SemaTemplate.cpp revision 6cd8087e66d706f2317865f86c865fd9bc6969c9
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 31 NamedDecl *Orig) { 32 NamedDecl *D = Orig->getUnderlyingDecl(); 33 34 if (isa<TemplateDecl>(D)) 35 return Orig; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 // The set of class templates we've already seen. 67 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 68 LookupResult::Filter filter = R.makeFilter(); 69 while (filter.hasNext()) { 70 NamedDecl *Orig = filter.next(); 71 NamedDecl *Repl = isAcceptableTemplateName(C, Orig); 72 if (!Repl) 73 filter.erase(); 74 else if (Repl != Orig) { 75 76 // C++ [temp.local]p3: 77 // A lookup that finds an injected-class-name (10.2) can result in an 78 // ambiguity in certain cases (for example, if it is found in more than 79 // one base class). If all of the injected-class-names that are found 80 // refer to specializations of the same class template, and if the name 81 // is followed by a template-argument-list, the reference refers to the 82 // class template itself and not a specialization thereof, and is not 83 // ambiguous. 84 // 85 // FIXME: Will we eventually have to do the same for alias templates? 86 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 87 if (!ClassTemplates.insert(ClassTmpl)) { 88 filter.erase(); 89 continue; 90 } 91 92 filter.replace(Repl); 93 } 94 } 95 filter.done(); 96} 97 98TemplateNameKind Sema::isTemplateName(Scope *S, 99 CXXScopeSpec &SS, 100 UnqualifiedId &Name, 101 TypeTy *ObjectTypePtr, 102 bool EnteringContext, 103 TemplateTy &TemplateResult, 104 bool &MemberOfUnknownSpecialization) { 105 assert(getLangOptions().CPlusPlus && "No template names in C!"); 106 107 DeclarationName TName; 108 MemberOfUnknownSpecialization = false; 109 110 switch (Name.getKind()) { 111 case UnqualifiedId::IK_Identifier: 112 TName = DeclarationName(Name.Identifier); 113 break; 114 115 case UnqualifiedId::IK_OperatorFunctionId: 116 TName = Context.DeclarationNames.getCXXOperatorName( 117 Name.OperatorFunctionId.Operator); 118 break; 119 120 case UnqualifiedId::IK_LiteralOperatorId: 121 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 122 break; 123 124 default: 125 return TNK_Non_template; 126 } 127 128 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 129 130 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 131 LookupOrdinaryName); 132 R.suppressDiagnostics(); 133 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 134 MemberOfUnknownSpecialization); 135 if (R.empty() || R.isAmbiguous()) 136 return TNK_Non_template; 137 138 TemplateName Template; 139 TemplateNameKind TemplateKind; 140 141 unsigned ResultCount = R.end() - R.begin(); 142 if (ResultCount > 1) { 143 // We assume that we'll preserve the qualifier from a function 144 // template name in other ways. 145 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 146 TemplateKind = TNK_Function_template; 147 } else { 148 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 149 150 if (SS.isSet() && !SS.isInvalid()) { 151 NestedNameSpecifier *Qualifier 152 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 153 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 154 } else { 155 Template = TemplateName(TD); 156 } 157 158 if (isa<FunctionTemplateDecl>(TD)) 159 TemplateKind = TNK_Function_template; 160 else { 161 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 162 TemplateKind = TNK_Type_template; 163 } 164 } 165 166 TemplateResult = TemplateTy::make(Template); 167 return TemplateKind; 168} 169 170bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 171 SourceLocation IILoc, 172 Scope *S, 173 const CXXScopeSpec *SS, 174 TemplateTy &SuggestedTemplate, 175 TemplateNameKind &SuggestedKind) { 176 // We can't recover unless there's a dependent scope specifier preceding the 177 // template name. 178 // FIXME: Typo correction? 179 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 180 computeDeclContext(*SS)) 181 return false; 182 183 // The code is missing a 'template' keyword prior to the dependent template 184 // name. 185 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 186 Diag(IILoc, diag::err_template_kw_missing) 187 << Qualifier << II.getName() 188 << FixItHint::CreateInsertion(IILoc, "template "); 189 SuggestedTemplate 190 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 191 SuggestedKind = TNK_Dependent_template_name; 192 return true; 193} 194 195void Sema::LookupTemplateName(LookupResult &Found, 196 Scope *S, CXXScopeSpec &SS, 197 QualType ObjectType, 198 bool EnteringContext, 199 bool &MemberOfUnknownSpecialization) { 200 // Determine where to perform name lookup 201 MemberOfUnknownSpecialization = false; 202 DeclContext *LookupCtx = 0; 203 bool isDependent = false; 204 if (!ObjectType.isNull()) { 205 // This nested-name-specifier occurs in a member access expression, e.g., 206 // x->B::f, and we are looking into the type of the object. 207 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 208 LookupCtx = computeDeclContext(ObjectType); 209 isDependent = ObjectType->isDependentType(); 210 assert((isDependent || !ObjectType->isIncompleteType()) && 211 "Caller should have completed object type"); 212 } else if (SS.isSet()) { 213 // This nested-name-specifier occurs after another nested-name-specifier, 214 // so long into the context associated with the prior nested-name-specifier. 215 LookupCtx = computeDeclContext(SS, EnteringContext); 216 isDependent = isDependentScopeSpecifier(SS); 217 218 // The declaration context must be complete. 219 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 220 return; 221 } 222 223 bool ObjectTypeSearchedInScope = false; 224 if (LookupCtx) { 225 // Perform "qualified" name lookup into the declaration context we 226 // computed, which is either the type of the base of a member access 227 // expression or the declaration context associated with a prior 228 // nested-name-specifier. 229 LookupQualifiedName(Found, LookupCtx); 230 231 if (!ObjectType.isNull() && Found.empty()) { 232 // C++ [basic.lookup.classref]p1: 233 // In a class member access expression (5.2.5), if the . or -> token is 234 // immediately followed by an identifier followed by a <, the 235 // identifier must be looked up to determine whether the < is the 236 // beginning of a template argument list (14.2) or a less-than operator. 237 // The identifier is first looked up in the class of the object 238 // expression. If the identifier is not found, it is then looked up in 239 // the context of the entire postfix-expression and shall name a class 240 // or function template. 241 // 242 // FIXME: When we're instantiating a template, do we actually have to 243 // look in the scope of the template? Seems fishy... 244 if (S) LookupName(Found, S); 245 ObjectTypeSearchedInScope = true; 246 } 247 } else if (isDependent) { 248 // We cannot look into a dependent object type or nested nme 249 // specifier. 250 MemberOfUnknownSpecialization = true; 251 return; 252 } else { 253 // Perform unqualified name lookup in the current scope. 254 LookupName(Found, S); 255 } 256 257 if (Found.empty() && !isDependent) { 258 // If we did not find any names, attempt to correct any typos. 259 DeclarationName Name = Found.getLookupName(); 260 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 261 false, CTC_CXXCasts)) { 262 FilterAcceptableTemplateNames(Context, Found); 263 if (!Found.empty()) { 264 if (LookupCtx) 265 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 266 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 267 << FixItHint::CreateReplacement(Found.getNameLoc(), 268 Found.getLookupName().getAsString()); 269 else 270 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 271 << Name << Found.getLookupName() 272 << FixItHint::CreateReplacement(Found.getNameLoc(), 273 Found.getLookupName().getAsString()); 274 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 275 Diag(Template->getLocation(), diag::note_previous_decl) 276 << Template->getDeclName(); 277 } 278 } else { 279 Found.clear(); 280 } 281 } 282 283 FilterAcceptableTemplateNames(Context, Found); 284 if (Found.empty()) 285 return; 286 287 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 288 // C++ [basic.lookup.classref]p1: 289 // [...] If the lookup in the class of the object expression finds a 290 // template, the name is also looked up in the context of the entire 291 // postfix-expression and [...] 292 // 293 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 294 LookupOrdinaryName); 295 LookupName(FoundOuter, S); 296 FilterAcceptableTemplateNames(Context, FoundOuter); 297 298 if (FoundOuter.empty()) { 299 // - if the name is not found, the name found in the class of the 300 // object expression is used, otherwise 301 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 302 // - if the name is found in the context of the entire 303 // postfix-expression and does not name a class template, the name 304 // found in the class of the object expression is used, otherwise 305 } else if (!Found.isSuppressingDiagnostics()) { 306 // - if the name found is a class template, it must refer to the same 307 // entity as the one found in the class of the object expression, 308 // otherwise the program is ill-formed. 309 if (!Found.isSingleResult() || 310 Found.getFoundDecl()->getCanonicalDecl() 311 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 312 Diag(Found.getNameLoc(), 313 diag::ext_nested_name_member_ref_lookup_ambiguous) 314 << Found.getLookupName() 315 << ObjectType; 316 Diag(Found.getRepresentativeDecl()->getLocation(), 317 diag::note_ambig_member_ref_object_type) 318 << ObjectType; 319 Diag(FoundOuter.getFoundDecl()->getLocation(), 320 diag::note_ambig_member_ref_scope); 321 322 // Recover by taking the template that we found in the object 323 // expression's type. 324 } 325 } 326 } 327} 328 329/// ActOnDependentIdExpression - Handle a dependent id-expression that 330/// was just parsed. This is only possible with an explicit scope 331/// specifier naming a dependent type. 332Sema::OwningExprResult 333Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 334 DeclarationName Name, 335 SourceLocation NameLoc, 336 bool isAddressOfOperand, 337 const TemplateArgumentListInfo *TemplateArgs) { 338 NestedNameSpecifier *Qualifier 339 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 340 341 DeclContext *DC = getFunctionLevelDeclContext(); 342 343 if (!isAddressOfOperand && 344 isa<CXXMethodDecl>(DC) && 345 cast<CXXMethodDecl>(DC)->isInstance()) { 346 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 347 348 // Since the 'this' expression is synthesized, we don't need to 349 // perform the double-lookup check. 350 NamedDecl *FirstQualifierInScope = 0; 351 352 return Owned(CXXDependentScopeMemberExpr::Create(Context, 353 /*This*/ 0, ThisType, 354 /*IsArrow*/ true, 355 /*Op*/ SourceLocation(), 356 Qualifier, SS.getRange(), 357 FirstQualifierInScope, 358 Name, NameLoc, 359 TemplateArgs)); 360 } 361 362 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 363} 364 365Sema::OwningExprResult 366Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 367 DeclarationName Name, 368 SourceLocation NameLoc, 369 const TemplateArgumentListInfo *TemplateArgs) { 370 return Owned(DependentScopeDeclRefExpr::Create(Context, 371 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 372 SS.getRange(), 373 Name, NameLoc, 374 TemplateArgs)); 375} 376 377/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 378/// that the template parameter 'PrevDecl' is being shadowed by a new 379/// declaration at location Loc. Returns true to indicate that this is 380/// an error, and false otherwise. 381bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 382 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 383 384 // Microsoft Visual C++ permits template parameters to be shadowed. 385 if (getLangOptions().Microsoft) 386 return false; 387 388 // C++ [temp.local]p4: 389 // A template-parameter shall not be redeclared within its 390 // scope (including nested scopes). 391 Diag(Loc, diag::err_template_param_shadow) 392 << cast<NamedDecl>(PrevDecl)->getDeclName(); 393 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 394 return true; 395} 396 397/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 398/// the parameter D to reference the templated declaration and return a pointer 399/// to the template declaration. Otherwise, do nothing to D and return null. 400TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 401 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 402 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 403 return Temp; 404 } 405 return 0; 406} 407 408static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 409 const ParsedTemplateArgument &Arg) { 410 411 switch (Arg.getKind()) { 412 case ParsedTemplateArgument::Type: { 413 TypeSourceInfo *DI; 414 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 415 if (!DI) 416 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 417 return TemplateArgumentLoc(TemplateArgument(T), DI); 418 } 419 420 case ParsedTemplateArgument::NonType: { 421 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 422 return TemplateArgumentLoc(TemplateArgument(E), E); 423 } 424 425 case ParsedTemplateArgument::Template: { 426 TemplateName Template 427 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 428 return TemplateArgumentLoc(TemplateArgument(Template), 429 Arg.getScopeSpec().getRange(), 430 Arg.getLocation()); 431 } 432 } 433 434 llvm_unreachable("Unhandled parsed template argument"); 435 return TemplateArgumentLoc(); 436} 437 438/// \brief Translates template arguments as provided by the parser 439/// into template arguments used by semantic analysis. 440void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 441 TemplateArgumentListInfo &TemplateArgs) { 442 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 443 TemplateArgs.addArgument(translateTemplateArgument(*this, 444 TemplateArgsIn[I])); 445} 446 447/// ActOnTypeParameter - Called when a C++ template type parameter 448/// (e.g., "typename T") has been parsed. Typename specifies whether 449/// the keyword "typename" was used to declare the type parameter 450/// (otherwise, "class" was used), and KeyLoc is the location of the 451/// "class" or "typename" keyword. ParamName is the name of the 452/// parameter (NULL indicates an unnamed template parameter) and 453/// ParamNameLoc is the location of the parameter name (if any). 454/// If the type parameter has a default argument, it will be added 455/// later via ActOnTypeParameterDefault. 456Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 457 SourceLocation EllipsisLoc, 458 SourceLocation KeyLoc, 459 IdentifierInfo *ParamName, 460 SourceLocation ParamNameLoc, 461 unsigned Depth, unsigned Position) { 462 assert(S->isTemplateParamScope() && 463 "Template type parameter not in template parameter scope!"); 464 bool Invalid = false; 465 466 if (ParamName) { 467 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 468 LookupOrdinaryName, 469 ForRedeclaration); 470 if (PrevDecl && PrevDecl->isTemplateParameter()) 471 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 472 PrevDecl); 473 } 474 475 SourceLocation Loc = ParamNameLoc; 476 if (!ParamName) 477 Loc = KeyLoc; 478 479 TemplateTypeParmDecl *Param 480 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 481 Loc, Depth, Position, ParamName, Typename, 482 Ellipsis); 483 if (Invalid) 484 Param->setInvalidDecl(); 485 486 if (ParamName) { 487 // Add the template parameter into the current scope. 488 S->AddDecl(DeclPtrTy::make(Param)); 489 IdResolver.AddDecl(Param); 490 } 491 492 return DeclPtrTy::make(Param); 493} 494 495/// ActOnTypeParameterDefault - Adds a default argument (the type 496/// Default) to the given template type parameter (TypeParam). 497void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 498 SourceLocation EqualLoc, 499 SourceLocation DefaultLoc, 500 TypeTy *DefaultT) { 501 TemplateTypeParmDecl *Parm 502 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 503 504 TypeSourceInfo *DefaultTInfo; 505 GetTypeFromParser(DefaultT, &DefaultTInfo); 506 507 assert(DefaultTInfo && "expected source information for type"); 508 509 // C++0x [temp.param]p9: 510 // A default template-argument may be specified for any kind of 511 // template-parameter that is not a template parameter pack. 512 if (Parm->isParameterPack()) { 513 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 514 return; 515 } 516 517 // C++ [temp.param]p14: 518 // A template-parameter shall not be used in its own default argument. 519 // FIXME: Implement this check! Needs a recursive walk over the types. 520 521 // Check the template argument itself. 522 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 523 Parm->setInvalidDecl(); 524 return; 525 } 526 527 Parm->setDefaultArgument(DefaultTInfo, false); 528} 529 530/// \brief Check that the type of a non-type template parameter is 531/// well-formed. 532/// 533/// \returns the (possibly-promoted) parameter type if valid; 534/// otherwise, produces a diagnostic and returns a NULL type. 535QualType 536Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 537 // We don't allow variably-modified types as the type of non-type template 538 // parameters. 539 if (T->isVariablyModifiedType()) { 540 Diag(Loc, diag::err_variably_modified_nontype_template_param) 541 << T; 542 return QualType(); 543 } 544 545 // C++ [temp.param]p4: 546 // 547 // A non-type template-parameter shall have one of the following 548 // (optionally cv-qualified) types: 549 // 550 // -- integral or enumeration type, 551 if (T->isIntegralOrEnumerationType() || 552 // -- pointer to object or pointer to function, 553 (T->isPointerType() && 554 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 555 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 556 // -- reference to object or reference to function, 557 T->isReferenceType() || 558 // -- pointer to member. 559 T->isMemberPointerType() || 560 // If T is a dependent type, we can't do the check now, so we 561 // assume that it is well-formed. 562 T->isDependentType()) 563 return T; 564 // C++ [temp.param]p8: 565 // 566 // A non-type template-parameter of type "array of T" or 567 // "function returning T" is adjusted to be of type "pointer to 568 // T" or "pointer to function returning T", respectively. 569 else if (T->isArrayType()) 570 // FIXME: Keep the type prior to promotion? 571 return Context.getArrayDecayedType(T); 572 else if (T->isFunctionType()) 573 // FIXME: Keep the type prior to promotion? 574 return Context.getPointerType(T); 575 576 Diag(Loc, diag::err_template_nontype_parm_bad_type) 577 << T; 578 579 return QualType(); 580} 581 582/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 583/// template parameter (e.g., "int Size" in "template<int Size> 584/// class Array") has been parsed. S is the current scope and D is 585/// the parsed declarator. 586Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 587 unsigned Depth, 588 unsigned Position) { 589 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 590 QualType T = TInfo->getType(); 591 592 assert(S->isTemplateParamScope() && 593 "Non-type template parameter not in template parameter scope!"); 594 bool Invalid = false; 595 596 IdentifierInfo *ParamName = D.getIdentifier(); 597 if (ParamName) { 598 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 599 LookupOrdinaryName, 600 ForRedeclaration); 601 if (PrevDecl && PrevDecl->isTemplateParameter()) 602 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 603 PrevDecl); 604 } 605 606 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 607 if (T.isNull()) { 608 T = Context.IntTy; // Recover with an 'int' type. 609 Invalid = true; 610 } 611 612 NonTypeTemplateParmDecl *Param 613 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 614 D.getIdentifierLoc(), 615 Depth, Position, ParamName, T, TInfo); 616 if (Invalid) 617 Param->setInvalidDecl(); 618 619 if (D.getIdentifier()) { 620 // Add the template parameter into the current scope. 621 S->AddDecl(DeclPtrTy::make(Param)); 622 IdResolver.AddDecl(Param); 623 } 624 return DeclPtrTy::make(Param); 625} 626 627/// \brief Adds a default argument to the given non-type template 628/// parameter. 629void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 630 SourceLocation EqualLoc, 631 ExprArg DefaultE) { 632 NonTypeTemplateParmDecl *TemplateParm 633 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 634 Expr *Default = static_cast<Expr *>(DefaultE.get()); 635 636 // C++ [temp.param]p14: 637 // A template-parameter shall not be used in its own default argument. 638 // FIXME: Implement this check! Needs a recursive walk over the types. 639 640 // Check the well-formedness of the default template argument. 641 TemplateArgument Converted; 642 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 643 Converted)) { 644 TemplateParm->setInvalidDecl(); 645 return; 646 } 647 648 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>(), false); 649} 650 651 652/// ActOnTemplateTemplateParameter - Called when a C++ template template 653/// parameter (e.g. T in template <template <typename> class T> class array) 654/// has been parsed. S is the current scope. 655Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 656 SourceLocation TmpLoc, 657 TemplateParamsTy *Params, 658 IdentifierInfo *Name, 659 SourceLocation NameLoc, 660 unsigned Depth, 661 unsigned Position) { 662 assert(S->isTemplateParamScope() && 663 "Template template parameter not in template parameter scope!"); 664 665 // Construct the parameter object. 666 TemplateTemplateParmDecl *Param = 667 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 668 TmpLoc, Depth, Position, Name, 669 (TemplateParameterList*)Params); 670 671 // Make sure the parameter is valid. 672 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 673 // do anything yet. However, if the template parameter list or (eventual) 674 // default value is ever invalidated, that will propagate here. 675 bool Invalid = false; 676 if (Invalid) { 677 Param->setInvalidDecl(); 678 } 679 680 // If the tt-param has a name, then link the identifier into the scope 681 // and lookup mechanisms. 682 if (Name) { 683 S->AddDecl(DeclPtrTy::make(Param)); 684 IdResolver.AddDecl(Param); 685 } 686 687 return DeclPtrTy::make(Param); 688} 689 690/// \brief Adds a default argument to the given template template 691/// parameter. 692void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 693 SourceLocation EqualLoc, 694 const ParsedTemplateArgument &Default) { 695 TemplateTemplateParmDecl *TemplateParm 696 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 697 698 // C++ [temp.param]p14: 699 // A template-parameter shall not be used in its own default argument. 700 // FIXME: Implement this check! Needs a recursive walk over the types. 701 702 // Check only that we have a template template argument. We don't want to 703 // try to check well-formedness now, because our template template parameter 704 // might have dependent types in its template parameters, which we wouldn't 705 // be able to match now. 706 // 707 // If none of the template template parameter's template arguments mention 708 // other template parameters, we could actually perform more checking here. 709 // However, it isn't worth doing. 710 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 711 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 712 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 713 << DefaultArg.getSourceRange(); 714 return; 715 } 716 717 TemplateParm->setDefaultArgument(DefaultArg, false); 718} 719 720/// ActOnTemplateParameterList - Builds a TemplateParameterList that 721/// contains the template parameters in Params/NumParams. 722Sema::TemplateParamsTy * 723Sema::ActOnTemplateParameterList(unsigned Depth, 724 SourceLocation ExportLoc, 725 SourceLocation TemplateLoc, 726 SourceLocation LAngleLoc, 727 DeclPtrTy *Params, unsigned NumParams, 728 SourceLocation RAngleLoc) { 729 if (ExportLoc.isValid()) 730 Diag(ExportLoc, diag::warn_template_export_unsupported); 731 732 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 733 (NamedDecl**)Params, NumParams, 734 RAngleLoc); 735} 736 737static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 738 if (SS.isSet()) 739 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 740 SS.getRange()); 741} 742 743Sema::DeclResult 744Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 745 SourceLocation KWLoc, CXXScopeSpec &SS, 746 IdentifierInfo *Name, SourceLocation NameLoc, 747 AttributeList *Attr, 748 TemplateParameterList *TemplateParams, 749 AccessSpecifier AS) { 750 assert(TemplateParams && TemplateParams->size() > 0 && 751 "No template parameters"); 752 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 753 bool Invalid = false; 754 755 // Check that we can declare a template here. 756 if (CheckTemplateDeclScope(S, TemplateParams)) 757 return true; 758 759 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 760 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 761 762 // There is no such thing as an unnamed class template. 763 if (!Name) { 764 Diag(KWLoc, diag::err_template_unnamed_class); 765 return true; 766 } 767 768 // Find any previous declaration with this name. 769 DeclContext *SemanticContext; 770 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 771 ForRedeclaration); 772 if (SS.isNotEmpty() && !SS.isInvalid()) { 773 SemanticContext = computeDeclContext(SS, true); 774 if (!SemanticContext) { 775 // FIXME: Produce a reasonable diagnostic here 776 return true; 777 } 778 779 if (RequireCompleteDeclContext(SS, SemanticContext)) 780 return true; 781 782 LookupQualifiedName(Previous, SemanticContext); 783 } else { 784 SemanticContext = CurContext; 785 LookupName(Previous, S); 786 } 787 788 if (Previous.isAmbiguous()) 789 return true; 790 791 NamedDecl *PrevDecl = 0; 792 if (Previous.begin() != Previous.end()) 793 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 794 795 // If there is a previous declaration with the same name, check 796 // whether this is a valid redeclaration. 797 ClassTemplateDecl *PrevClassTemplate 798 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 799 800 // We may have found the injected-class-name of a class template, 801 // class template partial specialization, or class template specialization. 802 // In these cases, grab the template that is being defined or specialized. 803 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 804 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 805 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 806 PrevClassTemplate 807 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 808 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 809 PrevClassTemplate 810 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 811 ->getSpecializedTemplate(); 812 } 813 } 814 815 if (TUK == TUK_Friend) { 816 // C++ [namespace.memdef]p3: 817 // [...] When looking for a prior declaration of a class or a function 818 // declared as a friend, and when the name of the friend class or 819 // function is neither a qualified name nor a template-id, scopes outside 820 // the innermost enclosing namespace scope are not considered. 821 if (!SS.isSet()) { 822 DeclContext *OutermostContext = CurContext; 823 while (!OutermostContext->isFileContext()) 824 OutermostContext = OutermostContext->getLookupParent(); 825 826 if (PrevDecl && 827 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 828 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 829 SemanticContext = PrevDecl->getDeclContext(); 830 } else { 831 // Declarations in outer scopes don't matter. However, the outermost 832 // context we computed is the semantic context for our new 833 // declaration. 834 PrevDecl = PrevClassTemplate = 0; 835 SemanticContext = OutermostContext; 836 } 837 } 838 839 if (CurContext->isDependentContext()) { 840 // If this is a dependent context, we don't want to link the friend 841 // class template to the template in scope, because that would perform 842 // checking of the template parameter lists that can't be performed 843 // until the outer context is instantiated. 844 PrevDecl = PrevClassTemplate = 0; 845 } 846 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 847 PrevDecl = PrevClassTemplate = 0; 848 849 if (PrevClassTemplate) { 850 // Ensure that the template parameter lists are compatible. 851 if (!TemplateParameterListsAreEqual(TemplateParams, 852 PrevClassTemplate->getTemplateParameters(), 853 /*Complain=*/true, 854 TPL_TemplateMatch)) 855 return true; 856 857 // C++ [temp.class]p4: 858 // In a redeclaration, partial specialization, explicit 859 // specialization or explicit instantiation of a class template, 860 // the class-key shall agree in kind with the original class 861 // template declaration (7.1.5.3). 862 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 863 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 864 Diag(KWLoc, diag::err_use_with_wrong_tag) 865 << Name 866 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 867 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 868 Kind = PrevRecordDecl->getTagKind(); 869 } 870 871 // Check for redefinition of this class template. 872 if (TUK == TUK_Definition) { 873 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 874 Diag(NameLoc, diag::err_redefinition) << Name; 875 Diag(Def->getLocation(), diag::note_previous_definition); 876 // FIXME: Would it make sense to try to "forget" the previous 877 // definition, as part of error recovery? 878 return true; 879 } 880 } 881 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 882 // Maybe we will complain about the shadowed template parameter. 883 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 884 // Just pretend that we didn't see the previous declaration. 885 PrevDecl = 0; 886 } else if (PrevDecl) { 887 // C++ [temp]p5: 888 // A class template shall not have the same name as any other 889 // template, class, function, object, enumeration, enumerator, 890 // namespace, or type in the same scope (3.3), except as specified 891 // in (14.5.4). 892 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 893 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 894 return true; 895 } 896 897 // Check the template parameter list of this declaration, possibly 898 // merging in the template parameter list from the previous class 899 // template declaration. 900 if (CheckTemplateParameterList(TemplateParams, 901 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 902 TPC_ClassTemplate)) 903 Invalid = true; 904 905 if (SS.isSet()) { 906 // If the name of the template was qualified, we must be defining the 907 // template out-of-line. 908 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 909 !(TUK == TUK_Friend && CurContext->isDependentContext())) 910 Diag(NameLoc, diag::err_member_def_does_not_match) 911 << Name << SemanticContext << SS.getRange(); 912 } 913 914 CXXRecordDecl *NewClass = 915 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 916 PrevClassTemplate? 917 PrevClassTemplate->getTemplatedDecl() : 0, 918 /*DelayTypeCreation=*/true); 919 SetNestedNameSpecifier(NewClass, SS); 920 921 ClassTemplateDecl *NewTemplate 922 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 923 DeclarationName(Name), TemplateParams, 924 NewClass, PrevClassTemplate); 925 NewClass->setDescribedClassTemplate(NewTemplate); 926 927 // Build the type for the class template declaration now. 928 QualType T = NewTemplate->getInjectedClassNameSpecialization(Context); 929 T = Context.getInjectedClassNameType(NewClass, T); 930 assert(T->isDependentType() && "Class template type is not dependent?"); 931 (void)T; 932 933 // If we are providing an explicit specialization of a member that is a 934 // class template, make a note of that. 935 if (PrevClassTemplate && 936 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 937 PrevClassTemplate->setMemberSpecialization(); 938 939 // Set the access specifier. 940 if (!Invalid && TUK != TUK_Friend) 941 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 942 943 // Set the lexical context of these templates 944 NewClass->setLexicalDeclContext(CurContext); 945 NewTemplate->setLexicalDeclContext(CurContext); 946 947 if (TUK == TUK_Definition) 948 NewClass->startDefinition(); 949 950 if (Attr) 951 ProcessDeclAttributeList(S, NewClass, Attr); 952 953 if (TUK != TUK_Friend) 954 PushOnScopeChains(NewTemplate, S); 955 else { 956 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 957 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 958 NewClass->setAccess(PrevClassTemplate->getAccess()); 959 } 960 961 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 962 PrevClassTemplate != NULL); 963 964 // Friend templates are visible in fairly strange ways. 965 if (!CurContext->isDependentContext()) { 966 DeclContext *DC = SemanticContext->getLookupContext(); 967 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 968 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 969 PushOnScopeChains(NewTemplate, EnclosingScope, 970 /* AddToContext = */ false); 971 } 972 973 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 974 NewClass->getLocation(), 975 NewTemplate, 976 /*FIXME:*/NewClass->getLocation()); 977 Friend->setAccess(AS_public); 978 CurContext->addDecl(Friend); 979 } 980 981 if (Invalid) { 982 NewTemplate->setInvalidDecl(); 983 NewClass->setInvalidDecl(); 984 } 985 return DeclPtrTy::make(NewTemplate); 986} 987 988/// \brief Diagnose the presence of a default template argument on a 989/// template parameter, which is ill-formed in certain contexts. 990/// 991/// \returns true if the default template argument should be dropped. 992static bool DiagnoseDefaultTemplateArgument(Sema &S, 993 Sema::TemplateParamListContext TPC, 994 SourceLocation ParamLoc, 995 SourceRange DefArgRange) { 996 switch (TPC) { 997 case Sema::TPC_ClassTemplate: 998 return false; 999 1000 case Sema::TPC_FunctionTemplate: 1001 // C++ [temp.param]p9: 1002 // A default template-argument shall not be specified in a 1003 // function template declaration or a function template 1004 // definition [...] 1005 // (This sentence is not in C++0x, per DR226). 1006 if (!S.getLangOptions().CPlusPlus0x) 1007 S.Diag(ParamLoc, 1008 diag::err_template_parameter_default_in_function_template) 1009 << DefArgRange; 1010 return false; 1011 1012 case Sema::TPC_ClassTemplateMember: 1013 // C++0x [temp.param]p9: 1014 // A default template-argument shall not be specified in the 1015 // template-parameter-lists of the definition of a member of a 1016 // class template that appears outside of the member's class. 1017 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1018 << DefArgRange; 1019 return true; 1020 1021 case Sema::TPC_FriendFunctionTemplate: 1022 // C++ [temp.param]p9: 1023 // A default template-argument shall not be specified in a 1024 // friend template declaration. 1025 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1026 << DefArgRange; 1027 return true; 1028 1029 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1030 // for friend function templates if there is only a single 1031 // declaration (and it is a definition). Strange! 1032 } 1033 1034 return false; 1035} 1036 1037/// \brief Checks the validity of a template parameter list, possibly 1038/// considering the template parameter list from a previous 1039/// declaration. 1040/// 1041/// If an "old" template parameter list is provided, it must be 1042/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1043/// template parameter list. 1044/// 1045/// \param NewParams Template parameter list for a new template 1046/// declaration. This template parameter list will be updated with any 1047/// default arguments that are carried through from the previous 1048/// template parameter list. 1049/// 1050/// \param OldParams If provided, template parameter list from a 1051/// previous declaration of the same template. Default template 1052/// arguments will be merged from the old template parameter list to 1053/// the new template parameter list. 1054/// 1055/// \param TPC Describes the context in which we are checking the given 1056/// template parameter list. 1057/// 1058/// \returns true if an error occurred, false otherwise. 1059bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1060 TemplateParameterList *OldParams, 1061 TemplateParamListContext TPC) { 1062 bool Invalid = false; 1063 1064 // C++ [temp.param]p10: 1065 // The set of default template-arguments available for use with a 1066 // template declaration or definition is obtained by merging the 1067 // default arguments from the definition (if in scope) and all 1068 // declarations in scope in the same way default function 1069 // arguments are (8.3.6). 1070 bool SawDefaultArgument = false; 1071 SourceLocation PreviousDefaultArgLoc; 1072 1073 bool SawParameterPack = false; 1074 SourceLocation ParameterPackLoc; 1075 1076 // Dummy initialization to avoid warnings. 1077 TemplateParameterList::iterator OldParam = NewParams->end(); 1078 if (OldParams) 1079 OldParam = OldParams->begin(); 1080 1081 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1082 NewParamEnd = NewParams->end(); 1083 NewParam != NewParamEnd; ++NewParam) { 1084 // Variables used to diagnose redundant default arguments 1085 bool RedundantDefaultArg = false; 1086 SourceLocation OldDefaultLoc; 1087 SourceLocation NewDefaultLoc; 1088 1089 // Variables used to diagnose missing default arguments 1090 bool MissingDefaultArg = false; 1091 1092 // C++0x [temp.param]p11: 1093 // If a template parameter of a class template is a template parameter pack, 1094 // it must be the last template parameter. 1095 if (SawParameterPack) { 1096 Diag(ParameterPackLoc, 1097 diag::err_template_param_pack_must_be_last_template_parameter); 1098 Invalid = true; 1099 } 1100 1101 if (TemplateTypeParmDecl *NewTypeParm 1102 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1103 // Check the presence of a default argument here. 1104 if (NewTypeParm->hasDefaultArgument() && 1105 DiagnoseDefaultTemplateArgument(*this, TPC, 1106 NewTypeParm->getLocation(), 1107 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1108 .getSourceRange())) 1109 NewTypeParm->removeDefaultArgument(); 1110 1111 // Merge default arguments for template type parameters. 1112 TemplateTypeParmDecl *OldTypeParm 1113 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1114 1115 if (NewTypeParm->isParameterPack()) { 1116 assert(!NewTypeParm->hasDefaultArgument() && 1117 "Parameter packs can't have a default argument!"); 1118 SawParameterPack = true; 1119 ParameterPackLoc = NewTypeParm->getLocation(); 1120 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1121 NewTypeParm->hasDefaultArgument()) { 1122 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1123 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1124 SawDefaultArgument = true; 1125 RedundantDefaultArg = true; 1126 PreviousDefaultArgLoc = NewDefaultLoc; 1127 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1128 // Merge the default argument from the old declaration to the 1129 // new declaration. 1130 SawDefaultArgument = true; 1131 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1132 true); 1133 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1134 } else if (NewTypeParm->hasDefaultArgument()) { 1135 SawDefaultArgument = true; 1136 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1137 } else if (SawDefaultArgument) 1138 MissingDefaultArg = true; 1139 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1140 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1141 // Check the presence of a default argument here. 1142 if (NewNonTypeParm->hasDefaultArgument() && 1143 DiagnoseDefaultTemplateArgument(*this, TPC, 1144 NewNonTypeParm->getLocation(), 1145 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1146 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1147 NewNonTypeParm->removeDefaultArgument(); 1148 } 1149 1150 // Merge default arguments for non-type template parameters 1151 NonTypeTemplateParmDecl *OldNonTypeParm 1152 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1153 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1154 NewNonTypeParm->hasDefaultArgument()) { 1155 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1156 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1157 SawDefaultArgument = true; 1158 RedundantDefaultArg = true; 1159 PreviousDefaultArgLoc = NewDefaultLoc; 1160 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1161 // Merge the default argument from the old declaration to the 1162 // new declaration. 1163 SawDefaultArgument = true; 1164 // FIXME: We need to create a new kind of "default argument" 1165 // expression that points to a previous template template 1166 // parameter. 1167 NewNonTypeParm->setDefaultArgument( 1168 OldNonTypeParm->getDefaultArgument(), 1169 /*Inherited=*/ true); 1170 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1171 } else if (NewNonTypeParm->hasDefaultArgument()) { 1172 SawDefaultArgument = true; 1173 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1174 } else if (SawDefaultArgument) 1175 MissingDefaultArg = true; 1176 } else { 1177 // Check the presence of a default argument here. 1178 TemplateTemplateParmDecl *NewTemplateParm 1179 = cast<TemplateTemplateParmDecl>(*NewParam); 1180 if (NewTemplateParm->hasDefaultArgument() && 1181 DiagnoseDefaultTemplateArgument(*this, TPC, 1182 NewTemplateParm->getLocation(), 1183 NewTemplateParm->getDefaultArgument().getSourceRange())) 1184 NewTemplateParm->removeDefaultArgument(); 1185 1186 // Merge default arguments for template template parameters 1187 TemplateTemplateParmDecl *OldTemplateParm 1188 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1189 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1190 NewTemplateParm->hasDefaultArgument()) { 1191 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1192 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1193 SawDefaultArgument = true; 1194 RedundantDefaultArg = true; 1195 PreviousDefaultArgLoc = NewDefaultLoc; 1196 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1197 // Merge the default argument from the old declaration to the 1198 // new declaration. 1199 SawDefaultArgument = true; 1200 // FIXME: We need to create a new kind of "default argument" expression 1201 // that points to a previous template template parameter. 1202 NewTemplateParm->setDefaultArgument( 1203 OldTemplateParm->getDefaultArgument(), 1204 /*Inherited=*/ true); 1205 PreviousDefaultArgLoc 1206 = OldTemplateParm->getDefaultArgument().getLocation(); 1207 } else if (NewTemplateParm->hasDefaultArgument()) { 1208 SawDefaultArgument = true; 1209 PreviousDefaultArgLoc 1210 = NewTemplateParm->getDefaultArgument().getLocation(); 1211 } else if (SawDefaultArgument) 1212 MissingDefaultArg = true; 1213 } 1214 1215 if (RedundantDefaultArg) { 1216 // C++ [temp.param]p12: 1217 // A template-parameter shall not be given default arguments 1218 // by two different declarations in the same scope. 1219 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1220 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1221 Invalid = true; 1222 } else if (MissingDefaultArg) { 1223 // C++ [temp.param]p11: 1224 // If a template-parameter has a default template-argument, 1225 // all subsequent template-parameters shall have a default 1226 // template-argument supplied. 1227 Diag((*NewParam)->getLocation(), 1228 diag::err_template_param_default_arg_missing); 1229 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1230 Invalid = true; 1231 } 1232 1233 // If we have an old template parameter list that we're merging 1234 // in, move on to the next parameter. 1235 if (OldParams) 1236 ++OldParam; 1237 } 1238 1239 return Invalid; 1240} 1241 1242/// \brief Match the given template parameter lists to the given scope 1243/// specifier, returning the template parameter list that applies to the 1244/// name. 1245/// 1246/// \param DeclStartLoc the start of the declaration that has a scope 1247/// specifier or a template parameter list. 1248/// 1249/// \param SS the scope specifier that will be matched to the given template 1250/// parameter lists. This scope specifier precedes a qualified name that is 1251/// being declared. 1252/// 1253/// \param ParamLists the template parameter lists, from the outermost to the 1254/// innermost template parameter lists. 1255/// 1256/// \param NumParamLists the number of template parameter lists in ParamLists. 1257/// 1258/// \param IsFriend Whether to apply the slightly different rules for 1259/// matching template parameters to scope specifiers in friend 1260/// declarations. 1261/// 1262/// \param IsExplicitSpecialization will be set true if the entity being 1263/// declared is an explicit specialization, false otherwise. 1264/// 1265/// \returns the template parameter list, if any, that corresponds to the 1266/// name that is preceded by the scope specifier @p SS. This template 1267/// parameter list may be have template parameters (if we're declaring a 1268/// template) or may have no template parameters (if we're declaring a 1269/// template specialization), or may be NULL (if we were's declaring isn't 1270/// itself a template). 1271TemplateParameterList * 1272Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1273 const CXXScopeSpec &SS, 1274 TemplateParameterList **ParamLists, 1275 unsigned NumParamLists, 1276 bool IsFriend, 1277 bool &IsExplicitSpecialization) { 1278 IsExplicitSpecialization = false; 1279 1280 // Find the template-ids that occur within the nested-name-specifier. These 1281 // template-ids will match up with the template parameter lists. 1282 llvm::SmallVector<const TemplateSpecializationType *, 4> 1283 TemplateIdsInSpecifier; 1284 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1285 ExplicitSpecializationsInSpecifier; 1286 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1287 NNS; NNS = NNS->getPrefix()) { 1288 const Type *T = NNS->getAsType(); 1289 if (!T) break; 1290 1291 // C++0x [temp.expl.spec]p17: 1292 // A member or a member template may be nested within many 1293 // enclosing class templates. In an explicit specialization for 1294 // such a member, the member declaration shall be preceded by a 1295 // template<> for each enclosing class template that is 1296 // explicitly specialized. 1297 // 1298 // Following the existing practice of GNU and EDG, we allow a typedef of a 1299 // template specialization type. 1300 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1301 T = TT->LookThroughTypedefs().getTypePtr(); 1302 1303 if (const TemplateSpecializationType *SpecType 1304 = dyn_cast<TemplateSpecializationType>(T)) { 1305 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1306 if (!Template) 1307 continue; // FIXME: should this be an error? probably... 1308 1309 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1310 ClassTemplateSpecializationDecl *SpecDecl 1311 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1312 // If the nested name specifier refers to an explicit specialization, 1313 // we don't need a template<> header. 1314 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1315 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1316 continue; 1317 } 1318 } 1319 1320 TemplateIdsInSpecifier.push_back(SpecType); 1321 } 1322 } 1323 1324 // Reverse the list of template-ids in the scope specifier, so that we can 1325 // more easily match up the template-ids and the template parameter lists. 1326 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1327 1328 SourceLocation FirstTemplateLoc = DeclStartLoc; 1329 if (NumParamLists) 1330 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1331 1332 // Match the template-ids found in the specifier to the template parameter 1333 // lists. 1334 unsigned Idx = 0; 1335 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1336 Idx != NumTemplateIds; ++Idx) { 1337 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1338 bool DependentTemplateId = TemplateId->isDependentType(); 1339 if (Idx >= NumParamLists) { 1340 // We have a template-id without a corresponding template parameter 1341 // list. 1342 1343 // ...which is fine if this is a friend declaration. 1344 if (IsFriend) { 1345 IsExplicitSpecialization = true; 1346 break; 1347 } 1348 1349 if (DependentTemplateId) { 1350 // FIXME: the location information here isn't great. 1351 Diag(SS.getRange().getBegin(), 1352 diag::err_template_spec_needs_template_parameters) 1353 << TemplateId 1354 << SS.getRange(); 1355 } else { 1356 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1357 << SS.getRange() 1358 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1359 IsExplicitSpecialization = true; 1360 } 1361 return 0; 1362 } 1363 1364 // Check the template parameter list against its corresponding template-id. 1365 if (DependentTemplateId) { 1366 TemplateParameterList *ExpectedTemplateParams = 0; 1367 1368 // Are there cases in (e.g.) friends where this won't match? 1369 if (const InjectedClassNameType *Injected 1370 = TemplateId->getAs<InjectedClassNameType>()) { 1371 CXXRecordDecl *Record = Injected->getDecl(); 1372 if (ClassTemplatePartialSpecializationDecl *Partial = 1373 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1374 ExpectedTemplateParams = Partial->getTemplateParameters(); 1375 else 1376 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1377 ->getTemplateParameters(); 1378 } 1379 1380 if (ExpectedTemplateParams) 1381 TemplateParameterListsAreEqual(ParamLists[Idx], 1382 ExpectedTemplateParams, 1383 true, TPL_TemplateMatch); 1384 1385 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1386 } else if (ParamLists[Idx]->size() > 0) 1387 Diag(ParamLists[Idx]->getTemplateLoc(), 1388 diag::err_template_param_list_matches_nontemplate) 1389 << TemplateId 1390 << ParamLists[Idx]->getSourceRange(); 1391 else 1392 IsExplicitSpecialization = true; 1393 } 1394 1395 // If there were at least as many template-ids as there were template 1396 // parameter lists, then there are no template parameter lists remaining for 1397 // the declaration itself. 1398 if (Idx >= NumParamLists) 1399 return 0; 1400 1401 // If there were too many template parameter lists, complain about that now. 1402 if (Idx != NumParamLists - 1) { 1403 while (Idx < NumParamLists - 1) { 1404 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1405 Diag(ParamLists[Idx]->getTemplateLoc(), 1406 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1407 : diag::err_template_spec_extra_headers) 1408 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1409 ParamLists[Idx]->getRAngleLoc()); 1410 1411 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1412 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1413 diag::note_explicit_template_spec_does_not_need_header) 1414 << ExplicitSpecializationsInSpecifier.back(); 1415 ExplicitSpecializationsInSpecifier.pop_back(); 1416 } 1417 1418 ++Idx; 1419 } 1420 } 1421 1422 // Return the last template parameter list, which corresponds to the 1423 // entity being declared. 1424 return ParamLists[NumParamLists - 1]; 1425} 1426 1427QualType Sema::CheckTemplateIdType(TemplateName Name, 1428 SourceLocation TemplateLoc, 1429 const TemplateArgumentListInfo &TemplateArgs) { 1430 TemplateDecl *Template = Name.getAsTemplateDecl(); 1431 if (!Template) { 1432 // The template name does not resolve to a template, so we just 1433 // build a dependent template-id type. 1434 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1435 } 1436 1437 // Check that the template argument list is well-formed for this 1438 // template. 1439 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1440 TemplateArgs.size()); 1441 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1442 false, Converted)) 1443 return QualType(); 1444 1445 assert((Converted.structuredSize() == 1446 Template->getTemplateParameters()->size()) && 1447 "Converted template argument list is too short!"); 1448 1449 QualType CanonType; 1450 1451 if (Name.isDependent() || 1452 TemplateSpecializationType::anyDependentTemplateArguments( 1453 TemplateArgs)) { 1454 // This class template specialization is a dependent 1455 // type. Therefore, its canonical type is another class template 1456 // specialization type that contains all of the converted 1457 // arguments in canonical form. This ensures that, e.g., A<T> and 1458 // A<T, T> have identical types when A is declared as: 1459 // 1460 // template<typename T, typename U = T> struct A; 1461 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1462 CanonType = Context.getTemplateSpecializationType(CanonName, 1463 Converted.getFlatArguments(), 1464 Converted.flatSize()); 1465 1466 // FIXME: CanonType is not actually the canonical type, and unfortunately 1467 // it is a TemplateSpecializationType that we will never use again. 1468 // In the future, we need to teach getTemplateSpecializationType to only 1469 // build the canonical type and return that to us. 1470 CanonType = Context.getCanonicalType(CanonType); 1471 1472 // This might work out to be a current instantiation, in which 1473 // case the canonical type needs to be the InjectedClassNameType. 1474 // 1475 // TODO: in theory this could be a simple hashtable lookup; most 1476 // changes to CurContext don't change the set of current 1477 // instantiations. 1478 if (isa<ClassTemplateDecl>(Template)) { 1479 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1480 // If we get out to a namespace, we're done. 1481 if (Ctx->isFileContext()) break; 1482 1483 // If this isn't a record, keep looking. 1484 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1485 if (!Record) continue; 1486 1487 // Look for one of the two cases with InjectedClassNameTypes 1488 // and check whether it's the same template. 1489 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1490 !Record->getDescribedClassTemplate()) 1491 continue; 1492 1493 // Fetch the injected class name type and check whether its 1494 // injected type is equal to the type we just built. 1495 QualType ICNT = Context.getTypeDeclType(Record); 1496 QualType Injected = cast<InjectedClassNameType>(ICNT) 1497 ->getInjectedSpecializationType(); 1498 1499 if (CanonType != Injected->getCanonicalTypeInternal()) 1500 continue; 1501 1502 // If so, the canonical type of this TST is the injected 1503 // class name type of the record we just found. 1504 assert(ICNT.isCanonical()); 1505 CanonType = ICNT; 1506 break; 1507 } 1508 } 1509 } else if (ClassTemplateDecl *ClassTemplate 1510 = dyn_cast<ClassTemplateDecl>(Template)) { 1511 // Find the class template specialization declaration that 1512 // corresponds to these arguments. 1513 llvm::FoldingSetNodeID ID; 1514 ClassTemplateSpecializationDecl::Profile(ID, 1515 Converted.getFlatArguments(), 1516 Converted.flatSize(), 1517 Context); 1518 void *InsertPos = 0; 1519 ClassTemplateSpecializationDecl *Decl 1520 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1521 if (!Decl) { 1522 // This is the first time we have referenced this class template 1523 // specialization. Create the canonical declaration and add it to 1524 // the set of specializations. 1525 Decl = ClassTemplateSpecializationDecl::Create(Context, 1526 ClassTemplate->getTemplatedDecl()->getTagKind(), 1527 ClassTemplate->getDeclContext(), 1528 ClassTemplate->getLocation(), 1529 ClassTemplate, 1530 Converted, 0); 1531 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1532 Decl->setLexicalDeclContext(CurContext); 1533 } 1534 1535 CanonType = Context.getTypeDeclType(Decl); 1536 assert(isa<RecordType>(CanonType) && 1537 "type of non-dependent specialization is not a RecordType"); 1538 } 1539 1540 // Build the fully-sugared type for this class template 1541 // specialization, which refers back to the class template 1542 // specialization we created or found. 1543 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1544} 1545 1546Action::TypeResult 1547Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1548 SourceLocation LAngleLoc, 1549 ASTTemplateArgsPtr TemplateArgsIn, 1550 SourceLocation RAngleLoc) { 1551 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1552 1553 // Translate the parser's template argument list in our AST format. 1554 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1555 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1556 1557 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1558 TemplateArgsIn.release(); 1559 1560 if (Result.isNull()) 1561 return true; 1562 1563 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1564 TemplateSpecializationTypeLoc TL 1565 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1566 TL.setTemplateNameLoc(TemplateLoc); 1567 TL.setLAngleLoc(LAngleLoc); 1568 TL.setRAngleLoc(RAngleLoc); 1569 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1570 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1571 1572 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1573} 1574 1575Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1576 TagUseKind TUK, 1577 DeclSpec::TST TagSpec, 1578 SourceLocation TagLoc) { 1579 if (TypeResult.isInvalid()) 1580 return Sema::TypeResult(); 1581 1582 // FIXME: preserve source info, ideally without copying the DI. 1583 TypeSourceInfo *DI; 1584 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1585 1586 // Verify the tag specifier. 1587 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1588 1589 if (const RecordType *RT = Type->getAs<RecordType>()) { 1590 RecordDecl *D = RT->getDecl(); 1591 1592 IdentifierInfo *Id = D->getIdentifier(); 1593 assert(Id && "templated class must have an identifier"); 1594 1595 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1596 Diag(TagLoc, diag::err_use_with_wrong_tag) 1597 << Type 1598 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1599 Diag(D->getLocation(), diag::note_previous_use); 1600 } 1601 } 1602 1603 ElaboratedTypeKeyword Keyword 1604 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 1605 QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type); 1606 1607 return ElabType.getAsOpaquePtr(); 1608} 1609 1610Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1611 LookupResult &R, 1612 bool RequiresADL, 1613 const TemplateArgumentListInfo &TemplateArgs) { 1614 // FIXME: Can we do any checking at this point? I guess we could check the 1615 // template arguments that we have against the template name, if the template 1616 // name refers to a single template. That's not a terribly common case, 1617 // though. 1618 1619 // These should be filtered out by our callers. 1620 assert(!R.empty() && "empty lookup results when building templateid"); 1621 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1622 1623 NestedNameSpecifier *Qualifier = 0; 1624 SourceRange QualifierRange; 1625 if (SS.isSet()) { 1626 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1627 QualifierRange = SS.getRange(); 1628 } 1629 1630 // We don't want lookup warnings at this point. 1631 R.suppressDiagnostics(); 1632 1633 bool Dependent 1634 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1635 &TemplateArgs); 1636 UnresolvedLookupExpr *ULE 1637 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1638 Qualifier, QualifierRange, 1639 R.getLookupName(), R.getNameLoc(), 1640 RequiresADL, TemplateArgs, 1641 R.begin(), R.end()); 1642 1643 return Owned(ULE); 1644} 1645 1646// We actually only call this from template instantiation. 1647Sema::OwningExprResult 1648Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1649 DeclarationName Name, 1650 SourceLocation NameLoc, 1651 const TemplateArgumentListInfo &TemplateArgs) { 1652 DeclContext *DC; 1653 if (!(DC = computeDeclContext(SS, false)) || 1654 DC->isDependentContext() || 1655 RequireCompleteDeclContext(SS, DC)) 1656 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1657 1658 bool MemberOfUnknownSpecialization; 1659 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1660 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 1661 MemberOfUnknownSpecialization); 1662 1663 if (R.isAmbiguous()) 1664 return ExprError(); 1665 1666 if (R.empty()) { 1667 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1668 << Name << SS.getRange(); 1669 return ExprError(); 1670 } 1671 1672 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1673 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1674 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1675 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1676 return ExprError(); 1677 } 1678 1679 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1680} 1681 1682/// \brief Form a dependent template name. 1683/// 1684/// This action forms a dependent template name given the template 1685/// name and its (presumably dependent) scope specifier. For 1686/// example, given "MetaFun::template apply", the scope specifier \p 1687/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1688/// of the "template" keyword, and "apply" is the \p Name. 1689Sema::TemplateTy 1690Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1691 CXXScopeSpec &SS, 1692 UnqualifiedId &Name, 1693 TypeTy *ObjectType, 1694 bool EnteringContext) { 1695 DeclContext *LookupCtx = 0; 1696 if (SS.isSet()) 1697 LookupCtx = computeDeclContext(SS, EnteringContext); 1698 if (!LookupCtx && ObjectType) 1699 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1700 if (LookupCtx) { 1701 // C++0x [temp.names]p5: 1702 // If a name prefixed by the keyword template is not the name of 1703 // a template, the program is ill-formed. [Note: the keyword 1704 // template may not be applied to non-template members of class 1705 // templates. -end note ] [ Note: as is the case with the 1706 // typename prefix, the template prefix is allowed in cases 1707 // where it is not strictly necessary; i.e., when the 1708 // nested-name-specifier or the expression on the left of the -> 1709 // or . is not dependent on a template-parameter, or the use 1710 // does not appear in the scope of a template. -end note] 1711 // 1712 // Note: C++03 was more strict here, because it banned the use of 1713 // the "template" keyword prior to a template-name that was not a 1714 // dependent name. C++ DR468 relaxed this requirement (the 1715 // "template" keyword is now permitted). We follow the C++0x 1716 // rules, even in C++03 mode with a warning, retroactively applying the DR. 1717 TemplateTy Template; 1718 bool MemberOfUnknownSpecialization; 1719 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1720 EnteringContext, Template, 1721 MemberOfUnknownSpecialization); 1722 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1723 isa<CXXRecordDecl>(LookupCtx) && 1724 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1725 // This is a dependent template. 1726 } else if (TNK == TNK_Non_template) { 1727 Diag(Name.getSourceRange().getBegin(), 1728 diag::err_template_kw_refers_to_non_template) 1729 << GetNameFromUnqualifiedId(Name) 1730 << Name.getSourceRange() 1731 << TemplateKWLoc; 1732 return TemplateTy(); 1733 } else { 1734 // We found something; return it. 1735 if (ActiveTemplateInstantiations.empty() && 1736 !getLangOptions().CPlusPlus0x && 1737 !SS.isEmpty() && !isDependentScopeSpecifier(SS)) 1738 Diag(TemplateKWLoc.isValid()? TemplateKWLoc 1739 : Name.getSourceRange().getBegin(), 1740 diag::ext_template_nondependent) 1741 << SourceRange(Name.getSourceRange().getBegin()) 1742 << FixItHint::CreateRemoval(TemplateKWLoc); 1743 1744 return Template; 1745 } 1746 } 1747 1748 NestedNameSpecifier *Qualifier 1749 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1750 1751 switch (Name.getKind()) { 1752 case UnqualifiedId::IK_Identifier: 1753 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1754 Name.Identifier)); 1755 1756 case UnqualifiedId::IK_OperatorFunctionId: 1757 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1758 Name.OperatorFunctionId.Operator)); 1759 1760 case UnqualifiedId::IK_LiteralOperatorId: 1761 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1762 1763 default: 1764 break; 1765 } 1766 1767 Diag(Name.getSourceRange().getBegin(), 1768 diag::err_template_kw_refers_to_non_template) 1769 << GetNameFromUnqualifiedId(Name) 1770 << Name.getSourceRange() 1771 << TemplateKWLoc; 1772 return TemplateTy(); 1773} 1774 1775bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1776 const TemplateArgumentLoc &AL, 1777 TemplateArgumentListBuilder &Converted) { 1778 const TemplateArgument &Arg = AL.getArgument(); 1779 1780 // Check template type parameter. 1781 switch(Arg.getKind()) { 1782 case TemplateArgument::Type: 1783 // C++ [temp.arg.type]p1: 1784 // A template-argument for a template-parameter which is a 1785 // type shall be a type-id. 1786 break; 1787 case TemplateArgument::Template: { 1788 // We have a template type parameter but the template argument 1789 // is a template without any arguments. 1790 SourceRange SR = AL.getSourceRange(); 1791 TemplateName Name = Arg.getAsTemplate(); 1792 Diag(SR.getBegin(), diag::err_template_missing_args) 1793 << Name << SR; 1794 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1795 Diag(Decl->getLocation(), diag::note_template_decl_here); 1796 1797 return true; 1798 } 1799 default: { 1800 // We have a template type parameter but the template argument 1801 // is not a type. 1802 SourceRange SR = AL.getSourceRange(); 1803 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1804 Diag(Param->getLocation(), diag::note_template_param_here); 1805 1806 return true; 1807 } 1808 } 1809 1810 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1811 return true; 1812 1813 // Add the converted template type argument. 1814 Converted.Append( 1815 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1816 return false; 1817} 1818 1819/// \brief Substitute template arguments into the default template argument for 1820/// the given template type parameter. 1821/// 1822/// \param SemaRef the semantic analysis object for which we are performing 1823/// the substitution. 1824/// 1825/// \param Template the template that we are synthesizing template arguments 1826/// for. 1827/// 1828/// \param TemplateLoc the location of the template name that started the 1829/// template-id we are checking. 1830/// 1831/// \param RAngleLoc the location of the right angle bracket ('>') that 1832/// terminates the template-id. 1833/// 1834/// \param Param the template template parameter whose default we are 1835/// substituting into. 1836/// 1837/// \param Converted the list of template arguments provided for template 1838/// parameters that precede \p Param in the template parameter list. 1839/// 1840/// \returns the substituted template argument, or NULL if an error occurred. 1841static TypeSourceInfo * 1842SubstDefaultTemplateArgument(Sema &SemaRef, 1843 TemplateDecl *Template, 1844 SourceLocation TemplateLoc, 1845 SourceLocation RAngleLoc, 1846 TemplateTypeParmDecl *Param, 1847 TemplateArgumentListBuilder &Converted) { 1848 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1849 1850 // If the argument type is dependent, instantiate it now based 1851 // on the previously-computed template arguments. 1852 if (ArgType->getType()->isDependentType()) { 1853 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1854 /*TakeArgs=*/false); 1855 1856 MultiLevelTemplateArgumentList AllTemplateArgs 1857 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1858 1859 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1860 Template, Converted.getFlatArguments(), 1861 Converted.flatSize(), 1862 SourceRange(TemplateLoc, RAngleLoc)); 1863 1864 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1865 Param->getDefaultArgumentLoc(), 1866 Param->getDeclName()); 1867 } 1868 1869 return ArgType; 1870} 1871 1872/// \brief Substitute template arguments into the default template argument for 1873/// the given non-type template parameter. 1874/// 1875/// \param SemaRef the semantic analysis object for which we are performing 1876/// the substitution. 1877/// 1878/// \param Template the template that we are synthesizing template arguments 1879/// for. 1880/// 1881/// \param TemplateLoc the location of the template name that started the 1882/// template-id we are checking. 1883/// 1884/// \param RAngleLoc the location of the right angle bracket ('>') that 1885/// terminates the template-id. 1886/// 1887/// \param Param the non-type template parameter whose default we are 1888/// substituting into. 1889/// 1890/// \param Converted the list of template arguments provided for template 1891/// parameters that precede \p Param in the template parameter list. 1892/// 1893/// \returns the substituted template argument, or NULL if an error occurred. 1894static Sema::OwningExprResult 1895SubstDefaultTemplateArgument(Sema &SemaRef, 1896 TemplateDecl *Template, 1897 SourceLocation TemplateLoc, 1898 SourceLocation RAngleLoc, 1899 NonTypeTemplateParmDecl *Param, 1900 TemplateArgumentListBuilder &Converted) { 1901 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1902 /*TakeArgs=*/false); 1903 1904 MultiLevelTemplateArgumentList AllTemplateArgs 1905 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1906 1907 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1908 Template, Converted.getFlatArguments(), 1909 Converted.flatSize(), 1910 SourceRange(TemplateLoc, RAngleLoc)); 1911 1912 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1913} 1914 1915/// \brief Substitute template arguments into the default template argument for 1916/// the given template template parameter. 1917/// 1918/// \param SemaRef the semantic analysis object for which we are performing 1919/// the substitution. 1920/// 1921/// \param Template the template that we are synthesizing template arguments 1922/// for. 1923/// 1924/// \param TemplateLoc the location of the template name that started the 1925/// template-id we are checking. 1926/// 1927/// \param RAngleLoc the location of the right angle bracket ('>') that 1928/// terminates the template-id. 1929/// 1930/// \param Param the template template parameter whose default we are 1931/// substituting into. 1932/// 1933/// \param Converted the list of template arguments provided for template 1934/// parameters that precede \p Param in the template parameter list. 1935/// 1936/// \returns the substituted template argument, or NULL if an error occurred. 1937static TemplateName 1938SubstDefaultTemplateArgument(Sema &SemaRef, 1939 TemplateDecl *Template, 1940 SourceLocation TemplateLoc, 1941 SourceLocation RAngleLoc, 1942 TemplateTemplateParmDecl *Param, 1943 TemplateArgumentListBuilder &Converted) { 1944 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1945 /*TakeArgs=*/false); 1946 1947 MultiLevelTemplateArgumentList AllTemplateArgs 1948 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1949 1950 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1951 Template, Converted.getFlatArguments(), 1952 Converted.flatSize(), 1953 SourceRange(TemplateLoc, RAngleLoc)); 1954 1955 return SemaRef.SubstTemplateName( 1956 Param->getDefaultArgument().getArgument().getAsTemplate(), 1957 Param->getDefaultArgument().getTemplateNameLoc(), 1958 AllTemplateArgs); 1959} 1960 1961/// \brief If the given template parameter has a default template 1962/// argument, substitute into that default template argument and 1963/// return the corresponding template argument. 1964TemplateArgumentLoc 1965Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1966 SourceLocation TemplateLoc, 1967 SourceLocation RAngleLoc, 1968 Decl *Param, 1969 TemplateArgumentListBuilder &Converted) { 1970 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1971 if (!TypeParm->hasDefaultArgument()) 1972 return TemplateArgumentLoc(); 1973 1974 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1975 TemplateLoc, 1976 RAngleLoc, 1977 TypeParm, 1978 Converted); 1979 if (DI) 1980 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1981 1982 return TemplateArgumentLoc(); 1983 } 1984 1985 if (NonTypeTemplateParmDecl *NonTypeParm 1986 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1987 if (!NonTypeParm->hasDefaultArgument()) 1988 return TemplateArgumentLoc(); 1989 1990 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1991 TemplateLoc, 1992 RAngleLoc, 1993 NonTypeParm, 1994 Converted); 1995 if (Arg.isInvalid()) 1996 return TemplateArgumentLoc(); 1997 1998 Expr *ArgE = Arg.takeAs<Expr>(); 1999 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2000 } 2001 2002 TemplateTemplateParmDecl *TempTempParm 2003 = cast<TemplateTemplateParmDecl>(Param); 2004 if (!TempTempParm->hasDefaultArgument()) 2005 return TemplateArgumentLoc(); 2006 2007 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2008 TemplateLoc, 2009 RAngleLoc, 2010 TempTempParm, 2011 Converted); 2012 if (TName.isNull()) 2013 return TemplateArgumentLoc(); 2014 2015 return TemplateArgumentLoc(TemplateArgument(TName), 2016 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 2017 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2018} 2019 2020/// \brief Check that the given template argument corresponds to the given 2021/// template parameter. 2022bool Sema::CheckTemplateArgument(NamedDecl *Param, 2023 const TemplateArgumentLoc &Arg, 2024 TemplateDecl *Template, 2025 SourceLocation TemplateLoc, 2026 SourceLocation RAngleLoc, 2027 TemplateArgumentListBuilder &Converted, 2028 CheckTemplateArgumentKind CTAK) { 2029 // Check template type parameters. 2030 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2031 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2032 2033 // Check non-type template parameters. 2034 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2035 // Do substitution on the type of the non-type template parameter 2036 // with the template arguments we've seen thus far. 2037 QualType NTTPType = NTTP->getType(); 2038 if (NTTPType->isDependentType()) { 2039 // Do substitution on the type of the non-type template parameter. 2040 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2041 NTTP, Converted.getFlatArguments(), 2042 Converted.flatSize(), 2043 SourceRange(TemplateLoc, RAngleLoc)); 2044 2045 TemplateArgumentList TemplateArgs(Context, Converted, 2046 /*TakeArgs=*/false); 2047 NTTPType = SubstType(NTTPType, 2048 MultiLevelTemplateArgumentList(TemplateArgs), 2049 NTTP->getLocation(), 2050 NTTP->getDeclName()); 2051 // If that worked, check the non-type template parameter type 2052 // for validity. 2053 if (!NTTPType.isNull()) 2054 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2055 NTTP->getLocation()); 2056 if (NTTPType.isNull()) 2057 return true; 2058 } 2059 2060 switch (Arg.getArgument().getKind()) { 2061 case TemplateArgument::Null: 2062 assert(false && "Should never see a NULL template argument here"); 2063 return true; 2064 2065 case TemplateArgument::Expression: { 2066 Expr *E = Arg.getArgument().getAsExpr(); 2067 TemplateArgument Result; 2068 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2069 return true; 2070 2071 Converted.Append(Result); 2072 break; 2073 } 2074 2075 case TemplateArgument::Declaration: 2076 case TemplateArgument::Integral: 2077 // We've already checked this template argument, so just copy 2078 // it to the list of converted arguments. 2079 Converted.Append(Arg.getArgument()); 2080 break; 2081 2082 case TemplateArgument::Template: 2083 // We were given a template template argument. It may not be ill-formed; 2084 // see below. 2085 if (DependentTemplateName *DTN 2086 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2087 // We have a template argument such as \c T::template X, which we 2088 // parsed as a template template argument. However, since we now 2089 // know that we need a non-type template argument, convert this 2090 // template name into an expression. 2091 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2092 DTN->getQualifier(), 2093 Arg.getTemplateQualifierRange(), 2094 DTN->getIdentifier(), 2095 Arg.getTemplateNameLoc()); 2096 2097 TemplateArgument Result; 2098 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2099 return true; 2100 2101 Converted.Append(Result); 2102 break; 2103 } 2104 2105 // We have a template argument that actually does refer to a class 2106 // template, template alias, or template template parameter, and 2107 // therefore cannot be a non-type template argument. 2108 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2109 << Arg.getSourceRange(); 2110 2111 Diag(Param->getLocation(), diag::note_template_param_here); 2112 return true; 2113 2114 case TemplateArgument::Type: { 2115 // We have a non-type template parameter but the template 2116 // argument is a type. 2117 2118 // C++ [temp.arg]p2: 2119 // In a template-argument, an ambiguity between a type-id and 2120 // an expression is resolved to a type-id, regardless of the 2121 // form of the corresponding template-parameter. 2122 // 2123 // We warn specifically about this case, since it can be rather 2124 // confusing for users. 2125 QualType T = Arg.getArgument().getAsType(); 2126 SourceRange SR = Arg.getSourceRange(); 2127 if (T->isFunctionType()) 2128 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2129 else 2130 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2131 Diag(Param->getLocation(), diag::note_template_param_here); 2132 return true; 2133 } 2134 2135 case TemplateArgument::Pack: 2136 llvm_unreachable("Caller must expand template argument packs"); 2137 break; 2138 } 2139 2140 return false; 2141 } 2142 2143 2144 // Check template template parameters. 2145 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2146 2147 // Substitute into the template parameter list of the template 2148 // template parameter, since previously-supplied template arguments 2149 // may appear within the template template parameter. 2150 { 2151 // Set up a template instantiation context. 2152 LocalInstantiationScope Scope(*this); 2153 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2154 TempParm, Converted.getFlatArguments(), 2155 Converted.flatSize(), 2156 SourceRange(TemplateLoc, RAngleLoc)); 2157 2158 TemplateArgumentList TemplateArgs(Context, Converted, 2159 /*TakeArgs=*/false); 2160 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2161 SubstDecl(TempParm, CurContext, 2162 MultiLevelTemplateArgumentList(TemplateArgs))); 2163 if (!TempParm) 2164 return true; 2165 2166 // FIXME: TempParam is leaked. 2167 } 2168 2169 switch (Arg.getArgument().getKind()) { 2170 case TemplateArgument::Null: 2171 assert(false && "Should never see a NULL template argument here"); 2172 return true; 2173 2174 case TemplateArgument::Template: 2175 if (CheckTemplateArgument(TempParm, Arg)) 2176 return true; 2177 2178 Converted.Append(Arg.getArgument()); 2179 break; 2180 2181 case TemplateArgument::Expression: 2182 case TemplateArgument::Type: 2183 // We have a template template parameter but the template 2184 // argument does not refer to a template. 2185 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2186 return true; 2187 2188 case TemplateArgument::Declaration: 2189 llvm_unreachable( 2190 "Declaration argument with template template parameter"); 2191 break; 2192 case TemplateArgument::Integral: 2193 llvm_unreachable( 2194 "Integral argument with template template parameter"); 2195 break; 2196 2197 case TemplateArgument::Pack: 2198 llvm_unreachable("Caller must expand template argument packs"); 2199 break; 2200 } 2201 2202 return false; 2203} 2204 2205/// \brief Check that the given template argument list is well-formed 2206/// for specializing the given template. 2207bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2208 SourceLocation TemplateLoc, 2209 const TemplateArgumentListInfo &TemplateArgs, 2210 bool PartialTemplateArgs, 2211 TemplateArgumentListBuilder &Converted) { 2212 TemplateParameterList *Params = Template->getTemplateParameters(); 2213 unsigned NumParams = Params->size(); 2214 unsigned NumArgs = TemplateArgs.size(); 2215 bool Invalid = false; 2216 2217 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2218 2219 bool HasParameterPack = 2220 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2221 2222 if ((NumArgs > NumParams && !HasParameterPack) || 2223 (NumArgs < Params->getMinRequiredArguments() && 2224 !PartialTemplateArgs)) { 2225 // FIXME: point at either the first arg beyond what we can handle, 2226 // or the '>', depending on whether we have too many or too few 2227 // arguments. 2228 SourceRange Range; 2229 if (NumArgs > NumParams) 2230 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2231 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2232 << (NumArgs > NumParams) 2233 << (isa<ClassTemplateDecl>(Template)? 0 : 2234 isa<FunctionTemplateDecl>(Template)? 1 : 2235 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2236 << Template << Range; 2237 Diag(Template->getLocation(), diag::note_template_decl_here) 2238 << Params->getSourceRange(); 2239 Invalid = true; 2240 } 2241 2242 // C++ [temp.arg]p1: 2243 // [...] The type and form of each template-argument specified in 2244 // a template-id shall match the type and form specified for the 2245 // corresponding parameter declared by the template in its 2246 // template-parameter-list. 2247 unsigned ArgIdx = 0; 2248 for (TemplateParameterList::iterator Param = Params->begin(), 2249 ParamEnd = Params->end(); 2250 Param != ParamEnd; ++Param, ++ArgIdx) { 2251 if (ArgIdx > NumArgs && PartialTemplateArgs) 2252 break; 2253 2254 // If we have a template parameter pack, check every remaining template 2255 // argument against that template parameter pack. 2256 if ((*Param)->isTemplateParameterPack()) { 2257 Converted.BeginPack(); 2258 for (; ArgIdx < NumArgs; ++ArgIdx) { 2259 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2260 TemplateLoc, RAngleLoc, Converted)) { 2261 Invalid = true; 2262 break; 2263 } 2264 } 2265 Converted.EndPack(); 2266 continue; 2267 } 2268 2269 if (ArgIdx < NumArgs) { 2270 // Check the template argument we were given. 2271 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2272 TemplateLoc, RAngleLoc, Converted)) 2273 return true; 2274 2275 continue; 2276 } 2277 2278 // We have a default template argument that we will use. 2279 TemplateArgumentLoc Arg; 2280 2281 // Retrieve the default template argument from the template 2282 // parameter. For each kind of template parameter, we substitute the 2283 // template arguments provided thus far and any "outer" template arguments 2284 // (when the template parameter was part of a nested template) into 2285 // the default argument. 2286 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2287 if (!TTP->hasDefaultArgument()) { 2288 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2289 break; 2290 } 2291 2292 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2293 Template, 2294 TemplateLoc, 2295 RAngleLoc, 2296 TTP, 2297 Converted); 2298 if (!ArgType) 2299 return true; 2300 2301 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2302 ArgType); 2303 } else if (NonTypeTemplateParmDecl *NTTP 2304 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2305 if (!NTTP->hasDefaultArgument()) { 2306 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2307 break; 2308 } 2309 2310 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2311 TemplateLoc, 2312 RAngleLoc, 2313 NTTP, 2314 Converted); 2315 if (E.isInvalid()) 2316 return true; 2317 2318 Expr *Ex = E.takeAs<Expr>(); 2319 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2320 } else { 2321 TemplateTemplateParmDecl *TempParm 2322 = cast<TemplateTemplateParmDecl>(*Param); 2323 2324 if (!TempParm->hasDefaultArgument()) { 2325 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2326 break; 2327 } 2328 2329 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2330 TemplateLoc, 2331 RAngleLoc, 2332 TempParm, 2333 Converted); 2334 if (Name.isNull()) 2335 return true; 2336 2337 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2338 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2339 TempParm->getDefaultArgument().getTemplateNameLoc()); 2340 } 2341 2342 // Introduce an instantiation record that describes where we are using 2343 // the default template argument. 2344 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2345 Converted.getFlatArguments(), 2346 Converted.flatSize(), 2347 SourceRange(TemplateLoc, RAngleLoc)); 2348 2349 // Check the default template argument. 2350 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2351 RAngleLoc, Converted)) 2352 return true; 2353 } 2354 2355 return Invalid; 2356} 2357 2358/// \brief Check a template argument against its corresponding 2359/// template type parameter. 2360/// 2361/// This routine implements the semantics of C++ [temp.arg.type]. It 2362/// returns true if an error occurred, and false otherwise. 2363bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2364 TypeSourceInfo *ArgInfo) { 2365 assert(ArgInfo && "invalid TypeSourceInfo"); 2366 QualType Arg = ArgInfo->getType(); 2367 2368 // C++ [temp.arg.type]p2: 2369 // A local type, a type with no linkage, an unnamed type or a type 2370 // compounded from any of these types shall not be used as a 2371 // template-argument for a template type-parameter. 2372 // 2373 // FIXME: Perform the unnamed type check. 2374 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2375 const TagType *Tag = 0; 2376 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2377 Tag = EnumT; 2378 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2379 Tag = RecordT; 2380 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2381 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 2382 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2383 << QualType(Tag, 0) << SR; 2384 } else if (Tag && !Tag->getDecl()->getDeclName() && 2385 !Tag->getDecl()->getTypedefForAnonDecl()) { 2386 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2387 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2388 return true; 2389 } else if (Arg->isVariablyModifiedType()) { 2390 Diag(SR.getBegin(), diag::err_variably_modified_template_arg) 2391 << Arg; 2392 return true; 2393 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2394 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2395 } 2396 2397 return false; 2398} 2399 2400/// \brief Checks whether the given template argument is the address 2401/// of an object or function according to C++ [temp.arg.nontype]p1. 2402static bool 2403CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2404 NonTypeTemplateParmDecl *Param, 2405 QualType ParamType, 2406 Expr *ArgIn, 2407 TemplateArgument &Converted) { 2408 bool Invalid = false; 2409 Expr *Arg = ArgIn; 2410 QualType ArgType = Arg->getType(); 2411 2412 // See through any implicit casts we added to fix the type. 2413 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2414 Arg = Cast->getSubExpr(); 2415 2416 // C++ [temp.arg.nontype]p1: 2417 // 2418 // A template-argument for a non-type, non-template 2419 // template-parameter shall be one of: [...] 2420 // 2421 // -- the address of an object or function with external 2422 // linkage, including function templates and function 2423 // template-ids but excluding non-static class members, 2424 // expressed as & id-expression where the & is optional if 2425 // the name refers to a function or array, or if the 2426 // corresponding template-parameter is a reference; or 2427 DeclRefExpr *DRE = 0; 2428 2429 // Ignore (and complain about) any excess parentheses. 2430 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2431 if (!Invalid) { 2432 S.Diag(Arg->getSourceRange().getBegin(), 2433 diag::err_template_arg_extra_parens) 2434 << Arg->getSourceRange(); 2435 Invalid = true; 2436 } 2437 2438 Arg = Parens->getSubExpr(); 2439 } 2440 2441 bool AddressTaken = false; 2442 SourceLocation AddrOpLoc; 2443 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2444 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2445 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2446 AddressTaken = true; 2447 AddrOpLoc = UnOp->getOperatorLoc(); 2448 } 2449 } else 2450 DRE = dyn_cast<DeclRefExpr>(Arg); 2451 2452 if (!DRE) { 2453 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2454 << Arg->getSourceRange(); 2455 S.Diag(Param->getLocation(), diag::note_template_param_here); 2456 return true; 2457 } 2458 2459 // Stop checking the precise nature of the argument if it is value dependent, 2460 // it should be checked when instantiated. 2461 if (Arg->isValueDependent()) { 2462 Converted = TemplateArgument(ArgIn->Retain()); 2463 return false; 2464 } 2465 2466 if (!isa<ValueDecl>(DRE->getDecl())) { 2467 S.Diag(Arg->getSourceRange().getBegin(), 2468 diag::err_template_arg_not_object_or_func_form) 2469 << Arg->getSourceRange(); 2470 S.Diag(Param->getLocation(), diag::note_template_param_here); 2471 return true; 2472 } 2473 2474 NamedDecl *Entity = 0; 2475 2476 // Cannot refer to non-static data members 2477 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2478 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2479 << Field << Arg->getSourceRange(); 2480 S.Diag(Param->getLocation(), diag::note_template_param_here); 2481 return true; 2482 } 2483 2484 // Cannot refer to non-static member functions 2485 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2486 if (!Method->isStatic()) { 2487 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2488 << Method << Arg->getSourceRange(); 2489 S.Diag(Param->getLocation(), diag::note_template_param_here); 2490 return true; 2491 } 2492 2493 // Functions must have external linkage. 2494 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2495 if (!isExternalLinkage(Func->getLinkage())) { 2496 S.Diag(Arg->getSourceRange().getBegin(), 2497 diag::err_template_arg_function_not_extern) 2498 << Func << Arg->getSourceRange(); 2499 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2500 << true; 2501 return true; 2502 } 2503 2504 // Okay: we've named a function with external linkage. 2505 Entity = Func; 2506 2507 // If the template parameter has pointer type, the function decays. 2508 if (ParamType->isPointerType() && !AddressTaken) 2509 ArgType = S.Context.getPointerType(Func->getType()); 2510 else if (AddressTaken && ParamType->isReferenceType()) { 2511 // If we originally had an address-of operator, but the 2512 // parameter has reference type, complain and (if things look 2513 // like they will work) drop the address-of operator. 2514 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2515 ParamType.getNonReferenceType())) { 2516 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2517 << ParamType; 2518 S.Diag(Param->getLocation(), diag::note_template_param_here); 2519 return true; 2520 } 2521 2522 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2523 << ParamType 2524 << FixItHint::CreateRemoval(AddrOpLoc); 2525 S.Diag(Param->getLocation(), diag::note_template_param_here); 2526 2527 ArgType = Func->getType(); 2528 } 2529 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2530 if (!isExternalLinkage(Var->getLinkage())) { 2531 S.Diag(Arg->getSourceRange().getBegin(), 2532 diag::err_template_arg_object_not_extern) 2533 << Var << Arg->getSourceRange(); 2534 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2535 << true; 2536 return true; 2537 } 2538 2539 // A value of reference type is not an object. 2540 if (Var->getType()->isReferenceType()) { 2541 S.Diag(Arg->getSourceRange().getBegin(), 2542 diag::err_template_arg_reference_var) 2543 << Var->getType() << Arg->getSourceRange(); 2544 S.Diag(Param->getLocation(), diag::note_template_param_here); 2545 return true; 2546 } 2547 2548 // Okay: we've named an object with external linkage 2549 Entity = Var; 2550 2551 // If the template parameter has pointer type, we must have taken 2552 // the address of this object. 2553 if (ParamType->isReferenceType()) { 2554 if (AddressTaken) { 2555 // If we originally had an address-of operator, but the 2556 // parameter has reference type, complain and (if things look 2557 // like they will work) drop the address-of operator. 2558 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2559 ParamType.getNonReferenceType())) { 2560 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2561 << ParamType; 2562 S.Diag(Param->getLocation(), diag::note_template_param_here); 2563 return true; 2564 } 2565 2566 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2567 << ParamType 2568 << FixItHint::CreateRemoval(AddrOpLoc); 2569 S.Diag(Param->getLocation(), diag::note_template_param_here); 2570 2571 ArgType = Var->getType(); 2572 } 2573 } else if (!AddressTaken && ParamType->isPointerType()) { 2574 if (Var->getType()->isArrayType()) { 2575 // Array-to-pointer decay. 2576 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2577 } else { 2578 // If the template parameter has pointer type but the address of 2579 // this object was not taken, complain and (possibly) recover by 2580 // taking the address of the entity. 2581 ArgType = S.Context.getPointerType(Var->getType()); 2582 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2583 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2584 << ParamType; 2585 S.Diag(Param->getLocation(), diag::note_template_param_here); 2586 return true; 2587 } 2588 2589 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2590 << ParamType 2591 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2592 2593 S.Diag(Param->getLocation(), diag::note_template_param_here); 2594 } 2595 } 2596 } else { 2597 // We found something else, but we don't know specifically what it is. 2598 S.Diag(Arg->getSourceRange().getBegin(), 2599 diag::err_template_arg_not_object_or_func) 2600 << Arg->getSourceRange(); 2601 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2602 return true; 2603 } 2604 2605 if (ParamType->isPointerType() && 2606 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2607 S.IsQualificationConversion(ArgType, ParamType)) { 2608 // For pointer-to-object types, qualification conversions are 2609 // permitted. 2610 } else { 2611 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2612 if (!ParamRef->getPointeeType()->isFunctionType()) { 2613 // C++ [temp.arg.nontype]p5b3: 2614 // For a non-type template-parameter of type reference to 2615 // object, no conversions apply. The type referred to by the 2616 // reference may be more cv-qualified than the (otherwise 2617 // identical) type of the template- argument. The 2618 // template-parameter is bound directly to the 2619 // template-argument, which shall be an lvalue. 2620 2621 // FIXME: Other qualifiers? 2622 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2623 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2624 2625 if ((ParamQuals | ArgQuals) != ParamQuals) { 2626 S.Diag(Arg->getSourceRange().getBegin(), 2627 diag::err_template_arg_ref_bind_ignores_quals) 2628 << ParamType << Arg->getType() 2629 << Arg->getSourceRange(); 2630 S.Diag(Param->getLocation(), diag::note_template_param_here); 2631 return true; 2632 } 2633 } 2634 } 2635 2636 // At this point, the template argument refers to an object or 2637 // function with external linkage. We now need to check whether the 2638 // argument and parameter types are compatible. 2639 if (!S.Context.hasSameUnqualifiedType(ArgType, 2640 ParamType.getNonReferenceType())) { 2641 // We can't perform this conversion or binding. 2642 if (ParamType->isReferenceType()) 2643 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2644 << ParamType << Arg->getType() << Arg->getSourceRange(); 2645 else 2646 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2647 << Arg->getType() << ParamType << Arg->getSourceRange(); 2648 S.Diag(Param->getLocation(), diag::note_template_param_here); 2649 return true; 2650 } 2651 } 2652 2653 // Create the template argument. 2654 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2655 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2656 return false; 2657} 2658 2659/// \brief Checks whether the given template argument is a pointer to 2660/// member constant according to C++ [temp.arg.nontype]p1. 2661bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2662 TemplateArgument &Converted) { 2663 bool Invalid = false; 2664 2665 // See through any implicit casts we added to fix the type. 2666 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2667 Arg = Cast->getSubExpr(); 2668 2669 // C++ [temp.arg.nontype]p1: 2670 // 2671 // A template-argument for a non-type, non-template 2672 // template-parameter shall be one of: [...] 2673 // 2674 // -- a pointer to member expressed as described in 5.3.1. 2675 DeclRefExpr *DRE = 0; 2676 2677 // Ignore (and complain about) any excess parentheses. 2678 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2679 if (!Invalid) { 2680 Diag(Arg->getSourceRange().getBegin(), 2681 diag::err_template_arg_extra_parens) 2682 << Arg->getSourceRange(); 2683 Invalid = true; 2684 } 2685 2686 Arg = Parens->getSubExpr(); 2687 } 2688 2689 // A pointer-to-member constant written &Class::member. 2690 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2691 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2692 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2693 if (DRE && !DRE->getQualifier()) 2694 DRE = 0; 2695 } 2696 } 2697 // A constant of pointer-to-member type. 2698 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2699 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2700 if (VD->getType()->isMemberPointerType()) { 2701 if (isa<NonTypeTemplateParmDecl>(VD) || 2702 (isa<VarDecl>(VD) && 2703 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2704 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2705 Converted = TemplateArgument(Arg->Retain()); 2706 else 2707 Converted = TemplateArgument(VD->getCanonicalDecl()); 2708 return Invalid; 2709 } 2710 } 2711 } 2712 2713 DRE = 0; 2714 } 2715 2716 if (!DRE) 2717 return Diag(Arg->getSourceRange().getBegin(), 2718 diag::err_template_arg_not_pointer_to_member_form) 2719 << Arg->getSourceRange(); 2720 2721 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2722 assert((isa<FieldDecl>(DRE->getDecl()) || 2723 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2724 "Only non-static member pointers can make it here"); 2725 2726 // Okay: this is the address of a non-static member, and therefore 2727 // a member pointer constant. 2728 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2729 Converted = TemplateArgument(Arg->Retain()); 2730 else 2731 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2732 return Invalid; 2733 } 2734 2735 // We found something else, but we don't know specifically what it is. 2736 Diag(Arg->getSourceRange().getBegin(), 2737 diag::err_template_arg_not_pointer_to_member_form) 2738 << Arg->getSourceRange(); 2739 Diag(DRE->getDecl()->getLocation(), 2740 diag::note_template_arg_refers_here); 2741 return true; 2742} 2743 2744/// \brief Check a template argument against its corresponding 2745/// non-type template parameter. 2746/// 2747/// This routine implements the semantics of C++ [temp.arg.nontype]. 2748/// It returns true if an error occurred, and false otherwise. \p 2749/// InstantiatedParamType is the type of the non-type template 2750/// parameter after it has been instantiated. 2751/// 2752/// If no error was detected, Converted receives the converted template argument. 2753bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2754 QualType InstantiatedParamType, Expr *&Arg, 2755 TemplateArgument &Converted, 2756 CheckTemplateArgumentKind CTAK) { 2757 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2758 2759 // If either the parameter has a dependent type or the argument is 2760 // type-dependent, there's nothing we can check now. 2761 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2762 // FIXME: Produce a cloned, canonical expression? 2763 Converted = TemplateArgument(Arg); 2764 return false; 2765 } 2766 2767 // C++ [temp.arg.nontype]p5: 2768 // The following conversions are performed on each expression used 2769 // as a non-type template-argument. If a non-type 2770 // template-argument cannot be converted to the type of the 2771 // corresponding template-parameter then the program is 2772 // ill-formed. 2773 // 2774 // -- for a non-type template-parameter of integral or 2775 // enumeration type, integral promotions (4.5) and integral 2776 // conversions (4.7) are applied. 2777 QualType ParamType = InstantiatedParamType; 2778 QualType ArgType = Arg->getType(); 2779 if (ParamType->isIntegralOrEnumerationType()) { 2780 // C++ [temp.arg.nontype]p1: 2781 // A template-argument for a non-type, non-template 2782 // template-parameter shall be one of: 2783 // 2784 // -- an integral constant-expression of integral or enumeration 2785 // type; or 2786 // -- the name of a non-type template-parameter; or 2787 SourceLocation NonConstantLoc; 2788 llvm::APSInt Value; 2789 if (!ArgType->isIntegralOrEnumerationType()) { 2790 Diag(Arg->getSourceRange().getBegin(), 2791 diag::err_template_arg_not_integral_or_enumeral) 2792 << ArgType << Arg->getSourceRange(); 2793 Diag(Param->getLocation(), diag::note_template_param_here); 2794 return true; 2795 } else if (!Arg->isValueDependent() && 2796 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2797 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2798 << ArgType << Arg->getSourceRange(); 2799 return true; 2800 } 2801 2802 // From here on out, all we care about are the unqualified forms 2803 // of the parameter and argument types. 2804 ParamType = ParamType.getUnqualifiedType(); 2805 ArgType = ArgType.getUnqualifiedType(); 2806 2807 // Try to convert the argument to the parameter's type. 2808 if (Context.hasSameType(ParamType, ArgType)) { 2809 // Okay: no conversion necessary 2810 } else if (CTAK == CTAK_Deduced) { 2811 // C++ [temp.deduct.type]p17: 2812 // If, in the declaration of a function template with a non-type 2813 // template-parameter, the non-type template- parameter is used 2814 // in an expression in the function parameter-list and, if the 2815 // corresponding template-argument is deduced, the 2816 // template-argument type shall match the type of the 2817 // template-parameter exactly, except that a template-argument 2818 // deduced from an array bound may be of any integral type. 2819 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2820 << ArgType << ParamType; 2821 Diag(Param->getLocation(), diag::note_template_param_here); 2822 return true; 2823 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2824 !ParamType->isEnumeralType()) { 2825 // This is an integral promotion or conversion. 2826 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2827 } else { 2828 // We can't perform this conversion. 2829 Diag(Arg->getSourceRange().getBegin(), 2830 diag::err_template_arg_not_convertible) 2831 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2832 Diag(Param->getLocation(), diag::note_template_param_here); 2833 return true; 2834 } 2835 2836 QualType IntegerType = Context.getCanonicalType(ParamType); 2837 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2838 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2839 2840 if (!Arg->isValueDependent()) { 2841 llvm::APSInt OldValue = Value; 2842 2843 // Coerce the template argument's value to the value it will have 2844 // based on the template parameter's type. 2845 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2846 if (Value.getBitWidth() != AllowedBits) 2847 Value.extOrTrunc(AllowedBits); 2848 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2849 2850 // Complain if an unsigned parameter received a negative value. 2851 if (IntegerType->isUnsignedIntegerType() 2852 && (OldValue.isSigned() && OldValue.isNegative())) { 2853 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2854 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2855 << Arg->getSourceRange(); 2856 Diag(Param->getLocation(), diag::note_template_param_here); 2857 } 2858 2859 // Complain if we overflowed the template parameter's type. 2860 unsigned RequiredBits; 2861 if (IntegerType->isUnsignedIntegerType()) 2862 RequiredBits = OldValue.getActiveBits(); 2863 else if (OldValue.isUnsigned()) 2864 RequiredBits = OldValue.getActiveBits() + 1; 2865 else 2866 RequiredBits = OldValue.getMinSignedBits(); 2867 if (RequiredBits > AllowedBits) { 2868 Diag(Arg->getSourceRange().getBegin(), 2869 diag::warn_template_arg_too_large) 2870 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2871 << Arg->getSourceRange(); 2872 Diag(Param->getLocation(), diag::note_template_param_here); 2873 } 2874 } 2875 2876 // Add the value of this argument to the list of converted 2877 // arguments. We use the bitwidth and signedness of the template 2878 // parameter. 2879 if (Arg->isValueDependent()) { 2880 // The argument is value-dependent. Create a new 2881 // TemplateArgument with the converted expression. 2882 Converted = TemplateArgument(Arg); 2883 return false; 2884 } 2885 2886 Converted = TemplateArgument(Value, 2887 ParamType->isEnumeralType() ? ParamType 2888 : IntegerType); 2889 return false; 2890 } 2891 2892 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2893 2894 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2895 // from a template argument of type std::nullptr_t to a non-type 2896 // template parameter of type pointer to object, pointer to 2897 // function, or pointer-to-member, respectively. 2898 if (ArgType->isNullPtrType() && 2899 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2900 Converted = TemplateArgument((NamedDecl *)0); 2901 return false; 2902 } 2903 2904 // Handle pointer-to-function, reference-to-function, and 2905 // pointer-to-member-function all in (roughly) the same way. 2906 if (// -- For a non-type template-parameter of type pointer to 2907 // function, only the function-to-pointer conversion (4.3) is 2908 // applied. If the template-argument represents a set of 2909 // overloaded functions (or a pointer to such), the matching 2910 // function is selected from the set (13.4). 2911 (ParamType->isPointerType() && 2912 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2913 // -- For a non-type template-parameter of type reference to 2914 // function, no conversions apply. If the template-argument 2915 // represents a set of overloaded functions, the matching 2916 // function is selected from the set (13.4). 2917 (ParamType->isReferenceType() && 2918 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2919 // -- For a non-type template-parameter of type pointer to 2920 // member function, no conversions apply. If the 2921 // template-argument represents a set of overloaded member 2922 // functions, the matching member function is selected from 2923 // the set (13.4). 2924 (ParamType->isMemberPointerType() && 2925 ParamType->getAs<MemberPointerType>()->getPointeeType() 2926 ->isFunctionType())) { 2927 2928 if (Arg->getType() == Context.OverloadTy) { 2929 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2930 true, 2931 FoundResult)) { 2932 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2933 return true; 2934 2935 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2936 ArgType = Arg->getType(); 2937 } else 2938 return true; 2939 } 2940 2941 if (!ParamType->isMemberPointerType()) 2942 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2943 ParamType, 2944 Arg, Converted); 2945 2946 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2947 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2948 Arg->isLvalue(Context) == Expr::LV_Valid); 2949 } else if (!Context.hasSameUnqualifiedType(ArgType, 2950 ParamType.getNonReferenceType())) { 2951 // We can't perform this conversion. 2952 Diag(Arg->getSourceRange().getBegin(), 2953 diag::err_template_arg_not_convertible) 2954 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2955 Diag(Param->getLocation(), diag::note_template_param_here); 2956 return true; 2957 } 2958 2959 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2960 } 2961 2962 if (ParamType->isPointerType()) { 2963 // -- for a non-type template-parameter of type pointer to 2964 // object, qualification conversions (4.4) and the 2965 // array-to-pointer conversion (4.2) are applied. 2966 // C++0x also allows a value of std::nullptr_t. 2967 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2968 "Only object pointers allowed here"); 2969 2970 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2971 ParamType, 2972 Arg, Converted); 2973 } 2974 2975 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2976 // -- For a non-type template-parameter of type reference to 2977 // object, no conversions apply. The type referred to by the 2978 // reference may be more cv-qualified than the (otherwise 2979 // identical) type of the template-argument. The 2980 // template-parameter is bound directly to the 2981 // template-argument, which must be an lvalue. 2982 assert(ParamRefType->getPointeeType()->isObjectType() && 2983 "Only object references allowed here"); 2984 2985 if (Arg->getType() == Context.OverloadTy) { 2986 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2987 ParamRefType->getPointeeType(), 2988 true, 2989 FoundResult)) { 2990 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2991 return true; 2992 2993 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2994 ArgType = Arg->getType(); 2995 } else 2996 return true; 2997 } 2998 2999 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 3000 ParamType, 3001 Arg, Converted); 3002 } 3003 3004 // -- For a non-type template-parameter of type pointer to data 3005 // member, qualification conversions (4.4) are applied. 3006 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 3007 3008 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 3009 // Types match exactly: nothing more to do here. 3010 } else if (IsQualificationConversion(ArgType, ParamType)) { 3011 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 3012 Arg->isLvalue(Context) == Expr::LV_Valid); 3013 } else { 3014 // We can't perform this conversion. 3015 Diag(Arg->getSourceRange().getBegin(), 3016 diag::err_template_arg_not_convertible) 3017 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 3018 Diag(Param->getLocation(), diag::note_template_param_here); 3019 return true; 3020 } 3021 3022 return CheckTemplateArgumentPointerToMember(Arg, Converted); 3023} 3024 3025/// \brief Check a template argument against its corresponding 3026/// template template parameter. 3027/// 3028/// This routine implements the semantics of C++ [temp.arg.template]. 3029/// It returns true if an error occurred, and false otherwise. 3030bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 3031 const TemplateArgumentLoc &Arg) { 3032 TemplateName Name = Arg.getArgument().getAsTemplate(); 3033 TemplateDecl *Template = Name.getAsTemplateDecl(); 3034 if (!Template) { 3035 // Any dependent template name is fine. 3036 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3037 return false; 3038 } 3039 3040 // C++ [temp.arg.template]p1: 3041 // A template-argument for a template template-parameter shall be 3042 // the name of a class template, expressed as id-expression. Only 3043 // primary class templates are considered when matching the 3044 // template template argument with the corresponding parameter; 3045 // partial specializations are not considered even if their 3046 // parameter lists match that of the template template parameter. 3047 // 3048 // Note that we also allow template template parameters here, which 3049 // will happen when we are dealing with, e.g., class template 3050 // partial specializations. 3051 if (!isa<ClassTemplateDecl>(Template) && 3052 !isa<TemplateTemplateParmDecl>(Template)) { 3053 assert(isa<FunctionTemplateDecl>(Template) && 3054 "Only function templates are possible here"); 3055 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3056 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3057 << Template; 3058 } 3059 3060 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3061 Param->getTemplateParameters(), 3062 true, 3063 TPL_TemplateTemplateArgumentMatch, 3064 Arg.getLocation()); 3065} 3066 3067/// \brief Given a non-type template argument that refers to a 3068/// declaration and the type of its corresponding non-type template 3069/// parameter, produce an expression that properly refers to that 3070/// declaration. 3071Sema::OwningExprResult 3072Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3073 QualType ParamType, 3074 SourceLocation Loc) { 3075 assert(Arg.getKind() == TemplateArgument::Declaration && 3076 "Only declaration template arguments permitted here"); 3077 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3078 3079 if (VD->getDeclContext()->isRecord() && 3080 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3081 // If the value is a class member, we might have a pointer-to-member. 3082 // Determine whether the non-type template template parameter is of 3083 // pointer-to-member type. If so, we need to build an appropriate 3084 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3085 // would refer to the member itself. 3086 if (ParamType->isMemberPointerType()) { 3087 QualType ClassType 3088 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3089 NestedNameSpecifier *Qualifier 3090 = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr()); 3091 CXXScopeSpec SS; 3092 SS.setScopeRep(Qualifier); 3093 OwningExprResult RefExpr = BuildDeclRefExpr(VD, 3094 VD->getType().getNonReferenceType(), 3095 Loc, 3096 &SS); 3097 if (RefExpr.isInvalid()) 3098 return ExprError(); 3099 3100 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3101 3102 // We might need to perform a trailing qualification conversion, since 3103 // the element type on the parameter could be more qualified than the 3104 // element type in the expression we constructed. 3105 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 3106 ParamType.getUnqualifiedType())) { 3107 Expr *RefE = RefExpr.takeAs<Expr>(); 3108 ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), 3109 CastExpr::CK_NoOp); 3110 RefExpr = Owned(RefE); 3111 } 3112 3113 assert(!RefExpr.isInvalid() && 3114 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3115 ParamType.getUnqualifiedType())); 3116 return move(RefExpr); 3117 } 3118 } 3119 3120 QualType T = VD->getType().getNonReferenceType(); 3121 if (ParamType->isPointerType()) { 3122 // When the non-type template parameter is a pointer, take the 3123 // address of the declaration. 3124 OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3125 if (RefExpr.isInvalid()) 3126 return ExprError(); 3127 3128 if (T->isFunctionType() || T->isArrayType()) { 3129 // Decay functions and arrays. 3130 Expr *RefE = (Expr *)RefExpr.get(); 3131 DefaultFunctionArrayConversion(RefE); 3132 if (RefE != RefExpr.get()) { 3133 RefExpr.release(); 3134 RefExpr = Owned(RefE); 3135 } 3136 3137 return move(RefExpr); 3138 } 3139 3140 // Take the address of everything else 3141 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3142 } 3143 3144 // If the non-type template parameter has reference type, qualify the 3145 // resulting declaration reference with the extra qualifiers on the 3146 // type that the reference refers to. 3147 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3148 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3149 3150 return BuildDeclRefExpr(VD, T, Loc); 3151} 3152 3153/// \brief Construct a new expression that refers to the given 3154/// integral template argument with the given source-location 3155/// information. 3156/// 3157/// This routine takes care of the mapping from an integral template 3158/// argument (which may have any integral type) to the appropriate 3159/// literal value. 3160Sema::OwningExprResult 3161Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3162 SourceLocation Loc) { 3163 assert(Arg.getKind() == TemplateArgument::Integral && 3164 "Operation is only value for integral template arguments"); 3165 QualType T = Arg.getIntegralType(); 3166 if (T->isCharType() || T->isWideCharType()) 3167 return Owned(new (Context) CharacterLiteral( 3168 Arg.getAsIntegral()->getZExtValue(), 3169 T->isWideCharType(), 3170 T, 3171 Loc)); 3172 if (T->isBooleanType()) 3173 return Owned(new (Context) CXXBoolLiteralExpr( 3174 Arg.getAsIntegral()->getBoolValue(), 3175 T, 3176 Loc)); 3177 3178 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3179} 3180 3181 3182/// \brief Determine whether the given template parameter lists are 3183/// equivalent. 3184/// 3185/// \param New The new template parameter list, typically written in the 3186/// source code as part of a new template declaration. 3187/// 3188/// \param Old The old template parameter list, typically found via 3189/// name lookup of the template declared with this template parameter 3190/// list. 3191/// 3192/// \param Complain If true, this routine will produce a diagnostic if 3193/// the template parameter lists are not equivalent. 3194/// 3195/// \param Kind describes how we are to match the template parameter lists. 3196/// 3197/// \param TemplateArgLoc If this source location is valid, then we 3198/// are actually checking the template parameter list of a template 3199/// argument (New) against the template parameter list of its 3200/// corresponding template template parameter (Old). We produce 3201/// slightly different diagnostics in this scenario. 3202/// 3203/// \returns True if the template parameter lists are equal, false 3204/// otherwise. 3205bool 3206Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3207 TemplateParameterList *Old, 3208 bool Complain, 3209 TemplateParameterListEqualKind Kind, 3210 SourceLocation TemplateArgLoc) { 3211 if (Old->size() != New->size()) { 3212 if (Complain) { 3213 unsigned NextDiag = diag::err_template_param_list_different_arity; 3214 if (TemplateArgLoc.isValid()) { 3215 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3216 NextDiag = diag::note_template_param_list_different_arity; 3217 } 3218 Diag(New->getTemplateLoc(), NextDiag) 3219 << (New->size() > Old->size()) 3220 << (Kind != TPL_TemplateMatch) 3221 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3222 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3223 << (Kind != TPL_TemplateMatch) 3224 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3225 } 3226 3227 return false; 3228 } 3229 3230 for (TemplateParameterList::iterator OldParm = Old->begin(), 3231 OldParmEnd = Old->end(), NewParm = New->begin(); 3232 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3233 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3234 if (Complain) { 3235 unsigned NextDiag = diag::err_template_param_different_kind; 3236 if (TemplateArgLoc.isValid()) { 3237 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3238 NextDiag = diag::note_template_param_different_kind; 3239 } 3240 Diag((*NewParm)->getLocation(), NextDiag) 3241 << (Kind != TPL_TemplateMatch); 3242 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3243 << (Kind != TPL_TemplateMatch); 3244 } 3245 return false; 3246 } 3247 3248 if (TemplateTypeParmDecl *OldTTP 3249 = dyn_cast<TemplateTypeParmDecl>(*OldParm)) { 3250 // Template type parameters are equivalent if either both are template 3251 // type parameter packs or neither are (since we know we're at the same 3252 // index). 3253 TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm); 3254 if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) { 3255 // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that 3256 // allow one to match a template parameter pack in the template 3257 // parameter list of a template template parameter to one or more 3258 // template parameters in the template parameter list of the 3259 // corresponding template template argument. 3260 if (Complain) { 3261 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 3262 if (TemplateArgLoc.isValid()) { 3263 Diag(TemplateArgLoc, 3264 diag::err_template_arg_template_params_mismatch); 3265 NextDiag = diag::note_template_parameter_pack_non_pack; 3266 } 3267 Diag(NewTTP->getLocation(), NextDiag) 3268 << 0 << NewTTP->isParameterPack(); 3269 Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here) 3270 << 0 << OldTTP->isParameterPack(); 3271 } 3272 return false; 3273 } 3274 } else if (NonTypeTemplateParmDecl *OldNTTP 3275 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3276 // The types of non-type template parameters must agree. 3277 NonTypeTemplateParmDecl *NewNTTP 3278 = cast<NonTypeTemplateParmDecl>(*NewParm); 3279 3280 // If we are matching a template template argument to a template 3281 // template parameter and one of the non-type template parameter types 3282 // is dependent, then we must wait until template instantiation time 3283 // to actually compare the arguments. 3284 if (Kind == TPL_TemplateTemplateArgumentMatch && 3285 (OldNTTP->getType()->isDependentType() || 3286 NewNTTP->getType()->isDependentType())) 3287 continue; 3288 3289 if (Context.getCanonicalType(OldNTTP->getType()) != 3290 Context.getCanonicalType(NewNTTP->getType())) { 3291 if (Complain) { 3292 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3293 if (TemplateArgLoc.isValid()) { 3294 Diag(TemplateArgLoc, 3295 diag::err_template_arg_template_params_mismatch); 3296 NextDiag = diag::note_template_nontype_parm_different_type; 3297 } 3298 Diag(NewNTTP->getLocation(), NextDiag) 3299 << NewNTTP->getType() 3300 << (Kind != TPL_TemplateMatch); 3301 Diag(OldNTTP->getLocation(), 3302 diag::note_template_nontype_parm_prev_declaration) 3303 << OldNTTP->getType(); 3304 } 3305 return false; 3306 } 3307 } else { 3308 // The template parameter lists of template template 3309 // parameters must agree. 3310 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3311 "Only template template parameters handled here"); 3312 TemplateTemplateParmDecl *OldTTP 3313 = cast<TemplateTemplateParmDecl>(*OldParm); 3314 TemplateTemplateParmDecl *NewTTP 3315 = cast<TemplateTemplateParmDecl>(*NewParm); 3316 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3317 OldTTP->getTemplateParameters(), 3318 Complain, 3319 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3320 TemplateArgLoc)) 3321 return false; 3322 } 3323 } 3324 3325 return true; 3326} 3327 3328/// \brief Check whether a template can be declared within this scope. 3329/// 3330/// If the template declaration is valid in this scope, returns 3331/// false. Otherwise, issues a diagnostic and returns true. 3332bool 3333Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3334 // Find the nearest enclosing declaration scope. 3335 while ((S->getFlags() & Scope::DeclScope) == 0 || 3336 (S->getFlags() & Scope::TemplateParamScope) != 0) 3337 S = S->getParent(); 3338 3339 // C++ [temp]p2: 3340 // A template-declaration can appear only as a namespace scope or 3341 // class scope declaration. 3342 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3343 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3344 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3345 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3346 << TemplateParams->getSourceRange(); 3347 3348 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3349 Ctx = Ctx->getParent(); 3350 3351 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3352 return false; 3353 3354 return Diag(TemplateParams->getTemplateLoc(), 3355 diag::err_template_outside_namespace_or_class_scope) 3356 << TemplateParams->getSourceRange(); 3357} 3358 3359/// \brief Determine what kind of template specialization the given declaration 3360/// is. 3361static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3362 if (!D) 3363 return TSK_Undeclared; 3364 3365 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3366 return Record->getTemplateSpecializationKind(); 3367 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3368 return Function->getTemplateSpecializationKind(); 3369 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3370 return Var->getTemplateSpecializationKind(); 3371 3372 return TSK_Undeclared; 3373} 3374 3375/// \brief Check whether a specialization is well-formed in the current 3376/// context. 3377/// 3378/// This routine determines whether a template specialization can be declared 3379/// in the current context (C++ [temp.expl.spec]p2). 3380/// 3381/// \param S the semantic analysis object for which this check is being 3382/// performed. 3383/// 3384/// \param Specialized the entity being specialized or instantiated, which 3385/// may be a kind of template (class template, function template, etc.) or 3386/// a member of a class template (member function, static data member, 3387/// member class). 3388/// 3389/// \param PrevDecl the previous declaration of this entity, if any. 3390/// 3391/// \param Loc the location of the explicit specialization or instantiation of 3392/// this entity. 3393/// 3394/// \param IsPartialSpecialization whether this is a partial specialization of 3395/// a class template. 3396/// 3397/// \returns true if there was an error that we cannot recover from, false 3398/// otherwise. 3399static bool CheckTemplateSpecializationScope(Sema &S, 3400 NamedDecl *Specialized, 3401 NamedDecl *PrevDecl, 3402 SourceLocation Loc, 3403 bool IsPartialSpecialization) { 3404 // Keep these "kind" numbers in sync with the %select statements in the 3405 // various diagnostics emitted by this routine. 3406 int EntityKind = 0; 3407 bool isTemplateSpecialization = false; 3408 if (isa<ClassTemplateDecl>(Specialized)) { 3409 EntityKind = IsPartialSpecialization? 1 : 0; 3410 isTemplateSpecialization = true; 3411 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3412 EntityKind = 2; 3413 isTemplateSpecialization = true; 3414 } else if (isa<CXXMethodDecl>(Specialized)) 3415 EntityKind = 3; 3416 else if (isa<VarDecl>(Specialized)) 3417 EntityKind = 4; 3418 else if (isa<RecordDecl>(Specialized)) 3419 EntityKind = 5; 3420 else { 3421 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3422 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3423 return true; 3424 } 3425 3426 // C++ [temp.expl.spec]p2: 3427 // An explicit specialization shall be declared in the namespace 3428 // of which the template is a member, or, for member templates, in 3429 // the namespace of which the enclosing class or enclosing class 3430 // template is a member. An explicit specialization of a member 3431 // function, member class or static data member of a class 3432 // template shall be declared in the namespace of which the class 3433 // template is a member. Such a declaration may also be a 3434 // definition. If the declaration is not a definition, the 3435 // specialization may be defined later in the name- space in which 3436 // the explicit specialization was declared, or in a namespace 3437 // that encloses the one in which the explicit specialization was 3438 // declared. 3439 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3440 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3441 << Specialized; 3442 return true; 3443 } 3444 3445 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3446 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3447 << Specialized; 3448 return true; 3449 } 3450 3451 // C++ [temp.class.spec]p6: 3452 // A class template partial specialization may be declared or redeclared 3453 // in any namespace scope in which its definition may be defined (14.5.1 3454 // and 14.5.2). 3455 bool ComplainedAboutScope = false; 3456 DeclContext *SpecializedContext 3457 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3458 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3459 if ((!PrevDecl || 3460 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3461 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3462 // There is no prior declaration of this entity, so this 3463 // specialization must be in the same context as the template 3464 // itself. 3465 if (!DC->Equals(SpecializedContext)) { 3466 if (isa<TranslationUnitDecl>(SpecializedContext)) 3467 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3468 << EntityKind << Specialized; 3469 else if (isa<NamespaceDecl>(SpecializedContext)) 3470 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3471 << EntityKind << Specialized 3472 << cast<NamedDecl>(SpecializedContext); 3473 3474 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3475 ComplainedAboutScope = true; 3476 } 3477 } 3478 3479 // Make sure that this redeclaration (or definition) occurs in an enclosing 3480 // namespace. 3481 // Note that HandleDeclarator() performs this check for explicit 3482 // specializations of function templates, static data members, and member 3483 // functions, so we skip the check here for those kinds of entities. 3484 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3485 // Should we refactor that check, so that it occurs later? 3486 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3487 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3488 isa<FunctionDecl>(Specialized))) { 3489 if (isa<TranslationUnitDecl>(SpecializedContext)) 3490 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3491 << EntityKind << Specialized; 3492 else if (isa<NamespaceDecl>(SpecializedContext)) 3493 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3494 << EntityKind << Specialized 3495 << cast<NamedDecl>(SpecializedContext); 3496 3497 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3498 } 3499 3500 // FIXME: check for specialization-after-instantiation errors and such. 3501 3502 return false; 3503} 3504 3505/// \brief Check the non-type template arguments of a class template 3506/// partial specialization according to C++ [temp.class.spec]p9. 3507/// 3508/// \param TemplateParams the template parameters of the primary class 3509/// template. 3510/// 3511/// \param TemplateArg the template arguments of the class template 3512/// partial specialization. 3513/// 3514/// \param MirrorsPrimaryTemplate will be set true if the class 3515/// template partial specialization arguments are identical to the 3516/// implicit template arguments of the primary template. This is not 3517/// necessarily an error (C++0x), and it is left to the caller to diagnose 3518/// this condition when it is an error. 3519/// 3520/// \returns true if there was an error, false otherwise. 3521bool Sema::CheckClassTemplatePartialSpecializationArgs( 3522 TemplateParameterList *TemplateParams, 3523 const TemplateArgumentListBuilder &TemplateArgs, 3524 bool &MirrorsPrimaryTemplate) { 3525 // FIXME: the interface to this function will have to change to 3526 // accommodate variadic templates. 3527 MirrorsPrimaryTemplate = true; 3528 3529 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3530 3531 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3532 // Determine whether the template argument list of the partial 3533 // specialization is identical to the implicit argument list of 3534 // the primary template. The caller may need to diagnostic this as 3535 // an error per C++ [temp.class.spec]p9b3. 3536 if (MirrorsPrimaryTemplate) { 3537 if (TemplateTypeParmDecl *TTP 3538 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3539 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3540 Context.getCanonicalType(ArgList[I].getAsType())) 3541 MirrorsPrimaryTemplate = false; 3542 } else if (TemplateTemplateParmDecl *TTP 3543 = dyn_cast<TemplateTemplateParmDecl>( 3544 TemplateParams->getParam(I))) { 3545 TemplateName Name = ArgList[I].getAsTemplate(); 3546 TemplateTemplateParmDecl *ArgDecl 3547 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3548 if (!ArgDecl || 3549 ArgDecl->getIndex() != TTP->getIndex() || 3550 ArgDecl->getDepth() != TTP->getDepth()) 3551 MirrorsPrimaryTemplate = false; 3552 } 3553 } 3554 3555 NonTypeTemplateParmDecl *Param 3556 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3557 if (!Param) { 3558 continue; 3559 } 3560 3561 Expr *ArgExpr = ArgList[I].getAsExpr(); 3562 if (!ArgExpr) { 3563 MirrorsPrimaryTemplate = false; 3564 continue; 3565 } 3566 3567 // C++ [temp.class.spec]p8: 3568 // A non-type argument is non-specialized if it is the name of a 3569 // non-type parameter. All other non-type arguments are 3570 // specialized. 3571 // 3572 // Below, we check the two conditions that only apply to 3573 // specialized non-type arguments, so skip any non-specialized 3574 // arguments. 3575 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3576 if (NonTypeTemplateParmDecl *NTTP 3577 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3578 if (MirrorsPrimaryTemplate && 3579 (Param->getIndex() != NTTP->getIndex() || 3580 Param->getDepth() != NTTP->getDepth())) 3581 MirrorsPrimaryTemplate = false; 3582 3583 continue; 3584 } 3585 3586 // C++ [temp.class.spec]p9: 3587 // Within the argument list of a class template partial 3588 // specialization, the following restrictions apply: 3589 // -- A partially specialized non-type argument expression 3590 // shall not involve a template parameter of the partial 3591 // specialization except when the argument expression is a 3592 // simple identifier. 3593 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3594 Diag(ArgExpr->getLocStart(), 3595 diag::err_dependent_non_type_arg_in_partial_spec) 3596 << ArgExpr->getSourceRange(); 3597 return true; 3598 } 3599 3600 // -- The type of a template parameter corresponding to a 3601 // specialized non-type argument shall not be dependent on a 3602 // parameter of the specialization. 3603 if (Param->getType()->isDependentType()) { 3604 Diag(ArgExpr->getLocStart(), 3605 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3606 << Param->getType() 3607 << ArgExpr->getSourceRange(); 3608 Diag(Param->getLocation(), diag::note_template_param_here); 3609 return true; 3610 } 3611 3612 MirrorsPrimaryTemplate = false; 3613 } 3614 3615 return false; 3616} 3617 3618/// \brief Retrieve the previous declaration of the given declaration. 3619static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3620 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3621 return VD->getPreviousDeclaration(); 3622 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3623 return FD->getPreviousDeclaration(); 3624 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3625 return TD->getPreviousDeclaration(); 3626 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3627 return TD->getPreviousDeclaration(); 3628 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3629 return FTD->getPreviousDeclaration(); 3630 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3631 return CTD->getPreviousDeclaration(); 3632 return 0; 3633} 3634 3635Sema::DeclResult 3636Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3637 TagUseKind TUK, 3638 SourceLocation KWLoc, 3639 CXXScopeSpec &SS, 3640 TemplateTy TemplateD, 3641 SourceLocation TemplateNameLoc, 3642 SourceLocation LAngleLoc, 3643 ASTTemplateArgsPtr TemplateArgsIn, 3644 SourceLocation RAngleLoc, 3645 AttributeList *Attr, 3646 MultiTemplateParamsArg TemplateParameterLists) { 3647 assert(TUK != TUK_Reference && "References are not specializations"); 3648 3649 // Find the class template we're specializing 3650 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3651 ClassTemplateDecl *ClassTemplate 3652 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3653 3654 if (!ClassTemplate) { 3655 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3656 << (Name.getAsTemplateDecl() && 3657 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3658 return true; 3659 } 3660 3661 bool isExplicitSpecialization = false; 3662 bool isPartialSpecialization = false; 3663 3664 // Check the validity of the template headers that introduce this 3665 // template. 3666 // FIXME: We probably shouldn't complain about these headers for 3667 // friend declarations. 3668 TemplateParameterList *TemplateParams 3669 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3670 (TemplateParameterList**)TemplateParameterLists.get(), 3671 TemplateParameterLists.size(), 3672 TUK == TUK_Friend, 3673 isExplicitSpecialization); 3674 unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size(); 3675 if (TemplateParams) 3676 --NumMatchedTemplateParamLists; 3677 3678 if (TemplateParams && TemplateParams->size() > 0) { 3679 isPartialSpecialization = true; 3680 3681 // C++ [temp.class.spec]p10: 3682 // The template parameter list of a specialization shall not 3683 // contain default template argument values. 3684 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3685 Decl *Param = TemplateParams->getParam(I); 3686 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3687 if (TTP->hasDefaultArgument()) { 3688 Diag(TTP->getDefaultArgumentLoc(), 3689 diag::err_default_arg_in_partial_spec); 3690 TTP->removeDefaultArgument(); 3691 } 3692 } else if (NonTypeTemplateParmDecl *NTTP 3693 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3694 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3695 Diag(NTTP->getDefaultArgumentLoc(), 3696 diag::err_default_arg_in_partial_spec) 3697 << DefArg->getSourceRange(); 3698 NTTP->removeDefaultArgument(); 3699 DefArg->Destroy(Context); 3700 } 3701 } else { 3702 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3703 if (TTP->hasDefaultArgument()) { 3704 Diag(TTP->getDefaultArgument().getLocation(), 3705 diag::err_default_arg_in_partial_spec) 3706 << TTP->getDefaultArgument().getSourceRange(); 3707 TTP->removeDefaultArgument(); 3708 } 3709 } 3710 } 3711 } else if (TemplateParams) { 3712 if (TUK == TUK_Friend) 3713 Diag(KWLoc, diag::err_template_spec_friend) 3714 << FixItHint::CreateRemoval( 3715 SourceRange(TemplateParams->getTemplateLoc(), 3716 TemplateParams->getRAngleLoc())) 3717 << SourceRange(LAngleLoc, RAngleLoc); 3718 else 3719 isExplicitSpecialization = true; 3720 } else if (TUK != TUK_Friend) { 3721 Diag(KWLoc, diag::err_template_spec_needs_header) 3722 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3723 isExplicitSpecialization = true; 3724 } 3725 3726 // Check that the specialization uses the same tag kind as the 3727 // original template. 3728 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3729 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 3730 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3731 Kind, KWLoc, 3732 *ClassTemplate->getIdentifier())) { 3733 Diag(KWLoc, diag::err_use_with_wrong_tag) 3734 << ClassTemplate 3735 << FixItHint::CreateReplacement(KWLoc, 3736 ClassTemplate->getTemplatedDecl()->getKindName()); 3737 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3738 diag::note_previous_use); 3739 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3740 } 3741 3742 // Translate the parser's template argument list in our AST format. 3743 TemplateArgumentListInfo TemplateArgs; 3744 TemplateArgs.setLAngleLoc(LAngleLoc); 3745 TemplateArgs.setRAngleLoc(RAngleLoc); 3746 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3747 3748 // Check that the template argument list is well-formed for this 3749 // template. 3750 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3751 TemplateArgs.size()); 3752 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3753 TemplateArgs, false, Converted)) 3754 return true; 3755 3756 assert((Converted.structuredSize() == 3757 ClassTemplate->getTemplateParameters()->size()) && 3758 "Converted template argument list is too short!"); 3759 3760 // Find the class template (partial) specialization declaration that 3761 // corresponds to these arguments. 3762 llvm::FoldingSetNodeID ID; 3763 if (isPartialSpecialization) { 3764 bool MirrorsPrimaryTemplate; 3765 if (CheckClassTemplatePartialSpecializationArgs( 3766 ClassTemplate->getTemplateParameters(), 3767 Converted, MirrorsPrimaryTemplate)) 3768 return true; 3769 3770 if (MirrorsPrimaryTemplate) { 3771 // C++ [temp.class.spec]p9b3: 3772 // 3773 // -- The argument list of the specialization shall not be identical 3774 // to the implicit argument list of the primary template. 3775 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3776 << (TUK == TUK_Definition) 3777 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3778 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3779 ClassTemplate->getIdentifier(), 3780 TemplateNameLoc, 3781 Attr, 3782 TemplateParams, 3783 AS_none); 3784 } 3785 3786 // FIXME: Diagnose friend partial specializations 3787 3788 if (!Name.isDependent() && 3789 !TemplateSpecializationType::anyDependentTemplateArguments( 3790 TemplateArgs.getArgumentArray(), 3791 TemplateArgs.size())) { 3792 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3793 << ClassTemplate->getDeclName(); 3794 isPartialSpecialization = false; 3795 } else { 3796 // FIXME: Template parameter list matters, too 3797 ClassTemplatePartialSpecializationDecl::Profile(ID, 3798 Converted.getFlatArguments(), 3799 Converted.flatSize(), 3800 Context); 3801 } 3802 } 3803 3804 if (!isPartialSpecialization) 3805 ClassTemplateSpecializationDecl::Profile(ID, 3806 Converted.getFlatArguments(), 3807 Converted.flatSize(), 3808 Context); 3809 void *InsertPos = 0; 3810 ClassTemplateSpecializationDecl *PrevDecl = 0; 3811 3812 if (isPartialSpecialization) 3813 PrevDecl 3814 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3815 InsertPos); 3816 else 3817 PrevDecl 3818 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3819 3820 ClassTemplateSpecializationDecl *Specialization = 0; 3821 3822 // Check whether we can declare a class template specialization in 3823 // the current scope. 3824 if (TUK != TUK_Friend && 3825 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3826 TemplateNameLoc, 3827 isPartialSpecialization)) 3828 return true; 3829 3830 // The canonical type 3831 QualType CanonType; 3832 if (PrevDecl && 3833 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3834 TUK == TUK_Friend)) { 3835 // Since the only prior class template specialization with these 3836 // arguments was referenced but not declared, or we're only 3837 // referencing this specialization as a friend, reuse that 3838 // declaration node as our own, updating its source location to 3839 // reflect our new declaration. 3840 Specialization = PrevDecl; 3841 Specialization->setLocation(TemplateNameLoc); 3842 PrevDecl = 0; 3843 CanonType = Context.getTypeDeclType(Specialization); 3844 } else if (isPartialSpecialization) { 3845 // Build the canonical type that describes the converted template 3846 // arguments of the class template partial specialization. 3847 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3848 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3849 Converted.getFlatArguments(), 3850 Converted.flatSize()); 3851 3852 // Create a new class template partial specialization declaration node. 3853 ClassTemplatePartialSpecializationDecl *PrevPartial 3854 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3855 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 3856 : ClassTemplate->getPartialSpecializations().size(); 3857 ClassTemplatePartialSpecializationDecl *Partial 3858 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 3859 ClassTemplate->getDeclContext(), 3860 TemplateNameLoc, 3861 TemplateParams, 3862 ClassTemplate, 3863 Converted, 3864 TemplateArgs, 3865 CanonType, 3866 PrevPartial, 3867 SequenceNumber); 3868 SetNestedNameSpecifier(Partial, SS); 3869 if (NumMatchedTemplateParamLists > 0) { 3870 Partial->setTemplateParameterListsInfo(Context, 3871 NumMatchedTemplateParamLists, 3872 (TemplateParameterList**) TemplateParameterLists.release()); 3873 } 3874 3875 if (PrevPartial) { 3876 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3877 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3878 } else { 3879 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3880 } 3881 Specialization = Partial; 3882 3883 // If we are providing an explicit specialization of a member class 3884 // template specialization, make a note of that. 3885 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3886 PrevPartial->setMemberSpecialization(); 3887 3888 // Check that all of the template parameters of the class template 3889 // partial specialization are deducible from the template 3890 // arguments. If not, this class template partial specialization 3891 // will never be used. 3892 llvm::SmallVector<bool, 8> DeducibleParams; 3893 DeducibleParams.resize(TemplateParams->size()); 3894 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3895 TemplateParams->getDepth(), 3896 DeducibleParams); 3897 unsigned NumNonDeducible = 0; 3898 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3899 if (!DeducibleParams[I]) 3900 ++NumNonDeducible; 3901 3902 if (NumNonDeducible) { 3903 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3904 << (NumNonDeducible > 1) 3905 << SourceRange(TemplateNameLoc, RAngleLoc); 3906 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3907 if (!DeducibleParams[I]) { 3908 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3909 if (Param->getDeclName()) 3910 Diag(Param->getLocation(), 3911 diag::note_partial_spec_unused_parameter) 3912 << Param->getDeclName(); 3913 else 3914 Diag(Param->getLocation(), 3915 diag::note_partial_spec_unused_parameter) 3916 << std::string("<anonymous>"); 3917 } 3918 } 3919 } 3920 } else { 3921 // Create a new class template specialization declaration node for 3922 // this explicit specialization or friend declaration. 3923 Specialization 3924 = ClassTemplateSpecializationDecl::Create(Context, Kind, 3925 ClassTemplate->getDeclContext(), 3926 TemplateNameLoc, 3927 ClassTemplate, 3928 Converted, 3929 PrevDecl); 3930 SetNestedNameSpecifier(Specialization, SS); 3931 if (NumMatchedTemplateParamLists > 0) { 3932 Specialization->setTemplateParameterListsInfo(Context, 3933 NumMatchedTemplateParamLists, 3934 (TemplateParameterList**) TemplateParameterLists.release()); 3935 } 3936 3937 if (PrevDecl) { 3938 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3939 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3940 } else { 3941 ClassTemplate->getSpecializations().InsertNode(Specialization, 3942 InsertPos); 3943 } 3944 3945 CanonType = Context.getTypeDeclType(Specialization); 3946 } 3947 3948 // C++ [temp.expl.spec]p6: 3949 // If a template, a member template or the member of a class template is 3950 // explicitly specialized then that specialization shall be declared 3951 // before the first use of that specialization that would cause an implicit 3952 // instantiation to take place, in every translation unit in which such a 3953 // use occurs; no diagnostic is required. 3954 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3955 bool Okay = false; 3956 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3957 // Is there any previous explicit specialization declaration? 3958 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3959 Okay = true; 3960 break; 3961 } 3962 } 3963 3964 if (!Okay) { 3965 SourceRange Range(TemplateNameLoc, RAngleLoc); 3966 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3967 << Context.getTypeDeclType(Specialization) << Range; 3968 3969 Diag(PrevDecl->getPointOfInstantiation(), 3970 diag::note_instantiation_required_here) 3971 << (PrevDecl->getTemplateSpecializationKind() 3972 != TSK_ImplicitInstantiation); 3973 return true; 3974 } 3975 } 3976 3977 // If this is not a friend, note that this is an explicit specialization. 3978 if (TUK != TUK_Friend) 3979 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3980 3981 // Check that this isn't a redefinition of this specialization. 3982 if (TUK == TUK_Definition) { 3983 if (RecordDecl *Def = Specialization->getDefinition()) { 3984 SourceRange Range(TemplateNameLoc, RAngleLoc); 3985 Diag(TemplateNameLoc, diag::err_redefinition) 3986 << Context.getTypeDeclType(Specialization) << Range; 3987 Diag(Def->getLocation(), diag::note_previous_definition); 3988 Specialization->setInvalidDecl(); 3989 return true; 3990 } 3991 } 3992 3993 // Build the fully-sugared type for this class template 3994 // specialization as the user wrote in the specialization 3995 // itself. This means that we'll pretty-print the type retrieved 3996 // from the specialization's declaration the way that the user 3997 // actually wrote the specialization, rather than formatting the 3998 // name based on the "canonical" representation used to store the 3999 // template arguments in the specialization. 4000 TypeSourceInfo *WrittenTy 4001 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4002 TemplateArgs, CanonType); 4003 if (TUK != TUK_Friend) { 4004 Specialization->setTypeAsWritten(WrittenTy); 4005 Specialization->setTemplateKeywordLoc(KWLoc); 4006 } 4007 TemplateArgsIn.release(); 4008 4009 // C++ [temp.expl.spec]p9: 4010 // A template explicit specialization is in the scope of the 4011 // namespace in which the template was defined. 4012 // 4013 // We actually implement this paragraph where we set the semantic 4014 // context (in the creation of the ClassTemplateSpecializationDecl), 4015 // but we also maintain the lexical context where the actual 4016 // definition occurs. 4017 Specialization->setLexicalDeclContext(CurContext); 4018 4019 // We may be starting the definition of this specialization. 4020 if (TUK == TUK_Definition) 4021 Specialization->startDefinition(); 4022 4023 if (TUK == TUK_Friend) { 4024 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 4025 TemplateNameLoc, 4026 WrittenTy, 4027 /*FIXME:*/KWLoc); 4028 Friend->setAccess(AS_public); 4029 CurContext->addDecl(Friend); 4030 } else { 4031 // Add the specialization into its lexical context, so that it can 4032 // be seen when iterating through the list of declarations in that 4033 // context. However, specializations are not found by name lookup. 4034 CurContext->addDecl(Specialization); 4035 } 4036 return DeclPtrTy::make(Specialization); 4037} 4038 4039Sema::DeclPtrTy 4040Sema::ActOnTemplateDeclarator(Scope *S, 4041 MultiTemplateParamsArg TemplateParameterLists, 4042 Declarator &D) { 4043 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 4044} 4045 4046Sema::DeclPtrTy 4047Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 4048 MultiTemplateParamsArg TemplateParameterLists, 4049 Declarator &D) { 4050 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 4051 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 4052 "Not a function declarator!"); 4053 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 4054 4055 if (FTI.hasPrototype) { 4056 // FIXME: Diagnose arguments without names in C. 4057 } 4058 4059 Scope *ParentScope = FnBodyScope->getParent(); 4060 4061 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 4062 move(TemplateParameterLists), 4063 /*IsFunctionDefinition=*/true); 4064 if (FunctionTemplateDecl *FunctionTemplate 4065 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 4066 return ActOnStartOfFunctionDef(FnBodyScope, 4067 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 4068 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 4069 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 4070 return DeclPtrTy(); 4071} 4072 4073/// \brief Strips various properties off an implicit instantiation 4074/// that has just been explicitly specialized. 4075static void StripImplicitInstantiation(NamedDecl *D) { 4076 D->invalidateAttrs(); 4077 4078 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4079 FD->setInlineSpecified(false); 4080 } 4081} 4082 4083/// \brief Diagnose cases where we have an explicit template specialization 4084/// before/after an explicit template instantiation, producing diagnostics 4085/// for those cases where they are required and determining whether the 4086/// new specialization/instantiation will have any effect. 4087/// 4088/// \param NewLoc the location of the new explicit specialization or 4089/// instantiation. 4090/// 4091/// \param NewTSK the kind of the new explicit specialization or instantiation. 4092/// 4093/// \param PrevDecl the previous declaration of the entity. 4094/// 4095/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4096/// 4097/// \param PrevPointOfInstantiation if valid, indicates where the previus 4098/// declaration was instantiated (either implicitly or explicitly). 4099/// 4100/// \param HasNoEffect will be set to true to indicate that the new 4101/// specialization or instantiation has no effect and should be ignored. 4102/// 4103/// \returns true if there was an error that should prevent the introduction of 4104/// the new declaration into the AST, false otherwise. 4105bool 4106Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4107 TemplateSpecializationKind NewTSK, 4108 NamedDecl *PrevDecl, 4109 TemplateSpecializationKind PrevTSK, 4110 SourceLocation PrevPointOfInstantiation, 4111 bool &HasNoEffect) { 4112 HasNoEffect = false; 4113 4114 switch (NewTSK) { 4115 case TSK_Undeclared: 4116 case TSK_ImplicitInstantiation: 4117 assert(false && "Don't check implicit instantiations here"); 4118 return false; 4119 4120 case TSK_ExplicitSpecialization: 4121 switch (PrevTSK) { 4122 case TSK_Undeclared: 4123 case TSK_ExplicitSpecialization: 4124 // Okay, we're just specializing something that is either already 4125 // explicitly specialized or has merely been mentioned without any 4126 // instantiation. 4127 return false; 4128 4129 case TSK_ImplicitInstantiation: 4130 if (PrevPointOfInstantiation.isInvalid()) { 4131 // The declaration itself has not actually been instantiated, so it is 4132 // still okay to specialize it. 4133 StripImplicitInstantiation(PrevDecl); 4134 return false; 4135 } 4136 // Fall through 4137 4138 case TSK_ExplicitInstantiationDeclaration: 4139 case TSK_ExplicitInstantiationDefinition: 4140 assert((PrevTSK == TSK_ImplicitInstantiation || 4141 PrevPointOfInstantiation.isValid()) && 4142 "Explicit instantiation without point of instantiation?"); 4143 4144 // C++ [temp.expl.spec]p6: 4145 // If a template, a member template or the member of a class template 4146 // is explicitly specialized then that specialization shall be declared 4147 // before the first use of that specialization that would cause an 4148 // implicit instantiation to take place, in every translation unit in 4149 // which such a use occurs; no diagnostic is required. 4150 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4151 // Is there any previous explicit specialization declaration? 4152 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4153 return false; 4154 } 4155 4156 Diag(NewLoc, diag::err_specialization_after_instantiation) 4157 << PrevDecl; 4158 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4159 << (PrevTSK != TSK_ImplicitInstantiation); 4160 4161 return true; 4162 } 4163 break; 4164 4165 case TSK_ExplicitInstantiationDeclaration: 4166 switch (PrevTSK) { 4167 case TSK_ExplicitInstantiationDeclaration: 4168 // This explicit instantiation declaration is redundant (that's okay). 4169 HasNoEffect = true; 4170 return false; 4171 4172 case TSK_Undeclared: 4173 case TSK_ImplicitInstantiation: 4174 // We're explicitly instantiating something that may have already been 4175 // implicitly instantiated; that's fine. 4176 return false; 4177 4178 case TSK_ExplicitSpecialization: 4179 // C++0x [temp.explicit]p4: 4180 // For a given set of template parameters, if an explicit instantiation 4181 // of a template appears after a declaration of an explicit 4182 // specialization for that template, the explicit instantiation has no 4183 // effect. 4184 HasNoEffect = true; 4185 return false; 4186 4187 case TSK_ExplicitInstantiationDefinition: 4188 // C++0x [temp.explicit]p10: 4189 // If an entity is the subject of both an explicit instantiation 4190 // declaration and an explicit instantiation definition in the same 4191 // translation unit, the definition shall follow the declaration. 4192 Diag(NewLoc, 4193 diag::err_explicit_instantiation_declaration_after_definition); 4194 Diag(PrevPointOfInstantiation, 4195 diag::note_explicit_instantiation_definition_here); 4196 assert(PrevPointOfInstantiation.isValid() && 4197 "Explicit instantiation without point of instantiation?"); 4198 HasNoEffect = true; 4199 return false; 4200 } 4201 break; 4202 4203 case TSK_ExplicitInstantiationDefinition: 4204 switch (PrevTSK) { 4205 case TSK_Undeclared: 4206 case TSK_ImplicitInstantiation: 4207 // We're explicitly instantiating something that may have already been 4208 // implicitly instantiated; that's fine. 4209 return false; 4210 4211 case TSK_ExplicitSpecialization: 4212 // C++ DR 259, C++0x [temp.explicit]p4: 4213 // For a given set of template parameters, if an explicit 4214 // instantiation of a template appears after a declaration of 4215 // an explicit specialization for that template, the explicit 4216 // instantiation has no effect. 4217 // 4218 // In C++98/03 mode, we only give an extension warning here, because it 4219 // is not harmful to try to explicitly instantiate something that 4220 // has been explicitly specialized. 4221 if (!getLangOptions().CPlusPlus0x) { 4222 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4223 << PrevDecl; 4224 Diag(PrevDecl->getLocation(), 4225 diag::note_previous_template_specialization); 4226 } 4227 HasNoEffect = true; 4228 return false; 4229 4230 case TSK_ExplicitInstantiationDeclaration: 4231 // We're explicity instantiating a definition for something for which we 4232 // were previously asked to suppress instantiations. That's fine. 4233 return false; 4234 4235 case TSK_ExplicitInstantiationDefinition: 4236 // C++0x [temp.spec]p5: 4237 // For a given template and a given set of template-arguments, 4238 // - an explicit instantiation definition shall appear at most once 4239 // in a program, 4240 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4241 << PrevDecl; 4242 Diag(PrevPointOfInstantiation, 4243 diag::note_previous_explicit_instantiation); 4244 HasNoEffect = true; 4245 return false; 4246 } 4247 break; 4248 } 4249 4250 assert(false && "Missing specialization/instantiation case?"); 4251 4252 return false; 4253} 4254 4255/// \brief Perform semantic analysis for the given dependent function 4256/// template specialization. The only possible way to get a dependent 4257/// function template specialization is with a friend declaration, 4258/// like so: 4259/// 4260/// template <class T> void foo(T); 4261/// template <class T> class A { 4262/// friend void foo<>(T); 4263/// }; 4264/// 4265/// There really isn't any useful analysis we can do here, so we 4266/// just store the information. 4267bool 4268Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4269 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4270 LookupResult &Previous) { 4271 // Remove anything from Previous that isn't a function template in 4272 // the correct context. 4273 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4274 LookupResult::Filter F = Previous.makeFilter(); 4275 while (F.hasNext()) { 4276 NamedDecl *D = F.next()->getUnderlyingDecl(); 4277 if (!isa<FunctionTemplateDecl>(D) || 4278 !FDLookupContext->Equals(D->getDeclContext()->getLookupContext())) 4279 F.erase(); 4280 } 4281 F.done(); 4282 4283 // Should this be diagnosed here? 4284 if (Previous.empty()) return true; 4285 4286 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4287 ExplicitTemplateArgs); 4288 return false; 4289} 4290 4291/// \brief Perform semantic analysis for the given function template 4292/// specialization. 4293/// 4294/// This routine performs all of the semantic analysis required for an 4295/// explicit function template specialization. On successful completion, 4296/// the function declaration \p FD will become a function template 4297/// specialization. 4298/// 4299/// \param FD the function declaration, which will be updated to become a 4300/// function template specialization. 4301/// 4302/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4303/// if any. Note that this may be valid info even when 0 arguments are 4304/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 4305/// as it anyway contains info on the angle brackets locations. 4306/// 4307/// \param PrevDecl the set of declarations that may be specialized by 4308/// this function specialization. 4309bool 4310Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4311 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4312 LookupResult &Previous) { 4313 // The set of function template specializations that could match this 4314 // explicit function template specialization. 4315 UnresolvedSet<8> Candidates; 4316 4317 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4318 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4319 I != E; ++I) { 4320 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4321 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4322 // Only consider templates found within the same semantic lookup scope as 4323 // FD. 4324 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4325 continue; 4326 4327 // C++ [temp.expl.spec]p11: 4328 // A trailing template-argument can be left unspecified in the 4329 // template-id naming an explicit function template specialization 4330 // provided it can be deduced from the function argument type. 4331 // Perform template argument deduction to determine whether we may be 4332 // specializing this template. 4333 // FIXME: It is somewhat wasteful to build 4334 TemplateDeductionInfo Info(Context, FD->getLocation()); 4335 FunctionDecl *Specialization = 0; 4336 if (TemplateDeductionResult TDK 4337 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4338 FD->getType(), 4339 Specialization, 4340 Info)) { 4341 // FIXME: Template argument deduction failed; record why it failed, so 4342 // that we can provide nifty diagnostics. 4343 (void)TDK; 4344 continue; 4345 } 4346 4347 // Record this candidate. 4348 Candidates.addDecl(Specialization, I.getAccess()); 4349 } 4350 } 4351 4352 // Find the most specialized function template. 4353 UnresolvedSetIterator Result 4354 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4355 TPOC_Other, FD->getLocation(), 4356 PDiag(diag::err_function_template_spec_no_match) 4357 << FD->getDeclName(), 4358 PDiag(diag::err_function_template_spec_ambiguous) 4359 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4360 PDiag(diag::note_function_template_spec_matched)); 4361 if (Result == Candidates.end()) 4362 return true; 4363 4364 // Ignore access information; it doesn't figure into redeclaration checking. 4365 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4366 Specialization->setLocation(FD->getLocation()); 4367 4368 // FIXME: Check if the prior specialization has a point of instantiation. 4369 // If so, we have run afoul of . 4370 4371 // If this is a friend declaration, then we're not really declaring 4372 // an explicit specialization. 4373 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4374 4375 // Check the scope of this explicit specialization. 4376 if (!isFriend && 4377 CheckTemplateSpecializationScope(*this, 4378 Specialization->getPrimaryTemplate(), 4379 Specialization, FD->getLocation(), 4380 false)) 4381 return true; 4382 4383 // C++ [temp.expl.spec]p6: 4384 // If a template, a member template or the member of a class template is 4385 // explicitly specialized then that specialization shall be declared 4386 // before the first use of that specialization that would cause an implicit 4387 // instantiation to take place, in every translation unit in which such a 4388 // use occurs; no diagnostic is required. 4389 FunctionTemplateSpecializationInfo *SpecInfo 4390 = Specialization->getTemplateSpecializationInfo(); 4391 assert(SpecInfo && "Function template specialization info missing?"); 4392 4393 bool HasNoEffect = false; 4394 if (!isFriend && 4395 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4396 TSK_ExplicitSpecialization, 4397 Specialization, 4398 SpecInfo->getTemplateSpecializationKind(), 4399 SpecInfo->getPointOfInstantiation(), 4400 HasNoEffect)) 4401 return true; 4402 4403 // Mark the prior declaration as an explicit specialization, so that later 4404 // clients know that this is an explicit specialization. 4405 if (!isFriend) 4406 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4407 4408 // Turn the given function declaration into a function template 4409 // specialization, with the template arguments from the previous 4410 // specialization. 4411 // Take copies of (semantic and syntactic) template argument lists. 4412 const TemplateArgumentList* TemplArgs = new (Context) 4413 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 4414 const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs 4415 ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0; 4416 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4417 TemplArgs, /*InsertPos=*/0, 4418 SpecInfo->getTemplateSpecializationKind(), 4419 TemplArgsAsWritten); 4420 4421 // The "previous declaration" for this function template specialization is 4422 // the prior function template specialization. 4423 Previous.clear(); 4424 Previous.addDecl(Specialization); 4425 return false; 4426} 4427 4428/// \brief Perform semantic analysis for the given non-template member 4429/// specialization. 4430/// 4431/// This routine performs all of the semantic analysis required for an 4432/// explicit member function specialization. On successful completion, 4433/// the function declaration \p FD will become a member function 4434/// specialization. 4435/// 4436/// \param Member the member declaration, which will be updated to become a 4437/// specialization. 4438/// 4439/// \param Previous the set of declarations, one of which may be specialized 4440/// by this function specialization; the set will be modified to contain the 4441/// redeclared member. 4442bool 4443Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4444 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4445 4446 // Try to find the member we are instantiating. 4447 NamedDecl *Instantiation = 0; 4448 NamedDecl *InstantiatedFrom = 0; 4449 MemberSpecializationInfo *MSInfo = 0; 4450 4451 if (Previous.empty()) { 4452 // Nowhere to look anyway. 4453 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4454 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4455 I != E; ++I) { 4456 NamedDecl *D = (*I)->getUnderlyingDecl(); 4457 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4458 if (Context.hasSameType(Function->getType(), Method->getType())) { 4459 Instantiation = Method; 4460 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4461 MSInfo = Method->getMemberSpecializationInfo(); 4462 break; 4463 } 4464 } 4465 } 4466 } else if (isa<VarDecl>(Member)) { 4467 VarDecl *PrevVar; 4468 if (Previous.isSingleResult() && 4469 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4470 if (PrevVar->isStaticDataMember()) { 4471 Instantiation = PrevVar; 4472 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4473 MSInfo = PrevVar->getMemberSpecializationInfo(); 4474 } 4475 } else if (isa<RecordDecl>(Member)) { 4476 CXXRecordDecl *PrevRecord; 4477 if (Previous.isSingleResult() && 4478 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4479 Instantiation = PrevRecord; 4480 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4481 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4482 } 4483 } 4484 4485 if (!Instantiation) { 4486 // There is no previous declaration that matches. Since member 4487 // specializations are always out-of-line, the caller will complain about 4488 // this mismatch later. 4489 return false; 4490 } 4491 4492 // If this is a friend, just bail out here before we start turning 4493 // things into explicit specializations. 4494 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4495 // Preserve instantiation information. 4496 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4497 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4498 cast<CXXMethodDecl>(InstantiatedFrom), 4499 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4500 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4501 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4502 cast<CXXRecordDecl>(InstantiatedFrom), 4503 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4504 } 4505 4506 Previous.clear(); 4507 Previous.addDecl(Instantiation); 4508 return false; 4509 } 4510 4511 // Make sure that this is a specialization of a member. 4512 if (!InstantiatedFrom) { 4513 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4514 << Member; 4515 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4516 return true; 4517 } 4518 4519 // C++ [temp.expl.spec]p6: 4520 // If a template, a member template or the member of a class template is 4521 // explicitly specialized then that spe- cialization shall be declared 4522 // before the first use of that specialization that would cause an implicit 4523 // instantiation to take place, in every translation unit in which such a 4524 // use occurs; no diagnostic is required. 4525 assert(MSInfo && "Member specialization info missing?"); 4526 4527 bool HasNoEffect = false; 4528 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4529 TSK_ExplicitSpecialization, 4530 Instantiation, 4531 MSInfo->getTemplateSpecializationKind(), 4532 MSInfo->getPointOfInstantiation(), 4533 HasNoEffect)) 4534 return true; 4535 4536 // Check the scope of this explicit specialization. 4537 if (CheckTemplateSpecializationScope(*this, 4538 InstantiatedFrom, 4539 Instantiation, Member->getLocation(), 4540 false)) 4541 return true; 4542 4543 // Note that this is an explicit instantiation of a member. 4544 // the original declaration to note that it is an explicit specialization 4545 // (if it was previously an implicit instantiation). This latter step 4546 // makes bookkeeping easier. 4547 if (isa<FunctionDecl>(Member)) { 4548 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4549 if (InstantiationFunction->getTemplateSpecializationKind() == 4550 TSK_ImplicitInstantiation) { 4551 InstantiationFunction->setTemplateSpecializationKind( 4552 TSK_ExplicitSpecialization); 4553 InstantiationFunction->setLocation(Member->getLocation()); 4554 } 4555 4556 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4557 cast<CXXMethodDecl>(InstantiatedFrom), 4558 TSK_ExplicitSpecialization); 4559 } else if (isa<VarDecl>(Member)) { 4560 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4561 if (InstantiationVar->getTemplateSpecializationKind() == 4562 TSK_ImplicitInstantiation) { 4563 InstantiationVar->setTemplateSpecializationKind( 4564 TSK_ExplicitSpecialization); 4565 InstantiationVar->setLocation(Member->getLocation()); 4566 } 4567 4568 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4569 cast<VarDecl>(InstantiatedFrom), 4570 TSK_ExplicitSpecialization); 4571 } else { 4572 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4573 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4574 if (InstantiationClass->getTemplateSpecializationKind() == 4575 TSK_ImplicitInstantiation) { 4576 InstantiationClass->setTemplateSpecializationKind( 4577 TSK_ExplicitSpecialization); 4578 InstantiationClass->setLocation(Member->getLocation()); 4579 } 4580 4581 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4582 cast<CXXRecordDecl>(InstantiatedFrom), 4583 TSK_ExplicitSpecialization); 4584 } 4585 4586 // Save the caller the trouble of having to figure out which declaration 4587 // this specialization matches. 4588 Previous.clear(); 4589 Previous.addDecl(Instantiation); 4590 return false; 4591} 4592 4593/// \brief Check the scope of an explicit instantiation. 4594static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4595 SourceLocation InstLoc, 4596 bool WasQualifiedName) { 4597 DeclContext *ExpectedContext 4598 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4599 DeclContext *CurContext = S.CurContext->getLookupContext(); 4600 4601 // C++0x [temp.explicit]p2: 4602 // An explicit instantiation shall appear in an enclosing namespace of its 4603 // template. 4604 // 4605 // This is DR275, which we do not retroactively apply to C++98/03. 4606 if (S.getLangOptions().CPlusPlus0x && 4607 !CurContext->Encloses(ExpectedContext)) { 4608 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4609 S.Diag(InstLoc, 4610 S.getLangOptions().CPlusPlus0x? 4611 diag::err_explicit_instantiation_out_of_scope 4612 : diag::warn_explicit_instantiation_out_of_scope_0x) 4613 << D << NS; 4614 else 4615 S.Diag(InstLoc, 4616 S.getLangOptions().CPlusPlus0x? 4617 diag::err_explicit_instantiation_must_be_global 4618 : diag::warn_explicit_instantiation_out_of_scope_0x) 4619 << D; 4620 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4621 return; 4622 } 4623 4624 // C++0x [temp.explicit]p2: 4625 // If the name declared in the explicit instantiation is an unqualified 4626 // name, the explicit instantiation shall appear in the namespace where 4627 // its template is declared or, if that namespace is inline (7.3.1), any 4628 // namespace from its enclosing namespace set. 4629 if (WasQualifiedName) 4630 return; 4631 4632 if (CurContext->Equals(ExpectedContext)) 4633 return; 4634 4635 S.Diag(InstLoc, 4636 S.getLangOptions().CPlusPlus0x? 4637 diag::err_explicit_instantiation_unqualified_wrong_namespace 4638 : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 4639 << D << ExpectedContext; 4640 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4641} 4642 4643/// \brief Determine whether the given scope specifier has a template-id in it. 4644static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4645 if (!SS.isSet()) 4646 return false; 4647 4648 // C++0x [temp.explicit]p2: 4649 // If the explicit instantiation is for a member function, a member class 4650 // or a static data member of a class template specialization, the name of 4651 // the class template specialization in the qualified-id for the member 4652 // name shall be a simple-template-id. 4653 // 4654 // C++98 has the same restriction, just worded differently. 4655 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4656 NNS; NNS = NNS->getPrefix()) 4657 if (Type *T = NNS->getAsType()) 4658 if (isa<TemplateSpecializationType>(T)) 4659 return true; 4660 4661 return false; 4662} 4663 4664// Explicit instantiation of a class template specialization 4665Sema::DeclResult 4666Sema::ActOnExplicitInstantiation(Scope *S, 4667 SourceLocation ExternLoc, 4668 SourceLocation TemplateLoc, 4669 unsigned TagSpec, 4670 SourceLocation KWLoc, 4671 const CXXScopeSpec &SS, 4672 TemplateTy TemplateD, 4673 SourceLocation TemplateNameLoc, 4674 SourceLocation LAngleLoc, 4675 ASTTemplateArgsPtr TemplateArgsIn, 4676 SourceLocation RAngleLoc, 4677 AttributeList *Attr) { 4678 // Find the class template we're specializing 4679 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4680 ClassTemplateDecl *ClassTemplate 4681 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4682 4683 // Check that the specialization uses the same tag kind as the 4684 // original template. 4685 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 4686 assert(Kind != TTK_Enum && 4687 "Invalid enum tag in class template explicit instantiation!"); 4688 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4689 Kind, KWLoc, 4690 *ClassTemplate->getIdentifier())) { 4691 Diag(KWLoc, diag::err_use_with_wrong_tag) 4692 << ClassTemplate 4693 << FixItHint::CreateReplacement(KWLoc, 4694 ClassTemplate->getTemplatedDecl()->getKindName()); 4695 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4696 diag::note_previous_use); 4697 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4698 } 4699 4700 // C++0x [temp.explicit]p2: 4701 // There are two forms of explicit instantiation: an explicit instantiation 4702 // definition and an explicit instantiation declaration. An explicit 4703 // instantiation declaration begins with the extern keyword. [...] 4704 TemplateSpecializationKind TSK 4705 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4706 : TSK_ExplicitInstantiationDeclaration; 4707 4708 // Translate the parser's template argument list in our AST format. 4709 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4710 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4711 4712 // Check that the template argument list is well-formed for this 4713 // template. 4714 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4715 TemplateArgs.size()); 4716 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4717 TemplateArgs, false, Converted)) 4718 return true; 4719 4720 assert((Converted.structuredSize() == 4721 ClassTemplate->getTemplateParameters()->size()) && 4722 "Converted template argument list is too short!"); 4723 4724 // Find the class template specialization declaration that 4725 // corresponds to these arguments. 4726 llvm::FoldingSetNodeID ID; 4727 ClassTemplateSpecializationDecl::Profile(ID, 4728 Converted.getFlatArguments(), 4729 Converted.flatSize(), 4730 Context); 4731 void *InsertPos = 0; 4732 ClassTemplateSpecializationDecl *PrevDecl 4733 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4734 4735 TemplateSpecializationKind PrevDecl_TSK 4736 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 4737 4738 // C++0x [temp.explicit]p2: 4739 // [...] An explicit instantiation shall appear in an enclosing 4740 // namespace of its template. [...] 4741 // 4742 // This is C++ DR 275. 4743 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4744 SS.isSet()); 4745 4746 ClassTemplateSpecializationDecl *Specialization = 0; 4747 4748 bool ReusedDecl = false; 4749 bool HasNoEffect = false; 4750 if (PrevDecl) { 4751 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4752 PrevDecl, PrevDecl_TSK, 4753 PrevDecl->getPointOfInstantiation(), 4754 HasNoEffect)) 4755 return DeclPtrTy::make(PrevDecl); 4756 4757 // Even though HasNoEffect == true means that this explicit instantiation 4758 // has no effect on semantics, we go on to put its syntax in the AST. 4759 4760 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 4761 PrevDecl_TSK == TSK_Undeclared) { 4762 // Since the only prior class template specialization with these 4763 // arguments was referenced but not declared, reuse that 4764 // declaration node as our own, updating the source location 4765 // for the template name to reflect our new declaration. 4766 // (Other source locations will be updated later.) 4767 Specialization = PrevDecl; 4768 Specialization->setLocation(TemplateNameLoc); 4769 PrevDecl = 0; 4770 ReusedDecl = true; 4771 } 4772 } 4773 4774 if (!Specialization) { 4775 // Create a new class template specialization declaration node for 4776 // this explicit specialization. 4777 Specialization 4778 = ClassTemplateSpecializationDecl::Create(Context, Kind, 4779 ClassTemplate->getDeclContext(), 4780 TemplateNameLoc, 4781 ClassTemplate, 4782 Converted, PrevDecl); 4783 SetNestedNameSpecifier(Specialization, SS); 4784 4785 if (!HasNoEffect) { 4786 if (PrevDecl) { 4787 // Remove the previous declaration from the folding set, since we want 4788 // to introduce a new declaration. 4789 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4790 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4791 } 4792 // Insert the new specialization. 4793 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4794 } 4795 } 4796 4797 // Build the fully-sugared type for this explicit instantiation as 4798 // the user wrote in the explicit instantiation itself. This means 4799 // that we'll pretty-print the type retrieved from the 4800 // specialization's declaration the way that the user actually wrote 4801 // the explicit instantiation, rather than formatting the name based 4802 // on the "canonical" representation used to store the template 4803 // arguments in the specialization. 4804 TypeSourceInfo *WrittenTy 4805 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4806 TemplateArgs, 4807 Context.getTypeDeclType(Specialization)); 4808 Specialization->setTypeAsWritten(WrittenTy); 4809 TemplateArgsIn.release(); 4810 4811 // Set source locations for keywords. 4812 Specialization->setExternLoc(ExternLoc); 4813 Specialization->setTemplateKeywordLoc(TemplateLoc); 4814 4815 // Add the explicit instantiation into its lexical context. However, 4816 // since explicit instantiations are never found by name lookup, we 4817 // just put it into the declaration context directly. 4818 Specialization->setLexicalDeclContext(CurContext); 4819 CurContext->addDecl(Specialization); 4820 4821 // Syntax is now OK, so return if it has no other effect on semantics. 4822 if (HasNoEffect) { 4823 // Set the template specialization kind. 4824 Specialization->setTemplateSpecializationKind(TSK); 4825 return DeclPtrTy::make(Specialization); 4826 } 4827 4828 // C++ [temp.explicit]p3: 4829 // A definition of a class template or class member template 4830 // shall be in scope at the point of the explicit instantiation of 4831 // the class template or class member template. 4832 // 4833 // This check comes when we actually try to perform the 4834 // instantiation. 4835 ClassTemplateSpecializationDecl *Def 4836 = cast_or_null<ClassTemplateSpecializationDecl>( 4837 Specialization->getDefinition()); 4838 if (!Def) 4839 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4840 else if (TSK == TSK_ExplicitInstantiationDefinition) { 4841 MarkVTableUsed(TemplateNameLoc, Specialization, true); 4842 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 4843 } 4844 4845 // Instantiate the members of this class template specialization. 4846 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4847 Specialization->getDefinition()); 4848 if (Def) { 4849 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4850 4851 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4852 // TSK_ExplicitInstantiationDefinition 4853 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4854 TSK == TSK_ExplicitInstantiationDefinition) 4855 Def->setTemplateSpecializationKind(TSK); 4856 4857 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4858 } 4859 4860 // Set the template specialization kind. 4861 Specialization->setTemplateSpecializationKind(TSK); 4862 return DeclPtrTy::make(Specialization); 4863} 4864 4865// Explicit instantiation of a member class of a class template. 4866Sema::DeclResult 4867Sema::ActOnExplicitInstantiation(Scope *S, 4868 SourceLocation ExternLoc, 4869 SourceLocation TemplateLoc, 4870 unsigned TagSpec, 4871 SourceLocation KWLoc, 4872 CXXScopeSpec &SS, 4873 IdentifierInfo *Name, 4874 SourceLocation NameLoc, 4875 AttributeList *Attr) { 4876 4877 bool Owned = false; 4878 bool IsDependent = false; 4879 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4880 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4881 MultiTemplateParamsArg(*this, 0, 0), 4882 Owned, IsDependent); 4883 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4884 4885 if (!TagD) 4886 return true; 4887 4888 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4889 if (Tag->isEnum()) { 4890 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4891 << Context.getTypeDeclType(Tag); 4892 return true; 4893 } 4894 4895 if (Tag->isInvalidDecl()) 4896 return true; 4897 4898 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4899 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4900 if (!Pattern) { 4901 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4902 << Context.getTypeDeclType(Record); 4903 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4904 return true; 4905 } 4906 4907 // C++0x [temp.explicit]p2: 4908 // If the explicit instantiation is for a class or member class, the 4909 // elaborated-type-specifier in the declaration shall include a 4910 // simple-template-id. 4911 // 4912 // C++98 has the same restriction, just worded differently. 4913 if (!ScopeSpecifierHasTemplateId(SS)) 4914 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4915 << Record << SS.getRange(); 4916 4917 // C++0x [temp.explicit]p2: 4918 // There are two forms of explicit instantiation: an explicit instantiation 4919 // definition and an explicit instantiation declaration. An explicit 4920 // instantiation declaration begins with the extern keyword. [...] 4921 TemplateSpecializationKind TSK 4922 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4923 : TSK_ExplicitInstantiationDeclaration; 4924 4925 // C++0x [temp.explicit]p2: 4926 // [...] An explicit instantiation shall appear in an enclosing 4927 // namespace of its template. [...] 4928 // 4929 // This is C++ DR 275. 4930 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4931 4932 // Verify that it is okay to explicitly instantiate here. 4933 CXXRecordDecl *PrevDecl 4934 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4935 if (!PrevDecl && Record->getDefinition()) 4936 PrevDecl = Record; 4937 if (PrevDecl) { 4938 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4939 bool HasNoEffect = false; 4940 assert(MSInfo && "No member specialization information?"); 4941 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4942 PrevDecl, 4943 MSInfo->getTemplateSpecializationKind(), 4944 MSInfo->getPointOfInstantiation(), 4945 HasNoEffect)) 4946 return true; 4947 if (HasNoEffect) 4948 return TagD; 4949 } 4950 4951 CXXRecordDecl *RecordDef 4952 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4953 if (!RecordDef) { 4954 // C++ [temp.explicit]p3: 4955 // A definition of a member class of a class template shall be in scope 4956 // at the point of an explicit instantiation of the member class. 4957 CXXRecordDecl *Def 4958 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4959 if (!Def) { 4960 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4961 << 0 << Record->getDeclName() << Record->getDeclContext(); 4962 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4963 << Pattern; 4964 return true; 4965 } else { 4966 if (InstantiateClass(NameLoc, Record, Def, 4967 getTemplateInstantiationArgs(Record), 4968 TSK)) 4969 return true; 4970 4971 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4972 if (!RecordDef) 4973 return true; 4974 } 4975 } 4976 4977 // Instantiate all of the members of the class. 4978 InstantiateClassMembers(NameLoc, RecordDef, 4979 getTemplateInstantiationArgs(Record), TSK); 4980 4981 if (TSK == TSK_ExplicitInstantiationDefinition) 4982 MarkVTableUsed(NameLoc, RecordDef, true); 4983 4984 // FIXME: We don't have any representation for explicit instantiations of 4985 // member classes. Such a representation is not needed for compilation, but it 4986 // should be available for clients that want to see all of the declarations in 4987 // the source code. 4988 return TagD; 4989} 4990 4991Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4992 SourceLocation ExternLoc, 4993 SourceLocation TemplateLoc, 4994 Declarator &D) { 4995 // Explicit instantiations always require a name. 4996 DeclarationName Name = GetNameForDeclarator(D); 4997 if (!Name) { 4998 if (!D.isInvalidType()) 4999 Diag(D.getDeclSpec().getSourceRange().getBegin(), 5000 diag::err_explicit_instantiation_requires_name) 5001 << D.getDeclSpec().getSourceRange() 5002 << D.getSourceRange(); 5003 5004 return true; 5005 } 5006 5007 // The scope passed in may not be a decl scope. Zip up the scope tree until 5008 // we find one that is. 5009 while ((S->getFlags() & Scope::DeclScope) == 0 || 5010 (S->getFlags() & Scope::TemplateParamScope) != 0) 5011 S = S->getParent(); 5012 5013 // Determine the type of the declaration. 5014 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 5015 QualType R = T->getType(); 5016 if (R.isNull()) 5017 return true; 5018 5019 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5020 // Cannot explicitly instantiate a typedef. 5021 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 5022 << Name; 5023 return true; 5024 } 5025 5026 // C++0x [temp.explicit]p1: 5027 // [...] An explicit instantiation of a function template shall not use the 5028 // inline or constexpr specifiers. 5029 // Presumably, this also applies to member functions of class templates as 5030 // well. 5031 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 5032 Diag(D.getDeclSpec().getInlineSpecLoc(), 5033 diag::err_explicit_instantiation_inline) 5034 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 5035 5036 // FIXME: check for constexpr specifier. 5037 5038 // C++0x [temp.explicit]p2: 5039 // There are two forms of explicit instantiation: an explicit instantiation 5040 // definition and an explicit instantiation declaration. An explicit 5041 // instantiation declaration begins with the extern keyword. [...] 5042 TemplateSpecializationKind TSK 5043 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 5044 : TSK_ExplicitInstantiationDeclaration; 5045 5046 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 5047 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 5048 5049 if (!R->isFunctionType()) { 5050 // C++ [temp.explicit]p1: 5051 // A [...] static data member of a class template can be explicitly 5052 // instantiated from the member definition associated with its class 5053 // template. 5054 if (Previous.isAmbiguous()) 5055 return true; 5056 5057 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 5058 if (!Prev || !Prev->isStaticDataMember()) { 5059 // We expect to see a data data member here. 5060 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 5061 << Name; 5062 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5063 P != PEnd; ++P) 5064 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 5065 return true; 5066 } 5067 5068 if (!Prev->getInstantiatedFromStaticDataMember()) { 5069 // FIXME: Check for explicit specialization? 5070 Diag(D.getIdentifierLoc(), 5071 diag::err_explicit_instantiation_data_member_not_instantiated) 5072 << Prev; 5073 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 5074 // FIXME: Can we provide a note showing where this was declared? 5075 return true; 5076 } 5077 5078 // C++0x [temp.explicit]p2: 5079 // If the explicit instantiation is for a member function, a member class 5080 // or a static data member of a class template specialization, the name of 5081 // the class template specialization in the qualified-id for the member 5082 // name shall be a simple-template-id. 5083 // 5084 // C++98 has the same restriction, just worded differently. 5085 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5086 Diag(D.getIdentifierLoc(), 5087 diag::err_explicit_instantiation_without_qualified_id) 5088 << Prev << D.getCXXScopeSpec().getRange(); 5089 5090 // Check the scope of this explicit instantiation. 5091 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 5092 5093 // Verify that it is okay to explicitly instantiate here. 5094 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 5095 assert(MSInfo && "Missing static data member specialization info?"); 5096 bool HasNoEffect = false; 5097 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 5098 MSInfo->getTemplateSpecializationKind(), 5099 MSInfo->getPointOfInstantiation(), 5100 HasNoEffect)) 5101 return true; 5102 if (HasNoEffect) 5103 return DeclPtrTy(); 5104 5105 // Instantiate static data member. 5106 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5107 if (TSK == TSK_ExplicitInstantiationDefinition) 5108 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 5109 /*DefinitionRequired=*/true); 5110 5111 // FIXME: Create an ExplicitInstantiation node? 5112 return DeclPtrTy(); 5113 } 5114 5115 // If the declarator is a template-id, translate the parser's template 5116 // argument list into our AST format. 5117 bool HasExplicitTemplateArgs = false; 5118 TemplateArgumentListInfo TemplateArgs; 5119 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5120 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5121 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5122 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5123 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5124 TemplateId->getTemplateArgs(), 5125 TemplateId->NumArgs); 5126 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5127 HasExplicitTemplateArgs = true; 5128 TemplateArgsPtr.release(); 5129 } 5130 5131 // C++ [temp.explicit]p1: 5132 // A [...] function [...] can be explicitly instantiated from its template. 5133 // A member function [...] of a class template can be explicitly 5134 // instantiated from the member definition associated with its class 5135 // template. 5136 UnresolvedSet<8> Matches; 5137 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5138 P != PEnd; ++P) { 5139 NamedDecl *Prev = *P; 5140 if (!HasExplicitTemplateArgs) { 5141 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5142 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5143 Matches.clear(); 5144 5145 Matches.addDecl(Method, P.getAccess()); 5146 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5147 break; 5148 } 5149 } 5150 } 5151 5152 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5153 if (!FunTmpl) 5154 continue; 5155 5156 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5157 FunctionDecl *Specialization = 0; 5158 if (TemplateDeductionResult TDK 5159 = DeduceTemplateArguments(FunTmpl, 5160 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5161 R, Specialization, Info)) { 5162 // FIXME: Keep track of almost-matches? 5163 (void)TDK; 5164 continue; 5165 } 5166 5167 Matches.addDecl(Specialization, P.getAccess()); 5168 } 5169 5170 // Find the most specialized function template specialization. 5171 UnresolvedSetIterator Result 5172 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5173 D.getIdentifierLoc(), 5174 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5175 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5176 PDiag(diag::note_explicit_instantiation_candidate)); 5177 5178 if (Result == Matches.end()) 5179 return true; 5180 5181 // Ignore access control bits, we don't need them for redeclaration checking. 5182 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5183 5184 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5185 Diag(D.getIdentifierLoc(), 5186 diag::err_explicit_instantiation_member_function_not_instantiated) 5187 << Specialization 5188 << (Specialization->getTemplateSpecializationKind() == 5189 TSK_ExplicitSpecialization); 5190 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5191 return true; 5192 } 5193 5194 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5195 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5196 PrevDecl = Specialization; 5197 5198 if (PrevDecl) { 5199 bool HasNoEffect = false; 5200 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5201 PrevDecl, 5202 PrevDecl->getTemplateSpecializationKind(), 5203 PrevDecl->getPointOfInstantiation(), 5204 HasNoEffect)) 5205 return true; 5206 5207 // FIXME: We may still want to build some representation of this 5208 // explicit specialization. 5209 if (HasNoEffect) 5210 return DeclPtrTy(); 5211 } 5212 5213 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5214 5215 if (TSK == TSK_ExplicitInstantiationDefinition) 5216 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 5217 false, /*DefinitionRequired=*/true); 5218 5219 // C++0x [temp.explicit]p2: 5220 // If the explicit instantiation is for a member function, a member class 5221 // or a static data member of a class template specialization, the name of 5222 // the class template specialization in the qualified-id for the member 5223 // name shall be a simple-template-id. 5224 // 5225 // C++98 has the same restriction, just worded differently. 5226 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5227 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5228 D.getCXXScopeSpec().isSet() && 5229 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5230 Diag(D.getIdentifierLoc(), 5231 diag::err_explicit_instantiation_without_qualified_id) 5232 << Specialization << D.getCXXScopeSpec().getRange(); 5233 5234 CheckExplicitInstantiationScope(*this, 5235 FunTmpl? (NamedDecl *)FunTmpl 5236 : Specialization->getInstantiatedFromMemberFunction(), 5237 D.getIdentifierLoc(), 5238 D.getCXXScopeSpec().isSet()); 5239 5240 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5241 return DeclPtrTy(); 5242} 5243 5244Sema::TypeResult 5245Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5246 const CXXScopeSpec &SS, IdentifierInfo *Name, 5247 SourceLocation TagLoc, SourceLocation NameLoc) { 5248 // This has to hold, because SS is expected to be defined. 5249 assert(Name && "Expected a name in a dependent tag"); 5250 5251 NestedNameSpecifier *NNS 5252 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5253 if (!NNS) 5254 return true; 5255 5256 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5257 5258 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5259 Diag(NameLoc, diag::err_dependent_tag_decl) 5260 << (TUK == TUK_Definition) << Kind << SS.getRange(); 5261 return true; 5262 } 5263 5264 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 5265 return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr(); 5266} 5267 5268Sema::TypeResult 5269Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5270 const IdentifierInfo &II, SourceLocation IdLoc) { 5271 NestedNameSpecifier *NNS 5272 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5273 if (!NNS) 5274 return true; 5275 5276 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5277 TypenameLoc, SS.getRange(), IdLoc); 5278 if (T.isNull()) 5279 return true; 5280 5281 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5282 if (isa<DependentNameType>(T)) { 5283 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5284 TL.setKeywordLoc(TypenameLoc); 5285 TL.setQualifierRange(SS.getRange()); 5286 TL.setNameLoc(IdLoc); 5287 } else { 5288 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 5289 TL.setKeywordLoc(TypenameLoc); 5290 TL.setQualifierRange(SS.getRange()); 5291 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 5292 } 5293 5294 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5295} 5296 5297Sema::TypeResult 5298Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5299 SourceLocation TemplateLoc, TypeTy *Ty) { 5300 TypeSourceInfo *InnerTSI = 0; 5301 QualType T = GetTypeFromParser(Ty, &InnerTSI); 5302 NestedNameSpecifier *NNS 5303 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5304 5305 assert(isa<TemplateSpecializationType>(T) && 5306 "Expected a template specialization type"); 5307 5308 if (computeDeclContext(SS, false)) { 5309 // If we can compute a declaration context, then the "typename" 5310 // keyword was superfluous. Just build an ElaboratedType to keep 5311 // track of the nested-name-specifier. 5312 5313 // Push the inner type, preserving its source locations if possible. 5314 TypeLocBuilder Builder; 5315 if (InnerTSI) 5316 Builder.pushFullCopy(InnerTSI->getTypeLoc()); 5317 else 5318 Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc); 5319 5320 T = Context.getElaboratedType(ETK_Typename, NNS, T); 5321 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 5322 TL.setKeywordLoc(TypenameLoc); 5323 TL.setQualifierRange(SS.getRange()); 5324 5325 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 5326 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5327 } 5328 5329 // TODO: it's really silly that we make a template specialization 5330 // type earlier only to drop it again here. 5331 TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); 5332 DependentTemplateName *DTN = 5333 TST->getTemplateName().getAsDependentTemplateName(); 5334 assert(DTN && "dependent template has non-dependent name?"); 5335 T = Context.getDependentTemplateSpecializationType(ETK_Typename, NNS, 5336 DTN->getIdentifier(), 5337 TST->getNumArgs(), 5338 TST->getArgs()); 5339 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5340 DependentTemplateSpecializationTypeLoc TL = 5341 cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc()); 5342 if (InnerTSI) { 5343 TemplateSpecializationTypeLoc TSTL = 5344 cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc()); 5345 TL.setLAngleLoc(TSTL.getLAngleLoc()); 5346 TL.setRAngleLoc(TSTL.getRAngleLoc()); 5347 for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I) 5348 TL.setArgLocInfo(I, TSTL.getArgLocInfo(I)); 5349 } else { 5350 TL.initializeLocal(SourceLocation()); 5351 } 5352 TL.setKeywordLoc(TypenameLoc); 5353 TL.setQualifierRange(SS.getRange()); 5354 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5355} 5356 5357/// \brief Build the type that describes a C++ typename specifier, 5358/// e.g., "typename T::type". 5359QualType 5360Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5361 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5362 SourceLocation KeywordLoc, SourceRange NNSRange, 5363 SourceLocation IILoc) { 5364 CXXScopeSpec SS; 5365 SS.setScopeRep(NNS); 5366 SS.setRange(NNSRange); 5367 5368 DeclContext *Ctx = computeDeclContext(SS); 5369 if (!Ctx) { 5370 // If the nested-name-specifier is dependent and couldn't be 5371 // resolved to a type, build a typename type. 5372 assert(NNS->isDependent()); 5373 return Context.getDependentNameType(Keyword, NNS, &II); 5374 } 5375 5376 // If the nested-name-specifier refers to the current instantiation, 5377 // the "typename" keyword itself is superfluous. In C++03, the 5378 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 5379 // allows such extraneous "typename" keywords, and we retroactively 5380 // apply this DR to C++03 code with only a warning. In any case we continue. 5381 5382 if (RequireCompleteDeclContext(SS, Ctx)) 5383 return QualType(); 5384 5385 DeclarationName Name(&II); 5386 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 5387 LookupQualifiedName(Result, Ctx); 5388 unsigned DiagID = 0; 5389 Decl *Referenced = 0; 5390 switch (Result.getResultKind()) { 5391 case LookupResult::NotFound: 5392 DiagID = diag::err_typename_nested_not_found; 5393 break; 5394 5395 case LookupResult::NotFoundInCurrentInstantiation: 5396 // Okay, it's a member of an unknown instantiation. 5397 return Context.getDependentNameType(Keyword, NNS, &II); 5398 5399 case LookupResult::Found: 5400 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5401 if (ActiveTemplateInstantiations.empty() && 5402 !getLangOptions().CPlusPlus0x && !SS.isEmpty() && 5403 !isDependentScopeSpecifier(SS)) 5404 Diag(KeywordLoc.isValid()? KeywordLoc : IILoc, 5405 diag::ext_typename_nondependent) 5406 << SourceRange(IILoc) 5407 << FixItHint::CreateRemoval(KeywordLoc); 5408 5409 // We found a type. Build an ElaboratedType, since the 5410 // typename-specifier was just sugar. 5411 return Context.getElaboratedType(ETK_Typename, NNS, 5412 Context.getTypeDeclType(Type)); 5413 } 5414 5415 DiagID = diag::err_typename_nested_not_type; 5416 Referenced = Result.getFoundDecl(); 5417 break; 5418 5419 case LookupResult::FoundUnresolvedValue: 5420 llvm_unreachable("unresolved using decl in non-dependent context"); 5421 return QualType(); 5422 5423 case LookupResult::FoundOverloaded: 5424 DiagID = diag::err_typename_nested_not_type; 5425 Referenced = *Result.begin(); 5426 break; 5427 5428 case LookupResult::Ambiguous: 5429 return QualType(); 5430 } 5431 5432 // If we get here, it's because name lookup did not find a 5433 // type. Emit an appropriate diagnostic and return an error. 5434 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(), 5435 IILoc); 5436 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 5437 if (Referenced) 5438 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5439 << Name; 5440 return QualType(); 5441} 5442 5443namespace { 5444 // See Sema::RebuildTypeInCurrentInstantiation 5445 class CurrentInstantiationRebuilder 5446 : public TreeTransform<CurrentInstantiationRebuilder> { 5447 SourceLocation Loc; 5448 DeclarationName Entity; 5449 5450 public: 5451 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5452 5453 CurrentInstantiationRebuilder(Sema &SemaRef, 5454 SourceLocation Loc, 5455 DeclarationName Entity) 5456 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5457 Loc(Loc), Entity(Entity) { } 5458 5459 /// \brief Determine whether the given type \p T has already been 5460 /// transformed. 5461 /// 5462 /// For the purposes of type reconstruction, a type has already been 5463 /// transformed if it is NULL or if it is not dependent. 5464 bool AlreadyTransformed(QualType T) { 5465 return T.isNull() || !T->isDependentType(); 5466 } 5467 5468 /// \brief Returns the location of the entity whose type is being 5469 /// rebuilt. 5470 SourceLocation getBaseLocation() { return Loc; } 5471 5472 /// \brief Returns the name of the entity whose type is being rebuilt. 5473 DeclarationName getBaseEntity() { return Entity; } 5474 5475 /// \brief Sets the "base" location and entity when that 5476 /// information is known based on another transformation. 5477 void setBase(SourceLocation Loc, DeclarationName Entity) { 5478 this->Loc = Loc; 5479 this->Entity = Entity; 5480 } 5481 5482 /// \brief Transforms an expression by returning the expression itself 5483 /// (an identity function). 5484 /// 5485 /// FIXME: This is completely unsafe; we will need to actually clone the 5486 /// expressions. 5487 Sema::OwningExprResult TransformExpr(Expr *E) { 5488 return getSema().Owned(E->Retain()); 5489 } 5490 }; 5491} 5492 5493/// \brief Rebuilds a type within the context of the current instantiation. 5494/// 5495/// The type \p T is part of the type of an out-of-line member definition of 5496/// a class template (or class template partial specialization) that was parsed 5497/// and constructed before we entered the scope of the class template (or 5498/// partial specialization thereof). This routine will rebuild that type now 5499/// that we have entered the declarator's scope, which may produce different 5500/// canonical types, e.g., 5501/// 5502/// \code 5503/// template<typename T> 5504/// struct X { 5505/// typedef T* pointer; 5506/// pointer data(); 5507/// }; 5508/// 5509/// template<typename T> 5510/// typename X<T>::pointer X<T>::data() { ... } 5511/// \endcode 5512/// 5513/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5514/// since we do not know that we can look into X<T> when we parsed the type. 5515/// This function will rebuild the type, performing the lookup of "pointer" 5516/// in X<T> and returning an ElaboratedType whose canonical type is the same 5517/// as the canonical type of T*, allowing the return types of the out-of-line 5518/// definition and the declaration to match. 5519TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5520 SourceLocation Loc, 5521 DeclarationName Name) { 5522 if (!T || !T->getType()->isDependentType()) 5523 return T; 5524 5525 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5526 return Rebuilder.TransformType(T); 5527} 5528 5529bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5530 if (SS.isInvalid()) return true; 5531 5532 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5533 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5534 DeclarationName()); 5535 NestedNameSpecifier *Rebuilt = 5536 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5537 if (!Rebuilt) return true; 5538 5539 SS.setScopeRep(Rebuilt); 5540 return false; 5541} 5542 5543/// \brief Produces a formatted string that describes the binding of 5544/// template parameters to template arguments. 5545std::string 5546Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5547 const TemplateArgumentList &Args) { 5548 // FIXME: For variadic templates, we'll need to get the structured list. 5549 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5550 Args.flat_size()); 5551} 5552 5553std::string 5554Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5555 const TemplateArgument *Args, 5556 unsigned NumArgs) { 5557 std::string Result; 5558 5559 if (!Params || Params->size() == 0 || NumArgs == 0) 5560 return Result; 5561 5562 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5563 if (I >= NumArgs) 5564 break; 5565 5566 if (I == 0) 5567 Result += "[with "; 5568 else 5569 Result += ", "; 5570 5571 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5572 Result += Id->getName(); 5573 } else { 5574 Result += '$'; 5575 Result += llvm::utostr(I); 5576 } 5577 5578 Result += " = "; 5579 5580 switch (Args[I].getKind()) { 5581 case TemplateArgument::Null: 5582 Result += "<no value>"; 5583 break; 5584 5585 case TemplateArgument::Type: { 5586 std::string TypeStr; 5587 Args[I].getAsType().getAsStringInternal(TypeStr, 5588 Context.PrintingPolicy); 5589 Result += TypeStr; 5590 break; 5591 } 5592 5593 case TemplateArgument::Declaration: { 5594 bool Unnamed = true; 5595 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5596 if (ND->getDeclName()) { 5597 Unnamed = false; 5598 Result += ND->getNameAsString(); 5599 } 5600 } 5601 5602 if (Unnamed) { 5603 Result += "<anonymous>"; 5604 } 5605 break; 5606 } 5607 5608 case TemplateArgument::Template: { 5609 std::string Str; 5610 llvm::raw_string_ostream OS(Str); 5611 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5612 Result += OS.str(); 5613 break; 5614 } 5615 5616 case TemplateArgument::Integral: { 5617 Result += Args[I].getAsIntegral()->toString(10); 5618 break; 5619 } 5620 5621 case TemplateArgument::Expression: { 5622 // FIXME: This is non-optimal, since we're regurgitating the 5623 // expression we were given. 5624 std::string Str; 5625 { 5626 llvm::raw_string_ostream OS(Str); 5627 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5628 Context.PrintingPolicy); 5629 } 5630 Result += Str; 5631 break; 5632 } 5633 5634 case TemplateArgument::Pack: 5635 // FIXME: Format template argument packs 5636 Result += "<template argument pack>"; 5637 break; 5638 } 5639 } 5640 5641 Result += ']'; 5642 return Result; 5643} 5644