SemaTemplate.cpp revision 7e54fb5fcc7d7b8e843501652cf7c19cea6c4c57
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "clang/Sema/SemaInternal.h" 13#include "clang/Sema/Lookup.h" 14#include "clang/Sema/Scope.h" 15#include "clang/Sema/Template.h" 16#include "clang/Sema/TemplateDeduction.h" 17#include "TreeTransform.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/DeclFriend.h" 22#include "clang/AST/DeclTemplate.h" 23#include "clang/AST/RecursiveASTVisitor.h" 24#include "clang/AST/TypeVisitor.h" 25#include "clang/Sema/DeclSpec.h" 26#include "clang/Sema/ParsedTemplate.h" 27#include "clang/Basic/LangOptions.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/SmallBitVector.h" 30#include "llvm/ADT/SmallString.h" 31#include "llvm/ADT/StringExtras.h" 32using namespace clang; 33using namespace sema; 34 35// Exported for use by Parser. 36SourceRange 37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 38 unsigned N) { 39 if (!N) return SourceRange(); 40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 41} 42 43/// \brief Determine whether the declaration found is acceptable as the name 44/// of a template and, if so, return that template declaration. Otherwise, 45/// returns NULL. 46static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 47 NamedDecl *Orig, 48 bool AllowFunctionTemplates) { 49 NamedDecl *D = Orig->getUnderlyingDecl(); 50 51 if (isa<TemplateDecl>(D)) { 52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 53 return 0; 54 55 return Orig; 56 } 57 58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 59 // C++ [temp.local]p1: 60 // Like normal (non-template) classes, class templates have an 61 // injected-class-name (Clause 9). The injected-class-name 62 // can be used with or without a template-argument-list. When 63 // it is used without a template-argument-list, it is 64 // equivalent to the injected-class-name followed by the 65 // template-parameters of the class template enclosed in 66 // <>. When it is used with a template-argument-list, it 67 // refers to the specified class template specialization, 68 // which could be the current specialization or another 69 // specialization. 70 if (Record->isInjectedClassName()) { 71 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 72 if (Record->getDescribedClassTemplate()) 73 return Record->getDescribedClassTemplate(); 74 75 if (ClassTemplateSpecializationDecl *Spec 76 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 77 return Spec->getSpecializedTemplate(); 78 } 79 80 return 0; 81 } 82 83 return 0; 84} 85 86void Sema::FilterAcceptableTemplateNames(LookupResult &R, 87 bool AllowFunctionTemplates) { 88 // The set of class templates we've already seen. 89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 90 LookupResult::Filter filter = R.makeFilter(); 91 while (filter.hasNext()) { 92 NamedDecl *Orig = filter.next(); 93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 94 AllowFunctionTemplates); 95 if (!Repl) 96 filter.erase(); 97 else if (Repl != Orig) { 98 99 // C++ [temp.local]p3: 100 // A lookup that finds an injected-class-name (10.2) can result in an 101 // ambiguity in certain cases (for example, if it is found in more than 102 // one base class). If all of the injected-class-names that are found 103 // refer to specializations of the same class template, and if the name 104 // is used as a template-name, the reference refers to the class 105 // template itself and not a specialization thereof, and is not 106 // ambiguous. 107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 108 if (!ClassTemplates.insert(ClassTmpl)) { 109 filter.erase(); 110 continue; 111 } 112 113 // FIXME: we promote access to public here as a workaround to 114 // the fact that LookupResult doesn't let us remember that we 115 // found this template through a particular injected class name, 116 // which means we end up doing nasty things to the invariants. 117 // Pretending that access is public is *much* safer. 118 filter.replace(Repl, AS_public); 119 } 120 } 121 filter.done(); 122} 123 124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 125 bool AllowFunctionTemplates) { 126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 128 return true; 129 130 return false; 131} 132 133TemplateNameKind Sema::isTemplateName(Scope *S, 134 CXXScopeSpec &SS, 135 bool hasTemplateKeyword, 136 UnqualifiedId &Name, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext, 139 TemplateTy &TemplateResult, 140 bool &MemberOfUnknownSpecialization) { 141 assert(getLangOpts().CPlusPlus && "No template names in C!"); 142 143 DeclarationName TName; 144 MemberOfUnknownSpecialization = false; 145 146 switch (Name.getKind()) { 147 case UnqualifiedId::IK_Identifier: 148 TName = DeclarationName(Name.Identifier); 149 break; 150 151 case UnqualifiedId::IK_OperatorFunctionId: 152 TName = Context.DeclarationNames.getCXXOperatorName( 153 Name.OperatorFunctionId.Operator); 154 break; 155 156 case UnqualifiedId::IK_LiteralOperatorId: 157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 158 break; 159 160 default: 161 return TNK_Non_template; 162 } 163 164 QualType ObjectType = ObjectTypePtr.get(); 165 166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 168 MemberOfUnknownSpecialization); 169 if (R.empty()) return TNK_Non_template; 170 if (R.isAmbiguous()) { 171 // Suppress diagnostics; we'll redo this lookup later. 172 R.suppressDiagnostics(); 173 174 // FIXME: we might have ambiguous templates, in which case we 175 // should at least parse them properly! 176 return TNK_Non_template; 177 } 178 179 TemplateName Template; 180 TemplateNameKind TemplateKind; 181 182 unsigned ResultCount = R.end() - R.begin(); 183 if (ResultCount > 1) { 184 // We assume that we'll preserve the qualifier from a function 185 // template name in other ways. 186 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 187 TemplateKind = TNK_Function_template; 188 189 // We'll do this lookup again later. 190 R.suppressDiagnostics(); 191 } else { 192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 193 194 if (SS.isSet() && !SS.isInvalid()) { 195 NestedNameSpecifier *Qualifier 196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 197 Template = Context.getQualifiedTemplateName(Qualifier, 198 hasTemplateKeyword, TD); 199 } else { 200 Template = TemplateName(TD); 201 } 202 203 if (isa<FunctionTemplateDecl>(TD)) { 204 TemplateKind = TNK_Function_template; 205 206 // We'll do this lookup again later. 207 R.suppressDiagnostics(); 208 } else { 209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 210 isa<TypeAliasTemplateDecl>(TD)); 211 TemplateKind = TNK_Type_template; 212 } 213 } 214 215 TemplateResult = TemplateTy::make(Template); 216 return TemplateKind; 217} 218 219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 220 SourceLocation IILoc, 221 Scope *S, 222 const CXXScopeSpec *SS, 223 TemplateTy &SuggestedTemplate, 224 TemplateNameKind &SuggestedKind) { 225 // We can't recover unless there's a dependent scope specifier preceding the 226 // template name. 227 // FIXME: Typo correction? 228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 229 computeDeclContext(*SS)) 230 return false; 231 232 // The code is missing a 'template' keyword prior to the dependent template 233 // name. 234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 235 Diag(IILoc, diag::err_template_kw_missing) 236 << Qualifier << II.getName() 237 << FixItHint::CreateInsertion(IILoc, "template "); 238 SuggestedTemplate 239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 240 SuggestedKind = TNK_Dependent_template_name; 241 return true; 242} 243 244void Sema::LookupTemplateName(LookupResult &Found, 245 Scope *S, CXXScopeSpec &SS, 246 QualType ObjectType, 247 bool EnteringContext, 248 bool &MemberOfUnknownSpecialization) { 249 // Determine where to perform name lookup 250 MemberOfUnknownSpecialization = false; 251 DeclContext *LookupCtx = 0; 252 bool isDependent = false; 253 if (!ObjectType.isNull()) { 254 // This nested-name-specifier occurs in a member access expression, e.g., 255 // x->B::f, and we are looking into the type of the object. 256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 257 LookupCtx = computeDeclContext(ObjectType); 258 isDependent = ObjectType->isDependentType(); 259 assert((isDependent || !ObjectType->isIncompleteType()) && 260 "Caller should have completed object type"); 261 262 // Template names cannot appear inside an Objective-C class or object type. 263 if (ObjectType->isObjCObjectOrInterfaceType()) { 264 Found.clear(); 265 return; 266 } 267 } else if (SS.isSet()) { 268 // This nested-name-specifier occurs after another nested-name-specifier, 269 // so long into the context associated with the prior nested-name-specifier. 270 LookupCtx = computeDeclContext(SS, EnteringContext); 271 isDependent = isDependentScopeSpecifier(SS); 272 273 // The declaration context must be complete. 274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 275 return; 276 } 277 278 bool ObjectTypeSearchedInScope = false; 279 bool AllowFunctionTemplatesInLookup = true; 280 if (LookupCtx) { 281 // Perform "qualified" name lookup into the declaration context we 282 // computed, which is either the type of the base of a member access 283 // expression or the declaration context associated with a prior 284 // nested-name-specifier. 285 LookupQualifiedName(Found, LookupCtx); 286 if (!ObjectType.isNull() && Found.empty()) { 287 // C++ [basic.lookup.classref]p1: 288 // In a class member access expression (5.2.5), if the . or -> token is 289 // immediately followed by an identifier followed by a <, the 290 // identifier must be looked up to determine whether the < is the 291 // beginning of a template argument list (14.2) or a less-than operator. 292 // The identifier is first looked up in the class of the object 293 // expression. If the identifier is not found, it is then looked up in 294 // the context of the entire postfix-expression and shall name a class 295 // or function template. 296 if (S) LookupName(Found, S); 297 ObjectTypeSearchedInScope = true; 298 AllowFunctionTemplatesInLookup = false; 299 } 300 } else if (isDependent && (!S || ObjectType.isNull())) { 301 // We cannot look into a dependent object type or nested nme 302 // specifier. 303 MemberOfUnknownSpecialization = true; 304 return; 305 } else { 306 // Perform unqualified name lookup in the current scope. 307 LookupName(Found, S); 308 309 if (!ObjectType.isNull()) 310 AllowFunctionTemplatesInLookup = false; 311 } 312 313 if (Found.empty() && !isDependent) { 314 // If we did not find any names, attempt to correct any typos. 315 DeclarationName Name = Found.getLookupName(); 316 Found.clear(); 317 // Simple filter callback that, for keywords, only accepts the C++ *_cast 318 CorrectionCandidateCallback FilterCCC; 319 FilterCCC.WantTypeSpecifiers = false; 320 FilterCCC.WantExpressionKeywords = false; 321 FilterCCC.WantRemainingKeywords = false; 322 FilterCCC.WantCXXNamedCasts = true; 323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 324 Found.getLookupKind(), S, &SS, 325 FilterCCC, LookupCtx)) { 326 Found.setLookupName(Corrected.getCorrection()); 327 if (Corrected.getCorrectionDecl()) 328 Found.addDecl(Corrected.getCorrectionDecl()); 329 FilterAcceptableTemplateNames(Found); 330 if (!Found.empty()) { 331 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 333 if (LookupCtx) 334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 336 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 337 else 338 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 339 << Name << CorrectedQuotedStr 340 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 341 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 342 Diag(Template->getLocation(), diag::note_previous_decl) 343 << CorrectedQuotedStr; 344 } 345 } else { 346 Found.setLookupName(Name); 347 } 348 } 349 350 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 351 if (Found.empty()) { 352 if (isDependent) 353 MemberOfUnknownSpecialization = true; 354 return; 355 } 356 357 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 358 !(getLangOpts().CPlusPlus0x && !Found.empty())) { 359 // C++03 [basic.lookup.classref]p1: 360 // [...] If the lookup in the class of the object expression finds a 361 // template, the name is also looked up in the context of the entire 362 // postfix-expression and [...] 363 // 364 // Note: C++11 does not perform this second lookup. 365 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 366 LookupOrdinaryName); 367 LookupName(FoundOuter, S); 368 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 369 370 if (FoundOuter.empty()) { 371 // - if the name is not found, the name found in the class of the 372 // object expression is used, otherwise 373 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 374 FoundOuter.isAmbiguous()) { 375 // - if the name is found in the context of the entire 376 // postfix-expression and does not name a class template, the name 377 // found in the class of the object expression is used, otherwise 378 FoundOuter.clear(); 379 } else if (!Found.isSuppressingDiagnostics()) { 380 // - if the name found is a class template, it must refer to the same 381 // entity as the one found in the class of the object expression, 382 // otherwise the program is ill-formed. 383 if (!Found.isSingleResult() || 384 Found.getFoundDecl()->getCanonicalDecl() 385 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 386 Diag(Found.getNameLoc(), 387 diag::ext_nested_name_member_ref_lookup_ambiguous) 388 << Found.getLookupName() 389 << ObjectType; 390 Diag(Found.getRepresentativeDecl()->getLocation(), 391 diag::note_ambig_member_ref_object_type) 392 << ObjectType; 393 Diag(FoundOuter.getFoundDecl()->getLocation(), 394 diag::note_ambig_member_ref_scope); 395 396 // Recover by taking the template that we found in the object 397 // expression's type. 398 } 399 } 400 } 401} 402 403/// ActOnDependentIdExpression - Handle a dependent id-expression that 404/// was just parsed. This is only possible with an explicit scope 405/// specifier naming a dependent type. 406ExprResult 407Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 408 SourceLocation TemplateKWLoc, 409 const DeclarationNameInfo &NameInfo, 410 bool isAddressOfOperand, 411 const TemplateArgumentListInfo *TemplateArgs) { 412 DeclContext *DC = getFunctionLevelDeclContext(); 413 414 if (!isAddressOfOperand && 415 isa<CXXMethodDecl>(DC) && 416 cast<CXXMethodDecl>(DC)->isInstance()) { 417 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 418 419 // Since the 'this' expression is synthesized, we don't need to 420 // perform the double-lookup check. 421 NamedDecl *FirstQualifierInScope = 0; 422 423 return Owned(CXXDependentScopeMemberExpr::Create(Context, 424 /*This*/ 0, ThisType, 425 /*IsArrow*/ true, 426 /*Op*/ SourceLocation(), 427 SS.getWithLocInContext(Context), 428 TemplateKWLoc, 429 FirstQualifierInScope, 430 NameInfo, 431 TemplateArgs)); 432 } 433 434 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 435} 436 437ExprResult 438Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 439 SourceLocation TemplateKWLoc, 440 const DeclarationNameInfo &NameInfo, 441 const TemplateArgumentListInfo *TemplateArgs) { 442 return Owned(DependentScopeDeclRefExpr::Create(Context, 443 SS.getWithLocInContext(Context), 444 TemplateKWLoc, 445 NameInfo, 446 TemplateArgs)); 447} 448 449/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 450/// that the template parameter 'PrevDecl' is being shadowed by a new 451/// declaration at location Loc. Returns true to indicate that this is 452/// an error, and false otherwise. 453void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 454 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 455 456 // Microsoft Visual C++ permits template parameters to be shadowed. 457 if (getLangOpts().MicrosoftExt) 458 return; 459 460 // C++ [temp.local]p4: 461 // A template-parameter shall not be redeclared within its 462 // scope (including nested scopes). 463 Diag(Loc, diag::err_template_param_shadow) 464 << cast<NamedDecl>(PrevDecl)->getDeclName(); 465 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 466 return; 467} 468 469/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 470/// the parameter D to reference the templated declaration and return a pointer 471/// to the template declaration. Otherwise, do nothing to D and return null. 472TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 473 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 474 D = Temp->getTemplatedDecl(); 475 return Temp; 476 } 477 return 0; 478} 479 480ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 481 SourceLocation EllipsisLoc) const { 482 assert(Kind == Template && 483 "Only template template arguments can be pack expansions here"); 484 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 485 "Template template argument pack expansion without packs"); 486 ParsedTemplateArgument Result(*this); 487 Result.EllipsisLoc = EllipsisLoc; 488 return Result; 489} 490 491static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 492 const ParsedTemplateArgument &Arg) { 493 494 switch (Arg.getKind()) { 495 case ParsedTemplateArgument::Type: { 496 TypeSourceInfo *DI; 497 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 498 if (!DI) 499 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 500 return TemplateArgumentLoc(TemplateArgument(T), DI); 501 } 502 503 case ParsedTemplateArgument::NonType: { 504 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 505 return TemplateArgumentLoc(TemplateArgument(E), E); 506 } 507 508 case ParsedTemplateArgument::Template: { 509 TemplateName Template = Arg.getAsTemplate().get(); 510 TemplateArgument TArg; 511 if (Arg.getEllipsisLoc().isValid()) 512 TArg = TemplateArgument(Template, llvm::Optional<unsigned int>()); 513 else 514 TArg = Template; 515 return TemplateArgumentLoc(TArg, 516 Arg.getScopeSpec().getWithLocInContext( 517 SemaRef.Context), 518 Arg.getLocation(), 519 Arg.getEllipsisLoc()); 520 } 521 } 522 523 llvm_unreachable("Unhandled parsed template argument"); 524} 525 526/// \brief Translates template arguments as provided by the parser 527/// into template arguments used by semantic analysis. 528void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 529 TemplateArgumentListInfo &TemplateArgs) { 530 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 531 TemplateArgs.addArgument(translateTemplateArgument(*this, 532 TemplateArgsIn[I])); 533} 534 535/// ActOnTypeParameter - Called when a C++ template type parameter 536/// (e.g., "typename T") has been parsed. Typename specifies whether 537/// the keyword "typename" was used to declare the type parameter 538/// (otherwise, "class" was used), and KeyLoc is the location of the 539/// "class" or "typename" keyword. ParamName is the name of the 540/// parameter (NULL indicates an unnamed template parameter) and 541/// ParamNameLoc is the location of the parameter name (if any). 542/// If the type parameter has a default argument, it will be added 543/// later via ActOnTypeParameterDefault. 544Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 545 SourceLocation EllipsisLoc, 546 SourceLocation KeyLoc, 547 IdentifierInfo *ParamName, 548 SourceLocation ParamNameLoc, 549 unsigned Depth, unsigned Position, 550 SourceLocation EqualLoc, 551 ParsedType DefaultArg) { 552 assert(S->isTemplateParamScope() && 553 "Template type parameter not in template parameter scope!"); 554 bool Invalid = false; 555 556 if (ParamName) { 557 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 558 LookupOrdinaryName, 559 ForRedeclaration); 560 if (PrevDecl && PrevDecl->isTemplateParameter()) { 561 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 562 PrevDecl = 0; 563 } 564 } 565 566 SourceLocation Loc = ParamNameLoc; 567 if (!ParamName) 568 Loc = KeyLoc; 569 570 TemplateTypeParmDecl *Param 571 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 572 KeyLoc, Loc, Depth, Position, ParamName, 573 Typename, Ellipsis); 574 Param->setAccess(AS_public); 575 if (Invalid) 576 Param->setInvalidDecl(); 577 578 if (ParamName) { 579 // Add the template parameter into the current scope. 580 S->AddDecl(Param); 581 IdResolver.AddDecl(Param); 582 } 583 584 // C++0x [temp.param]p9: 585 // A default template-argument may be specified for any kind of 586 // template-parameter that is not a template parameter pack. 587 if (DefaultArg && Ellipsis) { 588 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 589 DefaultArg = ParsedType(); 590 } 591 592 // Handle the default argument, if provided. 593 if (DefaultArg) { 594 TypeSourceInfo *DefaultTInfo; 595 GetTypeFromParser(DefaultArg, &DefaultTInfo); 596 597 assert(DefaultTInfo && "expected source information for type"); 598 599 // Check for unexpanded parameter packs. 600 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 601 UPPC_DefaultArgument)) 602 return Param; 603 604 // Check the template argument itself. 605 if (CheckTemplateArgument(Param, DefaultTInfo)) { 606 Param->setInvalidDecl(); 607 return Param; 608 } 609 610 Param->setDefaultArgument(DefaultTInfo, false); 611 } 612 613 return Param; 614} 615 616/// \brief Check that the type of a non-type template parameter is 617/// well-formed. 618/// 619/// \returns the (possibly-promoted) parameter type if valid; 620/// otherwise, produces a diagnostic and returns a NULL type. 621QualType 622Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 623 // We don't allow variably-modified types as the type of non-type template 624 // parameters. 625 if (T->isVariablyModifiedType()) { 626 Diag(Loc, diag::err_variably_modified_nontype_template_param) 627 << T; 628 return QualType(); 629 } 630 631 // C++ [temp.param]p4: 632 // 633 // A non-type template-parameter shall have one of the following 634 // (optionally cv-qualified) types: 635 // 636 // -- integral or enumeration type, 637 if (T->isIntegralOrEnumerationType() || 638 // -- pointer to object or pointer to function, 639 T->isPointerType() || 640 // -- reference to object or reference to function, 641 T->isReferenceType() || 642 // -- pointer to member, 643 T->isMemberPointerType() || 644 // -- std::nullptr_t. 645 T->isNullPtrType() || 646 // If T is a dependent type, we can't do the check now, so we 647 // assume that it is well-formed. 648 T->isDependentType()) { 649 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 650 // are ignored when determining its type. 651 return T.getUnqualifiedType(); 652 } 653 654 // C++ [temp.param]p8: 655 // 656 // A non-type template-parameter of type "array of T" or 657 // "function returning T" is adjusted to be of type "pointer to 658 // T" or "pointer to function returning T", respectively. 659 else if (T->isArrayType()) 660 // FIXME: Keep the type prior to promotion? 661 return Context.getArrayDecayedType(T); 662 else if (T->isFunctionType()) 663 // FIXME: Keep the type prior to promotion? 664 return Context.getPointerType(T); 665 666 Diag(Loc, diag::err_template_nontype_parm_bad_type) 667 << T; 668 669 return QualType(); 670} 671 672Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 673 unsigned Depth, 674 unsigned Position, 675 SourceLocation EqualLoc, 676 Expr *Default) { 677 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 678 QualType T = TInfo->getType(); 679 680 assert(S->isTemplateParamScope() && 681 "Non-type template parameter not in template parameter scope!"); 682 bool Invalid = false; 683 684 IdentifierInfo *ParamName = D.getIdentifier(); 685 if (ParamName) { 686 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 687 LookupOrdinaryName, 688 ForRedeclaration); 689 if (PrevDecl && PrevDecl->isTemplateParameter()) { 690 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 691 PrevDecl = 0; 692 } 693 } 694 695 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 696 if (T.isNull()) { 697 T = Context.IntTy; // Recover with an 'int' type. 698 Invalid = true; 699 } 700 701 bool IsParameterPack = D.hasEllipsis(); 702 NonTypeTemplateParmDecl *Param 703 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 704 D.getLocStart(), 705 D.getIdentifierLoc(), 706 Depth, Position, ParamName, T, 707 IsParameterPack, TInfo); 708 Param->setAccess(AS_public); 709 710 if (Invalid) 711 Param->setInvalidDecl(); 712 713 if (D.getIdentifier()) { 714 // Add the template parameter into the current scope. 715 S->AddDecl(Param); 716 IdResolver.AddDecl(Param); 717 } 718 719 // C++0x [temp.param]p9: 720 // A default template-argument may be specified for any kind of 721 // template-parameter that is not a template parameter pack. 722 if (Default && IsParameterPack) { 723 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 724 Default = 0; 725 } 726 727 // Check the well-formedness of the default template argument, if provided. 728 if (Default) { 729 // Check for unexpanded parameter packs. 730 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 731 return Param; 732 733 TemplateArgument Converted; 734 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 735 if (DefaultRes.isInvalid()) { 736 Param->setInvalidDecl(); 737 return Param; 738 } 739 Default = DefaultRes.take(); 740 741 Param->setDefaultArgument(Default, false); 742 } 743 744 return Param; 745} 746 747/// ActOnTemplateTemplateParameter - Called when a C++ template template 748/// parameter (e.g. T in template <template \<typename> class T> class array) 749/// has been parsed. S is the current scope. 750Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 751 SourceLocation TmpLoc, 752 TemplateParameterList *Params, 753 SourceLocation EllipsisLoc, 754 IdentifierInfo *Name, 755 SourceLocation NameLoc, 756 unsigned Depth, 757 unsigned Position, 758 SourceLocation EqualLoc, 759 ParsedTemplateArgument Default) { 760 assert(S->isTemplateParamScope() && 761 "Template template parameter not in template parameter scope!"); 762 763 // Construct the parameter object. 764 bool IsParameterPack = EllipsisLoc.isValid(); 765 TemplateTemplateParmDecl *Param = 766 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 767 NameLoc.isInvalid()? TmpLoc : NameLoc, 768 Depth, Position, IsParameterPack, 769 Name, Params); 770 Param->setAccess(AS_public); 771 772 // If the template template parameter has a name, then link the identifier 773 // into the scope and lookup mechanisms. 774 if (Name) { 775 S->AddDecl(Param); 776 IdResolver.AddDecl(Param); 777 } 778 779 if (Params->size() == 0) { 780 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 781 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 782 Param->setInvalidDecl(); 783 } 784 785 // C++0x [temp.param]p9: 786 // A default template-argument may be specified for any kind of 787 // template-parameter that is not a template parameter pack. 788 if (IsParameterPack && !Default.isInvalid()) { 789 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 790 Default = ParsedTemplateArgument(); 791 } 792 793 if (!Default.isInvalid()) { 794 // Check only that we have a template template argument. We don't want to 795 // try to check well-formedness now, because our template template parameter 796 // might have dependent types in its template parameters, which we wouldn't 797 // be able to match now. 798 // 799 // If none of the template template parameter's template arguments mention 800 // other template parameters, we could actually perform more checking here. 801 // However, it isn't worth doing. 802 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 803 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 804 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 805 << DefaultArg.getSourceRange(); 806 return Param; 807 } 808 809 // Check for unexpanded parameter packs. 810 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 811 DefaultArg.getArgument().getAsTemplate(), 812 UPPC_DefaultArgument)) 813 return Param; 814 815 Param->setDefaultArgument(DefaultArg, false); 816 } 817 818 return Param; 819} 820 821/// ActOnTemplateParameterList - Builds a TemplateParameterList that 822/// contains the template parameters in Params/NumParams. 823TemplateParameterList * 824Sema::ActOnTemplateParameterList(unsigned Depth, 825 SourceLocation ExportLoc, 826 SourceLocation TemplateLoc, 827 SourceLocation LAngleLoc, 828 Decl **Params, unsigned NumParams, 829 SourceLocation RAngleLoc) { 830 if (ExportLoc.isValid()) 831 Diag(ExportLoc, diag::warn_template_export_unsupported); 832 833 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 834 (NamedDecl**)Params, NumParams, 835 RAngleLoc); 836} 837 838static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 839 if (SS.isSet()) 840 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 841} 842 843DeclResult 844Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 845 SourceLocation KWLoc, CXXScopeSpec &SS, 846 IdentifierInfo *Name, SourceLocation NameLoc, 847 AttributeList *Attr, 848 TemplateParameterList *TemplateParams, 849 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 850 unsigned NumOuterTemplateParamLists, 851 TemplateParameterList** OuterTemplateParamLists) { 852 assert(TemplateParams && TemplateParams->size() > 0 && 853 "No template parameters"); 854 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 855 bool Invalid = false; 856 857 // Check that we can declare a template here. 858 if (CheckTemplateDeclScope(S, TemplateParams)) 859 return true; 860 861 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 862 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 863 864 // There is no such thing as an unnamed class template. 865 if (!Name) { 866 Diag(KWLoc, diag::err_template_unnamed_class); 867 return true; 868 } 869 870 // Find any previous declaration with this name. For a friend with no 871 // scope explicitly specified, we only look for tag declarations (per 872 // C++11 [basic.lookup.elab]p2). 873 DeclContext *SemanticContext; 874 LookupResult Previous(*this, Name, NameLoc, 875 (SS.isEmpty() && TUK == TUK_Friend) 876 ? LookupTagName : LookupOrdinaryName, 877 ForRedeclaration); 878 if (SS.isNotEmpty() && !SS.isInvalid()) { 879 SemanticContext = computeDeclContext(SS, true); 880 if (!SemanticContext) { 881 // FIXME: Horrible, horrible hack! We can't currently represent this 882 // in the AST, and historically we have just ignored such friend 883 // class templates, so don't complain here. 884 if (TUK != TUK_Friend) 885 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 886 << SS.getScopeRep() << SS.getRange(); 887 return true; 888 } 889 890 if (RequireCompleteDeclContext(SS, SemanticContext)) 891 return true; 892 893 // If we're adding a template to a dependent context, we may need to 894 // rebuilding some of the types used within the template parameter list, 895 // now that we know what the current instantiation is. 896 if (SemanticContext->isDependentContext()) { 897 ContextRAII SavedContext(*this, SemanticContext); 898 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 899 Invalid = true; 900 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 901 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 902 903 LookupQualifiedName(Previous, SemanticContext); 904 } else { 905 SemanticContext = CurContext; 906 LookupName(Previous, S); 907 } 908 909 if (Previous.isAmbiguous()) 910 return true; 911 912 NamedDecl *PrevDecl = 0; 913 if (Previous.begin() != Previous.end()) 914 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 915 916 // If there is a previous declaration with the same name, check 917 // whether this is a valid redeclaration. 918 ClassTemplateDecl *PrevClassTemplate 919 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 920 921 // We may have found the injected-class-name of a class template, 922 // class template partial specialization, or class template specialization. 923 // In these cases, grab the template that is being defined or specialized. 924 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 925 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 926 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 927 PrevClassTemplate 928 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 929 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 930 PrevClassTemplate 931 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 932 ->getSpecializedTemplate(); 933 } 934 } 935 936 if (TUK == TUK_Friend) { 937 // C++ [namespace.memdef]p3: 938 // [...] When looking for a prior declaration of a class or a function 939 // declared as a friend, and when the name of the friend class or 940 // function is neither a qualified name nor a template-id, scopes outside 941 // the innermost enclosing namespace scope are not considered. 942 if (!SS.isSet()) { 943 DeclContext *OutermostContext = CurContext; 944 while (!OutermostContext->isFileContext()) 945 OutermostContext = OutermostContext->getLookupParent(); 946 947 if (PrevDecl && 948 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 949 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 950 SemanticContext = PrevDecl->getDeclContext(); 951 } else { 952 // Declarations in outer scopes don't matter. However, the outermost 953 // context we computed is the semantic context for our new 954 // declaration. 955 PrevDecl = PrevClassTemplate = 0; 956 SemanticContext = OutermostContext; 957 958 // Check that the chosen semantic context doesn't already contain a 959 // declaration of this name as a non-tag type. 960 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 961 ForRedeclaration); 962 DeclContext *LookupContext = SemanticContext; 963 while (LookupContext->isTransparentContext()) 964 LookupContext = LookupContext->getLookupParent(); 965 LookupQualifiedName(Previous, LookupContext); 966 967 if (Previous.isAmbiguous()) 968 return true; 969 970 if (Previous.begin() != Previous.end()) 971 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 972 } 973 } 974 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 975 PrevDecl = PrevClassTemplate = 0; 976 977 if (PrevClassTemplate) { 978 // Ensure that the template parameter lists are compatible. Skip this check 979 // for a friend in a dependent context: the template parameter list itself 980 // could be dependent. 981 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 982 !TemplateParameterListsAreEqual(TemplateParams, 983 PrevClassTemplate->getTemplateParameters(), 984 /*Complain=*/true, 985 TPL_TemplateMatch)) 986 return true; 987 988 // C++ [temp.class]p4: 989 // In a redeclaration, partial specialization, explicit 990 // specialization or explicit instantiation of a class template, 991 // the class-key shall agree in kind with the original class 992 // template declaration (7.1.5.3). 993 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 994 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 995 TUK == TUK_Definition, KWLoc, *Name)) { 996 Diag(KWLoc, diag::err_use_with_wrong_tag) 997 << Name 998 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 999 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1000 Kind = PrevRecordDecl->getTagKind(); 1001 } 1002 1003 // Check for redefinition of this class template. 1004 if (TUK == TUK_Definition) { 1005 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1006 Diag(NameLoc, diag::err_redefinition) << Name; 1007 Diag(Def->getLocation(), diag::note_previous_definition); 1008 // FIXME: Would it make sense to try to "forget" the previous 1009 // definition, as part of error recovery? 1010 return true; 1011 } 1012 } 1013 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1014 // Maybe we will complain about the shadowed template parameter. 1015 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1016 // Just pretend that we didn't see the previous declaration. 1017 PrevDecl = 0; 1018 } else if (PrevDecl) { 1019 // C++ [temp]p5: 1020 // A class template shall not have the same name as any other 1021 // template, class, function, object, enumeration, enumerator, 1022 // namespace, or type in the same scope (3.3), except as specified 1023 // in (14.5.4). 1024 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1025 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1026 return true; 1027 } 1028 1029 // Check the template parameter list of this declaration, possibly 1030 // merging in the template parameter list from the previous class 1031 // template declaration. Skip this check for a friend in a dependent 1032 // context, because the template parameter list might be dependent. 1033 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1034 CheckTemplateParameterList(TemplateParams, 1035 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 1036 (SS.isSet() && SemanticContext && 1037 SemanticContext->isRecord() && 1038 SemanticContext->isDependentContext()) 1039 ? TPC_ClassTemplateMember 1040 : TPC_ClassTemplate)) 1041 Invalid = true; 1042 1043 if (SS.isSet()) { 1044 // If the name of the template was qualified, we must be defining the 1045 // template out-of-line. 1046 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1047 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1048 : diag::err_member_def_does_not_match) 1049 << Name << SemanticContext << SS.getRange(); 1050 Invalid = true; 1051 } 1052 } 1053 1054 CXXRecordDecl *NewClass = 1055 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1056 PrevClassTemplate? 1057 PrevClassTemplate->getTemplatedDecl() : 0, 1058 /*DelayTypeCreation=*/true); 1059 SetNestedNameSpecifier(NewClass, SS); 1060 if (NumOuterTemplateParamLists > 0) 1061 NewClass->setTemplateParameterListsInfo(Context, 1062 NumOuterTemplateParamLists, 1063 OuterTemplateParamLists); 1064 1065 // Add alignment attributes if necessary; these attributes are checked when 1066 // the ASTContext lays out the structure. 1067 AddAlignmentAttributesForRecord(NewClass); 1068 AddMsStructLayoutForRecord(NewClass); 1069 1070 ClassTemplateDecl *NewTemplate 1071 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1072 DeclarationName(Name), TemplateParams, 1073 NewClass, PrevClassTemplate); 1074 NewClass->setDescribedClassTemplate(NewTemplate); 1075 1076 if (ModulePrivateLoc.isValid()) 1077 NewTemplate->setModulePrivate(); 1078 1079 // Build the type for the class template declaration now. 1080 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1081 T = Context.getInjectedClassNameType(NewClass, T); 1082 assert(T->isDependentType() && "Class template type is not dependent?"); 1083 (void)T; 1084 1085 // If we are providing an explicit specialization of a member that is a 1086 // class template, make a note of that. 1087 if (PrevClassTemplate && 1088 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1089 PrevClassTemplate->setMemberSpecialization(); 1090 1091 // Set the access specifier. 1092 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1093 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1094 1095 // Set the lexical context of these templates 1096 NewClass->setLexicalDeclContext(CurContext); 1097 NewTemplate->setLexicalDeclContext(CurContext); 1098 1099 if (TUK == TUK_Definition) 1100 NewClass->startDefinition(); 1101 1102 if (Attr) 1103 ProcessDeclAttributeList(S, NewClass, Attr); 1104 1105 AddPushedVisibilityAttribute(NewClass); 1106 1107 if (TUK != TUK_Friend) 1108 PushOnScopeChains(NewTemplate, S); 1109 else { 1110 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1111 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1112 NewClass->setAccess(PrevClassTemplate->getAccess()); 1113 } 1114 1115 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1116 PrevClassTemplate != NULL); 1117 1118 // Friend templates are visible in fairly strange ways. 1119 if (!CurContext->isDependentContext()) { 1120 DeclContext *DC = SemanticContext->getRedeclContext(); 1121 DC->makeDeclVisibleInContext(NewTemplate); 1122 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1123 PushOnScopeChains(NewTemplate, EnclosingScope, 1124 /* AddToContext = */ false); 1125 } 1126 1127 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1128 NewClass->getLocation(), 1129 NewTemplate, 1130 /*FIXME:*/NewClass->getLocation()); 1131 Friend->setAccess(AS_public); 1132 CurContext->addDecl(Friend); 1133 } 1134 1135 if (Invalid) { 1136 NewTemplate->setInvalidDecl(); 1137 NewClass->setInvalidDecl(); 1138 } 1139 if (PrevClassTemplate) 1140 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1141 1142 return NewTemplate; 1143} 1144 1145/// \brief Diagnose the presence of a default template argument on a 1146/// template parameter, which is ill-formed in certain contexts. 1147/// 1148/// \returns true if the default template argument should be dropped. 1149static bool DiagnoseDefaultTemplateArgument(Sema &S, 1150 Sema::TemplateParamListContext TPC, 1151 SourceLocation ParamLoc, 1152 SourceRange DefArgRange) { 1153 switch (TPC) { 1154 case Sema::TPC_ClassTemplate: 1155 case Sema::TPC_TypeAliasTemplate: 1156 return false; 1157 1158 case Sema::TPC_FunctionTemplate: 1159 case Sema::TPC_FriendFunctionTemplateDefinition: 1160 // C++ [temp.param]p9: 1161 // A default template-argument shall not be specified in a 1162 // function template declaration or a function template 1163 // definition [...] 1164 // If a friend function template declaration specifies a default 1165 // template-argument, that declaration shall be a definition and shall be 1166 // the only declaration of the function template in the translation unit. 1167 // (C++98/03 doesn't have this wording; see DR226). 1168 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ? 1169 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1170 : diag::ext_template_parameter_default_in_function_template) 1171 << DefArgRange; 1172 return false; 1173 1174 case Sema::TPC_ClassTemplateMember: 1175 // C++0x [temp.param]p9: 1176 // A default template-argument shall not be specified in the 1177 // template-parameter-lists of the definition of a member of a 1178 // class template that appears outside of the member's class. 1179 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1180 << DefArgRange; 1181 return true; 1182 1183 case Sema::TPC_FriendFunctionTemplate: 1184 // C++ [temp.param]p9: 1185 // A default template-argument shall not be specified in a 1186 // friend template declaration. 1187 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1188 << DefArgRange; 1189 return true; 1190 1191 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1192 // for friend function templates if there is only a single 1193 // declaration (and it is a definition). Strange! 1194 } 1195 1196 llvm_unreachable("Invalid TemplateParamListContext!"); 1197} 1198 1199/// \brief Check for unexpanded parameter packs within the template parameters 1200/// of a template template parameter, recursively. 1201static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1202 TemplateTemplateParmDecl *TTP) { 1203 TemplateParameterList *Params = TTP->getTemplateParameters(); 1204 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1205 NamedDecl *P = Params->getParam(I); 1206 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1207 if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1208 NTTP->getTypeSourceInfo(), 1209 Sema::UPPC_NonTypeTemplateParameterType)) 1210 return true; 1211 1212 continue; 1213 } 1214 1215 if (TemplateTemplateParmDecl *InnerTTP 1216 = dyn_cast<TemplateTemplateParmDecl>(P)) 1217 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1218 return true; 1219 } 1220 1221 return false; 1222} 1223 1224/// \brief Checks the validity of a template parameter list, possibly 1225/// considering the template parameter list from a previous 1226/// declaration. 1227/// 1228/// If an "old" template parameter list is provided, it must be 1229/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1230/// template parameter list. 1231/// 1232/// \param NewParams Template parameter list for a new template 1233/// declaration. This template parameter list will be updated with any 1234/// default arguments that are carried through from the previous 1235/// template parameter list. 1236/// 1237/// \param OldParams If provided, template parameter list from a 1238/// previous declaration of the same template. Default template 1239/// arguments will be merged from the old template parameter list to 1240/// the new template parameter list. 1241/// 1242/// \param TPC Describes the context in which we are checking the given 1243/// template parameter list. 1244/// 1245/// \returns true if an error occurred, false otherwise. 1246bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1247 TemplateParameterList *OldParams, 1248 TemplateParamListContext TPC) { 1249 bool Invalid = false; 1250 1251 // C++ [temp.param]p10: 1252 // The set of default template-arguments available for use with a 1253 // template declaration or definition is obtained by merging the 1254 // default arguments from the definition (if in scope) and all 1255 // declarations in scope in the same way default function 1256 // arguments are (8.3.6). 1257 bool SawDefaultArgument = false; 1258 SourceLocation PreviousDefaultArgLoc; 1259 1260 // Dummy initialization to avoid warnings. 1261 TemplateParameterList::iterator OldParam = NewParams->end(); 1262 if (OldParams) 1263 OldParam = OldParams->begin(); 1264 1265 bool RemoveDefaultArguments = false; 1266 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1267 NewParamEnd = NewParams->end(); 1268 NewParam != NewParamEnd; ++NewParam) { 1269 // Variables used to diagnose redundant default arguments 1270 bool RedundantDefaultArg = false; 1271 SourceLocation OldDefaultLoc; 1272 SourceLocation NewDefaultLoc; 1273 1274 // Variable used to diagnose missing default arguments 1275 bool MissingDefaultArg = false; 1276 1277 // Variable used to diagnose non-final parameter packs 1278 bool SawParameterPack = false; 1279 1280 if (TemplateTypeParmDecl *NewTypeParm 1281 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1282 // Check the presence of a default argument here. 1283 if (NewTypeParm->hasDefaultArgument() && 1284 DiagnoseDefaultTemplateArgument(*this, TPC, 1285 NewTypeParm->getLocation(), 1286 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1287 .getSourceRange())) 1288 NewTypeParm->removeDefaultArgument(); 1289 1290 // Merge default arguments for template type parameters. 1291 TemplateTypeParmDecl *OldTypeParm 1292 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1293 1294 if (NewTypeParm->isParameterPack()) { 1295 assert(!NewTypeParm->hasDefaultArgument() && 1296 "Parameter packs can't have a default argument!"); 1297 SawParameterPack = true; 1298 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1299 NewTypeParm->hasDefaultArgument()) { 1300 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1301 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1302 SawDefaultArgument = true; 1303 RedundantDefaultArg = true; 1304 PreviousDefaultArgLoc = NewDefaultLoc; 1305 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1306 // Merge the default argument from the old declaration to the 1307 // new declaration. 1308 SawDefaultArgument = true; 1309 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1310 true); 1311 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1312 } else if (NewTypeParm->hasDefaultArgument()) { 1313 SawDefaultArgument = true; 1314 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1315 } else if (SawDefaultArgument) 1316 MissingDefaultArg = true; 1317 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1318 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1319 // Check for unexpanded parameter packs. 1320 if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1321 NewNonTypeParm->getTypeSourceInfo(), 1322 UPPC_NonTypeTemplateParameterType)) { 1323 Invalid = true; 1324 continue; 1325 } 1326 1327 // Check the presence of a default argument here. 1328 if (NewNonTypeParm->hasDefaultArgument() && 1329 DiagnoseDefaultTemplateArgument(*this, TPC, 1330 NewNonTypeParm->getLocation(), 1331 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1332 NewNonTypeParm->removeDefaultArgument(); 1333 } 1334 1335 // Merge default arguments for non-type template parameters 1336 NonTypeTemplateParmDecl *OldNonTypeParm 1337 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1338 if (NewNonTypeParm->isParameterPack()) { 1339 assert(!NewNonTypeParm->hasDefaultArgument() && 1340 "Parameter packs can't have a default argument!"); 1341 SawParameterPack = true; 1342 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1343 NewNonTypeParm->hasDefaultArgument()) { 1344 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1345 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1346 SawDefaultArgument = true; 1347 RedundantDefaultArg = true; 1348 PreviousDefaultArgLoc = NewDefaultLoc; 1349 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1350 // Merge the default argument from the old declaration to the 1351 // new declaration. 1352 SawDefaultArgument = true; 1353 // FIXME: We need to create a new kind of "default argument" 1354 // expression that points to a previous non-type template 1355 // parameter. 1356 NewNonTypeParm->setDefaultArgument( 1357 OldNonTypeParm->getDefaultArgument(), 1358 /*Inherited=*/ true); 1359 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1360 } else if (NewNonTypeParm->hasDefaultArgument()) { 1361 SawDefaultArgument = true; 1362 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1363 } else if (SawDefaultArgument) 1364 MissingDefaultArg = true; 1365 } else { 1366 TemplateTemplateParmDecl *NewTemplateParm 1367 = cast<TemplateTemplateParmDecl>(*NewParam); 1368 1369 // Check for unexpanded parameter packs, recursively. 1370 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1371 Invalid = true; 1372 continue; 1373 } 1374 1375 // Check the presence of a default argument here. 1376 if (NewTemplateParm->hasDefaultArgument() && 1377 DiagnoseDefaultTemplateArgument(*this, TPC, 1378 NewTemplateParm->getLocation(), 1379 NewTemplateParm->getDefaultArgument().getSourceRange())) 1380 NewTemplateParm->removeDefaultArgument(); 1381 1382 // Merge default arguments for template template parameters 1383 TemplateTemplateParmDecl *OldTemplateParm 1384 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1385 if (NewTemplateParm->isParameterPack()) { 1386 assert(!NewTemplateParm->hasDefaultArgument() && 1387 "Parameter packs can't have a default argument!"); 1388 SawParameterPack = true; 1389 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1390 NewTemplateParm->hasDefaultArgument()) { 1391 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1392 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1393 SawDefaultArgument = true; 1394 RedundantDefaultArg = true; 1395 PreviousDefaultArgLoc = NewDefaultLoc; 1396 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1397 // Merge the default argument from the old declaration to the 1398 // new declaration. 1399 SawDefaultArgument = true; 1400 // FIXME: We need to create a new kind of "default argument" expression 1401 // that points to a previous template template parameter. 1402 NewTemplateParm->setDefaultArgument( 1403 OldTemplateParm->getDefaultArgument(), 1404 /*Inherited=*/ true); 1405 PreviousDefaultArgLoc 1406 = OldTemplateParm->getDefaultArgument().getLocation(); 1407 } else if (NewTemplateParm->hasDefaultArgument()) { 1408 SawDefaultArgument = true; 1409 PreviousDefaultArgLoc 1410 = NewTemplateParm->getDefaultArgument().getLocation(); 1411 } else if (SawDefaultArgument) 1412 MissingDefaultArg = true; 1413 } 1414 1415 // C++0x [temp.param]p11: 1416 // If a template parameter of a primary class template or alias template 1417 // is a template parameter pack, it shall be the last template parameter. 1418 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1419 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1420 Diag((*NewParam)->getLocation(), 1421 diag::err_template_param_pack_must_be_last_template_parameter); 1422 Invalid = true; 1423 } 1424 1425 if (RedundantDefaultArg) { 1426 // C++ [temp.param]p12: 1427 // A template-parameter shall not be given default arguments 1428 // by two different declarations in the same scope. 1429 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1430 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1431 Invalid = true; 1432 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1433 // C++ [temp.param]p11: 1434 // If a template-parameter of a class template has a default 1435 // template-argument, each subsequent template-parameter shall either 1436 // have a default template-argument supplied or be a template parameter 1437 // pack. 1438 Diag((*NewParam)->getLocation(), 1439 diag::err_template_param_default_arg_missing); 1440 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1441 Invalid = true; 1442 RemoveDefaultArguments = true; 1443 } 1444 1445 // If we have an old template parameter list that we're merging 1446 // in, move on to the next parameter. 1447 if (OldParams) 1448 ++OldParam; 1449 } 1450 1451 // We were missing some default arguments at the end of the list, so remove 1452 // all of the default arguments. 1453 if (RemoveDefaultArguments) { 1454 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1455 NewParamEnd = NewParams->end(); 1456 NewParam != NewParamEnd; ++NewParam) { 1457 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1458 TTP->removeDefaultArgument(); 1459 else if (NonTypeTemplateParmDecl *NTTP 1460 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1461 NTTP->removeDefaultArgument(); 1462 else 1463 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1464 } 1465 } 1466 1467 return Invalid; 1468} 1469 1470namespace { 1471 1472/// A class which looks for a use of a certain level of template 1473/// parameter. 1474struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1475 typedef RecursiveASTVisitor<DependencyChecker> super; 1476 1477 unsigned Depth; 1478 bool Match; 1479 1480 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1481 NamedDecl *ND = Params->getParam(0); 1482 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1483 Depth = PD->getDepth(); 1484 } else if (NonTypeTemplateParmDecl *PD = 1485 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1486 Depth = PD->getDepth(); 1487 } else { 1488 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1489 } 1490 } 1491 1492 bool Matches(unsigned ParmDepth) { 1493 if (ParmDepth >= Depth) { 1494 Match = true; 1495 return true; 1496 } 1497 return false; 1498 } 1499 1500 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1501 return !Matches(T->getDepth()); 1502 } 1503 1504 bool TraverseTemplateName(TemplateName N) { 1505 if (TemplateTemplateParmDecl *PD = 1506 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1507 if (Matches(PD->getDepth())) return false; 1508 return super::TraverseTemplateName(N); 1509 } 1510 1511 bool VisitDeclRefExpr(DeclRefExpr *E) { 1512 if (NonTypeTemplateParmDecl *PD = 1513 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1514 if (PD->getDepth() == Depth) { 1515 Match = true; 1516 return false; 1517 } 1518 } 1519 return super::VisitDeclRefExpr(E); 1520 } 1521 1522 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1523 return TraverseType(T->getInjectedSpecializationType()); 1524 } 1525}; 1526} 1527 1528/// Determines whether a given type depends on the given parameter 1529/// list. 1530static bool 1531DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1532 DependencyChecker Checker(Params); 1533 Checker.TraverseType(T); 1534 return Checker.Match; 1535} 1536 1537// Find the source range corresponding to the named type in the given 1538// nested-name-specifier, if any. 1539static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1540 QualType T, 1541 const CXXScopeSpec &SS) { 1542 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1543 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1544 if (const Type *CurType = NNS->getAsType()) { 1545 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1546 return NNSLoc.getTypeLoc().getSourceRange(); 1547 } else 1548 break; 1549 1550 NNSLoc = NNSLoc.getPrefix(); 1551 } 1552 1553 return SourceRange(); 1554} 1555 1556/// \brief Match the given template parameter lists to the given scope 1557/// specifier, returning the template parameter list that applies to the 1558/// name. 1559/// 1560/// \param DeclStartLoc the start of the declaration that has a scope 1561/// specifier or a template parameter list. 1562/// 1563/// \param DeclLoc The location of the declaration itself. 1564/// 1565/// \param SS the scope specifier that will be matched to the given template 1566/// parameter lists. This scope specifier precedes a qualified name that is 1567/// being declared. 1568/// 1569/// \param ParamLists the template parameter lists, from the outermost to the 1570/// innermost template parameter lists. 1571/// 1572/// \param NumParamLists the number of template parameter lists in ParamLists. 1573/// 1574/// \param IsFriend Whether to apply the slightly different rules for 1575/// matching template parameters to scope specifiers in friend 1576/// declarations. 1577/// 1578/// \param IsExplicitSpecialization will be set true if the entity being 1579/// declared is an explicit specialization, false otherwise. 1580/// 1581/// \returns the template parameter list, if any, that corresponds to the 1582/// name that is preceded by the scope specifier @p SS. This template 1583/// parameter list may have template parameters (if we're declaring a 1584/// template) or may have no template parameters (if we're declaring a 1585/// template specialization), or may be NULL (if what we're declaring isn't 1586/// itself a template). 1587TemplateParameterList * 1588Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1589 SourceLocation DeclLoc, 1590 const CXXScopeSpec &SS, 1591 TemplateParameterList **ParamLists, 1592 unsigned NumParamLists, 1593 bool IsFriend, 1594 bool &IsExplicitSpecialization, 1595 bool &Invalid) { 1596 IsExplicitSpecialization = false; 1597 Invalid = false; 1598 1599 // The sequence of nested types to which we will match up the template 1600 // parameter lists. We first build this list by starting with the type named 1601 // by the nested-name-specifier and walking out until we run out of types. 1602 SmallVector<QualType, 4> NestedTypes; 1603 QualType T; 1604 if (SS.getScopeRep()) { 1605 if (CXXRecordDecl *Record 1606 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1607 T = Context.getTypeDeclType(Record); 1608 else 1609 T = QualType(SS.getScopeRep()->getAsType(), 0); 1610 } 1611 1612 // If we found an explicit specialization that prevents us from needing 1613 // 'template<>' headers, this will be set to the location of that 1614 // explicit specialization. 1615 SourceLocation ExplicitSpecLoc; 1616 1617 while (!T.isNull()) { 1618 NestedTypes.push_back(T); 1619 1620 // Retrieve the parent of a record type. 1621 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1622 // If this type is an explicit specialization, we're done. 1623 if (ClassTemplateSpecializationDecl *Spec 1624 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1625 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1626 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1627 ExplicitSpecLoc = Spec->getLocation(); 1628 break; 1629 } 1630 } else if (Record->getTemplateSpecializationKind() 1631 == TSK_ExplicitSpecialization) { 1632 ExplicitSpecLoc = Record->getLocation(); 1633 break; 1634 } 1635 1636 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1637 T = Context.getTypeDeclType(Parent); 1638 else 1639 T = QualType(); 1640 continue; 1641 } 1642 1643 if (const TemplateSpecializationType *TST 1644 = T->getAs<TemplateSpecializationType>()) { 1645 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1646 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1647 T = Context.getTypeDeclType(Parent); 1648 else 1649 T = QualType(); 1650 continue; 1651 } 1652 } 1653 1654 // Look one step prior in a dependent template specialization type. 1655 if (const DependentTemplateSpecializationType *DependentTST 1656 = T->getAs<DependentTemplateSpecializationType>()) { 1657 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1658 T = QualType(NNS->getAsType(), 0); 1659 else 1660 T = QualType(); 1661 continue; 1662 } 1663 1664 // Look one step prior in a dependent name type. 1665 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1666 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1667 T = QualType(NNS->getAsType(), 0); 1668 else 1669 T = QualType(); 1670 continue; 1671 } 1672 1673 // Retrieve the parent of an enumeration type. 1674 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1675 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1676 // check here. 1677 EnumDecl *Enum = EnumT->getDecl(); 1678 1679 // Get to the parent type. 1680 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1681 T = Context.getTypeDeclType(Parent); 1682 else 1683 T = QualType(); 1684 continue; 1685 } 1686 1687 T = QualType(); 1688 } 1689 // Reverse the nested types list, since we want to traverse from the outermost 1690 // to the innermost while checking template-parameter-lists. 1691 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1692 1693 // C++0x [temp.expl.spec]p17: 1694 // A member or a member template may be nested within many 1695 // enclosing class templates. In an explicit specialization for 1696 // such a member, the member declaration shall be preceded by a 1697 // template<> for each enclosing class template that is 1698 // explicitly specialized. 1699 bool SawNonEmptyTemplateParameterList = false; 1700 unsigned ParamIdx = 0; 1701 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1702 ++TypeIdx) { 1703 T = NestedTypes[TypeIdx]; 1704 1705 // Whether we expect a 'template<>' header. 1706 bool NeedEmptyTemplateHeader = false; 1707 1708 // Whether we expect a template header with parameters. 1709 bool NeedNonemptyTemplateHeader = false; 1710 1711 // For a dependent type, the set of template parameters that we 1712 // expect to see. 1713 TemplateParameterList *ExpectedTemplateParams = 0; 1714 1715 // C++0x [temp.expl.spec]p15: 1716 // A member or a member template may be nested within many enclosing 1717 // class templates. In an explicit specialization for such a member, the 1718 // member declaration shall be preceded by a template<> for each 1719 // enclosing class template that is explicitly specialized. 1720 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1721 if (ClassTemplatePartialSpecializationDecl *Partial 1722 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1723 ExpectedTemplateParams = Partial->getTemplateParameters(); 1724 NeedNonemptyTemplateHeader = true; 1725 } else if (Record->isDependentType()) { 1726 if (Record->getDescribedClassTemplate()) { 1727 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1728 ->getTemplateParameters(); 1729 NeedNonemptyTemplateHeader = true; 1730 } 1731 } else if (ClassTemplateSpecializationDecl *Spec 1732 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1733 // C++0x [temp.expl.spec]p4: 1734 // Members of an explicitly specialized class template are defined 1735 // in the same manner as members of normal classes, and not using 1736 // the template<> syntax. 1737 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1738 NeedEmptyTemplateHeader = true; 1739 else 1740 continue; 1741 } else if (Record->getTemplateSpecializationKind()) { 1742 if (Record->getTemplateSpecializationKind() 1743 != TSK_ExplicitSpecialization && 1744 TypeIdx == NumTypes - 1) 1745 IsExplicitSpecialization = true; 1746 1747 continue; 1748 } 1749 } else if (const TemplateSpecializationType *TST 1750 = T->getAs<TemplateSpecializationType>()) { 1751 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1752 ExpectedTemplateParams = Template->getTemplateParameters(); 1753 NeedNonemptyTemplateHeader = true; 1754 } 1755 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1756 // FIXME: We actually could/should check the template arguments here 1757 // against the corresponding template parameter list. 1758 NeedNonemptyTemplateHeader = false; 1759 } 1760 1761 // C++ [temp.expl.spec]p16: 1762 // In an explicit specialization declaration for a member of a class 1763 // template or a member template that ap- pears in namespace scope, the 1764 // member template and some of its enclosing class templates may remain 1765 // unspecialized, except that the declaration shall not explicitly 1766 // specialize a class member template if its en- closing class templates 1767 // are not explicitly specialized as well. 1768 if (ParamIdx < NumParamLists) { 1769 if (ParamLists[ParamIdx]->size() == 0) { 1770 if (SawNonEmptyTemplateParameterList) { 1771 Diag(DeclLoc, diag::err_specialize_member_of_template) 1772 << ParamLists[ParamIdx]->getSourceRange(); 1773 Invalid = true; 1774 IsExplicitSpecialization = false; 1775 return 0; 1776 } 1777 } else 1778 SawNonEmptyTemplateParameterList = true; 1779 } 1780 1781 if (NeedEmptyTemplateHeader) { 1782 // If we're on the last of the types, and we need a 'template<>' header 1783 // here, then it's an explicit specialization. 1784 if (TypeIdx == NumTypes - 1) 1785 IsExplicitSpecialization = true; 1786 1787 if (ParamIdx < NumParamLists) { 1788 if (ParamLists[ParamIdx]->size() > 0) { 1789 // The header has template parameters when it shouldn't. Complain. 1790 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1791 diag::err_template_param_list_matches_nontemplate) 1792 << T 1793 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1794 ParamLists[ParamIdx]->getRAngleLoc()) 1795 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1796 Invalid = true; 1797 return 0; 1798 } 1799 1800 // Consume this template header. 1801 ++ParamIdx; 1802 continue; 1803 } 1804 1805 if (!IsFriend) { 1806 // We don't have a template header, but we should. 1807 SourceLocation ExpectedTemplateLoc; 1808 if (NumParamLists > 0) 1809 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1810 else 1811 ExpectedTemplateLoc = DeclStartLoc; 1812 1813 Diag(DeclLoc, diag::err_template_spec_needs_header) 1814 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1815 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1816 } 1817 1818 continue; 1819 } 1820 1821 if (NeedNonemptyTemplateHeader) { 1822 // In friend declarations we can have template-ids which don't 1823 // depend on the corresponding template parameter lists. But 1824 // assume that empty parameter lists are supposed to match this 1825 // template-id. 1826 if (IsFriend && T->isDependentType()) { 1827 if (ParamIdx < NumParamLists && 1828 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1829 ExpectedTemplateParams = 0; 1830 else 1831 continue; 1832 } 1833 1834 if (ParamIdx < NumParamLists) { 1835 // Check the template parameter list, if we can. 1836 if (ExpectedTemplateParams && 1837 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1838 ExpectedTemplateParams, 1839 true, TPL_TemplateMatch)) 1840 Invalid = true; 1841 1842 if (!Invalid && 1843 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1844 TPC_ClassTemplateMember)) 1845 Invalid = true; 1846 1847 ++ParamIdx; 1848 continue; 1849 } 1850 1851 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1852 << T 1853 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1854 Invalid = true; 1855 continue; 1856 } 1857 } 1858 1859 // If there were at least as many template-ids as there were template 1860 // parameter lists, then there are no template parameter lists remaining for 1861 // the declaration itself. 1862 if (ParamIdx >= NumParamLists) 1863 return 0; 1864 1865 // If there were too many template parameter lists, complain about that now. 1866 if (ParamIdx < NumParamLists - 1) { 1867 bool HasAnyExplicitSpecHeader = false; 1868 bool AllExplicitSpecHeaders = true; 1869 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1870 if (ParamLists[I]->size() == 0) 1871 HasAnyExplicitSpecHeader = true; 1872 else 1873 AllExplicitSpecHeaders = false; 1874 } 1875 1876 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1877 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1878 : diag::err_template_spec_extra_headers) 1879 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1880 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1881 1882 // If there was a specialization somewhere, such that 'template<>' is 1883 // not required, and there were any 'template<>' headers, note where the 1884 // specialization occurred. 1885 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1886 Diag(ExplicitSpecLoc, 1887 diag::note_explicit_template_spec_does_not_need_header) 1888 << NestedTypes.back(); 1889 1890 // We have a template parameter list with no corresponding scope, which 1891 // means that the resulting template declaration can't be instantiated 1892 // properly (we'll end up with dependent nodes when we shouldn't). 1893 if (!AllExplicitSpecHeaders) 1894 Invalid = true; 1895 } 1896 1897 // C++ [temp.expl.spec]p16: 1898 // In an explicit specialization declaration for a member of a class 1899 // template or a member template that ap- pears in namespace scope, the 1900 // member template and some of its enclosing class templates may remain 1901 // unspecialized, except that the declaration shall not explicitly 1902 // specialize a class member template if its en- closing class templates 1903 // are not explicitly specialized as well. 1904 if (ParamLists[NumParamLists - 1]->size() == 0 && 1905 SawNonEmptyTemplateParameterList) { 1906 Diag(DeclLoc, diag::err_specialize_member_of_template) 1907 << ParamLists[ParamIdx]->getSourceRange(); 1908 Invalid = true; 1909 IsExplicitSpecialization = false; 1910 return 0; 1911 } 1912 1913 // Return the last template parameter list, which corresponds to the 1914 // entity being declared. 1915 return ParamLists[NumParamLists - 1]; 1916} 1917 1918void Sema::NoteAllFoundTemplates(TemplateName Name) { 1919 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1920 Diag(Template->getLocation(), diag::note_template_declared_here) 1921 << (isa<FunctionTemplateDecl>(Template)? 0 1922 : isa<ClassTemplateDecl>(Template)? 1 1923 : isa<TypeAliasTemplateDecl>(Template)? 2 1924 : 3) 1925 << Template->getDeclName(); 1926 return; 1927 } 1928 1929 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1930 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1931 IEnd = OST->end(); 1932 I != IEnd; ++I) 1933 Diag((*I)->getLocation(), diag::note_template_declared_here) 1934 << 0 << (*I)->getDeclName(); 1935 1936 return; 1937 } 1938} 1939 1940QualType Sema::CheckTemplateIdType(TemplateName Name, 1941 SourceLocation TemplateLoc, 1942 TemplateArgumentListInfo &TemplateArgs) { 1943 DependentTemplateName *DTN 1944 = Name.getUnderlying().getAsDependentTemplateName(); 1945 if (DTN && DTN->isIdentifier()) 1946 // When building a template-id where the template-name is dependent, 1947 // assume the template is a type template. Either our assumption is 1948 // correct, or the code is ill-formed and will be diagnosed when the 1949 // dependent name is substituted. 1950 return Context.getDependentTemplateSpecializationType(ETK_None, 1951 DTN->getQualifier(), 1952 DTN->getIdentifier(), 1953 TemplateArgs); 1954 1955 TemplateDecl *Template = Name.getAsTemplateDecl(); 1956 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1957 // We might have a substituted template template parameter pack. If so, 1958 // build a template specialization type for it. 1959 if (Name.getAsSubstTemplateTemplateParmPack()) 1960 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1961 1962 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1963 << Name; 1964 NoteAllFoundTemplates(Name); 1965 return QualType(); 1966 } 1967 1968 // Check that the template argument list is well-formed for this 1969 // template. 1970 SmallVector<TemplateArgument, 4> Converted; 1971 bool ExpansionIntoFixedList = false; 1972 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1973 false, Converted, &ExpansionIntoFixedList)) 1974 return QualType(); 1975 1976 QualType CanonType; 1977 1978 bool InstantiationDependent = false; 1979 TypeAliasTemplateDecl *AliasTemplate = 0; 1980 if (!ExpansionIntoFixedList && 1981 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1982 // Find the canonical type for this type alias template specialization. 1983 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1984 if (Pattern->isInvalidDecl()) 1985 return QualType(); 1986 1987 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 1988 Converted.data(), Converted.size()); 1989 1990 // Only substitute for the innermost template argument list. 1991 MultiLevelTemplateArgumentList TemplateArgLists; 1992 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 1993 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 1994 for (unsigned I = 0; I < Depth; ++I) 1995 TemplateArgLists.addOuterTemplateArguments(0, 0); 1996 1997 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 1998 if (Inst) 1999 return QualType(); 2000 CanonType = SubstType(Pattern->getUnderlyingType(), 2001 TemplateArgLists, AliasTemplate->getLocation(), 2002 AliasTemplate->getDeclName()); 2003 if (CanonType.isNull()) 2004 return QualType(); 2005 } else if (Name.isDependent() || 2006 TemplateSpecializationType::anyDependentTemplateArguments( 2007 TemplateArgs, InstantiationDependent)) { 2008 // This class template specialization is a dependent 2009 // type. Therefore, its canonical type is another class template 2010 // specialization type that contains all of the converted 2011 // arguments in canonical form. This ensures that, e.g., A<T> and 2012 // A<T, T> have identical types when A is declared as: 2013 // 2014 // template<typename T, typename U = T> struct A; 2015 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2016 CanonType = Context.getTemplateSpecializationType(CanonName, 2017 Converted.data(), 2018 Converted.size()); 2019 2020 // FIXME: CanonType is not actually the canonical type, and unfortunately 2021 // it is a TemplateSpecializationType that we will never use again. 2022 // In the future, we need to teach getTemplateSpecializationType to only 2023 // build the canonical type and return that to us. 2024 CanonType = Context.getCanonicalType(CanonType); 2025 2026 // This might work out to be a current instantiation, in which 2027 // case the canonical type needs to be the InjectedClassNameType. 2028 // 2029 // TODO: in theory this could be a simple hashtable lookup; most 2030 // changes to CurContext don't change the set of current 2031 // instantiations. 2032 if (isa<ClassTemplateDecl>(Template)) { 2033 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2034 // If we get out to a namespace, we're done. 2035 if (Ctx->isFileContext()) break; 2036 2037 // If this isn't a record, keep looking. 2038 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2039 if (!Record) continue; 2040 2041 // Look for one of the two cases with InjectedClassNameTypes 2042 // and check whether it's the same template. 2043 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2044 !Record->getDescribedClassTemplate()) 2045 continue; 2046 2047 // Fetch the injected class name type and check whether its 2048 // injected type is equal to the type we just built. 2049 QualType ICNT = Context.getTypeDeclType(Record); 2050 QualType Injected = cast<InjectedClassNameType>(ICNT) 2051 ->getInjectedSpecializationType(); 2052 2053 if (CanonType != Injected->getCanonicalTypeInternal()) 2054 continue; 2055 2056 // If so, the canonical type of this TST is the injected 2057 // class name type of the record we just found. 2058 assert(ICNT.isCanonical()); 2059 CanonType = ICNT; 2060 break; 2061 } 2062 } 2063 } else if (ClassTemplateDecl *ClassTemplate 2064 = dyn_cast<ClassTemplateDecl>(Template)) { 2065 // Find the class template specialization declaration that 2066 // corresponds to these arguments. 2067 void *InsertPos = 0; 2068 ClassTemplateSpecializationDecl *Decl 2069 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2070 InsertPos); 2071 if (!Decl) { 2072 // This is the first time we have referenced this class template 2073 // specialization. Create the canonical declaration and add it to 2074 // the set of specializations. 2075 Decl = ClassTemplateSpecializationDecl::Create(Context, 2076 ClassTemplate->getTemplatedDecl()->getTagKind(), 2077 ClassTemplate->getDeclContext(), 2078 ClassTemplate->getTemplatedDecl()->getLocStart(), 2079 ClassTemplate->getLocation(), 2080 ClassTemplate, 2081 Converted.data(), 2082 Converted.size(), 0); 2083 ClassTemplate->AddSpecialization(Decl, InsertPos); 2084 Decl->setLexicalDeclContext(CurContext); 2085 } 2086 2087 CanonType = Context.getTypeDeclType(Decl); 2088 assert(isa<RecordType>(CanonType) && 2089 "type of non-dependent specialization is not a RecordType"); 2090 } 2091 2092 // Build the fully-sugared type for this class template 2093 // specialization, which refers back to the class template 2094 // specialization we created or found. 2095 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2096} 2097 2098TypeResult 2099Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2100 TemplateTy TemplateD, SourceLocation TemplateLoc, 2101 SourceLocation LAngleLoc, 2102 ASTTemplateArgsPtr TemplateArgsIn, 2103 SourceLocation RAngleLoc, 2104 bool IsCtorOrDtorName) { 2105 if (SS.isInvalid()) 2106 return true; 2107 2108 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2109 2110 // Translate the parser's template argument list in our AST format. 2111 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2112 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2113 2114 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2115 QualType T 2116 = Context.getDependentTemplateSpecializationType(ETK_None, 2117 DTN->getQualifier(), 2118 DTN->getIdentifier(), 2119 TemplateArgs); 2120 // Build type-source information. 2121 TypeLocBuilder TLB; 2122 DependentTemplateSpecializationTypeLoc SpecTL 2123 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2124 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2125 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2126 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2127 SpecTL.setTemplateNameLoc(TemplateLoc); 2128 SpecTL.setLAngleLoc(LAngleLoc); 2129 SpecTL.setRAngleLoc(RAngleLoc); 2130 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2131 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2132 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2133 } 2134 2135 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2136 TemplateArgsIn.release(); 2137 2138 if (Result.isNull()) 2139 return true; 2140 2141 // Build type-source information. 2142 TypeLocBuilder TLB; 2143 TemplateSpecializationTypeLoc SpecTL 2144 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2145 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2146 SpecTL.setTemplateNameLoc(TemplateLoc); 2147 SpecTL.setLAngleLoc(LAngleLoc); 2148 SpecTL.setRAngleLoc(RAngleLoc); 2149 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2150 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2151 2152 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2153 // constructor or destructor name (in such a case, the scope specifier 2154 // will be attached to the enclosing Decl or Expr node). 2155 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2156 // Create an elaborated-type-specifier containing the nested-name-specifier. 2157 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2158 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2159 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2160 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2161 } 2162 2163 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2164} 2165 2166TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2167 TypeSpecifierType TagSpec, 2168 SourceLocation TagLoc, 2169 CXXScopeSpec &SS, 2170 SourceLocation TemplateKWLoc, 2171 TemplateTy TemplateD, 2172 SourceLocation TemplateLoc, 2173 SourceLocation LAngleLoc, 2174 ASTTemplateArgsPtr TemplateArgsIn, 2175 SourceLocation RAngleLoc) { 2176 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2177 2178 // Translate the parser's template argument list in our AST format. 2179 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2180 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2181 2182 // Determine the tag kind 2183 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2184 ElaboratedTypeKeyword Keyword 2185 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2186 2187 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2188 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2189 DTN->getQualifier(), 2190 DTN->getIdentifier(), 2191 TemplateArgs); 2192 2193 // Build type-source information. 2194 TypeLocBuilder TLB; 2195 DependentTemplateSpecializationTypeLoc SpecTL 2196 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2197 SpecTL.setElaboratedKeywordLoc(TagLoc); 2198 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2199 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2200 SpecTL.setTemplateNameLoc(TemplateLoc); 2201 SpecTL.setLAngleLoc(LAngleLoc); 2202 SpecTL.setRAngleLoc(RAngleLoc); 2203 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2204 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2205 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2206 } 2207 2208 if (TypeAliasTemplateDecl *TAT = 2209 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2210 // C++0x [dcl.type.elab]p2: 2211 // If the identifier resolves to a typedef-name or the simple-template-id 2212 // resolves to an alias template specialization, the 2213 // elaborated-type-specifier is ill-formed. 2214 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2215 Diag(TAT->getLocation(), diag::note_declared_at); 2216 } 2217 2218 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2219 if (Result.isNull()) 2220 return TypeResult(true); 2221 2222 // Check the tag kind 2223 if (const RecordType *RT = Result->getAs<RecordType>()) { 2224 RecordDecl *D = RT->getDecl(); 2225 2226 IdentifierInfo *Id = D->getIdentifier(); 2227 assert(Id && "templated class must have an identifier"); 2228 2229 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2230 TagLoc, *Id)) { 2231 Diag(TagLoc, diag::err_use_with_wrong_tag) 2232 << Result 2233 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2234 Diag(D->getLocation(), diag::note_previous_use); 2235 } 2236 } 2237 2238 // Provide source-location information for the template specialization. 2239 TypeLocBuilder TLB; 2240 TemplateSpecializationTypeLoc SpecTL 2241 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2242 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2243 SpecTL.setTemplateNameLoc(TemplateLoc); 2244 SpecTL.setLAngleLoc(LAngleLoc); 2245 SpecTL.setRAngleLoc(RAngleLoc); 2246 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2247 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2248 2249 // Construct an elaborated type containing the nested-name-specifier (if any) 2250 // and tag keyword. 2251 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2252 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2253 ElabTL.setElaboratedKeywordLoc(TagLoc); 2254 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2255 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2256} 2257 2258ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2259 SourceLocation TemplateKWLoc, 2260 LookupResult &R, 2261 bool RequiresADL, 2262 const TemplateArgumentListInfo *TemplateArgs) { 2263 // FIXME: Can we do any checking at this point? I guess we could check the 2264 // template arguments that we have against the template name, if the template 2265 // name refers to a single template. That's not a terribly common case, 2266 // though. 2267 // foo<int> could identify a single function unambiguously 2268 // This approach does NOT work, since f<int>(1); 2269 // gets resolved prior to resorting to overload resolution 2270 // i.e., template<class T> void f(double); 2271 // vs template<class T, class U> void f(U); 2272 2273 // These should be filtered out by our callers. 2274 assert(!R.empty() && "empty lookup results when building templateid"); 2275 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2276 2277 // We don't want lookup warnings at this point. 2278 R.suppressDiagnostics(); 2279 2280 UnresolvedLookupExpr *ULE 2281 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2282 SS.getWithLocInContext(Context), 2283 TemplateKWLoc, 2284 R.getLookupNameInfo(), 2285 RequiresADL, TemplateArgs, 2286 R.begin(), R.end()); 2287 2288 return Owned(ULE); 2289} 2290 2291// We actually only call this from template instantiation. 2292ExprResult 2293Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2294 SourceLocation TemplateKWLoc, 2295 const DeclarationNameInfo &NameInfo, 2296 const TemplateArgumentListInfo *TemplateArgs) { 2297 assert(TemplateArgs || TemplateKWLoc.isValid()); 2298 DeclContext *DC; 2299 if (!(DC = computeDeclContext(SS, false)) || 2300 DC->isDependentContext() || 2301 RequireCompleteDeclContext(SS, DC)) 2302 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2303 2304 bool MemberOfUnknownSpecialization; 2305 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2306 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2307 MemberOfUnknownSpecialization); 2308 2309 if (R.isAmbiguous()) 2310 return ExprError(); 2311 2312 if (R.empty()) { 2313 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2314 << NameInfo.getName() << SS.getRange(); 2315 return ExprError(); 2316 } 2317 2318 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2319 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2320 << (NestedNameSpecifier*) SS.getScopeRep() 2321 << NameInfo.getName() << SS.getRange(); 2322 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2323 return ExprError(); 2324 } 2325 2326 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2327} 2328 2329/// \brief Form a dependent template name. 2330/// 2331/// This action forms a dependent template name given the template 2332/// name and its (presumably dependent) scope specifier. For 2333/// example, given "MetaFun::template apply", the scope specifier \p 2334/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2335/// of the "template" keyword, and "apply" is the \p Name. 2336TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2337 CXXScopeSpec &SS, 2338 SourceLocation TemplateKWLoc, 2339 UnqualifiedId &Name, 2340 ParsedType ObjectType, 2341 bool EnteringContext, 2342 TemplateTy &Result) { 2343 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2344 Diag(TemplateKWLoc, 2345 getLangOpts().CPlusPlus0x ? 2346 diag::warn_cxx98_compat_template_outside_of_template : 2347 diag::ext_template_outside_of_template) 2348 << FixItHint::CreateRemoval(TemplateKWLoc); 2349 2350 DeclContext *LookupCtx = 0; 2351 if (SS.isSet()) 2352 LookupCtx = computeDeclContext(SS, EnteringContext); 2353 if (!LookupCtx && ObjectType) 2354 LookupCtx = computeDeclContext(ObjectType.get()); 2355 if (LookupCtx) { 2356 // C++0x [temp.names]p5: 2357 // If a name prefixed by the keyword template is not the name of 2358 // a template, the program is ill-formed. [Note: the keyword 2359 // template may not be applied to non-template members of class 2360 // templates. -end note ] [ Note: as is the case with the 2361 // typename prefix, the template prefix is allowed in cases 2362 // where it is not strictly necessary; i.e., when the 2363 // nested-name-specifier or the expression on the left of the -> 2364 // or . is not dependent on a template-parameter, or the use 2365 // does not appear in the scope of a template. -end note] 2366 // 2367 // Note: C++03 was more strict here, because it banned the use of 2368 // the "template" keyword prior to a template-name that was not a 2369 // dependent name. C++ DR468 relaxed this requirement (the 2370 // "template" keyword is now permitted). We follow the C++0x 2371 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2372 bool MemberOfUnknownSpecialization; 2373 TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name, 2374 ObjectType, EnteringContext, Result, 2375 MemberOfUnknownSpecialization); 2376 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2377 isa<CXXRecordDecl>(LookupCtx) && 2378 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2379 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2380 // This is a dependent template. Handle it below. 2381 } else if (TNK == TNK_Non_template) { 2382 Diag(Name.getLocStart(), 2383 diag::err_template_kw_refers_to_non_template) 2384 << GetNameFromUnqualifiedId(Name).getName() 2385 << Name.getSourceRange() 2386 << TemplateKWLoc; 2387 return TNK_Non_template; 2388 } else { 2389 // We found something; return it. 2390 return TNK; 2391 } 2392 } 2393 2394 NestedNameSpecifier *Qualifier 2395 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2396 2397 switch (Name.getKind()) { 2398 case UnqualifiedId::IK_Identifier: 2399 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2400 Name.Identifier)); 2401 return TNK_Dependent_template_name; 2402 2403 case UnqualifiedId::IK_OperatorFunctionId: 2404 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2405 Name.OperatorFunctionId.Operator)); 2406 return TNK_Dependent_template_name; 2407 2408 case UnqualifiedId::IK_LiteralOperatorId: 2409 llvm_unreachable( 2410 "We don't support these; Parse shouldn't have allowed propagation"); 2411 2412 default: 2413 break; 2414 } 2415 2416 Diag(Name.getLocStart(), 2417 diag::err_template_kw_refers_to_non_template) 2418 << GetNameFromUnqualifiedId(Name).getName() 2419 << Name.getSourceRange() 2420 << TemplateKWLoc; 2421 return TNK_Non_template; 2422} 2423 2424bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2425 const TemplateArgumentLoc &AL, 2426 SmallVectorImpl<TemplateArgument> &Converted) { 2427 const TemplateArgument &Arg = AL.getArgument(); 2428 2429 // Check template type parameter. 2430 switch(Arg.getKind()) { 2431 case TemplateArgument::Type: 2432 // C++ [temp.arg.type]p1: 2433 // A template-argument for a template-parameter which is a 2434 // type shall be a type-id. 2435 break; 2436 case TemplateArgument::Template: { 2437 // We have a template type parameter but the template argument 2438 // is a template without any arguments. 2439 SourceRange SR = AL.getSourceRange(); 2440 TemplateName Name = Arg.getAsTemplate(); 2441 Diag(SR.getBegin(), diag::err_template_missing_args) 2442 << Name << SR; 2443 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2444 Diag(Decl->getLocation(), diag::note_template_decl_here); 2445 2446 return true; 2447 } 2448 case TemplateArgument::Expression: { 2449 // We have a template type parameter but the template argument is an 2450 // expression; see if maybe it is missing the "typename" keyword. 2451 CXXScopeSpec SS; 2452 DeclarationNameInfo NameInfo; 2453 2454 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 2455 SS.Adopt(ArgExpr->getQualifierLoc()); 2456 NameInfo = ArgExpr->getNameInfo(); 2457 } else if (DependentScopeDeclRefExpr *ArgExpr = 2458 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 2459 SS.Adopt(ArgExpr->getQualifierLoc()); 2460 NameInfo = ArgExpr->getNameInfo(); 2461 } else if (CXXDependentScopeMemberExpr *ArgExpr = 2462 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 2463 if (ArgExpr->isImplicitAccess()) { 2464 SS.Adopt(ArgExpr->getQualifierLoc()); 2465 NameInfo = ArgExpr->getMemberNameInfo(); 2466 } 2467 } 2468 2469 if (NameInfo.getName().isIdentifier()) { 2470 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 2471 LookupParsedName(Result, CurScope, &SS); 2472 2473 if (Result.getAsSingle<TypeDecl>() || 2474 Result.getResultKind() == 2475 LookupResult::NotFoundInCurrentInstantiation) { 2476 // FIXME: Add a FixIt and fix up the template argument for recovery. 2477 SourceLocation Loc = AL.getSourceRange().getBegin(); 2478 Diag(Loc, diag::err_template_arg_must_be_type_suggest); 2479 Diag(Param->getLocation(), diag::note_template_param_here); 2480 return true; 2481 } 2482 } 2483 // fallthrough 2484 } 2485 default: { 2486 // We have a template type parameter but the template argument 2487 // is not a type. 2488 SourceRange SR = AL.getSourceRange(); 2489 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2490 Diag(Param->getLocation(), diag::note_template_param_here); 2491 2492 return true; 2493 } 2494 } 2495 2496 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2497 return true; 2498 2499 // Add the converted template type argument. 2500 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2501 2502 // Objective-C ARC: 2503 // If an explicitly-specified template argument type is a lifetime type 2504 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2505 if (getLangOpts().ObjCAutoRefCount && 2506 ArgType->isObjCLifetimeType() && 2507 !ArgType.getObjCLifetime()) { 2508 Qualifiers Qs; 2509 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2510 ArgType = Context.getQualifiedType(ArgType, Qs); 2511 } 2512 2513 Converted.push_back(TemplateArgument(ArgType)); 2514 return false; 2515} 2516 2517/// \brief Substitute template arguments into the default template argument for 2518/// the given template type parameter. 2519/// 2520/// \param SemaRef the semantic analysis object for which we are performing 2521/// the substitution. 2522/// 2523/// \param Template the template that we are synthesizing template arguments 2524/// for. 2525/// 2526/// \param TemplateLoc the location of the template name that started the 2527/// template-id we are checking. 2528/// 2529/// \param RAngleLoc the location of the right angle bracket ('>') that 2530/// terminates the template-id. 2531/// 2532/// \param Param the template template parameter whose default we are 2533/// substituting into. 2534/// 2535/// \param Converted the list of template arguments provided for template 2536/// parameters that precede \p Param in the template parameter list. 2537/// \returns the substituted template argument, or NULL if an error occurred. 2538static TypeSourceInfo * 2539SubstDefaultTemplateArgument(Sema &SemaRef, 2540 TemplateDecl *Template, 2541 SourceLocation TemplateLoc, 2542 SourceLocation RAngleLoc, 2543 TemplateTypeParmDecl *Param, 2544 SmallVectorImpl<TemplateArgument> &Converted) { 2545 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2546 2547 // If the argument type is dependent, instantiate it now based 2548 // on the previously-computed template arguments. 2549 if (ArgType->getType()->isDependentType()) { 2550 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2551 Converted.data(), Converted.size()); 2552 2553 MultiLevelTemplateArgumentList AllTemplateArgs 2554 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2555 2556 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2557 Template, Converted, 2558 SourceRange(TemplateLoc, RAngleLoc)); 2559 if (Inst) 2560 return 0; 2561 2562 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2563 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2564 Param->getDefaultArgumentLoc(), 2565 Param->getDeclName()); 2566 } 2567 2568 return ArgType; 2569} 2570 2571/// \brief Substitute template arguments into the default template argument for 2572/// the given non-type template parameter. 2573/// 2574/// \param SemaRef the semantic analysis object for which we are performing 2575/// the substitution. 2576/// 2577/// \param Template the template that we are synthesizing template arguments 2578/// for. 2579/// 2580/// \param TemplateLoc the location of the template name that started the 2581/// template-id we are checking. 2582/// 2583/// \param RAngleLoc the location of the right angle bracket ('>') that 2584/// terminates the template-id. 2585/// 2586/// \param Param the non-type template parameter whose default we are 2587/// substituting into. 2588/// 2589/// \param Converted the list of template arguments provided for template 2590/// parameters that precede \p Param in the template parameter list. 2591/// 2592/// \returns the substituted template argument, or NULL if an error occurred. 2593static ExprResult 2594SubstDefaultTemplateArgument(Sema &SemaRef, 2595 TemplateDecl *Template, 2596 SourceLocation TemplateLoc, 2597 SourceLocation RAngleLoc, 2598 NonTypeTemplateParmDecl *Param, 2599 SmallVectorImpl<TemplateArgument> &Converted) { 2600 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2601 Converted.data(), Converted.size()); 2602 2603 MultiLevelTemplateArgumentList AllTemplateArgs 2604 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2605 2606 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2607 Template, Converted, 2608 SourceRange(TemplateLoc, RAngleLoc)); 2609 if (Inst) 2610 return ExprError(); 2611 2612 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2613 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 2614 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2615} 2616 2617/// \brief Substitute template arguments into the default template argument for 2618/// the given template template parameter. 2619/// 2620/// \param SemaRef the semantic analysis object for which we are performing 2621/// the substitution. 2622/// 2623/// \param Template the template that we are synthesizing template arguments 2624/// for. 2625/// 2626/// \param TemplateLoc the location of the template name that started the 2627/// template-id we are checking. 2628/// 2629/// \param RAngleLoc the location of the right angle bracket ('>') that 2630/// terminates the template-id. 2631/// 2632/// \param Param the template template parameter whose default we are 2633/// substituting into. 2634/// 2635/// \param Converted the list of template arguments provided for template 2636/// parameters that precede \p Param in the template parameter list. 2637/// 2638/// \param QualifierLoc Will be set to the nested-name-specifier (with 2639/// source-location information) that precedes the template name. 2640/// 2641/// \returns the substituted template argument, or NULL if an error occurred. 2642static TemplateName 2643SubstDefaultTemplateArgument(Sema &SemaRef, 2644 TemplateDecl *Template, 2645 SourceLocation TemplateLoc, 2646 SourceLocation RAngleLoc, 2647 TemplateTemplateParmDecl *Param, 2648 SmallVectorImpl<TemplateArgument> &Converted, 2649 NestedNameSpecifierLoc &QualifierLoc) { 2650 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2651 Converted.data(), Converted.size()); 2652 2653 MultiLevelTemplateArgumentList AllTemplateArgs 2654 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2655 2656 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2657 Template, Converted, 2658 SourceRange(TemplateLoc, RAngleLoc)); 2659 if (Inst) 2660 return TemplateName(); 2661 2662 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2663 // Substitute into the nested-name-specifier first, 2664 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2665 if (QualifierLoc) { 2666 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2667 AllTemplateArgs); 2668 if (!QualifierLoc) 2669 return TemplateName(); 2670 } 2671 2672 return SemaRef.SubstTemplateName(QualifierLoc, 2673 Param->getDefaultArgument().getArgument().getAsTemplate(), 2674 Param->getDefaultArgument().getTemplateNameLoc(), 2675 AllTemplateArgs); 2676} 2677 2678/// \brief If the given template parameter has a default template 2679/// argument, substitute into that default template argument and 2680/// return the corresponding template argument. 2681TemplateArgumentLoc 2682Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2683 SourceLocation TemplateLoc, 2684 SourceLocation RAngleLoc, 2685 Decl *Param, 2686 SmallVectorImpl<TemplateArgument> &Converted) { 2687 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2688 if (!TypeParm->hasDefaultArgument()) 2689 return TemplateArgumentLoc(); 2690 2691 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2692 TemplateLoc, 2693 RAngleLoc, 2694 TypeParm, 2695 Converted); 2696 if (DI) 2697 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2698 2699 return TemplateArgumentLoc(); 2700 } 2701 2702 if (NonTypeTemplateParmDecl *NonTypeParm 2703 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2704 if (!NonTypeParm->hasDefaultArgument()) 2705 return TemplateArgumentLoc(); 2706 2707 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2708 TemplateLoc, 2709 RAngleLoc, 2710 NonTypeParm, 2711 Converted); 2712 if (Arg.isInvalid()) 2713 return TemplateArgumentLoc(); 2714 2715 Expr *ArgE = Arg.takeAs<Expr>(); 2716 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2717 } 2718 2719 TemplateTemplateParmDecl *TempTempParm 2720 = cast<TemplateTemplateParmDecl>(Param); 2721 if (!TempTempParm->hasDefaultArgument()) 2722 return TemplateArgumentLoc(); 2723 2724 2725 NestedNameSpecifierLoc QualifierLoc; 2726 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2727 TemplateLoc, 2728 RAngleLoc, 2729 TempTempParm, 2730 Converted, 2731 QualifierLoc); 2732 if (TName.isNull()) 2733 return TemplateArgumentLoc(); 2734 2735 return TemplateArgumentLoc(TemplateArgument(TName), 2736 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2737 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2738} 2739 2740/// \brief Check that the given template argument corresponds to the given 2741/// template parameter. 2742/// 2743/// \param Param The template parameter against which the argument will be 2744/// checked. 2745/// 2746/// \param Arg The template argument. 2747/// 2748/// \param Template The template in which the template argument resides. 2749/// 2750/// \param TemplateLoc The location of the template name for the template 2751/// whose argument list we're matching. 2752/// 2753/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2754/// the template argument list. 2755/// 2756/// \param ArgumentPackIndex The index into the argument pack where this 2757/// argument will be placed. Only valid if the parameter is a parameter pack. 2758/// 2759/// \param Converted The checked, converted argument will be added to the 2760/// end of this small vector. 2761/// 2762/// \param CTAK Describes how we arrived at this particular template argument: 2763/// explicitly written, deduced, etc. 2764/// 2765/// \returns true on error, false otherwise. 2766bool Sema::CheckTemplateArgument(NamedDecl *Param, 2767 const TemplateArgumentLoc &Arg, 2768 NamedDecl *Template, 2769 SourceLocation TemplateLoc, 2770 SourceLocation RAngleLoc, 2771 unsigned ArgumentPackIndex, 2772 SmallVectorImpl<TemplateArgument> &Converted, 2773 CheckTemplateArgumentKind CTAK) { 2774 // Check template type parameters. 2775 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2776 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2777 2778 // Check non-type template parameters. 2779 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2780 // Do substitution on the type of the non-type template parameter 2781 // with the template arguments we've seen thus far. But if the 2782 // template has a dependent context then we cannot substitute yet. 2783 QualType NTTPType = NTTP->getType(); 2784 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2785 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2786 2787 if (NTTPType->isDependentType() && 2788 !isa<TemplateTemplateParmDecl>(Template) && 2789 !Template->getDeclContext()->isDependentContext()) { 2790 // Do substitution on the type of the non-type template parameter. 2791 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2792 NTTP, Converted, 2793 SourceRange(TemplateLoc, RAngleLoc)); 2794 if (Inst) 2795 return true; 2796 2797 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2798 Converted.data(), Converted.size()); 2799 NTTPType = SubstType(NTTPType, 2800 MultiLevelTemplateArgumentList(TemplateArgs), 2801 NTTP->getLocation(), 2802 NTTP->getDeclName()); 2803 // If that worked, check the non-type template parameter type 2804 // for validity. 2805 if (!NTTPType.isNull()) 2806 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2807 NTTP->getLocation()); 2808 if (NTTPType.isNull()) 2809 return true; 2810 } 2811 2812 switch (Arg.getArgument().getKind()) { 2813 case TemplateArgument::Null: 2814 llvm_unreachable("Should never see a NULL template argument here"); 2815 2816 case TemplateArgument::Expression: { 2817 TemplateArgument Result; 2818 ExprResult Res = 2819 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2820 Result, CTAK); 2821 if (Res.isInvalid()) 2822 return true; 2823 2824 Converted.push_back(Result); 2825 break; 2826 } 2827 2828 case TemplateArgument::Declaration: 2829 case TemplateArgument::Integral: 2830 // We've already checked this template argument, so just copy 2831 // it to the list of converted arguments. 2832 Converted.push_back(Arg.getArgument()); 2833 break; 2834 2835 case TemplateArgument::Template: 2836 case TemplateArgument::TemplateExpansion: 2837 // We were given a template template argument. It may not be ill-formed; 2838 // see below. 2839 if (DependentTemplateName *DTN 2840 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2841 .getAsDependentTemplateName()) { 2842 // We have a template argument such as \c T::template X, which we 2843 // parsed as a template template argument. However, since we now 2844 // know that we need a non-type template argument, convert this 2845 // template name into an expression. 2846 2847 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2848 Arg.getTemplateNameLoc()); 2849 2850 CXXScopeSpec SS; 2851 SS.Adopt(Arg.getTemplateQualifierLoc()); 2852 // FIXME: the template-template arg was a DependentTemplateName, 2853 // so it was provided with a template keyword. However, its source 2854 // location is not stored in the template argument structure. 2855 SourceLocation TemplateKWLoc; 2856 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2857 SS.getWithLocInContext(Context), 2858 TemplateKWLoc, 2859 NameInfo, 0)); 2860 2861 // If we parsed the template argument as a pack expansion, create a 2862 // pack expansion expression. 2863 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2864 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2865 if (E.isInvalid()) 2866 return true; 2867 } 2868 2869 TemplateArgument Result; 2870 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2871 if (E.isInvalid()) 2872 return true; 2873 2874 Converted.push_back(Result); 2875 break; 2876 } 2877 2878 // We have a template argument that actually does refer to a class 2879 // template, alias template, or template template parameter, and 2880 // therefore cannot be a non-type template argument. 2881 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2882 << Arg.getSourceRange(); 2883 2884 Diag(Param->getLocation(), diag::note_template_param_here); 2885 return true; 2886 2887 case TemplateArgument::Type: { 2888 // We have a non-type template parameter but the template 2889 // argument is a type. 2890 2891 // C++ [temp.arg]p2: 2892 // In a template-argument, an ambiguity between a type-id and 2893 // an expression is resolved to a type-id, regardless of the 2894 // form of the corresponding template-parameter. 2895 // 2896 // We warn specifically about this case, since it can be rather 2897 // confusing for users. 2898 QualType T = Arg.getArgument().getAsType(); 2899 SourceRange SR = Arg.getSourceRange(); 2900 if (T->isFunctionType()) 2901 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2902 else 2903 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2904 Diag(Param->getLocation(), diag::note_template_param_here); 2905 return true; 2906 } 2907 2908 case TemplateArgument::Pack: 2909 llvm_unreachable("Caller must expand template argument packs"); 2910 } 2911 2912 return false; 2913 } 2914 2915 2916 // Check template template parameters. 2917 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2918 2919 // Substitute into the template parameter list of the template 2920 // template parameter, since previously-supplied template arguments 2921 // may appear within the template template parameter. 2922 { 2923 // Set up a template instantiation context. 2924 LocalInstantiationScope Scope(*this); 2925 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2926 TempParm, Converted, 2927 SourceRange(TemplateLoc, RAngleLoc)); 2928 if (Inst) 2929 return true; 2930 2931 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2932 Converted.data(), Converted.size()); 2933 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2934 SubstDecl(TempParm, CurContext, 2935 MultiLevelTemplateArgumentList(TemplateArgs))); 2936 if (!TempParm) 2937 return true; 2938 } 2939 2940 switch (Arg.getArgument().getKind()) { 2941 case TemplateArgument::Null: 2942 llvm_unreachable("Should never see a NULL template argument here"); 2943 2944 case TemplateArgument::Template: 2945 case TemplateArgument::TemplateExpansion: 2946 if (CheckTemplateArgument(TempParm, Arg)) 2947 return true; 2948 2949 Converted.push_back(Arg.getArgument()); 2950 break; 2951 2952 case TemplateArgument::Expression: 2953 case TemplateArgument::Type: 2954 // We have a template template parameter but the template 2955 // argument does not refer to a template. 2956 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2957 << getLangOpts().CPlusPlus0x; 2958 return true; 2959 2960 case TemplateArgument::Declaration: 2961 llvm_unreachable("Declaration argument with template template parameter"); 2962 case TemplateArgument::Integral: 2963 llvm_unreachable("Integral argument with template template parameter"); 2964 2965 case TemplateArgument::Pack: 2966 llvm_unreachable("Caller must expand template argument packs"); 2967 } 2968 2969 return false; 2970} 2971 2972/// \brief Diagnose an arity mismatch in the 2973static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 2974 SourceLocation TemplateLoc, 2975 TemplateArgumentListInfo &TemplateArgs) { 2976 TemplateParameterList *Params = Template->getTemplateParameters(); 2977 unsigned NumParams = Params->size(); 2978 unsigned NumArgs = TemplateArgs.size(); 2979 2980 SourceRange Range; 2981 if (NumArgs > NumParams) 2982 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 2983 TemplateArgs.getRAngleLoc()); 2984 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2985 << (NumArgs > NumParams) 2986 << (isa<ClassTemplateDecl>(Template)? 0 : 2987 isa<FunctionTemplateDecl>(Template)? 1 : 2988 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2989 << Template << Range; 2990 S.Diag(Template->getLocation(), diag::note_template_decl_here) 2991 << Params->getSourceRange(); 2992 return true; 2993} 2994 2995/// \brief Check that the given template argument list is well-formed 2996/// for specializing the given template. 2997bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2998 SourceLocation TemplateLoc, 2999 TemplateArgumentListInfo &TemplateArgs, 3000 bool PartialTemplateArgs, 3001 SmallVectorImpl<TemplateArgument> &Converted, 3002 bool *ExpansionIntoFixedList) { 3003 if (ExpansionIntoFixedList) 3004 *ExpansionIntoFixedList = false; 3005 3006 TemplateParameterList *Params = Template->getTemplateParameters(); 3007 unsigned NumParams = Params->size(); 3008 unsigned NumArgs = TemplateArgs.size(); 3009 bool Invalid = false; 3010 3011 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 3012 3013 bool HasParameterPack = 3014 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 3015 3016 // C++ [temp.arg]p1: 3017 // [...] The type and form of each template-argument specified in 3018 // a template-id shall match the type and form specified for the 3019 // corresponding parameter declared by the template in its 3020 // template-parameter-list. 3021 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3022 SmallVector<TemplateArgument, 2> ArgumentPack; 3023 TemplateParameterList::iterator Param = Params->begin(), 3024 ParamEnd = Params->end(); 3025 unsigned ArgIdx = 0; 3026 LocalInstantiationScope InstScope(*this, true); 3027 bool SawPackExpansion = false; 3028 while (Param != ParamEnd) { 3029 if (ArgIdx < NumArgs) { 3030 // If we have an expanded parameter pack, make sure we don't have too 3031 // many arguments. 3032 // FIXME: This really should fall out from the normal arity checking. 3033 if (NonTypeTemplateParmDecl *NTTP 3034 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3035 if (NTTP->isExpandedParameterPack() && 3036 ArgumentPack.size() >= NTTP->getNumExpansionTypes()) { 3037 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3038 << true 3039 << (isa<ClassTemplateDecl>(Template)? 0 : 3040 isa<FunctionTemplateDecl>(Template)? 1 : 3041 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3042 << Template; 3043 Diag(Template->getLocation(), diag::note_template_decl_here) 3044 << Params->getSourceRange(); 3045 return true; 3046 } 3047 } 3048 3049 // Check the template argument we were given. 3050 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 3051 TemplateLoc, RAngleLoc, 3052 ArgumentPack.size(), Converted)) 3053 return true; 3054 3055 if ((*Param)->isTemplateParameterPack()) { 3056 // The template parameter was a template parameter pack, so take the 3057 // deduced argument and place it on the argument pack. Note that we 3058 // stay on the same template parameter so that we can deduce more 3059 // arguments. 3060 ArgumentPack.push_back(Converted.back()); 3061 Converted.pop_back(); 3062 } else { 3063 // Move to the next template parameter. 3064 ++Param; 3065 } 3066 3067 // If this template argument is a pack expansion, record that fact 3068 // and break out; we can't actually check any more. 3069 if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) { 3070 SawPackExpansion = true; 3071 ++ArgIdx; 3072 break; 3073 } 3074 3075 ++ArgIdx; 3076 continue; 3077 } 3078 3079 // If we're checking a partial template argument list, we're done. 3080 if (PartialTemplateArgs) { 3081 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3082 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3083 ArgumentPack.data(), 3084 ArgumentPack.size())); 3085 3086 return Invalid; 3087 } 3088 3089 // If we have a template parameter pack with no more corresponding 3090 // arguments, just break out now and we'll fill in the argument pack below. 3091 if ((*Param)->isTemplateParameterPack()) 3092 break; 3093 3094 // Check whether we have a default argument. 3095 TemplateArgumentLoc Arg; 3096 3097 // Retrieve the default template argument from the template 3098 // parameter. For each kind of template parameter, we substitute the 3099 // template arguments provided thus far and any "outer" template arguments 3100 // (when the template parameter was part of a nested template) into 3101 // the default argument. 3102 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3103 if (!TTP->hasDefaultArgument()) 3104 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3105 TemplateArgs); 3106 3107 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3108 Template, 3109 TemplateLoc, 3110 RAngleLoc, 3111 TTP, 3112 Converted); 3113 if (!ArgType) 3114 return true; 3115 3116 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3117 ArgType); 3118 } else if (NonTypeTemplateParmDecl *NTTP 3119 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3120 if (!NTTP->hasDefaultArgument()) 3121 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3122 TemplateArgs); 3123 3124 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3125 TemplateLoc, 3126 RAngleLoc, 3127 NTTP, 3128 Converted); 3129 if (E.isInvalid()) 3130 return true; 3131 3132 Expr *Ex = E.takeAs<Expr>(); 3133 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3134 } else { 3135 TemplateTemplateParmDecl *TempParm 3136 = cast<TemplateTemplateParmDecl>(*Param); 3137 3138 if (!TempParm->hasDefaultArgument()) 3139 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3140 TemplateArgs); 3141 3142 NestedNameSpecifierLoc QualifierLoc; 3143 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3144 TemplateLoc, 3145 RAngleLoc, 3146 TempParm, 3147 Converted, 3148 QualifierLoc); 3149 if (Name.isNull()) 3150 return true; 3151 3152 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3153 TempParm->getDefaultArgument().getTemplateNameLoc()); 3154 } 3155 3156 // Introduce an instantiation record that describes where we are using 3157 // the default template argument. 3158 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, 3159 *Param, Converted, 3160 SourceRange(TemplateLoc, RAngleLoc)); 3161 if (Instantiating) 3162 return true; 3163 3164 // Check the default template argument. 3165 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3166 RAngleLoc, 0, Converted)) 3167 return true; 3168 3169 // Core issue 150 (assumed resolution): if this is a template template 3170 // parameter, keep track of the default template arguments from the 3171 // template definition. 3172 if (isTemplateTemplateParameter) 3173 TemplateArgs.addArgument(Arg); 3174 3175 // Move to the next template parameter and argument. 3176 ++Param; 3177 ++ArgIdx; 3178 } 3179 3180 // If we saw a pack expansion, then directly convert the remaining arguments, 3181 // because we don't know what parameters they'll match up with. 3182 if (SawPackExpansion) { 3183 bool AddToArgumentPack 3184 = Param != ParamEnd && (*Param)->isTemplateParameterPack(); 3185 while (ArgIdx < NumArgs) { 3186 if (AddToArgumentPack) 3187 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3188 else 3189 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3190 ++ArgIdx; 3191 } 3192 3193 // Push the argument pack onto the list of converted arguments. 3194 if (AddToArgumentPack) { 3195 if (ArgumentPack.empty()) 3196 Converted.push_back(TemplateArgument(0, 0)); 3197 else { 3198 Converted.push_back( 3199 TemplateArgument::CreatePackCopy(Context, 3200 ArgumentPack.data(), 3201 ArgumentPack.size())); 3202 ArgumentPack.clear(); 3203 } 3204 } else if (ExpansionIntoFixedList) { 3205 // We have expanded a pack into a fixed list. 3206 *ExpansionIntoFixedList = true; 3207 } 3208 3209 return Invalid; 3210 } 3211 3212 // If we have any leftover arguments, then there were too many arguments. 3213 // Complain and fail. 3214 if (ArgIdx < NumArgs) 3215 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3216 3217 // If we have an expanded parameter pack, make sure we don't have too 3218 // many arguments. 3219 // FIXME: This really should fall out from the normal arity checking. 3220 if (Param != ParamEnd) { 3221 if (NonTypeTemplateParmDecl *NTTP 3222 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3223 if (NTTP->isExpandedParameterPack() && 3224 ArgumentPack.size() < NTTP->getNumExpansionTypes()) { 3225 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3226 << false 3227 << (isa<ClassTemplateDecl>(Template)? 0 : 3228 isa<FunctionTemplateDecl>(Template)? 1 : 3229 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3230 << Template; 3231 Diag(Template->getLocation(), diag::note_template_decl_here) 3232 << Params->getSourceRange(); 3233 return true; 3234 } 3235 } 3236 } 3237 3238 // Form argument packs for each of the parameter packs remaining. 3239 while (Param != ParamEnd) { 3240 // If we're checking a partial list of template arguments, don't fill 3241 // in arguments for non-template parameter packs. 3242 if ((*Param)->isTemplateParameterPack()) { 3243 if (!HasParameterPack) 3244 return true; 3245 if (ArgumentPack.empty()) 3246 Converted.push_back(TemplateArgument(0, 0)); 3247 else { 3248 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3249 ArgumentPack.data(), 3250 ArgumentPack.size())); 3251 ArgumentPack.clear(); 3252 } 3253 } else if (!PartialTemplateArgs) 3254 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3255 3256 ++Param; 3257 } 3258 3259 return Invalid; 3260} 3261 3262namespace { 3263 class UnnamedLocalNoLinkageFinder 3264 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3265 { 3266 Sema &S; 3267 SourceRange SR; 3268 3269 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3270 3271 public: 3272 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3273 3274 bool Visit(QualType T) { 3275 return inherited::Visit(T.getTypePtr()); 3276 } 3277 3278#define TYPE(Class, Parent) \ 3279 bool Visit##Class##Type(const Class##Type *); 3280#define ABSTRACT_TYPE(Class, Parent) \ 3281 bool Visit##Class##Type(const Class##Type *) { return false; } 3282#define NON_CANONICAL_TYPE(Class, Parent) \ 3283 bool Visit##Class##Type(const Class##Type *) { return false; } 3284#include "clang/AST/TypeNodes.def" 3285 3286 bool VisitTagDecl(const TagDecl *Tag); 3287 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3288 }; 3289} 3290 3291bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3292 return false; 3293} 3294 3295bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3296 return Visit(T->getElementType()); 3297} 3298 3299bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3300 return Visit(T->getPointeeType()); 3301} 3302 3303bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3304 const BlockPointerType* T) { 3305 return Visit(T->getPointeeType()); 3306} 3307 3308bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3309 const LValueReferenceType* T) { 3310 return Visit(T->getPointeeType()); 3311} 3312 3313bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3314 const RValueReferenceType* T) { 3315 return Visit(T->getPointeeType()); 3316} 3317 3318bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3319 const MemberPointerType* T) { 3320 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3321} 3322 3323bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3324 const ConstantArrayType* T) { 3325 return Visit(T->getElementType()); 3326} 3327 3328bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3329 const IncompleteArrayType* T) { 3330 return Visit(T->getElementType()); 3331} 3332 3333bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3334 const VariableArrayType* T) { 3335 return Visit(T->getElementType()); 3336} 3337 3338bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3339 const DependentSizedArrayType* T) { 3340 return Visit(T->getElementType()); 3341} 3342 3343bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3344 const DependentSizedExtVectorType* T) { 3345 return Visit(T->getElementType()); 3346} 3347 3348bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3349 return Visit(T->getElementType()); 3350} 3351 3352bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3353 return Visit(T->getElementType()); 3354} 3355 3356bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3357 const FunctionProtoType* T) { 3358 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3359 AEnd = T->arg_type_end(); 3360 A != AEnd; ++A) { 3361 if (Visit(*A)) 3362 return true; 3363 } 3364 3365 return Visit(T->getResultType()); 3366} 3367 3368bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3369 const FunctionNoProtoType* T) { 3370 return Visit(T->getResultType()); 3371} 3372 3373bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3374 const UnresolvedUsingType*) { 3375 return false; 3376} 3377 3378bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3379 return false; 3380} 3381 3382bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3383 return Visit(T->getUnderlyingType()); 3384} 3385 3386bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3387 return false; 3388} 3389 3390bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3391 const UnaryTransformType*) { 3392 return false; 3393} 3394 3395bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3396 return Visit(T->getDeducedType()); 3397} 3398 3399bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3400 return VisitTagDecl(T->getDecl()); 3401} 3402 3403bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3404 return VisitTagDecl(T->getDecl()); 3405} 3406 3407bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3408 const TemplateTypeParmType*) { 3409 return false; 3410} 3411 3412bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3413 const SubstTemplateTypeParmPackType *) { 3414 return false; 3415} 3416 3417bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3418 const TemplateSpecializationType*) { 3419 return false; 3420} 3421 3422bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3423 const InjectedClassNameType* T) { 3424 return VisitTagDecl(T->getDecl()); 3425} 3426 3427bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3428 const DependentNameType* T) { 3429 return VisitNestedNameSpecifier(T->getQualifier()); 3430} 3431 3432bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3433 const DependentTemplateSpecializationType* T) { 3434 return VisitNestedNameSpecifier(T->getQualifier()); 3435} 3436 3437bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3438 const PackExpansionType* T) { 3439 return Visit(T->getPattern()); 3440} 3441 3442bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3443 return false; 3444} 3445 3446bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3447 const ObjCInterfaceType *) { 3448 return false; 3449} 3450 3451bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3452 const ObjCObjectPointerType *) { 3453 return false; 3454} 3455 3456bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3457 return Visit(T->getValueType()); 3458} 3459 3460bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3461 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3462 S.Diag(SR.getBegin(), 3463 S.getLangOpts().CPlusPlus0x ? 3464 diag::warn_cxx98_compat_template_arg_local_type : 3465 diag::ext_template_arg_local_type) 3466 << S.Context.getTypeDeclType(Tag) << SR; 3467 return true; 3468 } 3469 3470 if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) { 3471 S.Diag(SR.getBegin(), 3472 S.getLangOpts().CPlusPlus0x ? 3473 diag::warn_cxx98_compat_template_arg_unnamed_type : 3474 diag::ext_template_arg_unnamed_type) << SR; 3475 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3476 return true; 3477 } 3478 3479 return false; 3480} 3481 3482bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3483 NestedNameSpecifier *NNS) { 3484 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3485 return true; 3486 3487 switch (NNS->getKind()) { 3488 case NestedNameSpecifier::Identifier: 3489 case NestedNameSpecifier::Namespace: 3490 case NestedNameSpecifier::NamespaceAlias: 3491 case NestedNameSpecifier::Global: 3492 return false; 3493 3494 case NestedNameSpecifier::TypeSpec: 3495 case NestedNameSpecifier::TypeSpecWithTemplate: 3496 return Visit(QualType(NNS->getAsType(), 0)); 3497 } 3498 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3499} 3500 3501 3502/// \brief Check a template argument against its corresponding 3503/// template type parameter. 3504/// 3505/// This routine implements the semantics of C++ [temp.arg.type]. It 3506/// returns true if an error occurred, and false otherwise. 3507bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3508 TypeSourceInfo *ArgInfo) { 3509 assert(ArgInfo && "invalid TypeSourceInfo"); 3510 QualType Arg = ArgInfo->getType(); 3511 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3512 3513 if (Arg->isVariablyModifiedType()) { 3514 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3515 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3516 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3517 } 3518 3519 // C++03 [temp.arg.type]p2: 3520 // A local type, a type with no linkage, an unnamed type or a type 3521 // compounded from any of these types shall not be used as a 3522 // template-argument for a template type-parameter. 3523 // 3524 // C++11 allows these, and even in C++03 we allow them as an extension with 3525 // a warning. 3526 if (LangOpts.CPlusPlus0x ? 3527 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3528 SR.getBegin()) != DiagnosticsEngine::Ignored || 3529 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3530 SR.getBegin()) != DiagnosticsEngine::Ignored : 3531 Arg->hasUnnamedOrLocalType()) { 3532 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3533 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3534 } 3535 3536 return false; 3537} 3538 3539enum NullPointerValueKind { 3540 NPV_NotNullPointer, 3541 NPV_NullPointer, 3542 NPV_Error 3543}; 3544 3545/// \brief Determine whether the given template argument is a null pointer 3546/// value of the appropriate type. 3547static NullPointerValueKind 3548isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 3549 QualType ParamType, Expr *Arg) { 3550 if (Arg->isValueDependent() || Arg->isTypeDependent()) 3551 return NPV_NotNullPointer; 3552 3553 if (!S.getLangOpts().CPlusPlus0x) 3554 return NPV_NotNullPointer; 3555 3556 // Determine whether we have a constant expression. 3557 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 3558 if (ArgRV.isInvalid()) 3559 return NPV_Error; 3560 Arg = ArgRV.take(); 3561 3562 Expr::EvalResult EvalResult; 3563 llvm::SmallVector<PartialDiagnosticAt, 8> Notes; 3564 EvalResult.Diag = &Notes; 3565 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 3566 EvalResult.HasSideEffects) { 3567 SourceLocation DiagLoc = Arg->getExprLoc(); 3568 3569 // If our only note is the usual "invalid subexpression" note, just point 3570 // the caret at its location rather than producing an essentially 3571 // redundant note. 3572 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 3573 diag::note_invalid_subexpr_in_const_expr) { 3574 DiagLoc = Notes[0].first; 3575 Notes.clear(); 3576 } 3577 3578 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 3579 << Arg->getType() << Arg->getSourceRange(); 3580 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 3581 S.Diag(Notes[I].first, Notes[I].second); 3582 3583 S.Diag(Param->getLocation(), diag::note_template_param_here); 3584 return NPV_Error; 3585 } 3586 3587 // C++11 [temp.arg.nontype]p1: 3588 // - an address constant expression of type std::nullptr_t 3589 if (Arg->getType()->isNullPtrType()) 3590 return NPV_NullPointer; 3591 3592 // - a constant expression that evaluates to a null pointer value (4.10); or 3593 // - a constant expression that evaluates to a null member pointer value 3594 // (4.11); or 3595 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 3596 (EvalResult.Val.isMemberPointer() && 3597 !EvalResult.Val.getMemberPointerDecl())) { 3598 // If our expression has an appropriate type, we've succeeded. 3599 bool ObjCLifetimeConversion; 3600 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 3601 S.IsQualificationConversion(Arg->getType(), ParamType, false, 3602 ObjCLifetimeConversion)) 3603 return NPV_NullPointer; 3604 3605 // The types didn't match, but we know we got a null pointer; complain, 3606 // then recover as if the types were correct. 3607 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 3608 << Arg->getType() << ParamType << Arg->getSourceRange(); 3609 S.Diag(Param->getLocation(), diag::note_template_param_here); 3610 return NPV_NullPointer; 3611 } 3612 3613 // If we don't have a null pointer value, but we do have a NULL pointer 3614 // constant, suggest a cast to the appropriate type. 3615 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 3616 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 3617 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 3618 << ParamType 3619 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 3620 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 3621 ")"); 3622 S.Diag(Param->getLocation(), diag::note_template_param_here); 3623 return NPV_NullPointer; 3624 } 3625 3626 // FIXME: If we ever want to support general, address-constant expressions 3627 // as non-type template arguments, we should return the ExprResult here to 3628 // be interpreted by the caller. 3629 return NPV_NotNullPointer; 3630} 3631 3632/// \brief Checks whether the given template argument is the address 3633/// of an object or function according to C++ [temp.arg.nontype]p1. 3634static bool 3635CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3636 NonTypeTemplateParmDecl *Param, 3637 QualType ParamType, 3638 Expr *ArgIn, 3639 TemplateArgument &Converted) { 3640 bool Invalid = false; 3641 Expr *Arg = ArgIn; 3642 QualType ArgType = Arg->getType(); 3643 3644 // If our parameter has pointer type, check for a null template value. 3645 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 3646 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3647 case NPV_NullPointer: 3648 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3649 Converted = TemplateArgument((Decl *)0); 3650 return false; 3651 3652 case NPV_Error: 3653 return true; 3654 3655 case NPV_NotNullPointer: 3656 break; 3657 } 3658 } 3659 3660 // See through any implicit casts we added to fix the type. 3661 Arg = Arg->IgnoreImpCasts(); 3662 3663 // C++ [temp.arg.nontype]p1: 3664 // 3665 // A template-argument for a non-type, non-template 3666 // template-parameter shall be one of: [...] 3667 // 3668 // -- the address of an object or function with external 3669 // linkage, including function templates and function 3670 // template-ids but excluding non-static class members, 3671 // expressed as & id-expression where the & is optional if 3672 // the name refers to a function or array, or if the 3673 // corresponding template-parameter is a reference; or 3674 3675 // In C++98/03 mode, give an extension warning on any extra parentheses. 3676 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3677 bool ExtraParens = false; 3678 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3679 if (!Invalid && !ExtraParens) { 3680 S.Diag(Arg->getLocStart(), 3681 S.getLangOpts().CPlusPlus0x ? 3682 diag::warn_cxx98_compat_template_arg_extra_parens : 3683 diag::ext_template_arg_extra_parens) 3684 << Arg->getSourceRange(); 3685 ExtraParens = true; 3686 } 3687 3688 Arg = Parens->getSubExpr(); 3689 } 3690 3691 while (SubstNonTypeTemplateParmExpr *subst = 3692 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3693 Arg = subst->getReplacement()->IgnoreImpCasts(); 3694 3695 bool AddressTaken = false; 3696 SourceLocation AddrOpLoc; 3697 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3698 if (UnOp->getOpcode() == UO_AddrOf) { 3699 Arg = UnOp->getSubExpr(); 3700 AddressTaken = true; 3701 AddrOpLoc = UnOp->getOperatorLoc(); 3702 } 3703 } 3704 3705 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3706 Converted = TemplateArgument(ArgIn); 3707 return false; 3708 } 3709 3710 while (SubstNonTypeTemplateParmExpr *subst = 3711 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3712 Arg = subst->getReplacement()->IgnoreImpCasts(); 3713 3714 // Stop checking the precise nature of the argument if it is value dependent, 3715 // it should be checked when instantiated. 3716 if (Arg->isValueDependent()) { 3717 Converted = TemplateArgument(ArgIn); 3718 return false; 3719 } 3720 3721 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3722 if (!DRE) { 3723 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3724 << Arg->getSourceRange(); 3725 S.Diag(Param->getLocation(), diag::note_template_param_here); 3726 return true; 3727 } 3728 3729 if (!isa<ValueDecl>(DRE->getDecl())) { 3730 S.Diag(Arg->getLocStart(), 3731 diag::err_template_arg_not_object_or_func_form) 3732 << Arg->getSourceRange(); 3733 S.Diag(Param->getLocation(), diag::note_template_param_here); 3734 return true; 3735 } 3736 3737 NamedDecl *Entity = DRE->getDecl(); 3738 3739 // Cannot refer to non-static data members 3740 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 3741 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 3742 << Field << Arg->getSourceRange(); 3743 S.Diag(Param->getLocation(), diag::note_template_param_here); 3744 return true; 3745 } 3746 3747 // Cannot refer to non-static member functions 3748 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 3749 if (!Method->isStatic()) { 3750 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 3751 << Method << Arg->getSourceRange(); 3752 S.Diag(Param->getLocation(), diag::note_template_param_here); 3753 return true; 3754 } 3755 } 3756 3757 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 3758 VarDecl *Var = dyn_cast<VarDecl>(Entity); 3759 3760 // A non-type template argument must refer to an object or function. 3761 if (!Func && !Var) { 3762 // We found something, but we don't know specifically what it is. 3763 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 3764 << Arg->getSourceRange(); 3765 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3766 return true; 3767 } 3768 3769 // Address / reference template args must have external linkage in C++98. 3770 if (Entity->getLinkage() == InternalLinkage) { 3771 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ? 3772 diag::warn_cxx98_compat_template_arg_object_internal : 3773 diag::ext_template_arg_object_internal) 3774 << !Func << Entity << Arg->getSourceRange(); 3775 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3776 << !Func; 3777 } else if (Entity->getLinkage() == NoLinkage) { 3778 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 3779 << !Func << Entity << Arg->getSourceRange(); 3780 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3781 << !Func; 3782 return true; 3783 } 3784 3785 if (Func) { 3786 // If the template parameter has pointer type, the function decays. 3787 if (ParamType->isPointerType() && !AddressTaken) 3788 ArgType = S.Context.getPointerType(Func->getType()); 3789 else if (AddressTaken && ParamType->isReferenceType()) { 3790 // If we originally had an address-of operator, but the 3791 // parameter has reference type, complain and (if things look 3792 // like they will work) drop the address-of operator. 3793 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3794 ParamType.getNonReferenceType())) { 3795 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3796 << ParamType; 3797 S.Diag(Param->getLocation(), diag::note_template_param_here); 3798 return true; 3799 } 3800 3801 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3802 << ParamType 3803 << FixItHint::CreateRemoval(AddrOpLoc); 3804 S.Diag(Param->getLocation(), diag::note_template_param_here); 3805 3806 ArgType = Func->getType(); 3807 } 3808 } else { 3809 // A value of reference type is not an object. 3810 if (Var->getType()->isReferenceType()) { 3811 S.Diag(Arg->getLocStart(), 3812 diag::err_template_arg_reference_var) 3813 << Var->getType() << Arg->getSourceRange(); 3814 S.Diag(Param->getLocation(), diag::note_template_param_here); 3815 return true; 3816 } 3817 3818 // A template argument must have static storage duration. 3819 // FIXME: Ensure this works for thread_local as well as __thread. 3820 if (Var->isThreadSpecified()) { 3821 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 3822 << Arg->getSourceRange(); 3823 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 3824 return true; 3825 } 3826 3827 // If the template parameter has pointer type, we must have taken 3828 // the address of this object. 3829 if (ParamType->isReferenceType()) { 3830 if (AddressTaken) { 3831 // If we originally had an address-of operator, but the 3832 // parameter has reference type, complain and (if things look 3833 // like they will work) drop the address-of operator. 3834 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3835 ParamType.getNonReferenceType())) { 3836 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3837 << ParamType; 3838 S.Diag(Param->getLocation(), diag::note_template_param_here); 3839 return true; 3840 } 3841 3842 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3843 << ParamType 3844 << FixItHint::CreateRemoval(AddrOpLoc); 3845 S.Diag(Param->getLocation(), diag::note_template_param_here); 3846 3847 ArgType = Var->getType(); 3848 } 3849 } else if (!AddressTaken && ParamType->isPointerType()) { 3850 if (Var->getType()->isArrayType()) { 3851 // Array-to-pointer decay. 3852 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3853 } else { 3854 // If the template parameter has pointer type but the address of 3855 // this object was not taken, complain and (possibly) recover by 3856 // taking the address of the entity. 3857 ArgType = S.Context.getPointerType(Var->getType()); 3858 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3859 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3860 << ParamType; 3861 S.Diag(Param->getLocation(), diag::note_template_param_here); 3862 return true; 3863 } 3864 3865 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3866 << ParamType 3867 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3868 3869 S.Diag(Param->getLocation(), diag::note_template_param_here); 3870 } 3871 } 3872 } 3873 3874 bool ObjCLifetimeConversion; 3875 if (ParamType->isPointerType() && 3876 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3877 S.IsQualificationConversion(ArgType, ParamType, false, 3878 ObjCLifetimeConversion)) { 3879 // For pointer-to-object types, qualification conversions are 3880 // permitted. 3881 } else { 3882 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3883 if (!ParamRef->getPointeeType()->isFunctionType()) { 3884 // C++ [temp.arg.nontype]p5b3: 3885 // For a non-type template-parameter of type reference to 3886 // object, no conversions apply. The type referred to by the 3887 // reference may be more cv-qualified than the (otherwise 3888 // identical) type of the template- argument. The 3889 // template-parameter is bound directly to the 3890 // template-argument, which shall be an lvalue. 3891 3892 // FIXME: Other qualifiers? 3893 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3894 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3895 3896 if ((ParamQuals | ArgQuals) != ParamQuals) { 3897 S.Diag(Arg->getLocStart(), 3898 diag::err_template_arg_ref_bind_ignores_quals) 3899 << ParamType << Arg->getType() 3900 << Arg->getSourceRange(); 3901 S.Diag(Param->getLocation(), diag::note_template_param_here); 3902 return true; 3903 } 3904 } 3905 } 3906 3907 // At this point, the template argument refers to an object or 3908 // function with external linkage. We now need to check whether the 3909 // argument and parameter types are compatible. 3910 if (!S.Context.hasSameUnqualifiedType(ArgType, 3911 ParamType.getNonReferenceType())) { 3912 // We can't perform this conversion or binding. 3913 if (ParamType->isReferenceType()) 3914 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3915 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3916 else 3917 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3918 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3919 S.Diag(Param->getLocation(), diag::note_template_param_here); 3920 return true; 3921 } 3922 } 3923 3924 // Create the template argument. 3925 Converted = TemplateArgument(Entity->getCanonicalDecl()); 3926 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity); 3927 return false; 3928} 3929 3930/// \brief Checks whether the given template argument is a pointer to 3931/// member constant according to C++ [temp.arg.nontype]p1. 3932static bool CheckTemplateArgumentPointerToMember(Sema &S, 3933 NonTypeTemplateParmDecl *Param, 3934 QualType ParamType, 3935 Expr *&ResultArg, 3936 TemplateArgument &Converted) { 3937 bool Invalid = false; 3938 3939 // Check for a null pointer value. 3940 Expr *Arg = ResultArg; 3941 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3942 case NPV_Error: 3943 return true; 3944 case NPV_NullPointer: 3945 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3946 Converted = TemplateArgument((Decl *)0); 3947 return false; 3948 case NPV_NotNullPointer: 3949 break; 3950 } 3951 3952 bool ObjCLifetimeConversion; 3953 if (S.IsQualificationConversion(Arg->getType(), 3954 ParamType.getNonReferenceType(), 3955 false, ObjCLifetimeConversion)) { 3956 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 3957 Arg->getValueKind()).take(); 3958 ResultArg = Arg; 3959 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 3960 ParamType.getNonReferenceType())) { 3961 // We can't perform this conversion. 3962 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3963 << Arg->getType() << ParamType << Arg->getSourceRange(); 3964 S.Diag(Param->getLocation(), diag::note_template_param_here); 3965 return true; 3966 } 3967 3968 // See through any implicit casts we added to fix the type. 3969 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3970 Arg = Cast->getSubExpr(); 3971 3972 // C++ [temp.arg.nontype]p1: 3973 // 3974 // A template-argument for a non-type, non-template 3975 // template-parameter shall be one of: [...] 3976 // 3977 // -- a pointer to member expressed as described in 5.3.1. 3978 DeclRefExpr *DRE = 0; 3979 3980 // In C++98/03 mode, give an extension warning on any extra parentheses. 3981 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3982 bool ExtraParens = false; 3983 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3984 if (!Invalid && !ExtraParens) { 3985 S.Diag(Arg->getLocStart(), 3986 S.getLangOpts().CPlusPlus0x ? 3987 diag::warn_cxx98_compat_template_arg_extra_parens : 3988 diag::ext_template_arg_extra_parens) 3989 << Arg->getSourceRange(); 3990 ExtraParens = true; 3991 } 3992 3993 Arg = Parens->getSubExpr(); 3994 } 3995 3996 while (SubstNonTypeTemplateParmExpr *subst = 3997 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3998 Arg = subst->getReplacement()->IgnoreImpCasts(); 3999 4000 // A pointer-to-member constant written &Class::member. 4001 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4002 if (UnOp->getOpcode() == UO_AddrOf) { 4003 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4004 if (DRE && !DRE->getQualifier()) 4005 DRE = 0; 4006 } 4007 } 4008 // A constant of pointer-to-member type. 4009 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4010 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4011 if (VD->getType()->isMemberPointerType()) { 4012 if (isa<NonTypeTemplateParmDecl>(VD) || 4013 (isa<VarDecl>(VD) && 4014 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 4015 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4016 Converted = TemplateArgument(Arg); 4017 else 4018 Converted = TemplateArgument(VD->getCanonicalDecl()); 4019 return Invalid; 4020 } 4021 } 4022 } 4023 4024 DRE = 0; 4025 } 4026 4027 if (!DRE) 4028 return S.Diag(Arg->getLocStart(), 4029 diag::err_template_arg_not_pointer_to_member_form) 4030 << Arg->getSourceRange(); 4031 4032 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 4033 assert((isa<FieldDecl>(DRE->getDecl()) || 4034 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4035 "Only non-static member pointers can make it here"); 4036 4037 // Okay: this is the address of a non-static member, and therefore 4038 // a member pointer constant. 4039 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4040 Converted = TemplateArgument(Arg); 4041 else 4042 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 4043 return Invalid; 4044 } 4045 4046 // We found something else, but we don't know specifically what it is. 4047 S.Diag(Arg->getLocStart(), 4048 diag::err_template_arg_not_pointer_to_member_form) 4049 << Arg->getSourceRange(); 4050 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4051 return true; 4052} 4053 4054/// \brief Check a template argument against its corresponding 4055/// non-type template parameter. 4056/// 4057/// This routine implements the semantics of C++ [temp.arg.nontype]. 4058/// If an error occurred, it returns ExprError(); otherwise, it 4059/// returns the converted template argument. \p 4060/// InstantiatedParamType is the type of the non-type template 4061/// parameter after it has been instantiated. 4062ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4063 QualType InstantiatedParamType, Expr *Arg, 4064 TemplateArgument &Converted, 4065 CheckTemplateArgumentKind CTAK) { 4066 SourceLocation StartLoc = Arg->getLocStart(); 4067 4068 // If either the parameter has a dependent type or the argument is 4069 // type-dependent, there's nothing we can check now. 4070 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 4071 // FIXME: Produce a cloned, canonical expression? 4072 Converted = TemplateArgument(Arg); 4073 return Owned(Arg); 4074 } 4075 4076 // C++ [temp.arg.nontype]p5: 4077 // The following conversions are performed on each expression used 4078 // as a non-type template-argument. If a non-type 4079 // template-argument cannot be converted to the type of the 4080 // corresponding template-parameter then the program is 4081 // ill-formed. 4082 QualType ParamType = InstantiatedParamType; 4083 if (ParamType->isIntegralOrEnumerationType()) { 4084 // C++11: 4085 // -- for a non-type template-parameter of integral or 4086 // enumeration type, conversions permitted in a converted 4087 // constant expression are applied. 4088 // 4089 // C++98: 4090 // -- for a non-type template-parameter of integral or 4091 // enumeration type, integral promotions (4.5) and integral 4092 // conversions (4.7) are applied. 4093 4094 if (CTAK == CTAK_Deduced && 4095 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4096 // C++ [temp.deduct.type]p17: 4097 // If, in the declaration of a function template with a non-type 4098 // template-parameter, the non-type template-parameter is used 4099 // in an expression in the function parameter-list and, if the 4100 // corresponding template-argument is deduced, the 4101 // template-argument type shall match the type of the 4102 // template-parameter exactly, except that a template-argument 4103 // deduced from an array bound may be of any integral type. 4104 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4105 << Arg->getType().getUnqualifiedType() 4106 << ParamType.getUnqualifiedType(); 4107 Diag(Param->getLocation(), diag::note_template_param_here); 4108 return ExprError(); 4109 } 4110 4111 if (getLangOpts().CPlusPlus0x) { 4112 // We can't check arbitrary value-dependent arguments. 4113 // FIXME: If there's no viable conversion to the template parameter type, 4114 // we should be able to diagnose that prior to instantiation. 4115 if (Arg->isValueDependent()) { 4116 Converted = TemplateArgument(Arg); 4117 return Owned(Arg); 4118 } 4119 4120 // C++ [temp.arg.nontype]p1: 4121 // A template-argument for a non-type, non-template template-parameter 4122 // shall be one of: 4123 // 4124 // -- for a non-type template-parameter of integral or enumeration 4125 // type, a converted constant expression of the type of the 4126 // template-parameter; or 4127 llvm::APSInt Value; 4128 ExprResult ArgResult = 4129 CheckConvertedConstantExpression(Arg, ParamType, Value, 4130 CCEK_TemplateArg); 4131 if (ArgResult.isInvalid()) 4132 return ExprError(); 4133 4134 // Widen the argument value to sizeof(parameter type). This is almost 4135 // always a no-op, except when the parameter type is bool. In 4136 // that case, this may extend the argument from 1 bit to 8 bits. 4137 QualType IntegerType = ParamType; 4138 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4139 IntegerType = Enum->getDecl()->getIntegerType(); 4140 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4141 4142 Converted = TemplateArgument(Context, Value, 4143 Context.getCanonicalType(ParamType)); 4144 return ArgResult; 4145 } 4146 4147 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4148 if (ArgResult.isInvalid()) 4149 return ExprError(); 4150 Arg = ArgResult.take(); 4151 4152 QualType ArgType = Arg->getType(); 4153 4154 // C++ [temp.arg.nontype]p1: 4155 // A template-argument for a non-type, non-template 4156 // template-parameter shall be one of: 4157 // 4158 // -- an integral constant-expression of integral or enumeration 4159 // type; or 4160 // -- the name of a non-type template-parameter; or 4161 SourceLocation NonConstantLoc; 4162 llvm::APSInt Value; 4163 if (!ArgType->isIntegralOrEnumerationType()) { 4164 Diag(Arg->getLocStart(), 4165 diag::err_template_arg_not_integral_or_enumeral) 4166 << ArgType << Arg->getSourceRange(); 4167 Diag(Param->getLocation(), diag::note_template_param_here); 4168 return ExprError(); 4169 } else if (!Arg->isValueDependent()) { 4170 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 4171 QualType T; 4172 4173 public: 4174 TmplArgICEDiagnoser(QualType T) : T(T) { } 4175 4176 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, 4177 SourceRange SR) { 4178 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 4179 } 4180 } Diagnoser(ArgType); 4181 4182 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 4183 false).take(); 4184 if (!Arg) 4185 return ExprError(); 4186 } 4187 4188 // From here on out, all we care about are the unqualified forms 4189 // of the parameter and argument types. 4190 ParamType = ParamType.getUnqualifiedType(); 4191 ArgType = ArgType.getUnqualifiedType(); 4192 4193 // Try to convert the argument to the parameter's type. 4194 if (Context.hasSameType(ParamType, ArgType)) { 4195 // Okay: no conversion necessary 4196 } else if (ParamType->isBooleanType()) { 4197 // This is an integral-to-boolean conversion. 4198 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4199 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4200 !ParamType->isEnumeralType()) { 4201 // This is an integral promotion or conversion. 4202 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4203 } else { 4204 // We can't perform this conversion. 4205 Diag(Arg->getLocStart(), 4206 diag::err_template_arg_not_convertible) 4207 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4208 Diag(Param->getLocation(), diag::note_template_param_here); 4209 return ExprError(); 4210 } 4211 4212 // Add the value of this argument to the list of converted 4213 // arguments. We use the bitwidth and signedness of the template 4214 // parameter. 4215 if (Arg->isValueDependent()) { 4216 // The argument is value-dependent. Create a new 4217 // TemplateArgument with the converted expression. 4218 Converted = TemplateArgument(Arg); 4219 return Owned(Arg); 4220 } 4221 4222 QualType IntegerType = Context.getCanonicalType(ParamType); 4223 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4224 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4225 4226 if (ParamType->isBooleanType()) { 4227 // Value must be zero or one. 4228 Value = Value != 0; 4229 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4230 if (Value.getBitWidth() != AllowedBits) 4231 Value = Value.extOrTrunc(AllowedBits); 4232 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4233 } else { 4234 llvm::APSInt OldValue = Value; 4235 4236 // Coerce the template argument's value to the value it will have 4237 // based on the template parameter's type. 4238 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4239 if (Value.getBitWidth() != AllowedBits) 4240 Value = Value.extOrTrunc(AllowedBits); 4241 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4242 4243 // Complain if an unsigned parameter received a negative value. 4244 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4245 && (OldValue.isSigned() && OldValue.isNegative())) { 4246 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4247 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4248 << Arg->getSourceRange(); 4249 Diag(Param->getLocation(), diag::note_template_param_here); 4250 } 4251 4252 // Complain if we overflowed the template parameter's type. 4253 unsigned RequiredBits; 4254 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4255 RequiredBits = OldValue.getActiveBits(); 4256 else if (OldValue.isUnsigned()) 4257 RequiredBits = OldValue.getActiveBits() + 1; 4258 else 4259 RequiredBits = OldValue.getMinSignedBits(); 4260 if (RequiredBits > AllowedBits) { 4261 Diag(Arg->getLocStart(), 4262 diag::warn_template_arg_too_large) 4263 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4264 << Arg->getSourceRange(); 4265 Diag(Param->getLocation(), diag::note_template_param_here); 4266 } 4267 } 4268 4269 Converted = TemplateArgument(Context, Value, 4270 ParamType->isEnumeralType() 4271 ? Context.getCanonicalType(ParamType) 4272 : IntegerType); 4273 return Owned(Arg); 4274 } 4275 4276 QualType ArgType = Arg->getType(); 4277 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4278 4279 // Handle pointer-to-function, reference-to-function, and 4280 // pointer-to-member-function all in (roughly) the same way. 4281 if (// -- For a non-type template-parameter of type pointer to 4282 // function, only the function-to-pointer conversion (4.3) is 4283 // applied. If the template-argument represents a set of 4284 // overloaded functions (or a pointer to such), the matching 4285 // function is selected from the set (13.4). 4286 (ParamType->isPointerType() && 4287 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4288 // -- For a non-type template-parameter of type reference to 4289 // function, no conversions apply. If the template-argument 4290 // represents a set of overloaded functions, the matching 4291 // function is selected from the set (13.4). 4292 (ParamType->isReferenceType() && 4293 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4294 // -- For a non-type template-parameter of type pointer to 4295 // member function, no conversions apply. If the 4296 // template-argument represents a set of overloaded member 4297 // functions, the matching member function is selected from 4298 // the set (13.4). 4299 (ParamType->isMemberPointerType() && 4300 ParamType->getAs<MemberPointerType>()->getPointeeType() 4301 ->isFunctionType())) { 4302 4303 if (Arg->getType() == Context.OverloadTy) { 4304 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4305 true, 4306 FoundResult)) { 4307 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4308 return ExprError(); 4309 4310 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4311 ArgType = Arg->getType(); 4312 } else 4313 return ExprError(); 4314 } 4315 4316 if (!ParamType->isMemberPointerType()) { 4317 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4318 ParamType, 4319 Arg, Converted)) 4320 return ExprError(); 4321 return Owned(Arg); 4322 } 4323 4324 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4325 Converted)) 4326 return ExprError(); 4327 return Owned(Arg); 4328 } 4329 4330 if (ParamType->isPointerType()) { 4331 // -- for a non-type template-parameter of type pointer to 4332 // object, qualification conversions (4.4) and the 4333 // array-to-pointer conversion (4.2) are applied. 4334 // C++0x also allows a value of std::nullptr_t. 4335 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4336 "Only object pointers allowed here"); 4337 4338 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4339 ParamType, 4340 Arg, Converted)) 4341 return ExprError(); 4342 return Owned(Arg); 4343 } 4344 4345 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4346 // -- For a non-type template-parameter of type reference to 4347 // object, no conversions apply. The type referred to by the 4348 // reference may be more cv-qualified than the (otherwise 4349 // identical) type of the template-argument. The 4350 // template-parameter is bound directly to the 4351 // template-argument, which must be an lvalue. 4352 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4353 "Only object references allowed here"); 4354 4355 if (Arg->getType() == Context.OverloadTy) { 4356 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4357 ParamRefType->getPointeeType(), 4358 true, 4359 FoundResult)) { 4360 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4361 return ExprError(); 4362 4363 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4364 ArgType = Arg->getType(); 4365 } else 4366 return ExprError(); 4367 } 4368 4369 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4370 ParamType, 4371 Arg, Converted)) 4372 return ExprError(); 4373 return Owned(Arg); 4374 } 4375 4376 // Deal with parameters of type std::nullptr_t. 4377 if (ParamType->isNullPtrType()) { 4378 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4379 Converted = TemplateArgument(Arg); 4380 return Owned(Arg); 4381 } 4382 4383 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4384 case NPV_NotNullPointer: 4385 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4386 << Arg->getType() << ParamType; 4387 Diag(Param->getLocation(), diag::note_template_param_here); 4388 return ExprError(); 4389 4390 case NPV_Error: 4391 return ExprError(); 4392 4393 case NPV_NullPointer: 4394 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4395 Converted = TemplateArgument((Decl *)0); 4396 return Owned(Arg);; 4397 } 4398 } 4399 4400 // -- For a non-type template-parameter of type pointer to data 4401 // member, qualification conversions (4.4) are applied. 4402 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4403 4404 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4405 Converted)) 4406 return ExprError(); 4407 return Owned(Arg); 4408} 4409 4410/// \brief Check a template argument against its corresponding 4411/// template template parameter. 4412/// 4413/// This routine implements the semantics of C++ [temp.arg.template]. 4414/// It returns true if an error occurred, and false otherwise. 4415bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4416 const TemplateArgumentLoc &Arg) { 4417 TemplateName Name = Arg.getArgument().getAsTemplate(); 4418 TemplateDecl *Template = Name.getAsTemplateDecl(); 4419 if (!Template) { 4420 // Any dependent template name is fine. 4421 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4422 return false; 4423 } 4424 4425 // C++0x [temp.arg.template]p1: 4426 // A template-argument for a template template-parameter shall be 4427 // the name of a class template or an alias template, expressed as an 4428 // id-expression. When the template-argument names a class template, only 4429 // primary class templates are considered when matching the 4430 // template template argument with the corresponding parameter; 4431 // partial specializations are not considered even if their 4432 // parameter lists match that of the template template parameter. 4433 // 4434 // Note that we also allow template template parameters here, which 4435 // will happen when we are dealing with, e.g., class template 4436 // partial specializations. 4437 if (!isa<ClassTemplateDecl>(Template) && 4438 !isa<TemplateTemplateParmDecl>(Template) && 4439 !isa<TypeAliasTemplateDecl>(Template)) { 4440 assert(isa<FunctionTemplateDecl>(Template) && 4441 "Only function templates are possible here"); 4442 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4443 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4444 << Template; 4445 } 4446 4447 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4448 Param->getTemplateParameters(), 4449 true, 4450 TPL_TemplateTemplateArgumentMatch, 4451 Arg.getLocation()); 4452} 4453 4454/// \brief Given a non-type template argument that refers to a 4455/// declaration and the type of its corresponding non-type template 4456/// parameter, produce an expression that properly refers to that 4457/// declaration. 4458ExprResult 4459Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4460 QualType ParamType, 4461 SourceLocation Loc) { 4462 assert(Arg.getKind() == TemplateArgument::Declaration && 4463 "Only declaration template arguments permitted here"); 4464 4465 // For a NULL non-type template argument, return nullptr casted to the 4466 // parameter's type. 4467 if (!Arg.getAsDecl()) { 4468 return ImpCastExprToType( 4469 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4470 ParamType, 4471 ParamType->getAs<MemberPointerType>() 4472 ? CK_NullToMemberPointer 4473 : CK_NullToPointer); 4474 } 4475 4476 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4477 4478 if (VD->getDeclContext()->isRecord() && 4479 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4480 // If the value is a class member, we might have a pointer-to-member. 4481 // Determine whether the non-type template template parameter is of 4482 // pointer-to-member type. If so, we need to build an appropriate 4483 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4484 // would refer to the member itself. 4485 if (ParamType->isMemberPointerType()) { 4486 QualType ClassType 4487 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4488 NestedNameSpecifier *Qualifier 4489 = NestedNameSpecifier::Create(Context, 0, false, 4490 ClassType.getTypePtr()); 4491 CXXScopeSpec SS; 4492 SS.MakeTrivial(Context, Qualifier, Loc); 4493 4494 // The actual value-ness of this is unimportant, but for 4495 // internal consistency's sake, references to instance methods 4496 // are r-values. 4497 ExprValueKind VK = VK_LValue; 4498 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4499 VK = VK_RValue; 4500 4501 ExprResult RefExpr = BuildDeclRefExpr(VD, 4502 VD->getType().getNonReferenceType(), 4503 VK, 4504 Loc, 4505 &SS); 4506 if (RefExpr.isInvalid()) 4507 return ExprError(); 4508 4509 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4510 4511 // We might need to perform a trailing qualification conversion, since 4512 // the element type on the parameter could be more qualified than the 4513 // element type in the expression we constructed. 4514 bool ObjCLifetimeConversion; 4515 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4516 ParamType.getUnqualifiedType(), false, 4517 ObjCLifetimeConversion)) 4518 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4519 4520 assert(!RefExpr.isInvalid() && 4521 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4522 ParamType.getUnqualifiedType())); 4523 return move(RefExpr); 4524 } 4525 } 4526 4527 QualType T = VD->getType().getNonReferenceType(); 4528 if (ParamType->isPointerType()) { 4529 // When the non-type template parameter is a pointer, take the 4530 // address of the declaration. 4531 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4532 if (RefExpr.isInvalid()) 4533 return ExprError(); 4534 4535 if (T->isFunctionType() || T->isArrayType()) { 4536 // Decay functions and arrays. 4537 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4538 if (RefExpr.isInvalid()) 4539 return ExprError(); 4540 4541 return move(RefExpr); 4542 } 4543 4544 // Take the address of everything else 4545 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4546 } 4547 4548 ExprValueKind VK = VK_RValue; 4549 4550 // If the non-type template parameter has reference type, qualify the 4551 // resulting declaration reference with the extra qualifiers on the 4552 // type that the reference refers to. 4553 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4554 VK = VK_LValue; 4555 T = Context.getQualifiedType(T, 4556 TargetRef->getPointeeType().getQualifiers()); 4557 } 4558 4559 return BuildDeclRefExpr(VD, T, VK, Loc); 4560} 4561 4562/// \brief Construct a new expression that refers to the given 4563/// integral template argument with the given source-location 4564/// information. 4565/// 4566/// This routine takes care of the mapping from an integral template 4567/// argument (which may have any integral type) to the appropriate 4568/// literal value. 4569ExprResult 4570Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4571 SourceLocation Loc) { 4572 assert(Arg.getKind() == TemplateArgument::Integral && 4573 "Operation is only valid for integral template arguments"); 4574 QualType T = Arg.getIntegralType(); 4575 if (T->isAnyCharacterType()) { 4576 CharacterLiteral::CharacterKind Kind; 4577 if (T->isWideCharType()) 4578 Kind = CharacterLiteral::Wide; 4579 else if (T->isChar16Type()) 4580 Kind = CharacterLiteral::UTF16; 4581 else if (T->isChar32Type()) 4582 Kind = CharacterLiteral::UTF32; 4583 else 4584 Kind = CharacterLiteral::Ascii; 4585 4586 return Owned(new (Context) CharacterLiteral( 4587 Arg.getAsIntegral().getZExtValue(), 4588 Kind, T, Loc)); 4589 } 4590 4591 if (T->isBooleanType()) 4592 return Owned(new (Context) CXXBoolLiteralExpr( 4593 Arg.getAsIntegral().getBoolValue(), 4594 T, Loc)); 4595 4596 if (T->isNullPtrType()) 4597 return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); 4598 4599 // If this is an enum type that we're instantiating, we need to use an integer 4600 // type the same size as the enumerator. We don't want to build an 4601 // IntegerLiteral with enum type. 4602 QualType BT; 4603 if (const EnumType *ET = T->getAs<EnumType>()) 4604 BT = ET->getDecl()->getIntegerType(); 4605 else 4606 BT = T; 4607 4608 Expr *E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), BT, Loc); 4609 if (T->isEnumeralType()) { 4610 // FIXME: This is a hack. We need a better way to handle substituted 4611 // non-type template parameters. 4612 E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0, 4613 Context.getTrivialTypeSourceInfo(T, Loc), 4614 Loc, Loc); 4615 } 4616 4617 return Owned(E); 4618} 4619 4620/// \brief Match two template parameters within template parameter lists. 4621static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4622 bool Complain, 4623 Sema::TemplateParameterListEqualKind Kind, 4624 SourceLocation TemplateArgLoc) { 4625 // Check the actual kind (type, non-type, template). 4626 if (Old->getKind() != New->getKind()) { 4627 if (Complain) { 4628 unsigned NextDiag = diag::err_template_param_different_kind; 4629 if (TemplateArgLoc.isValid()) { 4630 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4631 NextDiag = diag::note_template_param_different_kind; 4632 } 4633 S.Diag(New->getLocation(), NextDiag) 4634 << (Kind != Sema::TPL_TemplateMatch); 4635 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4636 << (Kind != Sema::TPL_TemplateMatch); 4637 } 4638 4639 return false; 4640 } 4641 4642 // Check that both are parameter packs are neither are parameter packs. 4643 // However, if we are matching a template template argument to a 4644 // template template parameter, the template template parameter can have 4645 // a parameter pack where the template template argument does not. 4646 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4647 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4648 Old->isTemplateParameterPack())) { 4649 if (Complain) { 4650 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4651 if (TemplateArgLoc.isValid()) { 4652 S.Diag(TemplateArgLoc, 4653 diag::err_template_arg_template_params_mismatch); 4654 NextDiag = diag::note_template_parameter_pack_non_pack; 4655 } 4656 4657 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4658 : isa<NonTypeTemplateParmDecl>(New)? 1 4659 : 2; 4660 S.Diag(New->getLocation(), NextDiag) 4661 << ParamKind << New->isParameterPack(); 4662 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4663 << ParamKind << Old->isParameterPack(); 4664 } 4665 4666 return false; 4667 } 4668 4669 // For non-type template parameters, check the type of the parameter. 4670 if (NonTypeTemplateParmDecl *OldNTTP 4671 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4672 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4673 4674 // If we are matching a template template argument to a template 4675 // template parameter and one of the non-type template parameter types 4676 // is dependent, then we must wait until template instantiation time 4677 // to actually compare the arguments. 4678 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4679 (OldNTTP->getType()->isDependentType() || 4680 NewNTTP->getType()->isDependentType())) 4681 return true; 4682 4683 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4684 if (Complain) { 4685 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4686 if (TemplateArgLoc.isValid()) { 4687 S.Diag(TemplateArgLoc, 4688 diag::err_template_arg_template_params_mismatch); 4689 NextDiag = diag::note_template_nontype_parm_different_type; 4690 } 4691 S.Diag(NewNTTP->getLocation(), NextDiag) 4692 << NewNTTP->getType() 4693 << (Kind != Sema::TPL_TemplateMatch); 4694 S.Diag(OldNTTP->getLocation(), 4695 diag::note_template_nontype_parm_prev_declaration) 4696 << OldNTTP->getType(); 4697 } 4698 4699 return false; 4700 } 4701 4702 return true; 4703 } 4704 4705 // For template template parameters, check the template parameter types. 4706 // The template parameter lists of template template 4707 // parameters must agree. 4708 if (TemplateTemplateParmDecl *OldTTP 4709 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4710 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4711 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4712 OldTTP->getTemplateParameters(), 4713 Complain, 4714 (Kind == Sema::TPL_TemplateMatch 4715 ? Sema::TPL_TemplateTemplateParmMatch 4716 : Kind), 4717 TemplateArgLoc); 4718 } 4719 4720 return true; 4721} 4722 4723/// \brief Diagnose a known arity mismatch when comparing template argument 4724/// lists. 4725static 4726void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4727 TemplateParameterList *New, 4728 TemplateParameterList *Old, 4729 Sema::TemplateParameterListEqualKind Kind, 4730 SourceLocation TemplateArgLoc) { 4731 unsigned NextDiag = diag::err_template_param_list_different_arity; 4732 if (TemplateArgLoc.isValid()) { 4733 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4734 NextDiag = diag::note_template_param_list_different_arity; 4735 } 4736 S.Diag(New->getTemplateLoc(), NextDiag) 4737 << (New->size() > Old->size()) 4738 << (Kind != Sema::TPL_TemplateMatch) 4739 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4740 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4741 << (Kind != Sema::TPL_TemplateMatch) 4742 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4743} 4744 4745/// \brief Determine whether the given template parameter lists are 4746/// equivalent. 4747/// 4748/// \param New The new template parameter list, typically written in the 4749/// source code as part of a new template declaration. 4750/// 4751/// \param Old The old template parameter list, typically found via 4752/// name lookup of the template declared with this template parameter 4753/// list. 4754/// 4755/// \param Complain If true, this routine will produce a diagnostic if 4756/// the template parameter lists are not equivalent. 4757/// 4758/// \param Kind describes how we are to match the template parameter lists. 4759/// 4760/// \param TemplateArgLoc If this source location is valid, then we 4761/// are actually checking the template parameter list of a template 4762/// argument (New) against the template parameter list of its 4763/// corresponding template template parameter (Old). We produce 4764/// slightly different diagnostics in this scenario. 4765/// 4766/// \returns True if the template parameter lists are equal, false 4767/// otherwise. 4768bool 4769Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4770 TemplateParameterList *Old, 4771 bool Complain, 4772 TemplateParameterListEqualKind Kind, 4773 SourceLocation TemplateArgLoc) { 4774 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4775 if (Complain) 4776 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4777 TemplateArgLoc); 4778 4779 return false; 4780 } 4781 4782 // C++0x [temp.arg.template]p3: 4783 // A template-argument matches a template template-parameter (call it P) 4784 // when each of the template parameters in the template-parameter-list of 4785 // the template-argument's corresponding class template or alias template 4786 // (call it A) matches the corresponding template parameter in the 4787 // template-parameter-list of P. [...] 4788 TemplateParameterList::iterator NewParm = New->begin(); 4789 TemplateParameterList::iterator NewParmEnd = New->end(); 4790 for (TemplateParameterList::iterator OldParm = Old->begin(), 4791 OldParmEnd = Old->end(); 4792 OldParm != OldParmEnd; ++OldParm) { 4793 if (Kind != TPL_TemplateTemplateArgumentMatch || 4794 !(*OldParm)->isTemplateParameterPack()) { 4795 if (NewParm == NewParmEnd) { 4796 if (Complain) 4797 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4798 TemplateArgLoc); 4799 4800 return false; 4801 } 4802 4803 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4804 Kind, TemplateArgLoc)) 4805 return false; 4806 4807 ++NewParm; 4808 continue; 4809 } 4810 4811 // C++0x [temp.arg.template]p3: 4812 // [...] When P's template- parameter-list contains a template parameter 4813 // pack (14.5.3), the template parameter pack will match zero or more 4814 // template parameters or template parameter packs in the 4815 // template-parameter-list of A with the same type and form as the 4816 // template parameter pack in P (ignoring whether those template 4817 // parameters are template parameter packs). 4818 for (; NewParm != NewParmEnd; ++NewParm) { 4819 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4820 Kind, TemplateArgLoc)) 4821 return false; 4822 } 4823 } 4824 4825 // Make sure we exhausted all of the arguments. 4826 if (NewParm != NewParmEnd) { 4827 if (Complain) 4828 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4829 TemplateArgLoc); 4830 4831 return false; 4832 } 4833 4834 return true; 4835} 4836 4837/// \brief Check whether a template can be declared within this scope. 4838/// 4839/// If the template declaration is valid in this scope, returns 4840/// false. Otherwise, issues a diagnostic and returns true. 4841bool 4842Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4843 if (!S) 4844 return false; 4845 4846 // Find the nearest enclosing declaration scope. 4847 while ((S->getFlags() & Scope::DeclScope) == 0 || 4848 (S->getFlags() & Scope::TemplateParamScope) != 0) 4849 S = S->getParent(); 4850 4851 // C++ [temp]p2: 4852 // A template-declaration can appear only as a namespace scope or 4853 // class scope declaration. 4854 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4855 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4856 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4857 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4858 << TemplateParams->getSourceRange(); 4859 4860 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4861 Ctx = Ctx->getParent(); 4862 4863 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4864 return false; 4865 4866 return Diag(TemplateParams->getTemplateLoc(), 4867 diag::err_template_outside_namespace_or_class_scope) 4868 << TemplateParams->getSourceRange(); 4869} 4870 4871/// \brief Determine what kind of template specialization the given declaration 4872/// is. 4873static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4874 if (!D) 4875 return TSK_Undeclared; 4876 4877 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4878 return Record->getTemplateSpecializationKind(); 4879 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4880 return Function->getTemplateSpecializationKind(); 4881 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4882 return Var->getTemplateSpecializationKind(); 4883 4884 return TSK_Undeclared; 4885} 4886 4887/// \brief Check whether a specialization is well-formed in the current 4888/// context. 4889/// 4890/// This routine determines whether a template specialization can be declared 4891/// in the current context (C++ [temp.expl.spec]p2). 4892/// 4893/// \param S the semantic analysis object for which this check is being 4894/// performed. 4895/// 4896/// \param Specialized the entity being specialized or instantiated, which 4897/// may be a kind of template (class template, function template, etc.) or 4898/// a member of a class template (member function, static data member, 4899/// member class). 4900/// 4901/// \param PrevDecl the previous declaration of this entity, if any. 4902/// 4903/// \param Loc the location of the explicit specialization or instantiation of 4904/// this entity. 4905/// 4906/// \param IsPartialSpecialization whether this is a partial specialization of 4907/// a class template. 4908/// 4909/// \returns true if there was an error that we cannot recover from, false 4910/// otherwise. 4911static bool CheckTemplateSpecializationScope(Sema &S, 4912 NamedDecl *Specialized, 4913 NamedDecl *PrevDecl, 4914 SourceLocation Loc, 4915 bool IsPartialSpecialization) { 4916 // Keep these "kind" numbers in sync with the %select statements in the 4917 // various diagnostics emitted by this routine. 4918 int EntityKind = 0; 4919 if (isa<ClassTemplateDecl>(Specialized)) 4920 EntityKind = IsPartialSpecialization? 1 : 0; 4921 else if (isa<FunctionTemplateDecl>(Specialized)) 4922 EntityKind = 2; 4923 else if (isa<CXXMethodDecl>(Specialized)) 4924 EntityKind = 3; 4925 else if (isa<VarDecl>(Specialized)) 4926 EntityKind = 4; 4927 else if (isa<RecordDecl>(Specialized)) 4928 EntityKind = 5; 4929 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x) 4930 EntityKind = 6; 4931 else { 4932 S.Diag(Loc, diag::err_template_spec_unknown_kind) 4933 << S.getLangOpts().CPlusPlus0x; 4934 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4935 return true; 4936 } 4937 4938 // C++ [temp.expl.spec]p2: 4939 // An explicit specialization shall be declared in the namespace 4940 // of which the template is a member, or, for member templates, in 4941 // the namespace of which the enclosing class or enclosing class 4942 // template is a member. An explicit specialization of a member 4943 // function, member class or static data member of a class 4944 // template shall be declared in the namespace of which the class 4945 // template is a member. Such a declaration may also be a 4946 // definition. If the declaration is not a definition, the 4947 // specialization may be defined later in the name- space in which 4948 // the explicit specialization was declared, or in a namespace 4949 // that encloses the one in which the explicit specialization was 4950 // declared. 4951 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 4952 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 4953 << Specialized; 4954 return true; 4955 } 4956 4957 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 4958 if (S.getLangOpts().MicrosoftExt) { 4959 // Do not warn for class scope explicit specialization during 4960 // instantiation, warning was already emitted during pattern 4961 // semantic analysis. 4962 if (!S.ActiveTemplateInstantiations.size()) 4963 S.Diag(Loc, diag::ext_function_specialization_in_class) 4964 << Specialized; 4965 } else { 4966 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4967 << Specialized; 4968 return true; 4969 } 4970 } 4971 4972 if (S.CurContext->isRecord() && 4973 !S.CurContext->Equals(Specialized->getDeclContext())) { 4974 // Make sure that we're specializing in the right record context. 4975 // Otherwise, things can go horribly wrong. 4976 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 4977 << Specialized; 4978 return true; 4979 } 4980 4981 // C++ [temp.class.spec]p6: 4982 // A class template partial specialization may be declared or redeclared 4983 // in any namespace scope in which its definition may be defined (14.5.1 4984 // and 14.5.2). 4985 bool ComplainedAboutScope = false; 4986 DeclContext *SpecializedContext 4987 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 4988 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 4989 if ((!PrevDecl || 4990 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 4991 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 4992 // C++ [temp.exp.spec]p2: 4993 // An explicit specialization shall be declared in the namespace of which 4994 // the template is a member, or, for member templates, in the namespace 4995 // of which the enclosing class or enclosing class template is a member. 4996 // An explicit specialization of a member function, member class or 4997 // static data member of a class template shall be declared in the 4998 // namespace of which the class template is a member. 4999 // 5000 // C++0x [temp.expl.spec]p2: 5001 // An explicit specialization shall be declared in a namespace enclosing 5002 // the specialized template. 5003 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5004 bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext); 5005 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5006 assert(!IsCPlusPlus0xExtension && 5007 "DC encloses TU but isn't in enclosing namespace set"); 5008 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5009 << EntityKind << Specialized; 5010 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5011 int Diag; 5012 if (!IsCPlusPlus0xExtension) 5013 Diag = diag::err_template_spec_decl_out_of_scope; 5014 else if (!S.getLangOpts().CPlusPlus0x) 5015 Diag = diag::ext_template_spec_decl_out_of_scope; 5016 else 5017 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5018 S.Diag(Loc, Diag) 5019 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5020 } 5021 5022 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5023 ComplainedAboutScope = 5024 !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x); 5025 } 5026 } 5027 5028 // Make sure that this redeclaration (or definition) occurs in an enclosing 5029 // namespace. 5030 // Note that HandleDeclarator() performs this check for explicit 5031 // specializations of function templates, static data members, and member 5032 // functions, so we skip the check here for those kinds of entities. 5033 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5034 // Should we refactor that check, so that it occurs later? 5035 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 5036 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 5037 isa<FunctionDecl>(Specialized))) { 5038 if (isa<TranslationUnitDecl>(SpecializedContext)) 5039 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5040 << EntityKind << Specialized; 5041 else if (isa<NamespaceDecl>(SpecializedContext)) 5042 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 5043 << EntityKind << Specialized 5044 << cast<NamedDecl>(SpecializedContext); 5045 5046 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5047 } 5048 5049 // FIXME: check for specialization-after-instantiation errors and such. 5050 5051 return false; 5052} 5053 5054/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 5055/// that checks non-type template partial specialization arguments. 5056static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 5057 NonTypeTemplateParmDecl *Param, 5058 const TemplateArgument *Args, 5059 unsigned NumArgs) { 5060 for (unsigned I = 0; I != NumArgs; ++I) { 5061 if (Args[I].getKind() == TemplateArgument::Pack) { 5062 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5063 Args[I].pack_begin(), 5064 Args[I].pack_size())) 5065 return true; 5066 5067 continue; 5068 } 5069 5070 Expr *ArgExpr = Args[I].getAsExpr(); 5071 if (!ArgExpr) { 5072 continue; 5073 } 5074 5075 // We can have a pack expansion of any of the bullets below. 5076 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 5077 ArgExpr = Expansion->getPattern(); 5078 5079 // Strip off any implicit casts we added as part of type checking. 5080 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 5081 ArgExpr = ICE->getSubExpr(); 5082 5083 // C++ [temp.class.spec]p8: 5084 // A non-type argument is non-specialized if it is the name of a 5085 // non-type parameter. All other non-type arguments are 5086 // specialized. 5087 // 5088 // Below, we check the two conditions that only apply to 5089 // specialized non-type arguments, so skip any non-specialized 5090 // arguments. 5091 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5092 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5093 continue; 5094 5095 // C++ [temp.class.spec]p9: 5096 // Within the argument list of a class template partial 5097 // specialization, the following restrictions apply: 5098 // -- A partially specialized non-type argument expression 5099 // shall not involve a template parameter of the partial 5100 // specialization except when the argument expression is a 5101 // simple identifier. 5102 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5103 S.Diag(ArgExpr->getLocStart(), 5104 diag::err_dependent_non_type_arg_in_partial_spec) 5105 << ArgExpr->getSourceRange(); 5106 return true; 5107 } 5108 5109 // -- The type of a template parameter corresponding to a 5110 // specialized non-type argument shall not be dependent on a 5111 // parameter of the specialization. 5112 if (Param->getType()->isDependentType()) { 5113 S.Diag(ArgExpr->getLocStart(), 5114 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5115 << Param->getType() 5116 << ArgExpr->getSourceRange(); 5117 S.Diag(Param->getLocation(), diag::note_template_param_here); 5118 return true; 5119 } 5120 } 5121 5122 return false; 5123} 5124 5125/// \brief Check the non-type template arguments of a class template 5126/// partial specialization according to C++ [temp.class.spec]p9. 5127/// 5128/// \param TemplateParams the template parameters of the primary class 5129/// template. 5130/// 5131/// \param TemplateArgs the template arguments of the class template 5132/// partial specialization. 5133/// 5134/// \returns true if there was an error, false otherwise. 5135static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 5136 TemplateParameterList *TemplateParams, 5137 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5138 const TemplateArgument *ArgList = TemplateArgs.data(); 5139 5140 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5141 NonTypeTemplateParmDecl *Param 5142 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5143 if (!Param) 5144 continue; 5145 5146 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5147 &ArgList[I], 1)) 5148 return true; 5149 } 5150 5151 return false; 5152} 5153 5154DeclResult 5155Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5156 TagUseKind TUK, 5157 SourceLocation KWLoc, 5158 SourceLocation ModulePrivateLoc, 5159 CXXScopeSpec &SS, 5160 TemplateTy TemplateD, 5161 SourceLocation TemplateNameLoc, 5162 SourceLocation LAngleLoc, 5163 ASTTemplateArgsPtr TemplateArgsIn, 5164 SourceLocation RAngleLoc, 5165 AttributeList *Attr, 5166 MultiTemplateParamsArg TemplateParameterLists) { 5167 assert(TUK != TUK_Reference && "References are not specializations"); 5168 5169 // NOTE: KWLoc is the location of the tag keyword. This will instead 5170 // store the location of the outermost template keyword in the declaration. 5171 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5172 ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation(); 5173 5174 // Find the class template we're specializing 5175 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5176 ClassTemplateDecl *ClassTemplate 5177 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5178 5179 if (!ClassTemplate) { 5180 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5181 << (Name.getAsTemplateDecl() && 5182 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5183 return true; 5184 } 5185 5186 bool isExplicitSpecialization = false; 5187 bool isPartialSpecialization = false; 5188 5189 // Check the validity of the template headers that introduce this 5190 // template. 5191 // FIXME: We probably shouldn't complain about these headers for 5192 // friend declarations. 5193 bool Invalid = false; 5194 TemplateParameterList *TemplateParams 5195 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 5196 TemplateNameLoc, 5197 SS, 5198 (TemplateParameterList**)TemplateParameterLists.get(), 5199 TemplateParameterLists.size(), 5200 TUK == TUK_Friend, 5201 isExplicitSpecialization, 5202 Invalid); 5203 if (Invalid) 5204 return true; 5205 5206 if (TemplateParams && TemplateParams->size() > 0) { 5207 isPartialSpecialization = true; 5208 5209 if (TUK == TUK_Friend) { 5210 Diag(KWLoc, diag::err_partial_specialization_friend) 5211 << SourceRange(LAngleLoc, RAngleLoc); 5212 return true; 5213 } 5214 5215 // C++ [temp.class.spec]p10: 5216 // The template parameter list of a specialization shall not 5217 // contain default template argument values. 5218 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5219 Decl *Param = TemplateParams->getParam(I); 5220 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5221 if (TTP->hasDefaultArgument()) { 5222 Diag(TTP->getDefaultArgumentLoc(), 5223 diag::err_default_arg_in_partial_spec); 5224 TTP->removeDefaultArgument(); 5225 } 5226 } else if (NonTypeTemplateParmDecl *NTTP 5227 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5228 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5229 Diag(NTTP->getDefaultArgumentLoc(), 5230 diag::err_default_arg_in_partial_spec) 5231 << DefArg->getSourceRange(); 5232 NTTP->removeDefaultArgument(); 5233 } 5234 } else { 5235 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5236 if (TTP->hasDefaultArgument()) { 5237 Diag(TTP->getDefaultArgument().getLocation(), 5238 diag::err_default_arg_in_partial_spec) 5239 << TTP->getDefaultArgument().getSourceRange(); 5240 TTP->removeDefaultArgument(); 5241 } 5242 } 5243 } 5244 } else if (TemplateParams) { 5245 if (TUK == TUK_Friend) 5246 Diag(KWLoc, diag::err_template_spec_friend) 5247 << FixItHint::CreateRemoval( 5248 SourceRange(TemplateParams->getTemplateLoc(), 5249 TemplateParams->getRAngleLoc())) 5250 << SourceRange(LAngleLoc, RAngleLoc); 5251 else 5252 isExplicitSpecialization = true; 5253 } else if (TUK != TUK_Friend) { 5254 Diag(KWLoc, diag::err_template_spec_needs_header) 5255 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5256 isExplicitSpecialization = true; 5257 } 5258 5259 // Check that the specialization uses the same tag kind as the 5260 // original template. 5261 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5262 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5263 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5264 Kind, TUK == TUK_Definition, KWLoc, 5265 *ClassTemplate->getIdentifier())) { 5266 Diag(KWLoc, diag::err_use_with_wrong_tag) 5267 << ClassTemplate 5268 << FixItHint::CreateReplacement(KWLoc, 5269 ClassTemplate->getTemplatedDecl()->getKindName()); 5270 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5271 diag::note_previous_use); 5272 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5273 } 5274 5275 // Translate the parser's template argument list in our AST format. 5276 TemplateArgumentListInfo TemplateArgs; 5277 TemplateArgs.setLAngleLoc(LAngleLoc); 5278 TemplateArgs.setRAngleLoc(RAngleLoc); 5279 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5280 5281 // Check for unexpanded parameter packs in any of the template arguments. 5282 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5283 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5284 UPPC_PartialSpecialization)) 5285 return true; 5286 5287 // Check that the template argument list is well-formed for this 5288 // template. 5289 SmallVector<TemplateArgument, 4> Converted; 5290 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5291 TemplateArgs, false, Converted)) 5292 return true; 5293 5294 // Find the class template (partial) specialization declaration that 5295 // corresponds to these arguments. 5296 if (isPartialSpecialization) { 5297 if (CheckClassTemplatePartialSpecializationArgs(*this, 5298 ClassTemplate->getTemplateParameters(), 5299 Converted)) 5300 return true; 5301 5302 bool InstantiationDependent; 5303 if (!Name.isDependent() && 5304 !TemplateSpecializationType::anyDependentTemplateArguments( 5305 TemplateArgs.getArgumentArray(), 5306 TemplateArgs.size(), 5307 InstantiationDependent)) { 5308 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5309 << ClassTemplate->getDeclName(); 5310 isPartialSpecialization = false; 5311 } 5312 } 5313 5314 void *InsertPos = 0; 5315 ClassTemplateSpecializationDecl *PrevDecl = 0; 5316 5317 if (isPartialSpecialization) 5318 // FIXME: Template parameter list matters, too 5319 PrevDecl 5320 = ClassTemplate->findPartialSpecialization(Converted.data(), 5321 Converted.size(), 5322 InsertPos); 5323 else 5324 PrevDecl 5325 = ClassTemplate->findSpecialization(Converted.data(), 5326 Converted.size(), InsertPos); 5327 5328 ClassTemplateSpecializationDecl *Specialization = 0; 5329 5330 // Check whether we can declare a class template specialization in 5331 // the current scope. 5332 if (TUK != TUK_Friend && 5333 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5334 TemplateNameLoc, 5335 isPartialSpecialization)) 5336 return true; 5337 5338 // The canonical type 5339 QualType CanonType; 5340 if (PrevDecl && 5341 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5342 TUK == TUK_Friend)) { 5343 // Since the only prior class template specialization with these 5344 // arguments was referenced but not declared, or we're only 5345 // referencing this specialization as a friend, reuse that 5346 // declaration node as our own, updating its source location and 5347 // the list of outer template parameters to reflect our new declaration. 5348 Specialization = PrevDecl; 5349 Specialization->setLocation(TemplateNameLoc); 5350 if (TemplateParameterLists.size() > 0) { 5351 Specialization->setTemplateParameterListsInfo(Context, 5352 TemplateParameterLists.size(), 5353 (TemplateParameterList**) TemplateParameterLists.release()); 5354 } 5355 PrevDecl = 0; 5356 CanonType = Context.getTypeDeclType(Specialization); 5357 } else if (isPartialSpecialization) { 5358 // Build the canonical type that describes the converted template 5359 // arguments of the class template partial specialization. 5360 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5361 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5362 Converted.data(), 5363 Converted.size()); 5364 5365 if (Context.hasSameType(CanonType, 5366 ClassTemplate->getInjectedClassNameSpecialization())) { 5367 // C++ [temp.class.spec]p9b3: 5368 // 5369 // -- The argument list of the specialization shall not be identical 5370 // to the implicit argument list of the primary template. 5371 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5372 << (TUK == TUK_Definition) 5373 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5374 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5375 ClassTemplate->getIdentifier(), 5376 TemplateNameLoc, 5377 Attr, 5378 TemplateParams, 5379 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5380 TemplateParameterLists.size() - 1, 5381 (TemplateParameterList**) TemplateParameterLists.release()); 5382 } 5383 5384 // Create a new class template partial specialization declaration node. 5385 ClassTemplatePartialSpecializationDecl *PrevPartial 5386 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5387 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5388 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5389 ClassTemplatePartialSpecializationDecl *Partial 5390 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5391 ClassTemplate->getDeclContext(), 5392 KWLoc, TemplateNameLoc, 5393 TemplateParams, 5394 ClassTemplate, 5395 Converted.data(), 5396 Converted.size(), 5397 TemplateArgs, 5398 CanonType, 5399 PrevPartial, 5400 SequenceNumber); 5401 SetNestedNameSpecifier(Partial, SS); 5402 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5403 Partial->setTemplateParameterListsInfo(Context, 5404 TemplateParameterLists.size() - 1, 5405 (TemplateParameterList**) TemplateParameterLists.release()); 5406 } 5407 5408 if (!PrevPartial) 5409 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5410 Specialization = Partial; 5411 5412 // If we are providing an explicit specialization of a member class 5413 // template specialization, make a note of that. 5414 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5415 PrevPartial->setMemberSpecialization(); 5416 5417 // Check that all of the template parameters of the class template 5418 // partial specialization are deducible from the template 5419 // arguments. If not, this class template partial specialization 5420 // will never be used. 5421 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5422 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5423 TemplateParams->getDepth(), 5424 DeducibleParams); 5425 5426 if (!DeducibleParams.all()) { 5427 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5428 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5429 << (NumNonDeducible > 1) 5430 << SourceRange(TemplateNameLoc, RAngleLoc); 5431 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5432 if (!DeducibleParams[I]) { 5433 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5434 if (Param->getDeclName()) 5435 Diag(Param->getLocation(), 5436 diag::note_partial_spec_unused_parameter) 5437 << Param->getDeclName(); 5438 else 5439 Diag(Param->getLocation(), 5440 diag::note_partial_spec_unused_parameter) 5441 << "<anonymous>"; 5442 } 5443 } 5444 } 5445 } else { 5446 // Create a new class template specialization declaration node for 5447 // this explicit specialization or friend declaration. 5448 Specialization 5449 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5450 ClassTemplate->getDeclContext(), 5451 KWLoc, TemplateNameLoc, 5452 ClassTemplate, 5453 Converted.data(), 5454 Converted.size(), 5455 PrevDecl); 5456 SetNestedNameSpecifier(Specialization, SS); 5457 if (TemplateParameterLists.size() > 0) { 5458 Specialization->setTemplateParameterListsInfo(Context, 5459 TemplateParameterLists.size(), 5460 (TemplateParameterList**) TemplateParameterLists.release()); 5461 } 5462 5463 if (!PrevDecl) 5464 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5465 5466 CanonType = Context.getTypeDeclType(Specialization); 5467 } 5468 5469 // C++ [temp.expl.spec]p6: 5470 // If a template, a member template or the member of a class template is 5471 // explicitly specialized then that specialization shall be declared 5472 // before the first use of that specialization that would cause an implicit 5473 // instantiation to take place, in every translation unit in which such a 5474 // use occurs; no diagnostic is required. 5475 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5476 bool Okay = false; 5477 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5478 // Is there any previous explicit specialization declaration? 5479 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5480 Okay = true; 5481 break; 5482 } 5483 } 5484 5485 if (!Okay) { 5486 SourceRange Range(TemplateNameLoc, RAngleLoc); 5487 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5488 << Context.getTypeDeclType(Specialization) << Range; 5489 5490 Diag(PrevDecl->getPointOfInstantiation(), 5491 diag::note_instantiation_required_here) 5492 << (PrevDecl->getTemplateSpecializationKind() 5493 != TSK_ImplicitInstantiation); 5494 return true; 5495 } 5496 } 5497 5498 // If this is not a friend, note that this is an explicit specialization. 5499 if (TUK != TUK_Friend) 5500 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5501 5502 // Check that this isn't a redefinition of this specialization. 5503 if (TUK == TUK_Definition) { 5504 if (RecordDecl *Def = Specialization->getDefinition()) { 5505 SourceRange Range(TemplateNameLoc, RAngleLoc); 5506 Diag(TemplateNameLoc, diag::err_redefinition) 5507 << Context.getTypeDeclType(Specialization) << Range; 5508 Diag(Def->getLocation(), diag::note_previous_definition); 5509 Specialization->setInvalidDecl(); 5510 return true; 5511 } 5512 } 5513 5514 if (Attr) 5515 ProcessDeclAttributeList(S, Specialization, Attr); 5516 5517 if (ModulePrivateLoc.isValid()) 5518 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5519 << (isPartialSpecialization? 1 : 0) 5520 << FixItHint::CreateRemoval(ModulePrivateLoc); 5521 5522 // Build the fully-sugared type for this class template 5523 // specialization as the user wrote in the specialization 5524 // itself. This means that we'll pretty-print the type retrieved 5525 // from the specialization's declaration the way that the user 5526 // actually wrote the specialization, rather than formatting the 5527 // name based on the "canonical" representation used to store the 5528 // template arguments in the specialization. 5529 TypeSourceInfo *WrittenTy 5530 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5531 TemplateArgs, CanonType); 5532 if (TUK != TUK_Friend) { 5533 Specialization->setTypeAsWritten(WrittenTy); 5534 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5535 } 5536 TemplateArgsIn.release(); 5537 5538 // C++ [temp.expl.spec]p9: 5539 // A template explicit specialization is in the scope of the 5540 // namespace in which the template was defined. 5541 // 5542 // We actually implement this paragraph where we set the semantic 5543 // context (in the creation of the ClassTemplateSpecializationDecl), 5544 // but we also maintain the lexical context where the actual 5545 // definition occurs. 5546 Specialization->setLexicalDeclContext(CurContext); 5547 5548 // We may be starting the definition of this specialization. 5549 if (TUK == TUK_Definition) 5550 Specialization->startDefinition(); 5551 5552 if (TUK == TUK_Friend) { 5553 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5554 TemplateNameLoc, 5555 WrittenTy, 5556 /*FIXME:*/KWLoc); 5557 Friend->setAccess(AS_public); 5558 CurContext->addDecl(Friend); 5559 } else { 5560 // Add the specialization into its lexical context, so that it can 5561 // be seen when iterating through the list of declarations in that 5562 // context. However, specializations are not found by name lookup. 5563 CurContext->addDecl(Specialization); 5564 } 5565 return Specialization; 5566} 5567 5568Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5569 MultiTemplateParamsArg TemplateParameterLists, 5570 Declarator &D) { 5571 return HandleDeclarator(S, D, move(TemplateParameterLists)); 5572} 5573 5574Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5575 MultiTemplateParamsArg TemplateParameterLists, 5576 Declarator &D) { 5577 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5578 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5579 5580 if (FTI.hasPrototype) { 5581 // FIXME: Diagnose arguments without names in C. 5582 } 5583 5584 Scope *ParentScope = FnBodyScope->getParent(); 5585 5586 D.setFunctionDefinitionKind(FDK_Definition); 5587 Decl *DP = HandleDeclarator(ParentScope, D, 5588 move(TemplateParameterLists)); 5589 if (FunctionTemplateDecl *FunctionTemplate 5590 = dyn_cast_or_null<FunctionTemplateDecl>(DP)) 5591 return ActOnStartOfFunctionDef(FnBodyScope, 5592 FunctionTemplate->getTemplatedDecl()); 5593 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP)) 5594 return ActOnStartOfFunctionDef(FnBodyScope, Function); 5595 return 0; 5596} 5597 5598/// \brief Strips various properties off an implicit instantiation 5599/// that has just been explicitly specialized. 5600static void StripImplicitInstantiation(NamedDecl *D) { 5601 // FIXME: "make check" is clean if the call to dropAttrs() is commented out. 5602 D->dropAttrs(); 5603 5604 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5605 FD->setInlineSpecified(false); 5606 } 5607} 5608 5609/// \brief Compute the diagnostic location for an explicit instantiation 5610// declaration or definition. 5611static SourceLocation DiagLocForExplicitInstantiation( 5612 NamedDecl* D, SourceLocation PointOfInstantiation) { 5613 // Explicit instantiations following a specialization have no effect and 5614 // hence no PointOfInstantiation. In that case, walk decl backwards 5615 // until a valid name loc is found. 5616 SourceLocation PrevDiagLoc = PointOfInstantiation; 5617 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5618 Prev = Prev->getPreviousDecl()) { 5619 PrevDiagLoc = Prev->getLocation(); 5620 } 5621 assert(PrevDiagLoc.isValid() && 5622 "Explicit instantiation without point of instantiation?"); 5623 return PrevDiagLoc; 5624} 5625 5626/// \brief Diagnose cases where we have an explicit template specialization 5627/// before/after an explicit template instantiation, producing diagnostics 5628/// for those cases where they are required and determining whether the 5629/// new specialization/instantiation will have any effect. 5630/// 5631/// \param NewLoc the location of the new explicit specialization or 5632/// instantiation. 5633/// 5634/// \param NewTSK the kind of the new explicit specialization or instantiation. 5635/// 5636/// \param PrevDecl the previous declaration of the entity. 5637/// 5638/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5639/// 5640/// \param PrevPointOfInstantiation if valid, indicates where the previus 5641/// declaration was instantiated (either implicitly or explicitly). 5642/// 5643/// \param HasNoEffect will be set to true to indicate that the new 5644/// specialization or instantiation has no effect and should be ignored. 5645/// 5646/// \returns true if there was an error that should prevent the introduction of 5647/// the new declaration into the AST, false otherwise. 5648bool 5649Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5650 TemplateSpecializationKind NewTSK, 5651 NamedDecl *PrevDecl, 5652 TemplateSpecializationKind PrevTSK, 5653 SourceLocation PrevPointOfInstantiation, 5654 bool &HasNoEffect) { 5655 HasNoEffect = false; 5656 5657 switch (NewTSK) { 5658 case TSK_Undeclared: 5659 case TSK_ImplicitInstantiation: 5660 llvm_unreachable("Don't check implicit instantiations here"); 5661 5662 case TSK_ExplicitSpecialization: 5663 switch (PrevTSK) { 5664 case TSK_Undeclared: 5665 case TSK_ExplicitSpecialization: 5666 // Okay, we're just specializing something that is either already 5667 // explicitly specialized or has merely been mentioned without any 5668 // instantiation. 5669 return false; 5670 5671 case TSK_ImplicitInstantiation: 5672 if (PrevPointOfInstantiation.isInvalid()) { 5673 // The declaration itself has not actually been instantiated, so it is 5674 // still okay to specialize it. 5675 StripImplicitInstantiation(PrevDecl); 5676 return false; 5677 } 5678 // Fall through 5679 5680 case TSK_ExplicitInstantiationDeclaration: 5681 case TSK_ExplicitInstantiationDefinition: 5682 assert((PrevTSK == TSK_ImplicitInstantiation || 5683 PrevPointOfInstantiation.isValid()) && 5684 "Explicit instantiation without point of instantiation?"); 5685 5686 // C++ [temp.expl.spec]p6: 5687 // If a template, a member template or the member of a class template 5688 // is explicitly specialized then that specialization shall be declared 5689 // before the first use of that specialization that would cause an 5690 // implicit instantiation to take place, in every translation unit in 5691 // which such a use occurs; no diagnostic is required. 5692 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5693 // Is there any previous explicit specialization declaration? 5694 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5695 return false; 5696 } 5697 5698 Diag(NewLoc, diag::err_specialization_after_instantiation) 5699 << PrevDecl; 5700 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5701 << (PrevTSK != TSK_ImplicitInstantiation); 5702 5703 return true; 5704 } 5705 5706 case TSK_ExplicitInstantiationDeclaration: 5707 switch (PrevTSK) { 5708 case TSK_ExplicitInstantiationDeclaration: 5709 // This explicit instantiation declaration is redundant (that's okay). 5710 HasNoEffect = true; 5711 return false; 5712 5713 case TSK_Undeclared: 5714 case TSK_ImplicitInstantiation: 5715 // We're explicitly instantiating something that may have already been 5716 // implicitly instantiated; that's fine. 5717 return false; 5718 5719 case TSK_ExplicitSpecialization: 5720 // C++0x [temp.explicit]p4: 5721 // For a given set of template parameters, if an explicit instantiation 5722 // of a template appears after a declaration of an explicit 5723 // specialization for that template, the explicit instantiation has no 5724 // effect. 5725 HasNoEffect = true; 5726 return false; 5727 5728 case TSK_ExplicitInstantiationDefinition: 5729 // C++0x [temp.explicit]p10: 5730 // If an entity is the subject of both an explicit instantiation 5731 // declaration and an explicit instantiation definition in the same 5732 // translation unit, the definition shall follow the declaration. 5733 Diag(NewLoc, 5734 diag::err_explicit_instantiation_declaration_after_definition); 5735 5736 // Explicit instantiations following a specialization have no effect and 5737 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5738 // until a valid name loc is found. 5739 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5740 diag::note_explicit_instantiation_definition_here); 5741 HasNoEffect = true; 5742 return false; 5743 } 5744 5745 case TSK_ExplicitInstantiationDefinition: 5746 switch (PrevTSK) { 5747 case TSK_Undeclared: 5748 case TSK_ImplicitInstantiation: 5749 // We're explicitly instantiating something that may have already been 5750 // implicitly instantiated; that's fine. 5751 return false; 5752 5753 case TSK_ExplicitSpecialization: 5754 // C++ DR 259, C++0x [temp.explicit]p4: 5755 // For a given set of template parameters, if an explicit 5756 // instantiation of a template appears after a declaration of 5757 // an explicit specialization for that template, the explicit 5758 // instantiation has no effect. 5759 // 5760 // In C++98/03 mode, we only give an extension warning here, because it 5761 // is not harmful to try to explicitly instantiate something that 5762 // has been explicitly specialized. 5763 Diag(NewLoc, getLangOpts().CPlusPlus0x ? 5764 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5765 diag::ext_explicit_instantiation_after_specialization) 5766 << PrevDecl; 5767 Diag(PrevDecl->getLocation(), 5768 diag::note_previous_template_specialization); 5769 HasNoEffect = true; 5770 return false; 5771 5772 case TSK_ExplicitInstantiationDeclaration: 5773 // We're explicity instantiating a definition for something for which we 5774 // were previously asked to suppress instantiations. That's fine. 5775 5776 // C++0x [temp.explicit]p4: 5777 // For a given set of template parameters, if an explicit instantiation 5778 // of a template appears after a declaration of an explicit 5779 // specialization for that template, the explicit instantiation has no 5780 // effect. 5781 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5782 // Is there any previous explicit specialization declaration? 5783 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5784 HasNoEffect = true; 5785 break; 5786 } 5787 } 5788 5789 return false; 5790 5791 case TSK_ExplicitInstantiationDefinition: 5792 // C++0x [temp.spec]p5: 5793 // For a given template and a given set of template-arguments, 5794 // - an explicit instantiation definition shall appear at most once 5795 // in a program, 5796 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5797 << PrevDecl; 5798 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5799 diag::note_previous_explicit_instantiation); 5800 HasNoEffect = true; 5801 return false; 5802 } 5803 } 5804 5805 llvm_unreachable("Missing specialization/instantiation case?"); 5806} 5807 5808/// \brief Perform semantic analysis for the given dependent function 5809/// template specialization. 5810/// 5811/// The only possible way to get a dependent function template specialization 5812/// is with a friend declaration, like so: 5813/// 5814/// \code 5815/// template \<class T> void foo(T); 5816/// template \<class T> class A { 5817/// friend void foo<>(T); 5818/// }; 5819/// \endcode 5820/// 5821/// There really isn't any useful analysis we can do here, so we 5822/// just store the information. 5823bool 5824Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5825 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5826 LookupResult &Previous) { 5827 // Remove anything from Previous that isn't a function template in 5828 // the correct context. 5829 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5830 LookupResult::Filter F = Previous.makeFilter(); 5831 while (F.hasNext()) { 5832 NamedDecl *D = F.next()->getUnderlyingDecl(); 5833 if (!isa<FunctionTemplateDecl>(D) || 5834 !FDLookupContext->InEnclosingNamespaceSetOf( 5835 D->getDeclContext()->getRedeclContext())) 5836 F.erase(); 5837 } 5838 F.done(); 5839 5840 // Should this be diagnosed here? 5841 if (Previous.empty()) return true; 5842 5843 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5844 ExplicitTemplateArgs); 5845 return false; 5846} 5847 5848/// \brief Perform semantic analysis for the given function template 5849/// specialization. 5850/// 5851/// This routine performs all of the semantic analysis required for an 5852/// explicit function template specialization. On successful completion, 5853/// the function declaration \p FD will become a function template 5854/// specialization. 5855/// 5856/// \param FD the function declaration, which will be updated to become a 5857/// function template specialization. 5858/// 5859/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5860/// if any. Note that this may be valid info even when 0 arguments are 5861/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5862/// as it anyway contains info on the angle brackets locations. 5863/// 5864/// \param Previous the set of declarations that may be specialized by 5865/// this function specialization. 5866bool 5867Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5868 TemplateArgumentListInfo *ExplicitTemplateArgs, 5869 LookupResult &Previous) { 5870 // The set of function template specializations that could match this 5871 // explicit function template specialization. 5872 UnresolvedSet<8> Candidates; 5873 5874 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5875 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5876 I != E; ++I) { 5877 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5878 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5879 // Only consider templates found within the same semantic lookup scope as 5880 // FD. 5881 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5882 Ovl->getDeclContext()->getRedeclContext())) 5883 continue; 5884 5885 // C++ [temp.expl.spec]p11: 5886 // A trailing template-argument can be left unspecified in the 5887 // template-id naming an explicit function template specialization 5888 // provided it can be deduced from the function argument type. 5889 // Perform template argument deduction to determine whether we may be 5890 // specializing this template. 5891 // FIXME: It is somewhat wasteful to build 5892 TemplateDeductionInfo Info(Context, FD->getLocation()); 5893 FunctionDecl *Specialization = 0; 5894 if (TemplateDeductionResult TDK 5895 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 5896 FD->getType(), 5897 Specialization, 5898 Info)) { 5899 // FIXME: Template argument deduction failed; record why it failed, so 5900 // that we can provide nifty diagnostics. 5901 (void)TDK; 5902 continue; 5903 } 5904 5905 // Record this candidate. 5906 Candidates.addDecl(Specialization, I.getAccess()); 5907 } 5908 } 5909 5910 // Find the most specialized function template. 5911 UnresolvedSetIterator Result 5912 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5913 TPOC_Other, 0, FD->getLocation(), 5914 PDiag(diag::err_function_template_spec_no_match) 5915 << FD->getDeclName(), 5916 PDiag(diag::err_function_template_spec_ambiguous) 5917 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5918 PDiag(diag::note_function_template_spec_matched)); 5919 if (Result == Candidates.end()) 5920 return true; 5921 5922 // Ignore access information; it doesn't figure into redeclaration checking. 5923 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5924 5925 FunctionTemplateSpecializationInfo *SpecInfo 5926 = Specialization->getTemplateSpecializationInfo(); 5927 assert(SpecInfo && "Function template specialization info missing?"); 5928 5929 // Note: do not overwrite location info if previous template 5930 // specialization kind was explicit. 5931 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 5932 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 5933 Specialization->setLocation(FD->getLocation()); 5934 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 5935 // function can differ from the template declaration with respect to 5936 // the constexpr specifier. 5937 Specialization->setConstexpr(FD->isConstexpr()); 5938 } 5939 5940 // FIXME: Check if the prior specialization has a point of instantiation. 5941 // If so, we have run afoul of . 5942 5943 // If this is a friend declaration, then we're not really declaring 5944 // an explicit specialization. 5945 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 5946 5947 // Check the scope of this explicit specialization. 5948 if (!isFriend && 5949 CheckTemplateSpecializationScope(*this, 5950 Specialization->getPrimaryTemplate(), 5951 Specialization, FD->getLocation(), 5952 false)) 5953 return true; 5954 5955 // C++ [temp.expl.spec]p6: 5956 // If a template, a member template or the member of a class template is 5957 // explicitly specialized then that specialization shall be declared 5958 // before the first use of that specialization that would cause an implicit 5959 // instantiation to take place, in every translation unit in which such a 5960 // use occurs; no diagnostic is required. 5961 bool HasNoEffect = false; 5962 if (!isFriend && 5963 CheckSpecializationInstantiationRedecl(FD->getLocation(), 5964 TSK_ExplicitSpecialization, 5965 Specialization, 5966 SpecInfo->getTemplateSpecializationKind(), 5967 SpecInfo->getPointOfInstantiation(), 5968 HasNoEffect)) 5969 return true; 5970 5971 // Mark the prior declaration as an explicit specialization, so that later 5972 // clients know that this is an explicit specialization. 5973 if (!isFriend) { 5974 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 5975 MarkUnusedFileScopedDecl(Specialization); 5976 } 5977 5978 // Turn the given function declaration into a function template 5979 // specialization, with the template arguments from the previous 5980 // specialization. 5981 // Take copies of (semantic and syntactic) template argument lists. 5982 const TemplateArgumentList* TemplArgs = new (Context) 5983 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 5984 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 5985 TemplArgs, /*InsertPos=*/0, 5986 SpecInfo->getTemplateSpecializationKind(), 5987 ExplicitTemplateArgs); 5988 FD->setStorageClass(Specialization->getStorageClass()); 5989 5990 // The "previous declaration" for this function template specialization is 5991 // the prior function template specialization. 5992 Previous.clear(); 5993 Previous.addDecl(Specialization); 5994 return false; 5995} 5996 5997/// \brief Perform semantic analysis for the given non-template member 5998/// specialization. 5999/// 6000/// This routine performs all of the semantic analysis required for an 6001/// explicit member function specialization. On successful completion, 6002/// the function declaration \p FD will become a member function 6003/// specialization. 6004/// 6005/// \param Member the member declaration, which will be updated to become a 6006/// specialization. 6007/// 6008/// \param Previous the set of declarations, one of which may be specialized 6009/// by this function specialization; the set will be modified to contain the 6010/// redeclared member. 6011bool 6012Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6013 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6014 6015 // Try to find the member we are instantiating. 6016 NamedDecl *Instantiation = 0; 6017 NamedDecl *InstantiatedFrom = 0; 6018 MemberSpecializationInfo *MSInfo = 0; 6019 6020 if (Previous.empty()) { 6021 // Nowhere to look anyway. 6022 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 6023 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6024 I != E; ++I) { 6025 NamedDecl *D = (*I)->getUnderlyingDecl(); 6026 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 6027 if (Context.hasSameType(Function->getType(), Method->getType())) { 6028 Instantiation = Method; 6029 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 6030 MSInfo = Method->getMemberSpecializationInfo(); 6031 break; 6032 } 6033 } 6034 } 6035 } else if (isa<VarDecl>(Member)) { 6036 VarDecl *PrevVar; 6037 if (Previous.isSingleResult() && 6038 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 6039 if (PrevVar->isStaticDataMember()) { 6040 Instantiation = PrevVar; 6041 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 6042 MSInfo = PrevVar->getMemberSpecializationInfo(); 6043 } 6044 } else if (isa<RecordDecl>(Member)) { 6045 CXXRecordDecl *PrevRecord; 6046 if (Previous.isSingleResult() && 6047 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 6048 Instantiation = PrevRecord; 6049 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 6050 MSInfo = PrevRecord->getMemberSpecializationInfo(); 6051 } 6052 } else if (isa<EnumDecl>(Member)) { 6053 EnumDecl *PrevEnum; 6054 if (Previous.isSingleResult() && 6055 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 6056 Instantiation = PrevEnum; 6057 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 6058 MSInfo = PrevEnum->getMemberSpecializationInfo(); 6059 } 6060 } 6061 6062 if (!Instantiation) { 6063 // There is no previous declaration that matches. Since member 6064 // specializations are always out-of-line, the caller will complain about 6065 // this mismatch later. 6066 return false; 6067 } 6068 6069 // If this is a friend, just bail out here before we start turning 6070 // things into explicit specializations. 6071 if (Member->getFriendObjectKind() != Decl::FOK_None) { 6072 // Preserve instantiation information. 6073 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 6074 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 6075 cast<CXXMethodDecl>(InstantiatedFrom), 6076 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 6077 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 6078 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6079 cast<CXXRecordDecl>(InstantiatedFrom), 6080 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 6081 } 6082 6083 Previous.clear(); 6084 Previous.addDecl(Instantiation); 6085 return false; 6086 } 6087 6088 // Make sure that this is a specialization of a member. 6089 if (!InstantiatedFrom) { 6090 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 6091 << Member; 6092 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 6093 return true; 6094 } 6095 6096 // C++ [temp.expl.spec]p6: 6097 // If a template, a member template or the member of a class template is 6098 // explicitly specialized then that specialization shall be declared 6099 // before the first use of that specialization that would cause an implicit 6100 // instantiation to take place, in every translation unit in which such a 6101 // use occurs; no diagnostic is required. 6102 assert(MSInfo && "Member specialization info missing?"); 6103 6104 bool HasNoEffect = false; 6105 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6106 TSK_ExplicitSpecialization, 6107 Instantiation, 6108 MSInfo->getTemplateSpecializationKind(), 6109 MSInfo->getPointOfInstantiation(), 6110 HasNoEffect)) 6111 return true; 6112 6113 // Check the scope of this explicit specialization. 6114 if (CheckTemplateSpecializationScope(*this, 6115 InstantiatedFrom, 6116 Instantiation, Member->getLocation(), 6117 false)) 6118 return true; 6119 6120 // Note that this is an explicit instantiation of a member. 6121 // the original declaration to note that it is an explicit specialization 6122 // (if it was previously an implicit instantiation). This latter step 6123 // makes bookkeeping easier. 6124 if (isa<FunctionDecl>(Member)) { 6125 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6126 if (InstantiationFunction->getTemplateSpecializationKind() == 6127 TSK_ImplicitInstantiation) { 6128 InstantiationFunction->setTemplateSpecializationKind( 6129 TSK_ExplicitSpecialization); 6130 InstantiationFunction->setLocation(Member->getLocation()); 6131 } 6132 6133 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6134 cast<CXXMethodDecl>(InstantiatedFrom), 6135 TSK_ExplicitSpecialization); 6136 MarkUnusedFileScopedDecl(InstantiationFunction); 6137 } else if (isa<VarDecl>(Member)) { 6138 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6139 if (InstantiationVar->getTemplateSpecializationKind() == 6140 TSK_ImplicitInstantiation) { 6141 InstantiationVar->setTemplateSpecializationKind( 6142 TSK_ExplicitSpecialization); 6143 InstantiationVar->setLocation(Member->getLocation()); 6144 } 6145 6146 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 6147 cast<VarDecl>(InstantiatedFrom), 6148 TSK_ExplicitSpecialization); 6149 MarkUnusedFileScopedDecl(InstantiationVar); 6150 } else if (isa<CXXRecordDecl>(Member)) { 6151 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6152 if (InstantiationClass->getTemplateSpecializationKind() == 6153 TSK_ImplicitInstantiation) { 6154 InstantiationClass->setTemplateSpecializationKind( 6155 TSK_ExplicitSpecialization); 6156 InstantiationClass->setLocation(Member->getLocation()); 6157 } 6158 6159 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6160 cast<CXXRecordDecl>(InstantiatedFrom), 6161 TSK_ExplicitSpecialization); 6162 } else { 6163 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6164 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6165 if (InstantiationEnum->getTemplateSpecializationKind() == 6166 TSK_ImplicitInstantiation) { 6167 InstantiationEnum->setTemplateSpecializationKind( 6168 TSK_ExplicitSpecialization); 6169 InstantiationEnum->setLocation(Member->getLocation()); 6170 } 6171 6172 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6173 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6174 } 6175 6176 // Save the caller the trouble of having to figure out which declaration 6177 // this specialization matches. 6178 Previous.clear(); 6179 Previous.addDecl(Instantiation); 6180 return false; 6181} 6182 6183/// \brief Check the scope of an explicit instantiation. 6184/// 6185/// \returns true if a serious error occurs, false otherwise. 6186static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6187 SourceLocation InstLoc, 6188 bool WasQualifiedName) { 6189 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6190 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6191 6192 if (CurContext->isRecord()) { 6193 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6194 << D; 6195 return true; 6196 } 6197 6198 // C++11 [temp.explicit]p3: 6199 // An explicit instantiation shall appear in an enclosing namespace of its 6200 // template. If the name declared in the explicit instantiation is an 6201 // unqualified name, the explicit instantiation shall appear in the 6202 // namespace where its template is declared or, if that namespace is inline 6203 // (7.3.1), any namespace from its enclosing namespace set. 6204 // 6205 // This is DR275, which we do not retroactively apply to C++98/03. 6206 if (WasQualifiedName) { 6207 if (CurContext->Encloses(OrigContext)) 6208 return false; 6209 } else { 6210 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6211 return false; 6212 } 6213 6214 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6215 if (WasQualifiedName) 6216 S.Diag(InstLoc, 6217 S.getLangOpts().CPlusPlus0x? 6218 diag::err_explicit_instantiation_out_of_scope : 6219 diag::warn_explicit_instantiation_out_of_scope_0x) 6220 << D << NS; 6221 else 6222 S.Diag(InstLoc, 6223 S.getLangOpts().CPlusPlus0x? 6224 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6225 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6226 << D << NS; 6227 } else 6228 S.Diag(InstLoc, 6229 S.getLangOpts().CPlusPlus0x? 6230 diag::err_explicit_instantiation_must_be_global : 6231 diag::warn_explicit_instantiation_must_be_global_0x) 6232 << D; 6233 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6234 return false; 6235} 6236 6237/// \brief Determine whether the given scope specifier has a template-id in it. 6238static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6239 if (!SS.isSet()) 6240 return false; 6241 6242 // C++11 [temp.explicit]p3: 6243 // If the explicit instantiation is for a member function, a member class 6244 // or a static data member of a class template specialization, the name of 6245 // the class template specialization in the qualified-id for the member 6246 // name shall be a simple-template-id. 6247 // 6248 // C++98 has the same restriction, just worded differently. 6249 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6250 NNS; NNS = NNS->getPrefix()) 6251 if (const Type *T = NNS->getAsType()) 6252 if (isa<TemplateSpecializationType>(T)) 6253 return true; 6254 6255 return false; 6256} 6257 6258// Explicit instantiation of a class template specialization 6259DeclResult 6260Sema::ActOnExplicitInstantiation(Scope *S, 6261 SourceLocation ExternLoc, 6262 SourceLocation TemplateLoc, 6263 unsigned TagSpec, 6264 SourceLocation KWLoc, 6265 const CXXScopeSpec &SS, 6266 TemplateTy TemplateD, 6267 SourceLocation TemplateNameLoc, 6268 SourceLocation LAngleLoc, 6269 ASTTemplateArgsPtr TemplateArgsIn, 6270 SourceLocation RAngleLoc, 6271 AttributeList *Attr) { 6272 // Find the class template we're specializing 6273 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6274 ClassTemplateDecl *ClassTemplate 6275 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 6276 6277 // Check that the specialization uses the same tag kind as the 6278 // original template. 6279 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6280 assert(Kind != TTK_Enum && 6281 "Invalid enum tag in class template explicit instantiation!"); 6282 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6283 Kind, /*isDefinition*/false, KWLoc, 6284 *ClassTemplate->getIdentifier())) { 6285 Diag(KWLoc, diag::err_use_with_wrong_tag) 6286 << ClassTemplate 6287 << FixItHint::CreateReplacement(KWLoc, 6288 ClassTemplate->getTemplatedDecl()->getKindName()); 6289 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6290 diag::note_previous_use); 6291 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6292 } 6293 6294 // C++0x [temp.explicit]p2: 6295 // There are two forms of explicit instantiation: an explicit instantiation 6296 // definition and an explicit instantiation declaration. An explicit 6297 // instantiation declaration begins with the extern keyword. [...] 6298 TemplateSpecializationKind TSK 6299 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6300 : TSK_ExplicitInstantiationDeclaration; 6301 6302 // Translate the parser's template argument list in our AST format. 6303 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6304 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6305 6306 // Check that the template argument list is well-formed for this 6307 // template. 6308 SmallVector<TemplateArgument, 4> Converted; 6309 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6310 TemplateArgs, false, Converted)) 6311 return true; 6312 6313 // Find the class template specialization declaration that 6314 // corresponds to these arguments. 6315 void *InsertPos = 0; 6316 ClassTemplateSpecializationDecl *PrevDecl 6317 = ClassTemplate->findSpecialization(Converted.data(), 6318 Converted.size(), InsertPos); 6319 6320 TemplateSpecializationKind PrevDecl_TSK 6321 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6322 6323 // C++0x [temp.explicit]p2: 6324 // [...] An explicit instantiation shall appear in an enclosing 6325 // namespace of its template. [...] 6326 // 6327 // This is C++ DR 275. 6328 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6329 SS.isSet())) 6330 return true; 6331 6332 ClassTemplateSpecializationDecl *Specialization = 0; 6333 6334 bool HasNoEffect = false; 6335 if (PrevDecl) { 6336 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6337 PrevDecl, PrevDecl_TSK, 6338 PrevDecl->getPointOfInstantiation(), 6339 HasNoEffect)) 6340 return PrevDecl; 6341 6342 // Even though HasNoEffect == true means that this explicit instantiation 6343 // has no effect on semantics, we go on to put its syntax in the AST. 6344 6345 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6346 PrevDecl_TSK == TSK_Undeclared) { 6347 // Since the only prior class template specialization with these 6348 // arguments was referenced but not declared, reuse that 6349 // declaration node as our own, updating the source location 6350 // for the template name to reflect our new declaration. 6351 // (Other source locations will be updated later.) 6352 Specialization = PrevDecl; 6353 Specialization->setLocation(TemplateNameLoc); 6354 PrevDecl = 0; 6355 } 6356 } 6357 6358 if (!Specialization) { 6359 // Create a new class template specialization declaration node for 6360 // this explicit specialization. 6361 Specialization 6362 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6363 ClassTemplate->getDeclContext(), 6364 KWLoc, TemplateNameLoc, 6365 ClassTemplate, 6366 Converted.data(), 6367 Converted.size(), 6368 PrevDecl); 6369 SetNestedNameSpecifier(Specialization, SS); 6370 6371 if (!HasNoEffect && !PrevDecl) { 6372 // Insert the new specialization. 6373 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6374 } 6375 } 6376 6377 // Build the fully-sugared type for this explicit instantiation as 6378 // the user wrote in the explicit instantiation itself. This means 6379 // that we'll pretty-print the type retrieved from the 6380 // specialization's declaration the way that the user actually wrote 6381 // the explicit instantiation, rather than formatting the name based 6382 // on the "canonical" representation used to store the template 6383 // arguments in the specialization. 6384 TypeSourceInfo *WrittenTy 6385 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6386 TemplateArgs, 6387 Context.getTypeDeclType(Specialization)); 6388 Specialization->setTypeAsWritten(WrittenTy); 6389 TemplateArgsIn.release(); 6390 6391 // Set source locations for keywords. 6392 Specialization->setExternLoc(ExternLoc); 6393 Specialization->setTemplateKeywordLoc(TemplateLoc); 6394 6395 if (Attr) 6396 ProcessDeclAttributeList(S, Specialization, Attr); 6397 6398 // Add the explicit instantiation into its lexical context. However, 6399 // since explicit instantiations are never found by name lookup, we 6400 // just put it into the declaration context directly. 6401 Specialization->setLexicalDeclContext(CurContext); 6402 CurContext->addDecl(Specialization); 6403 6404 // Syntax is now OK, so return if it has no other effect on semantics. 6405 if (HasNoEffect) { 6406 // Set the template specialization kind. 6407 Specialization->setTemplateSpecializationKind(TSK); 6408 return Specialization; 6409 } 6410 6411 // C++ [temp.explicit]p3: 6412 // A definition of a class template or class member template 6413 // shall be in scope at the point of the explicit instantiation of 6414 // the class template or class member template. 6415 // 6416 // This check comes when we actually try to perform the 6417 // instantiation. 6418 ClassTemplateSpecializationDecl *Def 6419 = cast_or_null<ClassTemplateSpecializationDecl>( 6420 Specialization->getDefinition()); 6421 if (!Def) 6422 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6423 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6424 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6425 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6426 } 6427 6428 // Instantiate the members of this class template specialization. 6429 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6430 Specialization->getDefinition()); 6431 if (Def) { 6432 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6433 6434 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6435 // TSK_ExplicitInstantiationDefinition 6436 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6437 TSK == TSK_ExplicitInstantiationDefinition) 6438 Def->setTemplateSpecializationKind(TSK); 6439 6440 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6441 } 6442 6443 // Set the template specialization kind. 6444 Specialization->setTemplateSpecializationKind(TSK); 6445 return Specialization; 6446} 6447 6448// Explicit instantiation of a member class of a class template. 6449DeclResult 6450Sema::ActOnExplicitInstantiation(Scope *S, 6451 SourceLocation ExternLoc, 6452 SourceLocation TemplateLoc, 6453 unsigned TagSpec, 6454 SourceLocation KWLoc, 6455 CXXScopeSpec &SS, 6456 IdentifierInfo *Name, 6457 SourceLocation NameLoc, 6458 AttributeList *Attr) { 6459 6460 bool Owned = false; 6461 bool IsDependent = false; 6462 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6463 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6464 /*ModulePrivateLoc=*/SourceLocation(), 6465 MultiTemplateParamsArg(*this, 0, 0), 6466 Owned, IsDependent, SourceLocation(), false, 6467 TypeResult()); 6468 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6469 6470 if (!TagD) 6471 return true; 6472 6473 TagDecl *Tag = cast<TagDecl>(TagD); 6474 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 6475 6476 if (Tag->isInvalidDecl()) 6477 return true; 6478 6479 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6480 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6481 if (!Pattern) { 6482 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6483 << Context.getTypeDeclType(Record); 6484 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6485 return true; 6486 } 6487 6488 // C++0x [temp.explicit]p2: 6489 // If the explicit instantiation is for a class or member class, the 6490 // elaborated-type-specifier in the declaration shall include a 6491 // simple-template-id. 6492 // 6493 // C++98 has the same restriction, just worded differently. 6494 if (!ScopeSpecifierHasTemplateId(SS)) 6495 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6496 << Record << SS.getRange(); 6497 6498 // C++0x [temp.explicit]p2: 6499 // There are two forms of explicit instantiation: an explicit instantiation 6500 // definition and an explicit instantiation declaration. An explicit 6501 // instantiation declaration begins with the extern keyword. [...] 6502 TemplateSpecializationKind TSK 6503 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6504 : TSK_ExplicitInstantiationDeclaration; 6505 6506 // C++0x [temp.explicit]p2: 6507 // [...] An explicit instantiation shall appear in an enclosing 6508 // namespace of its template. [...] 6509 // 6510 // This is C++ DR 275. 6511 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6512 6513 // Verify that it is okay to explicitly instantiate here. 6514 CXXRecordDecl *PrevDecl 6515 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6516 if (!PrevDecl && Record->getDefinition()) 6517 PrevDecl = Record; 6518 if (PrevDecl) { 6519 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6520 bool HasNoEffect = false; 6521 assert(MSInfo && "No member specialization information?"); 6522 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6523 PrevDecl, 6524 MSInfo->getTemplateSpecializationKind(), 6525 MSInfo->getPointOfInstantiation(), 6526 HasNoEffect)) 6527 return true; 6528 if (HasNoEffect) 6529 return TagD; 6530 } 6531 6532 CXXRecordDecl *RecordDef 6533 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6534 if (!RecordDef) { 6535 // C++ [temp.explicit]p3: 6536 // A definition of a member class of a class template shall be in scope 6537 // at the point of an explicit instantiation of the member class. 6538 CXXRecordDecl *Def 6539 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6540 if (!Def) { 6541 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6542 << 0 << Record->getDeclName() << Record->getDeclContext(); 6543 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6544 << Pattern; 6545 return true; 6546 } else { 6547 if (InstantiateClass(NameLoc, Record, Def, 6548 getTemplateInstantiationArgs(Record), 6549 TSK)) 6550 return true; 6551 6552 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6553 if (!RecordDef) 6554 return true; 6555 } 6556 } 6557 6558 // Instantiate all of the members of the class. 6559 InstantiateClassMembers(NameLoc, RecordDef, 6560 getTemplateInstantiationArgs(Record), TSK); 6561 6562 if (TSK == TSK_ExplicitInstantiationDefinition) 6563 MarkVTableUsed(NameLoc, RecordDef, true); 6564 6565 // FIXME: We don't have any representation for explicit instantiations of 6566 // member classes. Such a representation is not needed for compilation, but it 6567 // should be available for clients that want to see all of the declarations in 6568 // the source code. 6569 return TagD; 6570} 6571 6572DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6573 SourceLocation ExternLoc, 6574 SourceLocation TemplateLoc, 6575 Declarator &D) { 6576 // Explicit instantiations always require a name. 6577 // TODO: check if/when DNInfo should replace Name. 6578 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6579 DeclarationName Name = NameInfo.getName(); 6580 if (!Name) { 6581 if (!D.isInvalidType()) 6582 Diag(D.getDeclSpec().getLocStart(), 6583 diag::err_explicit_instantiation_requires_name) 6584 << D.getDeclSpec().getSourceRange() 6585 << D.getSourceRange(); 6586 6587 return true; 6588 } 6589 6590 // The scope passed in may not be a decl scope. Zip up the scope tree until 6591 // we find one that is. 6592 while ((S->getFlags() & Scope::DeclScope) == 0 || 6593 (S->getFlags() & Scope::TemplateParamScope) != 0) 6594 S = S->getParent(); 6595 6596 // Determine the type of the declaration. 6597 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6598 QualType R = T->getType(); 6599 if (R.isNull()) 6600 return true; 6601 6602 // C++ [dcl.stc]p1: 6603 // A storage-class-specifier shall not be specified in [...] an explicit 6604 // instantiation (14.7.2) directive. 6605 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6606 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6607 << Name; 6608 return true; 6609 } else if (D.getDeclSpec().getStorageClassSpec() 6610 != DeclSpec::SCS_unspecified) { 6611 // Complain about then remove the storage class specifier. 6612 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6613 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6614 6615 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6616 } 6617 6618 // C++0x [temp.explicit]p1: 6619 // [...] An explicit instantiation of a function template shall not use the 6620 // inline or constexpr specifiers. 6621 // Presumably, this also applies to member functions of class templates as 6622 // well. 6623 if (D.getDeclSpec().isInlineSpecified()) 6624 Diag(D.getDeclSpec().getInlineSpecLoc(), 6625 getLangOpts().CPlusPlus0x ? 6626 diag::err_explicit_instantiation_inline : 6627 diag::warn_explicit_instantiation_inline_0x) 6628 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6629 if (D.getDeclSpec().isConstexprSpecified()) 6630 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6631 // not already specified. 6632 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6633 diag::err_explicit_instantiation_constexpr); 6634 6635 // C++0x [temp.explicit]p2: 6636 // There are two forms of explicit instantiation: an explicit instantiation 6637 // definition and an explicit instantiation declaration. An explicit 6638 // instantiation declaration begins with the extern keyword. [...] 6639 TemplateSpecializationKind TSK 6640 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6641 : TSK_ExplicitInstantiationDeclaration; 6642 6643 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6644 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6645 6646 if (!R->isFunctionType()) { 6647 // C++ [temp.explicit]p1: 6648 // A [...] static data member of a class template can be explicitly 6649 // instantiated from the member definition associated with its class 6650 // template. 6651 if (Previous.isAmbiguous()) 6652 return true; 6653 6654 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6655 if (!Prev || !Prev->isStaticDataMember()) { 6656 // We expect to see a data data member here. 6657 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6658 << Name; 6659 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6660 P != PEnd; ++P) 6661 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6662 return true; 6663 } 6664 6665 if (!Prev->getInstantiatedFromStaticDataMember()) { 6666 // FIXME: Check for explicit specialization? 6667 Diag(D.getIdentifierLoc(), 6668 diag::err_explicit_instantiation_data_member_not_instantiated) 6669 << Prev; 6670 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6671 // FIXME: Can we provide a note showing where this was declared? 6672 return true; 6673 } 6674 6675 // C++0x [temp.explicit]p2: 6676 // If the explicit instantiation is for a member function, a member class 6677 // or a static data member of a class template specialization, the name of 6678 // the class template specialization in the qualified-id for the member 6679 // name shall be a simple-template-id. 6680 // 6681 // C++98 has the same restriction, just worded differently. 6682 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6683 Diag(D.getIdentifierLoc(), 6684 diag::ext_explicit_instantiation_without_qualified_id) 6685 << Prev << D.getCXXScopeSpec().getRange(); 6686 6687 // Check the scope of this explicit instantiation. 6688 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6689 6690 // Verify that it is okay to explicitly instantiate here. 6691 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6692 assert(MSInfo && "Missing static data member specialization info?"); 6693 bool HasNoEffect = false; 6694 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6695 MSInfo->getTemplateSpecializationKind(), 6696 MSInfo->getPointOfInstantiation(), 6697 HasNoEffect)) 6698 return true; 6699 if (HasNoEffect) 6700 return (Decl*) 0; 6701 6702 // Instantiate static data member. 6703 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6704 if (TSK == TSK_ExplicitInstantiationDefinition) 6705 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6706 6707 // FIXME: Create an ExplicitInstantiation node? 6708 return (Decl*) 0; 6709 } 6710 6711 // If the declarator is a template-id, translate the parser's template 6712 // argument list into our AST format. 6713 bool HasExplicitTemplateArgs = false; 6714 TemplateArgumentListInfo TemplateArgs; 6715 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6716 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6717 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6718 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6719 ASTTemplateArgsPtr TemplateArgsPtr(*this, 6720 TemplateId->getTemplateArgs(), 6721 TemplateId->NumArgs); 6722 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6723 HasExplicitTemplateArgs = true; 6724 TemplateArgsPtr.release(); 6725 } 6726 6727 // C++ [temp.explicit]p1: 6728 // A [...] function [...] can be explicitly instantiated from its template. 6729 // A member function [...] of a class template can be explicitly 6730 // instantiated from the member definition associated with its class 6731 // template. 6732 UnresolvedSet<8> Matches; 6733 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6734 P != PEnd; ++P) { 6735 NamedDecl *Prev = *P; 6736 if (!HasExplicitTemplateArgs) { 6737 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6738 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6739 Matches.clear(); 6740 6741 Matches.addDecl(Method, P.getAccess()); 6742 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6743 break; 6744 } 6745 } 6746 } 6747 6748 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6749 if (!FunTmpl) 6750 continue; 6751 6752 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 6753 FunctionDecl *Specialization = 0; 6754 if (TemplateDeductionResult TDK 6755 = DeduceTemplateArguments(FunTmpl, 6756 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6757 R, Specialization, Info)) { 6758 // FIXME: Keep track of almost-matches? 6759 (void)TDK; 6760 continue; 6761 } 6762 6763 Matches.addDecl(Specialization, P.getAccess()); 6764 } 6765 6766 // Find the most specialized function template specialization. 6767 UnresolvedSetIterator Result 6768 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6769 D.getIdentifierLoc(), 6770 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6771 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6772 PDiag(diag::note_explicit_instantiation_candidate)); 6773 6774 if (Result == Matches.end()) 6775 return true; 6776 6777 // Ignore access control bits, we don't need them for redeclaration checking. 6778 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6779 6780 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6781 Diag(D.getIdentifierLoc(), 6782 diag::err_explicit_instantiation_member_function_not_instantiated) 6783 << Specialization 6784 << (Specialization->getTemplateSpecializationKind() == 6785 TSK_ExplicitSpecialization); 6786 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6787 return true; 6788 } 6789 6790 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6791 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6792 PrevDecl = Specialization; 6793 6794 if (PrevDecl) { 6795 bool HasNoEffect = false; 6796 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6797 PrevDecl, 6798 PrevDecl->getTemplateSpecializationKind(), 6799 PrevDecl->getPointOfInstantiation(), 6800 HasNoEffect)) 6801 return true; 6802 6803 // FIXME: We may still want to build some representation of this 6804 // explicit specialization. 6805 if (HasNoEffect) 6806 return (Decl*) 0; 6807 } 6808 6809 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6810 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6811 if (Attr) 6812 ProcessDeclAttributeList(S, Specialization, Attr); 6813 6814 if (TSK == TSK_ExplicitInstantiationDefinition) 6815 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6816 6817 // C++0x [temp.explicit]p2: 6818 // If the explicit instantiation is for a member function, a member class 6819 // or a static data member of a class template specialization, the name of 6820 // the class template specialization in the qualified-id for the member 6821 // name shall be a simple-template-id. 6822 // 6823 // C++98 has the same restriction, just worded differently. 6824 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6825 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6826 D.getCXXScopeSpec().isSet() && 6827 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6828 Diag(D.getIdentifierLoc(), 6829 diag::ext_explicit_instantiation_without_qualified_id) 6830 << Specialization << D.getCXXScopeSpec().getRange(); 6831 6832 CheckExplicitInstantiationScope(*this, 6833 FunTmpl? (NamedDecl *)FunTmpl 6834 : Specialization->getInstantiatedFromMemberFunction(), 6835 D.getIdentifierLoc(), 6836 D.getCXXScopeSpec().isSet()); 6837 6838 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6839 return (Decl*) 0; 6840} 6841 6842TypeResult 6843Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6844 const CXXScopeSpec &SS, IdentifierInfo *Name, 6845 SourceLocation TagLoc, SourceLocation NameLoc) { 6846 // This has to hold, because SS is expected to be defined. 6847 assert(Name && "Expected a name in a dependent tag"); 6848 6849 NestedNameSpecifier *NNS 6850 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6851 if (!NNS) 6852 return true; 6853 6854 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6855 6856 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6857 Diag(NameLoc, diag::err_dependent_tag_decl) 6858 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6859 return true; 6860 } 6861 6862 // Create the resulting type. 6863 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6864 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6865 6866 // Create type-source location information for this type. 6867 TypeLocBuilder TLB; 6868 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6869 TL.setElaboratedKeywordLoc(TagLoc); 6870 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6871 TL.setNameLoc(NameLoc); 6872 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6873} 6874 6875TypeResult 6876Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6877 const CXXScopeSpec &SS, const IdentifierInfo &II, 6878 SourceLocation IdLoc) { 6879 if (SS.isInvalid()) 6880 return true; 6881 6882 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6883 Diag(TypenameLoc, 6884 getLangOpts().CPlusPlus0x ? 6885 diag::warn_cxx98_compat_typename_outside_of_template : 6886 diag::ext_typename_outside_of_template) 6887 << FixItHint::CreateRemoval(TypenameLoc); 6888 6889 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6890 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6891 TypenameLoc, QualifierLoc, II, IdLoc); 6892 if (T.isNull()) 6893 return true; 6894 6895 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6896 if (isa<DependentNameType>(T)) { 6897 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 6898 TL.setElaboratedKeywordLoc(TypenameLoc); 6899 TL.setQualifierLoc(QualifierLoc); 6900 TL.setNameLoc(IdLoc); 6901 } else { 6902 ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc()); 6903 TL.setElaboratedKeywordLoc(TypenameLoc); 6904 TL.setQualifierLoc(QualifierLoc); 6905 cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc); 6906 } 6907 6908 return CreateParsedType(T, TSI); 6909} 6910 6911TypeResult 6912Sema::ActOnTypenameType(Scope *S, 6913 SourceLocation TypenameLoc, 6914 const CXXScopeSpec &SS, 6915 SourceLocation TemplateKWLoc, 6916 TemplateTy TemplateIn, 6917 SourceLocation TemplateNameLoc, 6918 SourceLocation LAngleLoc, 6919 ASTTemplateArgsPtr TemplateArgsIn, 6920 SourceLocation RAngleLoc) { 6921 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6922 Diag(TypenameLoc, 6923 getLangOpts().CPlusPlus0x ? 6924 diag::warn_cxx98_compat_typename_outside_of_template : 6925 diag::ext_typename_outside_of_template) 6926 << FixItHint::CreateRemoval(TypenameLoc); 6927 6928 // Translate the parser's template argument list in our AST format. 6929 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6930 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6931 6932 TemplateName Template = TemplateIn.get(); 6933 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 6934 // Construct a dependent template specialization type. 6935 assert(DTN && "dependent template has non-dependent name?"); 6936 assert(DTN->getQualifier() 6937 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 6938 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 6939 DTN->getQualifier(), 6940 DTN->getIdentifier(), 6941 TemplateArgs); 6942 6943 // Create source-location information for this type. 6944 TypeLocBuilder Builder; 6945 DependentTemplateSpecializationTypeLoc SpecTL 6946 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 6947 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 6948 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 6949 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6950 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6951 SpecTL.setLAngleLoc(LAngleLoc); 6952 SpecTL.setRAngleLoc(RAngleLoc); 6953 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6954 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6955 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 6956 } 6957 6958 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 6959 if (T.isNull()) 6960 return true; 6961 6962 // Provide source-location information for the template specialization type. 6963 TypeLocBuilder Builder; 6964 TemplateSpecializationTypeLoc SpecTL 6965 = Builder.push<TemplateSpecializationTypeLoc>(T); 6966 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 6967 SpecTL.setTemplateNameLoc(TemplateNameLoc); 6968 SpecTL.setLAngleLoc(LAngleLoc); 6969 SpecTL.setRAngleLoc(RAngleLoc); 6970 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 6971 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 6972 6973 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 6974 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 6975 TL.setElaboratedKeywordLoc(TypenameLoc); 6976 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6977 6978 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 6979 return CreateParsedType(T, TSI); 6980} 6981 6982 6983/// Determine whether this failed name lookup should be treated as being 6984/// disabled by a usage of std::enable_if. 6985static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 6986 SourceRange &CondRange) { 6987 // We must be looking for a ::type... 6988 if (!II.isStr("type")) 6989 return false; 6990 6991 // ... within an explicitly-written template specialization... 6992 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 6993 return false; 6994 TypeLoc EnableIfTy = NNS.getTypeLoc(); 6995 TemplateSpecializationTypeLoc *EnableIfTSTLoc = 6996 dyn_cast<TemplateSpecializationTypeLoc>(&EnableIfTy); 6997 if (!EnableIfTSTLoc || EnableIfTSTLoc->getNumArgs() == 0) 6998 return false; 6999 const TemplateSpecializationType *EnableIfTST = 7000 cast<TemplateSpecializationType>(EnableIfTSTLoc->getTypePtr()); 7001 7002 // ... which names a complete class template declaration... 7003 const TemplateDecl *EnableIfDecl = 7004 EnableIfTST->getTemplateName().getAsTemplateDecl(); 7005 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 7006 return false; 7007 7008 // ... called "enable_if". 7009 const IdentifierInfo *EnableIfII = 7010 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 7011 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 7012 return false; 7013 7014 // Assume the first template argument is the condition. 7015 CondRange = EnableIfTSTLoc->getArgLoc(0).getSourceRange(); 7016 return true; 7017} 7018 7019/// \brief Build the type that describes a C++ typename specifier, 7020/// e.g., "typename T::type". 7021QualType 7022Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 7023 SourceLocation KeywordLoc, 7024 NestedNameSpecifierLoc QualifierLoc, 7025 const IdentifierInfo &II, 7026 SourceLocation IILoc) { 7027 CXXScopeSpec SS; 7028 SS.Adopt(QualifierLoc); 7029 7030 DeclContext *Ctx = computeDeclContext(SS); 7031 if (!Ctx) { 7032 // If the nested-name-specifier is dependent and couldn't be 7033 // resolved to a type, build a typename type. 7034 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 7035 return Context.getDependentNameType(Keyword, 7036 QualifierLoc.getNestedNameSpecifier(), 7037 &II); 7038 } 7039 7040 // If the nested-name-specifier refers to the current instantiation, 7041 // the "typename" keyword itself is superfluous. In C++03, the 7042 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 7043 // allows such extraneous "typename" keywords, and we retroactively 7044 // apply this DR to C++03 code with only a warning. In any case we continue. 7045 7046 if (RequireCompleteDeclContext(SS, Ctx)) 7047 return QualType(); 7048 7049 DeclarationName Name(&II); 7050 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 7051 LookupQualifiedName(Result, Ctx); 7052 unsigned DiagID = 0; 7053 Decl *Referenced = 0; 7054 switch (Result.getResultKind()) { 7055 case LookupResult::NotFound: { 7056 // If we're looking up 'type' within a template named 'enable_if', produce 7057 // a more specific diagnostic. 7058 SourceRange CondRange; 7059 if (isEnableIf(QualifierLoc, II, CondRange)) { 7060 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 7061 << Ctx << CondRange; 7062 return QualType(); 7063 } 7064 7065 DiagID = diag::err_typename_nested_not_found; 7066 break; 7067 } 7068 7069 case LookupResult::FoundUnresolvedValue: { 7070 // We found a using declaration that is a value. Most likely, the using 7071 // declaration itself is meant to have the 'typename' keyword. 7072 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7073 IILoc); 7074 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 7075 << Name << Ctx << FullRange; 7076 if (UnresolvedUsingValueDecl *Using 7077 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 7078 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 7079 Diag(Loc, diag::note_using_value_decl_missing_typename) 7080 << FixItHint::CreateInsertion(Loc, "typename "); 7081 } 7082 } 7083 // Fall through to create a dependent typename type, from which we can recover 7084 // better. 7085 7086 case LookupResult::NotFoundInCurrentInstantiation: 7087 // Okay, it's a member of an unknown instantiation. 7088 return Context.getDependentNameType(Keyword, 7089 QualifierLoc.getNestedNameSpecifier(), 7090 &II); 7091 7092 case LookupResult::Found: 7093 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 7094 // We found a type. Build an ElaboratedType, since the 7095 // typename-specifier was just sugar. 7096 return Context.getElaboratedType(ETK_Typename, 7097 QualifierLoc.getNestedNameSpecifier(), 7098 Context.getTypeDeclType(Type)); 7099 } 7100 7101 DiagID = diag::err_typename_nested_not_type; 7102 Referenced = Result.getFoundDecl(); 7103 break; 7104 7105 case LookupResult::FoundOverloaded: 7106 DiagID = diag::err_typename_nested_not_type; 7107 Referenced = *Result.begin(); 7108 break; 7109 7110 case LookupResult::Ambiguous: 7111 return QualType(); 7112 } 7113 7114 // If we get here, it's because name lookup did not find a 7115 // type. Emit an appropriate diagnostic and return an error. 7116 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7117 IILoc); 7118 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 7119 if (Referenced) 7120 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 7121 << Name; 7122 return QualType(); 7123} 7124 7125namespace { 7126 // See Sema::RebuildTypeInCurrentInstantiation 7127 class CurrentInstantiationRebuilder 7128 : public TreeTransform<CurrentInstantiationRebuilder> { 7129 SourceLocation Loc; 7130 DeclarationName Entity; 7131 7132 public: 7133 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 7134 7135 CurrentInstantiationRebuilder(Sema &SemaRef, 7136 SourceLocation Loc, 7137 DeclarationName Entity) 7138 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 7139 Loc(Loc), Entity(Entity) { } 7140 7141 /// \brief Determine whether the given type \p T has already been 7142 /// transformed. 7143 /// 7144 /// For the purposes of type reconstruction, a type has already been 7145 /// transformed if it is NULL or if it is not dependent. 7146 bool AlreadyTransformed(QualType T) { 7147 return T.isNull() || !T->isDependentType(); 7148 } 7149 7150 /// \brief Returns the location of the entity whose type is being 7151 /// rebuilt. 7152 SourceLocation getBaseLocation() { return Loc; } 7153 7154 /// \brief Returns the name of the entity whose type is being rebuilt. 7155 DeclarationName getBaseEntity() { return Entity; } 7156 7157 /// \brief Sets the "base" location and entity when that 7158 /// information is known based on another transformation. 7159 void setBase(SourceLocation Loc, DeclarationName Entity) { 7160 this->Loc = Loc; 7161 this->Entity = Entity; 7162 } 7163 7164 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7165 // Lambdas never need to be transformed. 7166 return E; 7167 } 7168 }; 7169} 7170 7171/// \brief Rebuilds a type within the context of the current instantiation. 7172/// 7173/// The type \p T is part of the type of an out-of-line member definition of 7174/// a class template (or class template partial specialization) that was parsed 7175/// and constructed before we entered the scope of the class template (or 7176/// partial specialization thereof). This routine will rebuild that type now 7177/// that we have entered the declarator's scope, which may produce different 7178/// canonical types, e.g., 7179/// 7180/// \code 7181/// template<typename T> 7182/// struct X { 7183/// typedef T* pointer; 7184/// pointer data(); 7185/// }; 7186/// 7187/// template<typename T> 7188/// typename X<T>::pointer X<T>::data() { ... } 7189/// \endcode 7190/// 7191/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7192/// since we do not know that we can look into X<T> when we parsed the type. 7193/// This function will rebuild the type, performing the lookup of "pointer" 7194/// in X<T> and returning an ElaboratedType whose canonical type is the same 7195/// as the canonical type of T*, allowing the return types of the out-of-line 7196/// definition and the declaration to match. 7197TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7198 SourceLocation Loc, 7199 DeclarationName Name) { 7200 if (!T || !T->getType()->isDependentType()) 7201 return T; 7202 7203 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7204 return Rebuilder.TransformType(T); 7205} 7206 7207ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7208 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7209 DeclarationName()); 7210 return Rebuilder.TransformExpr(E); 7211} 7212 7213bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7214 if (SS.isInvalid()) 7215 return true; 7216 7217 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7218 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7219 DeclarationName()); 7220 NestedNameSpecifierLoc Rebuilt 7221 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7222 if (!Rebuilt) 7223 return true; 7224 7225 SS.Adopt(Rebuilt); 7226 return false; 7227} 7228 7229/// \brief Rebuild the template parameters now that we know we're in a current 7230/// instantiation. 7231bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7232 TemplateParameterList *Params) { 7233 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7234 Decl *Param = Params->getParam(I); 7235 7236 // There is nothing to rebuild in a type parameter. 7237 if (isa<TemplateTypeParmDecl>(Param)) 7238 continue; 7239 7240 // Rebuild the template parameter list of a template template parameter. 7241 if (TemplateTemplateParmDecl *TTP 7242 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7243 if (RebuildTemplateParamsInCurrentInstantiation( 7244 TTP->getTemplateParameters())) 7245 return true; 7246 7247 continue; 7248 } 7249 7250 // Rebuild the type of a non-type template parameter. 7251 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7252 TypeSourceInfo *NewTSI 7253 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7254 NTTP->getLocation(), 7255 NTTP->getDeclName()); 7256 if (!NewTSI) 7257 return true; 7258 7259 if (NewTSI != NTTP->getTypeSourceInfo()) { 7260 NTTP->setTypeSourceInfo(NewTSI); 7261 NTTP->setType(NewTSI->getType()); 7262 } 7263 } 7264 7265 return false; 7266} 7267 7268/// \brief Produces a formatted string that describes the binding of 7269/// template parameters to template arguments. 7270std::string 7271Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7272 const TemplateArgumentList &Args) { 7273 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7274} 7275 7276std::string 7277Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7278 const TemplateArgument *Args, 7279 unsigned NumArgs) { 7280 SmallString<128> Str; 7281 llvm::raw_svector_ostream Out(Str); 7282 7283 if (!Params || Params->size() == 0 || NumArgs == 0) 7284 return std::string(); 7285 7286 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7287 if (I >= NumArgs) 7288 break; 7289 7290 if (I == 0) 7291 Out << "[with "; 7292 else 7293 Out << ", "; 7294 7295 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7296 Out << Id->getName(); 7297 } else { 7298 Out << '$' << I; 7299 } 7300 7301 Out << " = "; 7302 Args[I].print(getPrintingPolicy(), Out); 7303 } 7304 7305 Out << ']'; 7306 return Out.str(); 7307} 7308 7309void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7310 if (!FD) 7311 return; 7312 FD->setLateTemplateParsed(Flag); 7313} 7314 7315bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7316 DeclContext *DC = CurContext; 7317 7318 while (DC) { 7319 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7320 const FunctionDecl *FD = RD->isLocalClass(); 7321 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7322 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7323 return false; 7324 7325 DC = DC->getParent(); 7326 } 7327 return false; 7328} 7329