arg_not_pointer_to_member_form)
4082    << Arg->getSourceRange();
4083  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4084  return true;
4085}
4086
4087/// \brief Check a template argument against its corresponding
4088/// non-type template parameter.
4089///
4090/// This routine implements the semantics of C++ [temp.arg.nontype].
4091/// If an error occurred, it returns ExprError(); otherwise, it
4092/// returns the converted template argument. \p
4093/// InstantiatedParamType is the type of the non-type template
4094/// parameter after it has been instantiated.
4095ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4096                                       QualType InstantiatedParamType, Expr *Arg,
4097                                       TemplateArgument &Converted,
4098                                       CheckTemplateArgumentKind CTAK) {
4099  SourceLocation StartLoc = Arg->getLocStart();
4100
4101  // If either the parameter has a dependent type or the argument is
4102  // type-dependent, there's nothing we can check now.
4103  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4104    // FIXME: Produce a cloned, canonical expression?
4105    Converted = TemplateArgument(Arg);
4106    return Owned(Arg);
4107  }
4108
4109  // C++ [temp.arg.nontype]p5:
4110  //   The following conversions are performed on each expression used
4111  //   as a non-type template-argument. If a non-type
4112  //   template-argument cannot be converted to the type of the
4113  //   corresponding template-parameter then the program is
4114  //   ill-formed.
4115  QualType ParamType = InstantiatedParamType;
4116  if (ParamType->isIntegralOrEnumerationType()) {
4117    // C++11:
4118    //   -- for a non-type template-parameter of integral or
4119    //      enumeration type, conversions permitted in a converted
4120    //      constant expression are applied.
4121    //
4122    // C++98:
4123    //   -- for a non-type template-parameter of integral or
4124    //      enumeration type, integral promotions (4.5) and integral
4125    //      conversions (4.7) are applied.
4126
4127    if (CTAK == CTAK_Deduced &&
4128        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4129      // C++ [temp.deduct.type]p17:
4130      //   If, in the declaration of a function template with a non-type
4131      //   template-parameter, the non-type template-parameter is used
4132      //   in an expression in the function parameter-list and, if the
4133      //   corresponding template-argument is deduced, the
4134      //   template-argument type shall match the type of the
4135      //   template-parameter exactly, except that a template-argument
4136      //   deduced from an array bound may be of any integral type.
4137      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4138        << Arg->getType().getUnqualifiedType()
4139        << ParamType.getUnqualifiedType();
4140      Diag(Param->getLocation(), diag::note_template_param_here);
4141      return ExprError();
4142    }
4143
4144    if (getLangOpts().CPlusPlus0x) {
4145      // We can't check arbitrary value-dependent arguments.
4146      // FIXME: If there's no viable conversion to the template parameter type,
4147      // we should be able to diagnose that prior to instantiation.
4148      if (Arg->isValueDependent()) {
4149        Converted = TemplateArgument(Arg);
4150        return Owned(Arg);
4151      }
4152
4153      // C++ [temp.arg.nontype]p1:
4154      //   A template-argument for a non-type, non-template template-parameter
4155      //   shall be one of:
4156      //
4157      //     -- for a non-type template-parameter of integral or enumeration
4158      //        type, a converted constant expression of the type of the
4159      //        template-parameter; or
4160      llvm::APSInt Value;
4161      ExprResult ArgResult =
4162        CheckConvertedConstantExpression(Arg, ParamType, Value,
4163                                         CCEK_TemplateArg);
4164      if (ArgResult.isInvalid())
4165        return ExprError();
4166
4167      // Widen the argument value to sizeof(parameter type). This is almost
4168      // always a no-op, except when the parameter type is bool. In
4169      // that case, this may extend the argument from 1 bit to 8 bits.
4170      QualType IntegerType = ParamType;
4171      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4172        IntegerType = Enum->getDecl()->getIntegerType();
4173      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4174
4175      Converted = TemplateArgument(Context, Value,
4176                                   Context.getCanonicalType(ParamType));
4177      return ArgResult;
4178    }
4179
4180    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4181    if (ArgResult.isInvalid())
4182      return ExprError();
4183    Arg = ArgResult.take();
4184
4185    QualType ArgType = Arg->getType();
4186
4187    // C++ [temp.arg.nontype]p1:
4188    //   A template-argument for a non-type, non-template
4189    //   template-parameter shall be one of:
4190    //
4191    //     -- an integral constant-expression of integral or enumeration
4192    //        type; or
4193    //     -- the name of a non-type template-parameter; or
4194    SourceLocation NonConstantLoc;
4195    llvm::APSInt Value;
4196    if (!ArgType->isIntegralOrEnumerationType()) {
4197      Diag(Arg->getLocStart(),
4198           diag::err_template_arg_not_integral_or_enumeral)
4199        << ArgType << Arg->getSourceRange();
4200      Diag(Param->getLocation(), diag::note_template_param_here);
4201      return ExprError();
4202    } else if (!Arg->isValueDependent()) {
4203      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4204        QualType T;
4205
4206      public:
4207        TmplArgICEDiagnoser(QualType T) : T(T) { }
4208
4209        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4210                                    SourceRange SR) {
4211          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4212        }
4213      } Diagnoser(ArgType);
4214
4215      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4216                                            false).take();
4217      if (!Arg)
4218        return ExprError();
4219    }
4220
4221    // From here on out, all we care about are the unqualified forms
4222    // of the parameter and argument types.
4223    ParamType = ParamType.getUnqualifiedType();
4224    ArgType = ArgType.getUnqualifiedType();
4225
4226    // Try to convert the argument to the parameter's type.
4227    if (Context.hasSameType(ParamType, ArgType)) {
4228      // Okay: no conversion necessary
4229    } else if (ParamType->isBooleanType()) {
4230      // This is an integral-to-boolean conversion.
4231      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4232    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4233               !ParamType->isEnumeralType()) {
4234      // This is an integral promotion or conversion.
4235      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4236    } else {
4237      // We can't perform this conversion.
4238      Diag(Arg->getLocStart(),
4239           diag::err_template_arg_not_convertible)
4240        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4241      Diag(Param->getLocation(), diag::note_template_param_here);
4242      return ExprError();
4243    }
4244
4245    // Add the value of this argument to the list of converted
4246    // arguments. We use the bitwidth and signedness of the template
4247    // parameter.
4248    if (Arg->isValueDependent()) {
4249      // The argument is value-dependent. Create a new
4250      // TemplateArgument with the converted expression.
4251      Converted = TemplateArgument(Arg);
4252      return Owned(Arg);
4253    }
4254
4255    QualType IntegerType = Context.getCanonicalType(ParamType);
4256    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4257      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4258
4259    if (ParamType->isBooleanType()) {
4260      // Value must be zero or one.
4261      Value = Value != 0;
4262      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4263      if (Value.getBitWidth() != AllowedBits)
4264        Value = Value.extOrTrunc(AllowedBits);
4265      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4266    } else {
4267      llvm::APSInt OldValue = Value;
4268
4269      // Coerce the template argument's value to the value it will have
4270      // based on the template parameter's type.
4271      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4272      if (Value.getBitWidth() != AllowedBits)
4273        Value = Value.extOrTrunc(AllowedBits);
4274      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4275
4276      // Complain if an unsigned parameter received a negative value.
4277      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4278               && (OldValue.isSigned() && OldValue.isNegative())) {
4279        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4280          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4281          << Arg->getSourceRange();
4282        Diag(Param->getLocation(), diag::note_template_param_here);
4283      }
4284
4285      // Complain if we overflowed the template parameter's type.
4286      unsigned RequiredBits;
4287      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4288        RequiredBits = OldValue.getActiveBits();
4289      else if (OldValue.isUnsigned())
4290        RequiredBits = OldValue.getActiveBits() + 1;
4291      else
4292        RequiredBits = OldValue.getMinSignedBits();
4293      if (RequiredBits > AllowedBits) {
4294        Diag(Arg->getLocStart(),
4295             diag::warn_template_arg_too_large)
4296          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4297          << Arg->getSourceRange();
4298        Diag(Param->getLocation(), diag::note_template_param_here);
4299      }
4300    }
4301
4302    Converted = TemplateArgument(Context, Value,
4303                                 ParamType->isEnumeralType()
4304                                   ? Context.getCanonicalType(ParamType)
4305                                   : IntegerType);
4306    return Owned(Arg);
4307  }
4308
4309  QualType ArgType = Arg->getType();
4310  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4311
4312  // Handle pointer-to-function, reference-to-function, and
4313  // pointer-to-member-function all in (roughly) the same way.
4314  if (// -- For a non-type template-parameter of type pointer to
4315      //    function, only the function-to-pointer conversion (4.3) is
4316      //    applied. If the template-argument represents a set of
4317      //    overloaded functions (or a pointer to such), the matching
4318      //    function is selected from the set (13.4).
4319      (ParamType->isPointerType() &&
4320       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4321      // -- For a non-type template-parameter of type reference to
4322      //    function, no conversions apply. If the template-argument
4323      //    represents a set of overloaded functions, the matching
4324      //    function is selected from the set (13.4).
4325      (ParamType->isReferenceType() &&
4326       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4327      // -- For a non-type template-parameter of type pointer to
4328      //    member function, no conversions apply. If the
4329      //    template-argument represents a set of overloaded member
4330      //    functions, the matching member function is selected from
4331      //    the set (13.4).
4332      (ParamType->isMemberPointerType() &&
4333       ParamType->getAs<MemberPointerType>()->getPointeeType()
4334         ->isFunctionType())) {
4335
4336    if (Arg->getType() == Context.OverloadTy) {
4337      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4338                                                                true,
4339                                                                FoundResult)) {
4340        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4341          return ExprError();
4342
4343        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4344        ArgType = Arg->getType();
4345      } else
4346        return ExprError();
4347    }
4348
4349    if (!ParamType->isMemberPointerType()) {
4350      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4351                                                         ParamType,
4352                                                         Arg, Converted))
4353        return ExprError();
4354      return Owned(Arg);
4355    }
4356
4357    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4358                                             Converted))
4359      return ExprError();
4360    return Owned(Arg);
4361  }
4362
4363  if (ParamType->isPointerType()) {
4364    //   -- for a non-type template-parameter of type pointer to
4365    //      object, qualification conversions (4.4) and the
4366    //      array-to-pointer conversion (4.2) are applied.
4367    // C++0x also allows a value of std::nullptr_t.
4368    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4369           "Only object pointers allowed here");
4370
4371    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4372                                                       ParamType,
4373                                                       Arg, Converted))
4374      return ExprError();
4375    return Owned(Arg);
4376  }
4377
4378  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4379    //   -- For a non-type template-parameter of type reference to
4380    //      object, no conversions apply. The type referred to by the
4381    //      reference may be more cv-qualified than the (otherwise
4382    //      identical) type of the template-argument. The
4383    //      template-parameter is bound directly to the
4384    //      template-argument, which must be an lvalue.
4385    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4386           "Only object references allowed here");
4387
4388    if (Arg->getType() == Context.OverloadTy) {
4389      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4390                                                 ParamRefType->getPointeeType(),
4391                                                                true,
4392                                                                FoundResult)) {
4393        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4394          return ExprError();
4395
4396        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4397        ArgType = Arg->getType();
4398      } else
4399        return ExprError();
4400    }
4401
4402    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4403                                                       ParamType,
4404                                                       Arg, Converted))
4405      return ExprError();
4406    return Owned(Arg);
4407  }
4408
4409  // Deal with parameters of type std::nullptr_t.
4410  if (ParamType->isNullPtrType()) {
4411    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4412      Converted = TemplateArgument(Arg);
4413      return Owned(Arg);
4414    }
4415
4416    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4417    case NPV_NotNullPointer:
4418      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4419        << Arg->getType() << ParamType;
4420      Diag(Param->getLocation(), diag::note_template_param_here);
4421      return ExprError();
4422
4423    case NPV_Error:
4424      return ExprError();
4425
4426    case NPV_NullPointer:
4427      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4428      Converted = TemplateArgument((Decl *)0);
4429      return Owned(Arg);;
4430    }
4431  }
4432
4433  //     -- For a non-type template-parameter of type pointer to data
4434  //        member, qualification conversions (4.4) are applied.
4435  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4436
4437  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4438                                           Converted))
4439    return ExprError();
4440  return Owned(Arg);
4441}
4442
4443/// \brief Check a template argument against its corresponding
4444/// template template parameter.
4445///
4446/// This routine implements the semantics of C++ [temp.arg.template].
4447/// It returns true if an error occurred, and false otherwise.
4448bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4449                                 const TemplateArgumentLoc &Arg,
4450                                 unsigned ArgumentPackIndex) {
4451  TemplateName Name = Arg.getArgument().getAsTemplate();
4452  TemplateDecl *Template = Name.getAsTemplateDecl();
4453  if (!Template) {
4454    // Any dependent template name is fine.
4455    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4456    return false;
4457  }
4458
4459  // C++0x [temp.arg.template]p1:
4460  //   A template-argument for a template template-parameter shall be
4461  //   the name of a class template or an alias template, expressed as an
4462  //   id-expression. When the template-argument names a class template, only
4463  //   primary class templates are considered when matching the
4464  //   template template argument with the corresponding parameter;
4465  //   partial specializations are not considered even if their
4466  //   parameter lists match that of the template template parameter.
4467  //
4468  // Note that we also allow template template parameters here, which
4469  // will happen when we are dealing with, e.g., class template
4470  // partial specializations.
4471  if (!isa<ClassTemplateDecl>(Template) &&
4472      !isa<TemplateTemplateParmDecl>(Template) &&
4473      !isa<TypeAliasTemplateDecl>(Template)) {
4474    assert(isa<FunctionTemplateDecl>(Template) &&
4475           "Only function templates are possible here");
4476    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4477    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4478      << Template;
4479  }
4480
4481  TemplateParameterList *Params = Param->getTemplateParameters();
4482  if (Param->isExpandedParameterPack())
4483    Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
4484
4485  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4486                                         Params,
4487                                         true,
4488                                         TPL_TemplateTemplateArgumentMatch,
4489                                         Arg.getLocation());
4490}
4491
4492/// \brief Given a non-type template argument that refers to a
4493/// declaration and the type of its corresponding non-type template
4494/// parameter, produce an expression that properly refers to that
4495/// declaration.
4496ExprResult
4497Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4498                                              QualType ParamType,
4499                                              SourceLocation Loc) {
4500  assert(Arg.getKind() == TemplateArgument::Declaration &&
4501         "Only declaration template arguments permitted here");
4502
4503  // For a NULL non-type template argument, return nullptr casted to the
4504  // parameter's type.
4505  if (!Arg.getAsDecl()) {
4506    return ImpCastExprToType(
4507             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4508                             ParamType,
4509                             ParamType->getAs<MemberPointerType>()
4510                               ? CK_NullToMemberPointer
4511                               : CK_NullToPointer);
4512  }
4513
4514  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4515
4516  if (VD->getDeclContext()->isRecord() &&
4517      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4518    // If the value is a class member, we might have a pointer-to-member.
4519    // Determine whether the non-type template template parameter is of
4520    // pointer-to-member type. If so, we need to build an appropriate
4521    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4522    // would refer to the member itself.
4523    if (ParamType->isMemberPointerType()) {
4524      QualType ClassType
4525        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4526      NestedNameSpecifier *Qualifier
4527        = NestedNameSpecifier::Create(Context, 0, false,
4528                                      ClassType.getTypePtr());
4529      CXXScopeSpec SS;
4530      SS.MakeTrivial(Context, Qualifier, Loc);
4531
4532      // The actual value-ness of this is unimportant, but for
4533      // internal consistency's sake, references to instance methods
4534      // are r-values.
4535      ExprValueKind VK = VK_LValue;
4536      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4537        VK = VK_RValue;
4538
4539      ExprResult RefExpr = BuildDeclRefExpr(VD,
4540                                            VD->getType().getNonReferenceType(),
4541                                            VK,
4542                                            Loc,
4543                                            &SS);
4544      if (RefExpr.isInvalid())
4545        return ExprError();
4546
4547      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4548
4549      // We might need to perform a trailing qualification conversion, since
4550      // the element type on the parameter could be more qualified than the
4551      // element type in the expression we constructed.
4552      bool ObjCLifetimeConversion;
4553      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4554                                    ParamType.getUnqualifiedType(), false,
4555                                    ObjCLifetimeConversion))
4556        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4557
4558      assert(!RefExpr.isInvalid() &&
4559             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4560                                 ParamType.getUnqualifiedType()));
4561      return RefExpr;
4562    }
4563  }
4564
4565  QualType T = VD->getType().getNonReferenceType();
4566  if (ParamType->isPointerType()) {
4567    // When the non-type template parameter is a pointer, take the
4568    // address of the declaration.
4569    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4570    if (RefExpr.isInvalid())
4571      return ExprError();
4572
4573    if (T->isFunctionType() || T->isArrayType()) {
4574      // Decay functions and arrays.
4575      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4576      if (RefExpr.isInvalid())
4577        return ExprError();
4578
4579      return RefExpr;
4580    }
4581
4582    // Take the address of everything else
4583    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4584  }
4585
4586  ExprValueKind VK = VK_RValue;
4587
4588  // If the non-type template parameter has reference type, qualify the
4589  // resulting declaration reference with the extra qualifiers on the
4590  // type that the reference refers to.
4591  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4592    VK = VK_LValue;
4593    T = Context.getQualifiedType(T,
4594                              TargetRef->getPointeeType().getQualifiers());
4595  }
4596
4597  return BuildDeclRefExpr(VD, T, VK, Loc);
4598}
4599
4600/// \brief Construct a new expression that refers to the given
4601/// integral template argument with the given source-location
4602/// information.
4603///
4604/// This routine takes care of the mapping from an integral template
4605/// argument (which may have any integral type) to the appropriate
4606/// literal value.
4607ExprResult
4608Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4609                                                  SourceLocation Loc) {
4610  assert(Arg.getKind() == TemplateArgument::Integral &&
4611         "Operation is only valid for integral template arguments");
4612  QualType T = Arg.getIntegralType();
4613  if (T->isAnyCharacterType()) {
4614    CharacterLiteral::CharacterKind Kind;
4615    if (T->isWideCharType())
4616      Kind = CharacterLiteral::Wide;
4617    else if (T->isChar16Type())
4618      Kind = CharacterLiteral::UTF16;
4619    else if (T->isChar32Type())
4620      Kind = CharacterLiteral::UTF32;
4621    else
4622      Kind = CharacterLiteral::Ascii;
4623
4624    return Owned(new (Context) CharacterLiteral(
4625                                            Arg.getAsIntegral().getZExtValue(),
4626                                            Kind, T, Loc));
4627  }
4628
4629  if (T->isBooleanType())
4630    return Owned(new (Context) CXXBoolLiteralExpr(
4631                                            Arg.getAsIntegral().getBoolValue(),
4632                                            T, Loc));
4633
4634  if (T->isNullPtrType())
4635    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4636
4637  // If this is an enum type that we're instantiating, we need to use an integer
4638  // type the same size as the enumerator.  We don't want to build an
4639  // IntegerLiteral with enum type.
4640  QualType BT;
4641  if (const EnumType *ET = T->getAs<EnumType>())
4642    BT = ET->getDecl()->getIntegerType();
4643  else
4644    BT = T;
4645
4646  Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc);
4647  if (T->isEnumeralType()) {
4648    // FIXME: This is a hack. We need a better way to handle substituted
4649    // non-type template parameters.
4650    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4651                               Context.getTrivialTypeSourceInfo(T, Loc),
4652                               Loc, Loc);
4653  }
4654
4655  return Owned(E);
4656}
4657
4658/// \brief Match two template parameters within template parameter lists.
4659static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4660                                       bool Complain,
4661                                     Sema::TemplateParameterListEqualKind Kind,
4662                                       SourceLocation TemplateArgLoc) {
4663  // Check the actual kind (type, non-type, template).
4664  if (Old->getKind() != New->getKind()) {
4665    if (Complain) {
4666      unsigned NextDiag = diag::err_template_param_different_kind;
4667      if (TemplateArgLoc.isValid()) {
4668        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4669        NextDiag = diag::note_template_param_different_kind;
4670      }
4671      S.Diag(New->getLocation(), NextDiag)
4672        << (Kind != Sema::TPL_TemplateMatch);
4673      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4674        << (Kind != Sema::TPL_TemplateMatch);
4675    }
4676
4677    return false;
4678  }
4679
4680  // Check that both are parameter packs are neither are parameter packs.
4681  // However, if we are matching a template template argument to a
4682  // template template parameter, the template template parameter can have
4683  // a parameter pack where the template template argument does not.
4684  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4685      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4686        Old->isTemplateParameterPack())) {
4687    if (Complain) {
4688      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4689      if (TemplateArgLoc.isValid()) {
4690        S.Diag(TemplateArgLoc,
4691             diag::err_template_arg_template_params_mismatch);
4692        NextDiag = diag::note_template_parameter_pack_non_pack;
4693      }
4694
4695      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4696                      : isa<NonTypeTemplateParmDecl>(New)? 1
4697                      : 2;
4698      S.Diag(New->getLocation(), NextDiag)
4699        << ParamKind << New->isParameterPack();
4700      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4701        << ParamKind << Old->isParameterPack();
4702    }
4703
4704    return false;
4705  }
4706
4707  // For non-type template parameters, check the type of the parameter.
4708  if (NonTypeTemplateParmDecl *OldNTTP
4709                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4710    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4711
4712    // If we are matching a template template argument to a template
4713    // template parameter and one of the non-type template parameter types
4714    // is dependent, then we must wait until template instantiation time
4715    // to actually compare the arguments.
4716    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4717        (OldNTTP->getType()->isDependentType() ||
4718         NewNTTP->getType()->isDependentType()))
4719      return true;
4720
4721    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4722      if (Complain) {
4723        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4724        if (TemplateArgLoc.isValid()) {
4725          S.Diag(TemplateArgLoc,
4726                 diag::err_template_arg_template_params_mismatch);
4727          NextDiag = diag::note_template_nontype_parm_different_type;
4728        }
4729        S.Diag(NewNTTP->getLocation(), NextDiag)
4730          << NewNTTP->getType()
4731          << (Kind != Sema::TPL_TemplateMatch);
4732        S.Diag(OldNTTP->getLocation(),
4733               diag::note_template_nontype_parm_prev_declaration)
4734          << OldNTTP->getType();
4735      }
4736
4737      return false;
4738    }
4739
4740    return true;
4741  }
4742
4743  // For template template parameters, check the template parameter types.
4744  // The template parameter lists of template template
4745  // parameters must agree.
4746  if (TemplateTemplateParmDecl *OldTTP
4747                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4748    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4749    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4750                                            OldTTP->getTemplateParameters(),
4751                                            Complain,
4752                                        (Kind == Sema::TPL_TemplateMatch
4753                                           ? Sema::TPL_TemplateTemplateParmMatch
4754                                           : Kind),
4755                                            TemplateArgLoc);
4756  }
4757
4758  return true;
4759}
4760
4761/// \brief Diagnose a known arity mismatch when comparing template argument
4762/// lists.
4763static
4764void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4765                                                TemplateParameterList *New,
4766                                                TemplateParameterList *Old,
4767                                      Sema::TemplateParameterListEqualKind Kind,
4768                                                SourceLocation TemplateArgLoc) {
4769  unsigned NextDiag = diag::err_template_param_list_different_arity;
4770  if (TemplateArgLoc.isValid()) {
4771    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4772    NextDiag = diag::note_template_param_list_different_arity;
4773  }
4774  S.Diag(New->getTemplateLoc(), NextDiag)
4775    << (New->size() > Old->size())
4776    << (Kind != Sema::TPL_TemplateMatch)
4777    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4778  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4779    << (Kind != Sema::TPL_TemplateMatch)
4780    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4781}
4782
4783/// \brief Determine whether the given template parameter lists are
4784/// equivalent.
4785///
4786/// \param New  The new template parameter list, typically written in the
4787/// source code as part of a new template declaration.
4788///
4789/// \param Old  The old template parameter list, typically found via
4790/// name lookup of the template declared with this template parameter
4791/// list.
4792///
4793/// \param Complain  If true, this routine will produce a diagnostic if
4794/// the template parameter lists are not equivalent.
4795///
4796/// \param Kind describes how we are to match the template parameter lists.
4797///
4798/// \param TemplateArgLoc If this source location is valid, then we
4799/// are actually checking the template parameter list of a template
4800/// argument (New) against the template parameter list of its
4801/// corresponding template template parameter (Old). We produce
4802/// slightly different diagnostics in this scenario.
4803///
4804/// \returns True if the template parameter lists are equal, false
4805/// otherwise.
4806bool
4807Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4808                                     TemplateParameterList *Old,
4809                                     bool Complain,
4810                                     TemplateParameterListEqualKind Kind,
4811                                     SourceLocation TemplateArgLoc) {
4812  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4813    if (Complain)
4814      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4815                                                 TemplateArgLoc);
4816
4817    return false;
4818  }
4819
4820  // C++0x [temp.arg.template]p3:
4821  //   A template-argument matches a template template-parameter (call it P)
4822  //   when each of the template parameters in the template-parameter-list of
4823  //   the template-argument's corresponding class template or alias template
4824  //   (call it A) matches the corresponding template parameter in the
4825  //   template-parameter-list of P. [...]
4826  TemplateParameterList::iterator NewParm = New->begin();
4827  TemplateParameterList::iterator NewParmEnd = New->end();
4828  for (TemplateParameterList::iterator OldParm = Old->begin(),
4829                                    OldParmEnd = Old->end();
4830       OldParm != OldParmEnd; ++OldParm) {
4831    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4832        !(*OldParm)->isTemplateParameterPack()) {
4833      if (NewParm == NewParmEnd) {
4834        if (Complain)
4835          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4836                                                     TemplateArgLoc);
4837
4838        return false;
4839      }
4840
4841      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4842                                      Kind, TemplateArgLoc))
4843        return false;
4844
4845      ++NewParm;
4846      continue;
4847    }
4848
4849    // C++0x [temp.arg.template]p3:
4850    //   [...] When P's template- parameter-list contains a template parameter
4851    //   pack (14.5.3), the template parameter pack will match zero or more
4852    //   template parameters or template parameter packs in the
4853    //   template-parameter-list of A with the same type and form as the
4854    //   template parameter pack in P (ignoring whether those template
4855    //   parameters are template parameter packs).
4856    for (; NewParm != NewParmEnd; ++NewParm) {
4857      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4858                                      Kind, TemplateArgLoc))
4859        return false;
4860    }
4861  }
4862
4863  // Make sure we exhausted all of the arguments.
4864  if (NewParm != NewParmEnd) {
4865    if (Complain)
4866      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4867                                                 TemplateArgLoc);
4868
4869    return false;
4870  }
4871
4872  return true;
4873}
4874
4875/// \brief Check whether a template can be declared within this scope.
4876///
4877/// If the template declaration is valid in this scope, returns
4878/// false. Otherwise, issues a diagnostic and returns true.
4879bool
4880Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4881  if (!S)
4882    return false;
4883
4884  // Find the nearest enclosing declaration scope.
4885  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4886         (S->getFlags() & Scope::TemplateParamScope) != 0)
4887    S = S->getParent();
4888
4889  // C++ [temp]p2:
4890  //   A template-declaration can appear only as a namespace scope or
4891  //   class scope declaration.
4892  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4893  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4894      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4895    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4896             << TemplateParams->getSourceRange();
4897
4898  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4899    Ctx = Ctx->getParent();
4900
4901  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4902    return false;
4903
4904  return Diag(TemplateParams->getTemplateLoc(),
4905              diag::err_template_outside_namespace_or_class_scope)
4906    << TemplateParams->getSourceRange();
4907}
4908
4909/// \brief Determine what kind of template specialization the given declaration
4910/// is.
4911static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4912  if (!D)
4913    return TSK_Undeclared;
4914
4915  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4916    return Record->getTemplateSpecializationKind();
4917  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4918    return Function->getTemplateSpecializationKind();
4919  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4920    return Var->getTemplateSpecializationKind();
4921
4922  return TSK_Undeclared;
4923}
4924
4925/// \brief Check whether a specialization is well-formed in the current
4926/// context.
4927///
4928/// This routine determines whether a template specialization can be declared
4929/// in the current context (C++ [temp.expl.spec]p2).
4930///
4931/// \param S the semantic analysis object for which this check is being
4932/// performed.
4933///
4934/// \param Specialized the entity being specialized or instantiated, which
4935/// may be a kind of template (class template, function template, etc.) or
4936/// a member of a class template (member function, static data member,
4937/// member class).
4938///
4939/// \param PrevDecl the previous declaration of this entity, if any.
4940///
4941/// \param Loc the location of the explicit specialization or instantiation of
4942/// this entity.
4943///
4944/// \param IsPartialSpecialization whether this is a partial specialization of
4945/// a class template.
4946///
4947/// \returns true if there was an error that we cannot recover from, false
4948/// otherwise.
4949static bool CheckTemplateSpecializationScope(Sema &S,
4950                                             NamedDecl *Specialized,
4951                                             NamedDecl *PrevDecl,
4952                                             SourceLocation Loc,
4953                                             bool IsPartialSpecialization) {
4954  // Keep these "kind" numbers in sync with the %select statements in the
4955  // various diagnostics emitted by this routine.
4956  int EntityKind = 0;
4957  if (isa<ClassTemplateDecl>(Specialized))
4958    EntityKind = IsPartialSpecialization? 1 : 0;
4959  else if (isa<FunctionTemplateDecl>(Specialized))
4960    EntityKind = 2;
4961  else if (isa<CXXMethodDecl>(Specialized))
4962    EntityKind = 3;
4963  else if (isa<VarDecl>(Specialized))
4964    EntityKind = 4;
4965  else if (isa<RecordDecl>(Specialized))
4966    EntityKind = 5;
4967  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4968    EntityKind = 6;
4969  else {
4970    S.Diag(Loc, diag::err_template_spec_unknown_kind)
4971      << S.getLangOpts().CPlusPlus0x;
4972    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4973    return true;
4974  }
4975
4976  // C++ [temp.expl.spec]p2:
4977  //   An explicit specialization shall be declared in the namespace
4978  //   of which the template is a member, or, for member templates, in
4979  //   the namespace of which the enclosing class or enclosing class
4980  //   template is a member. An explicit specialization of a member
4981  //   function, member class or static data member of a class
4982  //   template shall be declared in the namespace of which the class
4983  //   template is a member. Such a declaration may also be a
4984  //   definition. If the declaration is not a definition, the
4985  //   specialization may be defined later in the name- space in which
4986  //   the explicit specialization was declared, or in a namespace
4987  //   that encloses the one in which the explicit specialization was
4988  //   declared.
4989  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4990    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4991      << Specialized;
4992    return true;
4993  }
4994
4995  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4996    if (S.getLangOpts().MicrosoftExt) {
4997      // Do not warn for class scope explicit specialization during
4998      // instantiation, warning was already emitted during pattern
4999      // semantic analysis.
5000      if (!S.ActiveTemplateInstantiations.size())
5001        S.Diag(Loc, diag::ext_function_specialization_in_class)
5002          << Specialized;
5003    } else {
5004      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5005        << Specialized;
5006      return true;
5007    }
5008  }
5009
5010  if (S.CurContext->isRecord() &&
5011      !S.CurContext->Equals(Specialized->getDeclContext())) {
5012    // Make sure that we're specializing in the right record context.
5013    // Otherwise, things can go horribly wrong.
5014    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5015      << Specialized;
5016    return true;
5017  }
5018
5019  // C++ [temp.class.spec]p6:
5020  //   A class template partial specialization may be declared or redeclared
5021  //   in any namespace scope in which its definition may be defined (14.5.1
5022  //   and 14.5.2).
5023  bool ComplainedAboutScope = false;
5024  DeclContext *SpecializedContext
5025    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5026  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5027  if ((!PrevDecl ||
5028       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5029       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5030    // C++ [temp.exp.spec]p2:
5031    //   An explicit specialization shall be declared in the namespace of which
5032    //   the template is a member, or, for member templates, in the namespace
5033    //   of which the enclosing class or enclosing class template is a member.
5034    //   An explicit specialization of a member function, member class or
5035    //   static data member of a class template shall be declared in the
5036    //   namespace of which the class template is a member.
5037    //
5038    // C++0x [temp.expl.spec]p2:
5039    //   An explicit specialization shall be declared in a namespace enclosing
5040    //   the specialized template.
5041    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5042      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
5043      if (isa<TranslationUnitDecl>(SpecializedContext)) {
5044        assert(!IsCPlusPlus0xExtension &&
5045               "DC encloses TU but isn't in enclosing namespace set");
5046        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5047          << EntityKind << Specialized;
5048      } else if (isa<NamespaceDecl>(SpecializedContext)) {
5049        int Diag;
5050        if (!IsCPlusPlus0xExtension)
5051          Diag = diag::err_template_spec_decl_out_of_scope;
5052        else if (!S.getLangOpts().CPlusPlus0x)
5053          Diag = diag::ext_template_spec_decl_out_of_scope;
5054        else
5055          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5056        S.Diag(Loc, Diag)
5057          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5058      }
5059
5060      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5061      ComplainedAboutScope =
5062        !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
5063    }
5064  }
5065
5066  // Make sure that this redeclaration (or definition) occurs in an enclosing
5067  // namespace.
5068  // Note that HandleDeclarator() performs this check for explicit
5069  // specializations of function templates, static data members, and member
5070  // functions, so we skip the check here for those kinds of entities.
5071  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5072  // Should we refactor that check, so that it occurs later?
5073  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5074      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5075        isa<FunctionDecl>(Specialized))) {
5076    if (isa<TranslationUnitDecl>(SpecializedContext))
5077      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5078        << EntityKind << Specialized;
5079    else if (isa<NamespaceDecl>(SpecializedContext))
5080      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5081        << EntityKind << Specialized
5082        << cast<NamedDecl>(SpecializedContext);
5083
5084    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5085  }
5086
5087  // FIXME: check for specialization-after-instantiation errors and such.
5088
5089  return false;
5090}
5091
5092/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
5093/// that checks non-type template partial specialization arguments.
5094static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
5095                                                NonTypeTemplateParmDecl *Param,
5096                                                  const TemplateArgument *Args,
5097                                                        unsigned NumArgs) {
5098  for (unsigned I = 0; I != NumArgs; ++I) {
5099    if (Args[I].getKind() == TemplateArgument::Pack) {
5100      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5101                                                           Args[I].pack_begin(),
5102                                                           Args[I].pack_size()))
5103        return true;
5104
5105      continue;
5106    }
5107
5108    Expr *ArgExpr = Args[I].getAsExpr();
5109    if (!ArgExpr) {
5110      continue;
5111    }
5112
5113    // We can have a pack expansion of any of the bullets below.
5114    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5115      ArgExpr = Expansion->getPattern();
5116
5117    // Strip off any implicit casts we added as part of type checking.
5118    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5119      ArgExpr = ICE->getSubExpr();
5120
5121    // C++ [temp.class.spec]p8:
5122    //   A non-type argument is non-specialized if it is the name of a
5123    //   non-type parameter. All other non-type arguments are
5124    //   specialized.
5125    //
5126    // Below, we check the two conditions that only apply to
5127    // specialized non-type arguments, so skip any non-specialized
5128    // arguments.
5129    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5130      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5131        continue;
5132
5133    // C++ [temp.class.spec]p9:
5134    //   Within the argument list of a class template partial
5135    //   specialization, the following restrictions apply:
5136    //     -- A partially specialized non-type argument expression
5137    //        shall not involve a template parameter of the partial
5138    //        specialization except when the argument expression is a
5139    //        simple identifier.
5140    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5141      S.Diag(ArgExpr->getLocStart(),
5142           diag::err_dependent_non_type_arg_in_partial_spec)
5143        << ArgExpr->getSourceRange();
5144      return true;
5145    }
5146
5147    //     -- The type of a template parameter corresponding to a
5148    //        specialized non-type argument shall not be dependent on a
5149    //        parameter of the specialization.
5150    if (Param->getType()->isDependentType()) {
5151      S.Diag(ArgExpr->getLocStart(),
5152           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5153        << Param->getType()
5154        << ArgExpr->getSourceRange();
5155      S.Diag(Param->getLocation(), diag::note_template_param_here);
5156      return true;
5157    }
5158  }
5159
5160  return false;
5161}
5162
5163/// \brief Check the non-type template arguments of a class template
5164/// partial specialization according to C++ [temp.class.spec]p9.
5165///
5166/// \param TemplateParams the template parameters of the primary class
5167/// template.
5168///
5169/// \param TemplateArgs the template arguments of the class template
5170/// partial specialization.
5171///
5172/// \returns true if there was an error, false otherwise.
5173static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5174                                        TemplateParameterList *TemplateParams,
5175                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5176  const TemplateArgument *ArgList = TemplateArgs.data();
5177
5178  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5179    NonTypeTemplateParmDecl *Param
5180      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5181    if (!Param)
5182      continue;
5183
5184    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5185                                                           &ArgList[I], 1))
5186      return true;
5187  }
5188
5189  return false;
5190}
5191
5192DeclResult
5193Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5194                                       TagUseKind TUK,
5195                                       SourceLocation KWLoc,
5196                                       SourceLocation ModulePrivateLoc,
5197                                       CXXScopeSpec &SS,
5198                                       TemplateTy TemplateD,
5199                                       SourceLocation TemplateNameLoc,
5200                                       SourceLocation LAngleLoc,
5201                                       ASTTemplateArgsPtr TemplateArgsIn,
5202                                       SourceLocation RAngleLoc,
5203                                       AttributeList *Attr,
5204                               MultiTemplateParamsArg TemplateParameterLists) {
5205  assert(TUK != TUK_Reference && "References are not specializations");
5206
5207  // NOTE: KWLoc is the location of the tag keyword. This will instead
5208  // store the location of the outermost template keyword in the declaration.
5209  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5210    ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5211
5212  // Find the class template we're specializing
5213  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5214  ClassTemplateDecl *ClassTemplate
5215    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5216
5217  if (!ClassTemplate) {
5218    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5219      << (Name.getAsTemplateDecl() &&
5220          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5221    return true;
5222  }
5223
5224  bool isExplicitSpecialization = false;
5225  bool isPartialSpecialization = false;
5226
5227  // Check the validity of the template headers that introduce this
5228  // template.
5229  // FIXME: We probably shouldn't complain about these headers for
5230  // friend declarations.
5231  bool Invalid = false;
5232  TemplateParameterList *TemplateParams
5233    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5234                                              TemplateNameLoc,
5235                                              SS,
5236                                              TemplateParameterLists.data(),
5237                                              TemplateParameterLists.size(),
5238                                              TUK == TUK_Friend,
5239                                              isExplicitSpecialization,
5240                                              Invalid);
5241  if (Invalid)
5242    return true;
5243
5244  if (TemplateParams && TemplateParams->size() > 0) {
5245    isPartialSpecialization = true;
5246
5247    if (TUK == TUK_Friend) {
5248      Diag(KWLoc, diag::err_partial_specialization_friend)
5249        << SourceRange(LAngleLoc, RAngleLoc);
5250      return true;
5251    }
5252
5253    // C++ [temp.class.spec]p10:
5254    //   The template parameter list of a specialization shall not
5255    //   contain default template argument values.
5256    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5257      Decl *Param = TemplateParams->getParam(I);
5258      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5259        if (TTP->hasDefaultArgument()) {
5260          Diag(TTP->getDefaultArgumentLoc(),
5261               diag::err_default_arg_in_partial_spec);
5262          TTP->removeDefaultArgument();
5263        }
5264      } else if (NonTypeTemplateParmDecl *NTTP
5265                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5266        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5267          Diag(NTTP->getDefaultArgumentLoc(),
5268               diag::err_default_arg_in_partial_spec)
5269            << DefArg->getSourceRange();
5270          NTTP->removeDefaultArgument();
5271        }
5272      } else {
5273        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5274        if (TTP->hasDefaultArgument()) {
5275          Diag(TTP->getDefaultArgument().getLocation(),
5276               diag::err_default_arg_in_partial_spec)
5277            << TTP->getDefaultArgument().getSourceRange();
5278          TTP->removeDefaultArgument();
5279        }
5280      }
5281    }
5282  } else if (TemplateParams) {
5283    if (TUK == TUK_Friend)
5284      Diag(KWLoc, diag::err_template_spec_friend)
5285        << FixItHint::CreateRemoval(
5286                                SourceRange(TemplateParams->getTemplateLoc(),
5287                                            TemplateParams->getRAngleLoc()))
5288        << SourceRange(LAngleLoc, RAngleLoc);
5289    else
5290      isExplicitSpecialization = true;
5291  } else if (TUK != TUK_Friend) {
5292    Diag(KWLoc, diag::err_template_spec_needs_header)
5293      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5294    isExplicitSpecialization = true;
5295  }
5296
5297  // Check that the specialization uses the same tag kind as the
5298  // original template.
5299  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5300  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5301  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5302                                    Kind, TUK == TUK_Definition, KWLoc,
5303                                    *ClassTemplate->getIdentifier())) {
5304    Diag(KWLoc, diag::err_use_with_wrong_tag)
5305      << ClassTemplate
5306      << FixItHint::CreateReplacement(KWLoc,
5307                            ClassTemplate->getTemplatedDecl()->getKindName());
5308    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5309         diag::note_previous_use);
5310    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5311  }
5312
5313  // Translate the parser's template argument list in our AST format.
5314  TemplateArgumentListInfo TemplateArgs;
5315  TemplateArgs.setLAngleLoc(LAngleLoc);
5316  TemplateArgs.setRAngleLoc(RAngleLoc);
5317  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5318
5319  // Check for unexpanded parameter packs in any of the template arguments.
5320  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5321    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5322                                        UPPC_PartialSpecialization))
5323      return true;
5324
5325  // Check that the template argument list is well-formed for this
5326  // template.
5327  SmallVector<TemplateArgument, 4> Converted;
5328  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5329                                TemplateArgs, false, Converted))
5330    return true;
5331
5332  // Find the class template (partial) specialization declaration that
5333  // corresponds to these arguments.
5334  if (isPartialSpecialization) {
5335    if (CheckClassTemplatePartialSpecializationArgs(*this,
5336                                         ClassTemplate->getTemplateParameters(),
5337                                         Converted))
5338      return true;
5339
5340    bool InstantiationDependent;
5341    if (!Name.isDependent() &&
5342        !TemplateSpecializationType::anyDependentTemplateArguments(
5343                                             TemplateArgs.getArgumentArray(),
5344                                                         TemplateArgs.size(),
5345                                                     InstantiationDependent)) {
5346      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5347        << ClassTemplate->getDeclName();
5348      isPartialSpecialization = false;
5349    }
5350  }
5351
5352  void *InsertPos = 0;
5353  ClassTemplateSpecializationDecl *PrevDecl = 0;
5354
5355  if (isPartialSpecialization)
5356    // FIXME: Template parameter list matters, too
5357    PrevDecl
5358      = ClassTemplate->findPartialSpecialization(Converted.data(),
5359                                                 Converted.size(),
5360                                                 InsertPos);
5361  else
5362    PrevDecl
5363      = ClassTemplate->findSpecialization(Converted.data(),
5364                                          Converted.size(), InsertPos);
5365
5366  ClassTemplateSpecializationDecl *Specialization = 0;
5367
5368  // Check whether we can declare a class template specialization in
5369  // the current scope.
5370  if (TUK != TUK_Friend &&
5371      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5372                                       TemplateNameLoc,
5373                                       isPartialSpecialization))
5374    return true;
5375
5376  // The canonical type
5377  QualType CanonType;
5378  if (PrevDecl &&
5379      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5380               TUK == TUK_Friend)) {
5381    // Since the only prior class template specialization with these
5382    // arguments was referenced but not declared, or we're only
5383    // referencing this specialization as a friend, reuse that
5384    // declaration node as our own, updating its source location and
5385    // the list of outer template parameters to reflect our new declaration.
5386    Specialization = PrevDecl;
5387    Specialization->setLocation(TemplateNameLoc);
5388    if (TemplateParameterLists.size() > 0) {
5389      Specialization->setTemplateParameterListsInfo(Context,
5390                                              TemplateParameterLists.size(),
5391                                              TemplateParameterLists.data());
5392    }
5393    PrevDecl = 0;
5394    CanonType = Context.getTypeDeclType(Specialization);
5395  } else if (isPartialSpecialization) {
5396    // Build the canonical type that describes the converted template
5397    // arguments of the class template partial specialization.
5398    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5399    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5400                                                      Converted.data(),
5401                                                      Converted.size());
5402
5403    if (Context.hasSameType(CanonType,
5404                        ClassTemplate->getInjectedClassNameSpecialization())) {
5405      // C++ [temp.class.spec]p9b3:
5406      //
5407      //   -- The argument list of the specialization shall not be identical
5408      //      to the implicit argument list of the primary template.
5409      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5410        << (TUK == TUK_Definition)
5411        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5412      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5413                                ClassTemplate->getIdentifier(),
5414                                TemplateNameLoc,
5415                                Attr,
5416                                TemplateParams,
5417                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5418                                TemplateParameterLists.size() - 1,
5419                                TemplateParameterLists.data());
5420    }
5421
5422    // Create a new class template partial specialization declaration node.
5423    ClassTemplatePartialSpecializationDecl *PrevPartial
5424      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5425    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5426                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5427    ClassTemplatePartialSpecializationDecl *Partial
5428      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5429                                             ClassTemplate->getDeclContext(),
5430                                                       KWLoc, TemplateNameLoc,
5431                                                       TemplateParams,
5432                                                       ClassTemplate,
5433                                                       Converted.data(),
5434                                                       Converted.size(),
5435                                                       TemplateArgs,
5436                                                       CanonType,
5437                                                       PrevPartial,
5438                                                       SequenceNumber);
5439    SetNestedNameSpecifier(Partial, SS);
5440    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5441      Partial->setTemplateParameterListsInfo(Context,
5442                                             TemplateParameterLists.size() - 1,
5443                                             TemplateParameterLists.data());
5444    }
5445
5446    if (!PrevPartial)
5447      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5448    Specialization = Partial;
5449
5450    // If we are providing an explicit specialization of a member class
5451    // template specialization, make a note of that.
5452    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5453      PrevPartial->setMemberSpecialization();
5454
5455    // Check that all of the template parameters of the class template
5456    // partial specialization are deducible from the template
5457    // arguments. If not, this class template partial specialization
5458    // will never be used.
5459    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5460    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5461                               TemplateParams->getDepth(),
5462                               DeducibleParams);
5463
5464    if (!DeducibleParams.all()) {
5465      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5466      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5467        << (NumNonDeducible > 1)
5468        << SourceRange(TemplateNameLoc, RAngleLoc);
5469      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5470        if (!DeducibleParams[I]) {
5471          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5472          if (Param->getDeclName())
5473            Diag(Param->getLocation(),
5474                 diag::note_partial_spec_unused_parameter)
5475              << Param->getDeclName();
5476          else
5477            Diag(Param->getLocation(),
5478                 diag::note_partial_spec_unused_parameter)
5479              << "<anonymous>";
5480        }
5481      }
5482    }
5483  } else {
5484    // Create a new class template specialization declaration node for
5485    // this explicit specialization or friend declaration.
5486    Specialization
5487      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5488                                             ClassTemplate->getDeclContext(),
5489                                                KWLoc, TemplateNameLoc,
5490                                                ClassTemplate,
5491                                                Converted.data(),
5492                                                Converted.size(),
5493                                                PrevDecl);
5494    SetNestedNameSpecifier(Specialization, SS);
5495    if (TemplateParameterLists.size() > 0) {
5496      Specialization->setTemplateParameterListsInfo(Context,
5497                                              TemplateParameterLists.size(),
5498                                              TemplateParameterLists.data());
5499    }
5500
5501    if (!PrevDecl)
5502      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5503
5504    CanonType = Context.getTypeDeclType(Specialization);
5505  }
5506
5507  // C++ [temp.expl.spec]p6:
5508  //   If a template, a member template or the member of a class template is
5509  //   explicitly specialized then that specialization shall be declared
5510  //   before the first use of that specialization that would cause an implicit
5511  //   instantiation to take place, in every translation unit in which such a
5512  //   use occurs; no diagnostic is required.
5513  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5514    bool Okay = false;
5515    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5516      // Is there any previous explicit specialization declaration?
5517      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5518        Okay = true;
5519        break;
5520      }
5521    }
5522
5523    if (!Okay) {
5524      SourceRange Range(TemplateNameLoc, RAngleLoc);
5525      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5526        << Context.getTypeDeclType(Specialization) << Range;
5527
5528      Diag(PrevDecl->getPointOfInstantiation(),
5529           diag::note_instantiation_required_here)
5530        << (PrevDecl->getTemplateSpecializationKind()
5531                                                != TSK_ImplicitInstantiation);
5532      return true;
5533    }
5534  }
5535
5536  // If this is not a friend, note that this is an explicit specialization.
5537  if (TUK != TUK_Friend)
5538    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5539
5540  // Check that this isn't a redefinition of this specialization.
5541  if (TUK == TUK_Definition) {
5542    if (RecordDecl *Def = Specialization->getDefinition()) {
5543      SourceRange Range(TemplateNameLoc, RAngleLoc);
5544      Diag(TemplateNameLoc, diag::err_redefinition)
5545        << Context.getTypeDeclType(Specialization) << Range;
5546      Diag(Def->getLocation(), diag::note_previous_definition);
5547      Specialization->setInvalidDecl();
5548      return true;
5549    }
5550  }
5551
5552  if (Attr)
5553    ProcessDeclAttributeList(S, Specialization, Attr);
5554
5555  // Add alignment attributes if necessary; these attributes are checked when
5556  // the ASTContext lays out the structure.
5557  if (TUK == TUK_Definition) {
5558    AddAlignmentAttributesForRecord(Specialization);
5559    AddMsStructLayoutForRecord(Specialization);
5560  }
5561
5562  if (ModulePrivateLoc.isValid())
5563    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5564      << (isPartialSpecialization? 1 : 0)
5565      << FixItHint::CreateRemoval(ModulePrivateLoc);
5566
5567  // Build the fully-sugared type for this class template
5568  // specialization as the user wrote in the specialization
5569  // itself. This means that we'll pretty-print the type retrieved
5570  // from the specialization's declaration the way that the user
5571  // actually wrote the specialization, rather than formatting the
5572  // name based on the "canonical" representation used to store the
5573  // template arguments in the specialization.
5574  TypeSourceInfo *WrittenTy
5575    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5576                                                TemplateArgs, CanonType);
5577  if (TUK != TUK_Friend) {
5578    Specialization->setTypeAsWritten(WrittenTy);
5579    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5580  }
5581
5582  // C++ [temp.expl.spec]p9:
5583  //   A template explicit specialization is in the scope of the
5584  //   namespace in which the template was defined.
5585  //
5586  // We actually implement this paragraph where we set the semantic
5587  // context (in the creation of the ClassTemplateSpecializationDecl),
5588  // but we also maintain the lexical context where the actual
5589  // definition occurs.
5590  Specialization->setLexicalDeclContext(CurContext);
5591
5592  // We may be starting the definition of this specialization.
5593  if (TUK == TUK_Definition)
5594    Specialization->startDefinition();
5595
5596  if (TUK == TUK_Friend) {
5597    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5598                                            TemplateNameLoc,
5599                                            WrittenTy,
5600                                            /*FIXME:*/KWLoc);
5601    Friend->setAccess(AS_public);
5602    CurContext->addDecl(Friend);
5603  } else {
5604    // Add the specialization into its lexical context, so that it can
5605    // be seen when iterating through the list of declarations in that
5606    // context. However, specializations are not found by name lookup.
5607    CurContext->addDecl(Specialization);
5608  }
5609  return Specialization;
5610}
5611
5612Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5613                              MultiTemplateParamsArg TemplateParameterLists,
5614                                    Declarator &D) {
5615  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
5616  ActOnDocumentableDecl(NewDecl);
5617  return NewDecl;
5618}
5619
5620Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5621                               MultiTemplateParamsArg TemplateParameterLists,
5622                                            Declarator &D) {
5623  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5624  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5625
5626  if (FTI.hasPrototype) {
5627    // FIXME: Diagnose arguments without names in C.
5628  }
5629
5630  Scope *ParentScope = FnBodyScope->getParent();
5631
5632  D.setFunctionDefinitionKind(FDK_Definition);
5633  Decl *DP = HandleDeclarator(ParentScope, D,
5634                              TemplateParameterLists);
5635  if (FunctionTemplateDecl *FunctionTemplate
5636        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5637    return ActOnStartOfFunctionDef(FnBodyScope,
5638                                   FunctionTemplate->getTemplatedDecl());
5639  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5640    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5641  return 0;
5642}
5643
5644/// \brief Strips various properties off an implicit instantiation
5645/// that has just been explicitly specialized.
5646static void StripImplicitInstantiation(NamedDecl *D) {
5647  // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5648  D->dropAttrs();
5649
5650  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5651    FD->setInlineSpecified(false);
5652  }
5653}
5654
5655/// \brief Compute the diagnostic location for an explicit instantiation
5656//  declaration or definition.
5657static SourceLocation DiagLocForExplicitInstantiation(
5658    NamedDecl* D, SourceLocation PointOfInstantiation) {
5659  // Explicit instantiations following a specialization have no effect and
5660  // hence no PointOfInstantiation. In that case, walk decl backwards
5661  // until a valid name loc is found.
5662  SourceLocation PrevDiagLoc = PointOfInstantiation;
5663  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5664       Prev = Prev->getPreviousDecl()) {
5665    PrevDiagLoc = Prev->getLocation();
5666  }
5667  assert(PrevDiagLoc.isValid() &&
5668         "Explicit instantiation without point of instantiation?");
5669  return PrevDiagLoc;
5670}
5671
5672/// \brief Diagnose cases where we have an explicit template specialization
5673/// before/after an explicit template instantiation, producing diagnostics
5674/// for those cases where they are required and determining whether the
5675/// new specialization/instantiation will have any effect.
5676///
5677/// \param NewLoc the location of the new explicit specialization or
5678/// instantiation.
5679///
5680/// \param NewTSK the kind of the new explicit specialization or instantiation.
5681///
5682/// \param PrevDecl the previous declaration of the entity.
5683///
5684/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5685///
5686/// \param PrevPointOfInstantiation if valid, indicates where the previus
5687/// declaration was instantiated (either implicitly or explicitly).
5688///
5689/// \param HasNoEffect will be set to true to indicate that the new
5690/// specialization or instantiation has no effect and should be ignored.
5691///
5692/// \returns true if there was an error that should prevent the introduction of
5693/// the new declaration into the AST, false otherwise.
5694bool
5695Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5696                                             TemplateSpecializationKind NewTSK,
5697                                             NamedDecl *PrevDecl,
5698                                             TemplateSpecializationKind PrevTSK,
5699                                        SourceLocation PrevPointOfInstantiation,
5700                                             bool &HasNoEffect) {
5701  HasNoEffect = false;
5702
5703  switch (NewTSK) {
5704  case TSK_Undeclared:
5705  case TSK_ImplicitInstantiation:
5706    llvm_unreachable("Don't check implicit instantiations here");
5707
5708  case TSK_ExplicitSpecialization:
5709    switch (PrevTSK) {
5710    case TSK_Undeclared:
5711    case TSK_ExplicitSpecialization:
5712      // Okay, we're just specializing something that is either already
5713      // explicitly specialized or has merely been mentioned without any
5714      // instantiation.
5715      return false;
5716
5717    case TSK_ImplicitInstantiation:
5718      if (PrevPointOfInstantiation.isInvalid()) {
5719        // The declaration itself has not actually been instantiated, so it is
5720        // still okay to specialize it.
5721        StripImplicitInstantiation(PrevDecl);
5722        return false;
5723      }
5724      // Fall through
5725
5726    case TSK_ExplicitInstantiationDeclaration:
5727    case TSK_ExplicitInstantiationDefinition:
5728      assert((PrevTSK == TSK_ImplicitInstantiation ||
5729              PrevPointOfInstantiation.isValid()) &&
5730             "Explicit instantiation without point of instantiation?");
5731
5732      // C++ [temp.expl.spec]p6:
5733      //   If a template, a member template or the member of a class template
5734      //   is explicitly specialized then that specialization shall be declared
5735      //   before the first use of that specialization that would cause an
5736      //   implicit instantiation to take place, in every translation unit in
5737      //   which such a use occurs; no diagnostic is required.
5738      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5739        // Is there any previous explicit specialization declaration?
5740        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5741          return false;
5742      }
5743
5744      Diag(NewLoc, diag::err_specialization_after_instantiation)
5745        << PrevDecl;
5746      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5747        << (PrevTSK != TSK_ImplicitInstantiation);
5748
5749      return true;
5750    }
5751
5752  case TSK_ExplicitInstantiationDeclaration:
5753    switch (PrevTSK) {
5754    case TSK_ExplicitInstantiationDeclaration:
5755      // This explicit instantiation declaration is redundant (that's okay).
5756      HasNoEffect = true;
5757      return false;
5758
5759    case TSK_Undeclared:
5760    case TSK_ImplicitInstantiation:
5761      // We're explicitly instantiating something that may have already been
5762      // implicitly instantiated; that's fine.
5763      return false;
5764
5765    case TSK_ExplicitSpecialization:
5766      // C++0x [temp.explicit]p4:
5767      //   For a given set of template parameters, if an explicit instantiation
5768      //   of a template appears after a declaration of an explicit
5769      //   specialization for that template, the explicit instantiation has no
5770      //   effect.
5771      HasNoEffect = true;
5772      return false;
5773
5774    case TSK_ExplicitInstantiationDefinition:
5775      // C++0x [temp.explicit]p10:
5776      //   If an entity is the subject of both an explicit instantiation
5777      //   declaration and an explicit instantiation definition in the same
5778      //   translation unit, the definition shall follow the declaration.
5779      Diag(NewLoc,
5780           diag::err_explicit_instantiation_declaration_after_definition);
5781
5782      // Explicit instantiations following a specialization have no effect and
5783      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5784      // until a valid name loc is found.
5785      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5786           diag::note_explicit_instantiation_definition_here);
5787      HasNoEffect = true;
5788      return false;
5789    }
5790
5791  case TSK_ExplicitInstantiationDefinition:
5792    switch (PrevTSK) {
5793    case TSK_Undeclared:
5794    case TSK_ImplicitInstantiation:
5795      // We're explicitly instantiating something that may have already been
5796      // implicitly instantiated; that's fine.
5797      return false;
5798
5799    case TSK_ExplicitSpecialization:
5800      // C++ DR 259, C++0x [temp.explicit]p4:
5801      //   For a given set of template parameters, if an explicit
5802      //   instantiation of a template appears after a declaration of
5803      //   an explicit specialization for that template, the explicit
5804      //   instantiation has no effect.
5805      //
5806      // In C++98/03 mode, we only give an extension warning here, because it
5807      // is not harmful to try to explicitly instantiate something that
5808      // has been explicitly specialized.
5809      Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5810           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5811           diag::ext_explicit_instantiation_after_specialization)
5812        << PrevDecl;
5813      Diag(PrevDecl->getLocation(),
5814           diag::note_previous_template_specialization);
5815      HasNoEffect = true;
5816      return false;
5817
5818    case TSK_ExplicitInstantiationDeclaration:
5819      // We're explicity instantiating a definition for something for which we
5820      // were previously asked to suppress instantiations. That's fine.
5821
5822      // C++0x [temp.explicit]p4:
5823      //   For a given set of template parameters, if an explicit instantiation
5824      //   of a template appears after a declaration of an explicit
5825      //   specialization for that template, the explicit instantiation has no
5826      //   effect.
5827      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5828        // Is there any previous explicit specialization declaration?
5829        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5830          HasNoEffect = true;
5831          break;
5832        }
5833      }
5834
5835      return false;
5836
5837    case TSK_ExplicitInstantiationDefinition:
5838      // C++0x [temp.spec]p5:
5839      //   For a given template and a given set of template-arguments,
5840      //     - an explicit instantiation definition shall appear at most once
5841      //       in a program,
5842      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5843        << PrevDecl;
5844      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5845           diag::note_previous_explicit_instantiation);
5846      HasNoEffect = true;
5847      return false;
5848    }
5849  }
5850
5851  llvm_unreachable("Missing specialization/instantiation case?");
5852}
5853
5854/// \brief Perform semantic analysis for the given dependent function
5855/// template specialization.
5856///
5857/// The only possible way to get a dependent function template specialization
5858/// is with a friend declaration, like so:
5859///
5860/// \code
5861///   template \<class T> void foo(T);
5862///   template \<class T> class A {
5863///     friend void foo<>(T);
5864///   };
5865/// \endcode
5866///
5867/// There really isn't any useful analysis we can do here, so we
5868/// just store the information.
5869bool
5870Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5871                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5872                                                   LookupResult &Previous) {
5873  // Remove anything from Previous that isn't a function template in
5874  // the correct context.
5875  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5876  LookupResult::Filter F = Previous.makeFilter();
5877  while (F.hasNext()) {
5878    NamedDecl *D = F.next()->getUnderlyingDecl();
5879    if (!isa<FunctionTemplateDecl>(D) ||
5880        !FDLookupContext->InEnclosingNamespaceSetOf(
5881                              D->getDeclContext()->getRedeclContext()))
5882      F.erase();
5883  }
5884  F.done();
5885
5886  // Should this be diagnosed here?
5887  if (Previous.empty()) return true;
5888
5889  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5890                                         ExplicitTemplateArgs);
5891  return false;
5892}
5893
5894/// \brief Perform semantic analysis for the given function template
5895/// specialization.
5896///
5897/// This routine performs all of the semantic analysis required for an
5898/// explicit function template specialization. On successful completion,
5899/// the function declaration \p FD will become a function template
5900/// specialization.
5901///
5902/// \param FD the function declaration, which will be updated to become a
5903/// function template specialization.
5904///
5905/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5906/// if any. Note that this may be valid info even when 0 arguments are
5907/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5908/// as it anyway contains info on the angle brackets locations.
5909///
5910/// \param Previous the set of declarations that may be specialized by
5911/// this function specialization.
5912bool
5913Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5914                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5915                                          LookupResult &Previous) {
5916  // The set of function template specializations that could match this
5917  // explicit function template specialization.
5918  UnresolvedSet<8> Candidates;
5919
5920  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5921  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5922         I != E; ++I) {
5923    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5924    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5925      // Only consider templates found within the same semantic lookup scope as
5926      // FD.
5927      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5928                                Ovl->getDeclContext()->getRedeclContext()))
5929        continue;
5930
5931      // C++ [temp.expl.spec]p11:
5932      //   A trailing template-argument can be left unspecified in the
5933      //   template-id naming an explicit function template specialization
5934      //   provided it can be deduced from the function argument type.
5935      // Perform template argument deduction to determine whether we may be
5936      // specializing this template.
5937      // FIXME: It is somewhat wasteful to build
5938      TemplateDeductionInfo Info(Context, FD->getLocation());
5939      FunctionDecl *Specialization = 0;
5940      if (TemplateDeductionResult TDK
5941            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5942                                      FD->getType(),
5943                                      Specialization,
5944                                      Info)) {
5945        // FIXME: Template argument deduction failed; record why it failed, so
5946        // that we can provide nifty diagnostics.
5947        (void)TDK;
5948        continue;
5949      }
5950
5951      // Record this candidate.
5952      Candidates.addDecl(Specialization, I.getAccess());
5953    }
5954  }
5955
5956  // Find the most specialized function template.
5957  UnresolvedSetIterator Result
5958    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5959                         TPOC_Other, 0, FD->getLocation(),
5960                  PDiag(diag::err_function_template_spec_no_match)
5961                    << FD->getDeclName(),
5962                  PDiag(diag::err_function_template_spec_ambiguous)
5963                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5964                  PDiag(diag::note_function_template_spec_matched));
5965  if (Result == Candidates.end())
5966    return true;
5967
5968  // Ignore access information;  it doesn't figure into redeclaration checking.
5969  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5970
5971  FunctionTemplateSpecializationInfo *SpecInfo
5972    = Specialization->getTemplateSpecializationInfo();
5973  assert(SpecInfo && "Function template specialization info missing?");
5974
5975  // Note: do not overwrite location info if previous template
5976  // specialization kind was explicit.
5977  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5978  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5979    Specialization->setLocation(FD->getLocation());
5980    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5981    // function can differ from the template declaration with respect to
5982    // the constexpr specifier.
5983    Specialization->setConstexpr(FD->isConstexpr());
5984  }
5985
5986  // FIXME: Check if the prior specialization has a point of instantiation.
5987  // If so, we have run afoul of .
5988
5989  // If this is a friend declaration, then we're not really declaring
5990  // an explicit specialization.
5991  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5992
5993  // Check the scope of this explicit specialization.
5994  if (!isFriend &&
5995      CheckTemplateSpecializationScope(*this,
5996                                       Specialization->getPrimaryTemplate(),
5997                                       Specialization, FD->getLocation(),
5998                                       false))
5999    return true;
6000
6001  // C++ [temp.expl.spec]p6:
6002  //   If a template, a member template or the member of a class template is
6003  //   explicitly specialized then that specialization shall be declared
6004  //   before the first use of that specialization that would cause an implicit
6005  //   instantiation to take place, in every translation unit in which such a
6006  //   use occurs; no diagnostic is required.
6007  bool HasNoEffect = false;
6008  if (!isFriend &&
6009      CheckSpecializationInstantiationRedecl(FD->getLocation(),
6010                                             TSK_ExplicitSpecialization,
6011                                             Specialization,
6012                                   SpecInfo->getTemplateSpecializationKind(),
6013                                         SpecInfo->getPointOfInstantiation(),
6014                                             HasNoEffect))
6015    return true;
6016
6017  // Mark the prior declaration as an explicit specialization, so that later
6018  // clients know that this is an explicit specialization.
6019  if (!isFriend) {
6020    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6021    MarkUnusedFileScopedDecl(Specialization);
6022  }
6023
6024  // Turn the given function declaration into a function template
6025  // specialization, with the template arguments from the previous
6026  // specialization.
6027  // Take copies of (semantic and syntactic) template argument lists.
6028  const TemplateArgumentList* TemplArgs = new (Context)
6029    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6030  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6031                                        TemplArgs, /*InsertPos=*/0,
6032                                    SpecInfo->getTemplateSpecializationKind(),
6033                                        ExplicitTemplateArgs);
6034  FD->setStorageClass(Specialization->getStorageClass());
6035
6036  // The "previous declaration" for this function template specialization is
6037  // the prior function template specialization.
6038  Previous.clear();
6039  Previous.addDecl(Specialization);
6040  return false;
6041}
6042
6043/// \brief Perform semantic analysis for the given non-template member
6044/// specialization.
6045///
6046/// This routine performs all of the semantic analysis required for an
6047/// explicit member function specialization. On successful completion,
6048/// the function declaration \p FD will become a member function
6049/// specialization.
6050///
6051/// \param Member the member declaration, which will be updated to become a
6052/// specialization.
6053///
6054/// \param Previous the set of declarations, one of which may be specialized
6055/// by this function specialization;  the set will be modified to contain the
6056/// redeclared member.
6057bool
6058Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6059  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6060
6061  // Try to find the member we are instantiating.
6062  NamedDecl *Instantiation = 0;
6063  NamedDecl *InstantiatedFrom = 0;
6064  MemberSpecializationInfo *MSInfo = 0;
6065
6066  if (Previous.empty()) {
6067    // Nowhere to look anyway.
6068  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6069    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6070           I != E; ++I) {
6071      NamedDecl *D = (*I)->getUnderlyingDecl();
6072      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6073        if (Context.hasSameType(Function->getType(), Method->getType())) {
6074          Instantiation = Method;
6075          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6076          MSInfo = Method->getMemberSpecializationInfo();
6077          break;
6078        }
6079      }
6080    }
6081  } else if (isa<VarDecl>(Member)) {
6082    VarDecl *PrevVar;
6083    if (Previous.isSingleResult() &&
6084        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6085      if (PrevVar->isStaticDataMember()) {
6086        Instantiation = PrevVar;
6087        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6088        MSInfo = PrevVar->getMemberSpecializationInfo();
6089      }
6090  } else if (isa<RecordDecl>(Member)) {
6091    CXXRecordDecl *PrevRecord;
6092    if (Previous.isSingleResult() &&
6093        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6094      Instantiation = PrevRecord;
6095      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6096      MSInfo = PrevRecord->getMemberSpecializationInfo();
6097    }
6098  } else if (isa<EnumDecl>(Member)) {
6099    EnumDecl *PrevEnum;
6100    if (Previous.isSingleResult() &&
6101        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6102      Instantiation = PrevEnum;
6103      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6104      MSInfo = PrevEnum->getMemberSpecializationInfo();
6105    }
6106  }
6107
6108  if (!Instantiation) {
6109    // There is no previous declaration that matches. Since member
6110    // specializations are always out-of-line, the caller will complain about
6111    // this mismatch later.
6112    return false;
6113  }
6114
6115  // If this is a friend, just bail out here before we start turning
6116  // things into explicit specializations.
6117  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6118    // Preserve instantiation information.
6119    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6120      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6121                                      cast<CXXMethodDecl>(InstantiatedFrom),
6122        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6123    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6124      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6125                                      cast<CXXRecordDecl>(InstantiatedFrom),
6126        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6127    }
6128
6129    Previous.clear();
6130    Previous.addDecl(Instantiation);
6131    return false;
6132  }
6133
6134  // Make sure that this is a specialization of a member.
6135  if (!InstantiatedFrom) {
6136    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6137      << Member;
6138    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6139    return true;
6140  }
6141
6142  // C++ [temp.expl.spec]p6:
6143  //   If a template, a member template or the member of a class template is
6144  //   explicitly specialized then that specialization shall be declared
6145  //   before the first use of that specialization that would cause an implicit
6146  //   instantiation to take place, in every translation unit in which such a
6147  //   use occurs; no diagnostic is required.
6148  assert(MSInfo && "Member specialization info missing?");
6149
6150  bool HasNoEffect = false;
6151  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6152                                             TSK_ExplicitSpecialization,
6153                                             Instantiation,
6154                                     MSInfo->getTemplateSpecializationKind(),
6155                                           MSInfo->getPointOfInstantiation(),
6156                                             HasNoEffect))
6157    return true;
6158
6159  // Check the scope of this explicit specialization.
6160  if (CheckTemplateSpecializationScope(*this,
6161                                       InstantiatedFrom,
6162                                       Instantiation, Member->getLocation(),
6163                                       false))
6164    return true;
6165
6166  // Note that this is an explicit instantiation of a member.
6167  // the original declaration to note that it is an explicit specialization
6168  // (if it was previously an implicit instantiation). This latter step
6169  // makes bookkeeping easier.
6170  if (isa<FunctionDecl>(Member)) {
6171    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6172    if (InstantiationFunction->getTemplateSpecializationKind() ==
6173          TSK_ImplicitInstantiation) {
6174      InstantiationFunction->setTemplateSpecializationKind(
6175                                                  TSK_ExplicitSpecialization);
6176      InstantiationFunction->setLocation(Member->getLocation());
6177    }
6178
6179    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6180                                        cast<CXXMethodDecl>(InstantiatedFrom),
6181                                                  TSK_ExplicitSpecialization);
6182    MarkUnusedFileScopedDecl(InstantiationFunction);
6183  } else if (isa<VarDecl>(Member)) {
6184    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6185    if (InstantiationVar->getTemplateSpecializationKind() ==
6186          TSK_ImplicitInstantiation) {
6187      InstantiationVar->setTemplateSpecializationKind(
6188                                                  TSK_ExplicitSpecialization);
6189      InstantiationVar->setLocation(Member->getLocation());
6190    }
6191
6192    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6193                                                cast<VarDecl>(InstantiatedFrom),
6194                                                TSK_ExplicitSpecialization);
6195    MarkUnusedFileScopedDecl(InstantiationVar);
6196  } else if (isa<CXXRecordDecl>(Member)) {
6197    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6198    if (InstantiationClass->getTemplateSpecializationKind() ==
6199          TSK_ImplicitInstantiation) {
6200      InstantiationClass->setTemplateSpecializationKind(
6201                                                   TSK_ExplicitSpecialization);
6202      InstantiationClass->setLocation(Member->getLocation());
6203    }
6204
6205    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6206                                        cast<CXXRecordDecl>(InstantiatedFrom),
6207                                                   TSK_ExplicitSpecialization);
6208  } else {
6209    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6210    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6211    if (InstantiationEnum->getTemplateSpecializationKind() ==
6212          TSK_ImplicitInstantiation) {
6213      InstantiationEnum->setTemplateSpecializationKind(
6214                                                   TSK_ExplicitSpecialization);
6215      InstantiationEnum->setLocation(Member->getLocation());
6216    }
6217
6218    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6219        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6220  }
6221
6222  // Save the caller the trouble of having to figure out which declaration
6223  // this specialization matches.
6224  Previous.clear();
6225  Previous.addDecl(Instantiation);
6226  return false;
6227}
6228
6229/// \brief Check the scope of an explicit instantiation.
6230///
6231/// \returns true if a serious error occurs, false otherwise.
6232static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6233                                            SourceLocation InstLoc,
6234                                            bool WasQualifiedName) {
6235  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6236  DeclContext *CurContext = S.CurContext->getRedeclContext();
6237
6238  if (CurContext->isRecord()) {
6239    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6240      << D;
6241    return true;
6242  }
6243
6244  // C++11 [temp.explicit]p3:
6245  //   An explicit instantiation shall appear in an enclosing namespace of its
6246  //   template. If the name declared in the explicit instantiation is an
6247  //   unqualified name, the explicit instantiation shall appear in the
6248  //   namespace where its template is declared or, if that namespace is inline
6249  //   (7.3.1), any namespace from its enclosing namespace set.
6250  //
6251  // This is DR275, which we do not retroactively apply to C++98/03.
6252  if (WasQualifiedName) {
6253    if (CurContext->Encloses(OrigContext))
6254      return false;
6255  } else {
6256    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6257      return false;
6258  }
6259
6260  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6261    if (WasQualifiedName)
6262      S.Diag(InstLoc,
6263             S.getLangOpts().CPlusPlus0x?
6264               diag::err_explicit_instantiation_out_of_scope :
6265               diag::warn_explicit_instantiation_out_of_scope_0x)
6266        << D << NS;
6267    else
6268      S.Diag(InstLoc,
6269             S.getLangOpts().CPlusPlus0x?
6270               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6271               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6272        << D << NS;
6273  } else
6274    S.Diag(InstLoc,
6275           S.getLangOpts().CPlusPlus0x?
6276             diag::err_explicit_instantiation_must_be_global :
6277             diag::warn_explicit_instantiation_must_be_global_0x)
6278      << D;
6279  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6280  return false;
6281}
6282
6283/// \brief Determine whether the given scope specifier has a template-id in it.
6284static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6285  if (!SS.isSet())
6286    return false;
6287
6288  // C++11 [temp.explicit]p3:
6289  //   If the explicit instantiation is for a member function, a member class
6290  //   or a static data member of a class template specialization, the name of
6291  //   the class template specialization in the qualified-id for the member
6292  //   name shall be a simple-template-id.
6293  //
6294  // C++98 has the same restriction, just worded differently.
6295  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6296       NNS; NNS = NNS->getPrefix())
6297    if (const Type *T = NNS->getAsType())
6298      if (isa<TemplateSpecializationType>(T))
6299        return true;
6300
6301  return false;
6302}
6303
6304// Explicit instantiation of a class template specialization
6305DeclResult
6306Sema::ActOnExplicitInstantiation(Scope *S,
6307                                 SourceLocation ExternLoc,
6308                                 SourceLocation TemplateLoc,
6309                                 unsigned TagSpec,
6310                                 SourceLocation KWLoc,
6311                                 const CXXScopeSpec &SS,
6312                                 TemplateTy TemplateD,
6313                                 SourceLocation TemplateNameLoc,
6314                                 SourceLocation LAngleLoc,
6315                                 ASTTemplateArgsPtr TemplateArgsIn,
6316                                 SourceLocation RAngleLoc,
6317                                 AttributeList *Attr) {
6318  // Find the class template we're specializing
6319  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6320  ClassTemplateDecl *ClassTemplate
6321    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6322
6323  // Check that the specialization uses the same tag kind as the
6324  // original template.
6325  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6326  assert(Kind != TTK_Enum &&
6327         "Invalid enum tag in class template explicit instantiation!");
6328  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6329                                    Kind, /*isDefinition*/false, KWLoc,
6330                                    *ClassTemplate->getIdentifier())) {
6331    Diag(KWLoc, diag::err_use_with_wrong_tag)
6332      << ClassTemplate
6333      << FixItHint::CreateReplacement(KWLoc,
6334                            ClassTemplate->getTemplatedDecl()->getKindName());
6335    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6336         diag::note_previous_use);
6337    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6338  }
6339
6340  // C++0x [temp.explicit]p2:
6341  //   There are two forms of explicit instantiation: an explicit instantiation
6342  //   definition and an explicit instantiation declaration. An explicit
6343  //   instantiation declaration begins with the extern keyword. [...]
6344  TemplateSpecializationKind TSK
6345    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6346                           : TSK_ExplicitInstantiationDeclaration;
6347
6348  // Translate the parser's template argument list in our AST format.
6349  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6350  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6351
6352  // Check that the template argument list is well-formed for this
6353  // template.
6354  SmallVector<TemplateArgument, 4> Converted;
6355  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6356                                TemplateArgs, false, Converted))
6357    return true;
6358
6359  // Find the class template specialization declaration that
6360  // corresponds to these arguments.
6361  void *InsertPos = 0;
6362  ClassTemplateSpecializationDecl *PrevDecl
6363    = ClassTemplate->findSpecialization(Converted.data(),
6364                                        Converted.size(), InsertPos);
6365
6366  TemplateSpecializationKind PrevDecl_TSK
6367    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6368
6369  // C++0x [temp.explicit]p2:
6370  //   [...] An explicit instantiation shall appear in an enclosing
6371  //   namespace of its template. [...]
6372  //
6373  // This is C++ DR 275.
6374  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6375                                      SS.isSet()))
6376    return true;
6377
6378  ClassTemplateSpecializationDecl *Specialization = 0;
6379
6380  bool HasNoEffect = false;
6381  if (PrevDecl) {
6382    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6383                                               PrevDecl, PrevDecl_TSK,
6384                                            PrevDecl->getPointOfInstantiation(),
6385                                               HasNoEffect))
6386      return PrevDecl;
6387
6388    // Even though HasNoEffect == true means that this explicit instantiation
6389    // has no effect on semantics, we go on to put its syntax in the AST.
6390
6391    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6392        PrevDecl_TSK == TSK_Undeclared) {
6393      // Since the only prior class template specialization with these
6394      // arguments was referenced but not declared, reuse that
6395      // declaration node as our own, updating the source location
6396      // for the template name to reflect our new declaration.
6397      // (Other source locations will be updated later.)
6398      Specialization = PrevDecl;
6399      Specialization->setLocation(TemplateNameLoc);
6400      PrevDecl = 0;
6401    }
6402  }
6403
6404  if (!Specialization) {
6405    // Create a new class template specialization declaration node for
6406    // this explicit specialization.
6407    Specialization
6408      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6409                                             ClassTemplate->getDeclContext(),
6410                                                KWLoc, TemplateNameLoc,
6411                                                ClassTemplate,
6412                                                Converted.data(),
6413                                                Converted.size(),
6414                                                PrevDecl);
6415    SetNestedNameSpecifier(Specialization, SS);
6416
6417    if (!HasNoEffect && !PrevDecl) {
6418      // Insert the new specialization.
6419      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6420    }
6421  }
6422
6423  // Build the fully-sugared type for this explicit instantiation as
6424  // the user wrote in the explicit instantiation itself. This means
6425  // that we'll pretty-print the type retrieved from the
6426  // specialization's declaration the way that the user actually wrote
6427  // the explicit instantiation, rather than formatting the name based
6428  // on the "canonical" representation used to store the template
6429  // arguments in the specialization.
6430  TypeSourceInfo *WrittenTy
6431    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6432                                                TemplateArgs,
6433                                  Context.getTypeDeclType(Specialization));
6434  Specialization->setTypeAsWritten(WrittenTy);
6435
6436  // Set source locations for keywords.
6437  Specialization->setExternLoc(ExternLoc);
6438  Specialization->setTemplateKeywordLoc(TemplateLoc);
6439
6440  if (Attr)
6441    ProcessDeclAttributeList(S, Specialization, Attr);
6442
6443  // Add the explicit instantiation into its lexical context. However,
6444  // since explicit instantiations are never found by name lookup, we
6445  // just put it into the declaration context directly.
6446  Specialization->setLexicalDeclContext(CurContext);
6447  CurContext->addDecl(Specialization);
6448
6449  // Syntax is now OK, so return if it has no other effect on semantics.
6450  if (HasNoEffect) {
6451    // Set the template specialization kind.
6452    Specialization->setTemplateSpecializationKind(TSK);
6453    return Specialization;
6454  }
6455
6456  // C++ [temp.explicit]p3:
6457  //   A definition of a class template or class member template
6458  //   shall be in scope at the point of the explicit instantiation of
6459  //   the class template or class member template.
6460  //
6461  // This check comes when we actually try to perform the
6462  // instantiation.
6463  ClassTemplateSpecializationDecl *Def
6464    = cast_or_null<ClassTemplateSpecializationDecl>(
6465                                              Specialization->getDefinition());
6466  if (!Def)
6467    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6468  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6469    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6470    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6471  }
6472
6473  // Instantiate the members of this class template specialization.
6474  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6475                                       Specialization->getDefinition());
6476  if (Def) {
6477    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6478
6479    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6480    // TSK_ExplicitInstantiationDefinition
6481    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6482        TSK == TSK_ExplicitInstantiationDefinition)
6483      Def->setTemplateSpecializationKind(TSK);
6484
6485    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6486  }
6487
6488  // Set the template specialization kind.
6489  Specialization->setTemplateSpecializationKind(TSK);
6490  return Specialization;
6491}
6492
6493// Explicit instantiation of a member class of a class template.
6494DeclResult
6495Sema::ActOnExplicitInstantiation(Scope *S,
6496                                 SourceLocation ExternLoc,
6497                                 SourceLocation TemplateLoc,
6498                                 unsigned TagSpec,
6499                                 SourceLocation KWLoc,
6500                                 CXXScopeSpec &SS,
6501                                 IdentifierInfo *Name,
6502                                 SourceLocation NameLoc,
6503                                 AttributeList *Attr) {
6504
6505  bool Owned = false;
6506  bool IsDependent = false;
6507  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6508                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6509                        /*ModulePrivateLoc=*/SourceLocation(),
6510                        MultiTemplateParamsArg(), Owned, IsDependent,
6511                        SourceLocation(), false, TypeResult());
6512  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6513
6514  if (!TagD)
6515    return true;
6516
6517  TagDecl *Tag = cast<TagDecl>(TagD);
6518  assert(!Tag->isEnum() && "shouldn't see enumerations here");
6519
6520  if (Tag->isInvalidDecl())
6521    return true;
6522
6523  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6524  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6525  if (!Pattern) {
6526    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6527      << Context.getTypeDeclType(Record);
6528    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6529    return true;
6530  }
6531
6532  // C++0x [temp.explicit]p2:
6533  //   If the explicit instantiation is for a class or member class, the
6534  //   elaborated-type-specifier in the declaration shall include a
6535  //   simple-template-id.
6536  //
6537  // C++98 has the same restriction, just worded differently.
6538  if (!ScopeSpecifierHasTemplateId(SS))
6539    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6540      << Record << SS.getRange();
6541
6542  // C++0x [temp.explicit]p2:
6543  //   There are two forms of explicit instantiation: an explicit instantiation
6544  //   definition and an explicit instantiation declaration. An explicit
6545  //   instantiation declaration begins with the extern keyword. [...]
6546  TemplateSpecializationKind TSK
6547    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6548                           : TSK_ExplicitInstantiationDeclaration;
6549
6550  // C++0x [temp.explicit]p2:
6551  //   [...] An explicit instantiation shall appear in an enclosing
6552  //   namespace of its template. [...]
6553  //
6554  // This is C++ DR 275.
6555  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6556
6557  // Verify that it is okay to explicitly instantiate here.
6558  CXXRecordDecl *PrevDecl
6559    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6560  if (!PrevDecl && Record->getDefinition())
6561    PrevDecl = Record;
6562  if (PrevDecl) {
6563    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6564    bool HasNoEffect = false;
6565    assert(MSInfo && "No member specialization information?");
6566    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6567                                               PrevDecl,
6568                                        MSInfo->getTemplateSpecializationKind(),
6569                                             MSInfo->getPointOfInstantiation(),
6570                                               HasNoEffect))
6571      return true;
6572    if (HasNoEffect)
6573      return TagD;
6574  }
6575
6576  CXXRecordDecl *RecordDef
6577    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6578  if (!RecordDef) {
6579    // C++ [temp.explicit]p3:
6580    //   A definition of a member class of a class template shall be in scope
6581    //   at the point of an explicit instantiation of the member class.
6582    CXXRecordDecl *Def
6583      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6584    if (!Def) {
6585      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6586        << 0 << Record->getDeclName() << Record->getDeclContext();
6587      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6588        << Pattern;
6589      return true;
6590    } else {
6591      if (InstantiateClass(NameLoc, Record, Def,
6592                           getTemplateInstantiationArgs(Record),
6593                           TSK))
6594        return true;
6595
6596      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6597      if (!RecordDef)
6598        return true;
6599    }
6600  }
6601
6602  // Instantiate all of the members of the class.
6603  InstantiateClassMembers(NameLoc, RecordDef,
6604                          getTemplateInstantiationArgs(Record), TSK);
6605
6606  if (TSK == TSK_ExplicitInstantiationDefinition)
6607    MarkVTableUsed(NameLoc, RecordDef, true);
6608
6609  // FIXME: We don't have any representation for explicit instantiations of
6610  // member classes. Such a representation is not needed for compilation, but it
6611  // should be available for clients that want to see all of the declarations in
6612  // the source code.
6613  return TagD;
6614}
6615
6616DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6617                                            SourceLocation ExternLoc,
6618                                            SourceLocation TemplateLoc,
6619                                            Declarator &D) {
6620  // Explicit instantiations always require a name.
6621  // TODO: check if/when DNInfo should replace Name.
6622  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6623  DeclarationName Name = NameInfo.getName();
6624  if (!Name) {
6625    if (!D.isInvalidType())
6626      Diag(D.getDeclSpec().getLocStart(),
6627           diag::err_explicit_instantiation_requires_name)
6628        << D.getDeclSpec().getSourceRange()
6629        << D.getSourceRange();
6630
6631    return true;
6632  }
6633
6634  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6635  // we find one that is.
6636  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6637         (S->getFlags() & Scope::TemplateParamScope) != 0)
6638    S = S->getParent();
6639
6640  // Determine the type of the declaration.
6641  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6642  QualType R = T->getType();
6643  if (R.isNull())
6644    return true;
6645
6646  // C++ [dcl.stc]p1:
6647  //   A storage-class-specifier shall not be specified in [...] an explicit
6648  //   instantiation (14.7.2) directive.
6649  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6650    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6651      << Name;
6652    return true;
6653  } else if (D.getDeclSpec().getStorageClassSpec()
6654                                                != DeclSpec::SCS_unspecified) {
6655    // Complain about then remove the storage class specifier.
6656    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6657      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6658
6659    D.getMutableDeclSpec().ClearStorageClassSpecs();
6660  }
6661
6662  // C++0x [temp.explicit]p1:
6663  //   [...] An explicit instantiation of a function template shall not use the
6664  //   inline or constexpr specifiers.
6665  // Presumably, this also applies to member functions of class templates as
6666  // well.
6667  if (D.getDeclSpec().isInlineSpecified())
6668    Diag(D.getDeclSpec().getInlineSpecLoc(),
6669         getLangOpts().CPlusPlus0x ?
6670           diag::err_explicit_instantiation_inline :
6671           diag::warn_explicit_instantiation_inline_0x)
6672      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6673  if (D.getDeclSpec().isConstexprSpecified())
6674    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6675    // not already specified.
6676    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6677         diag::err_explicit_instantiation_constexpr);
6678
6679  // C++0x [temp.explicit]p2:
6680  //   There are two forms of explicit instantiation: an explicit instantiation
6681  //   definition and an explicit instantiation declaration. An explicit
6682  //   instantiation declaration begins with the extern keyword. [...]
6683  TemplateSpecializationKind TSK
6684    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6685                           : TSK_ExplicitInstantiationDeclaration;
6686
6687  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6688  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6689
6690  if (!R->isFunctionType()) {
6691    // C++ [temp.explicit]p1:
6692    //   A [...] static data member of a class template can be explicitly
6693    //   instantiated from the member definition associated with its class
6694    //   template.
6695    if (Previous.isAmbiguous())
6696      return true;
6697
6698    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6699    if (!Prev || !Prev->isStaticDataMember()) {
6700      // We expect to see a data data member here.
6701      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6702        << Name;
6703      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6704           P != PEnd; ++P)
6705        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6706      return true;
6707    }
6708
6709    if (!Prev->getInstantiatedFromStaticDataMember()) {
6710      // FIXME: Check for explicit specialization?
6711      Diag(D.getIdentifierLoc(),
6712           diag::err_explicit_instantiation_data_member_not_instantiated)
6713        << Prev;
6714      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6715      // FIXME: Can we provide a note showing where this was declared?
6716      return true;
6717    }
6718
6719    // C++0x [temp.explicit]p2:
6720    //   If the explicit instantiation is for a member function, a member class
6721    //   or a static data member of a class template specialization, the name of
6722    //   the class template specialization in the qualified-id for the member
6723    //   name shall be a simple-template-id.
6724    //
6725    // C++98 has the same restriction, just worded differently.
6726    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6727      Diag(D.getIdentifierLoc(),
6728           diag::ext_explicit_instantiation_without_qualified_id)
6729        << Prev << D.getCXXScopeSpec().getRange();
6730
6731    // Check the scope of this explicit instantiation.
6732    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6733
6734    // Verify that it is okay to explicitly instantiate here.
6735    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6736    assert(MSInfo && "Missing static data member specialization info?");
6737    bool HasNoEffect = false;
6738    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6739                                        MSInfo->getTemplateSpecializationKind(),
6740                                              MSInfo->getPointOfInstantiation(),
6741                                               HasNoEffect))
6742      return true;
6743    if (HasNoEffect)
6744      return (Decl*) 0;
6745
6746    // Instantiate static data member.
6747    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6748    if (TSK == TSK_ExplicitInstantiationDefinition)
6749      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6750
6751    // FIXME: Create an ExplicitInstantiation node?
6752    return (Decl*) 0;
6753  }
6754
6755  // If the declarator is a template-id, translate the parser's template
6756  // argument list into our AST format.
6757  bool HasExplicitTemplateArgs = false;
6758  TemplateArgumentListInfo TemplateArgs;
6759  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6760    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6761    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6762    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6763    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6764                                       TemplateId->NumArgs);
6765    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6766    HasExplicitTemplateArgs = true;
6767  }
6768
6769  // C++ [temp.explicit]p1:
6770  //   A [...] function [...] can be explicitly instantiated from its template.
6771  //   A member function [...] of a class template can be explicitly
6772  //  instantiated from the member definition associated with its class
6773  //  template.
6774  UnresolvedSet<8> Matches;
6775  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6776       P != PEnd; ++P) {
6777    NamedDecl *Prev = *P;
6778    if (!HasExplicitTemplateArgs) {
6779      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6780        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6781          Matches.clear();
6782
6783          Matches.addDecl(Method, P.getAccess());
6784          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6785            break;
6786        }
6787      }
6788    }
6789
6790    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6791    if (!FunTmpl)
6792      continue;
6793
6794    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6795    FunctionDecl *Specialization = 0;
6796    if (TemplateDeductionResult TDK
6797          = DeduceTemplateArguments(FunTmpl,
6798                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6799                                    R, Specialization, Info)) {
6800      // FIXME: Keep track of almost-matches?
6801      (void)TDK;
6802      continue;
6803    }
6804
6805    Matches.addDecl(Specialization, P.getAccess());
6806  }
6807
6808  // Find the most specialized function template specialization.
6809  UnresolvedSetIterator Result
6810    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6811                         D.getIdentifierLoc(),
6812                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6813                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6814                         PDiag(diag::note_explicit_instantiation_candidate));
6815
6816  if (Result == Matches.end())
6817    return true;
6818
6819  // Ignore access control bits, we don't need them for redeclaration checking.
6820  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6821
6822  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6823    Diag(D.getIdentifierLoc(),
6824         diag::err_explicit_instantiation_member_function_not_instantiated)
6825      << Specialization
6826      << (Specialization->getTemplateSpecializationKind() ==
6827          TSK_ExplicitSpecialization);
6828    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6829    return true;
6830  }
6831
6832  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6833  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6834    PrevDecl = Specialization;
6835
6836  if (PrevDecl) {
6837    bool HasNoEffect = false;
6838    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6839                                               PrevDecl,
6840                                     PrevDecl->getTemplateSpecializationKind(),
6841                                          PrevDecl->getPointOfInstantiation(),
6842                                               HasNoEffect))
6843      return true;
6844
6845    // FIXME: We may still want to build some representation of this
6846    // explicit specialization.
6847    if (HasNoEffect)
6848      return (Decl*) 0;
6849  }
6850
6851  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6852  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6853  if (Attr)
6854    ProcessDeclAttributeList(S, Specialization, Attr);
6855
6856  if (TSK == TSK_ExplicitInstantiationDefinition)
6857    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6858
6859  // C++0x [temp.explicit]p2:
6860  //   If the explicit instantiation is for a member function, a member class
6861  //   or a static data member of a class template specialization, the name of
6862  //   the class template specialization in the qualified-id for the member
6863  //   name shall be a simple-template-id.
6864  //
6865  // C++98 has the same restriction, just worded differently.
6866  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6867  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6868      D.getCXXScopeSpec().isSet() &&
6869      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6870    Diag(D.getIdentifierLoc(),
6871         diag::ext_explicit_instantiation_without_qualified_id)
6872    << Specialization << D.getCXXScopeSpec().getRange();
6873
6874  CheckExplicitInstantiationScope(*this,
6875                   FunTmpl? (NamedDecl *)FunTmpl
6876                          : Specialization->getInstantiatedFromMemberFunction(),
6877                                  D.getIdentifierLoc(),
6878                                  D.getCXXScopeSpec().isSet());
6879
6880  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6881  return (Decl*) 0;
6882}
6883
6884TypeResult
6885Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6886                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6887                        SourceLocation TagLoc, SourceLocation NameLoc) {
6888  // This has to hold, because SS is expected to be defined.
6889  assert(Name && "Expected a name in a dependent tag");
6890
6891  NestedNameSpecifier *NNS
6892    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6893  if (!NNS)
6894    return true;
6895
6896  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6897
6898  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6899    Diag(NameLoc, diag::err_dependent_tag_decl)
6900      << (TUK == TUK_Definition) << Kind << SS.getRange();
6901    return true;
6902  }
6903
6904  // Create the resulting type.
6905  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6906  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6907
6908  // Create type-source location information for this type.
6909  TypeLocBuilder TLB;
6910  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6911  TL.setElaboratedKeywordLoc(TagLoc);
6912  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6913  TL.setNameLoc(NameLoc);
6914  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6915}
6916
6917TypeResult
6918Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6919                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6920                        SourceLocation IdLoc) {
6921  if (SS.isInvalid())
6922    return true;
6923
6924  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6925    Diag(TypenameLoc,
6926         getLangOpts().CPlusPlus0x ?
6927           diag::warn_cxx98_compat_typename_outside_of_template :
6928           diag::ext_typename_outside_of_template)
6929      << FixItHint::CreateRemoval(TypenameLoc);
6930
6931  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6932  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6933                                 TypenameLoc, QualifierLoc, II, IdLoc);
6934  if (T.isNull())
6935    return true;
6936
6937  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6938  if (isa<DependentNameType>(T)) {
6939    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6940    TL.setElaboratedKeywordLoc(TypenameLoc);
6941    TL.setQualifierLoc(QualifierLoc);
6942    TL.setNameLoc(IdLoc);
6943  } else {
6944    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6945    TL.setElaboratedKeywordLoc(TypenameLoc);
6946    TL.setQualifierLoc(QualifierLoc);
6947    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6948  }
6949
6950  return CreateParsedType(T, TSI);
6951}
6952
6953TypeResult
6954Sema::ActOnTypenameType(Scope *S,
6955                        SourceLocation TypenameLoc,
6956                        const CXXScopeSpec &SS,
6957                        SourceLocation TemplateKWLoc,
6958                        TemplateTy TemplateIn,
6959                        SourceLocation TemplateNameLoc,
6960                        SourceLocation LAngleLoc,
6961                        ASTTemplateArgsPtr TemplateArgsIn,
6962                        SourceLocation RAngleLoc) {
6963  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6964    Diag(TypenameLoc,
6965         getLangOpts().CPlusPlus0x ?
6966           diag::warn_cxx98_compat_typename_outside_of_template :
6967           diag::ext_typename_outside_of_template)
6968      << FixItHint::CreateRemoval(TypenameLoc);
6969
6970  // Translate the parser's template argument list in our AST format.
6971  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6972  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6973
6974  TemplateName Template = TemplateIn.get();
6975  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6976    // Construct a dependent template specialization type.
6977    assert(DTN && "dependent template has non-dependent name?");
6978    assert(DTN->getQualifier()
6979           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6980    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6981                                                          DTN->getQualifier(),
6982                                                          DTN->getIdentifier(),
6983                                                                TemplateArgs);
6984
6985    // Create source-location information for this type.
6986    TypeLocBuilder Builder;
6987    DependentTemplateSpecializationTypeLoc SpecTL
6988    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6989    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6990    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6991    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6992    SpecTL.setTemplateNameLoc(TemplateNameLoc);
6993    SpecTL.setLAngleLoc(LAngleLoc);
6994    SpecTL.setRAngleLoc(RAngleLoc);
6995    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6996      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6997    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6998  }
6999
7000  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7001  if (T.isNull())
7002    return true;
7003
7004  // Provide source-location information for the template specialization type.
7005  TypeLocBuilder Builder;
7006  TemplateSpecializationTypeLoc SpecTL
7007    = Builder.push<TemplateSpecializationTypeLoc>(T);
7008  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7009  SpecTL.setTemplateNameLoc(TemplateNameLoc);
7010  SpecTL.setLAngleLoc(LAngleLoc);
7011  SpecTL.setRAngleLoc(RAngleLoc);
7012  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7013    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7014
7015  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7016  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7017  TL.setElaboratedKeywordLoc(TypenameLoc);
7018  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7019
7020  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7021  return CreateParsedType(T, TSI);
7022}
7023
7024
7025/// Determine whether this failed name lookup should be treated as being
7026/// disabled by a usage of std::enable_if.
7027static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7028                       SourceRange &CondRange) {
7029  // We must be looking for a ::type...
7030  if (!II.isStr("type"))
7031    return false;
7032
7033  // ... within an explicitly-written template specialization...
7034  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7035    return false;
7036  TypeLoc EnableIfTy = NNS.getTypeLoc();
7037  TemplateSpecializationTypeLoc *EnableIfTSTLoc =
7038    dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy);
7039  if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0)
7040    return false;
7041  const TemplateSpecializationType *EnableIfTST =
7042    cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr());
7043
7044  // ... which names a complete class template declaration...
7045  const TemplateDecl *EnableIfDecl =
7046    EnableIfTST->getTemplateName().getAsTemplateDecl();
7047  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7048    return false;
7049
7050  // ... called "enable_if".
7051  const IdentifierInfo *EnableIfII =
7052    EnableIfDecl->getDeclName().getAsIdentifierInfo();
7053  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7054    return false;
7055
7056  // Assume the first template argument is the condition.
7057  CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange();
7058  return true;
7059}
7060
7061/// \brief Build the type that describes a C++ typename specifier,
7062/// e.g., "typename T::type".
7063QualType
7064Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7065                        SourceLocation KeywordLoc,
7066                        NestedNameSpecifierLoc QualifierLoc,
7067                        const IdentifierInfo &II,
7068                        SourceLocation IILoc) {
7069  CXXScopeSpec SS;
7070  SS.Adopt(QualifierLoc);
7071
7072  DeclContext *Ctx = computeDeclContext(SS);
7073  if (!Ctx) {
7074    // If the nested-name-specifier is dependent and couldn't be
7075    // resolved to a type, build a typename type.
7076    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7077    return Context.getDependentNameType(Keyword,
7078                                        QualifierLoc.getNestedNameSpecifier(),
7079                                        &II);
7080  }
7081
7082  // If the nested-name-specifier refers to the current instantiation,
7083  // the "typename" keyword itself is superfluous. In C++03, the
7084  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7085  // allows such extraneous "typename" keywords, and we retroactively
7086  // apply this DR to C++03 code with only a warning. In any case we continue.
7087
7088  if (RequireCompleteDeclContext(SS, Ctx))
7089    return QualType();
7090
7091  DeclarationName Name(&II);
7092  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7093  LookupQualifiedName(Result, Ctx);
7094  unsigned DiagID = 0;
7095  Decl *Referenced = 0;
7096  switch (Result.getResultKind()) {
7097  case LookupResult::NotFound: {
7098    // If we're looking up 'type' within a template named 'enable_if', produce
7099    // a more specific diagnostic.
7100    SourceRange CondRange;
7101    if (isEnableIf(QualifierLoc, II, CondRange)) {
7102      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7103        << Ctx << CondRange;
7104      return QualType();
7105    }
7106
7107    DiagID = diag::err_typename_nested_not_found;
7108    break;
7109  }
7110
7111  case LookupResult::FoundUnresolvedValue: {
7112    // We found a using declaration that is a value. Most likely, the using
7113    // declaration itself is meant to have the 'typename' keyword.
7114    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7115                          IILoc);
7116    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7117      << Name << Ctx << FullRange;
7118    if (UnresolvedUsingValueDecl *Using
7119          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7120      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7121      Diag(Loc, diag::note_using_value_decl_missing_typename)
7122        << FixItHint::CreateInsertion(Loc, "typename ");
7123    }
7124  }
7125  // Fall through to create a dependent typename type, from which we can recover
7126  // better.
7127
7128  case LookupResult::NotFoundInCurrentInstantiation:
7129    // Okay, it's a member of an unknown instantiation.
7130    return Context.getDependentNameType(Keyword,
7131                                        QualifierLoc.getNestedNameSpecifier(),
7132                                        &II);
7133
7134  case LookupResult::Found:
7135    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7136      // We found a type. Build an ElaboratedType, since the
7137      // typename-specifier was just sugar.
7138      return Context.getElaboratedType(ETK_Typename,
7139                                       QualifierLoc.getNestedNameSpecifier(),
7140                                       Context.getTypeDeclType(Type));
7141    }
7142
7143    DiagID = diag::err_typename_nested_not_type;
7144    Referenced = Result.getFoundDecl();
7145    break;
7146
7147  case LookupResult::FoundOverloaded:
7148    DiagID = diag::err_typename_nested_not_type;
7149    Referenced = *Result.begin();
7150    break;
7151
7152  case LookupResult::Ambiguous:
7153    return QualType();
7154  }
7155
7156  // If we get here, it's because name lookup did not find a
7157  // type. Emit an appropriate diagnostic and return an error.
7158  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7159                        IILoc);
7160  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7161  if (Referenced)
7162    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7163      << Name;
7164  return QualType();
7165}
7166
7167namespace {
7168  // See Sema::RebuildTypeInCurrentInstantiation
7169  class CurrentInstantiationRebuilder
7170    : public TreeTransform<CurrentInstantiationRebuilder> {
7171    SourceLocation Loc;
7172    DeclarationName Entity;
7173
7174  public:
7175    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7176
7177    CurrentInstantiationRebuilder(Sema &SemaRef,
7178                                  SourceLocation Loc,
7179                                  DeclarationName Entity)
7180    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7181      Loc(Loc), Entity(Entity) { }
7182
7183    /// \brief Determine whether the given type \p T has already been
7184    /// transformed.
7185    ///
7186    /// For the purposes of type reconstruction, a type has already been
7187    /// transformed if it is NULL or if it is not dependent.
7188    bool AlreadyTransformed(QualType T) {
7189      return T.isNull() || !T->isDependentType();
7190    }
7191
7192    /// \brief Returns the location of the entity whose type is being
7193    /// rebuilt.
7194    SourceLocation getBaseLocation() { return Loc; }
7195
7196    /// \brief Returns the name of the entity whose type is being rebuilt.
7197    DeclarationName getBaseEntity() { return Entity; }
7198
7199    /// \brief Sets the "base" location and entity when that
7200    /// information is known based on another transformation.
7201    void setBase(SourceLocation Loc, DeclarationName Entity) {
7202      this->Loc = Loc;
7203      this->Entity = Entity;
7204    }
7205
7206    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7207      // Lambdas never need to be transformed.
7208      return E;
7209    }
7210  };
7211}
7212
7213/// \brief Rebuilds a type within the context of the current instantiation.
7214///
7215/// The type \p T is part of the type of an out-of-line member definition of
7216/// a class template (or class template partial specialization) that was parsed
7217/// and constructed before we entered the scope of the class template (or
7218/// partial specialization thereof). This routine will rebuild that type now
7219/// that we have entered the declarator's scope, which may produce different
7220/// canonical types, e.g.,
7221///
7222/// \code
7223/// template<typename T>
7224/// struct X {
7225///   typedef T* pointer;
7226///   pointer data();
7227/// };
7228///
7229/// template<typename T>
7230/// typename X<T>::pointer X<T>::data() { ... }
7231/// \endcode
7232///
7233/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7234/// since we do not know that we can look into X<T> when we parsed the type.
7235/// This function will rebuild the type, performing the lookup of "pointer"
7236/// in X<T> and returning an ElaboratedType whose canonical type is the same
7237/// as the canonical type of T*, allowing the return types of the out-of-line
7238/// definition and the declaration to match.
7239TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7240                                                        SourceLocation Loc,
7241                                                        DeclarationName Name) {
7242  if (!T || !T->getType()->isDependentType())
7243    return T;
7244
7245  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7246  return Rebuilder.TransformType(T);
7247}
7248
7249ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7250  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7251                                          DeclarationName());
7252  return Rebuilder.TransformExpr(E);
7253}
7254
7255bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7256  if (SS.isInvalid())
7257    return true;
7258
7259  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7260  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7261                                          DeclarationName());
7262  NestedNameSpecifierLoc Rebuilt
7263    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7264  if (!Rebuilt)
7265    return true;
7266
7267  SS.Adopt(Rebuilt);
7268  return false;
7269}
7270
7271/// \brief Rebuild the template parameters now that we know we're in a current
7272/// instantiation.
7273bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7274                                               TemplateParameterList *Params) {
7275  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7276    Decl *Param = Params->getParam(I);
7277
7278    // There is nothing to rebuild in a type parameter.
7279    if (isa<TemplateTypeParmDecl>(Param))
7280      continue;
7281
7282    // Rebuild the template parameter list of a template template parameter.
7283    if (TemplateTemplateParmDecl *TTP
7284        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7285      if (RebuildTemplateParamsInCurrentInstantiation(
7286            TTP->getTemplateParameters()))
7287        return true;
7288
7289      continue;
7290    }
7291
7292    // Rebuild the type of a non-type template parameter.
7293    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7294    TypeSourceInfo *NewTSI
7295      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7296                                          NTTP->getLocation(),
7297                                          NTTP->getDeclName());
7298    if (!NewTSI)
7299      return true;
7300
7301    if (NewTSI != NTTP->getTypeSourceInfo()) {
7302      NTTP->setTypeSourceInfo(NewTSI);
7303      NTTP->setType(NewTSI->getType());
7304    }
7305  }
7306
7307  return false;
7308}
7309
7310/// \brief Produces a formatted string that describes the binding of
7311/// template parameters to template arguments.
7312std::string
7313Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7314                                      const TemplateArgumentList &Args) {
7315  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7316}
7317
7318std::string
7319Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7320                                      const TemplateArgument *Args,
7321                                      unsigned NumArgs) {
7322  SmallString<128> Str;
7323  llvm::raw_svector_ostream Out(Str);
7324
7325  if (!Params || Params->size() == 0 || NumArgs == 0)
7326    return std::string();
7327
7328  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7329    if (I >= NumArgs)
7330      break;
7331
7332    if (I == 0)
7333      Out << "[with ";
7334    else
7335      Out << ", ";
7336
7337    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7338      Out << Id->getName();
7339    } else {
7340      Out << '$' << I;
7341    }
7342
7343    Out << " = ";
7344    Args[I].print(getPrintingPolicy(), Out);
7345  }
7346
7347  Out << ']';
7348  return Out.str();
7349}
7350
7351void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7352  if (!FD)
7353    return;
7354  FD->setLateTemplateParsed(Flag);
7355}
7356
7357bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7358  DeclContext *DC = CurContext;
7359
7360  while (DC) {
7361    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7362      const FunctionDecl *FD = RD->isLocalClass();
7363      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7364    } else if (DC->isTranslationUnit() || DC->isNamespace())
7365      return false;
7366
7367    DC = DC->getParent();
7368  }
7369  return false;
7370}
7371