SemaTemplate.cpp revision 885989109ade7cb4dc493e25da41456c64b3cf6a
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  // The set of class templates we've already seen.
67  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
68  LookupResult::Filter filter = R.makeFilter();
69  while (filter.hasNext()) {
70    NamedDecl *Orig = filter.next();
71    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
72    if (!Repl)
73      filter.erase();
74    else if (Repl != Orig) {
75
76      // C++ [temp.local]p3:
77      //   A lookup that finds an injected-class-name (10.2) can result in an
78      //   ambiguity in certain cases (for example, if it is found in more than
79      //   one base class). If all of the injected-class-names that are found
80      //   refer to specializations of the same class template, and if the name
81      //   is followed by a template-argument-list, the reference refers to the
82      //   class template itself and not a specialization thereof, and is not
83      //   ambiguous.
84      //
85      // FIXME: Will we eventually have to do the same for alias templates?
86      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
87        if (!ClassTemplates.insert(ClassTmpl)) {
88          filter.erase();
89          continue;
90        }
91
92      filter.replace(Repl);
93    }
94  }
95  filter.done();
96}
97
98TemplateNameKind Sema::isTemplateName(Scope *S,
99                                      CXXScopeSpec &SS,
100                                      UnqualifiedId &Name,
101                                      TypeTy *ObjectTypePtr,
102                                      bool EnteringContext,
103                                      TemplateTy &TemplateResult) {
104  assert(getLangOptions().CPlusPlus && "No template names in C!");
105
106  DeclarationName TName;
107
108  switch (Name.getKind()) {
109  case UnqualifiedId::IK_Identifier:
110    TName = DeclarationName(Name.Identifier);
111    break;
112
113  case UnqualifiedId::IK_OperatorFunctionId:
114    TName = Context.DeclarationNames.getCXXOperatorName(
115                                              Name.OperatorFunctionId.Operator);
116    break;
117
118  case UnqualifiedId::IK_LiteralOperatorId:
119    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
120    break;
121
122  default:
123    return TNK_Non_template;
124  }
125
126  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
127
128  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
129                 LookupOrdinaryName);
130  R.suppressDiagnostics();
131  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
132  if (R.empty() || R.isAmbiguous())
133    return TNK_Non_template;
134
135  TemplateName Template;
136  TemplateNameKind TemplateKind;
137
138  unsigned ResultCount = R.end() - R.begin();
139  if (ResultCount > 1) {
140    // We assume that we'll preserve the qualifier from a function
141    // template name in other ways.
142    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
143    TemplateKind = TNK_Function_template;
144  } else {
145    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
146
147    if (SS.isSet() && !SS.isInvalid()) {
148      NestedNameSpecifier *Qualifier
149        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
150      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
151    } else {
152      Template = TemplateName(TD);
153    }
154
155    if (isa<FunctionTemplateDecl>(TD))
156      TemplateKind = TNK_Function_template;
157    else {
158      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
159      TemplateKind = TNK_Type_template;
160    }
161  }
162
163  TemplateResult = TemplateTy::make(Template);
164  return TemplateKind;
165}
166
167bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
168                                       SourceLocation IILoc,
169                                       Scope *S,
170                                       const CXXScopeSpec *SS,
171                                       TemplateTy &SuggestedTemplate,
172                                       TemplateNameKind &SuggestedKind) {
173  // We can't recover unless there's a dependent scope specifier preceding the
174  // template name.
175  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
176      computeDeclContext(*SS))
177    return false;
178
179  // The code is missing a 'template' keyword prior to the dependent template
180  // name.
181  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
182  Diag(IILoc, diag::err_template_kw_missing)
183    << Qualifier << II.getName()
184    << FixItHint::CreateInsertion(IILoc, "template ");
185  SuggestedTemplate
186    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
187  SuggestedKind = TNK_Dependent_template_name;
188  return true;
189}
190
191void Sema::LookupTemplateName(LookupResult &Found,
192                              Scope *S, CXXScopeSpec &SS,
193                              QualType ObjectType,
194                              bool EnteringContext) {
195  // Determine where to perform name lookup
196  DeclContext *LookupCtx = 0;
197  bool isDependent = false;
198  if (!ObjectType.isNull()) {
199    // This nested-name-specifier occurs in a member access expression, e.g.,
200    // x->B::f, and we are looking into the type of the object.
201    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
202    LookupCtx = computeDeclContext(ObjectType);
203    isDependent = ObjectType->isDependentType();
204    assert((isDependent || !ObjectType->isIncompleteType()) &&
205           "Caller should have completed object type");
206  } else if (SS.isSet()) {
207    // This nested-name-specifier occurs after another nested-name-specifier,
208    // so long into the context associated with the prior nested-name-specifier.
209    LookupCtx = computeDeclContext(SS, EnteringContext);
210    isDependent = isDependentScopeSpecifier(SS);
211
212    // The declaration context must be complete.
213    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
214      return;
215  }
216
217  bool ObjectTypeSearchedInScope = false;
218  if (LookupCtx) {
219    // Perform "qualified" name lookup into the declaration context we
220    // computed, which is either the type of the base of a member access
221    // expression or the declaration context associated with a prior
222    // nested-name-specifier.
223    LookupQualifiedName(Found, LookupCtx);
224
225    if (!ObjectType.isNull() && Found.empty()) {
226      // C++ [basic.lookup.classref]p1:
227      //   In a class member access expression (5.2.5), if the . or -> token is
228      //   immediately followed by an identifier followed by a <, the
229      //   identifier must be looked up to determine whether the < is the
230      //   beginning of a template argument list (14.2) or a less-than operator.
231      //   The identifier is first looked up in the class of the object
232      //   expression. If the identifier is not found, it is then looked up in
233      //   the context of the entire postfix-expression and shall name a class
234      //   or function template.
235      //
236      // FIXME: When we're instantiating a template, do we actually have to
237      // look in the scope of the template? Seems fishy...
238      if (S) LookupName(Found, S);
239      ObjectTypeSearchedInScope = true;
240    }
241  } else if (isDependent) {
242    // We cannot look into a dependent object type or nested nme
243    // specifier.
244    return;
245  } else {
246    // Perform unqualified name lookup in the current scope.
247    LookupName(Found, S);
248  }
249
250  if (Found.empty() && !isDependent) {
251    // If we did not find any names, attempt to correct any typos.
252    DeclarationName Name = Found.getLookupName();
253    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
254                                                 false, CTC_CXXCasts)) {
255      FilterAcceptableTemplateNames(Context, Found);
256      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
257        if (LookupCtx)
258          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
259            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
260            << FixItHint::CreateReplacement(Found.getNameLoc(),
261                                          Found.getLookupName().getAsString());
262        else
263          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
264            << Name << Found.getLookupName()
265            << FixItHint::CreateReplacement(Found.getNameLoc(),
266                                          Found.getLookupName().getAsString());
267        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
268          Diag(Template->getLocation(), diag::note_previous_decl)
269            << Template->getDeclName();
270      } else
271        Found.clear();
272    } else {
273      Found.clear();
274    }
275  }
276
277  FilterAcceptableTemplateNames(Context, Found);
278  if (Found.empty())
279    return;
280
281  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
282    // C++ [basic.lookup.classref]p1:
283    //   [...] If the lookup in the class of the object expression finds a
284    //   template, the name is also looked up in the context of the entire
285    //   postfix-expression and [...]
286    //
287    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
288                            LookupOrdinaryName);
289    LookupName(FoundOuter, S);
290    FilterAcceptableTemplateNames(Context, FoundOuter);
291
292    if (FoundOuter.empty()) {
293      //   - if the name is not found, the name found in the class of the
294      //     object expression is used, otherwise
295    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
296      //   - if the name is found in the context of the entire
297      //     postfix-expression and does not name a class template, the name
298      //     found in the class of the object expression is used, otherwise
299    } else {
300      //   - if the name found is a class template, it must refer to the same
301      //     entity as the one found in the class of the object expression,
302      //     otherwise the program is ill-formed.
303      if (!Found.isSingleResult() ||
304          Found.getFoundDecl()->getCanonicalDecl()
305            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
306        Diag(Found.getNameLoc(),
307             diag::err_nested_name_member_ref_lookup_ambiguous)
308          << Found.getLookupName();
309        Diag(Found.getRepresentativeDecl()->getLocation(),
310             diag::note_ambig_member_ref_object_type)
311          << ObjectType;
312        Diag(FoundOuter.getFoundDecl()->getLocation(),
313             diag::note_ambig_member_ref_scope);
314
315        // Recover by taking the template that we found in the object
316        // expression's type.
317      }
318    }
319  }
320}
321
322/// ActOnDependentIdExpression - Handle a dependent id-expression that
323/// was just parsed.  This is only possible with an explicit scope
324/// specifier naming a dependent type.
325Sema::OwningExprResult
326Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
327                                 DeclarationName Name,
328                                 SourceLocation NameLoc,
329                                 bool isAddressOfOperand,
330                           const TemplateArgumentListInfo *TemplateArgs) {
331  NestedNameSpecifier *Qualifier
332    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
333
334  if (!isAddressOfOperand &&
335      isa<CXXMethodDecl>(CurContext) &&
336      cast<CXXMethodDecl>(CurContext)->isInstance()) {
337    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
338
339    // Since the 'this' expression is synthesized, we don't need to
340    // perform the double-lookup check.
341    NamedDecl *FirstQualifierInScope = 0;
342
343    return Owned(CXXDependentScopeMemberExpr::Create(Context,
344                                                     /*This*/ 0, ThisType,
345                                                     /*IsArrow*/ true,
346                                                     /*Op*/ SourceLocation(),
347                                                     Qualifier, SS.getRange(),
348                                                     FirstQualifierInScope,
349                                                     Name, NameLoc,
350                                                     TemplateArgs));
351  }
352
353  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
354}
355
356Sema::OwningExprResult
357Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
358                                DeclarationName Name,
359                                SourceLocation NameLoc,
360                                const TemplateArgumentListInfo *TemplateArgs) {
361  return Owned(DependentScopeDeclRefExpr::Create(Context,
362               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
363                                                 SS.getRange(),
364                                                 Name, NameLoc,
365                                                 TemplateArgs));
366}
367
368/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
369/// that the template parameter 'PrevDecl' is being shadowed by a new
370/// declaration at location Loc. Returns true to indicate that this is
371/// an error, and false otherwise.
372bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
373  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
374
375  // Microsoft Visual C++ permits template parameters to be shadowed.
376  if (getLangOptions().Microsoft)
377    return false;
378
379  // C++ [temp.local]p4:
380  //   A template-parameter shall not be redeclared within its
381  //   scope (including nested scopes).
382  Diag(Loc, diag::err_template_param_shadow)
383    << cast<NamedDecl>(PrevDecl)->getDeclName();
384  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
385  return true;
386}
387
388/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
389/// the parameter D to reference the templated declaration and return a pointer
390/// to the template declaration. Otherwise, do nothing to D and return null.
391TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
392  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
393    D = DeclPtrTy::make(Temp->getTemplatedDecl());
394    return Temp;
395  }
396  return 0;
397}
398
399static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
400                                            const ParsedTemplateArgument &Arg) {
401
402  switch (Arg.getKind()) {
403  case ParsedTemplateArgument::Type: {
404    TypeSourceInfo *DI;
405    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
406    if (!DI)
407      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
408    return TemplateArgumentLoc(TemplateArgument(T), DI);
409  }
410
411  case ParsedTemplateArgument::NonType: {
412    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
413    return TemplateArgumentLoc(TemplateArgument(E), E);
414  }
415
416  case ParsedTemplateArgument::Template: {
417    TemplateName Template
418      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
419    return TemplateArgumentLoc(TemplateArgument(Template),
420                               Arg.getScopeSpec().getRange(),
421                               Arg.getLocation());
422  }
423  }
424
425  llvm_unreachable("Unhandled parsed template argument");
426  return TemplateArgumentLoc();
427}
428
429/// \brief Translates template arguments as provided by the parser
430/// into template arguments used by semantic analysis.
431void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
432                                      TemplateArgumentListInfo &TemplateArgs) {
433 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
434   TemplateArgs.addArgument(translateTemplateArgument(*this,
435                                                      TemplateArgsIn[I]));
436}
437
438/// ActOnTypeParameter - Called when a C++ template type parameter
439/// (e.g., "typename T") has been parsed. Typename specifies whether
440/// the keyword "typename" was used to declare the type parameter
441/// (otherwise, "class" was used), and KeyLoc is the location of the
442/// "class" or "typename" keyword. ParamName is the name of the
443/// parameter (NULL indicates an unnamed template parameter) and
444/// ParamName is the location of the parameter name (if any).
445/// If the type parameter has a default argument, it will be added
446/// later via ActOnTypeParameterDefault.
447Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
448                                         SourceLocation EllipsisLoc,
449                                         SourceLocation KeyLoc,
450                                         IdentifierInfo *ParamName,
451                                         SourceLocation ParamNameLoc,
452                                         unsigned Depth, unsigned Position) {
453  assert(S->isTemplateParamScope() &&
454         "Template type parameter not in template parameter scope!");
455  bool Invalid = false;
456
457  if (ParamName) {
458    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
459                                           LookupOrdinaryName,
460                                           ForRedeclaration);
461    if (PrevDecl && PrevDecl->isTemplateParameter())
462      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
463                                                           PrevDecl);
464  }
465
466  SourceLocation Loc = ParamNameLoc;
467  if (!ParamName)
468    Loc = KeyLoc;
469
470  TemplateTypeParmDecl *Param
471    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
472                                   Loc, Depth, Position, ParamName, Typename,
473                                   Ellipsis);
474  if (Invalid)
475    Param->setInvalidDecl();
476
477  if (ParamName) {
478    // Add the template parameter into the current scope.
479    S->AddDecl(DeclPtrTy::make(Param));
480    IdResolver.AddDecl(Param);
481  }
482
483  return DeclPtrTy::make(Param);
484}
485
486/// ActOnTypeParameterDefault - Adds a default argument (the type
487/// Default) to the given template type parameter (TypeParam).
488void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
489                                     SourceLocation EqualLoc,
490                                     SourceLocation DefaultLoc,
491                                     TypeTy *DefaultT) {
492  TemplateTypeParmDecl *Parm
493    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
494
495  TypeSourceInfo *DefaultTInfo;
496  GetTypeFromParser(DefaultT, &DefaultTInfo);
497
498  assert(DefaultTInfo && "expected source information for type");
499
500  // C++0x [temp.param]p9:
501  // A default template-argument may be specified for any kind of
502  // template-parameter that is not a template parameter pack.
503  if (Parm->isParameterPack()) {
504    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
505    return;
506  }
507
508  // C++ [temp.param]p14:
509  //   A template-parameter shall not be used in its own default argument.
510  // FIXME: Implement this check! Needs a recursive walk over the types.
511
512  // Check the template argument itself.
513  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
514    Parm->setInvalidDecl();
515    return;
516  }
517
518  Parm->setDefaultArgument(DefaultTInfo, false);
519}
520
521/// \brief Check that the type of a non-type template parameter is
522/// well-formed.
523///
524/// \returns the (possibly-promoted) parameter type if valid;
525/// otherwise, produces a diagnostic and returns a NULL type.
526QualType
527Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
528  // C++ [temp.param]p4:
529  //
530  // A non-type template-parameter shall have one of the following
531  // (optionally cv-qualified) types:
532  //
533  //       -- integral or enumeration type,
534  if (T->isIntegralType() || T->isEnumeralType() ||
535      //   -- pointer to object or pointer to function,
536      (T->isPointerType() &&
537       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
538        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
539      //   -- reference to object or reference to function,
540      T->isReferenceType() ||
541      //   -- pointer to member.
542      T->isMemberPointerType() ||
543      // If T is a dependent type, we can't do the check now, so we
544      // assume that it is well-formed.
545      T->isDependentType())
546    return T;
547  // C++ [temp.param]p8:
548  //
549  //   A non-type template-parameter of type "array of T" or
550  //   "function returning T" is adjusted to be of type "pointer to
551  //   T" or "pointer to function returning T", respectively.
552  else if (T->isArrayType())
553    // FIXME: Keep the type prior to promotion?
554    return Context.getArrayDecayedType(T);
555  else if (T->isFunctionType())
556    // FIXME: Keep the type prior to promotion?
557    return Context.getPointerType(T);
558
559  Diag(Loc, diag::err_template_nontype_parm_bad_type)
560    << T;
561
562  return QualType();
563}
564
565/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
566/// template parameter (e.g., "int Size" in "template<int Size>
567/// class Array") has been parsed. S is the current scope and D is
568/// the parsed declarator.
569Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
570                                                    unsigned Depth,
571                                                    unsigned Position) {
572  TypeSourceInfo *TInfo = 0;
573  QualType T = GetTypeForDeclarator(D, S, &TInfo);
574
575  assert(S->isTemplateParamScope() &&
576         "Non-type template parameter not in template parameter scope!");
577  bool Invalid = false;
578
579  IdentifierInfo *ParamName = D.getIdentifier();
580  if (ParamName) {
581    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
582                                           LookupOrdinaryName,
583                                           ForRedeclaration);
584    if (PrevDecl && PrevDecl->isTemplateParameter())
585      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
586                                                           PrevDecl);
587  }
588
589  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
590  if (T.isNull()) {
591    T = Context.IntTy; // Recover with an 'int' type.
592    Invalid = true;
593  }
594
595  NonTypeTemplateParmDecl *Param
596    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
597                                      D.getIdentifierLoc(),
598                                      Depth, Position, ParamName, T, TInfo);
599  if (Invalid)
600    Param->setInvalidDecl();
601
602  if (D.getIdentifier()) {
603    // Add the template parameter into the current scope.
604    S->AddDecl(DeclPtrTy::make(Param));
605    IdResolver.AddDecl(Param);
606  }
607  return DeclPtrTy::make(Param);
608}
609
610/// \brief Adds a default argument to the given non-type template
611/// parameter.
612void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
613                                                SourceLocation EqualLoc,
614                                                ExprArg DefaultE) {
615  NonTypeTemplateParmDecl *TemplateParm
616    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
617  Expr *Default = static_cast<Expr *>(DefaultE.get());
618
619  // C++ [temp.param]p14:
620  //   A template-parameter shall not be used in its own default argument.
621  // FIXME: Implement this check! Needs a recursive walk over the types.
622
623  // Check the well-formedness of the default template argument.
624  TemplateArgument Converted;
625  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
626                            Converted)) {
627    TemplateParm->setInvalidDecl();
628    return;
629  }
630
631  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
632}
633
634
635/// ActOnTemplateTemplateParameter - Called when a C++ template template
636/// parameter (e.g. T in template <template <typename> class T> class array)
637/// has been parsed. S is the current scope.
638Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
639                                                     SourceLocation TmpLoc,
640                                                     TemplateParamsTy *Params,
641                                                     IdentifierInfo *Name,
642                                                     SourceLocation NameLoc,
643                                                     unsigned Depth,
644                                                     unsigned Position) {
645  assert(S->isTemplateParamScope() &&
646         "Template template parameter not in template parameter scope!");
647
648  // Construct the parameter object.
649  TemplateTemplateParmDecl *Param =
650    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
651                                     TmpLoc, Depth, Position, Name,
652                                     (TemplateParameterList*)Params);
653
654  // Make sure the parameter is valid.
655  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
656  // do anything yet. However, if the template parameter list or (eventual)
657  // default value is ever invalidated, that will propagate here.
658  bool Invalid = false;
659  if (Invalid) {
660    Param->setInvalidDecl();
661  }
662
663  // If the tt-param has a name, then link the identifier into the scope
664  // and lookup mechanisms.
665  if (Name) {
666    S->AddDecl(DeclPtrTy::make(Param));
667    IdResolver.AddDecl(Param);
668  }
669
670  return DeclPtrTy::make(Param);
671}
672
673/// \brief Adds a default argument to the given template template
674/// parameter.
675void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
676                                                 SourceLocation EqualLoc,
677                                        const ParsedTemplateArgument &Default) {
678  TemplateTemplateParmDecl *TemplateParm
679    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
680
681  // C++ [temp.param]p14:
682  //   A template-parameter shall not be used in its own default argument.
683  // FIXME: Implement this check! Needs a recursive walk over the types.
684
685  // Check only that we have a template template argument. We don't want to
686  // try to check well-formedness now, because our template template parameter
687  // might have dependent types in its template parameters, which we wouldn't
688  // be able to match now.
689  //
690  // If none of the template template parameter's template arguments mention
691  // other template parameters, we could actually perform more checking here.
692  // However, it isn't worth doing.
693  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
694  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
695    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
696      << DefaultArg.getSourceRange();
697    return;
698  }
699
700  TemplateParm->setDefaultArgument(DefaultArg);
701}
702
703/// ActOnTemplateParameterList - Builds a TemplateParameterList that
704/// contains the template parameters in Params/NumParams.
705Sema::TemplateParamsTy *
706Sema::ActOnTemplateParameterList(unsigned Depth,
707                                 SourceLocation ExportLoc,
708                                 SourceLocation TemplateLoc,
709                                 SourceLocation LAngleLoc,
710                                 DeclPtrTy *Params, unsigned NumParams,
711                                 SourceLocation RAngleLoc) {
712  if (ExportLoc.isValid())
713    Diag(ExportLoc, diag::warn_template_export_unsupported);
714
715  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
716                                       (NamedDecl**)Params, NumParams,
717                                       RAngleLoc);
718}
719
720static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
721  if (SS.isSet())
722    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
723                        SS.getRange());
724}
725
726Sema::DeclResult
727Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
728                         SourceLocation KWLoc, CXXScopeSpec &SS,
729                         IdentifierInfo *Name, SourceLocation NameLoc,
730                         AttributeList *Attr,
731                         TemplateParameterList *TemplateParams,
732                         AccessSpecifier AS) {
733  assert(TemplateParams && TemplateParams->size() > 0 &&
734         "No template parameters");
735  assert(TUK != TUK_Reference && "Can only declare or define class templates");
736  bool Invalid = false;
737
738  // Check that we can declare a template here.
739  if (CheckTemplateDeclScope(S, TemplateParams))
740    return true;
741
742  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
743  assert(Kind != TTK_Enum && "can't build template of enumerated type");
744
745  // There is no such thing as an unnamed class template.
746  if (!Name) {
747    Diag(KWLoc, diag::err_template_unnamed_class);
748    return true;
749  }
750
751  // Find any previous declaration with this name.
752  DeclContext *SemanticContext;
753  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
754                        ForRedeclaration);
755  if (SS.isNotEmpty() && !SS.isInvalid()) {
756    SemanticContext = computeDeclContext(SS, true);
757    if (!SemanticContext) {
758      // FIXME: Produce a reasonable diagnostic here
759      return true;
760    }
761
762    if (RequireCompleteDeclContext(SS, SemanticContext))
763      return true;
764
765    LookupQualifiedName(Previous, SemanticContext);
766  } else {
767    SemanticContext = CurContext;
768    LookupName(Previous, S);
769  }
770
771  if (Previous.isAmbiguous())
772    return true;
773
774  NamedDecl *PrevDecl = 0;
775  if (Previous.begin() != Previous.end())
776    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
777
778  // If there is a previous declaration with the same name, check
779  // whether this is a valid redeclaration.
780  ClassTemplateDecl *PrevClassTemplate
781    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
782
783  // We may have found the injected-class-name of a class template,
784  // class template partial specialization, or class template specialization.
785  // In these cases, grab the template that is being defined or specialized.
786  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
787      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
788    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
789    PrevClassTemplate
790      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
791    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
792      PrevClassTemplate
793        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
794            ->getSpecializedTemplate();
795    }
796  }
797
798  if (TUK == TUK_Friend) {
799    // C++ [namespace.memdef]p3:
800    //   [...] When looking for a prior declaration of a class or a function
801    //   declared as a friend, and when the name of the friend class or
802    //   function is neither a qualified name nor a template-id, scopes outside
803    //   the innermost enclosing namespace scope are not considered.
804    if (!SS.isSet()) {
805      DeclContext *OutermostContext = CurContext;
806      while (!OutermostContext->isFileContext())
807        OutermostContext = OutermostContext->getLookupParent();
808
809      if (PrevDecl &&
810          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
811           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
812        SemanticContext = PrevDecl->getDeclContext();
813      } else {
814        // Declarations in outer scopes don't matter. However, the outermost
815        // context we computed is the semantic context for our new
816        // declaration.
817        PrevDecl = PrevClassTemplate = 0;
818        SemanticContext = OutermostContext;
819      }
820    }
821
822    if (CurContext->isDependentContext()) {
823      // If this is a dependent context, we don't want to link the friend
824      // class template to the template in scope, because that would perform
825      // checking of the template parameter lists that can't be performed
826      // until the outer context is instantiated.
827      PrevDecl = PrevClassTemplate = 0;
828    }
829  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
830    PrevDecl = PrevClassTemplate = 0;
831
832  if (PrevClassTemplate) {
833    // Ensure that the template parameter lists are compatible.
834    if (!TemplateParameterListsAreEqual(TemplateParams,
835                                   PrevClassTemplate->getTemplateParameters(),
836                                        /*Complain=*/true,
837                                        TPL_TemplateMatch))
838      return true;
839
840    // C++ [temp.class]p4:
841    //   In a redeclaration, partial specialization, explicit
842    //   specialization or explicit instantiation of a class template,
843    //   the class-key shall agree in kind with the original class
844    //   template declaration (7.1.5.3).
845    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
846    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
847      Diag(KWLoc, diag::err_use_with_wrong_tag)
848        << Name
849        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
850      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
851      Kind = PrevRecordDecl->getTagKind();
852    }
853
854    // Check for redefinition of this class template.
855    if (TUK == TUK_Definition) {
856      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
857        Diag(NameLoc, diag::err_redefinition) << Name;
858        Diag(Def->getLocation(), diag::note_previous_definition);
859        // FIXME: Would it make sense to try to "forget" the previous
860        // definition, as part of error recovery?
861        return true;
862      }
863    }
864  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
865    // Maybe we will complain about the shadowed template parameter.
866    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
867    // Just pretend that we didn't see the previous declaration.
868    PrevDecl = 0;
869  } else if (PrevDecl) {
870    // C++ [temp]p5:
871    //   A class template shall not have the same name as any other
872    //   template, class, function, object, enumeration, enumerator,
873    //   namespace, or type in the same scope (3.3), except as specified
874    //   in (14.5.4).
875    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
876    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
877    return true;
878  }
879
880  // Check the template parameter list of this declaration, possibly
881  // merging in the template parameter list from the previous class
882  // template declaration.
883  if (CheckTemplateParameterList(TemplateParams,
884            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
885                                 TPC_ClassTemplate))
886    Invalid = true;
887
888  if (SS.isSet()) {
889    // If the name of the template was qualified, we must be defining the
890    // template out-of-line.
891    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
892        !(TUK == TUK_Friend && CurContext->isDependentContext()))
893      Diag(NameLoc, diag::err_member_def_does_not_match)
894        << Name << SemanticContext << SS.getRange();
895  }
896
897  CXXRecordDecl *NewClass =
898    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
899                          PrevClassTemplate?
900                            PrevClassTemplate->getTemplatedDecl() : 0,
901                          /*DelayTypeCreation=*/true);
902  SetNestedNameSpecifier(NewClass, SS);
903
904  ClassTemplateDecl *NewTemplate
905    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
906                                DeclarationName(Name), TemplateParams,
907                                NewClass, PrevClassTemplate);
908  NewClass->setDescribedClassTemplate(NewTemplate);
909
910  // Build the type for the class template declaration now.
911  QualType T = NewTemplate->getInjectedClassNameSpecialization(Context);
912  T = Context.getInjectedClassNameType(NewClass, T);
913  assert(T->isDependentType() && "Class template type is not dependent?");
914  (void)T;
915
916  // If we are providing an explicit specialization of a member that is a
917  // class template, make a note of that.
918  if (PrevClassTemplate &&
919      PrevClassTemplate->getInstantiatedFromMemberTemplate())
920    PrevClassTemplate->setMemberSpecialization();
921
922  // Set the access specifier.
923  if (!Invalid && TUK != TUK_Friend)
924    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
925
926  // Set the lexical context of these templates
927  NewClass->setLexicalDeclContext(CurContext);
928  NewTemplate->setLexicalDeclContext(CurContext);
929
930  if (TUK == TUK_Definition)
931    NewClass->startDefinition();
932
933  if (Attr)
934    ProcessDeclAttributeList(S, NewClass, Attr);
935
936  if (TUK != TUK_Friend)
937    PushOnScopeChains(NewTemplate, S);
938  else {
939    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
940      NewTemplate->setAccess(PrevClassTemplate->getAccess());
941      NewClass->setAccess(PrevClassTemplate->getAccess());
942    }
943
944    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
945                                       PrevClassTemplate != NULL);
946
947    // Friend templates are visible in fairly strange ways.
948    if (!CurContext->isDependentContext()) {
949      DeclContext *DC = SemanticContext->getLookupContext();
950      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
951      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
952        PushOnScopeChains(NewTemplate, EnclosingScope,
953                          /* AddToContext = */ false);
954    }
955
956    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
957                                            NewClass->getLocation(),
958                                            NewTemplate,
959                                    /*FIXME:*/NewClass->getLocation());
960    Friend->setAccess(AS_public);
961    CurContext->addDecl(Friend);
962  }
963
964  if (Invalid) {
965    NewTemplate->setInvalidDecl();
966    NewClass->setInvalidDecl();
967  }
968  return DeclPtrTy::make(NewTemplate);
969}
970
971/// \brief Diagnose the presence of a default template argument on a
972/// template parameter, which is ill-formed in certain contexts.
973///
974/// \returns true if the default template argument should be dropped.
975static bool DiagnoseDefaultTemplateArgument(Sema &S,
976                                            Sema::TemplateParamListContext TPC,
977                                            SourceLocation ParamLoc,
978                                            SourceRange DefArgRange) {
979  switch (TPC) {
980  case Sema::TPC_ClassTemplate:
981    return false;
982
983  case Sema::TPC_FunctionTemplate:
984    // C++ [temp.param]p9:
985    //   A default template-argument shall not be specified in a
986    //   function template declaration or a function template
987    //   definition [...]
988    // (This sentence is not in C++0x, per DR226).
989    if (!S.getLangOptions().CPlusPlus0x)
990      S.Diag(ParamLoc,
991             diag::err_template_parameter_default_in_function_template)
992        << DefArgRange;
993    return false;
994
995  case Sema::TPC_ClassTemplateMember:
996    // C++0x [temp.param]p9:
997    //   A default template-argument shall not be specified in the
998    //   template-parameter-lists of the definition of a member of a
999    //   class template that appears outside of the member's class.
1000    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1001      << DefArgRange;
1002    return true;
1003
1004  case Sema::TPC_FriendFunctionTemplate:
1005    // C++ [temp.param]p9:
1006    //   A default template-argument shall not be specified in a
1007    //   friend template declaration.
1008    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1009      << DefArgRange;
1010    return true;
1011
1012    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1013    // for friend function templates if there is only a single
1014    // declaration (and it is a definition). Strange!
1015  }
1016
1017  return false;
1018}
1019
1020/// \brief Checks the validity of a template parameter list, possibly
1021/// considering the template parameter list from a previous
1022/// declaration.
1023///
1024/// If an "old" template parameter list is provided, it must be
1025/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1026/// template parameter list.
1027///
1028/// \param NewParams Template parameter list for a new template
1029/// declaration. This template parameter list will be updated with any
1030/// default arguments that are carried through from the previous
1031/// template parameter list.
1032///
1033/// \param OldParams If provided, template parameter list from a
1034/// previous declaration of the same template. Default template
1035/// arguments will be merged from the old template parameter list to
1036/// the new template parameter list.
1037///
1038/// \param TPC Describes the context in which we are checking the given
1039/// template parameter list.
1040///
1041/// \returns true if an error occurred, false otherwise.
1042bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1043                                      TemplateParameterList *OldParams,
1044                                      TemplateParamListContext TPC) {
1045  bool Invalid = false;
1046
1047  // C++ [temp.param]p10:
1048  //   The set of default template-arguments available for use with a
1049  //   template declaration or definition is obtained by merging the
1050  //   default arguments from the definition (if in scope) and all
1051  //   declarations in scope in the same way default function
1052  //   arguments are (8.3.6).
1053  bool SawDefaultArgument = false;
1054  SourceLocation PreviousDefaultArgLoc;
1055
1056  bool SawParameterPack = false;
1057  SourceLocation ParameterPackLoc;
1058
1059  // Dummy initialization to avoid warnings.
1060  TemplateParameterList::iterator OldParam = NewParams->end();
1061  if (OldParams)
1062    OldParam = OldParams->begin();
1063
1064  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1065                                    NewParamEnd = NewParams->end();
1066       NewParam != NewParamEnd; ++NewParam) {
1067    // Variables used to diagnose redundant default arguments
1068    bool RedundantDefaultArg = false;
1069    SourceLocation OldDefaultLoc;
1070    SourceLocation NewDefaultLoc;
1071
1072    // Variables used to diagnose missing default arguments
1073    bool MissingDefaultArg = false;
1074
1075    // C++0x [temp.param]p11:
1076    // If a template parameter of a class template is a template parameter pack,
1077    // it must be the last template parameter.
1078    if (SawParameterPack) {
1079      Diag(ParameterPackLoc,
1080           diag::err_template_param_pack_must_be_last_template_parameter);
1081      Invalid = true;
1082    }
1083
1084    if (TemplateTypeParmDecl *NewTypeParm
1085          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1086      // Check the presence of a default argument here.
1087      if (NewTypeParm->hasDefaultArgument() &&
1088          DiagnoseDefaultTemplateArgument(*this, TPC,
1089                                          NewTypeParm->getLocation(),
1090               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1091                                                       .getFullSourceRange()))
1092        NewTypeParm->removeDefaultArgument();
1093
1094      // Merge default arguments for template type parameters.
1095      TemplateTypeParmDecl *OldTypeParm
1096          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1097
1098      if (NewTypeParm->isParameterPack()) {
1099        assert(!NewTypeParm->hasDefaultArgument() &&
1100               "Parameter packs can't have a default argument!");
1101        SawParameterPack = true;
1102        ParameterPackLoc = NewTypeParm->getLocation();
1103      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1104                 NewTypeParm->hasDefaultArgument()) {
1105        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1106        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1107        SawDefaultArgument = true;
1108        RedundantDefaultArg = true;
1109        PreviousDefaultArgLoc = NewDefaultLoc;
1110      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1111        // Merge the default argument from the old declaration to the
1112        // new declaration.
1113        SawDefaultArgument = true;
1114        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1115                                        true);
1116        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1117      } else if (NewTypeParm->hasDefaultArgument()) {
1118        SawDefaultArgument = true;
1119        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1120      } else if (SawDefaultArgument)
1121        MissingDefaultArg = true;
1122    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1123               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1124      // Check the presence of a default argument here.
1125      if (NewNonTypeParm->hasDefaultArgument() &&
1126          DiagnoseDefaultTemplateArgument(*this, TPC,
1127                                          NewNonTypeParm->getLocation(),
1128                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1129        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1130        NewNonTypeParm->setDefaultArgument(0);
1131      }
1132
1133      // Merge default arguments for non-type template parameters
1134      NonTypeTemplateParmDecl *OldNonTypeParm
1135        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1136      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1137          NewNonTypeParm->hasDefaultArgument()) {
1138        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1139        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1140        SawDefaultArgument = true;
1141        RedundantDefaultArg = true;
1142        PreviousDefaultArgLoc = NewDefaultLoc;
1143      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1144        // Merge the default argument from the old declaration to the
1145        // new declaration.
1146        SawDefaultArgument = true;
1147        // FIXME: We need to create a new kind of "default argument"
1148        // expression that points to a previous template template
1149        // parameter.
1150        NewNonTypeParm->setDefaultArgument(
1151                                        OldNonTypeParm->getDefaultArgument());
1152        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1153      } else if (NewNonTypeParm->hasDefaultArgument()) {
1154        SawDefaultArgument = true;
1155        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1156      } else if (SawDefaultArgument)
1157        MissingDefaultArg = true;
1158    } else {
1159      // Check the presence of a default argument here.
1160      TemplateTemplateParmDecl *NewTemplateParm
1161        = cast<TemplateTemplateParmDecl>(*NewParam);
1162      if (NewTemplateParm->hasDefaultArgument() &&
1163          DiagnoseDefaultTemplateArgument(*this, TPC,
1164                                          NewTemplateParm->getLocation(),
1165                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1166        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1167
1168      // Merge default arguments for template template parameters
1169      TemplateTemplateParmDecl *OldTemplateParm
1170        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1171      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1172          NewTemplateParm->hasDefaultArgument()) {
1173        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1174        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1175        SawDefaultArgument = true;
1176        RedundantDefaultArg = true;
1177        PreviousDefaultArgLoc = NewDefaultLoc;
1178      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1179        // Merge the default argument from the old declaration to the
1180        // new declaration.
1181        SawDefaultArgument = true;
1182        // FIXME: We need to create a new kind of "default argument" expression
1183        // that points to a previous template template parameter.
1184        NewTemplateParm->setDefaultArgument(
1185                                        OldTemplateParm->getDefaultArgument());
1186        PreviousDefaultArgLoc
1187          = OldTemplateParm->getDefaultArgument().getLocation();
1188      } else if (NewTemplateParm->hasDefaultArgument()) {
1189        SawDefaultArgument = true;
1190        PreviousDefaultArgLoc
1191          = NewTemplateParm->getDefaultArgument().getLocation();
1192      } else if (SawDefaultArgument)
1193        MissingDefaultArg = true;
1194    }
1195
1196    if (RedundantDefaultArg) {
1197      // C++ [temp.param]p12:
1198      //   A template-parameter shall not be given default arguments
1199      //   by two different declarations in the same scope.
1200      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1201      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1202      Invalid = true;
1203    } else if (MissingDefaultArg) {
1204      // C++ [temp.param]p11:
1205      //   If a template-parameter has a default template-argument,
1206      //   all subsequent template-parameters shall have a default
1207      //   template-argument supplied.
1208      Diag((*NewParam)->getLocation(),
1209           diag::err_template_param_default_arg_missing);
1210      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1211      Invalid = true;
1212    }
1213
1214    // If we have an old template parameter list that we're merging
1215    // in, move on to the next parameter.
1216    if (OldParams)
1217      ++OldParam;
1218  }
1219
1220  return Invalid;
1221}
1222
1223/// \brief Match the given template parameter lists to the given scope
1224/// specifier, returning the template parameter list that applies to the
1225/// name.
1226///
1227/// \param DeclStartLoc the start of the declaration that has a scope
1228/// specifier or a template parameter list.
1229///
1230/// \param SS the scope specifier that will be matched to the given template
1231/// parameter lists. This scope specifier precedes a qualified name that is
1232/// being declared.
1233///
1234/// \param ParamLists the template parameter lists, from the outermost to the
1235/// innermost template parameter lists.
1236///
1237/// \param NumParamLists the number of template parameter lists in ParamLists.
1238///
1239/// \param IsFriend Whether to apply the slightly different rules for
1240/// matching template parameters to scope specifiers in friend
1241/// declarations.
1242///
1243/// \param IsExplicitSpecialization will be set true if the entity being
1244/// declared is an explicit specialization, false otherwise.
1245///
1246/// \returns the template parameter list, if any, that corresponds to the
1247/// name that is preceded by the scope specifier @p SS. This template
1248/// parameter list may be have template parameters (if we're declaring a
1249/// template) or may have no template parameters (if we're declaring a
1250/// template specialization), or may be NULL (if we were's declaring isn't
1251/// itself a template).
1252TemplateParameterList *
1253Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1254                                              const CXXScopeSpec &SS,
1255                                          TemplateParameterList **ParamLists,
1256                                              unsigned NumParamLists,
1257                                              bool IsFriend,
1258                                              bool &IsExplicitSpecialization) {
1259  IsExplicitSpecialization = false;
1260
1261  // Find the template-ids that occur within the nested-name-specifier. These
1262  // template-ids will match up with the template parameter lists.
1263  llvm::SmallVector<const TemplateSpecializationType *, 4>
1264    TemplateIdsInSpecifier;
1265  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1266    ExplicitSpecializationsInSpecifier;
1267  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1268       NNS; NNS = NNS->getPrefix()) {
1269    const Type *T = NNS->getAsType();
1270    if (!T) break;
1271
1272    // C++0x [temp.expl.spec]p17:
1273    //   A member or a member template may be nested within many
1274    //   enclosing class templates. In an explicit specialization for
1275    //   such a member, the member declaration shall be preceded by a
1276    //   template<> for each enclosing class template that is
1277    //   explicitly specialized.
1278    //
1279    // Following the existing practice of GNU and EDG, we allow a typedef of a
1280    // template specialization type.
1281    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1282      T = TT->LookThroughTypedefs().getTypePtr();
1283
1284    if (const TemplateSpecializationType *SpecType
1285                                  = dyn_cast<TemplateSpecializationType>(T)) {
1286      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1287      if (!Template)
1288        continue; // FIXME: should this be an error? probably...
1289
1290      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1291        ClassTemplateSpecializationDecl *SpecDecl
1292          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1293        // If the nested name specifier refers to an explicit specialization,
1294        // we don't need a template<> header.
1295        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1296          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1297          continue;
1298        }
1299      }
1300
1301      TemplateIdsInSpecifier.push_back(SpecType);
1302    }
1303  }
1304
1305  // Reverse the list of template-ids in the scope specifier, so that we can
1306  // more easily match up the template-ids and the template parameter lists.
1307  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1308
1309  SourceLocation FirstTemplateLoc = DeclStartLoc;
1310  if (NumParamLists)
1311    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1312
1313  // Match the template-ids found in the specifier to the template parameter
1314  // lists.
1315  unsigned Idx = 0;
1316  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1317       Idx != NumTemplateIds; ++Idx) {
1318    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1319    bool DependentTemplateId = TemplateId->isDependentType();
1320    if (Idx >= NumParamLists) {
1321      // We have a template-id without a corresponding template parameter
1322      // list.
1323
1324      // ...which is fine if this is a friend declaration.
1325      if (IsFriend) {
1326        IsExplicitSpecialization = true;
1327        break;
1328      }
1329
1330      if (DependentTemplateId) {
1331        // FIXME: the location information here isn't great.
1332        Diag(SS.getRange().getBegin(),
1333             diag::err_template_spec_needs_template_parameters)
1334          << TemplateId
1335          << SS.getRange();
1336      } else {
1337        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1338          << SS.getRange()
1339          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1340        IsExplicitSpecialization = true;
1341      }
1342      return 0;
1343    }
1344
1345    // Check the template parameter list against its corresponding template-id.
1346    if (DependentTemplateId) {
1347      TemplateParameterList *ExpectedTemplateParams = 0;
1348
1349      // Are there cases in (e.g.) friends where this won't match?
1350      if (const InjectedClassNameType *Injected
1351            = TemplateId->getAs<InjectedClassNameType>()) {
1352        CXXRecordDecl *Record = Injected->getDecl();
1353        if (ClassTemplatePartialSpecializationDecl *Partial =
1354              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1355          ExpectedTemplateParams = Partial->getTemplateParameters();
1356        else
1357          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1358            ->getTemplateParameters();
1359      }
1360
1361      if (ExpectedTemplateParams)
1362        TemplateParameterListsAreEqual(ParamLists[Idx],
1363                                       ExpectedTemplateParams,
1364                                       true, TPL_TemplateMatch);
1365
1366      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1367    } else if (ParamLists[Idx]->size() > 0)
1368      Diag(ParamLists[Idx]->getTemplateLoc(),
1369           diag::err_template_param_list_matches_nontemplate)
1370        << TemplateId
1371        << ParamLists[Idx]->getSourceRange();
1372    else
1373      IsExplicitSpecialization = true;
1374  }
1375
1376  // If there were at least as many template-ids as there were template
1377  // parameter lists, then there are no template parameter lists remaining for
1378  // the declaration itself.
1379  if (Idx >= NumParamLists)
1380    return 0;
1381
1382  // If there were too many template parameter lists, complain about that now.
1383  if (Idx != NumParamLists - 1) {
1384    while (Idx < NumParamLists - 1) {
1385      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1386      Diag(ParamLists[Idx]->getTemplateLoc(),
1387           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1388                               : diag::err_template_spec_extra_headers)
1389        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1390                       ParamLists[Idx]->getRAngleLoc());
1391
1392      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1393        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1394             diag::note_explicit_template_spec_does_not_need_header)
1395          << ExplicitSpecializationsInSpecifier.back();
1396        ExplicitSpecializationsInSpecifier.pop_back();
1397      }
1398
1399      ++Idx;
1400    }
1401  }
1402
1403  // Return the last template parameter list, which corresponds to the
1404  // entity being declared.
1405  return ParamLists[NumParamLists - 1];
1406}
1407
1408QualType Sema::CheckTemplateIdType(TemplateName Name,
1409                                   SourceLocation TemplateLoc,
1410                              const TemplateArgumentListInfo &TemplateArgs) {
1411  TemplateDecl *Template = Name.getAsTemplateDecl();
1412  if (!Template) {
1413    // The template name does not resolve to a template, so we just
1414    // build a dependent template-id type.
1415    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1416  }
1417
1418  // Check that the template argument list is well-formed for this
1419  // template.
1420  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1421                                        TemplateArgs.size());
1422  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1423                                false, Converted))
1424    return QualType();
1425
1426  assert((Converted.structuredSize() ==
1427            Template->getTemplateParameters()->size()) &&
1428         "Converted template argument list is too short!");
1429
1430  QualType CanonType;
1431  bool IsCurrentInstantiation = false;
1432
1433  if (Name.isDependent() ||
1434      TemplateSpecializationType::anyDependentTemplateArguments(
1435                                                      TemplateArgs)) {
1436    // This class template specialization is a dependent
1437    // type. Therefore, its canonical type is another class template
1438    // specialization type that contains all of the converted
1439    // arguments in canonical form. This ensures that, e.g., A<T> and
1440    // A<T, T> have identical types when A is declared as:
1441    //
1442    //   template<typename T, typename U = T> struct A;
1443    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1444    CanonType = Context.getTemplateSpecializationType(CanonName,
1445                                                   Converted.getFlatArguments(),
1446                                                   Converted.flatSize());
1447
1448    // FIXME: CanonType is not actually the canonical type, and unfortunately
1449    // it is a TemplateSpecializationType that we will never use again.
1450    // In the future, we need to teach getTemplateSpecializationType to only
1451    // build the canonical type and return that to us.
1452    CanonType = Context.getCanonicalType(CanonType);
1453
1454    // This might work out to be a current instantiation, in which
1455    // case the canonical type needs to be the InjectedClassNameType.
1456    //
1457    // TODO: in theory this could be a simple hashtable lookup; most
1458    // changes to CurContext don't change the set of current
1459    // instantiations.
1460    if (isa<ClassTemplateDecl>(Template)) {
1461      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1462        // If we get out to a namespace, we're done.
1463        if (Ctx->isFileContext()) break;
1464
1465        // If this isn't a record, keep looking.
1466        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1467        if (!Record) continue;
1468
1469        // Look for one of the two cases with InjectedClassNameTypes
1470        // and check whether it's the same template.
1471        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1472            !Record->getDescribedClassTemplate())
1473          continue;
1474
1475        // Fetch the injected class name type and check whether its
1476        // injected type is equal to the type we just built.
1477        QualType ICNT = Context.getTypeDeclType(Record);
1478        QualType Injected = cast<InjectedClassNameType>(ICNT)
1479          ->getInjectedSpecializationType();
1480
1481        if (CanonType != Injected->getCanonicalTypeInternal())
1482          continue;
1483
1484        // If so, the canonical type of this TST is the injected
1485        // class name type of the record we just found.
1486        assert(ICNT.isCanonical());
1487        CanonType = ICNT;
1488        IsCurrentInstantiation = true;
1489        break;
1490      }
1491    }
1492  } else if (ClassTemplateDecl *ClassTemplate
1493               = dyn_cast<ClassTemplateDecl>(Template)) {
1494    // Find the class template specialization declaration that
1495    // corresponds to these arguments.
1496    llvm::FoldingSetNodeID ID;
1497    ClassTemplateSpecializationDecl::Profile(ID,
1498                                             Converted.getFlatArguments(),
1499                                             Converted.flatSize(),
1500                                             Context);
1501    void *InsertPos = 0;
1502    ClassTemplateSpecializationDecl *Decl
1503      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1504    if (!Decl) {
1505      // This is the first time we have referenced this class template
1506      // specialization. Create the canonical declaration and add it to
1507      // the set of specializations.
1508      Decl = ClassTemplateSpecializationDecl::Create(Context,
1509                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1510                                                ClassTemplate->getDeclContext(),
1511                                                ClassTemplate->getLocation(),
1512                                                ClassTemplate,
1513                                                Converted, 0);
1514      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1515      Decl->setLexicalDeclContext(CurContext);
1516    }
1517
1518    CanonType = Context.getTypeDeclType(Decl);
1519    assert(isa<RecordType>(CanonType) &&
1520           "type of non-dependent specialization is not a RecordType");
1521  }
1522
1523  // Build the fully-sugared type for this class template
1524  // specialization, which refers back to the class template
1525  // specialization we created or found.
1526  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType,
1527                                               IsCurrentInstantiation);
1528}
1529
1530Action::TypeResult
1531Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1532                          SourceLocation LAngleLoc,
1533                          ASTTemplateArgsPtr TemplateArgsIn,
1534                          SourceLocation RAngleLoc) {
1535  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1536
1537  // Translate the parser's template argument list in our AST format.
1538  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1539  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1540
1541  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1542  TemplateArgsIn.release();
1543
1544  if (Result.isNull())
1545    return true;
1546
1547  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1548  TemplateSpecializationTypeLoc TL
1549    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1550  TL.setTemplateNameLoc(TemplateLoc);
1551  TL.setLAngleLoc(LAngleLoc);
1552  TL.setRAngleLoc(RAngleLoc);
1553  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1554    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1555
1556  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1557}
1558
1559Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1560                                              TagUseKind TUK,
1561                                              DeclSpec::TST TagSpec,
1562                                              SourceLocation TagLoc) {
1563  if (TypeResult.isInvalid())
1564    return Sema::TypeResult();
1565
1566  // FIXME: preserve source info, ideally without copying the DI.
1567  TypeSourceInfo *DI;
1568  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1569
1570  // Verify the tag specifier.
1571  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1572
1573  if (const RecordType *RT = Type->getAs<RecordType>()) {
1574    RecordDecl *D = RT->getDecl();
1575
1576    IdentifierInfo *Id = D->getIdentifier();
1577    assert(Id && "templated class must have an identifier");
1578
1579    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1580      Diag(TagLoc, diag::err_use_with_wrong_tag)
1581        << Type
1582        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1583      Diag(D->getLocation(), diag::note_previous_use);
1584    }
1585  }
1586
1587  ElaboratedTypeKeyword Keyword
1588    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1589  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1590
1591  return ElabType.getAsOpaquePtr();
1592}
1593
1594Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1595                                                 LookupResult &R,
1596                                                 bool RequiresADL,
1597                                 const TemplateArgumentListInfo &TemplateArgs) {
1598  // FIXME: Can we do any checking at this point? I guess we could check the
1599  // template arguments that we have against the template name, if the template
1600  // name refers to a single template. That's not a terribly common case,
1601  // though.
1602
1603  // These should be filtered out by our callers.
1604  assert(!R.empty() && "empty lookup results when building templateid");
1605  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1606
1607  NestedNameSpecifier *Qualifier = 0;
1608  SourceRange QualifierRange;
1609  if (SS.isSet()) {
1610    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1611    QualifierRange = SS.getRange();
1612  }
1613
1614  // We don't want lookup warnings at this point.
1615  R.suppressDiagnostics();
1616
1617  bool Dependent
1618    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1619                                              &TemplateArgs);
1620  UnresolvedLookupExpr *ULE
1621    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1622                                   Qualifier, QualifierRange,
1623                                   R.getLookupName(), R.getNameLoc(),
1624                                   RequiresADL, TemplateArgs);
1625  ULE->addDecls(R.begin(), R.end());
1626
1627  return Owned(ULE);
1628}
1629
1630// We actually only call this from template instantiation.
1631Sema::OwningExprResult
1632Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1633                                   DeclarationName Name,
1634                                   SourceLocation NameLoc,
1635                             const TemplateArgumentListInfo &TemplateArgs) {
1636  DeclContext *DC;
1637  if (!(DC = computeDeclContext(SS, false)) ||
1638      DC->isDependentContext() ||
1639      RequireCompleteDeclContext(SS, DC))
1640    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1641
1642  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1643  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1644
1645  if (R.isAmbiguous())
1646    return ExprError();
1647
1648  if (R.empty()) {
1649    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1650      << Name << SS.getRange();
1651    return ExprError();
1652  }
1653
1654  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1655    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1656      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1657    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1658    return ExprError();
1659  }
1660
1661  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1662}
1663
1664/// \brief Form a dependent template name.
1665///
1666/// This action forms a dependent template name given the template
1667/// name and its (presumably dependent) scope specifier. For
1668/// example, given "MetaFun::template apply", the scope specifier \p
1669/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1670/// of the "template" keyword, and "apply" is the \p Name.
1671Sema::TemplateTy
1672Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1673                                 CXXScopeSpec &SS,
1674                                 UnqualifiedId &Name,
1675                                 TypeTy *ObjectType,
1676                                 bool EnteringContext) {
1677  DeclContext *LookupCtx = 0;
1678  if (SS.isSet())
1679    LookupCtx = computeDeclContext(SS, EnteringContext);
1680  if (!LookupCtx && ObjectType)
1681    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1682  if (LookupCtx) {
1683    // C++0x [temp.names]p5:
1684    //   If a name prefixed by the keyword template is not the name of
1685    //   a template, the program is ill-formed. [Note: the keyword
1686    //   template may not be applied to non-template members of class
1687    //   templates. -end note ] [ Note: as is the case with the
1688    //   typename prefix, the template prefix is allowed in cases
1689    //   where it is not strictly necessary; i.e., when the
1690    //   nested-name-specifier or the expression on the left of the ->
1691    //   or . is not dependent on a template-parameter, or the use
1692    //   does not appear in the scope of a template. -end note]
1693    //
1694    // Note: C++03 was more strict here, because it banned the use of
1695    // the "template" keyword prior to a template-name that was not a
1696    // dependent name. C++ DR468 relaxed this requirement (the
1697    // "template" keyword is now permitted). We follow the C++0x
1698    // rules, even in C++03 mode, retroactively applying the DR.
1699    TemplateTy Template;
1700    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1701                                          EnteringContext, Template);
1702    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1703        isa<CXXRecordDecl>(LookupCtx) &&
1704        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1705      // This is a dependent template.
1706    } else if (TNK == TNK_Non_template) {
1707      Diag(Name.getSourceRange().getBegin(),
1708           diag::err_template_kw_refers_to_non_template)
1709        << GetNameFromUnqualifiedId(Name)
1710        << Name.getSourceRange()
1711        << TemplateKWLoc;
1712      return TemplateTy();
1713    } else {
1714      // We found something; return it.
1715      return Template;
1716    }
1717  }
1718
1719  NestedNameSpecifier *Qualifier
1720    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1721
1722  switch (Name.getKind()) {
1723  case UnqualifiedId::IK_Identifier:
1724    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1725                                                             Name.Identifier));
1726
1727  case UnqualifiedId::IK_OperatorFunctionId:
1728    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1729                                             Name.OperatorFunctionId.Operator));
1730
1731  case UnqualifiedId::IK_LiteralOperatorId:
1732    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1733
1734  default:
1735    break;
1736  }
1737
1738  Diag(Name.getSourceRange().getBegin(),
1739       diag::err_template_kw_refers_to_non_template)
1740    << GetNameFromUnqualifiedId(Name)
1741    << Name.getSourceRange()
1742    << TemplateKWLoc;
1743  return TemplateTy();
1744}
1745
1746bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1747                                     const TemplateArgumentLoc &AL,
1748                                     TemplateArgumentListBuilder &Converted) {
1749  const TemplateArgument &Arg = AL.getArgument();
1750
1751  // Check template type parameter.
1752  switch(Arg.getKind()) {
1753  case TemplateArgument::Type:
1754    // C++ [temp.arg.type]p1:
1755    //   A template-argument for a template-parameter which is a
1756    //   type shall be a type-id.
1757    break;
1758  case TemplateArgument::Template: {
1759    // We have a template type parameter but the template argument
1760    // is a template without any arguments.
1761    SourceRange SR = AL.getSourceRange();
1762    TemplateName Name = Arg.getAsTemplate();
1763    Diag(SR.getBegin(), diag::err_template_missing_args)
1764      << Name << SR;
1765    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1766      Diag(Decl->getLocation(), diag::note_template_decl_here);
1767
1768    return true;
1769  }
1770  default: {
1771    // We have a template type parameter but the template argument
1772    // is not a type.
1773    SourceRange SR = AL.getSourceRange();
1774    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1775    Diag(Param->getLocation(), diag::note_template_param_here);
1776
1777    return true;
1778  }
1779  }
1780
1781  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1782    return true;
1783
1784  // Add the converted template type argument.
1785  Converted.Append(
1786                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1787  return false;
1788}
1789
1790/// \brief Substitute template arguments into the default template argument for
1791/// the given template type parameter.
1792///
1793/// \param SemaRef the semantic analysis object for which we are performing
1794/// the substitution.
1795///
1796/// \param Template the template that we are synthesizing template arguments
1797/// for.
1798///
1799/// \param TemplateLoc the location of the template name that started the
1800/// template-id we are checking.
1801///
1802/// \param RAngleLoc the location of the right angle bracket ('>') that
1803/// terminates the template-id.
1804///
1805/// \param Param the template template parameter whose default we are
1806/// substituting into.
1807///
1808/// \param Converted the list of template arguments provided for template
1809/// parameters that precede \p Param in the template parameter list.
1810///
1811/// \returns the substituted template argument, or NULL if an error occurred.
1812static TypeSourceInfo *
1813SubstDefaultTemplateArgument(Sema &SemaRef,
1814                             TemplateDecl *Template,
1815                             SourceLocation TemplateLoc,
1816                             SourceLocation RAngleLoc,
1817                             TemplateTypeParmDecl *Param,
1818                             TemplateArgumentListBuilder &Converted) {
1819  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1820
1821  // If the argument type is dependent, instantiate it now based
1822  // on the previously-computed template arguments.
1823  if (ArgType->getType()->isDependentType()) {
1824    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1825                                      /*TakeArgs=*/false);
1826
1827    MultiLevelTemplateArgumentList AllTemplateArgs
1828      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1829
1830    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1831                                     Template, Converted.getFlatArguments(),
1832                                     Converted.flatSize(),
1833                                     SourceRange(TemplateLoc, RAngleLoc));
1834
1835    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1836                                Param->getDefaultArgumentLoc(),
1837                                Param->getDeclName());
1838  }
1839
1840  return ArgType;
1841}
1842
1843/// \brief Substitute template arguments into the default template argument for
1844/// the given non-type template parameter.
1845///
1846/// \param SemaRef the semantic analysis object for which we are performing
1847/// the substitution.
1848///
1849/// \param Template the template that we are synthesizing template arguments
1850/// for.
1851///
1852/// \param TemplateLoc the location of the template name that started the
1853/// template-id we are checking.
1854///
1855/// \param RAngleLoc the location of the right angle bracket ('>') that
1856/// terminates the template-id.
1857///
1858/// \param Param the non-type template parameter whose default we are
1859/// substituting into.
1860///
1861/// \param Converted the list of template arguments provided for template
1862/// parameters that precede \p Param in the template parameter list.
1863///
1864/// \returns the substituted template argument, or NULL if an error occurred.
1865static Sema::OwningExprResult
1866SubstDefaultTemplateArgument(Sema &SemaRef,
1867                             TemplateDecl *Template,
1868                             SourceLocation TemplateLoc,
1869                             SourceLocation RAngleLoc,
1870                             NonTypeTemplateParmDecl *Param,
1871                             TemplateArgumentListBuilder &Converted) {
1872  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1873                                    /*TakeArgs=*/false);
1874
1875  MultiLevelTemplateArgumentList AllTemplateArgs
1876    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1877
1878  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1879                                   Template, Converted.getFlatArguments(),
1880                                   Converted.flatSize(),
1881                                   SourceRange(TemplateLoc, RAngleLoc));
1882
1883  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1884}
1885
1886/// \brief Substitute template arguments into the default template argument for
1887/// the given template template parameter.
1888///
1889/// \param SemaRef the semantic analysis object for which we are performing
1890/// the substitution.
1891///
1892/// \param Template the template that we are synthesizing template arguments
1893/// for.
1894///
1895/// \param TemplateLoc the location of the template name that started the
1896/// template-id we are checking.
1897///
1898/// \param RAngleLoc the location of the right angle bracket ('>') that
1899/// terminates the template-id.
1900///
1901/// \param Param the template template parameter whose default we are
1902/// substituting into.
1903///
1904/// \param Converted the list of template arguments provided for template
1905/// parameters that precede \p Param in the template parameter list.
1906///
1907/// \returns the substituted template argument, or NULL if an error occurred.
1908static TemplateName
1909SubstDefaultTemplateArgument(Sema &SemaRef,
1910                             TemplateDecl *Template,
1911                             SourceLocation TemplateLoc,
1912                             SourceLocation RAngleLoc,
1913                             TemplateTemplateParmDecl *Param,
1914                             TemplateArgumentListBuilder &Converted) {
1915  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1916                                    /*TakeArgs=*/false);
1917
1918  MultiLevelTemplateArgumentList AllTemplateArgs
1919    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1920
1921  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1922                                   Template, Converted.getFlatArguments(),
1923                                   Converted.flatSize(),
1924                                   SourceRange(TemplateLoc, RAngleLoc));
1925
1926  return SemaRef.SubstTemplateName(
1927                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1928                              Param->getDefaultArgument().getTemplateNameLoc(),
1929                                   AllTemplateArgs);
1930}
1931
1932/// \brief If the given template parameter has a default template
1933/// argument, substitute into that default template argument and
1934/// return the corresponding template argument.
1935TemplateArgumentLoc
1936Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1937                                              SourceLocation TemplateLoc,
1938                                              SourceLocation RAngleLoc,
1939                                              Decl *Param,
1940                                     TemplateArgumentListBuilder &Converted) {
1941  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1942    if (!TypeParm->hasDefaultArgument())
1943      return TemplateArgumentLoc();
1944
1945    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1946                                                      TemplateLoc,
1947                                                      RAngleLoc,
1948                                                      TypeParm,
1949                                                      Converted);
1950    if (DI)
1951      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1952
1953    return TemplateArgumentLoc();
1954  }
1955
1956  if (NonTypeTemplateParmDecl *NonTypeParm
1957        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1958    if (!NonTypeParm->hasDefaultArgument())
1959      return TemplateArgumentLoc();
1960
1961    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1962                                                        TemplateLoc,
1963                                                        RAngleLoc,
1964                                                        NonTypeParm,
1965                                                        Converted);
1966    if (Arg.isInvalid())
1967      return TemplateArgumentLoc();
1968
1969    Expr *ArgE = Arg.takeAs<Expr>();
1970    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1971  }
1972
1973  TemplateTemplateParmDecl *TempTempParm
1974    = cast<TemplateTemplateParmDecl>(Param);
1975  if (!TempTempParm->hasDefaultArgument())
1976    return TemplateArgumentLoc();
1977
1978  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1979                                                    TemplateLoc,
1980                                                    RAngleLoc,
1981                                                    TempTempParm,
1982                                                    Converted);
1983  if (TName.isNull())
1984    return TemplateArgumentLoc();
1985
1986  return TemplateArgumentLoc(TemplateArgument(TName),
1987                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1988                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1989}
1990
1991/// \brief Check that the given template argument corresponds to the given
1992/// template parameter.
1993bool Sema::CheckTemplateArgument(NamedDecl *Param,
1994                                 const TemplateArgumentLoc &Arg,
1995                                 TemplateDecl *Template,
1996                                 SourceLocation TemplateLoc,
1997                                 SourceLocation RAngleLoc,
1998                                 TemplateArgumentListBuilder &Converted,
1999                                 CheckTemplateArgumentKind CTAK) {
2000  // Check template type parameters.
2001  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2002    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2003
2004  // Check non-type template parameters.
2005  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2006    // Do substitution on the type of the non-type template parameter
2007    // with the template arguments we've seen thus far.
2008    QualType NTTPType = NTTP->getType();
2009    if (NTTPType->isDependentType()) {
2010      // Do substitution on the type of the non-type template parameter.
2011      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2012                                 NTTP, Converted.getFlatArguments(),
2013                                 Converted.flatSize(),
2014                                 SourceRange(TemplateLoc, RAngleLoc));
2015
2016      TemplateArgumentList TemplateArgs(Context, Converted,
2017                                        /*TakeArgs=*/false);
2018      NTTPType = SubstType(NTTPType,
2019                           MultiLevelTemplateArgumentList(TemplateArgs),
2020                           NTTP->getLocation(),
2021                           NTTP->getDeclName());
2022      // If that worked, check the non-type template parameter type
2023      // for validity.
2024      if (!NTTPType.isNull())
2025        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2026                                                     NTTP->getLocation());
2027      if (NTTPType.isNull())
2028        return true;
2029    }
2030
2031    switch (Arg.getArgument().getKind()) {
2032    case TemplateArgument::Null:
2033      assert(false && "Should never see a NULL template argument here");
2034      return true;
2035
2036    case TemplateArgument::Expression: {
2037      Expr *E = Arg.getArgument().getAsExpr();
2038      TemplateArgument Result;
2039      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2040        return true;
2041
2042      Converted.Append(Result);
2043      break;
2044    }
2045
2046    case TemplateArgument::Declaration:
2047    case TemplateArgument::Integral:
2048      // We've already checked this template argument, so just copy
2049      // it to the list of converted arguments.
2050      Converted.Append(Arg.getArgument());
2051      break;
2052
2053    case TemplateArgument::Template:
2054      // We were given a template template argument. It may not be ill-formed;
2055      // see below.
2056      if (DependentTemplateName *DTN
2057            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2058        // We have a template argument such as \c T::template X, which we
2059        // parsed as a template template argument. However, since we now
2060        // know that we need a non-type template argument, convert this
2061        // template name into an expression.
2062        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2063                                                    DTN->getQualifier(),
2064                                               Arg.getTemplateQualifierRange(),
2065                                                    DTN->getIdentifier(),
2066                                                    Arg.getTemplateNameLoc());
2067
2068        TemplateArgument Result;
2069        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2070          return true;
2071
2072        Converted.Append(Result);
2073        break;
2074      }
2075
2076      // We have a template argument that actually does refer to a class
2077      // template, template alias, or template template parameter, and
2078      // therefore cannot be a non-type template argument.
2079      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2080        << Arg.getSourceRange();
2081
2082      Diag(Param->getLocation(), diag::note_template_param_here);
2083      return true;
2084
2085    case TemplateArgument::Type: {
2086      // We have a non-type template parameter but the template
2087      // argument is a type.
2088
2089      // C++ [temp.arg]p2:
2090      //   In a template-argument, an ambiguity between a type-id and
2091      //   an expression is resolved to a type-id, regardless of the
2092      //   form of the corresponding template-parameter.
2093      //
2094      // We warn specifically about this case, since it can be rather
2095      // confusing for users.
2096      QualType T = Arg.getArgument().getAsType();
2097      SourceRange SR = Arg.getSourceRange();
2098      if (T->isFunctionType())
2099        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2100      else
2101        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2102      Diag(Param->getLocation(), diag::note_template_param_here);
2103      return true;
2104    }
2105
2106    case TemplateArgument::Pack:
2107      llvm_unreachable("Caller must expand template argument packs");
2108      break;
2109    }
2110
2111    return false;
2112  }
2113
2114
2115  // Check template template parameters.
2116  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2117
2118  // Substitute into the template parameter list of the template
2119  // template parameter, since previously-supplied template arguments
2120  // may appear within the template template parameter.
2121  {
2122    // Set up a template instantiation context.
2123    LocalInstantiationScope Scope(*this);
2124    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2125                               TempParm, Converted.getFlatArguments(),
2126                               Converted.flatSize(),
2127                               SourceRange(TemplateLoc, RAngleLoc));
2128
2129    TemplateArgumentList TemplateArgs(Context, Converted,
2130                                      /*TakeArgs=*/false);
2131    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2132                      SubstDecl(TempParm, CurContext,
2133                                MultiLevelTemplateArgumentList(TemplateArgs)));
2134    if (!TempParm)
2135      return true;
2136
2137    // FIXME: TempParam is leaked.
2138  }
2139
2140  switch (Arg.getArgument().getKind()) {
2141  case TemplateArgument::Null:
2142    assert(false && "Should never see a NULL template argument here");
2143    return true;
2144
2145  case TemplateArgument::Template:
2146    if (CheckTemplateArgument(TempParm, Arg))
2147      return true;
2148
2149    Converted.Append(Arg.getArgument());
2150    break;
2151
2152  case TemplateArgument::Expression:
2153  case TemplateArgument::Type:
2154    // We have a template template parameter but the template
2155    // argument does not refer to a template.
2156    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2157    return true;
2158
2159  case TemplateArgument::Declaration:
2160    llvm_unreachable(
2161                       "Declaration argument with template template parameter");
2162    break;
2163  case TemplateArgument::Integral:
2164    llvm_unreachable(
2165                          "Integral argument with template template parameter");
2166    break;
2167
2168  case TemplateArgument::Pack:
2169    llvm_unreachable("Caller must expand template argument packs");
2170    break;
2171  }
2172
2173  return false;
2174}
2175
2176/// \brief Check that the given template argument list is well-formed
2177/// for specializing the given template.
2178bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2179                                     SourceLocation TemplateLoc,
2180                                const TemplateArgumentListInfo &TemplateArgs,
2181                                     bool PartialTemplateArgs,
2182                                     TemplateArgumentListBuilder &Converted) {
2183  TemplateParameterList *Params = Template->getTemplateParameters();
2184  unsigned NumParams = Params->size();
2185  unsigned NumArgs = TemplateArgs.size();
2186  bool Invalid = false;
2187
2188  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2189
2190  bool HasParameterPack =
2191    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2192
2193  if ((NumArgs > NumParams && !HasParameterPack) ||
2194      (NumArgs < Params->getMinRequiredArguments() &&
2195       !PartialTemplateArgs)) {
2196    // FIXME: point at either the first arg beyond what we can handle,
2197    // or the '>', depending on whether we have too many or too few
2198    // arguments.
2199    SourceRange Range;
2200    if (NumArgs > NumParams)
2201      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2202    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2203      << (NumArgs > NumParams)
2204      << (isa<ClassTemplateDecl>(Template)? 0 :
2205          isa<FunctionTemplateDecl>(Template)? 1 :
2206          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2207      << Template << Range;
2208    Diag(Template->getLocation(), diag::note_template_decl_here)
2209      << Params->getSourceRange();
2210    Invalid = true;
2211  }
2212
2213  // C++ [temp.arg]p1:
2214  //   [...] The type and form of each template-argument specified in
2215  //   a template-id shall match the type and form specified for the
2216  //   corresponding parameter declared by the template in its
2217  //   template-parameter-list.
2218  unsigned ArgIdx = 0;
2219  for (TemplateParameterList::iterator Param = Params->begin(),
2220                                       ParamEnd = Params->end();
2221       Param != ParamEnd; ++Param, ++ArgIdx) {
2222    if (ArgIdx > NumArgs && PartialTemplateArgs)
2223      break;
2224
2225    // If we have a template parameter pack, check every remaining template
2226    // argument against that template parameter pack.
2227    if ((*Param)->isTemplateParameterPack()) {
2228      Converted.BeginPack();
2229      for (; ArgIdx < NumArgs; ++ArgIdx) {
2230        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2231                                  TemplateLoc, RAngleLoc, Converted)) {
2232          Invalid = true;
2233          break;
2234        }
2235      }
2236      Converted.EndPack();
2237      continue;
2238    }
2239
2240    if (ArgIdx < NumArgs) {
2241      // Check the template argument we were given.
2242      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2243                                TemplateLoc, RAngleLoc, Converted))
2244        return true;
2245
2246      continue;
2247    }
2248
2249    // We have a default template argument that we will use.
2250    TemplateArgumentLoc Arg;
2251
2252    // Retrieve the default template argument from the template
2253    // parameter. For each kind of template parameter, we substitute the
2254    // template arguments provided thus far and any "outer" template arguments
2255    // (when the template parameter was part of a nested template) into
2256    // the default argument.
2257    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2258      if (!TTP->hasDefaultArgument()) {
2259        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2260        break;
2261      }
2262
2263      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2264                                                             Template,
2265                                                             TemplateLoc,
2266                                                             RAngleLoc,
2267                                                             TTP,
2268                                                             Converted);
2269      if (!ArgType)
2270        return true;
2271
2272      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2273                                ArgType);
2274    } else if (NonTypeTemplateParmDecl *NTTP
2275                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2276      if (!NTTP->hasDefaultArgument()) {
2277        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2278        break;
2279      }
2280
2281      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2282                                                              TemplateLoc,
2283                                                              RAngleLoc,
2284                                                              NTTP,
2285                                                              Converted);
2286      if (E.isInvalid())
2287        return true;
2288
2289      Expr *Ex = E.takeAs<Expr>();
2290      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2291    } else {
2292      TemplateTemplateParmDecl *TempParm
2293        = cast<TemplateTemplateParmDecl>(*Param);
2294
2295      if (!TempParm->hasDefaultArgument()) {
2296        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2297        break;
2298      }
2299
2300      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2301                                                       TemplateLoc,
2302                                                       RAngleLoc,
2303                                                       TempParm,
2304                                                       Converted);
2305      if (Name.isNull())
2306        return true;
2307
2308      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2309                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2310                  TempParm->getDefaultArgument().getTemplateNameLoc());
2311    }
2312
2313    // Introduce an instantiation record that describes where we are using
2314    // the default template argument.
2315    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2316                                        Converted.getFlatArguments(),
2317                                        Converted.flatSize(),
2318                                        SourceRange(TemplateLoc, RAngleLoc));
2319
2320    // Check the default template argument.
2321    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2322                              RAngleLoc, Converted))
2323      return true;
2324  }
2325
2326  return Invalid;
2327}
2328
2329/// \brief Check a template argument against its corresponding
2330/// template type parameter.
2331///
2332/// This routine implements the semantics of C++ [temp.arg.type]. It
2333/// returns true if an error occurred, and false otherwise.
2334bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2335                                 TypeSourceInfo *ArgInfo) {
2336  assert(ArgInfo && "invalid TypeSourceInfo");
2337  QualType Arg = ArgInfo->getType();
2338
2339  // C++ [temp.arg.type]p2:
2340  //   A local type, a type with no linkage, an unnamed type or a type
2341  //   compounded from any of these types shall not be used as a
2342  //   template-argument for a template type-parameter.
2343  //
2344  // FIXME: Perform the recursive and no-linkage type checks.
2345  const TagType *Tag = 0;
2346  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2347    Tag = EnumT;
2348  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2349    Tag = RecordT;
2350  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2351    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2352    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2353      << QualType(Tag, 0) << SR;
2354  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2355           !Tag->getDecl()->getTypedefForAnonDecl()) {
2356    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2357    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2358    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2359    return true;
2360  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2361    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2362    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2363  }
2364
2365  return false;
2366}
2367
2368/// \brief Checks whether the given template argument is the address
2369/// of an object or function according to C++ [temp.arg.nontype]p1.
2370static bool
2371CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2372                                               NonTypeTemplateParmDecl *Param,
2373                                               QualType ParamType,
2374                                               Expr *ArgIn,
2375                                               TemplateArgument &Converted) {
2376  bool Invalid = false;
2377  Expr *Arg = ArgIn;
2378  QualType ArgType = Arg->getType();
2379
2380  // See through any implicit casts we added to fix the type.
2381  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2382    Arg = Cast->getSubExpr();
2383
2384  // C++ [temp.arg.nontype]p1:
2385  //
2386  //   A template-argument for a non-type, non-template
2387  //   template-parameter shall be one of: [...]
2388  //
2389  //     -- the address of an object or function with external
2390  //        linkage, including function templates and function
2391  //        template-ids but excluding non-static class members,
2392  //        expressed as & id-expression where the & is optional if
2393  //        the name refers to a function or array, or if the
2394  //        corresponding template-parameter is a reference; or
2395  DeclRefExpr *DRE = 0;
2396
2397  // Ignore (and complain about) any excess parentheses.
2398  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2399    if (!Invalid) {
2400      S.Diag(Arg->getSourceRange().getBegin(),
2401             diag::err_template_arg_extra_parens)
2402        << Arg->getSourceRange();
2403      Invalid = true;
2404    }
2405
2406    Arg = Parens->getSubExpr();
2407  }
2408
2409  bool AddressTaken = false;
2410  SourceLocation AddrOpLoc;
2411  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2412    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2413      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2414      AddressTaken = true;
2415      AddrOpLoc = UnOp->getOperatorLoc();
2416    }
2417  } else
2418    DRE = dyn_cast<DeclRefExpr>(Arg);
2419
2420  if (!DRE) {
2421    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2422      << Arg->getSourceRange();
2423    S.Diag(Param->getLocation(), diag::note_template_param_here);
2424    return true;
2425  }
2426
2427  // Stop checking the precise nature of the argument if it is value dependent,
2428  // it should be checked when instantiated.
2429  if (Arg->isValueDependent()) {
2430    Converted = TemplateArgument(ArgIn->Retain());
2431    return false;
2432  }
2433
2434  if (!isa<ValueDecl>(DRE->getDecl())) {
2435    S.Diag(Arg->getSourceRange().getBegin(),
2436           diag::err_template_arg_not_object_or_func_form)
2437      << Arg->getSourceRange();
2438    S.Diag(Param->getLocation(), diag::note_template_param_here);
2439    return true;
2440  }
2441
2442  NamedDecl *Entity = 0;
2443
2444  // Cannot refer to non-static data members
2445  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2446    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2447      << Field << Arg->getSourceRange();
2448    S.Diag(Param->getLocation(), diag::note_template_param_here);
2449    return true;
2450  }
2451
2452  // Cannot refer to non-static member functions
2453  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2454    if (!Method->isStatic()) {
2455      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2456        << Method << Arg->getSourceRange();
2457      S.Diag(Param->getLocation(), diag::note_template_param_here);
2458      return true;
2459    }
2460
2461  // Functions must have external linkage.
2462  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2463    if (!isExternalLinkage(Func->getLinkage())) {
2464      S.Diag(Arg->getSourceRange().getBegin(),
2465             diag::err_template_arg_function_not_extern)
2466        << Func << Arg->getSourceRange();
2467      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2468        << true;
2469      return true;
2470    }
2471
2472    // Okay: we've named a function with external linkage.
2473    Entity = Func;
2474
2475    // If the template parameter has pointer type, the function decays.
2476    if (ParamType->isPointerType() && !AddressTaken)
2477      ArgType = S.Context.getPointerType(Func->getType());
2478    else if (AddressTaken && ParamType->isReferenceType()) {
2479      // If we originally had an address-of operator, but the
2480      // parameter has reference type, complain and (if things look
2481      // like they will work) drop the address-of operator.
2482      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2483                                            ParamType.getNonReferenceType())) {
2484        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2485          << ParamType;
2486        S.Diag(Param->getLocation(), diag::note_template_param_here);
2487        return true;
2488      }
2489
2490      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2491        << ParamType
2492        << FixItHint::CreateRemoval(AddrOpLoc);
2493      S.Diag(Param->getLocation(), diag::note_template_param_here);
2494
2495      ArgType = Func->getType();
2496    }
2497  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2498    if (!isExternalLinkage(Var->getLinkage())) {
2499      S.Diag(Arg->getSourceRange().getBegin(),
2500             diag::err_template_arg_object_not_extern)
2501        << Var << Arg->getSourceRange();
2502      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2503        << true;
2504      return true;
2505    }
2506
2507    // A value of reference type is not an object.
2508    if (Var->getType()->isReferenceType()) {
2509      S.Diag(Arg->getSourceRange().getBegin(),
2510             diag::err_template_arg_reference_var)
2511        << Var->getType() << Arg->getSourceRange();
2512      S.Diag(Param->getLocation(), diag::note_template_param_here);
2513      return true;
2514    }
2515
2516    // Okay: we've named an object with external linkage
2517    Entity = Var;
2518
2519    // If the template parameter has pointer type, we must have taken
2520    // the address of this object.
2521    if (ParamType->isReferenceType()) {
2522      if (AddressTaken) {
2523        // If we originally had an address-of operator, but the
2524        // parameter has reference type, complain and (if things look
2525        // like they will work) drop the address-of operator.
2526        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2527                                            ParamType.getNonReferenceType())) {
2528          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2529            << ParamType;
2530          S.Diag(Param->getLocation(), diag::note_template_param_here);
2531          return true;
2532        }
2533
2534        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2535          << ParamType
2536          << FixItHint::CreateRemoval(AddrOpLoc);
2537        S.Diag(Param->getLocation(), diag::note_template_param_here);
2538
2539        ArgType = Var->getType();
2540      }
2541    } else if (!AddressTaken && ParamType->isPointerType()) {
2542      if (Var->getType()->isArrayType()) {
2543        // Array-to-pointer decay.
2544        ArgType = S.Context.getArrayDecayedType(Var->getType());
2545      } else {
2546        // If the template parameter has pointer type but the address of
2547        // this object was not taken, complain and (possibly) recover by
2548        // taking the address of the entity.
2549        ArgType = S.Context.getPointerType(Var->getType());
2550        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2551          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2552            << ParamType;
2553          S.Diag(Param->getLocation(), diag::note_template_param_here);
2554          return true;
2555        }
2556
2557        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2558          << ParamType
2559          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2560
2561        S.Diag(Param->getLocation(), diag::note_template_param_here);
2562      }
2563    }
2564  } else {
2565    // We found something else, but we don't know specifically what it is.
2566    S.Diag(Arg->getSourceRange().getBegin(),
2567           diag::err_template_arg_not_object_or_func)
2568      << Arg->getSourceRange();
2569    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2570    return true;
2571  }
2572
2573  if (ParamType->isPointerType() &&
2574      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2575      S.IsQualificationConversion(ArgType, ParamType)) {
2576    // For pointer-to-object types, qualification conversions are
2577    // permitted.
2578  } else {
2579    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2580      if (!ParamRef->getPointeeType()->isFunctionType()) {
2581        // C++ [temp.arg.nontype]p5b3:
2582        //   For a non-type template-parameter of type reference to
2583        //   object, no conversions apply. The type referred to by the
2584        //   reference may be more cv-qualified than the (otherwise
2585        //   identical) type of the template- argument. The
2586        //   template-parameter is bound directly to the
2587        //   template-argument, which shall be an lvalue.
2588
2589        // FIXME: Other qualifiers?
2590        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2591        unsigned ArgQuals = ArgType.getCVRQualifiers();
2592
2593        if ((ParamQuals | ArgQuals) != ParamQuals) {
2594          S.Diag(Arg->getSourceRange().getBegin(),
2595                 diag::err_template_arg_ref_bind_ignores_quals)
2596            << ParamType << Arg->getType()
2597            << Arg->getSourceRange();
2598          S.Diag(Param->getLocation(), diag::note_template_param_here);
2599          return true;
2600        }
2601      }
2602    }
2603
2604    // At this point, the template argument refers to an object or
2605    // function with external linkage. We now need to check whether the
2606    // argument and parameter types are compatible.
2607    if (!S.Context.hasSameUnqualifiedType(ArgType,
2608                                          ParamType.getNonReferenceType())) {
2609      // We can't perform this conversion or binding.
2610      if (ParamType->isReferenceType())
2611        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2612          << ParamType << Arg->getType() << Arg->getSourceRange();
2613      else
2614        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2615          << Arg->getType() << ParamType << Arg->getSourceRange();
2616      S.Diag(Param->getLocation(), diag::note_template_param_here);
2617      return true;
2618    }
2619  }
2620
2621  // Create the template argument.
2622  Converted = TemplateArgument(Entity->getCanonicalDecl());
2623  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2624  return false;
2625}
2626
2627/// \brief Checks whether the given template argument is a pointer to
2628/// member constant according to C++ [temp.arg.nontype]p1.
2629bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2630                                                TemplateArgument &Converted) {
2631  bool Invalid = false;
2632
2633  // See through any implicit casts we added to fix the type.
2634  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2635    Arg = Cast->getSubExpr();
2636
2637  // C++ [temp.arg.nontype]p1:
2638  //
2639  //   A template-argument for a non-type, non-template
2640  //   template-parameter shall be one of: [...]
2641  //
2642  //     -- a pointer to member expressed as described in 5.3.1.
2643  DeclRefExpr *DRE = 0;
2644
2645  // Ignore (and complain about) any excess parentheses.
2646  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2647    if (!Invalid) {
2648      Diag(Arg->getSourceRange().getBegin(),
2649           diag::err_template_arg_extra_parens)
2650        << Arg->getSourceRange();
2651      Invalid = true;
2652    }
2653
2654    Arg = Parens->getSubExpr();
2655  }
2656
2657  // A pointer-to-member constant written &Class::member.
2658  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2659    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2660      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2661      if (DRE && !DRE->getQualifier())
2662        DRE = 0;
2663    }
2664  }
2665  // A constant of pointer-to-member type.
2666  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2667    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2668      if (VD->getType()->isMemberPointerType()) {
2669        if (isa<NonTypeTemplateParmDecl>(VD) ||
2670            (isa<VarDecl>(VD) &&
2671             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2672          if (Arg->isTypeDependent() || Arg->isValueDependent())
2673            Converted = TemplateArgument(Arg->Retain());
2674          else
2675            Converted = TemplateArgument(VD->getCanonicalDecl());
2676          return Invalid;
2677        }
2678      }
2679    }
2680
2681    DRE = 0;
2682  }
2683
2684  if (!DRE)
2685    return Diag(Arg->getSourceRange().getBegin(),
2686                diag::err_template_arg_not_pointer_to_member_form)
2687      << Arg->getSourceRange();
2688
2689  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2690    assert((isa<FieldDecl>(DRE->getDecl()) ||
2691            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2692           "Only non-static member pointers can make it here");
2693
2694    // Okay: this is the address of a non-static member, and therefore
2695    // a member pointer constant.
2696    if (Arg->isTypeDependent() || Arg->isValueDependent())
2697      Converted = TemplateArgument(Arg->Retain());
2698    else
2699      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2700    return Invalid;
2701  }
2702
2703  // We found something else, but we don't know specifically what it is.
2704  Diag(Arg->getSourceRange().getBegin(),
2705       diag::err_template_arg_not_pointer_to_member_form)
2706      << Arg->getSourceRange();
2707  Diag(DRE->getDecl()->getLocation(),
2708       diag::note_template_arg_refers_here);
2709  return true;
2710}
2711
2712/// \brief Check a template argument against its corresponding
2713/// non-type template parameter.
2714///
2715/// This routine implements the semantics of C++ [temp.arg.nontype].
2716/// It returns true if an error occurred, and false otherwise. \p
2717/// InstantiatedParamType is the type of the non-type template
2718/// parameter after it has been instantiated.
2719///
2720/// If no error was detected, Converted receives the converted template argument.
2721bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2722                                 QualType InstantiatedParamType, Expr *&Arg,
2723                                 TemplateArgument &Converted,
2724                                 CheckTemplateArgumentKind CTAK) {
2725  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2726
2727  // If either the parameter has a dependent type or the argument is
2728  // type-dependent, there's nothing we can check now.
2729  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2730    // FIXME: Produce a cloned, canonical expression?
2731    Converted = TemplateArgument(Arg);
2732    return false;
2733  }
2734
2735  // C++ [temp.arg.nontype]p5:
2736  //   The following conversions are performed on each expression used
2737  //   as a non-type template-argument. If a non-type
2738  //   template-argument cannot be converted to the type of the
2739  //   corresponding template-parameter then the program is
2740  //   ill-formed.
2741  //
2742  //     -- for a non-type template-parameter of integral or
2743  //        enumeration type, integral promotions (4.5) and integral
2744  //        conversions (4.7) are applied.
2745  QualType ParamType = InstantiatedParamType;
2746  QualType ArgType = Arg->getType();
2747  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2748    // C++ [temp.arg.nontype]p1:
2749    //   A template-argument for a non-type, non-template
2750    //   template-parameter shall be one of:
2751    //
2752    //     -- an integral constant-expression of integral or enumeration
2753    //        type; or
2754    //     -- the name of a non-type template-parameter; or
2755    SourceLocation NonConstantLoc;
2756    llvm::APSInt Value;
2757    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2758      Diag(Arg->getSourceRange().getBegin(),
2759           diag::err_template_arg_not_integral_or_enumeral)
2760        << ArgType << Arg->getSourceRange();
2761      Diag(Param->getLocation(), diag::note_template_param_here);
2762      return true;
2763    } else if (!Arg->isValueDependent() &&
2764               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2765      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2766        << ArgType << Arg->getSourceRange();
2767      return true;
2768    }
2769
2770    // From here on out, all we care about are the unqualified forms
2771    // of the parameter and argument types.
2772    ParamType = ParamType.getUnqualifiedType();
2773    ArgType = ArgType.getUnqualifiedType();
2774
2775    // Try to convert the argument to the parameter's type.
2776    if (Context.hasSameType(ParamType, ArgType)) {
2777      // Okay: no conversion necessary
2778    } else if (CTAK == CTAK_Deduced) {
2779      // C++ [temp.deduct.type]p17:
2780      //   If, in the declaration of a function template with a non-type
2781      //   template-parameter, the non-type template- parameter is used
2782      //   in an expression in the function parameter-list and, if the
2783      //   corresponding template-argument is deduced, the
2784      //   template-argument type shall match the type of the
2785      //   template-parameter exactly, except that a template-argument
2786      //   deduced from an array bound may be of any integral type.
2787      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2788        << ArgType << ParamType;
2789      Diag(Param->getLocation(), diag::note_template_param_here);
2790      return true;
2791    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2792               !ParamType->isEnumeralType()) {
2793      // This is an integral promotion or conversion.
2794      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2795    } else {
2796      // We can't perform this conversion.
2797      Diag(Arg->getSourceRange().getBegin(),
2798           diag::err_template_arg_not_convertible)
2799        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2800      Diag(Param->getLocation(), diag::note_template_param_here);
2801      return true;
2802    }
2803
2804    QualType IntegerType = Context.getCanonicalType(ParamType);
2805    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2806      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2807
2808    if (!Arg->isValueDependent()) {
2809      llvm::APSInt OldValue = Value;
2810
2811      // Coerce the template argument's value to the value it will have
2812      // based on the template parameter's type.
2813      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2814      if (Value.getBitWidth() != AllowedBits)
2815        Value.extOrTrunc(AllowedBits);
2816      Value.setIsSigned(IntegerType->isSignedIntegerType());
2817
2818      // Complain if an unsigned parameter received a negative value.
2819      if (IntegerType->isUnsignedIntegerType()
2820          && (OldValue.isSigned() && OldValue.isNegative())) {
2821        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2822          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2823          << Arg->getSourceRange();
2824        Diag(Param->getLocation(), diag::note_template_param_here);
2825      }
2826
2827      // Complain if we overflowed the template parameter's type.
2828      unsigned RequiredBits;
2829      if (IntegerType->isUnsignedIntegerType())
2830        RequiredBits = OldValue.getActiveBits();
2831      else if (OldValue.isUnsigned())
2832        RequiredBits = OldValue.getActiveBits() + 1;
2833      else
2834        RequiredBits = OldValue.getMinSignedBits();
2835      if (RequiredBits > AllowedBits) {
2836        Diag(Arg->getSourceRange().getBegin(),
2837             diag::warn_template_arg_too_large)
2838          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2839          << Arg->getSourceRange();
2840        Diag(Param->getLocation(), diag::note_template_param_here);
2841      }
2842    }
2843
2844    // Add the value of this argument to the list of converted
2845    // arguments. We use the bitwidth and signedness of the template
2846    // parameter.
2847    if (Arg->isValueDependent()) {
2848      // The argument is value-dependent. Create a new
2849      // TemplateArgument with the converted expression.
2850      Converted = TemplateArgument(Arg);
2851      return false;
2852    }
2853
2854    Converted = TemplateArgument(Value,
2855                                 ParamType->isEnumeralType() ? ParamType
2856                                                             : IntegerType);
2857    return false;
2858  }
2859
2860  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2861
2862  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2863  // from a template argument of type std::nullptr_t to a non-type
2864  // template parameter of type pointer to object, pointer to
2865  // function, or pointer-to-member, respectively.
2866  if (ArgType->isNullPtrType() &&
2867      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2868    Converted = TemplateArgument((NamedDecl *)0);
2869    return false;
2870  }
2871
2872  // Handle pointer-to-function, reference-to-function, and
2873  // pointer-to-member-function all in (roughly) the same way.
2874  if (// -- For a non-type template-parameter of type pointer to
2875      //    function, only the function-to-pointer conversion (4.3) is
2876      //    applied. If the template-argument represents a set of
2877      //    overloaded functions (or a pointer to such), the matching
2878      //    function is selected from the set (13.4).
2879      (ParamType->isPointerType() &&
2880       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2881      // -- For a non-type template-parameter of type reference to
2882      //    function, no conversions apply. If the template-argument
2883      //    represents a set of overloaded functions, the matching
2884      //    function is selected from the set (13.4).
2885      (ParamType->isReferenceType() &&
2886       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2887      // -- For a non-type template-parameter of type pointer to
2888      //    member function, no conversions apply. If the
2889      //    template-argument represents a set of overloaded member
2890      //    functions, the matching member function is selected from
2891      //    the set (13.4).
2892      (ParamType->isMemberPointerType() &&
2893       ParamType->getAs<MemberPointerType>()->getPointeeType()
2894         ->isFunctionType())) {
2895
2896    if (Arg->getType() == Context.OverloadTy) {
2897      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2898                                                                true,
2899                                                                FoundResult)) {
2900        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2901          return true;
2902
2903        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2904        ArgType = Arg->getType();
2905      } else
2906        return true;
2907    }
2908
2909    if (!ParamType->isMemberPointerType())
2910      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2911                                                            ParamType,
2912                                                            Arg, Converted);
2913
2914    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2915      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2916                        Arg->isLvalue(Context) == Expr::LV_Valid);
2917    } else if (!Context.hasSameUnqualifiedType(ArgType,
2918                                           ParamType.getNonReferenceType())) {
2919      // We can't perform this conversion.
2920      Diag(Arg->getSourceRange().getBegin(),
2921           diag::err_template_arg_not_convertible)
2922        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2923      Diag(Param->getLocation(), diag::note_template_param_here);
2924      return true;
2925    }
2926
2927    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2928  }
2929
2930  if (ParamType->isPointerType()) {
2931    //   -- for a non-type template-parameter of type pointer to
2932    //      object, qualification conversions (4.4) and the
2933    //      array-to-pointer conversion (4.2) are applied.
2934    // C++0x also allows a value of std::nullptr_t.
2935    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2936           "Only object pointers allowed here");
2937
2938    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2939                                                          ParamType,
2940                                                          Arg, Converted);
2941  }
2942
2943  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2944    //   -- For a non-type template-parameter of type reference to
2945    //      object, no conversions apply. The type referred to by the
2946    //      reference may be more cv-qualified than the (otherwise
2947    //      identical) type of the template-argument. The
2948    //      template-parameter is bound directly to the
2949    //      template-argument, which must be an lvalue.
2950    assert(ParamRefType->getPointeeType()->isObjectType() &&
2951           "Only object references allowed here");
2952
2953    if (Arg->getType() == Context.OverloadTy) {
2954      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2955                                                 ParamRefType->getPointeeType(),
2956                                                                true,
2957                                                                FoundResult)) {
2958        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2959          return true;
2960
2961        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2962        ArgType = Arg->getType();
2963      } else
2964        return true;
2965    }
2966
2967    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2968                                                          ParamType,
2969                                                          Arg, Converted);
2970  }
2971
2972  //     -- For a non-type template-parameter of type pointer to data
2973  //        member, qualification conversions (4.4) are applied.
2974  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2975
2976  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2977    // Types match exactly: nothing more to do here.
2978  } else if (IsQualificationConversion(ArgType, ParamType)) {
2979    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2980                      Arg->isLvalue(Context) == Expr::LV_Valid);
2981  } else {
2982    // We can't perform this conversion.
2983    Diag(Arg->getSourceRange().getBegin(),
2984         diag::err_template_arg_not_convertible)
2985      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2986    Diag(Param->getLocation(), diag::note_template_param_here);
2987    return true;
2988  }
2989
2990  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2991}
2992
2993/// \brief Check a template argument against its corresponding
2994/// template template parameter.
2995///
2996/// This routine implements the semantics of C++ [temp.arg.template].
2997/// It returns true if an error occurred, and false otherwise.
2998bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2999                                 const TemplateArgumentLoc &Arg) {
3000  TemplateName Name = Arg.getArgument().getAsTemplate();
3001  TemplateDecl *Template = Name.getAsTemplateDecl();
3002  if (!Template) {
3003    // Any dependent template name is fine.
3004    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3005    return false;
3006  }
3007
3008  // C++ [temp.arg.template]p1:
3009  //   A template-argument for a template template-parameter shall be
3010  //   the name of a class template, expressed as id-expression. Only
3011  //   primary class templates are considered when matching the
3012  //   template template argument with the corresponding parameter;
3013  //   partial specializations are not considered even if their
3014  //   parameter lists match that of the template template parameter.
3015  //
3016  // Note that we also allow template template parameters here, which
3017  // will happen when we are dealing with, e.g., class template
3018  // partial specializations.
3019  if (!isa<ClassTemplateDecl>(Template) &&
3020      !isa<TemplateTemplateParmDecl>(Template)) {
3021    assert(isa<FunctionTemplateDecl>(Template) &&
3022           "Only function templates are possible here");
3023    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3024    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3025      << Template;
3026  }
3027
3028  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3029                                         Param->getTemplateParameters(),
3030                                         true,
3031                                         TPL_TemplateTemplateArgumentMatch,
3032                                         Arg.getLocation());
3033}
3034
3035/// \brief Given a non-type template argument that refers to a
3036/// declaration and the type of its corresponding non-type template
3037/// parameter, produce an expression that properly refers to that
3038/// declaration.
3039Sema::OwningExprResult
3040Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3041                                              QualType ParamType,
3042                                              SourceLocation Loc) {
3043  assert(Arg.getKind() == TemplateArgument::Declaration &&
3044         "Only declaration template arguments permitted here");
3045  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3046
3047  if (VD->getDeclContext()->isRecord() &&
3048      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3049    // If the value is a class member, we might have a pointer-to-member.
3050    // Determine whether the non-type template template parameter is of
3051    // pointer-to-member type. If so, we need to build an appropriate
3052    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3053    // would refer to the member itself.
3054    if (ParamType->isMemberPointerType()) {
3055      QualType ClassType
3056        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3057      NestedNameSpecifier *Qualifier
3058        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
3059      CXXScopeSpec SS;
3060      SS.setScopeRep(Qualifier);
3061      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
3062                                           VD->getType().getNonReferenceType(),
3063                                                  Loc,
3064                                                  &SS);
3065      if (RefExpr.isInvalid())
3066        return ExprError();
3067
3068      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3069
3070      // We might need to perform a trailing qualification conversion, since
3071      // the element type on the parameter could be more qualified than the
3072      // element type in the expression we constructed.
3073      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3074                                    ParamType.getUnqualifiedType())) {
3075        Expr *RefE = RefExpr.takeAs<Expr>();
3076        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(),
3077                          CastExpr::CK_NoOp);
3078        RefExpr = Owned(RefE);
3079      }
3080
3081      assert(!RefExpr.isInvalid() &&
3082             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3083                                 ParamType.getUnqualifiedType()));
3084      return move(RefExpr);
3085    }
3086  }
3087
3088  QualType T = VD->getType().getNonReferenceType();
3089  if (ParamType->isPointerType()) {
3090    // When the non-type template parameter is a pointer, take the
3091    // address of the declaration.
3092    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3093    if (RefExpr.isInvalid())
3094      return ExprError();
3095
3096    if (T->isFunctionType() || T->isArrayType()) {
3097      // Decay functions and arrays.
3098      Expr *RefE = (Expr *)RefExpr.get();
3099      DefaultFunctionArrayConversion(RefE);
3100      if (RefE != RefExpr.get()) {
3101        RefExpr.release();
3102        RefExpr = Owned(RefE);
3103      }
3104
3105      return move(RefExpr);
3106    }
3107
3108    // Take the address of everything else
3109    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3110  }
3111
3112  // If the non-type template parameter has reference type, qualify the
3113  // resulting declaration reference with the extra qualifiers on the
3114  // type that the reference refers to.
3115  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3116    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3117
3118  return BuildDeclRefExpr(VD, T, Loc);
3119}
3120
3121/// \brief Construct a new expression that refers to the given
3122/// integral template argument with the given source-location
3123/// information.
3124///
3125/// This routine takes care of the mapping from an integral template
3126/// argument (which may have any integral type) to the appropriate
3127/// literal value.
3128Sema::OwningExprResult
3129Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3130                                                  SourceLocation Loc) {
3131  assert(Arg.getKind() == TemplateArgument::Integral &&
3132         "Operation is only value for integral template arguments");
3133  QualType T = Arg.getIntegralType();
3134  if (T->isCharType() || T->isWideCharType())
3135    return Owned(new (Context) CharacterLiteral(
3136                                             Arg.getAsIntegral()->getZExtValue(),
3137                                             T->isWideCharType(),
3138                                             T,
3139                                             Loc));
3140  if (T->isBooleanType())
3141    return Owned(new (Context) CXXBoolLiteralExpr(
3142                                            Arg.getAsIntegral()->getBoolValue(),
3143                                            T,
3144                                            Loc));
3145
3146  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3147}
3148
3149
3150/// \brief Determine whether the given template parameter lists are
3151/// equivalent.
3152///
3153/// \param New  The new template parameter list, typically written in the
3154/// source code as part of a new template declaration.
3155///
3156/// \param Old  The old template parameter list, typically found via
3157/// name lookup of the template declared with this template parameter
3158/// list.
3159///
3160/// \param Complain  If true, this routine will produce a diagnostic if
3161/// the template parameter lists are not equivalent.
3162///
3163/// \param Kind describes how we are to match the template parameter lists.
3164///
3165/// \param TemplateArgLoc If this source location is valid, then we
3166/// are actually checking the template parameter list of a template
3167/// argument (New) against the template parameter list of its
3168/// corresponding template template parameter (Old). We produce
3169/// slightly different diagnostics in this scenario.
3170///
3171/// \returns True if the template parameter lists are equal, false
3172/// otherwise.
3173bool
3174Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3175                                     TemplateParameterList *Old,
3176                                     bool Complain,
3177                                     TemplateParameterListEqualKind Kind,
3178                                     SourceLocation TemplateArgLoc) {
3179  if (Old->size() != New->size()) {
3180    if (Complain) {
3181      unsigned NextDiag = diag::err_template_param_list_different_arity;
3182      if (TemplateArgLoc.isValid()) {
3183        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3184        NextDiag = diag::note_template_param_list_different_arity;
3185      }
3186      Diag(New->getTemplateLoc(), NextDiag)
3187          << (New->size() > Old->size())
3188          << (Kind != TPL_TemplateMatch)
3189          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3190      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3191        << (Kind != TPL_TemplateMatch)
3192        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3193    }
3194
3195    return false;
3196  }
3197
3198  for (TemplateParameterList::iterator OldParm = Old->begin(),
3199         OldParmEnd = Old->end(), NewParm = New->begin();
3200       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3201    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3202      if (Complain) {
3203        unsigned NextDiag = diag::err_template_param_different_kind;
3204        if (TemplateArgLoc.isValid()) {
3205          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3206          NextDiag = diag::note_template_param_different_kind;
3207        }
3208        Diag((*NewParm)->getLocation(), NextDiag)
3209          << (Kind != TPL_TemplateMatch);
3210        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3211          << (Kind != TPL_TemplateMatch);
3212      }
3213      return false;
3214    }
3215
3216    if (isa<TemplateTypeParmDecl>(*OldParm)) {
3217      // Okay; all template type parameters are equivalent (since we
3218      // know we're at the same index).
3219    } else if (NonTypeTemplateParmDecl *OldNTTP
3220                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3221      // The types of non-type template parameters must agree.
3222      NonTypeTemplateParmDecl *NewNTTP
3223        = cast<NonTypeTemplateParmDecl>(*NewParm);
3224
3225      // If we are matching a template template argument to a template
3226      // template parameter and one of the non-type template parameter types
3227      // is dependent, then we must wait until template instantiation time
3228      // to actually compare the arguments.
3229      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3230          (OldNTTP->getType()->isDependentType() ||
3231           NewNTTP->getType()->isDependentType()))
3232        continue;
3233
3234      if (Context.getCanonicalType(OldNTTP->getType()) !=
3235            Context.getCanonicalType(NewNTTP->getType())) {
3236        if (Complain) {
3237          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3238          if (TemplateArgLoc.isValid()) {
3239            Diag(TemplateArgLoc,
3240                 diag::err_template_arg_template_params_mismatch);
3241            NextDiag = diag::note_template_nontype_parm_different_type;
3242          }
3243          Diag(NewNTTP->getLocation(), NextDiag)
3244            << NewNTTP->getType()
3245            << (Kind != TPL_TemplateMatch);
3246          Diag(OldNTTP->getLocation(),
3247               diag::note_template_nontype_parm_prev_declaration)
3248            << OldNTTP->getType();
3249        }
3250        return false;
3251      }
3252    } else {
3253      // The template parameter lists of template template
3254      // parameters must agree.
3255      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3256             "Only template template parameters handled here");
3257      TemplateTemplateParmDecl *OldTTP
3258        = cast<TemplateTemplateParmDecl>(*OldParm);
3259      TemplateTemplateParmDecl *NewTTP
3260        = cast<TemplateTemplateParmDecl>(*NewParm);
3261      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3262                                          OldTTP->getTemplateParameters(),
3263                                          Complain,
3264              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3265                                          TemplateArgLoc))
3266        return false;
3267    }
3268  }
3269
3270  return true;
3271}
3272
3273/// \brief Check whether a template can be declared within this scope.
3274///
3275/// If the template declaration is valid in this scope, returns
3276/// false. Otherwise, issues a diagnostic and returns true.
3277bool
3278Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3279  // Find the nearest enclosing declaration scope.
3280  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3281         (S->getFlags() & Scope::TemplateParamScope) != 0)
3282    S = S->getParent();
3283
3284  // C++ [temp]p2:
3285  //   A template-declaration can appear only as a namespace scope or
3286  //   class scope declaration.
3287  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3288  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3289      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3290    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3291             << TemplateParams->getSourceRange();
3292
3293  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3294    Ctx = Ctx->getParent();
3295
3296  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3297    return false;
3298
3299  return Diag(TemplateParams->getTemplateLoc(),
3300              diag::err_template_outside_namespace_or_class_scope)
3301    << TemplateParams->getSourceRange();
3302}
3303
3304/// \brief Determine what kind of template specialization the given declaration
3305/// is.
3306static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3307  if (!D)
3308    return TSK_Undeclared;
3309
3310  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3311    return Record->getTemplateSpecializationKind();
3312  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3313    return Function->getTemplateSpecializationKind();
3314  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3315    return Var->getTemplateSpecializationKind();
3316
3317  return TSK_Undeclared;
3318}
3319
3320/// \brief Check whether a specialization is well-formed in the current
3321/// context.
3322///
3323/// This routine determines whether a template specialization can be declared
3324/// in the current context (C++ [temp.expl.spec]p2).
3325///
3326/// \param S the semantic analysis object for which this check is being
3327/// performed.
3328///
3329/// \param Specialized the entity being specialized or instantiated, which
3330/// may be a kind of template (class template, function template, etc.) or
3331/// a member of a class template (member function, static data member,
3332/// member class).
3333///
3334/// \param PrevDecl the previous declaration of this entity, if any.
3335///
3336/// \param Loc the location of the explicit specialization or instantiation of
3337/// this entity.
3338///
3339/// \param IsPartialSpecialization whether this is a partial specialization of
3340/// a class template.
3341///
3342/// \returns true if there was an error that we cannot recover from, false
3343/// otherwise.
3344static bool CheckTemplateSpecializationScope(Sema &S,
3345                                             NamedDecl *Specialized,
3346                                             NamedDecl *PrevDecl,
3347                                             SourceLocation Loc,
3348                                             bool IsPartialSpecialization) {
3349  // Keep these "kind" numbers in sync with the %select statements in the
3350  // various diagnostics emitted by this routine.
3351  int EntityKind = 0;
3352  bool isTemplateSpecialization = false;
3353  if (isa<ClassTemplateDecl>(Specialized)) {
3354    EntityKind = IsPartialSpecialization? 1 : 0;
3355    isTemplateSpecialization = true;
3356  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3357    EntityKind = 2;
3358    isTemplateSpecialization = true;
3359  } else if (isa<CXXMethodDecl>(Specialized))
3360    EntityKind = 3;
3361  else if (isa<VarDecl>(Specialized))
3362    EntityKind = 4;
3363  else if (isa<RecordDecl>(Specialized))
3364    EntityKind = 5;
3365  else {
3366    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3367    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3368    return true;
3369  }
3370
3371  // C++ [temp.expl.spec]p2:
3372  //   An explicit specialization shall be declared in the namespace
3373  //   of which the template is a member, or, for member templates, in
3374  //   the namespace of which the enclosing class or enclosing class
3375  //   template is a member. An explicit specialization of a member
3376  //   function, member class or static data member of a class
3377  //   template shall be declared in the namespace of which the class
3378  //   template is a member. Such a declaration may also be a
3379  //   definition. If the declaration is not a definition, the
3380  //   specialization may be defined later in the name- space in which
3381  //   the explicit specialization was declared, or in a namespace
3382  //   that encloses the one in which the explicit specialization was
3383  //   declared.
3384  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3385    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3386      << Specialized;
3387    return true;
3388  }
3389
3390  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3391    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3392      << Specialized;
3393    return true;
3394  }
3395
3396  // C++ [temp.class.spec]p6:
3397  //   A class template partial specialization may be declared or redeclared
3398  //   in any namespace scope in which its definition may be defined (14.5.1
3399  //   and 14.5.2).
3400  bool ComplainedAboutScope = false;
3401  DeclContext *SpecializedContext
3402    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3403  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3404  if ((!PrevDecl ||
3405       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3406       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3407    // There is no prior declaration of this entity, so this
3408    // specialization must be in the same context as the template
3409    // itself.
3410    if (!DC->Equals(SpecializedContext)) {
3411      if (isa<TranslationUnitDecl>(SpecializedContext))
3412        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3413        << EntityKind << Specialized;
3414      else if (isa<NamespaceDecl>(SpecializedContext))
3415        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3416        << EntityKind << Specialized
3417        << cast<NamedDecl>(SpecializedContext);
3418
3419      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3420      ComplainedAboutScope = true;
3421    }
3422  }
3423
3424  // Make sure that this redeclaration (or definition) occurs in an enclosing
3425  // namespace.
3426  // Note that HandleDeclarator() performs this check for explicit
3427  // specializations of function templates, static data members, and member
3428  // functions, so we skip the check here for those kinds of entities.
3429  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3430  // Should we refactor that check, so that it occurs later?
3431  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3432      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3433        isa<FunctionDecl>(Specialized))) {
3434    if (isa<TranslationUnitDecl>(SpecializedContext))
3435      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3436        << EntityKind << Specialized;
3437    else if (isa<NamespaceDecl>(SpecializedContext))
3438      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3439        << EntityKind << Specialized
3440        << cast<NamedDecl>(SpecializedContext);
3441
3442    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3443  }
3444
3445  // FIXME: check for specialization-after-instantiation errors and such.
3446
3447  return false;
3448}
3449
3450/// \brief Check the non-type template arguments of a class template
3451/// partial specialization according to C++ [temp.class.spec]p9.
3452///
3453/// \param TemplateParams the template parameters of the primary class
3454/// template.
3455///
3456/// \param TemplateArg the template arguments of the class template
3457/// partial specialization.
3458///
3459/// \param MirrorsPrimaryTemplate will be set true if the class
3460/// template partial specialization arguments are identical to the
3461/// implicit template arguments of the primary template. This is not
3462/// necessarily an error (C++0x), and it is left to the caller to diagnose
3463/// this condition when it is an error.
3464///
3465/// \returns true if there was an error, false otherwise.
3466bool Sema::CheckClassTemplatePartialSpecializationArgs(
3467                                        TemplateParameterList *TemplateParams,
3468                             const TemplateArgumentListBuilder &TemplateArgs,
3469                                        bool &MirrorsPrimaryTemplate) {
3470  // FIXME: the interface to this function will have to change to
3471  // accommodate variadic templates.
3472  MirrorsPrimaryTemplate = true;
3473
3474  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3475
3476  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3477    // Determine whether the template argument list of the partial
3478    // specialization is identical to the implicit argument list of
3479    // the primary template. The caller may need to diagnostic this as
3480    // an error per C++ [temp.class.spec]p9b3.
3481    if (MirrorsPrimaryTemplate) {
3482      if (TemplateTypeParmDecl *TTP
3483            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3484        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3485              Context.getCanonicalType(ArgList[I].getAsType()))
3486          MirrorsPrimaryTemplate = false;
3487      } else if (TemplateTemplateParmDecl *TTP
3488                   = dyn_cast<TemplateTemplateParmDecl>(
3489                                                 TemplateParams->getParam(I))) {
3490        TemplateName Name = ArgList[I].getAsTemplate();
3491        TemplateTemplateParmDecl *ArgDecl
3492          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3493        if (!ArgDecl ||
3494            ArgDecl->getIndex() != TTP->getIndex() ||
3495            ArgDecl->getDepth() != TTP->getDepth())
3496          MirrorsPrimaryTemplate = false;
3497      }
3498    }
3499
3500    NonTypeTemplateParmDecl *Param
3501      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3502    if (!Param) {
3503      continue;
3504    }
3505
3506    Expr *ArgExpr = ArgList[I].getAsExpr();
3507    if (!ArgExpr) {
3508      MirrorsPrimaryTemplate = false;
3509      continue;
3510    }
3511
3512    // C++ [temp.class.spec]p8:
3513    //   A non-type argument is non-specialized if it is the name of a
3514    //   non-type parameter. All other non-type arguments are
3515    //   specialized.
3516    //
3517    // Below, we check the two conditions that only apply to
3518    // specialized non-type arguments, so skip any non-specialized
3519    // arguments.
3520    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3521      if (NonTypeTemplateParmDecl *NTTP
3522            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3523        if (MirrorsPrimaryTemplate &&
3524            (Param->getIndex() != NTTP->getIndex() ||
3525             Param->getDepth() != NTTP->getDepth()))
3526          MirrorsPrimaryTemplate = false;
3527
3528        continue;
3529      }
3530
3531    // C++ [temp.class.spec]p9:
3532    //   Within the argument list of a class template partial
3533    //   specialization, the following restrictions apply:
3534    //     -- A partially specialized non-type argument expression
3535    //        shall not involve a template parameter of the partial
3536    //        specialization except when the argument expression is a
3537    //        simple identifier.
3538    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3539      Diag(ArgExpr->getLocStart(),
3540           diag::err_dependent_non_type_arg_in_partial_spec)
3541        << ArgExpr->getSourceRange();
3542      return true;
3543    }
3544
3545    //     -- The type of a template parameter corresponding to a
3546    //        specialized non-type argument shall not be dependent on a
3547    //        parameter of the specialization.
3548    if (Param->getType()->isDependentType()) {
3549      Diag(ArgExpr->getLocStart(),
3550           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3551        << Param->getType()
3552        << ArgExpr->getSourceRange();
3553      Diag(Param->getLocation(), diag::note_template_param_here);
3554      return true;
3555    }
3556
3557    MirrorsPrimaryTemplate = false;
3558  }
3559
3560  return false;
3561}
3562
3563/// \brief Retrieve the previous declaration of the given declaration.
3564static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3565  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3566    return VD->getPreviousDeclaration();
3567  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3568    return FD->getPreviousDeclaration();
3569  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3570    return TD->getPreviousDeclaration();
3571  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3572    return TD->getPreviousDeclaration();
3573  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3574    return FTD->getPreviousDeclaration();
3575  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3576    return CTD->getPreviousDeclaration();
3577  return 0;
3578}
3579
3580Sema::DeclResult
3581Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3582                                       TagUseKind TUK,
3583                                       SourceLocation KWLoc,
3584                                       CXXScopeSpec &SS,
3585                                       TemplateTy TemplateD,
3586                                       SourceLocation TemplateNameLoc,
3587                                       SourceLocation LAngleLoc,
3588                                       ASTTemplateArgsPtr TemplateArgsIn,
3589                                       SourceLocation RAngleLoc,
3590                                       AttributeList *Attr,
3591                               MultiTemplateParamsArg TemplateParameterLists) {
3592  assert(TUK != TUK_Reference && "References are not specializations");
3593
3594  // Find the class template we're specializing
3595  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3596  ClassTemplateDecl *ClassTemplate
3597    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3598
3599  if (!ClassTemplate) {
3600    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3601      << (Name.getAsTemplateDecl() &&
3602          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3603    return true;
3604  }
3605
3606  bool isExplicitSpecialization = false;
3607  bool isPartialSpecialization = false;
3608
3609  // Check the validity of the template headers that introduce this
3610  // template.
3611  // FIXME: We probably shouldn't complain about these headers for
3612  // friend declarations.
3613  TemplateParameterList *TemplateParams
3614    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3615                        (TemplateParameterList**)TemplateParameterLists.get(),
3616                                              TemplateParameterLists.size(),
3617                                              TUK == TUK_Friend,
3618                                              isExplicitSpecialization);
3619  if (TemplateParams && TemplateParams->size() > 0) {
3620    isPartialSpecialization = true;
3621
3622    // C++ [temp.class.spec]p10:
3623    //   The template parameter list of a specialization shall not
3624    //   contain default template argument values.
3625    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3626      Decl *Param = TemplateParams->getParam(I);
3627      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3628        if (TTP->hasDefaultArgument()) {
3629          Diag(TTP->getDefaultArgumentLoc(),
3630               diag::err_default_arg_in_partial_spec);
3631          TTP->removeDefaultArgument();
3632        }
3633      } else if (NonTypeTemplateParmDecl *NTTP
3634                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3635        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3636          Diag(NTTP->getDefaultArgumentLoc(),
3637               diag::err_default_arg_in_partial_spec)
3638            << DefArg->getSourceRange();
3639          NTTP->setDefaultArgument(0);
3640          DefArg->Destroy(Context);
3641        }
3642      } else {
3643        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3644        if (TTP->hasDefaultArgument()) {
3645          Diag(TTP->getDefaultArgument().getLocation(),
3646               diag::err_default_arg_in_partial_spec)
3647            << TTP->getDefaultArgument().getSourceRange();
3648          TTP->setDefaultArgument(TemplateArgumentLoc());
3649        }
3650      }
3651    }
3652  } else if (TemplateParams) {
3653    if (TUK == TUK_Friend)
3654      Diag(KWLoc, diag::err_template_spec_friend)
3655        << FixItHint::CreateRemoval(
3656                                SourceRange(TemplateParams->getTemplateLoc(),
3657                                            TemplateParams->getRAngleLoc()))
3658        << SourceRange(LAngleLoc, RAngleLoc);
3659    else
3660      isExplicitSpecialization = true;
3661  } else if (TUK != TUK_Friend) {
3662    Diag(KWLoc, diag::err_template_spec_needs_header)
3663      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3664    isExplicitSpecialization = true;
3665  }
3666
3667  // Check that the specialization uses the same tag kind as the
3668  // original template.
3669  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3670  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3671  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3672                                    Kind, KWLoc,
3673                                    *ClassTemplate->getIdentifier())) {
3674    Diag(KWLoc, diag::err_use_with_wrong_tag)
3675      << ClassTemplate
3676      << FixItHint::CreateReplacement(KWLoc,
3677                            ClassTemplate->getTemplatedDecl()->getKindName());
3678    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3679         diag::note_previous_use);
3680    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3681  }
3682
3683  // Translate the parser's template argument list in our AST format.
3684  TemplateArgumentListInfo TemplateArgs;
3685  TemplateArgs.setLAngleLoc(LAngleLoc);
3686  TemplateArgs.setRAngleLoc(RAngleLoc);
3687  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3688
3689  // Check that the template argument list is well-formed for this
3690  // template.
3691  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3692                                        TemplateArgs.size());
3693  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3694                                TemplateArgs, false, Converted))
3695    return true;
3696
3697  assert((Converted.structuredSize() ==
3698            ClassTemplate->getTemplateParameters()->size()) &&
3699         "Converted template argument list is too short!");
3700
3701  // Find the class template (partial) specialization declaration that
3702  // corresponds to these arguments.
3703  llvm::FoldingSetNodeID ID;
3704  if (isPartialSpecialization) {
3705    bool MirrorsPrimaryTemplate;
3706    if (CheckClassTemplatePartialSpecializationArgs(
3707                                         ClassTemplate->getTemplateParameters(),
3708                                         Converted, MirrorsPrimaryTemplate))
3709      return true;
3710
3711    if (MirrorsPrimaryTemplate) {
3712      // C++ [temp.class.spec]p9b3:
3713      //
3714      //   -- The argument list of the specialization shall not be identical
3715      //      to the implicit argument list of the primary template.
3716      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3717        << (TUK == TUK_Definition)
3718        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3719      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3720                                ClassTemplate->getIdentifier(),
3721                                TemplateNameLoc,
3722                                Attr,
3723                                TemplateParams,
3724                                AS_none);
3725    }
3726
3727    // FIXME: Diagnose friend partial specializations
3728
3729    if (!Name.isDependent() &&
3730        !TemplateSpecializationType::anyDependentTemplateArguments(
3731                                             TemplateArgs.getArgumentArray(),
3732                                                         TemplateArgs.size())) {
3733      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3734        << ClassTemplate->getDeclName();
3735      isPartialSpecialization = false;
3736    } else {
3737      // FIXME: Template parameter list matters, too
3738      ClassTemplatePartialSpecializationDecl::Profile(ID,
3739                                                  Converted.getFlatArguments(),
3740                                                      Converted.flatSize(),
3741                                                      Context);
3742    }
3743  }
3744
3745  if (!isPartialSpecialization)
3746    ClassTemplateSpecializationDecl::Profile(ID,
3747                                             Converted.getFlatArguments(),
3748                                             Converted.flatSize(),
3749                                             Context);
3750  void *InsertPos = 0;
3751  ClassTemplateSpecializationDecl *PrevDecl = 0;
3752
3753  if (isPartialSpecialization)
3754    PrevDecl
3755      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3756                                                                    InsertPos);
3757  else
3758    PrevDecl
3759      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3760
3761  ClassTemplateSpecializationDecl *Specialization = 0;
3762
3763  // Check whether we can declare a class template specialization in
3764  // the current scope.
3765  if (TUK != TUK_Friend &&
3766      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3767                                       TemplateNameLoc,
3768                                       isPartialSpecialization))
3769    return true;
3770
3771  // The canonical type
3772  QualType CanonType;
3773  if (PrevDecl &&
3774      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3775               TUK == TUK_Friend)) {
3776    // Since the only prior class template specialization with these
3777    // arguments was referenced but not declared, or we're only
3778    // referencing this specialization as a friend, reuse that
3779    // declaration node as our own, updating its source location to
3780    // reflect our new declaration.
3781    Specialization = PrevDecl;
3782    Specialization->setLocation(TemplateNameLoc);
3783    PrevDecl = 0;
3784    CanonType = Context.getTypeDeclType(Specialization);
3785  } else if (isPartialSpecialization) {
3786    // Build the canonical type that describes the converted template
3787    // arguments of the class template partial specialization.
3788    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3789    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3790                                                  Converted.getFlatArguments(),
3791                                                  Converted.flatSize());
3792
3793    // Create a new class template partial specialization declaration node.
3794    ClassTemplatePartialSpecializationDecl *PrevPartial
3795      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3796    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3797                            : ClassTemplate->getPartialSpecializations().size();
3798    ClassTemplatePartialSpecializationDecl *Partial
3799      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3800                                             ClassTemplate->getDeclContext(),
3801                                                       TemplateNameLoc,
3802                                                       TemplateParams,
3803                                                       ClassTemplate,
3804                                                       Converted,
3805                                                       TemplateArgs,
3806                                                       CanonType,
3807                                                       PrevPartial,
3808                                                       SequenceNumber);
3809    SetNestedNameSpecifier(Partial, SS);
3810
3811    if (PrevPartial) {
3812      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3813      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3814    } else {
3815      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3816    }
3817    Specialization = Partial;
3818
3819    // If we are providing an explicit specialization of a member class
3820    // template specialization, make a note of that.
3821    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3822      PrevPartial->setMemberSpecialization();
3823
3824    // Check that all of the template parameters of the class template
3825    // partial specialization are deducible from the template
3826    // arguments. If not, this class template partial specialization
3827    // will never be used.
3828    llvm::SmallVector<bool, 8> DeducibleParams;
3829    DeducibleParams.resize(TemplateParams->size());
3830    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3831                               TemplateParams->getDepth(),
3832                               DeducibleParams);
3833    unsigned NumNonDeducible = 0;
3834    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3835      if (!DeducibleParams[I])
3836        ++NumNonDeducible;
3837
3838    if (NumNonDeducible) {
3839      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3840        << (NumNonDeducible > 1)
3841        << SourceRange(TemplateNameLoc, RAngleLoc);
3842      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3843        if (!DeducibleParams[I]) {
3844          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3845          if (Param->getDeclName())
3846            Diag(Param->getLocation(),
3847                 diag::note_partial_spec_unused_parameter)
3848              << Param->getDeclName();
3849          else
3850            Diag(Param->getLocation(),
3851                 diag::note_partial_spec_unused_parameter)
3852              << std::string("<anonymous>");
3853        }
3854      }
3855    }
3856  } else {
3857    // Create a new class template specialization declaration node for
3858    // this explicit specialization or friend declaration.
3859    Specialization
3860      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3861                                             ClassTemplate->getDeclContext(),
3862                                                TemplateNameLoc,
3863                                                ClassTemplate,
3864                                                Converted,
3865                                                PrevDecl);
3866    SetNestedNameSpecifier(Specialization, SS);
3867
3868    if (PrevDecl) {
3869      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3870      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3871    } else {
3872      ClassTemplate->getSpecializations().InsertNode(Specialization,
3873                                                     InsertPos);
3874    }
3875
3876    CanonType = Context.getTypeDeclType(Specialization);
3877  }
3878
3879  // C++ [temp.expl.spec]p6:
3880  //   If a template, a member template or the member of a class template is
3881  //   explicitly specialized then that specialization shall be declared
3882  //   before the first use of that specialization that would cause an implicit
3883  //   instantiation to take place, in every translation unit in which such a
3884  //   use occurs; no diagnostic is required.
3885  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3886    bool Okay = false;
3887    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3888      // Is there any previous explicit specialization declaration?
3889      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3890        Okay = true;
3891        break;
3892      }
3893    }
3894
3895    if (!Okay) {
3896      SourceRange Range(TemplateNameLoc, RAngleLoc);
3897      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3898        << Context.getTypeDeclType(Specialization) << Range;
3899
3900      Diag(PrevDecl->getPointOfInstantiation(),
3901           diag::note_instantiation_required_here)
3902        << (PrevDecl->getTemplateSpecializationKind()
3903                                                != TSK_ImplicitInstantiation);
3904      return true;
3905    }
3906  }
3907
3908  // If this is not a friend, note that this is an explicit specialization.
3909  if (TUK != TUK_Friend)
3910    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3911
3912  // Check that this isn't a redefinition of this specialization.
3913  if (TUK == TUK_Definition) {
3914    if (RecordDecl *Def = Specialization->getDefinition()) {
3915      SourceRange Range(TemplateNameLoc, RAngleLoc);
3916      Diag(TemplateNameLoc, diag::err_redefinition)
3917        << Context.getTypeDeclType(Specialization) << Range;
3918      Diag(Def->getLocation(), diag::note_previous_definition);
3919      Specialization->setInvalidDecl();
3920      return true;
3921    }
3922  }
3923
3924  // Build the fully-sugared type for this class template
3925  // specialization as the user wrote in the specialization
3926  // itself. This means that we'll pretty-print the type retrieved
3927  // from the specialization's declaration the way that the user
3928  // actually wrote the specialization, rather than formatting the
3929  // name based on the "canonical" representation used to store the
3930  // template arguments in the specialization.
3931  TypeSourceInfo *WrittenTy
3932    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3933                                                TemplateArgs, CanonType);
3934  if (TUK != TUK_Friend)
3935    Specialization->setTypeAsWritten(WrittenTy);
3936  TemplateArgsIn.release();
3937
3938  // C++ [temp.expl.spec]p9:
3939  //   A template explicit specialization is in the scope of the
3940  //   namespace in which the template was defined.
3941  //
3942  // We actually implement this paragraph where we set the semantic
3943  // context (in the creation of the ClassTemplateSpecializationDecl),
3944  // but we also maintain the lexical context where the actual
3945  // definition occurs.
3946  Specialization->setLexicalDeclContext(CurContext);
3947
3948  // We may be starting the definition of this specialization.
3949  if (TUK == TUK_Definition)
3950    Specialization->startDefinition();
3951
3952  if (TUK == TUK_Friend) {
3953    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3954                                            TemplateNameLoc,
3955                                            WrittenTy,
3956                                            /*FIXME:*/KWLoc);
3957    Friend->setAccess(AS_public);
3958    CurContext->addDecl(Friend);
3959  } else {
3960    // Add the specialization into its lexical context, so that it can
3961    // be seen when iterating through the list of declarations in that
3962    // context. However, specializations are not found by name lookup.
3963    CurContext->addDecl(Specialization);
3964  }
3965  return DeclPtrTy::make(Specialization);
3966}
3967
3968Sema::DeclPtrTy
3969Sema::ActOnTemplateDeclarator(Scope *S,
3970                              MultiTemplateParamsArg TemplateParameterLists,
3971                              Declarator &D) {
3972  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3973}
3974
3975Sema::DeclPtrTy
3976Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3977                               MultiTemplateParamsArg TemplateParameterLists,
3978                                      Declarator &D) {
3979  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3980  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3981         "Not a function declarator!");
3982  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3983
3984  if (FTI.hasPrototype) {
3985    // FIXME: Diagnose arguments without names in C.
3986  }
3987
3988  Scope *ParentScope = FnBodyScope->getParent();
3989
3990  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3991                                  move(TemplateParameterLists),
3992                                  /*IsFunctionDefinition=*/true);
3993  if (FunctionTemplateDecl *FunctionTemplate
3994        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3995    return ActOnStartOfFunctionDef(FnBodyScope,
3996                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3997  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3998    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3999  return DeclPtrTy();
4000}
4001
4002/// \brief Strips various properties off an implicit instantiation
4003/// that has just been explicitly specialized.
4004static void StripImplicitInstantiation(NamedDecl *D) {
4005  D->invalidateAttrs();
4006
4007  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4008    FD->setInlineSpecified(false);
4009  }
4010}
4011
4012/// \brief Diagnose cases where we have an explicit template specialization
4013/// before/after an explicit template instantiation, producing diagnostics
4014/// for those cases where they are required and determining whether the
4015/// new specialization/instantiation will have any effect.
4016///
4017/// \param NewLoc the location of the new explicit specialization or
4018/// instantiation.
4019///
4020/// \param NewTSK the kind of the new explicit specialization or instantiation.
4021///
4022/// \param PrevDecl the previous declaration of the entity.
4023///
4024/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4025///
4026/// \param PrevPointOfInstantiation if valid, indicates where the previus
4027/// declaration was instantiated (either implicitly or explicitly).
4028///
4029/// \param SuppressNew will be set to true to indicate that the new
4030/// specialization or instantiation has no effect and should be ignored.
4031///
4032/// \returns true if there was an error that should prevent the introduction of
4033/// the new declaration into the AST, false otherwise.
4034bool
4035Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4036                                             TemplateSpecializationKind NewTSK,
4037                                             NamedDecl *PrevDecl,
4038                                             TemplateSpecializationKind PrevTSK,
4039                                        SourceLocation PrevPointOfInstantiation,
4040                                             bool &SuppressNew) {
4041  SuppressNew = false;
4042
4043  switch (NewTSK) {
4044  case TSK_Undeclared:
4045  case TSK_ImplicitInstantiation:
4046    assert(false && "Don't check implicit instantiations here");
4047    return false;
4048
4049  case TSK_ExplicitSpecialization:
4050    switch (PrevTSK) {
4051    case TSK_Undeclared:
4052    case TSK_ExplicitSpecialization:
4053      // Okay, we're just specializing something that is either already
4054      // explicitly specialized or has merely been mentioned without any
4055      // instantiation.
4056      return false;
4057
4058    case TSK_ImplicitInstantiation:
4059      if (PrevPointOfInstantiation.isInvalid()) {
4060        // The declaration itself has not actually been instantiated, so it is
4061        // still okay to specialize it.
4062        StripImplicitInstantiation(PrevDecl);
4063        return false;
4064      }
4065      // Fall through
4066
4067    case TSK_ExplicitInstantiationDeclaration:
4068    case TSK_ExplicitInstantiationDefinition:
4069      assert((PrevTSK == TSK_ImplicitInstantiation ||
4070              PrevPointOfInstantiation.isValid()) &&
4071             "Explicit instantiation without point of instantiation?");
4072
4073      // C++ [temp.expl.spec]p6:
4074      //   If a template, a member template or the member of a class template
4075      //   is explicitly specialized then that specialization shall be declared
4076      //   before the first use of that specialization that would cause an
4077      //   implicit instantiation to take place, in every translation unit in
4078      //   which such a use occurs; no diagnostic is required.
4079      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4080        // Is there any previous explicit specialization declaration?
4081        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4082          return false;
4083      }
4084
4085      Diag(NewLoc, diag::err_specialization_after_instantiation)
4086        << PrevDecl;
4087      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4088        << (PrevTSK != TSK_ImplicitInstantiation);
4089
4090      return true;
4091    }
4092    break;
4093
4094  case TSK_ExplicitInstantiationDeclaration:
4095    switch (PrevTSK) {
4096    case TSK_ExplicitInstantiationDeclaration:
4097      // This explicit instantiation declaration is redundant (that's okay).
4098      SuppressNew = true;
4099      return false;
4100
4101    case TSK_Undeclared:
4102    case TSK_ImplicitInstantiation:
4103      // We're explicitly instantiating something that may have already been
4104      // implicitly instantiated; that's fine.
4105      return false;
4106
4107    case TSK_ExplicitSpecialization:
4108      // C++0x [temp.explicit]p4:
4109      //   For a given set of template parameters, if an explicit instantiation
4110      //   of a template appears after a declaration of an explicit
4111      //   specialization for that template, the explicit instantiation has no
4112      //   effect.
4113      SuppressNew = true;
4114      return false;
4115
4116    case TSK_ExplicitInstantiationDefinition:
4117      // C++0x [temp.explicit]p10:
4118      //   If an entity is the subject of both an explicit instantiation
4119      //   declaration and an explicit instantiation definition in the same
4120      //   translation unit, the definition shall follow the declaration.
4121      Diag(NewLoc,
4122           diag::err_explicit_instantiation_declaration_after_definition);
4123      Diag(PrevPointOfInstantiation,
4124           diag::note_explicit_instantiation_definition_here);
4125      assert(PrevPointOfInstantiation.isValid() &&
4126             "Explicit instantiation without point of instantiation?");
4127      SuppressNew = true;
4128      return false;
4129    }
4130    break;
4131
4132  case TSK_ExplicitInstantiationDefinition:
4133    switch (PrevTSK) {
4134    case TSK_Undeclared:
4135    case TSK_ImplicitInstantiation:
4136      // We're explicitly instantiating something that may have already been
4137      // implicitly instantiated; that's fine.
4138      return false;
4139
4140    case TSK_ExplicitSpecialization:
4141      // C++ DR 259, C++0x [temp.explicit]p4:
4142      //   For a given set of template parameters, if an explicit
4143      //   instantiation of a template appears after a declaration of
4144      //   an explicit specialization for that template, the explicit
4145      //   instantiation has no effect.
4146      //
4147      // In C++98/03 mode, we only give an extension warning here, because it
4148      // is not harmful to try to explicitly instantiate something that
4149      // has been explicitly specialized.
4150      if (!getLangOptions().CPlusPlus0x) {
4151        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4152          << PrevDecl;
4153        Diag(PrevDecl->getLocation(),
4154             diag::note_previous_template_specialization);
4155      }
4156      SuppressNew = true;
4157      return false;
4158
4159    case TSK_ExplicitInstantiationDeclaration:
4160      // We're explicity instantiating a definition for something for which we
4161      // were previously asked to suppress instantiations. That's fine.
4162      return false;
4163
4164    case TSK_ExplicitInstantiationDefinition:
4165      // C++0x [temp.spec]p5:
4166      //   For a given template and a given set of template-arguments,
4167      //     - an explicit instantiation definition shall appear at most once
4168      //       in a program,
4169      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4170        << PrevDecl;
4171      Diag(PrevPointOfInstantiation,
4172           diag::note_previous_explicit_instantiation);
4173      SuppressNew = true;
4174      return false;
4175    }
4176    break;
4177  }
4178
4179  assert(false && "Missing specialization/instantiation case?");
4180
4181  return false;
4182}
4183
4184/// \brief Perform semantic analysis for the given dependent function
4185/// template specialization.  The only possible way to get a dependent
4186/// function template specialization is with a friend declaration,
4187/// like so:
4188///
4189///   template <class T> void foo(T);
4190///   template <class T> class A {
4191///     friend void foo<>(T);
4192///   };
4193///
4194/// There really isn't any useful analysis we can do here, so we
4195/// just store the information.
4196bool
4197Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4198                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4199                                                   LookupResult &Previous) {
4200  // Remove anything from Previous that isn't a function template in
4201  // the correct context.
4202  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4203  LookupResult::Filter F = Previous.makeFilter();
4204  while (F.hasNext()) {
4205    NamedDecl *D = F.next()->getUnderlyingDecl();
4206    if (!isa<FunctionTemplateDecl>(D) ||
4207        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4208      F.erase();
4209  }
4210  F.done();
4211
4212  // Should this be diagnosed here?
4213  if (Previous.empty()) return true;
4214
4215  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4216                                         ExplicitTemplateArgs);
4217  return false;
4218}
4219
4220/// \brief Perform semantic analysis for the given function template
4221/// specialization.
4222///
4223/// This routine performs all of the semantic analysis required for an
4224/// explicit function template specialization. On successful completion,
4225/// the function declaration \p FD will become a function template
4226/// specialization.
4227///
4228/// \param FD the function declaration, which will be updated to become a
4229/// function template specialization.
4230///
4231/// \param HasExplicitTemplateArgs whether any template arguments were
4232/// explicitly provided.
4233///
4234/// \param LAngleLoc the location of the left angle bracket ('<'), if
4235/// template arguments were explicitly provided.
4236///
4237/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4238/// if any.
4239///
4240/// \param NumExplicitTemplateArgs the number of explicitly-provided template
4241/// arguments. This number may be zero even when HasExplicitTemplateArgs is
4242/// true as in, e.g., \c void sort<>(char*, char*);
4243///
4244/// \param RAngleLoc the location of the right angle bracket ('>'), if
4245/// template arguments were explicitly provided.
4246///
4247/// \param PrevDecl the set of declarations that
4248bool
4249Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4250                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4251                                          LookupResult &Previous) {
4252  // The set of function template specializations that could match this
4253  // explicit function template specialization.
4254  UnresolvedSet<8> Candidates;
4255
4256  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4257  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4258         I != E; ++I) {
4259    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4260    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4261      // Only consider templates found within the same semantic lookup scope as
4262      // FD.
4263      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4264        continue;
4265
4266      // C++ [temp.expl.spec]p11:
4267      //   A trailing template-argument can be left unspecified in the
4268      //   template-id naming an explicit function template specialization
4269      //   provided it can be deduced from the function argument type.
4270      // Perform template argument deduction to determine whether we may be
4271      // specializing this template.
4272      // FIXME: It is somewhat wasteful to build
4273      TemplateDeductionInfo Info(Context, FD->getLocation());
4274      FunctionDecl *Specialization = 0;
4275      if (TemplateDeductionResult TDK
4276            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4277                                      FD->getType(),
4278                                      Specialization,
4279                                      Info)) {
4280        // FIXME: Template argument deduction failed; record why it failed, so
4281        // that we can provide nifty diagnostics.
4282        (void)TDK;
4283        continue;
4284      }
4285
4286      // Record this candidate.
4287      Candidates.addDecl(Specialization, I.getAccess());
4288    }
4289  }
4290
4291  // Find the most specialized function template.
4292  UnresolvedSetIterator Result
4293    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4294                         TPOC_Other, FD->getLocation(),
4295                  PDiag(diag::err_function_template_spec_no_match)
4296                    << FD->getDeclName(),
4297                  PDiag(diag::err_function_template_spec_ambiguous)
4298                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4299                  PDiag(diag::note_function_template_spec_matched));
4300  if (Result == Candidates.end())
4301    return true;
4302
4303  // Ignore access information;  it doesn't figure into redeclaration checking.
4304  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4305  Specialization->setLocation(FD->getLocation());
4306
4307  // FIXME: Check if the prior specialization has a point of instantiation.
4308  // If so, we have run afoul of .
4309
4310  // If this is a friend declaration, then we're not really declaring
4311  // an explicit specialization.
4312  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4313
4314  // Check the scope of this explicit specialization.
4315  if (!isFriend &&
4316      CheckTemplateSpecializationScope(*this,
4317                                       Specialization->getPrimaryTemplate(),
4318                                       Specialization, FD->getLocation(),
4319                                       false))
4320    return true;
4321
4322  // C++ [temp.expl.spec]p6:
4323  //   If a template, a member template or the member of a class template is
4324  //   explicitly specialized then that specialization shall be declared
4325  //   before the first use of that specialization that would cause an implicit
4326  //   instantiation to take place, in every translation unit in which such a
4327  //   use occurs; no diagnostic is required.
4328  FunctionTemplateSpecializationInfo *SpecInfo
4329    = Specialization->getTemplateSpecializationInfo();
4330  assert(SpecInfo && "Function template specialization info missing?");
4331
4332  bool SuppressNew = false;
4333  if (!isFriend &&
4334      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4335                                             TSK_ExplicitSpecialization,
4336                                             Specialization,
4337                                   SpecInfo->getTemplateSpecializationKind(),
4338                                         SpecInfo->getPointOfInstantiation(),
4339                                             SuppressNew))
4340    return true;
4341
4342  // Mark the prior declaration as an explicit specialization, so that later
4343  // clients know that this is an explicit specialization.
4344  if (!isFriend)
4345    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4346
4347  // Turn the given function declaration into a function template
4348  // specialization, with the template arguments from the previous
4349  // specialization.
4350  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4351                         new (Context) TemplateArgumentList(
4352                             Specialization->getTemplateSpecializationArgs()),
4353                                        /*InsertPos=*/0,
4354                                    SpecInfo->getTemplateSpecializationKind());
4355
4356  // The "previous declaration" for this function template specialization is
4357  // the prior function template specialization.
4358  Previous.clear();
4359  Previous.addDecl(Specialization);
4360  return false;
4361}
4362
4363/// \brief Perform semantic analysis for the given non-template member
4364/// specialization.
4365///
4366/// This routine performs all of the semantic analysis required for an
4367/// explicit member function specialization. On successful completion,
4368/// the function declaration \p FD will become a member function
4369/// specialization.
4370///
4371/// \param Member the member declaration, which will be updated to become a
4372/// specialization.
4373///
4374/// \param Previous the set of declarations, one of which may be specialized
4375/// by this function specialization;  the set will be modified to contain the
4376/// redeclared member.
4377bool
4378Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4379  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4380
4381  // Try to find the member we are instantiating.
4382  NamedDecl *Instantiation = 0;
4383  NamedDecl *InstantiatedFrom = 0;
4384  MemberSpecializationInfo *MSInfo = 0;
4385
4386  if (Previous.empty()) {
4387    // Nowhere to look anyway.
4388  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4389    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4390           I != E; ++I) {
4391      NamedDecl *D = (*I)->getUnderlyingDecl();
4392      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4393        if (Context.hasSameType(Function->getType(), Method->getType())) {
4394          Instantiation = Method;
4395          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4396          MSInfo = Method->getMemberSpecializationInfo();
4397          break;
4398        }
4399      }
4400    }
4401  } else if (isa<VarDecl>(Member)) {
4402    VarDecl *PrevVar;
4403    if (Previous.isSingleResult() &&
4404        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4405      if (PrevVar->isStaticDataMember()) {
4406        Instantiation = PrevVar;
4407        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4408        MSInfo = PrevVar->getMemberSpecializationInfo();
4409      }
4410  } else if (isa<RecordDecl>(Member)) {
4411    CXXRecordDecl *PrevRecord;
4412    if (Previous.isSingleResult() &&
4413        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4414      Instantiation = PrevRecord;
4415      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4416      MSInfo = PrevRecord->getMemberSpecializationInfo();
4417    }
4418  }
4419
4420  if (!Instantiation) {
4421    // There is no previous declaration that matches. Since member
4422    // specializations are always out-of-line, the caller will complain about
4423    // this mismatch later.
4424    return false;
4425  }
4426
4427  // If this is a friend, just bail out here before we start turning
4428  // things into explicit specializations.
4429  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4430    // Preserve instantiation information.
4431    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4432      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4433                                      cast<CXXMethodDecl>(InstantiatedFrom),
4434        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4435    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4436      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4437                                      cast<CXXRecordDecl>(InstantiatedFrom),
4438        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4439    }
4440
4441    Previous.clear();
4442    Previous.addDecl(Instantiation);
4443    return false;
4444  }
4445
4446  // Make sure that this is a specialization of a member.
4447  if (!InstantiatedFrom) {
4448    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4449      << Member;
4450    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4451    return true;
4452  }
4453
4454  // C++ [temp.expl.spec]p6:
4455  //   If a template, a member template or the member of a class template is
4456  //   explicitly specialized then that spe- cialization shall be declared
4457  //   before the first use of that specialization that would cause an implicit
4458  //   instantiation to take place, in every translation unit in which such a
4459  //   use occurs; no diagnostic is required.
4460  assert(MSInfo && "Member specialization info missing?");
4461
4462  bool SuppressNew = false;
4463  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4464                                             TSK_ExplicitSpecialization,
4465                                             Instantiation,
4466                                     MSInfo->getTemplateSpecializationKind(),
4467                                           MSInfo->getPointOfInstantiation(),
4468                                             SuppressNew))
4469    return true;
4470
4471  // Check the scope of this explicit specialization.
4472  if (CheckTemplateSpecializationScope(*this,
4473                                       InstantiatedFrom,
4474                                       Instantiation, Member->getLocation(),
4475                                       false))
4476    return true;
4477
4478  // Note that this is an explicit instantiation of a member.
4479  // the original declaration to note that it is an explicit specialization
4480  // (if it was previously an implicit instantiation). This latter step
4481  // makes bookkeeping easier.
4482  if (isa<FunctionDecl>(Member)) {
4483    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4484    if (InstantiationFunction->getTemplateSpecializationKind() ==
4485          TSK_ImplicitInstantiation) {
4486      InstantiationFunction->setTemplateSpecializationKind(
4487                                                  TSK_ExplicitSpecialization);
4488      InstantiationFunction->setLocation(Member->getLocation());
4489    }
4490
4491    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4492                                        cast<CXXMethodDecl>(InstantiatedFrom),
4493                                                  TSK_ExplicitSpecialization);
4494  } else if (isa<VarDecl>(Member)) {
4495    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4496    if (InstantiationVar->getTemplateSpecializationKind() ==
4497          TSK_ImplicitInstantiation) {
4498      InstantiationVar->setTemplateSpecializationKind(
4499                                                  TSK_ExplicitSpecialization);
4500      InstantiationVar->setLocation(Member->getLocation());
4501    }
4502
4503    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4504                                                cast<VarDecl>(InstantiatedFrom),
4505                                                TSK_ExplicitSpecialization);
4506  } else {
4507    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4508    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4509    if (InstantiationClass->getTemplateSpecializationKind() ==
4510          TSK_ImplicitInstantiation) {
4511      InstantiationClass->setTemplateSpecializationKind(
4512                                                   TSK_ExplicitSpecialization);
4513      InstantiationClass->setLocation(Member->getLocation());
4514    }
4515
4516    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4517                                        cast<CXXRecordDecl>(InstantiatedFrom),
4518                                                   TSK_ExplicitSpecialization);
4519  }
4520
4521  // Save the caller the trouble of having to figure out which declaration
4522  // this specialization matches.
4523  Previous.clear();
4524  Previous.addDecl(Instantiation);
4525  return false;
4526}
4527
4528/// \brief Check the scope of an explicit instantiation.
4529static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4530                                            SourceLocation InstLoc,
4531                                            bool WasQualifiedName) {
4532  DeclContext *ExpectedContext
4533    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4534  DeclContext *CurContext = S.CurContext->getLookupContext();
4535
4536  // C++0x [temp.explicit]p2:
4537  //   An explicit instantiation shall appear in an enclosing namespace of its
4538  //   template.
4539  //
4540  // This is DR275, which we do not retroactively apply to C++98/03.
4541  if (S.getLangOptions().CPlusPlus0x &&
4542      !CurContext->Encloses(ExpectedContext)) {
4543    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4544      S.Diag(InstLoc,
4545             S.getLangOptions().CPlusPlus0x?
4546                 diag::err_explicit_instantiation_out_of_scope
4547               : diag::warn_explicit_instantiation_out_of_scope_0x)
4548        << D << NS;
4549    else
4550      S.Diag(InstLoc,
4551             S.getLangOptions().CPlusPlus0x?
4552                 diag::err_explicit_instantiation_must_be_global
4553               : diag::warn_explicit_instantiation_out_of_scope_0x)
4554        << D;
4555    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4556    return;
4557  }
4558
4559  // C++0x [temp.explicit]p2:
4560  //   If the name declared in the explicit instantiation is an unqualified
4561  //   name, the explicit instantiation shall appear in the namespace where
4562  //   its template is declared or, if that namespace is inline (7.3.1), any
4563  //   namespace from its enclosing namespace set.
4564  if (WasQualifiedName)
4565    return;
4566
4567  if (CurContext->Equals(ExpectedContext))
4568    return;
4569
4570  S.Diag(InstLoc,
4571         S.getLangOptions().CPlusPlus0x?
4572             diag::err_explicit_instantiation_unqualified_wrong_namespace
4573           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4574    << D << ExpectedContext;
4575  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4576}
4577
4578/// \brief Determine whether the given scope specifier has a template-id in it.
4579static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4580  if (!SS.isSet())
4581    return false;
4582
4583  // C++0x [temp.explicit]p2:
4584  //   If the explicit instantiation is for a member function, a member class
4585  //   or a static data member of a class template specialization, the name of
4586  //   the class template specialization in the qualified-id for the member
4587  //   name shall be a simple-template-id.
4588  //
4589  // C++98 has the same restriction, just worded differently.
4590  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4591       NNS; NNS = NNS->getPrefix())
4592    if (Type *T = NNS->getAsType())
4593      if (isa<TemplateSpecializationType>(T))
4594        return true;
4595
4596  return false;
4597}
4598
4599// Explicit instantiation of a class template specialization
4600Sema::DeclResult
4601Sema::ActOnExplicitInstantiation(Scope *S,
4602                                 SourceLocation ExternLoc,
4603                                 SourceLocation TemplateLoc,
4604                                 unsigned TagSpec,
4605                                 SourceLocation KWLoc,
4606                                 const CXXScopeSpec &SS,
4607                                 TemplateTy TemplateD,
4608                                 SourceLocation TemplateNameLoc,
4609                                 SourceLocation LAngleLoc,
4610                                 ASTTemplateArgsPtr TemplateArgsIn,
4611                                 SourceLocation RAngleLoc,
4612                                 AttributeList *Attr) {
4613  // Find the class template we're specializing
4614  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4615  ClassTemplateDecl *ClassTemplate
4616    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4617
4618  // Check that the specialization uses the same tag kind as the
4619  // original template.
4620  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4621  assert(Kind != TTK_Enum &&
4622         "Invalid enum tag in class template explicit instantiation!");
4623  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4624                                    Kind, KWLoc,
4625                                    *ClassTemplate->getIdentifier())) {
4626    Diag(KWLoc, diag::err_use_with_wrong_tag)
4627      << ClassTemplate
4628      << FixItHint::CreateReplacement(KWLoc,
4629                            ClassTemplate->getTemplatedDecl()->getKindName());
4630    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4631         diag::note_previous_use);
4632    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4633  }
4634
4635  // C++0x [temp.explicit]p2:
4636  //   There are two forms of explicit instantiation: an explicit instantiation
4637  //   definition and an explicit instantiation declaration. An explicit
4638  //   instantiation declaration begins with the extern keyword. [...]
4639  TemplateSpecializationKind TSK
4640    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4641                           : TSK_ExplicitInstantiationDeclaration;
4642
4643  // Translate the parser's template argument list in our AST format.
4644  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4645  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4646
4647  // Check that the template argument list is well-formed for this
4648  // template.
4649  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4650                                        TemplateArgs.size());
4651  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4652                                TemplateArgs, false, Converted))
4653    return true;
4654
4655  assert((Converted.structuredSize() ==
4656            ClassTemplate->getTemplateParameters()->size()) &&
4657         "Converted template argument list is too short!");
4658
4659  // Find the class template specialization declaration that
4660  // corresponds to these arguments.
4661  llvm::FoldingSetNodeID ID;
4662  ClassTemplateSpecializationDecl::Profile(ID,
4663                                           Converted.getFlatArguments(),
4664                                           Converted.flatSize(),
4665                                           Context);
4666  void *InsertPos = 0;
4667  ClassTemplateSpecializationDecl *PrevDecl
4668    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4669
4670  // C++0x [temp.explicit]p2:
4671  //   [...] An explicit instantiation shall appear in an enclosing
4672  //   namespace of its template. [...]
4673  //
4674  // This is C++ DR 275.
4675  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4676                                  SS.isSet());
4677
4678  ClassTemplateSpecializationDecl *Specialization = 0;
4679
4680  bool ReusedDecl = false;
4681  if (PrevDecl) {
4682    bool SuppressNew = false;
4683    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4684                                               PrevDecl,
4685                                              PrevDecl->getSpecializationKind(),
4686                                            PrevDecl->getPointOfInstantiation(),
4687                                               SuppressNew))
4688      return DeclPtrTy::make(PrevDecl);
4689
4690    if (SuppressNew)
4691      return DeclPtrTy::make(PrevDecl);
4692
4693    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4694        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4695      // Since the only prior class template specialization with these
4696      // arguments was referenced but not declared, reuse that
4697      // declaration node as our own, updating its source location to
4698      // reflect our new declaration.
4699      Specialization = PrevDecl;
4700      Specialization->setLocation(TemplateNameLoc);
4701      PrevDecl = 0;
4702      ReusedDecl = true;
4703    }
4704  }
4705
4706  if (!Specialization) {
4707    // Create a new class template specialization declaration node for
4708    // this explicit specialization.
4709    Specialization
4710      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4711                                             ClassTemplate->getDeclContext(),
4712                                                TemplateNameLoc,
4713                                                ClassTemplate,
4714                                                Converted, PrevDecl);
4715    SetNestedNameSpecifier(Specialization, SS);
4716
4717    if (PrevDecl) {
4718      // Remove the previous declaration from the folding set, since we want
4719      // to introduce a new declaration.
4720      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4721      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4722    }
4723
4724    // Insert the new specialization.
4725    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4726  }
4727
4728  // Build the fully-sugared type for this explicit instantiation as
4729  // the user wrote in the explicit instantiation itself. This means
4730  // that we'll pretty-print the type retrieved from the
4731  // specialization's declaration the way that the user actually wrote
4732  // the explicit instantiation, rather than formatting the name based
4733  // on the "canonical" representation used to store the template
4734  // arguments in the specialization.
4735  TypeSourceInfo *WrittenTy
4736    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4737                                                TemplateArgs,
4738                                  Context.getTypeDeclType(Specialization));
4739  Specialization->setTypeAsWritten(WrittenTy);
4740  TemplateArgsIn.release();
4741
4742  if (!ReusedDecl) {
4743    // Add the explicit instantiation into its lexical context. However,
4744    // since explicit instantiations are never found by name lookup, we
4745    // just put it into the declaration context directly.
4746    Specialization->setLexicalDeclContext(CurContext);
4747    CurContext->addDecl(Specialization);
4748  }
4749
4750  // C++ [temp.explicit]p3:
4751  //   A definition of a class template or class member template
4752  //   shall be in scope at the point of the explicit instantiation of
4753  //   the class template or class member template.
4754  //
4755  // This check comes when we actually try to perform the
4756  // instantiation.
4757  ClassTemplateSpecializationDecl *Def
4758    = cast_or_null<ClassTemplateSpecializationDecl>(
4759                                              Specialization->getDefinition());
4760  if (!Def)
4761    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4762  else if (TSK == TSK_ExplicitInstantiationDefinition)
4763    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4764
4765  // Instantiate the members of this class template specialization.
4766  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4767                                       Specialization->getDefinition());
4768  if (Def) {
4769    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4770
4771    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4772    // TSK_ExplicitInstantiationDefinition
4773    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4774        TSK == TSK_ExplicitInstantiationDefinition)
4775      Def->setTemplateSpecializationKind(TSK);
4776
4777    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4778  }
4779
4780  return DeclPtrTy::make(Specialization);
4781}
4782
4783// Explicit instantiation of a member class of a class template.
4784Sema::DeclResult
4785Sema::ActOnExplicitInstantiation(Scope *S,
4786                                 SourceLocation ExternLoc,
4787                                 SourceLocation TemplateLoc,
4788                                 unsigned TagSpec,
4789                                 SourceLocation KWLoc,
4790                                 CXXScopeSpec &SS,
4791                                 IdentifierInfo *Name,
4792                                 SourceLocation NameLoc,
4793                                 AttributeList *Attr) {
4794
4795  bool Owned = false;
4796  bool IsDependent = false;
4797  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4798                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4799                            MultiTemplateParamsArg(*this, 0, 0),
4800                            Owned, IsDependent);
4801  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4802
4803  if (!TagD)
4804    return true;
4805
4806  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4807  if (Tag->isEnum()) {
4808    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4809      << Context.getTypeDeclType(Tag);
4810    return true;
4811  }
4812
4813  if (Tag->isInvalidDecl())
4814    return true;
4815
4816  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4817  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4818  if (!Pattern) {
4819    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4820      << Context.getTypeDeclType(Record);
4821    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4822    return true;
4823  }
4824
4825  // C++0x [temp.explicit]p2:
4826  //   If the explicit instantiation is for a class or member class, the
4827  //   elaborated-type-specifier in the declaration shall include a
4828  //   simple-template-id.
4829  //
4830  // C++98 has the same restriction, just worded differently.
4831  if (!ScopeSpecifierHasTemplateId(SS))
4832    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4833      << Record << SS.getRange();
4834
4835  // C++0x [temp.explicit]p2:
4836  //   There are two forms of explicit instantiation: an explicit instantiation
4837  //   definition and an explicit instantiation declaration. An explicit
4838  //   instantiation declaration begins with the extern keyword. [...]
4839  TemplateSpecializationKind TSK
4840    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4841                           : TSK_ExplicitInstantiationDeclaration;
4842
4843  // C++0x [temp.explicit]p2:
4844  //   [...] An explicit instantiation shall appear in an enclosing
4845  //   namespace of its template. [...]
4846  //
4847  // This is C++ DR 275.
4848  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4849
4850  // Verify that it is okay to explicitly instantiate here.
4851  CXXRecordDecl *PrevDecl
4852    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4853  if (!PrevDecl && Record->getDefinition())
4854    PrevDecl = Record;
4855  if (PrevDecl) {
4856    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4857    bool SuppressNew = false;
4858    assert(MSInfo && "No member specialization information?");
4859    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4860                                               PrevDecl,
4861                                        MSInfo->getTemplateSpecializationKind(),
4862                                             MSInfo->getPointOfInstantiation(),
4863                                               SuppressNew))
4864      return true;
4865    if (SuppressNew)
4866      return TagD;
4867  }
4868
4869  CXXRecordDecl *RecordDef
4870    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4871  if (!RecordDef) {
4872    // C++ [temp.explicit]p3:
4873    //   A definition of a member class of a class template shall be in scope
4874    //   at the point of an explicit instantiation of the member class.
4875    CXXRecordDecl *Def
4876      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4877    if (!Def) {
4878      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4879        << 0 << Record->getDeclName() << Record->getDeclContext();
4880      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4881        << Pattern;
4882      return true;
4883    } else {
4884      if (InstantiateClass(NameLoc, Record, Def,
4885                           getTemplateInstantiationArgs(Record),
4886                           TSK))
4887        return true;
4888
4889      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4890      if (!RecordDef)
4891        return true;
4892    }
4893  }
4894
4895  // Instantiate all of the members of the class.
4896  InstantiateClassMembers(NameLoc, RecordDef,
4897                          getTemplateInstantiationArgs(Record), TSK);
4898
4899  if (TSK == TSK_ExplicitInstantiationDefinition)
4900    MarkVTableUsed(NameLoc, RecordDef, true);
4901
4902  // FIXME: We don't have any representation for explicit instantiations of
4903  // member classes. Such a representation is not needed for compilation, but it
4904  // should be available for clients that want to see all of the declarations in
4905  // the source code.
4906  return TagD;
4907}
4908
4909Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4910                                                  SourceLocation ExternLoc,
4911                                                  SourceLocation TemplateLoc,
4912                                                  Declarator &D) {
4913  // Explicit instantiations always require a name.
4914  DeclarationName Name = GetNameForDeclarator(D);
4915  if (!Name) {
4916    if (!D.isInvalidType())
4917      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4918           diag::err_explicit_instantiation_requires_name)
4919        << D.getDeclSpec().getSourceRange()
4920        << D.getSourceRange();
4921
4922    return true;
4923  }
4924
4925  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4926  // we find one that is.
4927  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4928         (S->getFlags() & Scope::TemplateParamScope) != 0)
4929    S = S->getParent();
4930
4931  // Determine the type of the declaration.
4932  QualType R = GetTypeForDeclarator(D, S, 0);
4933  if (R.isNull())
4934    return true;
4935
4936  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4937    // Cannot explicitly instantiate a typedef.
4938    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4939      << Name;
4940    return true;
4941  }
4942
4943  // C++0x [temp.explicit]p1:
4944  //   [...] An explicit instantiation of a function template shall not use the
4945  //   inline or constexpr specifiers.
4946  // Presumably, this also applies to member functions of class templates as
4947  // well.
4948  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4949    Diag(D.getDeclSpec().getInlineSpecLoc(),
4950         diag::err_explicit_instantiation_inline)
4951      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4952
4953  // FIXME: check for constexpr specifier.
4954
4955  // C++0x [temp.explicit]p2:
4956  //   There are two forms of explicit instantiation: an explicit instantiation
4957  //   definition and an explicit instantiation declaration. An explicit
4958  //   instantiation declaration begins with the extern keyword. [...]
4959  TemplateSpecializationKind TSK
4960    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4961                           : TSK_ExplicitInstantiationDeclaration;
4962
4963  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4964  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4965
4966  if (!R->isFunctionType()) {
4967    // C++ [temp.explicit]p1:
4968    //   A [...] static data member of a class template can be explicitly
4969    //   instantiated from the member definition associated with its class
4970    //   template.
4971    if (Previous.isAmbiguous())
4972      return true;
4973
4974    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4975    if (!Prev || !Prev->isStaticDataMember()) {
4976      // We expect to see a data data member here.
4977      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4978        << Name;
4979      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4980           P != PEnd; ++P)
4981        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4982      return true;
4983    }
4984
4985    if (!Prev->getInstantiatedFromStaticDataMember()) {
4986      // FIXME: Check for explicit specialization?
4987      Diag(D.getIdentifierLoc(),
4988           diag::err_explicit_instantiation_data_member_not_instantiated)
4989        << Prev;
4990      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4991      // FIXME: Can we provide a note showing where this was declared?
4992      return true;
4993    }
4994
4995    // C++0x [temp.explicit]p2:
4996    //   If the explicit instantiation is for a member function, a member class
4997    //   or a static data member of a class template specialization, the name of
4998    //   the class template specialization in the qualified-id for the member
4999    //   name shall be a simple-template-id.
5000    //
5001    // C++98 has the same restriction, just worded differently.
5002    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5003      Diag(D.getIdentifierLoc(),
5004           diag::err_explicit_instantiation_without_qualified_id)
5005        << Prev << D.getCXXScopeSpec().getRange();
5006
5007    // Check the scope of this explicit instantiation.
5008    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5009
5010    // Verify that it is okay to explicitly instantiate here.
5011    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5012    assert(MSInfo && "Missing static data member specialization info?");
5013    bool SuppressNew = false;
5014    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5015                                        MSInfo->getTemplateSpecializationKind(),
5016                                              MSInfo->getPointOfInstantiation(),
5017                                               SuppressNew))
5018      return true;
5019    if (SuppressNew)
5020      return DeclPtrTy();
5021
5022    // Instantiate static data member.
5023    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5024    if (TSK == TSK_ExplicitInstantiationDefinition)
5025      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
5026                                            /*DefinitionRequired=*/true);
5027
5028    // FIXME: Create an ExplicitInstantiation node?
5029    return DeclPtrTy();
5030  }
5031
5032  // If the declarator is a template-id, translate the parser's template
5033  // argument list into our AST format.
5034  bool HasExplicitTemplateArgs = false;
5035  TemplateArgumentListInfo TemplateArgs;
5036  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5037    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5038    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5039    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5040    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5041                                       TemplateId->getTemplateArgs(),
5042                                       TemplateId->NumArgs);
5043    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5044    HasExplicitTemplateArgs = true;
5045    TemplateArgsPtr.release();
5046  }
5047
5048  // C++ [temp.explicit]p1:
5049  //   A [...] function [...] can be explicitly instantiated from its template.
5050  //   A member function [...] of a class template can be explicitly
5051  //  instantiated from the member definition associated with its class
5052  //  template.
5053  UnresolvedSet<8> Matches;
5054  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5055       P != PEnd; ++P) {
5056    NamedDecl *Prev = *P;
5057    if (!HasExplicitTemplateArgs) {
5058      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5059        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5060          Matches.clear();
5061
5062          Matches.addDecl(Method, P.getAccess());
5063          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5064            break;
5065        }
5066      }
5067    }
5068
5069    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5070    if (!FunTmpl)
5071      continue;
5072
5073    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5074    FunctionDecl *Specialization = 0;
5075    if (TemplateDeductionResult TDK
5076          = DeduceTemplateArguments(FunTmpl,
5077                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5078                                    R, Specialization, Info)) {
5079      // FIXME: Keep track of almost-matches?
5080      (void)TDK;
5081      continue;
5082    }
5083
5084    Matches.addDecl(Specialization, P.getAccess());
5085  }
5086
5087  // Find the most specialized function template specialization.
5088  UnresolvedSetIterator Result
5089    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5090                         D.getIdentifierLoc(),
5091                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5092                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5093                         PDiag(diag::note_explicit_instantiation_candidate));
5094
5095  if (Result == Matches.end())
5096    return true;
5097
5098  // Ignore access control bits, we don't need them for redeclaration checking.
5099  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5100
5101  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5102    Diag(D.getIdentifierLoc(),
5103         diag::err_explicit_instantiation_member_function_not_instantiated)
5104      << Specialization
5105      << (Specialization->getTemplateSpecializationKind() ==
5106          TSK_ExplicitSpecialization);
5107    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5108    return true;
5109  }
5110
5111  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5112  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5113    PrevDecl = Specialization;
5114
5115  if (PrevDecl) {
5116    bool SuppressNew = false;
5117    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5118                                               PrevDecl,
5119                                     PrevDecl->getTemplateSpecializationKind(),
5120                                          PrevDecl->getPointOfInstantiation(),
5121                                               SuppressNew))
5122      return true;
5123
5124    // FIXME: We may still want to build some representation of this
5125    // explicit specialization.
5126    if (SuppressNew)
5127      return DeclPtrTy();
5128  }
5129
5130  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5131
5132  if (TSK == TSK_ExplicitInstantiationDefinition)
5133    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
5134                                  false, /*DefinitionRequired=*/true);
5135
5136  // C++0x [temp.explicit]p2:
5137  //   If the explicit instantiation is for a member function, a member class
5138  //   or a static data member of a class template specialization, the name of
5139  //   the class template specialization in the qualified-id for the member
5140  //   name shall be a simple-template-id.
5141  //
5142  // C++98 has the same restriction, just worded differently.
5143  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5144  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5145      D.getCXXScopeSpec().isSet() &&
5146      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5147    Diag(D.getIdentifierLoc(),
5148         diag::err_explicit_instantiation_without_qualified_id)
5149    << Specialization << D.getCXXScopeSpec().getRange();
5150
5151  CheckExplicitInstantiationScope(*this,
5152                   FunTmpl? (NamedDecl *)FunTmpl
5153                          : Specialization->getInstantiatedFromMemberFunction(),
5154                                  D.getIdentifierLoc(),
5155                                  D.getCXXScopeSpec().isSet());
5156
5157  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5158  return DeclPtrTy();
5159}
5160
5161Sema::TypeResult
5162Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5163                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5164                        SourceLocation TagLoc, SourceLocation NameLoc) {
5165  // This has to hold, because SS is expected to be defined.
5166  assert(Name && "Expected a name in a dependent tag");
5167
5168  NestedNameSpecifier *NNS
5169    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5170  if (!NNS)
5171    return true;
5172
5173  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5174
5175  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5176    Diag(NameLoc, diag::err_dependent_tag_decl)
5177      << (TUK == TUK_Definition) << Kind << SS.getRange();
5178    return true;
5179  }
5180
5181  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5182  return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr();
5183}
5184
5185static void FillTypeLoc(DependentNameTypeLoc TL,
5186                        SourceLocation TypenameLoc,
5187                        SourceRange QualifierRange,
5188                        SourceLocation NameLoc) {
5189  TL.setKeywordLoc(TypenameLoc);
5190  TL.setQualifierRange(QualifierRange);
5191  TL.setNameLoc(NameLoc);
5192}
5193
5194static void FillTypeLoc(ElaboratedTypeLoc TL,
5195                        SourceLocation TypenameLoc,
5196                        SourceRange QualifierRange) {
5197  // FIXME: inner locations.
5198  TL.setKeywordLoc(TypenameLoc);
5199  TL.setQualifierRange(QualifierRange);
5200}
5201
5202Sema::TypeResult
5203Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5204                        const IdentifierInfo &II, SourceLocation IdLoc) {
5205  NestedNameSpecifier *NNS
5206    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5207  if (!NNS)
5208    return true;
5209
5210  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5211                                 TypenameLoc, SS.getRange(), IdLoc);
5212  if (T.isNull())
5213    return true;
5214
5215  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5216  if (isa<DependentNameType>(T)) {
5217    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5218    // FIXME: fill inner type loc
5219    FillTypeLoc(TL, TypenameLoc, SS.getRange(), IdLoc);
5220  } else {
5221    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5222    // FIXME: fill inner type loc
5223    FillTypeLoc(TL, TypenameLoc, SS.getRange());
5224  }
5225
5226  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5227}
5228
5229Sema::TypeResult
5230Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5231                        SourceLocation TemplateLoc, TypeTy *Ty) {
5232  QualType T = GetTypeFromParser(Ty);
5233  NestedNameSpecifier *NNS
5234    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5235  const TemplateSpecializationType *TemplateId
5236    = T->getAs<TemplateSpecializationType>();
5237  assert(TemplateId && "Expected a template specialization type");
5238
5239  if (computeDeclContext(SS, false)) {
5240    // If we can compute a declaration context, then the "typename"
5241    // keyword was superfluous. Just build an ElaboratedType to keep
5242    // track of the nested-name-specifier.
5243    T = Context.getElaboratedType(ETK_Typename, NNS, T);
5244    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5245    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5246    // FIXME: fill inner type loc
5247    FillTypeLoc(TL, TypenameLoc, SS.getRange());
5248    return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5249  }
5250
5251  T = Context.getDependentNameType(ETK_Typename, NNS, TemplateId);
5252  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5253  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5254  // FIXME: fill inner type loc
5255  FillTypeLoc(TL, TypenameLoc, SS.getRange(), TemplateLoc);
5256  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5257}
5258
5259/// \brief Build the type that describes a C++ typename specifier,
5260/// e.g., "typename T::type".
5261QualType
5262Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5263                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5264                        SourceLocation KeywordLoc, SourceRange NNSRange,
5265                        SourceLocation IILoc) {
5266  CXXScopeSpec SS;
5267  SS.setScopeRep(NNS);
5268  SS.setRange(NNSRange);
5269
5270  DeclContext *Ctx = computeDeclContext(SS);
5271  if (!Ctx) {
5272    // If the nested-name-specifier is dependent and couldn't be
5273    // resolved to a type, build a typename type.
5274    assert(NNS->isDependent());
5275    return Context.getDependentNameType(Keyword, NNS, &II);
5276  }
5277
5278  // If the nested-name-specifier refers to the current instantiation,
5279  // the "typename" keyword itself is superfluous. In C++03, the
5280  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5281  // allows such extraneous "typename" keywords, and we retroactively
5282  // apply this DR to C++03 code.  In any case we continue.
5283
5284  if (RequireCompleteDeclContext(SS, Ctx))
5285    return QualType();
5286
5287  DeclarationName Name(&II);
5288  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5289  LookupQualifiedName(Result, Ctx);
5290  unsigned DiagID = 0;
5291  Decl *Referenced = 0;
5292  switch (Result.getResultKind()) {
5293  case LookupResult::NotFound:
5294    DiagID = diag::err_typename_nested_not_found;
5295    break;
5296
5297  case LookupResult::NotFoundInCurrentInstantiation:
5298    // Okay, it's a member of an unknown instantiation.
5299    return Context.getDependentNameType(Keyword, NNS, &II);
5300
5301  case LookupResult::Found:
5302    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5303      // We found a type. Build an ElaboratedType, since the
5304      // typename-specifier was just sugar.
5305      return Context.getElaboratedType(ETK_Typename, NNS,
5306                                       Context.getTypeDeclType(Type));
5307    }
5308
5309    DiagID = diag::err_typename_nested_not_type;
5310    Referenced = Result.getFoundDecl();
5311    break;
5312
5313  case LookupResult::FoundUnresolvedValue:
5314    llvm_unreachable("unresolved using decl in non-dependent context");
5315    return QualType();
5316
5317  case LookupResult::FoundOverloaded:
5318    DiagID = diag::err_typename_nested_not_type;
5319    Referenced = *Result.begin();
5320    break;
5321
5322  case LookupResult::Ambiguous:
5323    return QualType();
5324  }
5325
5326  // If we get here, it's because name lookup did not find a
5327  // type. Emit an appropriate diagnostic and return an error.
5328  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5329                        IILoc);
5330  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5331  if (Referenced)
5332    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5333      << Name;
5334  return QualType();
5335}
5336
5337namespace {
5338  // See Sema::RebuildTypeInCurrentInstantiation
5339  class CurrentInstantiationRebuilder
5340    : public TreeTransform<CurrentInstantiationRebuilder> {
5341    SourceLocation Loc;
5342    DeclarationName Entity;
5343
5344  public:
5345    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5346
5347    CurrentInstantiationRebuilder(Sema &SemaRef,
5348                                  SourceLocation Loc,
5349                                  DeclarationName Entity)
5350    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5351      Loc(Loc), Entity(Entity) { }
5352
5353    /// \brief Determine whether the given type \p T has already been
5354    /// transformed.
5355    ///
5356    /// For the purposes of type reconstruction, a type has already been
5357    /// transformed if it is NULL or if it is not dependent.
5358    bool AlreadyTransformed(QualType T) {
5359      return T.isNull() || !T->isDependentType();
5360    }
5361
5362    /// \brief Returns the location of the entity whose type is being
5363    /// rebuilt.
5364    SourceLocation getBaseLocation() { return Loc; }
5365
5366    /// \brief Returns the name of the entity whose type is being rebuilt.
5367    DeclarationName getBaseEntity() { return Entity; }
5368
5369    /// \brief Sets the "base" location and entity when that
5370    /// information is known based on another transformation.
5371    void setBase(SourceLocation Loc, DeclarationName Entity) {
5372      this->Loc = Loc;
5373      this->Entity = Entity;
5374    }
5375
5376    /// \brief Transforms an expression by returning the expression itself
5377    /// (an identity function).
5378    ///
5379    /// FIXME: This is completely unsafe; we will need to actually clone the
5380    /// expressions.
5381    Sema::OwningExprResult TransformExpr(Expr *E) {
5382      return getSema().Owned(E->Retain());
5383    }
5384
5385    /// \brief Transforms a typename type by determining whether the type now
5386    /// refers to a member of the current instantiation, and then
5387    /// type-checking and building an ElaboratedType (when possible).
5388    QualType TransformDependentNameType(TypeLocBuilder &TLB,
5389                                        DependentNameTypeLoc TL,
5390                                        QualType ObjectType);
5391  };
5392}
5393
5394QualType
5395CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB,
5396                                                     DependentNameTypeLoc TL,
5397                                                     QualType ObjectType) {
5398  DependentNameType *T = TL.getTypePtr();
5399
5400  NestedNameSpecifier *NNS
5401    = TransformNestedNameSpecifier(T->getQualifier(),
5402                                   TL.getQualifierRange(),
5403                                   ObjectType);
5404  if (!NNS)
5405    return QualType();
5406
5407  // If the nested-name-specifier did not change, and we cannot compute the
5408  // context corresponding to the nested-name-specifier, then this
5409  // typename type will not change; exit early.
5410  CXXScopeSpec SS;
5411  SS.setRange(TL.getQualifierRange());
5412  SS.setScopeRep(NNS);
5413
5414  QualType Result;
5415  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
5416    Result = QualType(T, 0);
5417
5418  // Rebuild the typename type, which will probably turn into a
5419  // ElaboratedType.
5420  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
5421    QualType NewTemplateId
5422      = TransformType(QualType(TemplateId, 0));
5423    if (NewTemplateId.isNull())
5424      return QualType();
5425
5426    if (NNS == T->getQualifier() &&
5427        NewTemplateId == QualType(TemplateId, 0))
5428      Result = QualType(T, 0);
5429    else
5430      Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5431                                                     NNS, NewTemplateId);
5432  } else
5433    Result = getDerived().RebuildDependentNameType(T->getKeyword(), NNS,
5434                                                   T->getIdentifier(),
5435                                                   TL.getKeywordLoc(),
5436                                                   TL.getQualifierRange(),
5437                                                   TL.getNameLoc());
5438
5439  if (Result.isNull())
5440    return QualType();
5441
5442  if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
5443    QualType NamedT = ElabT->getNamedType();
5444    if (isa<TemplateSpecializationType>(NamedT)) {
5445      TemplateSpecializationTypeLoc NamedTLoc
5446        = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
5447      // FIXME: fill locations
5448      NamedTLoc.initializeLocal(TL.getNameLoc());
5449    } else {
5450      TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
5451    }
5452    ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
5453    NewTL.setKeywordLoc(TL.getKeywordLoc());
5454    NewTL.setQualifierRange(TL.getQualifierRange());
5455  }
5456  else {
5457    DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
5458    NewTL.setKeywordLoc(TL.getKeywordLoc());
5459    NewTL.setQualifierRange(TL.getQualifierRange());
5460    NewTL.setNameLoc(TL.getNameLoc());
5461  }
5462  return Result;
5463}
5464
5465/// \brief Rebuilds a type within the context of the current instantiation.
5466///
5467/// The type \p T is part of the type of an out-of-line member definition of
5468/// a class template (or class template partial specialization) that was parsed
5469/// and constructed before we entered the scope of the class template (or
5470/// partial specialization thereof). This routine will rebuild that type now
5471/// that we have entered the declarator's scope, which may produce different
5472/// canonical types, e.g.,
5473///
5474/// \code
5475/// template<typename T>
5476/// struct X {
5477///   typedef T* pointer;
5478///   pointer data();
5479/// };
5480///
5481/// template<typename T>
5482/// typename X<T>::pointer X<T>::data() { ... }
5483/// \endcode
5484///
5485/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5486/// since we do not know that we can look into X<T> when we parsed the type.
5487/// This function will rebuild the type, performing the lookup of "pointer"
5488/// in X<T> and returning an ElaboratedType whose canonical type is the same
5489/// as the canonical type of T*, allowing the return types of the out-of-line
5490/// definition and the declaration to match.
5491TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5492                                                        SourceLocation Loc,
5493                                                        DeclarationName Name) {
5494  if (!T || !T->getType()->isDependentType())
5495    return T;
5496
5497  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5498  return Rebuilder.TransformType(T);
5499}
5500
5501bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5502  if (SS.isInvalid()) return true;
5503
5504  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5505  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5506                                          DeclarationName());
5507  NestedNameSpecifier *Rebuilt =
5508    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5509  if (!Rebuilt) return true;
5510
5511  SS.setScopeRep(Rebuilt);
5512  return false;
5513}
5514
5515/// \brief Produces a formatted string that describes the binding of
5516/// template parameters to template arguments.
5517std::string
5518Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5519                                      const TemplateArgumentList &Args) {
5520  // FIXME: For variadic templates, we'll need to get the structured list.
5521  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5522                                         Args.flat_size());
5523}
5524
5525std::string
5526Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5527                                      const TemplateArgument *Args,
5528                                      unsigned NumArgs) {
5529  std::string Result;
5530
5531  if (!Params || Params->size() == 0 || NumArgs == 0)
5532    return Result;
5533
5534  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5535    if (I >= NumArgs)
5536      break;
5537
5538    if (I == 0)
5539      Result += "[with ";
5540    else
5541      Result += ", ";
5542
5543    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5544      Result += Id->getName();
5545    } else {
5546      Result += '$';
5547      Result += llvm::utostr(I);
5548    }
5549
5550    Result += " = ";
5551
5552    switch (Args[I].getKind()) {
5553      case TemplateArgument::Null:
5554        Result += "<no value>";
5555        break;
5556
5557      case TemplateArgument::Type: {
5558        std::string TypeStr;
5559        Args[I].getAsType().getAsStringInternal(TypeStr,
5560                                                Context.PrintingPolicy);
5561        Result += TypeStr;
5562        break;
5563      }
5564
5565      case TemplateArgument::Declaration: {
5566        bool Unnamed = true;
5567        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5568          if (ND->getDeclName()) {
5569            Unnamed = false;
5570            Result += ND->getNameAsString();
5571          }
5572        }
5573
5574        if (Unnamed) {
5575          Result += "<anonymous>";
5576        }
5577        break;
5578      }
5579
5580      case TemplateArgument::Template: {
5581        std::string Str;
5582        llvm::raw_string_ostream OS(Str);
5583        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5584        Result += OS.str();
5585        break;
5586      }
5587
5588      case TemplateArgument::Integral: {
5589        Result += Args[I].getAsIntegral()->toString(10);
5590        break;
5591      }
5592
5593      case TemplateArgument::Expression: {
5594        // FIXME: This is non-optimal, since we're regurgitating the
5595        // expression we were given.
5596        std::string Str;
5597        {
5598          llvm::raw_string_ostream OS(Str);
5599          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5600                                           Context.PrintingPolicy);
5601        }
5602        Result += Str;
5603        break;
5604      }
5605
5606      case TemplateArgument::Pack:
5607        // FIXME: Format template argument packs
5608        Result += "<template argument pack>";
5609        break;
5610    }
5611  }
5612
5613  Result += ']';
5614  return Result;
5615}
5616