SemaTemplate.cpp revision 6b2becfc434b0bdced8560802c4d0e03148c61b8
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "TreeTransform.h" 14#include "clang/AST/ASTContext.h" 15#include "clang/AST/Expr.h" 16#include "clang/AST/ExprCXX.h" 17#include "clang/AST/DeclTemplate.h" 18#include "clang/Parse/DeclSpec.h" 19#include "clang/Basic/LangOptions.h" 20#include "llvm/Support/Compiler.h" 21 22using namespace clang; 23 24/// \brief Determine whether the declaration found is acceptable as the name 25/// of a template and, if so, return that template declaration. Otherwise, 26/// returns NULL. 27static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 28 if (!D) 29 return 0; 30 31 if (isa<TemplateDecl>(D)) 32 return D; 33 34 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 35 // C++ [temp.local]p1: 36 // Like normal (non-template) classes, class templates have an 37 // injected-class-name (Clause 9). The injected-class-name 38 // can be used with or without a template-argument-list. When 39 // it is used without a template-argument-list, it is 40 // equivalent to the injected-class-name followed by the 41 // template-parameters of the class template enclosed in 42 // <>. When it is used with a template-argument-list, it 43 // refers to the specified class template specialization, 44 // which could be the current specialization or another 45 // specialization. 46 if (Record->isInjectedClassName()) { 47 Record = cast<CXXRecordDecl>(Record->getCanonicalDecl()); 48 if (Record->getDescribedClassTemplate()) 49 return Record->getDescribedClassTemplate(); 50 51 if (ClassTemplateSpecializationDecl *Spec 52 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 53 return Spec->getSpecializedTemplate(); 54 } 55 56 return 0; 57 } 58 59 OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D); 60 if (!Ovl) 61 return 0; 62 63 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(), 64 FEnd = Ovl->function_end(); 65 F != FEnd; ++F) { 66 if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) { 67 // We've found a function template. Determine whether there are 68 // any other function templates we need to bundle together in an 69 // OverloadedFunctionDecl 70 for (++F; F != FEnd; ++F) { 71 if (isa<FunctionTemplateDecl>(*F)) 72 break; 73 } 74 75 if (F != FEnd) { 76 // Build an overloaded function decl containing only the 77 // function templates in Ovl. 78 OverloadedFunctionDecl *OvlTemplate 79 = OverloadedFunctionDecl::Create(Context, 80 Ovl->getDeclContext(), 81 Ovl->getDeclName()); 82 OvlTemplate->addOverload(FuncTmpl); 83 OvlTemplate->addOverload(*F); 84 for (++F; F != FEnd; ++F) { 85 if (isa<FunctionTemplateDecl>(*F)) 86 OvlTemplate->addOverload(*F); 87 } 88 89 return OvlTemplate; 90 } 91 92 return FuncTmpl; 93 } 94 } 95 96 return 0; 97} 98 99TemplateNameKind Sema::isTemplateName(Scope *S, 100 const IdentifierInfo &II, 101 SourceLocation IdLoc, 102 const CXXScopeSpec *SS, 103 TypeTy *ObjectTypePtr, 104 bool EnteringContext, 105 TemplateTy &TemplateResult) { 106 // Determine where to perform name lookup 107 DeclContext *LookupCtx = 0; 108 bool isDependent = false; 109 if (ObjectTypePtr) { 110 // This nested-name-specifier occurs in a member access expression, e.g., 111 // x->B::f, and we are looking into the type of the object. 112 assert((!SS || !SS->isSet()) && 113 "ObjectType and scope specifier cannot coexist"); 114 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 115 LookupCtx = computeDeclContext(ObjectType); 116 isDependent = ObjectType->isDependentType(); 117 } else if (SS && SS->isSet()) { 118 // This nested-name-specifier occurs after another nested-name-specifier, 119 // so long into the context associated with the prior nested-name-specifier. 120 121 LookupCtx = computeDeclContext(*SS, EnteringContext); 122 isDependent = isDependentScopeSpecifier(*SS); 123 } 124 125 LookupResult Found; 126 bool ObjectTypeSearchedInScope = false; 127 if (LookupCtx) { 128 // Perform "qualified" name lookup into the declaration context we 129 // computed, which is either the type of the base of a member access 130 // expression or the declaration context associated with a prior 131 // nested-name-specifier. 132 133 // The declaration context must be complete. 134 if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS)) 135 return TNK_Non_template; 136 137 Found = LookupQualifiedName(LookupCtx, &II, LookupOrdinaryName); 138 139 if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) { 140 // C++ [basic.lookup.classref]p1: 141 // In a class member access expression (5.2.5), if the . or -> token is 142 // immediately followed by an identifier followed by a <, the 143 // identifier must be looked up to determine whether the < is the 144 // beginning of a template argument list (14.2) or a less-than operator. 145 // The identifier is first looked up in the class of the object 146 // expression. If the identifier is not found, it is then looked up in 147 // the context of the entire postfix-expression and shall name a class 148 // or function template. 149 // 150 // FIXME: When we're instantiating a template, do we actually have to 151 // look in the scope of the template? Seems fishy... 152 Found = LookupName(S, &II, LookupOrdinaryName); 153 ObjectTypeSearchedInScope = true; 154 } 155 } else if (isDependent) { 156 // We cannot look into a dependent object type or 157 return TNK_Non_template; 158 } else { 159 // Perform unqualified name lookup in the current scope. 160 Found = LookupName(S, &II, LookupOrdinaryName); 161 } 162 163 // FIXME: Cope with ambiguous name-lookup results. 164 assert(!Found.isAmbiguous() && 165 "Cannot handle template name-lookup ambiguities"); 166 167 NamedDecl *Template = isAcceptableTemplateName(Context, Found); 168 if (!Template) 169 return TNK_Non_template; 170 171 if (ObjectTypePtr && !ObjectTypeSearchedInScope) { 172 // C++ [basic.lookup.classref]p1: 173 // [...] If the lookup in the class of the object expression finds a 174 // template, the name is also looked up in the context of the entire 175 // postfix-expression and [...] 176 // 177 LookupResult FoundOuter = LookupName(S, &II, LookupOrdinaryName); 178 // FIXME: Handle ambiguities in this lookup better 179 NamedDecl *OuterTemplate = isAcceptableTemplateName(Context, FoundOuter); 180 181 if (!OuterTemplate) { 182 // - if the name is not found, the name found in the class of the 183 // object expression is used, otherwise 184 } else if (!isa<ClassTemplateDecl>(OuterTemplate)) { 185 // - if the name is found in the context of the entire 186 // postfix-expression and does not name a class template, the name 187 // found in the class of the object expression is used, otherwise 188 } else { 189 // - if the name found is a class template, it must refer to the same 190 // entity as the one found in the class of the object expression, 191 // otherwise the program is ill-formed. 192 if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) { 193 Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous) 194 << &II; 195 Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type) 196 << QualType::getFromOpaquePtr(ObjectTypePtr); 197 Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope); 198 199 // Recover by taking the template that we found in the object 200 // expression's type. 201 } 202 } 203 } 204 205 if (SS && SS->isSet() && !SS->isInvalid()) { 206 NestedNameSpecifier *Qualifier 207 = static_cast<NestedNameSpecifier *>(SS->getScopeRep()); 208 if (OverloadedFunctionDecl *Ovl 209 = dyn_cast<OverloadedFunctionDecl>(Template)) 210 TemplateResult 211 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 212 Ovl)); 213 else 214 TemplateResult 215 = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false, 216 cast<TemplateDecl>(Template))); 217 } else if (OverloadedFunctionDecl *Ovl 218 = dyn_cast<OverloadedFunctionDecl>(Template)) { 219 TemplateResult = TemplateTy::make(TemplateName(Ovl)); 220 } else { 221 TemplateResult = TemplateTy::make( 222 TemplateName(cast<TemplateDecl>(Template))); 223 } 224 225 if (isa<ClassTemplateDecl>(Template) || 226 isa<TemplateTemplateParmDecl>(Template)) 227 return TNK_Type_template; 228 229 assert((isa<FunctionTemplateDecl>(Template) || 230 isa<OverloadedFunctionDecl>(Template)) && 231 "Unhandled template kind in Sema::isTemplateName"); 232 return TNK_Function_template; 233} 234 235/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 236/// that the template parameter 'PrevDecl' is being shadowed by a new 237/// declaration at location Loc. Returns true to indicate that this is 238/// an error, and false otherwise. 239bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 240 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 241 242 // Microsoft Visual C++ permits template parameters to be shadowed. 243 if (getLangOptions().Microsoft) 244 return false; 245 246 // C++ [temp.local]p4: 247 // A template-parameter shall not be redeclared within its 248 // scope (including nested scopes). 249 Diag(Loc, diag::err_template_param_shadow) 250 << cast<NamedDecl>(PrevDecl)->getDeclName(); 251 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 252 return true; 253} 254 255/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 256/// the parameter D to reference the templated declaration and return a pointer 257/// to the template declaration. Otherwise, do nothing to D and return null. 258TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 259 if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) { 260 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 261 return Temp; 262 } 263 return 0; 264} 265 266/// ActOnTypeParameter - Called when a C++ template type parameter 267/// (e.g., "typename T") has been parsed. Typename specifies whether 268/// the keyword "typename" was used to declare the type parameter 269/// (otherwise, "class" was used), and KeyLoc is the location of the 270/// "class" or "typename" keyword. ParamName is the name of the 271/// parameter (NULL indicates an unnamed template parameter) and 272/// ParamName is the location of the parameter name (if any). 273/// If the type parameter has a default argument, it will be added 274/// later via ActOnTypeParameterDefault. 275Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 276 SourceLocation EllipsisLoc, 277 SourceLocation KeyLoc, 278 IdentifierInfo *ParamName, 279 SourceLocation ParamNameLoc, 280 unsigned Depth, unsigned Position) { 281 assert(S->isTemplateParamScope() && 282 "Template type parameter not in template parameter scope!"); 283 bool Invalid = false; 284 285 if (ParamName) { 286 NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName); 287 if (PrevDecl && PrevDecl->isTemplateParameter()) 288 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 289 PrevDecl); 290 } 291 292 SourceLocation Loc = ParamNameLoc; 293 if (!ParamName) 294 Loc = KeyLoc; 295 296 TemplateTypeParmDecl *Param 297 = TemplateTypeParmDecl::Create(Context, CurContext, Loc, 298 Depth, Position, ParamName, Typename, 299 Ellipsis); 300 if (Invalid) 301 Param->setInvalidDecl(); 302 303 if (ParamName) { 304 // Add the template parameter into the current scope. 305 S->AddDecl(DeclPtrTy::make(Param)); 306 IdResolver.AddDecl(Param); 307 } 308 309 return DeclPtrTy::make(Param); 310} 311 312/// ActOnTypeParameterDefault - Adds a default argument (the type 313/// Default) to the given template type parameter (TypeParam). 314void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 315 SourceLocation EqualLoc, 316 SourceLocation DefaultLoc, 317 TypeTy *DefaultT) { 318 TemplateTypeParmDecl *Parm 319 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 320 // FIXME: Preserve type source info. 321 QualType Default = GetTypeFromParser(DefaultT); 322 323 // C++0x [temp.param]p9: 324 // A default template-argument may be specified for any kind of 325 // template-parameter that is not a template parameter pack. 326 if (Parm->isParameterPack()) { 327 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 328 return; 329 } 330 331 // C++ [temp.param]p14: 332 // A template-parameter shall not be used in its own default argument. 333 // FIXME: Implement this check! Needs a recursive walk over the types. 334 335 // Check the template argument itself. 336 if (CheckTemplateArgument(Parm, Default, DefaultLoc)) { 337 Parm->setInvalidDecl(); 338 return; 339 } 340 341 Parm->setDefaultArgument(Default, DefaultLoc, false); 342} 343 344/// \brief Check that the type of a non-type template parameter is 345/// well-formed. 346/// 347/// \returns the (possibly-promoted) parameter type if valid; 348/// otherwise, produces a diagnostic and returns a NULL type. 349QualType 350Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 351 // C++ [temp.param]p4: 352 // 353 // A non-type template-parameter shall have one of the following 354 // (optionally cv-qualified) types: 355 // 356 // -- integral or enumeration type, 357 if (T->isIntegralType() || T->isEnumeralType() || 358 // -- pointer to object or pointer to function, 359 (T->isPointerType() && 360 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 361 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 362 // -- reference to object or reference to function, 363 T->isReferenceType() || 364 // -- pointer to member. 365 T->isMemberPointerType() || 366 // If T is a dependent type, we can't do the check now, so we 367 // assume that it is well-formed. 368 T->isDependentType()) 369 return T; 370 // C++ [temp.param]p8: 371 // 372 // A non-type template-parameter of type "array of T" or 373 // "function returning T" is adjusted to be of type "pointer to 374 // T" or "pointer to function returning T", respectively. 375 else if (T->isArrayType()) 376 // FIXME: Keep the type prior to promotion? 377 return Context.getArrayDecayedType(T); 378 else if (T->isFunctionType()) 379 // FIXME: Keep the type prior to promotion? 380 return Context.getPointerType(T); 381 382 Diag(Loc, diag::err_template_nontype_parm_bad_type) 383 << T; 384 385 return QualType(); 386} 387 388/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 389/// template parameter (e.g., "int Size" in "template<int Size> 390/// class Array") has been parsed. S is the current scope and D is 391/// the parsed declarator. 392Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 393 unsigned Depth, 394 unsigned Position) { 395 DeclaratorInfo *DInfo = 0; 396 QualType T = GetTypeForDeclarator(D, S, &DInfo); 397 398 assert(S->isTemplateParamScope() && 399 "Non-type template parameter not in template parameter scope!"); 400 bool Invalid = false; 401 402 IdentifierInfo *ParamName = D.getIdentifier(); 403 if (ParamName) { 404 NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName); 405 if (PrevDecl && PrevDecl->isTemplateParameter()) 406 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 407 PrevDecl); 408 } 409 410 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 411 if (T.isNull()) { 412 T = Context.IntTy; // Recover with an 'int' type. 413 Invalid = true; 414 } 415 416 NonTypeTemplateParmDecl *Param 417 = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(), 418 Depth, Position, ParamName, T, DInfo); 419 if (Invalid) 420 Param->setInvalidDecl(); 421 422 if (D.getIdentifier()) { 423 // Add the template parameter into the current scope. 424 S->AddDecl(DeclPtrTy::make(Param)); 425 IdResolver.AddDecl(Param); 426 } 427 return DeclPtrTy::make(Param); 428} 429 430/// \brief Adds a default argument to the given non-type template 431/// parameter. 432void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 433 SourceLocation EqualLoc, 434 ExprArg DefaultE) { 435 NonTypeTemplateParmDecl *TemplateParm 436 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 437 Expr *Default = static_cast<Expr *>(DefaultE.get()); 438 439 // C++ [temp.param]p14: 440 // A template-parameter shall not be used in its own default argument. 441 // FIXME: Implement this check! Needs a recursive walk over the types. 442 443 // Check the well-formedness of the default template argument. 444 TemplateArgument Converted; 445 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 446 Converted)) { 447 TemplateParm->setInvalidDecl(); 448 return; 449 } 450 451 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 452} 453 454 455/// ActOnTemplateTemplateParameter - Called when a C++ template template 456/// parameter (e.g. T in template <template <typename> class T> class array) 457/// has been parsed. S is the current scope. 458Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 459 SourceLocation TmpLoc, 460 TemplateParamsTy *Params, 461 IdentifierInfo *Name, 462 SourceLocation NameLoc, 463 unsigned Depth, 464 unsigned Position) 465{ 466 assert(S->isTemplateParamScope() && 467 "Template template parameter not in template parameter scope!"); 468 469 // Construct the parameter object. 470 TemplateTemplateParmDecl *Param = 471 TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth, 472 Position, Name, 473 (TemplateParameterList*)Params); 474 475 // Make sure the parameter is valid. 476 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 477 // do anything yet. However, if the template parameter list or (eventual) 478 // default value is ever invalidated, that will propagate here. 479 bool Invalid = false; 480 if (Invalid) { 481 Param->setInvalidDecl(); 482 } 483 484 // If the tt-param has a name, then link the identifier into the scope 485 // and lookup mechanisms. 486 if (Name) { 487 S->AddDecl(DeclPtrTy::make(Param)); 488 IdResolver.AddDecl(Param); 489 } 490 491 return DeclPtrTy::make(Param); 492} 493 494/// \brief Adds a default argument to the given template template 495/// parameter. 496void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 497 SourceLocation EqualLoc, 498 ExprArg DefaultE) { 499 TemplateTemplateParmDecl *TemplateParm 500 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 501 502 // Since a template-template parameter's default argument is an 503 // id-expression, it must be a DeclRefExpr. 504 DeclRefExpr *Default 505 = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get())); 506 507 // C++ [temp.param]p14: 508 // A template-parameter shall not be used in its own default argument. 509 // FIXME: Implement this check! Needs a recursive walk over the types. 510 511 // Check the well-formedness of the template argument. 512 if (!isa<TemplateDecl>(Default->getDecl())) { 513 Diag(Default->getSourceRange().getBegin(), 514 diag::err_template_arg_must_be_template) 515 << Default->getSourceRange(); 516 TemplateParm->setInvalidDecl(); 517 return; 518 } 519 if (CheckTemplateArgument(TemplateParm, Default)) { 520 TemplateParm->setInvalidDecl(); 521 return; 522 } 523 524 DefaultE.release(); 525 TemplateParm->setDefaultArgument(Default); 526} 527 528/// ActOnTemplateParameterList - Builds a TemplateParameterList that 529/// contains the template parameters in Params/NumParams. 530Sema::TemplateParamsTy * 531Sema::ActOnTemplateParameterList(unsigned Depth, 532 SourceLocation ExportLoc, 533 SourceLocation TemplateLoc, 534 SourceLocation LAngleLoc, 535 DeclPtrTy *Params, unsigned NumParams, 536 SourceLocation RAngleLoc) { 537 if (ExportLoc.isValid()) 538 Diag(ExportLoc, diag::note_template_export_unsupported); 539 540 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 541 (Decl**)Params, NumParams, RAngleLoc); 542} 543 544Sema::DeclResult 545Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 546 SourceLocation KWLoc, const CXXScopeSpec &SS, 547 IdentifierInfo *Name, SourceLocation NameLoc, 548 AttributeList *Attr, 549 TemplateParameterList *TemplateParams, 550 AccessSpecifier AS) { 551 assert(TemplateParams && TemplateParams->size() > 0 && 552 "No template parameters"); 553 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 554 bool Invalid = false; 555 556 // Check that we can declare a template here. 557 if (CheckTemplateDeclScope(S, TemplateParams)) 558 return true; 559 560 TagDecl::TagKind Kind; 561 switch (TagSpec) { 562 default: assert(0 && "Unknown tag type!"); 563 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 564 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 565 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 566 } 567 568 // There is no such thing as an unnamed class template. 569 if (!Name) { 570 Diag(KWLoc, diag::err_template_unnamed_class); 571 return true; 572 } 573 574 // Find any previous declaration with this name. 575 DeclContext *SemanticContext; 576 LookupResult Previous; 577 if (SS.isNotEmpty() && !SS.isInvalid()) { 578 SemanticContext = computeDeclContext(SS, true); 579 if (!SemanticContext) { 580 // FIXME: Produce a reasonable diagnostic here 581 return true; 582 } 583 584 Previous = LookupQualifiedName(SemanticContext, Name, LookupOrdinaryName, 585 true); 586 } else { 587 SemanticContext = CurContext; 588 Previous = LookupName(S, Name, LookupOrdinaryName, true); 589 } 590 591 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 592 NamedDecl *PrevDecl = 0; 593 if (Previous.begin() != Previous.end()) 594 PrevDecl = *Previous.begin(); 595 596 if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 597 PrevDecl = 0; 598 599 // If there is a previous declaration with the same name, check 600 // whether this is a valid redeclaration. 601 ClassTemplateDecl *PrevClassTemplate 602 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 603 if (PrevClassTemplate) { 604 // Ensure that the template parameter lists are compatible. 605 if (!TemplateParameterListsAreEqual(TemplateParams, 606 PrevClassTemplate->getTemplateParameters(), 607 /*Complain=*/true)) 608 return true; 609 610 // C++ [temp.class]p4: 611 // In a redeclaration, partial specialization, explicit 612 // specialization or explicit instantiation of a class template, 613 // the class-key shall agree in kind with the original class 614 // template declaration (7.1.5.3). 615 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 616 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 617 Diag(KWLoc, diag::err_use_with_wrong_tag) 618 << Name 619 << CodeModificationHint::CreateReplacement(KWLoc, 620 PrevRecordDecl->getKindName()); 621 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 622 Kind = PrevRecordDecl->getTagKind(); 623 } 624 625 // Check for redefinition of this class template. 626 if (TUK == TUK_Definition) { 627 if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) { 628 Diag(NameLoc, diag::err_redefinition) << Name; 629 Diag(Def->getLocation(), diag::note_previous_definition); 630 // FIXME: Would it make sense to try to "forget" the previous 631 // definition, as part of error recovery? 632 return true; 633 } 634 } 635 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 636 // Maybe we will complain about the shadowed template parameter. 637 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 638 // Just pretend that we didn't see the previous declaration. 639 PrevDecl = 0; 640 } else if (PrevDecl) { 641 // C++ [temp]p5: 642 // A class template shall not have the same name as any other 643 // template, class, function, object, enumeration, enumerator, 644 // namespace, or type in the same scope (3.3), except as specified 645 // in (14.5.4). 646 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 647 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 648 return true; 649 } 650 651 // Check the template parameter list of this declaration, possibly 652 // merging in the template parameter list from the previous class 653 // template declaration. 654 if (CheckTemplateParameterList(TemplateParams, 655 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0)) 656 Invalid = true; 657 658 // FIXME: If we had a scope specifier, we better have a previous template 659 // declaration! 660 661 CXXRecordDecl *NewClass = 662 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 663 PrevClassTemplate? 664 PrevClassTemplate->getTemplatedDecl() : 0, 665 /*DelayTypeCreation=*/true); 666 667 ClassTemplateDecl *NewTemplate 668 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 669 DeclarationName(Name), TemplateParams, 670 NewClass, PrevClassTemplate); 671 NewClass->setDescribedClassTemplate(NewTemplate); 672 673 // Build the type for the class template declaration now. 674 QualType T = 675 Context.getTypeDeclType(NewClass, 676 PrevClassTemplate? 677 PrevClassTemplate->getTemplatedDecl() : 0); 678 assert(T->isDependentType() && "Class template type is not dependent?"); 679 (void)T; 680 681 // Set the access specifier. 682 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 683 684 // Set the lexical context of these templates 685 NewClass->setLexicalDeclContext(CurContext); 686 NewTemplate->setLexicalDeclContext(CurContext); 687 688 if (TUK == TUK_Definition) 689 NewClass->startDefinition(); 690 691 if (Attr) 692 ProcessDeclAttributeList(S, NewClass, Attr); 693 694 PushOnScopeChains(NewTemplate, S); 695 696 if (Invalid) { 697 NewTemplate->setInvalidDecl(); 698 NewClass->setInvalidDecl(); 699 } 700 return DeclPtrTy::make(NewTemplate); 701} 702 703/// \brief Checks the validity of a template parameter list, possibly 704/// considering the template parameter list from a previous 705/// declaration. 706/// 707/// If an "old" template parameter list is provided, it must be 708/// equivalent (per TemplateParameterListsAreEqual) to the "new" 709/// template parameter list. 710/// 711/// \param NewParams Template parameter list for a new template 712/// declaration. This template parameter list will be updated with any 713/// default arguments that are carried through from the previous 714/// template parameter list. 715/// 716/// \param OldParams If provided, template parameter list from a 717/// previous declaration of the same template. Default template 718/// arguments will be merged from the old template parameter list to 719/// the new template parameter list. 720/// 721/// \returns true if an error occurred, false otherwise. 722bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 723 TemplateParameterList *OldParams) { 724 bool Invalid = false; 725 726 // C++ [temp.param]p10: 727 // The set of default template-arguments available for use with a 728 // template declaration or definition is obtained by merging the 729 // default arguments from the definition (if in scope) and all 730 // declarations in scope in the same way default function 731 // arguments are (8.3.6). 732 bool SawDefaultArgument = false; 733 SourceLocation PreviousDefaultArgLoc; 734 735 bool SawParameterPack = false; 736 SourceLocation ParameterPackLoc; 737 738 // Dummy initialization to avoid warnings. 739 TemplateParameterList::iterator OldParam = NewParams->end(); 740 if (OldParams) 741 OldParam = OldParams->begin(); 742 743 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 744 NewParamEnd = NewParams->end(); 745 NewParam != NewParamEnd; ++NewParam) { 746 // Variables used to diagnose redundant default arguments 747 bool RedundantDefaultArg = false; 748 SourceLocation OldDefaultLoc; 749 SourceLocation NewDefaultLoc; 750 751 // Variables used to diagnose missing default arguments 752 bool MissingDefaultArg = false; 753 754 // C++0x [temp.param]p11: 755 // If a template parameter of a class template is a template parameter pack, 756 // it must be the last template parameter. 757 if (SawParameterPack) { 758 Diag(ParameterPackLoc, 759 diag::err_template_param_pack_must_be_last_template_parameter); 760 Invalid = true; 761 } 762 763 // Merge default arguments for template type parameters. 764 if (TemplateTypeParmDecl *NewTypeParm 765 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 766 TemplateTypeParmDecl *OldTypeParm 767 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 768 769 if (NewTypeParm->isParameterPack()) { 770 assert(!NewTypeParm->hasDefaultArgument() && 771 "Parameter packs can't have a default argument!"); 772 SawParameterPack = true; 773 ParameterPackLoc = NewTypeParm->getLocation(); 774 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 775 NewTypeParm->hasDefaultArgument()) { 776 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 777 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 778 SawDefaultArgument = true; 779 RedundantDefaultArg = true; 780 PreviousDefaultArgLoc = NewDefaultLoc; 781 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 782 // Merge the default argument from the old declaration to the 783 // new declaration. 784 SawDefaultArgument = true; 785 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(), 786 OldTypeParm->getDefaultArgumentLoc(), 787 true); 788 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 789 } else if (NewTypeParm->hasDefaultArgument()) { 790 SawDefaultArgument = true; 791 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 792 } else if (SawDefaultArgument) 793 MissingDefaultArg = true; 794 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 795 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 796 // Merge default arguments for non-type template parameters 797 NonTypeTemplateParmDecl *OldNonTypeParm 798 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 799 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 800 NewNonTypeParm->hasDefaultArgument()) { 801 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 802 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 803 SawDefaultArgument = true; 804 RedundantDefaultArg = true; 805 PreviousDefaultArgLoc = NewDefaultLoc; 806 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 807 // Merge the default argument from the old declaration to the 808 // new declaration. 809 SawDefaultArgument = true; 810 // FIXME: We need to create a new kind of "default argument" 811 // expression that points to a previous template template 812 // parameter. 813 NewNonTypeParm->setDefaultArgument( 814 OldNonTypeParm->getDefaultArgument()); 815 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 816 } else if (NewNonTypeParm->hasDefaultArgument()) { 817 SawDefaultArgument = true; 818 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 819 } else if (SawDefaultArgument) 820 MissingDefaultArg = true; 821 } else { 822 // Merge default arguments for template template parameters 823 TemplateTemplateParmDecl *NewTemplateParm 824 = cast<TemplateTemplateParmDecl>(*NewParam); 825 TemplateTemplateParmDecl *OldTemplateParm 826 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 827 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 828 NewTemplateParm->hasDefaultArgument()) { 829 OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc(); 830 NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc(); 831 SawDefaultArgument = true; 832 RedundantDefaultArg = true; 833 PreviousDefaultArgLoc = NewDefaultLoc; 834 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 835 // Merge the default argument from the old declaration to the 836 // new declaration. 837 SawDefaultArgument = true; 838 // FIXME: We need to create a new kind of "default argument" expression 839 // that points to a previous template template parameter. 840 NewTemplateParm->setDefaultArgument( 841 OldTemplateParm->getDefaultArgument()); 842 PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc(); 843 } else if (NewTemplateParm->hasDefaultArgument()) { 844 SawDefaultArgument = true; 845 PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc(); 846 } else if (SawDefaultArgument) 847 MissingDefaultArg = true; 848 } 849 850 if (RedundantDefaultArg) { 851 // C++ [temp.param]p12: 852 // A template-parameter shall not be given default arguments 853 // by two different declarations in the same scope. 854 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 855 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 856 Invalid = true; 857 } else if (MissingDefaultArg) { 858 // C++ [temp.param]p11: 859 // If a template-parameter has a default template-argument, 860 // all subsequent template-parameters shall have a default 861 // template-argument supplied. 862 Diag((*NewParam)->getLocation(), 863 diag::err_template_param_default_arg_missing); 864 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 865 Invalid = true; 866 } 867 868 // If we have an old template parameter list that we're merging 869 // in, move on to the next parameter. 870 if (OldParams) 871 ++OldParam; 872 } 873 874 return Invalid; 875} 876 877/// \brief Match the given template parameter lists to the given scope 878/// specifier, returning the template parameter list that applies to the 879/// name. 880/// 881/// \param DeclStartLoc the start of the declaration that has a scope 882/// specifier or a template parameter list. 883/// 884/// \param SS the scope specifier that will be matched to the given template 885/// parameter lists. This scope specifier precedes a qualified name that is 886/// being declared. 887/// 888/// \param ParamLists the template parameter lists, from the outermost to the 889/// innermost template parameter lists. 890/// 891/// \param NumParamLists the number of template parameter lists in ParamLists. 892/// 893/// \returns the template parameter list, if any, that corresponds to the 894/// name that is preceded by the scope specifier @p SS. This template 895/// parameter list may be have template parameters (if we're declaring a 896/// template) or may have no template parameters (if we're declaring a 897/// template specialization), or may be NULL (if we were's declaring isn't 898/// itself a template). 899TemplateParameterList * 900Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 901 const CXXScopeSpec &SS, 902 TemplateParameterList **ParamLists, 903 unsigned NumParamLists) { 904 // Find the template-ids that occur within the nested-name-specifier. These 905 // template-ids will match up with the template parameter lists. 906 llvm::SmallVector<const TemplateSpecializationType *, 4> 907 TemplateIdsInSpecifier; 908 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 909 NNS; NNS = NNS->getPrefix()) { 910 if (const TemplateSpecializationType *SpecType 911 = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) { 912 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 913 if (!Template) 914 continue; // FIXME: should this be an error? probably... 915 916 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 917 ClassTemplateSpecializationDecl *SpecDecl 918 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 919 // If the nested name specifier refers to an explicit specialization, 920 // we don't need a template<> header. 921 // FIXME: revisit this approach once we cope with specialization 922 // properly. 923 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) 924 continue; 925 } 926 927 TemplateIdsInSpecifier.push_back(SpecType); 928 } 929 } 930 931 // Reverse the list of template-ids in the scope specifier, so that we can 932 // more easily match up the template-ids and the template parameter lists. 933 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 934 935 SourceLocation FirstTemplateLoc = DeclStartLoc; 936 if (NumParamLists) 937 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 938 939 // Match the template-ids found in the specifier to the template parameter 940 // lists. 941 unsigned Idx = 0; 942 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 943 Idx != NumTemplateIds; ++Idx) { 944 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 945 bool DependentTemplateId = TemplateId->isDependentType(); 946 if (Idx >= NumParamLists) { 947 // We have a template-id without a corresponding template parameter 948 // list. 949 if (DependentTemplateId) { 950 // FIXME: the location information here isn't great. 951 Diag(SS.getRange().getBegin(), 952 diag::err_template_spec_needs_template_parameters) 953 << TemplateId 954 << SS.getRange(); 955 } else { 956 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 957 << SS.getRange() 958 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 959 "template<> "); 960 } 961 return 0; 962 } 963 964 // Check the template parameter list against its corresponding template-id. 965 if (DependentTemplateId) { 966 TemplateDecl *Template 967 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 968 969 if (ClassTemplateDecl *ClassTemplate 970 = dyn_cast<ClassTemplateDecl>(Template)) { 971 TemplateParameterList *ExpectedTemplateParams = 0; 972 // Is this template-id naming the primary template? 973 if (Context.hasSameType(TemplateId, 974 ClassTemplate->getInjectedClassNameType(Context))) 975 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 976 // ... or a partial specialization? 977 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 978 = ClassTemplate->findPartialSpecialization(TemplateId)) 979 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 980 981 if (ExpectedTemplateParams) 982 TemplateParameterListsAreEqual(ParamLists[Idx], 983 ExpectedTemplateParams, 984 true); 985 } 986 } else if (ParamLists[Idx]->size() > 0) 987 Diag(ParamLists[Idx]->getTemplateLoc(), 988 diag::err_template_param_list_matches_nontemplate) 989 << TemplateId 990 << ParamLists[Idx]->getSourceRange(); 991 } 992 993 // If there were at least as many template-ids as there were template 994 // parameter lists, then there are no template parameter lists remaining for 995 // the declaration itself. 996 if (Idx >= NumParamLists) 997 return 0; 998 999 // If there were too many template parameter lists, complain about that now. 1000 if (Idx != NumParamLists - 1) { 1001 while (Idx < NumParamLists - 1) { 1002 Diag(ParamLists[Idx]->getTemplateLoc(), 1003 diag::err_template_spec_extra_headers) 1004 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1005 ParamLists[Idx]->getRAngleLoc()); 1006 ++Idx; 1007 } 1008 } 1009 1010 // Return the last template parameter list, which corresponds to the 1011 // entity being declared. 1012 return ParamLists[NumParamLists - 1]; 1013} 1014 1015/// \brief Translates template arguments as provided by the parser 1016/// into template arguments used by semantic analysis. 1017static void 1018translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn, 1019 SourceLocation *TemplateArgLocs, 1020 llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) { 1021 TemplateArgs.reserve(TemplateArgsIn.size()); 1022 1023 void **Args = TemplateArgsIn.getArgs(); 1024 bool *ArgIsType = TemplateArgsIn.getArgIsType(); 1025 for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) { 1026 TemplateArgs.push_back( 1027 ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg], 1028 //FIXME: Preserve type source info. 1029 Sema::GetTypeFromParser(Args[Arg])) 1030 : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg]))); 1031 } 1032} 1033 1034QualType Sema::CheckTemplateIdType(TemplateName Name, 1035 SourceLocation TemplateLoc, 1036 SourceLocation LAngleLoc, 1037 const TemplateArgument *TemplateArgs, 1038 unsigned NumTemplateArgs, 1039 SourceLocation RAngleLoc) { 1040 TemplateDecl *Template = Name.getAsTemplateDecl(); 1041 if (!Template) { 1042 // The template name does not resolve to a template, so we just 1043 // build a dependent template-id type. 1044 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1045 NumTemplateArgs); 1046 } 1047 1048 // Check that the template argument list is well-formed for this 1049 // template. 1050 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1051 NumTemplateArgs); 1052 if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc, 1053 TemplateArgs, NumTemplateArgs, RAngleLoc, 1054 false, Converted)) 1055 return QualType(); 1056 1057 assert((Converted.structuredSize() == 1058 Template->getTemplateParameters()->size()) && 1059 "Converted template argument list is too short!"); 1060 1061 QualType CanonType; 1062 1063 if (TemplateSpecializationType::anyDependentTemplateArguments( 1064 TemplateArgs, 1065 NumTemplateArgs)) { 1066 // This class template specialization is a dependent 1067 // type. Therefore, its canonical type is another class template 1068 // specialization type that contains all of the converted 1069 // arguments in canonical form. This ensures that, e.g., A<T> and 1070 // A<T, T> have identical types when A is declared as: 1071 // 1072 // template<typename T, typename U = T> struct A; 1073 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1074 CanonType = Context.getTemplateSpecializationType(CanonName, 1075 Converted.getFlatArguments(), 1076 Converted.flatSize()); 1077 1078 // FIXME: CanonType is not actually the canonical type, and unfortunately 1079 // it is a TemplateTypeSpecializationType that we will never use again. 1080 // In the future, we need to teach getTemplateSpecializationType to only 1081 // build the canonical type and return that to us. 1082 CanonType = Context.getCanonicalType(CanonType); 1083 } else if (ClassTemplateDecl *ClassTemplate 1084 = dyn_cast<ClassTemplateDecl>(Template)) { 1085 // Find the class template specialization declaration that 1086 // corresponds to these arguments. 1087 llvm::FoldingSetNodeID ID; 1088 ClassTemplateSpecializationDecl::Profile(ID, 1089 Converted.getFlatArguments(), 1090 Converted.flatSize(), 1091 Context); 1092 void *InsertPos = 0; 1093 ClassTemplateSpecializationDecl *Decl 1094 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1095 if (!Decl) { 1096 // This is the first time we have referenced this class template 1097 // specialization. Create the canonical declaration and add it to 1098 // the set of specializations. 1099 Decl = ClassTemplateSpecializationDecl::Create(Context, 1100 ClassTemplate->getDeclContext(), 1101 TemplateLoc, 1102 ClassTemplate, 1103 Converted, 0); 1104 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1105 Decl->setLexicalDeclContext(CurContext); 1106 } 1107 1108 CanonType = Context.getTypeDeclType(Decl); 1109 } 1110 1111 // Build the fully-sugared type for this class template 1112 // specialization, which refers back to the class template 1113 // specialization we created or found. 1114 //FIXME: Preserve type source info. 1115 return Context.getTemplateSpecializationType(Name, TemplateArgs, 1116 NumTemplateArgs, CanonType); 1117} 1118 1119Action::TypeResult 1120Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1121 SourceLocation LAngleLoc, 1122 ASTTemplateArgsPtr TemplateArgsIn, 1123 SourceLocation *TemplateArgLocs, 1124 SourceLocation RAngleLoc) { 1125 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1126 1127 // Translate the parser's template argument list in our AST format. 1128 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1129 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1130 1131 QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc, 1132 TemplateArgs.data(), 1133 TemplateArgs.size(), 1134 RAngleLoc); 1135 TemplateArgsIn.release(); 1136 1137 if (Result.isNull()) 1138 return true; 1139 1140 return Result.getAsOpaquePtr(); 1141} 1142 1143Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1144 TagUseKind TUK, 1145 DeclSpec::TST TagSpec, 1146 SourceLocation TagLoc) { 1147 if (TypeResult.isInvalid()) 1148 return Sema::TypeResult(); 1149 1150 QualType Type = QualType::getFromOpaquePtr(TypeResult.get()); 1151 1152 // Verify the tag specifier. 1153 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1154 1155 if (const RecordType *RT = Type->getAs<RecordType>()) { 1156 RecordDecl *D = RT->getDecl(); 1157 1158 IdentifierInfo *Id = D->getIdentifier(); 1159 assert(Id && "templated class must have an identifier"); 1160 1161 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1162 Diag(TagLoc, diag::err_use_with_wrong_tag) 1163 << Id 1164 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1165 D->getKindName()); 1166 } 1167 } 1168 1169 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1170 1171 return ElabType.getAsOpaquePtr(); 1172} 1173 1174Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template, 1175 SourceLocation TemplateNameLoc, 1176 SourceLocation LAngleLoc, 1177 const TemplateArgument *TemplateArgs, 1178 unsigned NumTemplateArgs, 1179 SourceLocation RAngleLoc) { 1180 // FIXME: Can we do any checking at this point? I guess we could check the 1181 // template arguments that we have against the template name, if the template 1182 // name refers to a single template. That's not a terribly common case, 1183 // though. 1184 return Owned(TemplateIdRefExpr::Create(Context, 1185 /*FIXME: New type?*/Context.OverloadTy, 1186 /*FIXME: Necessary?*/0, 1187 /*FIXME: Necessary?*/SourceRange(), 1188 Template, TemplateNameLoc, LAngleLoc, 1189 TemplateArgs, 1190 NumTemplateArgs, RAngleLoc)); 1191} 1192 1193Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD, 1194 SourceLocation TemplateNameLoc, 1195 SourceLocation LAngleLoc, 1196 ASTTemplateArgsPtr TemplateArgsIn, 1197 SourceLocation *TemplateArgLocs, 1198 SourceLocation RAngleLoc) { 1199 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1200 1201 // Translate the parser's template argument list in our AST format. 1202 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1203 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1204 TemplateArgsIn.release(); 1205 1206 return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc, 1207 TemplateArgs.data(), TemplateArgs.size(), 1208 RAngleLoc); 1209} 1210 1211Sema::OwningExprResult 1212Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base, 1213 SourceLocation OpLoc, 1214 tok::TokenKind OpKind, 1215 const CXXScopeSpec &SS, 1216 TemplateTy TemplateD, 1217 SourceLocation TemplateNameLoc, 1218 SourceLocation LAngleLoc, 1219 ASTTemplateArgsPtr TemplateArgsIn, 1220 SourceLocation *TemplateArgLocs, 1221 SourceLocation RAngleLoc) { 1222 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1223 1224 // FIXME: We're going to end up looking up the template based on its name, 1225 // twice! 1226 DeclarationName Name; 1227 if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl()) 1228 Name = ActualTemplate->getDeclName(); 1229 else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl()) 1230 Name = Ovl->getDeclName(); 1231 else 1232 assert(false && "Cannot support dependent template names yet"); 1233 1234 // Translate the parser's template argument list in our AST format. 1235 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 1236 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 1237 TemplateArgsIn.release(); 1238 1239 // Do we have the save the actual template name? We might need it... 1240 return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc, 1241 Name, true, LAngleLoc, 1242 TemplateArgs.data(), TemplateArgs.size(), 1243 RAngleLoc, DeclPtrTy(), &SS); 1244} 1245 1246/// \brief Form a dependent template name. 1247/// 1248/// This action forms a dependent template name given the template 1249/// name and its (presumably dependent) scope specifier. For 1250/// example, given "MetaFun::template apply", the scope specifier \p 1251/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1252/// of the "template" keyword, and "apply" is the \p Name. 1253Sema::TemplateTy 1254Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1255 const IdentifierInfo &Name, 1256 SourceLocation NameLoc, 1257 const CXXScopeSpec &SS, 1258 TypeTy *ObjectType) { 1259 if ((ObjectType && 1260 computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) || 1261 (SS.isSet() && computeDeclContext(SS, false))) { 1262 // C++0x [temp.names]p5: 1263 // If a name prefixed by the keyword template is not the name of 1264 // a template, the program is ill-formed. [Note: the keyword 1265 // template may not be applied to non-template members of class 1266 // templates. -end note ] [ Note: as is the case with the 1267 // typename prefix, the template prefix is allowed in cases 1268 // where it is not strictly necessary; i.e., when the 1269 // nested-name-specifier or the expression on the left of the -> 1270 // or . is not dependent on a template-parameter, or the use 1271 // does not appear in the scope of a template. -end note] 1272 // 1273 // Note: C++03 was more strict here, because it banned the use of 1274 // the "template" keyword prior to a template-name that was not a 1275 // dependent name. C++ DR468 relaxed this requirement (the 1276 // "template" keyword is now permitted). We follow the C++0x 1277 // rules, even in C++03 mode, retroactively applying the DR. 1278 TemplateTy Template; 1279 TemplateNameKind TNK = isTemplateName(0, Name, NameLoc, &SS, ObjectType, 1280 false, Template); 1281 if (TNK == TNK_Non_template) { 1282 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1283 << &Name; 1284 return TemplateTy(); 1285 } 1286 1287 return Template; 1288 } 1289 1290 // FIXME: We need to be able to create a dependent template name with just 1291 // an identifier, to handle the x->template f<T> case. 1292 assert(!ObjectType && 1293 "Cannot handle dependent template names without a nested-name-specifier"); 1294 1295 NestedNameSpecifier *Qualifier 1296 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1297 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name)); 1298} 1299 1300bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1301 const TemplateArgument &Arg, 1302 TemplateArgumentListBuilder &Converted) { 1303 // Check template type parameter. 1304 if (Arg.getKind() != TemplateArgument::Type) { 1305 // C++ [temp.arg.type]p1: 1306 // A template-argument for a template-parameter which is a 1307 // type shall be a type-id. 1308 1309 // We have a template type parameter but the template argument 1310 // is not a type. 1311 Diag(Arg.getLocation(), diag::err_template_arg_must_be_type); 1312 Diag(Param->getLocation(), diag::note_template_param_here); 1313 1314 return true; 1315 } 1316 1317 if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation())) 1318 return true; 1319 1320 // Add the converted template type argument. 1321 Converted.Append( 1322 TemplateArgument(Arg.getLocation(), 1323 Context.getCanonicalType(Arg.getAsType()))); 1324 return false; 1325} 1326 1327/// \brief Check that the given template argument list is well-formed 1328/// for specializing the given template. 1329bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 1330 SourceLocation TemplateLoc, 1331 SourceLocation LAngleLoc, 1332 const TemplateArgument *TemplateArgs, 1333 unsigned NumTemplateArgs, 1334 SourceLocation RAngleLoc, 1335 bool PartialTemplateArgs, 1336 TemplateArgumentListBuilder &Converted) { 1337 TemplateParameterList *Params = Template->getTemplateParameters(); 1338 unsigned NumParams = Params->size(); 1339 unsigned NumArgs = NumTemplateArgs; 1340 bool Invalid = false; 1341 1342 bool HasParameterPack = 1343 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 1344 1345 if ((NumArgs > NumParams && !HasParameterPack) || 1346 (NumArgs < Params->getMinRequiredArguments() && 1347 !PartialTemplateArgs)) { 1348 // FIXME: point at either the first arg beyond what we can handle, 1349 // or the '>', depending on whether we have too many or too few 1350 // arguments. 1351 SourceRange Range; 1352 if (NumArgs > NumParams) 1353 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 1354 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 1355 << (NumArgs > NumParams) 1356 << (isa<ClassTemplateDecl>(Template)? 0 : 1357 isa<FunctionTemplateDecl>(Template)? 1 : 1358 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 1359 << Template << Range; 1360 Diag(Template->getLocation(), diag::note_template_decl_here) 1361 << Params->getSourceRange(); 1362 Invalid = true; 1363 } 1364 1365 // C++ [temp.arg]p1: 1366 // [...] The type and form of each template-argument specified in 1367 // a template-id shall match the type and form specified for the 1368 // corresponding parameter declared by the template in its 1369 // template-parameter-list. 1370 unsigned ArgIdx = 0; 1371 for (TemplateParameterList::iterator Param = Params->begin(), 1372 ParamEnd = Params->end(); 1373 Param != ParamEnd; ++Param, ++ArgIdx) { 1374 if (ArgIdx > NumArgs && PartialTemplateArgs) 1375 break; 1376 1377 // Decode the template argument 1378 TemplateArgument Arg; 1379 if (ArgIdx >= NumArgs) { 1380 // Retrieve the default template argument from the template 1381 // parameter. 1382 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1383 if (TTP->isParameterPack()) { 1384 // We have an empty argument pack. 1385 Converted.BeginPack(); 1386 Converted.EndPack(); 1387 break; 1388 } 1389 1390 if (!TTP->hasDefaultArgument()) 1391 break; 1392 1393 QualType ArgType = TTP->getDefaultArgument(); 1394 1395 // If the argument type is dependent, instantiate it now based 1396 // on the previously-computed template arguments. 1397 if (ArgType->isDependentType()) { 1398 InstantiatingTemplate Inst(*this, TemplateLoc, 1399 Template, Converted.getFlatArguments(), 1400 Converted.flatSize(), 1401 SourceRange(TemplateLoc, RAngleLoc)); 1402 1403 TemplateArgumentList TemplateArgs(Context, Converted, 1404 /*TakeArgs=*/false); 1405 ArgType = SubstType(ArgType, 1406 MultiLevelTemplateArgumentList(TemplateArgs), 1407 TTP->getDefaultArgumentLoc(), 1408 TTP->getDeclName()); 1409 } 1410 1411 if (ArgType.isNull()) 1412 return true; 1413 1414 Arg = TemplateArgument(TTP->getLocation(), ArgType); 1415 } else if (NonTypeTemplateParmDecl *NTTP 1416 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1417 if (!NTTP->hasDefaultArgument()) 1418 break; 1419 1420 InstantiatingTemplate Inst(*this, TemplateLoc, 1421 Template, Converted.getFlatArguments(), 1422 Converted.flatSize(), 1423 SourceRange(TemplateLoc, RAngleLoc)); 1424 1425 TemplateArgumentList TemplateArgs(Context, Converted, 1426 /*TakeArgs=*/false); 1427 1428 Sema::OwningExprResult E 1429 = SubstExpr(NTTP->getDefaultArgument(), 1430 MultiLevelTemplateArgumentList(TemplateArgs)); 1431 if (E.isInvalid()) 1432 return true; 1433 1434 Arg = TemplateArgument(E.takeAs<Expr>()); 1435 } else { 1436 TemplateTemplateParmDecl *TempParm 1437 = cast<TemplateTemplateParmDecl>(*Param); 1438 1439 if (!TempParm->hasDefaultArgument()) 1440 break; 1441 1442 // FIXME: Subst default argument 1443 Arg = TemplateArgument(TempParm->getDefaultArgument()); 1444 } 1445 } else { 1446 // Retrieve the template argument produced by the user. 1447 Arg = TemplateArgs[ArgIdx]; 1448 } 1449 1450 1451 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 1452 if (TTP->isParameterPack()) { 1453 Converted.BeginPack(); 1454 // Check all the remaining arguments (if any). 1455 for (; ArgIdx < NumArgs; ++ArgIdx) { 1456 if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted)) 1457 Invalid = true; 1458 } 1459 1460 Converted.EndPack(); 1461 } else { 1462 if (CheckTemplateTypeArgument(TTP, Arg, Converted)) 1463 Invalid = true; 1464 } 1465 } else if (NonTypeTemplateParmDecl *NTTP 1466 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 1467 // Check non-type template parameters. 1468 1469 // Do substitution on the type of the non-type template parameter 1470 // with the template arguments we've seen thus far. 1471 QualType NTTPType = NTTP->getType(); 1472 if (NTTPType->isDependentType()) { 1473 // Do substitution on the type of the non-type template parameter. 1474 InstantiatingTemplate Inst(*this, TemplateLoc, 1475 Template, Converted.getFlatArguments(), 1476 Converted.flatSize(), 1477 SourceRange(TemplateLoc, RAngleLoc)); 1478 1479 TemplateArgumentList TemplateArgs(Context, Converted, 1480 /*TakeArgs=*/false); 1481 NTTPType = SubstType(NTTPType, 1482 MultiLevelTemplateArgumentList(TemplateArgs), 1483 NTTP->getLocation(), 1484 NTTP->getDeclName()); 1485 // If that worked, check the non-type template parameter type 1486 // for validity. 1487 if (!NTTPType.isNull()) 1488 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1489 NTTP->getLocation()); 1490 if (NTTPType.isNull()) { 1491 Invalid = true; 1492 break; 1493 } 1494 } 1495 1496 switch (Arg.getKind()) { 1497 case TemplateArgument::Null: 1498 assert(false && "Should never see a NULL template argument here"); 1499 break; 1500 1501 case TemplateArgument::Expression: { 1502 Expr *E = Arg.getAsExpr(); 1503 TemplateArgument Result; 1504 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1505 Invalid = true; 1506 else 1507 Converted.Append(Result); 1508 break; 1509 } 1510 1511 case TemplateArgument::Declaration: 1512 case TemplateArgument::Integral: 1513 // We've already checked this template argument, so just copy 1514 // it to the list of converted arguments. 1515 Converted.Append(Arg); 1516 break; 1517 1518 case TemplateArgument::Type: 1519 // We have a non-type template parameter but the template 1520 // argument is a type. 1521 1522 // C++ [temp.arg]p2: 1523 // In a template-argument, an ambiguity between a type-id and 1524 // an expression is resolved to a type-id, regardless of the 1525 // form of the corresponding template-parameter. 1526 // 1527 // We warn specifically about this case, since it can be rather 1528 // confusing for users. 1529 if (Arg.getAsType()->isFunctionType()) 1530 Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig) 1531 << Arg.getAsType(); 1532 else 1533 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr); 1534 Diag((*Param)->getLocation(), diag::note_template_param_here); 1535 Invalid = true; 1536 break; 1537 1538 case TemplateArgument::Pack: 1539 assert(0 && "FIXME: Implement!"); 1540 break; 1541 } 1542 } else { 1543 // Check template template parameters. 1544 TemplateTemplateParmDecl *TempParm 1545 = cast<TemplateTemplateParmDecl>(*Param); 1546 1547 switch (Arg.getKind()) { 1548 case TemplateArgument::Null: 1549 assert(false && "Should never see a NULL template argument here"); 1550 break; 1551 1552 case TemplateArgument::Expression: { 1553 Expr *ArgExpr = Arg.getAsExpr(); 1554 if (ArgExpr && isa<DeclRefExpr>(ArgExpr) && 1555 isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) { 1556 if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr))) 1557 Invalid = true; 1558 1559 // Add the converted template argument. 1560 Decl *D 1561 = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl(); 1562 Converted.Append(TemplateArgument(Arg.getLocation(), D)); 1563 continue; 1564 } 1565 } 1566 // fall through 1567 1568 case TemplateArgument::Type: { 1569 // We have a template template parameter but the template 1570 // argument does not refer to a template. 1571 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 1572 Invalid = true; 1573 break; 1574 } 1575 1576 case TemplateArgument::Declaration: 1577 // We've already checked this template argument, so just copy 1578 // it to the list of converted arguments. 1579 Converted.Append(Arg); 1580 break; 1581 1582 case TemplateArgument::Integral: 1583 assert(false && "Integral argument with template template parameter"); 1584 break; 1585 1586 case TemplateArgument::Pack: 1587 assert(0 && "FIXME: Implement!"); 1588 break; 1589 } 1590 } 1591 } 1592 1593 return Invalid; 1594} 1595 1596/// \brief Check a template argument against its corresponding 1597/// template type parameter. 1598/// 1599/// This routine implements the semantics of C++ [temp.arg.type]. It 1600/// returns true if an error occurred, and false otherwise. 1601bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 1602 QualType Arg, SourceLocation ArgLoc) { 1603 // C++ [temp.arg.type]p2: 1604 // A local type, a type with no linkage, an unnamed type or a type 1605 // compounded from any of these types shall not be used as a 1606 // template-argument for a template type-parameter. 1607 // 1608 // FIXME: Perform the recursive and no-linkage type checks. 1609 const TagType *Tag = 0; 1610 if (const EnumType *EnumT = Arg->getAsEnumType()) 1611 Tag = EnumT; 1612 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 1613 Tag = RecordT; 1614 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) 1615 return Diag(ArgLoc, diag::err_template_arg_local_type) 1616 << QualType(Tag, 0); 1617 else if (Tag && !Tag->getDecl()->getDeclName() && 1618 !Tag->getDecl()->getTypedefForAnonDecl()) { 1619 Diag(ArgLoc, diag::err_template_arg_unnamed_type); 1620 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 1621 return true; 1622 } 1623 1624 return false; 1625} 1626 1627/// \brief Checks whether the given template argument is the address 1628/// of an object or function according to C++ [temp.arg.nontype]p1. 1629bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 1630 NamedDecl *&Entity) { 1631 bool Invalid = false; 1632 1633 // See through any implicit casts we added to fix the type. 1634 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1635 Arg = Cast->getSubExpr(); 1636 1637 // C++0x allows nullptr, and there's no further checking to be done for that. 1638 if (Arg->getType()->isNullPtrType()) 1639 return false; 1640 1641 // C++ [temp.arg.nontype]p1: 1642 // 1643 // A template-argument for a non-type, non-template 1644 // template-parameter shall be one of: [...] 1645 // 1646 // -- the address of an object or function with external 1647 // linkage, including function templates and function 1648 // template-ids but excluding non-static class members, 1649 // expressed as & id-expression where the & is optional if 1650 // the name refers to a function or array, or if the 1651 // corresponding template-parameter is a reference; or 1652 DeclRefExpr *DRE = 0; 1653 1654 // Ignore (and complain about) any excess parentheses. 1655 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1656 if (!Invalid) { 1657 Diag(Arg->getSourceRange().getBegin(), 1658 diag::err_template_arg_extra_parens) 1659 << Arg->getSourceRange(); 1660 Invalid = true; 1661 } 1662 1663 Arg = Parens->getSubExpr(); 1664 } 1665 1666 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 1667 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1668 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 1669 } else 1670 DRE = dyn_cast<DeclRefExpr>(Arg); 1671 1672 if (!DRE || !isa<ValueDecl>(DRE->getDecl())) 1673 return Diag(Arg->getSourceRange().getBegin(), 1674 diag::err_template_arg_not_object_or_func_form) 1675 << Arg->getSourceRange(); 1676 1677 // Cannot refer to non-static data members 1678 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 1679 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 1680 << Field << Arg->getSourceRange(); 1681 1682 // Cannot refer to non-static member functions 1683 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 1684 if (!Method->isStatic()) 1685 return Diag(Arg->getSourceRange().getBegin(), 1686 diag::err_template_arg_method) 1687 << Method << Arg->getSourceRange(); 1688 1689 // Functions must have external linkage. 1690 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 1691 if (Func->getStorageClass() == FunctionDecl::Static) { 1692 Diag(Arg->getSourceRange().getBegin(), 1693 diag::err_template_arg_function_not_extern) 1694 << Func << Arg->getSourceRange(); 1695 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 1696 << true; 1697 return true; 1698 } 1699 1700 // Okay: we've named a function with external linkage. 1701 Entity = Func; 1702 return Invalid; 1703 } 1704 1705 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 1706 if (!Var->hasGlobalStorage()) { 1707 Diag(Arg->getSourceRange().getBegin(), 1708 diag::err_template_arg_object_not_extern) 1709 << Var << Arg->getSourceRange(); 1710 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 1711 << true; 1712 return true; 1713 } 1714 1715 // Okay: we've named an object with external linkage 1716 Entity = Var; 1717 return Invalid; 1718 } 1719 1720 // We found something else, but we don't know specifically what it is. 1721 Diag(Arg->getSourceRange().getBegin(), 1722 diag::err_template_arg_not_object_or_func) 1723 << Arg->getSourceRange(); 1724 Diag(DRE->getDecl()->getLocation(), 1725 diag::note_template_arg_refers_here); 1726 return true; 1727} 1728 1729/// \brief Checks whether the given template argument is a pointer to 1730/// member constant according to C++ [temp.arg.nontype]p1. 1731bool 1732Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) { 1733 bool Invalid = false; 1734 1735 // See through any implicit casts we added to fix the type. 1736 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 1737 Arg = Cast->getSubExpr(); 1738 1739 // C++0x allows nullptr, and there's no further checking to be done for that. 1740 if (Arg->getType()->isNullPtrType()) 1741 return false; 1742 1743 // C++ [temp.arg.nontype]p1: 1744 // 1745 // A template-argument for a non-type, non-template 1746 // template-parameter shall be one of: [...] 1747 // 1748 // -- a pointer to member expressed as described in 5.3.1. 1749 QualifiedDeclRefExpr *DRE = 0; 1750 1751 // Ignore (and complain about) any excess parentheses. 1752 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 1753 if (!Invalid) { 1754 Diag(Arg->getSourceRange().getBegin(), 1755 diag::err_template_arg_extra_parens) 1756 << Arg->getSourceRange(); 1757 Invalid = true; 1758 } 1759 1760 Arg = Parens->getSubExpr(); 1761 } 1762 1763 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) 1764 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 1765 DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr()); 1766 1767 if (!DRE) 1768 return Diag(Arg->getSourceRange().getBegin(), 1769 diag::err_template_arg_not_pointer_to_member_form) 1770 << Arg->getSourceRange(); 1771 1772 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 1773 assert((isa<FieldDecl>(DRE->getDecl()) || 1774 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 1775 "Only non-static member pointers can make it here"); 1776 1777 // Okay: this is the address of a non-static member, and therefore 1778 // a member pointer constant. 1779 Member = DRE->getDecl(); 1780 return Invalid; 1781 } 1782 1783 // We found something else, but we don't know specifically what it is. 1784 Diag(Arg->getSourceRange().getBegin(), 1785 diag::err_template_arg_not_pointer_to_member_form) 1786 << Arg->getSourceRange(); 1787 Diag(DRE->getDecl()->getLocation(), 1788 diag::note_template_arg_refers_here); 1789 return true; 1790} 1791 1792/// \brief Check a template argument against its corresponding 1793/// non-type template parameter. 1794/// 1795/// This routine implements the semantics of C++ [temp.arg.nontype]. 1796/// It returns true if an error occurred, and false otherwise. \p 1797/// InstantiatedParamType is the type of the non-type template 1798/// parameter after it has been instantiated. 1799/// 1800/// If no error was detected, Converted receives the converted template argument. 1801bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 1802 QualType InstantiatedParamType, Expr *&Arg, 1803 TemplateArgument &Converted) { 1804 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 1805 1806 // If either the parameter has a dependent type or the argument is 1807 // type-dependent, there's nothing we can check now. 1808 // FIXME: Add template argument to Converted! 1809 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 1810 // FIXME: Produce a cloned, canonical expression? 1811 Converted = TemplateArgument(Arg); 1812 return false; 1813 } 1814 1815 // C++ [temp.arg.nontype]p5: 1816 // The following conversions are performed on each expression used 1817 // as a non-type template-argument. If a non-type 1818 // template-argument cannot be converted to the type of the 1819 // corresponding template-parameter then the program is 1820 // ill-formed. 1821 // 1822 // -- for a non-type template-parameter of integral or 1823 // enumeration type, integral promotions (4.5) and integral 1824 // conversions (4.7) are applied. 1825 QualType ParamType = InstantiatedParamType; 1826 QualType ArgType = Arg->getType(); 1827 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 1828 // C++ [temp.arg.nontype]p1: 1829 // A template-argument for a non-type, non-template 1830 // template-parameter shall be one of: 1831 // 1832 // -- an integral constant-expression of integral or enumeration 1833 // type; or 1834 // -- the name of a non-type template-parameter; or 1835 SourceLocation NonConstantLoc; 1836 llvm::APSInt Value; 1837 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 1838 Diag(Arg->getSourceRange().getBegin(), 1839 diag::err_template_arg_not_integral_or_enumeral) 1840 << ArgType << Arg->getSourceRange(); 1841 Diag(Param->getLocation(), diag::note_template_param_here); 1842 return true; 1843 } else if (!Arg->isValueDependent() && 1844 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 1845 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 1846 << ArgType << Arg->getSourceRange(); 1847 return true; 1848 } 1849 1850 // FIXME: We need some way to more easily get the unqualified form 1851 // of the types without going all the way to the 1852 // canonical type. 1853 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 1854 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 1855 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 1856 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 1857 1858 // Try to convert the argument to the parameter's type. 1859 if (ParamType == ArgType) { 1860 // Okay: no conversion necessary 1861 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 1862 !ParamType->isEnumeralType()) { 1863 // This is an integral promotion or conversion. 1864 ImpCastExprToType(Arg, ParamType); 1865 } else { 1866 // We can't perform this conversion. 1867 Diag(Arg->getSourceRange().getBegin(), 1868 diag::err_template_arg_not_convertible) 1869 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1870 Diag(Param->getLocation(), diag::note_template_param_here); 1871 return true; 1872 } 1873 1874 QualType IntegerType = Context.getCanonicalType(ParamType); 1875 if (const EnumType *Enum = IntegerType->getAsEnumType()) 1876 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 1877 1878 if (!Arg->isValueDependent()) { 1879 // Check that an unsigned parameter does not receive a negative 1880 // value. 1881 if (IntegerType->isUnsignedIntegerType() 1882 && (Value.isSigned() && Value.isNegative())) { 1883 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 1884 << Value.toString(10) << Param->getType() 1885 << Arg->getSourceRange(); 1886 Diag(Param->getLocation(), diag::note_template_param_here); 1887 return true; 1888 } 1889 1890 // Check that we don't overflow the template parameter type. 1891 unsigned AllowedBits = Context.getTypeSize(IntegerType); 1892 if (Value.getActiveBits() > AllowedBits) { 1893 Diag(Arg->getSourceRange().getBegin(), 1894 diag::err_template_arg_too_large) 1895 << Value.toString(10) << Param->getType() 1896 << Arg->getSourceRange(); 1897 Diag(Param->getLocation(), diag::note_template_param_here); 1898 return true; 1899 } 1900 1901 if (Value.getBitWidth() != AllowedBits) 1902 Value.extOrTrunc(AllowedBits); 1903 Value.setIsSigned(IntegerType->isSignedIntegerType()); 1904 } 1905 1906 // Add the value of this argument to the list of converted 1907 // arguments. We use the bitwidth and signedness of the template 1908 // parameter. 1909 if (Arg->isValueDependent()) { 1910 // The argument is value-dependent. Create a new 1911 // TemplateArgument with the converted expression. 1912 Converted = TemplateArgument(Arg); 1913 return false; 1914 } 1915 1916 Converted = TemplateArgument(StartLoc, Value, 1917 ParamType->isEnumeralType() ? ParamType 1918 : IntegerType); 1919 return false; 1920 } 1921 1922 // Handle pointer-to-function, reference-to-function, and 1923 // pointer-to-member-function all in (roughly) the same way. 1924 if (// -- For a non-type template-parameter of type pointer to 1925 // function, only the function-to-pointer conversion (4.3) is 1926 // applied. If the template-argument represents a set of 1927 // overloaded functions (or a pointer to such), the matching 1928 // function is selected from the set (13.4). 1929 // In C++0x, any std::nullptr_t value can be converted. 1930 (ParamType->isPointerType() && 1931 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 1932 // -- For a non-type template-parameter of type reference to 1933 // function, no conversions apply. If the template-argument 1934 // represents a set of overloaded functions, the matching 1935 // function is selected from the set (13.4). 1936 (ParamType->isReferenceType() && 1937 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 1938 // -- For a non-type template-parameter of type pointer to 1939 // member function, no conversions apply. If the 1940 // template-argument represents a set of overloaded member 1941 // functions, the matching member function is selected from 1942 // the set (13.4). 1943 // Again, C++0x allows a std::nullptr_t value. 1944 (ParamType->isMemberPointerType() && 1945 ParamType->getAs<MemberPointerType>()->getPointeeType() 1946 ->isFunctionType())) { 1947 if (Context.hasSameUnqualifiedType(ArgType, 1948 ParamType.getNonReferenceType())) { 1949 // We don't have to do anything: the types already match. 1950 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 1951 ParamType->isMemberPointerType())) { 1952 ArgType = ParamType; 1953 ImpCastExprToType(Arg, ParamType); 1954 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 1955 ArgType = Context.getPointerType(ArgType); 1956 ImpCastExprToType(Arg, ArgType); 1957 } else if (FunctionDecl *Fn 1958 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 1959 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 1960 return true; 1961 1962 FixOverloadedFunctionReference(Arg, Fn); 1963 ArgType = Arg->getType(); 1964 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 1965 ArgType = Context.getPointerType(Arg->getType()); 1966 ImpCastExprToType(Arg, ArgType); 1967 } 1968 } 1969 1970 if (!Context.hasSameUnqualifiedType(ArgType, 1971 ParamType.getNonReferenceType())) { 1972 // We can't perform this conversion. 1973 Diag(Arg->getSourceRange().getBegin(), 1974 diag::err_template_arg_not_convertible) 1975 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 1976 Diag(Param->getLocation(), diag::note_template_param_here); 1977 return true; 1978 } 1979 1980 if (ParamType->isMemberPointerType()) { 1981 NamedDecl *Member = 0; 1982 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 1983 return true; 1984 1985 if (Member) 1986 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 1987 Converted = TemplateArgument(StartLoc, Member); 1988 return false; 1989 } 1990 1991 NamedDecl *Entity = 0; 1992 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 1993 return true; 1994 1995 if (Entity) 1996 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 1997 Converted = TemplateArgument(StartLoc, Entity); 1998 return false; 1999 } 2000 2001 if (ParamType->isPointerType()) { 2002 // -- for a non-type template-parameter of type pointer to 2003 // object, qualification conversions (4.4) and the 2004 // array-to-pointer conversion (4.2) are applied. 2005 // C++0x also allows a value of std::nullptr_t. 2006 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2007 "Only object pointers allowed here"); 2008 2009 if (ArgType->isNullPtrType()) { 2010 ArgType = ParamType; 2011 ImpCastExprToType(Arg, ParamType); 2012 } else if (ArgType->isArrayType()) { 2013 ArgType = Context.getArrayDecayedType(ArgType); 2014 ImpCastExprToType(Arg, ArgType); 2015 } 2016 2017 if (IsQualificationConversion(ArgType, ParamType)) { 2018 ArgType = ParamType; 2019 ImpCastExprToType(Arg, ParamType); 2020 } 2021 2022 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2023 // We can't perform this conversion. 2024 Diag(Arg->getSourceRange().getBegin(), 2025 diag::err_template_arg_not_convertible) 2026 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2027 Diag(Param->getLocation(), diag::note_template_param_here); 2028 return true; 2029 } 2030 2031 NamedDecl *Entity = 0; 2032 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2033 return true; 2034 2035 if (Entity) 2036 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2037 Converted = TemplateArgument(StartLoc, Entity); 2038 return false; 2039 } 2040 2041 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2042 // -- For a non-type template-parameter of type reference to 2043 // object, no conversions apply. The type referred to by the 2044 // reference may be more cv-qualified than the (otherwise 2045 // identical) type of the template-argument. The 2046 // template-parameter is bound directly to the 2047 // template-argument, which must be an lvalue. 2048 assert(ParamRefType->getPointeeType()->isObjectType() && 2049 "Only object references allowed here"); 2050 2051 if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) { 2052 Diag(Arg->getSourceRange().getBegin(), 2053 diag::err_template_arg_no_ref_bind) 2054 << InstantiatedParamType << Arg->getType() 2055 << Arg->getSourceRange(); 2056 Diag(Param->getLocation(), diag::note_template_param_here); 2057 return true; 2058 } 2059 2060 unsigned ParamQuals 2061 = Context.getCanonicalType(ParamType).getCVRQualifiers(); 2062 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2063 2064 if ((ParamQuals | ArgQuals) != ParamQuals) { 2065 Diag(Arg->getSourceRange().getBegin(), 2066 diag::err_template_arg_ref_bind_ignores_quals) 2067 << InstantiatedParamType << Arg->getType() 2068 << Arg->getSourceRange(); 2069 Diag(Param->getLocation(), diag::note_template_param_here); 2070 return true; 2071 } 2072 2073 NamedDecl *Entity = 0; 2074 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2075 return true; 2076 2077 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2078 Converted = TemplateArgument(StartLoc, Entity); 2079 return false; 2080 } 2081 2082 // -- For a non-type template-parameter of type pointer to data 2083 // member, qualification conversions (4.4) are applied. 2084 // C++0x allows std::nullptr_t values. 2085 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2086 2087 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2088 // Types match exactly: nothing more to do here. 2089 } else if (ArgType->isNullPtrType()) { 2090 ImpCastExprToType(Arg, ParamType); 2091 } else if (IsQualificationConversion(ArgType, ParamType)) { 2092 ImpCastExprToType(Arg, ParamType); 2093 } else { 2094 // We can't perform this conversion. 2095 Diag(Arg->getSourceRange().getBegin(), 2096 diag::err_template_arg_not_convertible) 2097 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2098 Diag(Param->getLocation(), diag::note_template_param_here); 2099 return true; 2100 } 2101 2102 NamedDecl *Member = 0; 2103 if (CheckTemplateArgumentPointerToMember(Arg, Member)) 2104 return true; 2105 2106 if (Member) 2107 Member = cast<NamedDecl>(Member->getCanonicalDecl()); 2108 Converted = TemplateArgument(StartLoc, Member); 2109 return false; 2110} 2111 2112/// \brief Check a template argument against its corresponding 2113/// template template parameter. 2114/// 2115/// This routine implements the semantics of C++ [temp.arg.template]. 2116/// It returns true if an error occurred, and false otherwise. 2117bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2118 DeclRefExpr *Arg) { 2119 assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed"); 2120 TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl()); 2121 2122 // C++ [temp.arg.template]p1: 2123 // A template-argument for a template template-parameter shall be 2124 // the name of a class template, expressed as id-expression. Only 2125 // primary class templates are considered when matching the 2126 // template template argument with the corresponding parameter; 2127 // partial specializations are not considered even if their 2128 // parameter lists match that of the template template parameter. 2129 // 2130 // Note that we also allow template template parameters here, which 2131 // will happen when we are dealing with, e.g., class template 2132 // partial specializations. 2133 if (!isa<ClassTemplateDecl>(Template) && 2134 !isa<TemplateTemplateParmDecl>(Template)) { 2135 assert(isa<FunctionTemplateDecl>(Template) && 2136 "Only function templates are possible here"); 2137 Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template); 2138 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2139 << Template; 2140 } 2141 2142 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2143 Param->getTemplateParameters(), 2144 true, true, 2145 Arg->getSourceRange().getBegin()); 2146} 2147 2148/// \brief Determine whether the given template parameter lists are 2149/// equivalent. 2150/// 2151/// \param New The new template parameter list, typically written in the 2152/// source code as part of a new template declaration. 2153/// 2154/// \param Old The old template parameter list, typically found via 2155/// name lookup of the template declared with this template parameter 2156/// list. 2157/// 2158/// \param Complain If true, this routine will produce a diagnostic if 2159/// the template parameter lists are not equivalent. 2160/// 2161/// \param IsTemplateTemplateParm If true, this routine is being 2162/// called to compare the template parameter lists of a template 2163/// template parameter. 2164/// 2165/// \param TemplateArgLoc If this source location is valid, then we 2166/// are actually checking the template parameter list of a template 2167/// argument (New) against the template parameter list of its 2168/// corresponding template template parameter (Old). We produce 2169/// slightly different diagnostics in this scenario. 2170/// 2171/// \returns True if the template parameter lists are equal, false 2172/// otherwise. 2173bool 2174Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2175 TemplateParameterList *Old, 2176 bool Complain, 2177 bool IsTemplateTemplateParm, 2178 SourceLocation TemplateArgLoc) { 2179 if (Old->size() != New->size()) { 2180 if (Complain) { 2181 unsigned NextDiag = diag::err_template_param_list_different_arity; 2182 if (TemplateArgLoc.isValid()) { 2183 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2184 NextDiag = diag::note_template_param_list_different_arity; 2185 } 2186 Diag(New->getTemplateLoc(), NextDiag) 2187 << (New->size() > Old->size()) 2188 << IsTemplateTemplateParm 2189 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2190 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2191 << IsTemplateTemplateParm 2192 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2193 } 2194 2195 return false; 2196 } 2197 2198 for (TemplateParameterList::iterator OldParm = Old->begin(), 2199 OldParmEnd = Old->end(), NewParm = New->begin(); 2200 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2201 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2202 if (Complain) { 2203 unsigned NextDiag = diag::err_template_param_different_kind; 2204 if (TemplateArgLoc.isValid()) { 2205 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2206 NextDiag = diag::note_template_param_different_kind; 2207 } 2208 Diag((*NewParm)->getLocation(), NextDiag) 2209 << IsTemplateTemplateParm; 2210 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2211 << IsTemplateTemplateParm; 2212 } 2213 return false; 2214 } 2215 2216 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2217 // Okay; all template type parameters are equivalent (since we 2218 // know we're at the same index). 2219#if 0 2220 // FIXME: Enable this code in debug mode *after* we properly go through 2221 // and "instantiate" the template parameter lists of template template 2222 // parameters. It's only after this instantiation that (1) any dependent 2223 // types within the template parameter list of the template template 2224 // parameter can be checked, and (2) the template type parameter depths 2225 // will match up. 2226 QualType OldParmType 2227 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm)); 2228 QualType NewParmType 2229 = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm)); 2230 assert(Context.getCanonicalType(OldParmType) == 2231 Context.getCanonicalType(NewParmType) && 2232 "type parameter mismatch?"); 2233#endif 2234 } else if (NonTypeTemplateParmDecl *OldNTTP 2235 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2236 // The types of non-type template parameters must agree. 2237 NonTypeTemplateParmDecl *NewNTTP 2238 = cast<NonTypeTemplateParmDecl>(*NewParm); 2239 if (Context.getCanonicalType(OldNTTP->getType()) != 2240 Context.getCanonicalType(NewNTTP->getType())) { 2241 if (Complain) { 2242 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2243 if (TemplateArgLoc.isValid()) { 2244 Diag(TemplateArgLoc, 2245 diag::err_template_arg_template_params_mismatch); 2246 NextDiag = diag::note_template_nontype_parm_different_type; 2247 } 2248 Diag(NewNTTP->getLocation(), NextDiag) 2249 << NewNTTP->getType() 2250 << IsTemplateTemplateParm; 2251 Diag(OldNTTP->getLocation(), 2252 diag::note_template_nontype_parm_prev_declaration) 2253 << OldNTTP->getType(); 2254 } 2255 return false; 2256 } 2257 } else { 2258 // The template parameter lists of template template 2259 // parameters must agree. 2260 // FIXME: Could we perform a faster "type" comparison here? 2261 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2262 "Only template template parameters handled here"); 2263 TemplateTemplateParmDecl *OldTTP 2264 = cast<TemplateTemplateParmDecl>(*OldParm); 2265 TemplateTemplateParmDecl *NewTTP 2266 = cast<TemplateTemplateParmDecl>(*NewParm); 2267 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2268 OldTTP->getTemplateParameters(), 2269 Complain, 2270 /*IsTemplateTemplateParm=*/true, 2271 TemplateArgLoc)) 2272 return false; 2273 } 2274 } 2275 2276 return true; 2277} 2278 2279/// \brief Check whether a template can be declared within this scope. 2280/// 2281/// If the template declaration is valid in this scope, returns 2282/// false. Otherwise, issues a diagnostic and returns true. 2283bool 2284Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2285 // Find the nearest enclosing declaration scope. 2286 while ((S->getFlags() & Scope::DeclScope) == 0 || 2287 (S->getFlags() & Scope::TemplateParamScope) != 0) 2288 S = S->getParent(); 2289 2290 // C++ [temp]p2: 2291 // A template-declaration can appear only as a namespace scope or 2292 // class scope declaration. 2293 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2294 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2295 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2296 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2297 << TemplateParams->getSourceRange(); 2298 2299 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2300 Ctx = Ctx->getParent(); 2301 2302 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2303 return false; 2304 2305 return Diag(TemplateParams->getTemplateLoc(), 2306 diag::err_template_outside_namespace_or_class_scope) 2307 << TemplateParams->getSourceRange(); 2308} 2309 2310/// \brief Check whether a class template specialization or explicit 2311/// instantiation in the current context is well-formed. 2312/// 2313/// This routine determines whether a class template specialization or 2314/// explicit instantiation can be declared in the current context 2315/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits 2316/// appropriate diagnostics if there was an error. It returns true if 2317// there was an error that we cannot recover from, and false otherwise. 2318bool 2319Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate, 2320 ClassTemplateSpecializationDecl *PrevDecl, 2321 SourceLocation TemplateNameLoc, 2322 SourceRange ScopeSpecifierRange, 2323 bool PartialSpecialization, 2324 bool ExplicitInstantiation) { 2325 // C++ [temp.expl.spec]p2: 2326 // An explicit specialization shall be declared in the namespace 2327 // of which the template is a member, or, for member templates, in 2328 // the namespace of which the enclosing class or enclosing class 2329 // template is a member. An explicit specialization of a member 2330 // function, member class or static data member of a class 2331 // template shall be declared in the namespace of which the class 2332 // template is a member. Such a declaration may also be a 2333 // definition. If the declaration is not a definition, the 2334 // specialization may be defined later in the name- space in which 2335 // the explicit specialization was declared, or in a namespace 2336 // that encloses the one in which the explicit specialization was 2337 // declared. 2338 if (CurContext->getLookupContext()->isFunctionOrMethod()) { 2339 int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0; 2340 Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope) 2341 << Kind << ClassTemplate; 2342 return true; 2343 } 2344 2345 DeclContext *DC = CurContext->getEnclosingNamespaceContext(); 2346 DeclContext *TemplateContext 2347 = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext(); 2348 if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) && 2349 !ExplicitInstantiation) { 2350 // There is no prior declaration of this entity, so this 2351 // specialization must be in the same context as the template 2352 // itself. 2353 if (DC != TemplateContext) { 2354 if (isa<TranslationUnitDecl>(TemplateContext)) 2355 Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global) 2356 << PartialSpecialization 2357 << ClassTemplate << ScopeSpecifierRange; 2358 else if (isa<NamespaceDecl>(TemplateContext)) 2359 Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope) 2360 << PartialSpecialization << ClassTemplate 2361 << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange; 2362 2363 Diag(ClassTemplate->getLocation(), diag::note_template_decl_here); 2364 } 2365 2366 return false; 2367 } 2368 2369 // We have a previous declaration of this entity. Make sure that 2370 // this redeclaration (or definition) occurs in an enclosing namespace. 2371 if (!CurContext->Encloses(TemplateContext)) { 2372 // FIXME: In C++98, we would like to turn these errors into warnings, 2373 // dependent on a -Wc++0x flag. 2374 bool SuppressedDiag = false; 2375 int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0; 2376 if (isa<TranslationUnitDecl>(TemplateContext)) { 2377 if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x) 2378 Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope) 2379 << Kind << ClassTemplate << ScopeSpecifierRange; 2380 else 2381 SuppressedDiag = true; 2382 } else if (isa<NamespaceDecl>(TemplateContext)) { 2383 if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x) 2384 Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope) 2385 << Kind << ClassTemplate 2386 << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange; 2387 else 2388 SuppressedDiag = true; 2389 } 2390 2391 if (!SuppressedDiag) 2392 Diag(ClassTemplate->getLocation(), diag::note_template_decl_here); 2393 } 2394 2395 return false; 2396} 2397 2398/// \brief Check the non-type template arguments of a class template 2399/// partial specialization according to C++ [temp.class.spec]p9. 2400/// 2401/// \param TemplateParams the template parameters of the primary class 2402/// template. 2403/// 2404/// \param TemplateArg the template arguments of the class template 2405/// partial specialization. 2406/// 2407/// \param MirrorsPrimaryTemplate will be set true if the class 2408/// template partial specialization arguments are identical to the 2409/// implicit template arguments of the primary template. This is not 2410/// necessarily an error (C++0x), and it is left to the caller to diagnose 2411/// this condition when it is an error. 2412/// 2413/// \returns true if there was an error, false otherwise. 2414bool Sema::CheckClassTemplatePartialSpecializationArgs( 2415 TemplateParameterList *TemplateParams, 2416 const TemplateArgumentListBuilder &TemplateArgs, 2417 bool &MirrorsPrimaryTemplate) { 2418 // FIXME: the interface to this function will have to change to 2419 // accommodate variadic templates. 2420 MirrorsPrimaryTemplate = true; 2421 2422 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 2423 2424 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2425 // Determine whether the template argument list of the partial 2426 // specialization is identical to the implicit argument list of 2427 // the primary template. The caller may need to diagnostic this as 2428 // an error per C++ [temp.class.spec]p9b3. 2429 if (MirrorsPrimaryTemplate) { 2430 if (TemplateTypeParmDecl *TTP 2431 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 2432 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 2433 Context.getCanonicalType(ArgList[I].getAsType())) 2434 MirrorsPrimaryTemplate = false; 2435 } else if (TemplateTemplateParmDecl *TTP 2436 = dyn_cast<TemplateTemplateParmDecl>( 2437 TemplateParams->getParam(I))) { 2438 // FIXME: We should settle on either Declaration storage or 2439 // Expression storage for template template parameters. 2440 TemplateTemplateParmDecl *ArgDecl 2441 = dyn_cast_or_null<TemplateTemplateParmDecl>( 2442 ArgList[I].getAsDecl()); 2443 if (!ArgDecl) 2444 if (DeclRefExpr *DRE 2445 = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr())) 2446 ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl()); 2447 2448 if (!ArgDecl || 2449 ArgDecl->getIndex() != TTP->getIndex() || 2450 ArgDecl->getDepth() != TTP->getDepth()) 2451 MirrorsPrimaryTemplate = false; 2452 } 2453 } 2454 2455 NonTypeTemplateParmDecl *Param 2456 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 2457 if (!Param) { 2458 continue; 2459 } 2460 2461 Expr *ArgExpr = ArgList[I].getAsExpr(); 2462 if (!ArgExpr) { 2463 MirrorsPrimaryTemplate = false; 2464 continue; 2465 } 2466 2467 // C++ [temp.class.spec]p8: 2468 // A non-type argument is non-specialized if it is the name of a 2469 // non-type parameter. All other non-type arguments are 2470 // specialized. 2471 // 2472 // Below, we check the two conditions that only apply to 2473 // specialized non-type arguments, so skip any non-specialized 2474 // arguments. 2475 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 2476 if (NonTypeTemplateParmDecl *NTTP 2477 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 2478 if (MirrorsPrimaryTemplate && 2479 (Param->getIndex() != NTTP->getIndex() || 2480 Param->getDepth() != NTTP->getDepth())) 2481 MirrorsPrimaryTemplate = false; 2482 2483 continue; 2484 } 2485 2486 // C++ [temp.class.spec]p9: 2487 // Within the argument list of a class template partial 2488 // specialization, the following restrictions apply: 2489 // -- A partially specialized non-type argument expression 2490 // shall not involve a template parameter of the partial 2491 // specialization except when the argument expression is a 2492 // simple identifier. 2493 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 2494 Diag(ArgExpr->getLocStart(), 2495 diag::err_dependent_non_type_arg_in_partial_spec) 2496 << ArgExpr->getSourceRange(); 2497 return true; 2498 } 2499 2500 // -- The type of a template parameter corresponding to a 2501 // specialized non-type argument shall not be dependent on a 2502 // parameter of the specialization. 2503 if (Param->getType()->isDependentType()) { 2504 Diag(ArgExpr->getLocStart(), 2505 diag::err_dependent_typed_non_type_arg_in_partial_spec) 2506 << Param->getType() 2507 << ArgExpr->getSourceRange(); 2508 Diag(Param->getLocation(), diag::note_template_param_here); 2509 return true; 2510 } 2511 2512 MirrorsPrimaryTemplate = false; 2513 } 2514 2515 return false; 2516} 2517 2518Sema::DeclResult 2519Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 2520 TagUseKind TUK, 2521 SourceLocation KWLoc, 2522 const CXXScopeSpec &SS, 2523 TemplateTy TemplateD, 2524 SourceLocation TemplateNameLoc, 2525 SourceLocation LAngleLoc, 2526 ASTTemplateArgsPtr TemplateArgsIn, 2527 SourceLocation *TemplateArgLocs, 2528 SourceLocation RAngleLoc, 2529 AttributeList *Attr, 2530 MultiTemplateParamsArg TemplateParameterLists) { 2531 assert(TUK == TUK_Declaration || TUK == TUK_Definition); 2532 2533 // Find the class template we're specializing 2534 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2535 ClassTemplateDecl *ClassTemplate 2536 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2537 2538 bool isPartialSpecialization = false; 2539 2540 // Check the validity of the template headers that introduce this 2541 // template. 2542 TemplateParameterList *TemplateParams 2543 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 2544 (TemplateParameterList**)TemplateParameterLists.get(), 2545 TemplateParameterLists.size()); 2546 if (TemplateParams && TemplateParams->size() > 0) { 2547 isPartialSpecialization = true; 2548 2549 // C++ [temp.class.spec]p10: 2550 // The template parameter list of a specialization shall not 2551 // contain default template argument values. 2552 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2553 Decl *Param = TemplateParams->getParam(I); 2554 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 2555 if (TTP->hasDefaultArgument()) { 2556 Diag(TTP->getDefaultArgumentLoc(), 2557 diag::err_default_arg_in_partial_spec); 2558 TTP->setDefaultArgument(QualType(), SourceLocation(), false); 2559 } 2560 } else if (NonTypeTemplateParmDecl *NTTP 2561 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2562 if (Expr *DefArg = NTTP->getDefaultArgument()) { 2563 Diag(NTTP->getDefaultArgumentLoc(), 2564 diag::err_default_arg_in_partial_spec) 2565 << DefArg->getSourceRange(); 2566 NTTP->setDefaultArgument(0); 2567 DefArg->Destroy(Context); 2568 } 2569 } else { 2570 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 2571 if (Expr *DefArg = TTP->getDefaultArgument()) { 2572 Diag(TTP->getDefaultArgumentLoc(), 2573 diag::err_default_arg_in_partial_spec) 2574 << DefArg->getSourceRange(); 2575 TTP->setDefaultArgument(0); 2576 DefArg->Destroy(Context); 2577 } 2578 } 2579 } 2580 } else if (!TemplateParams) 2581 Diag(KWLoc, diag::err_template_spec_needs_header) 2582 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 2583 2584 // Check that the specialization uses the same tag kind as the 2585 // original template. 2586 TagDecl::TagKind Kind; 2587 switch (TagSpec) { 2588 default: assert(0 && "Unknown tag type!"); 2589 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2590 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2591 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2592 } 2593 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2594 Kind, KWLoc, 2595 *ClassTemplate->getIdentifier())) { 2596 Diag(KWLoc, diag::err_use_with_wrong_tag) 2597 << ClassTemplate 2598 << CodeModificationHint::CreateReplacement(KWLoc, 2599 ClassTemplate->getTemplatedDecl()->getKindName()); 2600 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2601 diag::note_previous_use); 2602 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2603 } 2604 2605 // Translate the parser's template argument list in our AST format. 2606 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2607 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2608 2609 // Check that the template argument list is well-formed for this 2610 // template. 2611 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2612 TemplateArgs.size()); 2613 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2614 TemplateArgs.data(), TemplateArgs.size(), 2615 RAngleLoc, false, Converted)) 2616 return true; 2617 2618 assert((Converted.structuredSize() == 2619 ClassTemplate->getTemplateParameters()->size()) && 2620 "Converted template argument list is too short!"); 2621 2622 // Find the class template (partial) specialization declaration that 2623 // corresponds to these arguments. 2624 llvm::FoldingSetNodeID ID; 2625 if (isPartialSpecialization) { 2626 bool MirrorsPrimaryTemplate; 2627 if (CheckClassTemplatePartialSpecializationArgs( 2628 ClassTemplate->getTemplateParameters(), 2629 Converted, MirrorsPrimaryTemplate)) 2630 return true; 2631 2632 if (MirrorsPrimaryTemplate) { 2633 // C++ [temp.class.spec]p9b3: 2634 // 2635 // -- The argument list of the specialization shall not be identical 2636 // to the implicit argument list of the primary template. 2637 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 2638 << (TUK == TUK_Definition) 2639 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 2640 RAngleLoc)); 2641 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 2642 ClassTemplate->getIdentifier(), 2643 TemplateNameLoc, 2644 Attr, 2645 TemplateParams, 2646 AS_none); 2647 } 2648 2649 // FIXME: Template parameter list matters, too 2650 ClassTemplatePartialSpecializationDecl::Profile(ID, 2651 Converted.getFlatArguments(), 2652 Converted.flatSize(), 2653 Context); 2654 } else 2655 ClassTemplateSpecializationDecl::Profile(ID, 2656 Converted.getFlatArguments(), 2657 Converted.flatSize(), 2658 Context); 2659 void *InsertPos = 0; 2660 ClassTemplateSpecializationDecl *PrevDecl = 0; 2661 2662 if (isPartialSpecialization) 2663 PrevDecl 2664 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 2665 InsertPos); 2666 else 2667 PrevDecl 2668 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2669 2670 ClassTemplateSpecializationDecl *Specialization = 0; 2671 2672 // Check whether we can declare a class template specialization in 2673 // the current scope. 2674 if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl, 2675 TemplateNameLoc, 2676 SS.getRange(), 2677 isPartialSpecialization, 2678 /*ExplicitInstantiation=*/false)) 2679 return true; 2680 2681 // The canonical type 2682 QualType CanonType; 2683 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 2684 // Since the only prior class template specialization with these 2685 // arguments was referenced but not declared, reuse that 2686 // declaration node as our own, updating its source location to 2687 // reflect our new declaration. 2688 Specialization = PrevDecl; 2689 Specialization->setLocation(TemplateNameLoc); 2690 PrevDecl = 0; 2691 CanonType = Context.getTypeDeclType(Specialization); 2692 } else if (isPartialSpecialization) { 2693 // Build the canonical type that describes the converted template 2694 // arguments of the class template partial specialization. 2695 CanonType = Context.getTemplateSpecializationType( 2696 TemplateName(ClassTemplate), 2697 Converted.getFlatArguments(), 2698 Converted.flatSize()); 2699 2700 // Create a new class template partial specialization declaration node. 2701 TemplateParameterList *TemplateParams 2702 = static_cast<TemplateParameterList*>(*TemplateParameterLists.get()); 2703 ClassTemplatePartialSpecializationDecl *PrevPartial 2704 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 2705 ClassTemplatePartialSpecializationDecl *Partial 2706 = ClassTemplatePartialSpecializationDecl::Create(Context, 2707 ClassTemplate->getDeclContext(), 2708 TemplateNameLoc, 2709 TemplateParams, 2710 ClassTemplate, 2711 Converted, 2712 PrevPartial); 2713 2714 if (PrevPartial) { 2715 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 2716 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 2717 } else { 2718 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 2719 } 2720 Specialization = Partial; 2721 2722 // Check that all of the template parameters of the class template 2723 // partial specialization are deducible from the template 2724 // arguments. If not, this class template partial specialization 2725 // will never be used. 2726 llvm::SmallVector<bool, 8> DeducibleParams; 2727 DeducibleParams.resize(TemplateParams->size()); 2728 MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams); 2729 unsigned NumNonDeducible = 0; 2730 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 2731 if (!DeducibleParams[I]) 2732 ++NumNonDeducible; 2733 2734 if (NumNonDeducible) { 2735 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 2736 << (NumNonDeducible > 1) 2737 << SourceRange(TemplateNameLoc, RAngleLoc); 2738 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 2739 if (!DeducibleParams[I]) { 2740 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 2741 if (Param->getDeclName()) 2742 Diag(Param->getLocation(), 2743 diag::note_partial_spec_unused_parameter) 2744 << Param->getDeclName(); 2745 else 2746 Diag(Param->getLocation(), 2747 diag::note_partial_spec_unused_parameter) 2748 << std::string("<anonymous>"); 2749 } 2750 } 2751 } 2752 } else { 2753 // Create a new class template specialization declaration node for 2754 // this explicit specialization. 2755 Specialization 2756 = ClassTemplateSpecializationDecl::Create(Context, 2757 ClassTemplate->getDeclContext(), 2758 TemplateNameLoc, 2759 ClassTemplate, 2760 Converted, 2761 PrevDecl); 2762 2763 if (PrevDecl) { 2764 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 2765 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 2766 } else { 2767 ClassTemplate->getSpecializations().InsertNode(Specialization, 2768 InsertPos); 2769 } 2770 2771 CanonType = Context.getTypeDeclType(Specialization); 2772 } 2773 2774 // Note that this is an explicit specialization. 2775 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 2776 2777 // Check that this isn't a redefinition of this specialization. 2778 if (TUK == TUK_Definition) { 2779 if (RecordDecl *Def = Specialization->getDefinition(Context)) { 2780 // FIXME: Should also handle explicit specialization after implicit 2781 // instantiation with a special diagnostic. 2782 SourceRange Range(TemplateNameLoc, RAngleLoc); 2783 Diag(TemplateNameLoc, diag::err_redefinition) 2784 << Context.getTypeDeclType(Specialization) << Range; 2785 Diag(Def->getLocation(), diag::note_previous_definition); 2786 Specialization->setInvalidDecl(); 2787 return true; 2788 } 2789 } 2790 2791 // Build the fully-sugared type for this class template 2792 // specialization as the user wrote in the specialization 2793 // itself. This means that we'll pretty-print the type retrieved 2794 // from the specialization's declaration the way that the user 2795 // actually wrote the specialization, rather than formatting the 2796 // name based on the "canonical" representation used to store the 2797 // template arguments in the specialization. 2798 QualType WrittenTy 2799 = Context.getTemplateSpecializationType(Name, 2800 TemplateArgs.data(), 2801 TemplateArgs.size(), 2802 CanonType); 2803 Specialization->setTypeAsWritten(WrittenTy); 2804 TemplateArgsIn.release(); 2805 2806 // C++ [temp.expl.spec]p9: 2807 // A template explicit specialization is in the scope of the 2808 // namespace in which the template was defined. 2809 // 2810 // We actually implement this paragraph where we set the semantic 2811 // context (in the creation of the ClassTemplateSpecializationDecl), 2812 // but we also maintain the lexical context where the actual 2813 // definition occurs. 2814 Specialization->setLexicalDeclContext(CurContext); 2815 2816 // We may be starting the definition of this specialization. 2817 if (TUK == TUK_Definition) 2818 Specialization->startDefinition(); 2819 2820 // Add the specialization into its lexical context, so that it can 2821 // be seen when iterating through the list of declarations in that 2822 // context. However, specializations are not found by name lookup. 2823 CurContext->addDecl(Specialization); 2824 return DeclPtrTy::make(Specialization); 2825} 2826 2827Sema::DeclPtrTy 2828Sema::ActOnTemplateDeclarator(Scope *S, 2829 MultiTemplateParamsArg TemplateParameterLists, 2830 Declarator &D) { 2831 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 2832} 2833 2834Sema::DeclPtrTy 2835Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 2836 MultiTemplateParamsArg TemplateParameterLists, 2837 Declarator &D) { 2838 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 2839 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 2840 "Not a function declarator!"); 2841 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 2842 2843 if (FTI.hasPrototype) { 2844 // FIXME: Diagnose arguments without names in C. 2845 } 2846 2847 Scope *ParentScope = FnBodyScope->getParent(); 2848 2849 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 2850 move(TemplateParameterLists), 2851 /*IsFunctionDefinition=*/true); 2852 if (FunctionTemplateDecl *FunctionTemplate 2853 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 2854 return ActOnStartOfFunctionDef(FnBodyScope, 2855 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 2856 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 2857 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 2858 return DeclPtrTy(); 2859} 2860 2861// Explicit instantiation of a class template specialization 2862// FIXME: Implement extern template semantics 2863Sema::DeclResult 2864Sema::ActOnExplicitInstantiation(Scope *S, 2865 SourceLocation ExternLoc, 2866 SourceLocation TemplateLoc, 2867 unsigned TagSpec, 2868 SourceLocation KWLoc, 2869 const CXXScopeSpec &SS, 2870 TemplateTy TemplateD, 2871 SourceLocation TemplateNameLoc, 2872 SourceLocation LAngleLoc, 2873 ASTTemplateArgsPtr TemplateArgsIn, 2874 SourceLocation *TemplateArgLocs, 2875 SourceLocation RAngleLoc, 2876 AttributeList *Attr) { 2877 // Find the class template we're specializing 2878 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 2879 ClassTemplateDecl *ClassTemplate 2880 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 2881 2882 // Check that the specialization uses the same tag kind as the 2883 // original template. 2884 TagDecl::TagKind Kind; 2885 switch (TagSpec) { 2886 default: assert(0 && "Unknown tag type!"); 2887 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 2888 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 2889 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 2890 } 2891 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 2892 Kind, KWLoc, 2893 *ClassTemplate->getIdentifier())) { 2894 Diag(KWLoc, diag::err_use_with_wrong_tag) 2895 << ClassTemplate 2896 << CodeModificationHint::CreateReplacement(KWLoc, 2897 ClassTemplate->getTemplatedDecl()->getKindName()); 2898 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 2899 diag::note_previous_use); 2900 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 2901 } 2902 2903 // C++0x [temp.explicit]p2: 2904 // [...] An explicit instantiation shall appear in an enclosing 2905 // namespace of its template. [...] 2906 // 2907 // This is C++ DR 275. 2908 if (CheckClassTemplateSpecializationScope(ClassTemplate, 0, 2909 TemplateNameLoc, 2910 SS.getRange(), 2911 /*PartialSpecialization=*/false, 2912 /*ExplicitInstantiation=*/true)) 2913 return true; 2914 2915 // Translate the parser's template argument list in our AST format. 2916 llvm::SmallVector<TemplateArgument, 16> TemplateArgs; 2917 translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs); 2918 2919 // Check that the template argument list is well-formed for this 2920 // template. 2921 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 2922 TemplateArgs.size()); 2923 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc, 2924 TemplateArgs.data(), TemplateArgs.size(), 2925 RAngleLoc, false, Converted)) 2926 return true; 2927 2928 assert((Converted.structuredSize() == 2929 ClassTemplate->getTemplateParameters()->size()) && 2930 "Converted template argument list is too short!"); 2931 2932 // Find the class template specialization declaration that 2933 // corresponds to these arguments. 2934 llvm::FoldingSetNodeID ID; 2935 ClassTemplateSpecializationDecl::Profile(ID, 2936 Converted.getFlatArguments(), 2937 Converted.flatSize(), 2938 Context); 2939 void *InsertPos = 0; 2940 ClassTemplateSpecializationDecl *PrevDecl 2941 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 2942 2943 ClassTemplateSpecializationDecl *Specialization = 0; 2944 2945 bool SpecializationRequiresInstantiation = true; 2946 if (PrevDecl) { 2947 if (PrevDecl->getSpecializationKind() 2948 == TSK_ExplicitInstantiationDefinition) { 2949 // This particular specialization has already been declared or 2950 // instantiated. We cannot explicitly instantiate it. 2951 Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate) 2952 << Context.getTypeDeclType(PrevDecl); 2953 Diag(PrevDecl->getLocation(), 2954 diag::note_previous_explicit_instantiation); 2955 return DeclPtrTy::make(PrevDecl); 2956 } 2957 2958 if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 2959 // C++ DR 259, C++0x [temp.explicit]p4: 2960 // For a given set of template parameters, if an explicit 2961 // instantiation of a template appears after a declaration of 2962 // an explicit specialization for that template, the explicit 2963 // instantiation has no effect. 2964 if (!getLangOptions().CPlusPlus0x) { 2965 Diag(TemplateNameLoc, 2966 diag::ext_explicit_instantiation_after_specialization) 2967 << Context.getTypeDeclType(PrevDecl); 2968 Diag(PrevDecl->getLocation(), 2969 diag::note_previous_template_specialization); 2970 } 2971 2972 // Create a new class template specialization declaration node 2973 // for this explicit specialization. This node is only used to 2974 // record the existence of this explicit instantiation for 2975 // accurate reproduction of the source code; we don't actually 2976 // use it for anything, since it is semantically irrelevant. 2977 Specialization 2978 = ClassTemplateSpecializationDecl::Create(Context, 2979 ClassTemplate->getDeclContext(), 2980 TemplateNameLoc, 2981 ClassTemplate, 2982 Converted, 0); 2983 Specialization->setLexicalDeclContext(CurContext); 2984 CurContext->addDecl(Specialization); 2985 return DeclPtrTy::make(Specialization); 2986 } 2987 2988 // If we have already (implicitly) instantiated this 2989 // specialization, there is less work to do. 2990 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation) 2991 SpecializationRequiresInstantiation = false; 2992 2993 // Since the only prior class template specialization with these 2994 // arguments was referenced but not declared, reuse that 2995 // declaration node as our own, updating its source location to 2996 // reflect our new declaration. 2997 Specialization = PrevDecl; 2998 Specialization->setLocation(TemplateNameLoc); 2999 PrevDecl = 0; 3000 } else { 3001 // Create a new class template specialization declaration node for 3002 // this explicit specialization. 3003 Specialization 3004 = ClassTemplateSpecializationDecl::Create(Context, 3005 ClassTemplate->getDeclContext(), 3006 TemplateNameLoc, 3007 ClassTemplate, 3008 Converted, 0); 3009 3010 ClassTemplate->getSpecializations().InsertNode(Specialization, 3011 InsertPos); 3012 } 3013 3014 // Build the fully-sugared type for this explicit instantiation as 3015 // the user wrote in the explicit instantiation itself. This means 3016 // that we'll pretty-print the type retrieved from the 3017 // specialization's declaration the way that the user actually wrote 3018 // the explicit instantiation, rather than formatting the name based 3019 // on the "canonical" representation used to store the template 3020 // arguments in the specialization. 3021 QualType WrittenTy 3022 = Context.getTemplateSpecializationType(Name, 3023 TemplateArgs.data(), 3024 TemplateArgs.size(), 3025 Context.getTypeDeclType(Specialization)); 3026 Specialization->setTypeAsWritten(WrittenTy); 3027 TemplateArgsIn.release(); 3028 3029 // Add the explicit instantiation into its lexical context. However, 3030 // since explicit instantiations are never found by name lookup, we 3031 // just put it into the declaration context directly. 3032 Specialization->setLexicalDeclContext(CurContext); 3033 CurContext->addDecl(Specialization); 3034 3035 // C++ [temp.explicit]p3: 3036 // A definition of a class template or class member template 3037 // shall be in scope at the point of the explicit instantiation of 3038 // the class template or class member template. 3039 // 3040 // This check comes when we actually try to perform the 3041 // instantiation. 3042 TemplateSpecializationKind TSK 3043 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3044 : TSK_ExplicitInstantiationDeclaration; 3045 if (SpecializationRequiresInstantiation) 3046 InstantiateClassTemplateSpecialization(Specialization, TSK); 3047 else // Instantiate the members of this class template specialization. 3048 InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization, 3049 TSK); 3050 3051 return DeclPtrTy::make(Specialization); 3052} 3053 3054// Explicit instantiation of a member class of a class template. 3055Sema::DeclResult 3056Sema::ActOnExplicitInstantiation(Scope *S, 3057 SourceLocation ExternLoc, 3058 SourceLocation TemplateLoc, 3059 unsigned TagSpec, 3060 SourceLocation KWLoc, 3061 const CXXScopeSpec &SS, 3062 IdentifierInfo *Name, 3063 SourceLocation NameLoc, 3064 AttributeList *Attr) { 3065 3066 bool Owned = false; 3067 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 3068 KWLoc, SS, Name, NameLoc, Attr, AS_none, 3069 MultiTemplateParamsArg(*this, 0, 0), Owned); 3070 if (!TagD) 3071 return true; 3072 3073 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 3074 if (Tag->isEnum()) { 3075 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 3076 << Context.getTypeDeclType(Tag); 3077 return true; 3078 } 3079 3080 if (Tag->isInvalidDecl()) 3081 return true; 3082 3083 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 3084 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 3085 if (!Pattern) { 3086 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 3087 << Context.getTypeDeclType(Record); 3088 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 3089 return true; 3090 } 3091 3092 // C++0x [temp.explicit]p2: 3093 // [...] An explicit instantiation shall appear in an enclosing 3094 // namespace of its template. [...] 3095 // 3096 // This is C++ DR 275. 3097 if (getLangOptions().CPlusPlus0x) { 3098 // FIXME: In C++98, we would like to turn these errors into warnings, 3099 // dependent on a -Wc++0x flag. 3100 DeclContext *PatternContext 3101 = Pattern->getDeclContext()->getEnclosingNamespaceContext(); 3102 if (!CurContext->Encloses(PatternContext)) { 3103 Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope) 3104 << Record << cast<NamedDecl>(PatternContext) << SS.getRange(); 3105 Diag(Pattern->getLocation(), diag::note_previous_declaration); 3106 } 3107 } 3108 3109 TemplateSpecializationKind TSK 3110 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 3111 : TSK_ExplicitInstantiationDeclaration; 3112 3113 if (!Record->getDefinition(Context)) { 3114 // If the class has a definition, instantiate it (and all of its 3115 // members, recursively). 3116 Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context)); 3117 if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern, 3118 getTemplateInstantiationArgs(Record), 3119 TSK)) 3120 return true; 3121 } else // Instantiate all of the members of the class. 3122 InstantiateClassMembers(TemplateLoc, Record, 3123 getTemplateInstantiationArgs(Record), TSK); 3124 3125 // FIXME: We don't have any representation for explicit instantiations of 3126 // member classes. Such a representation is not needed for compilation, but it 3127 // should be available for clients that want to see all of the declarations in 3128 // the source code. 3129 return TagD; 3130} 3131 3132Sema::TypeResult 3133Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 3134 const IdentifierInfo &II, SourceLocation IdLoc) { 3135 NestedNameSpecifier *NNS 3136 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 3137 if (!NNS) 3138 return true; 3139 3140 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 3141 if (T.isNull()) 3142 return true; 3143 return T.getAsOpaquePtr(); 3144} 3145 3146Sema::TypeResult 3147Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 3148 SourceLocation TemplateLoc, TypeTy *Ty) { 3149 QualType T = GetTypeFromParser(Ty); 3150 NestedNameSpecifier *NNS 3151 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 3152 const TemplateSpecializationType *TemplateId 3153 = T->getAsTemplateSpecializationType(); 3154 assert(TemplateId && "Expected a template specialization type"); 3155 3156 if (computeDeclContext(SS, false)) { 3157 // If we can compute a declaration context, then the "typename" 3158 // keyword was superfluous. Just build a QualifiedNameType to keep 3159 // track of the nested-name-specifier. 3160 3161 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 3162 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 3163 } 3164 3165 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 3166} 3167 3168/// \brief Build the type that describes a C++ typename specifier, 3169/// e.g., "typename T::type". 3170QualType 3171Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 3172 SourceRange Range) { 3173 CXXRecordDecl *CurrentInstantiation = 0; 3174 if (NNS->isDependent()) { 3175 CurrentInstantiation = getCurrentInstantiationOf(NNS); 3176 3177 // If the nested-name-specifier does not refer to the current 3178 // instantiation, then build a typename type. 3179 if (!CurrentInstantiation) 3180 return Context.getTypenameType(NNS, &II); 3181 3182 // The nested-name-specifier refers to the current instantiation, so the 3183 // "typename" keyword itself is superfluous. In C++03, the program is 3184 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 3185 // extraneous "typename" keywords, and we retroactively apply this DR to 3186 // C++03 code. 3187 } 3188 3189 DeclContext *Ctx = 0; 3190 3191 if (CurrentInstantiation) 3192 Ctx = CurrentInstantiation; 3193 else { 3194 CXXScopeSpec SS; 3195 SS.setScopeRep(NNS); 3196 SS.setRange(Range); 3197 if (RequireCompleteDeclContext(SS)) 3198 return QualType(); 3199 3200 Ctx = computeDeclContext(SS); 3201 } 3202 assert(Ctx && "No declaration context?"); 3203 3204 DeclarationName Name(&II); 3205 LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName, 3206 false); 3207 unsigned DiagID = 0; 3208 Decl *Referenced = 0; 3209 switch (Result.getKind()) { 3210 case LookupResult::NotFound: 3211 if (Ctx->isTranslationUnit()) 3212 DiagID = diag::err_typename_nested_not_found_global; 3213 else 3214 DiagID = diag::err_typename_nested_not_found; 3215 break; 3216 3217 case LookupResult::Found: 3218 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) { 3219 // We found a type. Build a QualifiedNameType, since the 3220 // typename-specifier was just sugar. FIXME: Tell 3221 // QualifiedNameType that it has a "typename" prefix. 3222 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 3223 } 3224 3225 DiagID = diag::err_typename_nested_not_type; 3226 Referenced = Result.getAsDecl(); 3227 break; 3228 3229 case LookupResult::FoundOverloaded: 3230 DiagID = diag::err_typename_nested_not_type; 3231 Referenced = *Result.begin(); 3232 break; 3233 3234 case LookupResult::AmbiguousBaseSubobjectTypes: 3235 case LookupResult::AmbiguousBaseSubobjects: 3236 case LookupResult::AmbiguousReference: 3237 DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range); 3238 return QualType(); 3239 } 3240 3241 // If we get here, it's because name lookup did not find a 3242 // type. Emit an appropriate diagnostic and return an error. 3243 if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx)) 3244 Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx; 3245 else 3246 Diag(Range.getEnd(), DiagID) << Range << Name; 3247 if (Referenced) 3248 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 3249 << Name; 3250 return QualType(); 3251} 3252 3253namespace { 3254 // See Sema::RebuildTypeInCurrentInstantiation 3255 class VISIBILITY_HIDDEN CurrentInstantiationRebuilder 3256 : public TreeTransform<CurrentInstantiationRebuilder> 3257 { 3258 SourceLocation Loc; 3259 DeclarationName Entity; 3260 3261 public: 3262 CurrentInstantiationRebuilder(Sema &SemaRef, 3263 SourceLocation Loc, 3264 DeclarationName Entity) 3265 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 3266 Loc(Loc), Entity(Entity) { } 3267 3268 /// \brief Determine whether the given type \p T has already been 3269 /// transformed. 3270 /// 3271 /// For the purposes of type reconstruction, a type has already been 3272 /// transformed if it is NULL or if it is not dependent. 3273 bool AlreadyTransformed(QualType T) { 3274 return T.isNull() || !T->isDependentType(); 3275 } 3276 3277 /// \brief Returns the location of the entity whose type is being 3278 /// rebuilt. 3279 SourceLocation getBaseLocation() { return Loc; } 3280 3281 /// \brief Returns the name of the entity whose type is being rebuilt. 3282 DeclarationName getBaseEntity() { return Entity; } 3283 3284 /// \brief Transforms an expression by returning the expression itself 3285 /// (an identity function). 3286 /// 3287 /// FIXME: This is completely unsafe; we will need to actually clone the 3288 /// expressions. 3289 Sema::OwningExprResult TransformExpr(Expr *E) { 3290 return getSema().Owned(E); 3291 } 3292 3293 /// \brief Transforms a typename type by determining whether the type now 3294 /// refers to a member of the current instantiation, and then 3295 /// type-checking and building a QualifiedNameType (when possible). 3296 QualType TransformTypenameType(const TypenameType *T); 3297 }; 3298} 3299 3300QualType 3301CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) { 3302 NestedNameSpecifier *NNS 3303 = TransformNestedNameSpecifier(T->getQualifier(), 3304 /*FIXME:*/SourceRange(getBaseLocation())); 3305 if (!NNS) 3306 return QualType(); 3307 3308 // If the nested-name-specifier did not change, and we cannot compute the 3309 // context corresponding to the nested-name-specifier, then this 3310 // typename type will not change; exit early. 3311 CXXScopeSpec SS; 3312 SS.setRange(SourceRange(getBaseLocation())); 3313 SS.setScopeRep(NNS); 3314 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 3315 return QualType(T, 0); 3316 3317 // Rebuild the typename type, which will probably turn into a 3318 // QualifiedNameType. 3319 if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 3320 QualType NewTemplateId 3321 = TransformType(QualType(TemplateId, 0)); 3322 if (NewTemplateId.isNull()) 3323 return QualType(); 3324 3325 if (NNS == T->getQualifier() && 3326 NewTemplateId == QualType(TemplateId, 0)) 3327 return QualType(T, 0); 3328 3329 return getDerived().RebuildTypenameType(NNS, NewTemplateId); 3330 } 3331 3332 return getDerived().RebuildTypenameType(NNS, T->getIdentifier()); 3333} 3334 3335/// \brief Rebuilds a type within the context of the current instantiation. 3336/// 3337/// The type \p T is part of the type of an out-of-line member definition of 3338/// a class template (or class template partial specialization) that was parsed 3339/// and constructed before we entered the scope of the class template (or 3340/// partial specialization thereof). This routine will rebuild that type now 3341/// that we have entered the declarator's scope, which may produce different 3342/// canonical types, e.g., 3343/// 3344/// \code 3345/// template<typename T> 3346/// struct X { 3347/// typedef T* pointer; 3348/// pointer data(); 3349/// }; 3350/// 3351/// template<typename T> 3352/// typename X<T>::pointer X<T>::data() { ... } 3353/// \endcode 3354/// 3355/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 3356/// since we do not know that we can look into X<T> when we parsed the type. 3357/// This function will rebuild the type, performing the lookup of "pointer" 3358/// in X<T> and returning a QualifiedNameType whose canonical type is the same 3359/// as the canonical type of T*, allowing the return types of the out-of-line 3360/// definition and the declaration to match. 3361QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 3362 DeclarationName Name) { 3363 if (T.isNull() || !T->isDependentType()) 3364 return T; 3365 3366 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 3367 return Rebuilder.TransformType(T); 3368} 3369