SemaTemplate.cpp revision 895162da2d52f4243f61081d7436de66af4503fc
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 31 if (!D) 32 return 0; 33 34 if (isa<TemplateDecl>(D)) 35 return D; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 // The set of class templates we've already seen. 67 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 68 LookupResult::Filter filter = R.makeFilter(); 69 while (filter.hasNext()) { 70 NamedDecl *Orig = filter.next(); 71 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 72 if (!Repl) 73 filter.erase(); 74 else if (Repl != Orig) { 75 76 // C++ [temp.local]p3: 77 // A lookup that finds an injected-class-name (10.2) can result in an 78 // ambiguity in certain cases (for example, if it is found in more than 79 // one base class). If all of the injected-class-names that are found 80 // refer to specializations of the same class template, and if the name 81 // is followed by a template-argument-list, the reference refers to the 82 // class template itself and not a specialization thereof, and is not 83 // ambiguous. 84 // 85 // FIXME: Will we eventually have to do the same for alias templates? 86 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 87 if (!ClassTemplates.insert(ClassTmpl)) { 88 filter.erase(); 89 continue; 90 } 91 92 filter.replace(Repl); 93 } 94 } 95 filter.done(); 96} 97 98TemplateNameKind Sema::isTemplateName(Scope *S, 99 CXXScopeSpec &SS, 100 UnqualifiedId &Name, 101 TypeTy *ObjectTypePtr, 102 bool EnteringContext, 103 TemplateTy &TemplateResult) { 104 assert(getLangOptions().CPlusPlus && "No template names in C!"); 105 106 DeclarationName TName; 107 108 switch (Name.getKind()) { 109 case UnqualifiedId::IK_Identifier: 110 TName = DeclarationName(Name.Identifier); 111 break; 112 113 case UnqualifiedId::IK_OperatorFunctionId: 114 TName = Context.DeclarationNames.getCXXOperatorName( 115 Name.OperatorFunctionId.Operator); 116 break; 117 118 case UnqualifiedId::IK_LiteralOperatorId: 119 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 120 break; 121 122 default: 123 return TNK_Non_template; 124 } 125 126 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 127 128 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 129 LookupOrdinaryName); 130 R.suppressDiagnostics(); 131 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 132 if (R.empty() || R.isAmbiguous()) 133 return TNK_Non_template; 134 135 TemplateName Template; 136 TemplateNameKind TemplateKind; 137 138 unsigned ResultCount = R.end() - R.begin(); 139 if (ResultCount > 1) { 140 // We assume that we'll preserve the qualifier from a function 141 // template name in other ways. 142 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 143 TemplateKind = TNK_Function_template; 144 } else { 145 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 146 147 if (SS.isSet() && !SS.isInvalid()) { 148 NestedNameSpecifier *Qualifier 149 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 150 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 151 } else { 152 Template = TemplateName(TD); 153 } 154 155 if (isa<FunctionTemplateDecl>(TD)) 156 TemplateKind = TNK_Function_template; 157 else { 158 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 159 TemplateKind = TNK_Type_template; 160 } 161 } 162 163 TemplateResult = TemplateTy::make(Template); 164 return TemplateKind; 165} 166 167bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 168 SourceLocation IILoc, 169 Scope *S, 170 const CXXScopeSpec *SS, 171 TemplateTy &SuggestedTemplate, 172 TemplateNameKind &SuggestedKind) { 173 // We can't recover unless there's a dependent scope specifier preceding the 174 // template name. 175 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 176 computeDeclContext(*SS)) 177 return false; 178 179 // The code is missing a 'template' keyword prior to the dependent template 180 // name. 181 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 182 Diag(IILoc, diag::err_template_kw_missing) 183 << Qualifier << II.getName() 184 << FixItHint::CreateInsertion(IILoc, "template "); 185 SuggestedTemplate 186 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 187 SuggestedKind = TNK_Dependent_template_name; 188 return true; 189} 190 191void Sema::LookupTemplateName(LookupResult &Found, 192 Scope *S, CXXScopeSpec &SS, 193 QualType ObjectType, 194 bool EnteringContext) { 195 // Determine where to perform name lookup 196 DeclContext *LookupCtx = 0; 197 bool isDependent = false; 198 if (!ObjectType.isNull()) { 199 // This nested-name-specifier occurs in a member access expression, e.g., 200 // x->B::f, and we are looking into the type of the object. 201 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 202 LookupCtx = computeDeclContext(ObjectType); 203 isDependent = ObjectType->isDependentType(); 204 assert((isDependent || !ObjectType->isIncompleteType()) && 205 "Caller should have completed object type"); 206 } else if (SS.isSet()) { 207 // This nested-name-specifier occurs after another nested-name-specifier, 208 // so long into the context associated with the prior nested-name-specifier. 209 LookupCtx = computeDeclContext(SS, EnteringContext); 210 isDependent = isDependentScopeSpecifier(SS); 211 212 // The declaration context must be complete. 213 if (LookupCtx && RequireCompleteDeclContext(SS)) 214 return; 215 } 216 217 bool ObjectTypeSearchedInScope = false; 218 if (LookupCtx) { 219 // Perform "qualified" name lookup into the declaration context we 220 // computed, which is either the type of the base of a member access 221 // expression or the declaration context associated with a prior 222 // nested-name-specifier. 223 LookupQualifiedName(Found, LookupCtx); 224 225 if (!ObjectType.isNull() && Found.empty()) { 226 // C++ [basic.lookup.classref]p1: 227 // In a class member access expression (5.2.5), if the . or -> token is 228 // immediately followed by an identifier followed by a <, the 229 // identifier must be looked up to determine whether the < is the 230 // beginning of a template argument list (14.2) or a less-than operator. 231 // The identifier is first looked up in the class of the object 232 // expression. If the identifier is not found, it is then looked up in 233 // the context of the entire postfix-expression and shall name a class 234 // or function template. 235 // 236 // FIXME: When we're instantiating a template, do we actually have to 237 // look in the scope of the template? Seems fishy... 238 if (S) LookupName(Found, S); 239 ObjectTypeSearchedInScope = true; 240 } 241 } else if (isDependent) { 242 // We cannot look into a dependent object type or nested nme 243 // specifier. 244 return; 245 } else { 246 // Perform unqualified name lookup in the current scope. 247 LookupName(Found, S); 248 } 249 250 if (Found.empty() && !isDependent) { 251 // If we did not find any names, attempt to correct any typos. 252 DeclarationName Name = Found.getLookupName(); 253 if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx, 254 false, CTC_CXXCasts)) { 255 FilterAcceptableTemplateNames(Context, Found); 256 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 257 if (LookupCtx) 258 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 259 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 260 << FixItHint::CreateReplacement(Found.getNameLoc(), 261 Found.getLookupName().getAsString()); 262 else 263 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 264 << Name << Found.getLookupName() 265 << FixItHint::CreateReplacement(Found.getNameLoc(), 266 Found.getLookupName().getAsString()); 267 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 268 Diag(Template->getLocation(), diag::note_previous_decl) 269 << Template->getDeclName(); 270 } else 271 Found.clear(); 272 } else { 273 Found.clear(); 274 } 275 } 276 277 FilterAcceptableTemplateNames(Context, Found); 278 if (Found.empty()) 279 return; 280 281 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 282 // C++ [basic.lookup.classref]p1: 283 // [...] If the lookup in the class of the object expression finds a 284 // template, the name is also looked up in the context of the entire 285 // postfix-expression and [...] 286 // 287 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 288 LookupOrdinaryName); 289 LookupName(FoundOuter, S); 290 FilterAcceptableTemplateNames(Context, FoundOuter); 291 292 if (FoundOuter.empty()) { 293 // - if the name is not found, the name found in the class of the 294 // object expression is used, otherwise 295 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 296 // - if the name is found in the context of the entire 297 // postfix-expression and does not name a class template, the name 298 // found in the class of the object expression is used, otherwise 299 } else { 300 // - if the name found is a class template, it must refer to the same 301 // entity as the one found in the class of the object expression, 302 // otherwise the program is ill-formed. 303 if (!Found.isSingleResult() || 304 Found.getFoundDecl()->getCanonicalDecl() 305 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 306 Diag(Found.getNameLoc(), 307 diag::err_nested_name_member_ref_lookup_ambiguous) 308 << Found.getLookupName(); 309 Diag(Found.getRepresentativeDecl()->getLocation(), 310 diag::note_ambig_member_ref_object_type) 311 << ObjectType; 312 Diag(FoundOuter.getFoundDecl()->getLocation(), 313 diag::note_ambig_member_ref_scope); 314 315 // Recover by taking the template that we found in the object 316 // expression's type. 317 } 318 } 319 } 320} 321 322/// ActOnDependentIdExpression - Handle a dependent id-expression that 323/// was just parsed. This is only possible with an explicit scope 324/// specifier naming a dependent type. 325Sema::OwningExprResult 326Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 327 DeclarationName Name, 328 SourceLocation NameLoc, 329 bool isAddressOfOperand, 330 const TemplateArgumentListInfo *TemplateArgs) { 331 NestedNameSpecifier *Qualifier 332 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 333 334 if (!isAddressOfOperand && 335 isa<CXXMethodDecl>(CurContext) && 336 cast<CXXMethodDecl>(CurContext)->isInstance()) { 337 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 338 339 // Since the 'this' expression is synthesized, we don't need to 340 // perform the double-lookup check. 341 NamedDecl *FirstQualifierInScope = 0; 342 343 return Owned(CXXDependentScopeMemberExpr::Create(Context, 344 /*This*/ 0, ThisType, 345 /*IsArrow*/ true, 346 /*Op*/ SourceLocation(), 347 Qualifier, SS.getRange(), 348 FirstQualifierInScope, 349 Name, NameLoc, 350 TemplateArgs)); 351 } 352 353 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 354} 355 356Sema::OwningExprResult 357Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 358 DeclarationName Name, 359 SourceLocation NameLoc, 360 const TemplateArgumentListInfo *TemplateArgs) { 361 return Owned(DependentScopeDeclRefExpr::Create(Context, 362 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 363 SS.getRange(), 364 Name, NameLoc, 365 TemplateArgs)); 366} 367 368/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 369/// that the template parameter 'PrevDecl' is being shadowed by a new 370/// declaration at location Loc. Returns true to indicate that this is 371/// an error, and false otherwise. 372bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 373 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 374 375 // Microsoft Visual C++ permits template parameters to be shadowed. 376 if (getLangOptions().Microsoft) 377 return false; 378 379 // C++ [temp.local]p4: 380 // A template-parameter shall not be redeclared within its 381 // scope (including nested scopes). 382 Diag(Loc, diag::err_template_param_shadow) 383 << cast<NamedDecl>(PrevDecl)->getDeclName(); 384 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 385 return true; 386} 387 388/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 389/// the parameter D to reference the templated declaration and return a pointer 390/// to the template declaration. Otherwise, do nothing to D and return null. 391TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 392 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 393 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 394 return Temp; 395 } 396 return 0; 397} 398 399static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 400 const ParsedTemplateArgument &Arg) { 401 402 switch (Arg.getKind()) { 403 case ParsedTemplateArgument::Type: { 404 TypeSourceInfo *DI; 405 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 406 if (!DI) 407 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 408 return TemplateArgumentLoc(TemplateArgument(T), DI); 409 } 410 411 case ParsedTemplateArgument::NonType: { 412 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 413 return TemplateArgumentLoc(TemplateArgument(E), E); 414 } 415 416 case ParsedTemplateArgument::Template: { 417 TemplateName Template 418 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 419 return TemplateArgumentLoc(TemplateArgument(Template), 420 Arg.getScopeSpec().getRange(), 421 Arg.getLocation()); 422 } 423 } 424 425 llvm_unreachable("Unhandled parsed template argument"); 426 return TemplateArgumentLoc(); 427} 428 429/// \brief Translates template arguments as provided by the parser 430/// into template arguments used by semantic analysis. 431void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 432 TemplateArgumentListInfo &TemplateArgs) { 433 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 434 TemplateArgs.addArgument(translateTemplateArgument(*this, 435 TemplateArgsIn[I])); 436} 437 438/// ActOnTypeParameter - Called when a C++ template type parameter 439/// (e.g., "typename T") has been parsed. Typename specifies whether 440/// the keyword "typename" was used to declare the type parameter 441/// (otherwise, "class" was used), and KeyLoc is the location of the 442/// "class" or "typename" keyword. ParamName is the name of the 443/// parameter (NULL indicates an unnamed template parameter) and 444/// ParamName is the location of the parameter name (if any). 445/// If the type parameter has a default argument, it will be added 446/// later via ActOnTypeParameterDefault. 447Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 448 SourceLocation EllipsisLoc, 449 SourceLocation KeyLoc, 450 IdentifierInfo *ParamName, 451 SourceLocation ParamNameLoc, 452 unsigned Depth, unsigned Position) { 453 assert(S->isTemplateParamScope() && 454 "Template type parameter not in template parameter scope!"); 455 bool Invalid = false; 456 457 if (ParamName) { 458 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 459 LookupOrdinaryName, 460 ForRedeclaration); 461 if (PrevDecl && PrevDecl->isTemplateParameter()) 462 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 463 PrevDecl); 464 } 465 466 SourceLocation Loc = ParamNameLoc; 467 if (!ParamName) 468 Loc = KeyLoc; 469 470 TemplateTypeParmDecl *Param 471 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 472 Loc, Depth, Position, ParamName, Typename, 473 Ellipsis); 474 if (Invalid) 475 Param->setInvalidDecl(); 476 477 if (ParamName) { 478 // Add the template parameter into the current scope. 479 S->AddDecl(DeclPtrTy::make(Param)); 480 IdResolver.AddDecl(Param); 481 } 482 483 return DeclPtrTy::make(Param); 484} 485 486/// ActOnTypeParameterDefault - Adds a default argument (the type 487/// Default) to the given template type parameter (TypeParam). 488void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 489 SourceLocation EqualLoc, 490 SourceLocation DefaultLoc, 491 TypeTy *DefaultT) { 492 TemplateTypeParmDecl *Parm 493 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 494 495 TypeSourceInfo *DefaultTInfo; 496 GetTypeFromParser(DefaultT, &DefaultTInfo); 497 498 assert(DefaultTInfo && "expected source information for type"); 499 500 // C++0x [temp.param]p9: 501 // A default template-argument may be specified for any kind of 502 // template-parameter that is not a template parameter pack. 503 if (Parm->isParameterPack()) { 504 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 505 return; 506 } 507 508 // C++ [temp.param]p14: 509 // A template-parameter shall not be used in its own default argument. 510 // FIXME: Implement this check! Needs a recursive walk over the types. 511 512 // Check the template argument itself. 513 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 514 Parm->setInvalidDecl(); 515 return; 516 } 517 518 Parm->setDefaultArgument(DefaultTInfo, false); 519} 520 521/// \brief Check that the type of a non-type template parameter is 522/// well-formed. 523/// 524/// \returns the (possibly-promoted) parameter type if valid; 525/// otherwise, produces a diagnostic and returns a NULL type. 526QualType 527Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 528 // C++ [temp.param]p4: 529 // 530 // A non-type template-parameter shall have one of the following 531 // (optionally cv-qualified) types: 532 // 533 // -- integral or enumeration type, 534 if (T->isIntegralType() || T->isEnumeralType() || 535 // -- pointer to object or pointer to function, 536 (T->isPointerType() && 537 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 538 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 539 // -- reference to object or reference to function, 540 T->isReferenceType() || 541 // -- pointer to member. 542 T->isMemberPointerType() || 543 // If T is a dependent type, we can't do the check now, so we 544 // assume that it is well-formed. 545 T->isDependentType()) 546 return T; 547 // C++ [temp.param]p8: 548 // 549 // A non-type template-parameter of type "array of T" or 550 // "function returning T" is adjusted to be of type "pointer to 551 // T" or "pointer to function returning T", respectively. 552 else if (T->isArrayType()) 553 // FIXME: Keep the type prior to promotion? 554 return Context.getArrayDecayedType(T); 555 else if (T->isFunctionType()) 556 // FIXME: Keep the type prior to promotion? 557 return Context.getPointerType(T); 558 559 Diag(Loc, diag::err_template_nontype_parm_bad_type) 560 << T; 561 562 return QualType(); 563} 564 565/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 566/// template parameter (e.g., "int Size" in "template<int Size> 567/// class Array") has been parsed. S is the current scope and D is 568/// the parsed declarator. 569Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 570 unsigned Depth, 571 unsigned Position) { 572 TypeSourceInfo *TInfo = 0; 573 QualType T = GetTypeForDeclarator(D, S, &TInfo); 574 575 assert(S->isTemplateParamScope() && 576 "Non-type template parameter not in template parameter scope!"); 577 bool Invalid = false; 578 579 IdentifierInfo *ParamName = D.getIdentifier(); 580 if (ParamName) { 581 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 582 LookupOrdinaryName, 583 ForRedeclaration); 584 if (PrevDecl && PrevDecl->isTemplateParameter()) 585 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 586 PrevDecl); 587 } 588 589 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 590 if (T.isNull()) { 591 T = Context.IntTy; // Recover with an 'int' type. 592 Invalid = true; 593 } 594 595 NonTypeTemplateParmDecl *Param 596 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 597 D.getIdentifierLoc(), 598 Depth, Position, ParamName, T, TInfo); 599 if (Invalid) 600 Param->setInvalidDecl(); 601 602 if (D.getIdentifier()) { 603 // Add the template parameter into the current scope. 604 S->AddDecl(DeclPtrTy::make(Param)); 605 IdResolver.AddDecl(Param); 606 } 607 return DeclPtrTy::make(Param); 608} 609 610/// \brief Adds a default argument to the given non-type template 611/// parameter. 612void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 613 SourceLocation EqualLoc, 614 ExprArg DefaultE) { 615 NonTypeTemplateParmDecl *TemplateParm 616 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 617 Expr *Default = static_cast<Expr *>(DefaultE.get()); 618 619 // C++ [temp.param]p14: 620 // A template-parameter shall not be used in its own default argument. 621 // FIXME: Implement this check! Needs a recursive walk over the types. 622 623 // Check the well-formedness of the default template argument. 624 TemplateArgument Converted; 625 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 626 Converted)) { 627 TemplateParm->setInvalidDecl(); 628 return; 629 } 630 631 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 632} 633 634 635/// ActOnTemplateTemplateParameter - Called when a C++ template template 636/// parameter (e.g. T in template <template <typename> class T> class array) 637/// has been parsed. S is the current scope. 638Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 639 SourceLocation TmpLoc, 640 TemplateParamsTy *Params, 641 IdentifierInfo *Name, 642 SourceLocation NameLoc, 643 unsigned Depth, 644 unsigned Position) { 645 assert(S->isTemplateParamScope() && 646 "Template template parameter not in template parameter scope!"); 647 648 // Construct the parameter object. 649 TemplateTemplateParmDecl *Param = 650 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 651 TmpLoc, Depth, Position, Name, 652 (TemplateParameterList*)Params); 653 654 // Make sure the parameter is valid. 655 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 656 // do anything yet. However, if the template parameter list or (eventual) 657 // default value is ever invalidated, that will propagate here. 658 bool Invalid = false; 659 if (Invalid) { 660 Param->setInvalidDecl(); 661 } 662 663 // If the tt-param has a name, then link the identifier into the scope 664 // and lookup mechanisms. 665 if (Name) { 666 S->AddDecl(DeclPtrTy::make(Param)); 667 IdResolver.AddDecl(Param); 668 } 669 670 return DeclPtrTy::make(Param); 671} 672 673/// \brief Adds a default argument to the given template template 674/// parameter. 675void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 676 SourceLocation EqualLoc, 677 const ParsedTemplateArgument &Default) { 678 TemplateTemplateParmDecl *TemplateParm 679 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 680 681 // C++ [temp.param]p14: 682 // A template-parameter shall not be used in its own default argument. 683 // FIXME: Implement this check! Needs a recursive walk over the types. 684 685 // Check only that we have a template template argument. We don't want to 686 // try to check well-formedness now, because our template template parameter 687 // might have dependent types in its template parameters, which we wouldn't 688 // be able to match now. 689 // 690 // If none of the template template parameter's template arguments mention 691 // other template parameters, we could actually perform more checking here. 692 // However, it isn't worth doing. 693 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 694 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 695 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 696 << DefaultArg.getSourceRange(); 697 return; 698 } 699 700 TemplateParm->setDefaultArgument(DefaultArg); 701} 702 703/// ActOnTemplateParameterList - Builds a TemplateParameterList that 704/// contains the template parameters in Params/NumParams. 705Sema::TemplateParamsTy * 706Sema::ActOnTemplateParameterList(unsigned Depth, 707 SourceLocation ExportLoc, 708 SourceLocation TemplateLoc, 709 SourceLocation LAngleLoc, 710 DeclPtrTy *Params, unsigned NumParams, 711 SourceLocation RAngleLoc) { 712 if (ExportLoc.isValid()) 713 Diag(ExportLoc, diag::warn_template_export_unsupported); 714 715 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 716 (NamedDecl**)Params, NumParams, 717 RAngleLoc); 718} 719 720static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 721 if (SS.isSet()) 722 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 723 SS.getRange()); 724} 725 726Sema::DeclResult 727Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 728 SourceLocation KWLoc, CXXScopeSpec &SS, 729 IdentifierInfo *Name, SourceLocation NameLoc, 730 AttributeList *Attr, 731 TemplateParameterList *TemplateParams, 732 AccessSpecifier AS) { 733 assert(TemplateParams && TemplateParams->size() > 0 && 734 "No template parameters"); 735 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 736 bool Invalid = false; 737 738 // Check that we can declare a template here. 739 if (CheckTemplateDeclScope(S, TemplateParams)) 740 return true; 741 742 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 743 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 744 745 // There is no such thing as an unnamed class template. 746 if (!Name) { 747 Diag(KWLoc, diag::err_template_unnamed_class); 748 return true; 749 } 750 751 // Find any previous declaration with this name. 752 DeclContext *SemanticContext; 753 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 754 ForRedeclaration); 755 if (SS.isNotEmpty() && !SS.isInvalid()) { 756 if (RequireCompleteDeclContext(SS)) 757 return true; 758 759 SemanticContext = computeDeclContext(SS, true); 760 if (!SemanticContext) { 761 // FIXME: Produce a reasonable diagnostic here 762 return true; 763 } 764 765 LookupQualifiedName(Previous, SemanticContext); 766 } else { 767 SemanticContext = CurContext; 768 LookupName(Previous, S); 769 } 770 771 if (Previous.isAmbiguous()) 772 return true; 773 774 NamedDecl *PrevDecl = 0; 775 if (Previous.begin() != Previous.end()) 776 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 777 778 // If there is a previous declaration with the same name, check 779 // whether this is a valid redeclaration. 780 ClassTemplateDecl *PrevClassTemplate 781 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 782 783 // We may have found the injected-class-name of a class template, 784 // class template partial specialization, or class template specialization. 785 // In these cases, grab the template that is being defined or specialized. 786 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 787 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 788 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 789 PrevClassTemplate 790 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 791 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 792 PrevClassTemplate 793 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 794 ->getSpecializedTemplate(); 795 } 796 } 797 798 if (TUK == TUK_Friend) { 799 // C++ [namespace.memdef]p3: 800 // [...] When looking for a prior declaration of a class or a function 801 // declared as a friend, and when the name of the friend class or 802 // function is neither a qualified name nor a template-id, scopes outside 803 // the innermost enclosing namespace scope are not considered. 804 if (!SS.isSet()) { 805 DeclContext *OutermostContext = CurContext; 806 while (!OutermostContext->isFileContext()) 807 OutermostContext = OutermostContext->getLookupParent(); 808 809 if (PrevDecl && 810 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 811 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 812 SemanticContext = PrevDecl->getDeclContext(); 813 } else { 814 // Declarations in outer scopes don't matter. However, the outermost 815 // context we computed is the semantic context for our new 816 // declaration. 817 PrevDecl = PrevClassTemplate = 0; 818 SemanticContext = OutermostContext; 819 } 820 } 821 822 if (CurContext->isDependentContext()) { 823 // If this is a dependent context, we don't want to link the friend 824 // class template to the template in scope, because that would perform 825 // checking of the template parameter lists that can't be performed 826 // until the outer context is instantiated. 827 PrevDecl = PrevClassTemplate = 0; 828 } 829 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 830 PrevDecl = PrevClassTemplate = 0; 831 832 if (PrevClassTemplate) { 833 // Ensure that the template parameter lists are compatible. 834 if (!TemplateParameterListsAreEqual(TemplateParams, 835 PrevClassTemplate->getTemplateParameters(), 836 /*Complain=*/true, 837 TPL_TemplateMatch)) 838 return true; 839 840 // C++ [temp.class]p4: 841 // In a redeclaration, partial specialization, explicit 842 // specialization or explicit instantiation of a class template, 843 // the class-key shall agree in kind with the original class 844 // template declaration (7.1.5.3). 845 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 846 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 847 Diag(KWLoc, diag::err_use_with_wrong_tag) 848 << Name 849 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 850 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 851 Kind = PrevRecordDecl->getTagKind(); 852 } 853 854 // Check for redefinition of this class template. 855 if (TUK == TUK_Definition) { 856 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 857 Diag(NameLoc, diag::err_redefinition) << Name; 858 Diag(Def->getLocation(), diag::note_previous_definition); 859 // FIXME: Would it make sense to try to "forget" the previous 860 // definition, as part of error recovery? 861 return true; 862 } 863 } 864 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 865 // Maybe we will complain about the shadowed template parameter. 866 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 867 // Just pretend that we didn't see the previous declaration. 868 PrevDecl = 0; 869 } else if (PrevDecl) { 870 // C++ [temp]p5: 871 // A class template shall not have the same name as any other 872 // template, class, function, object, enumeration, enumerator, 873 // namespace, or type in the same scope (3.3), except as specified 874 // in (14.5.4). 875 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 876 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 877 return true; 878 } 879 880 // Check the template parameter list of this declaration, possibly 881 // merging in the template parameter list from the previous class 882 // template declaration. 883 if (CheckTemplateParameterList(TemplateParams, 884 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 885 TPC_ClassTemplate)) 886 Invalid = true; 887 888 if (SS.isSet()) { 889 // If the name of the template was qualified, we must be defining the 890 // template out-of-line. 891 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate && 892 !(TUK == TUK_Friend && CurContext->isDependentContext())) 893 Diag(NameLoc, diag::err_member_def_does_not_match) 894 << Name << SemanticContext << SS.getRange(); 895 } 896 897 CXXRecordDecl *NewClass = 898 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 899 PrevClassTemplate? 900 PrevClassTemplate->getTemplatedDecl() : 0, 901 /*DelayTypeCreation=*/true); 902 SetNestedNameSpecifier(NewClass, SS); 903 904 ClassTemplateDecl *NewTemplate 905 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 906 DeclarationName(Name), TemplateParams, 907 NewClass, PrevClassTemplate); 908 NewClass->setDescribedClassTemplate(NewTemplate); 909 910 // Build the type for the class template declaration now. 911 QualType T = NewTemplate->getInjectedClassNameSpecialization(Context); 912 T = Context.getInjectedClassNameType(NewClass, T); 913 assert(T->isDependentType() && "Class template type is not dependent?"); 914 (void)T; 915 916 // If we are providing an explicit specialization of a member that is a 917 // class template, make a note of that. 918 if (PrevClassTemplate && 919 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 920 PrevClassTemplate->setMemberSpecialization(); 921 922 // Set the access specifier. 923 if (!Invalid && TUK != TUK_Friend) 924 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 925 926 // Set the lexical context of these templates 927 NewClass->setLexicalDeclContext(CurContext); 928 NewTemplate->setLexicalDeclContext(CurContext); 929 930 if (TUK == TUK_Definition) 931 NewClass->startDefinition(); 932 933 if (Attr) 934 ProcessDeclAttributeList(S, NewClass, Attr); 935 936 if (TUK != TUK_Friend) 937 PushOnScopeChains(NewTemplate, S); 938 else { 939 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 940 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 941 NewClass->setAccess(PrevClassTemplate->getAccess()); 942 } 943 944 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 945 PrevClassTemplate != NULL); 946 947 // Friend templates are visible in fairly strange ways. 948 if (!CurContext->isDependentContext()) { 949 DeclContext *DC = SemanticContext->getLookupContext(); 950 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 951 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 952 PushOnScopeChains(NewTemplate, EnclosingScope, 953 /* AddToContext = */ false); 954 } 955 956 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 957 NewClass->getLocation(), 958 NewTemplate, 959 /*FIXME:*/NewClass->getLocation()); 960 Friend->setAccess(AS_public); 961 CurContext->addDecl(Friend); 962 } 963 964 if (Invalid) { 965 NewTemplate->setInvalidDecl(); 966 NewClass->setInvalidDecl(); 967 } 968 return DeclPtrTy::make(NewTemplate); 969} 970 971/// \brief Diagnose the presence of a default template argument on a 972/// template parameter, which is ill-formed in certain contexts. 973/// 974/// \returns true if the default template argument should be dropped. 975static bool DiagnoseDefaultTemplateArgument(Sema &S, 976 Sema::TemplateParamListContext TPC, 977 SourceLocation ParamLoc, 978 SourceRange DefArgRange) { 979 switch (TPC) { 980 case Sema::TPC_ClassTemplate: 981 return false; 982 983 case Sema::TPC_FunctionTemplate: 984 // C++ [temp.param]p9: 985 // A default template-argument shall not be specified in a 986 // function template declaration or a function template 987 // definition [...] 988 // (This sentence is not in C++0x, per DR226). 989 if (!S.getLangOptions().CPlusPlus0x) 990 S.Diag(ParamLoc, 991 diag::err_template_parameter_default_in_function_template) 992 << DefArgRange; 993 return false; 994 995 case Sema::TPC_ClassTemplateMember: 996 // C++0x [temp.param]p9: 997 // A default template-argument shall not be specified in the 998 // template-parameter-lists of the definition of a member of a 999 // class template that appears outside of the member's class. 1000 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1001 << DefArgRange; 1002 return true; 1003 1004 case Sema::TPC_FriendFunctionTemplate: 1005 // C++ [temp.param]p9: 1006 // A default template-argument shall not be specified in a 1007 // friend template declaration. 1008 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1009 << DefArgRange; 1010 return true; 1011 1012 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1013 // for friend function templates if there is only a single 1014 // declaration (and it is a definition). Strange! 1015 } 1016 1017 return false; 1018} 1019 1020/// \brief Checks the validity of a template parameter list, possibly 1021/// considering the template parameter list from a previous 1022/// declaration. 1023/// 1024/// If an "old" template parameter list is provided, it must be 1025/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1026/// template parameter list. 1027/// 1028/// \param NewParams Template parameter list for a new template 1029/// declaration. This template parameter list will be updated with any 1030/// default arguments that are carried through from the previous 1031/// template parameter list. 1032/// 1033/// \param OldParams If provided, template parameter list from a 1034/// previous declaration of the same template. Default template 1035/// arguments will be merged from the old template parameter list to 1036/// the new template parameter list. 1037/// 1038/// \param TPC Describes the context in which we are checking the given 1039/// template parameter list. 1040/// 1041/// \returns true if an error occurred, false otherwise. 1042bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1043 TemplateParameterList *OldParams, 1044 TemplateParamListContext TPC) { 1045 bool Invalid = false; 1046 1047 // C++ [temp.param]p10: 1048 // The set of default template-arguments available for use with a 1049 // template declaration or definition is obtained by merging the 1050 // default arguments from the definition (if in scope) and all 1051 // declarations in scope in the same way default function 1052 // arguments are (8.3.6). 1053 bool SawDefaultArgument = false; 1054 SourceLocation PreviousDefaultArgLoc; 1055 1056 bool SawParameterPack = false; 1057 SourceLocation ParameterPackLoc; 1058 1059 // Dummy initialization to avoid warnings. 1060 TemplateParameterList::iterator OldParam = NewParams->end(); 1061 if (OldParams) 1062 OldParam = OldParams->begin(); 1063 1064 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1065 NewParamEnd = NewParams->end(); 1066 NewParam != NewParamEnd; ++NewParam) { 1067 // Variables used to diagnose redundant default arguments 1068 bool RedundantDefaultArg = false; 1069 SourceLocation OldDefaultLoc; 1070 SourceLocation NewDefaultLoc; 1071 1072 // Variables used to diagnose missing default arguments 1073 bool MissingDefaultArg = false; 1074 1075 // C++0x [temp.param]p11: 1076 // If a template parameter of a class template is a template parameter pack, 1077 // it must be the last template parameter. 1078 if (SawParameterPack) { 1079 Diag(ParameterPackLoc, 1080 diag::err_template_param_pack_must_be_last_template_parameter); 1081 Invalid = true; 1082 } 1083 1084 if (TemplateTypeParmDecl *NewTypeParm 1085 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1086 // Check the presence of a default argument here. 1087 if (NewTypeParm->hasDefaultArgument() && 1088 DiagnoseDefaultTemplateArgument(*this, TPC, 1089 NewTypeParm->getLocation(), 1090 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1091 .getFullSourceRange())) 1092 NewTypeParm->removeDefaultArgument(); 1093 1094 // Merge default arguments for template type parameters. 1095 TemplateTypeParmDecl *OldTypeParm 1096 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1097 1098 if (NewTypeParm->isParameterPack()) { 1099 assert(!NewTypeParm->hasDefaultArgument() && 1100 "Parameter packs can't have a default argument!"); 1101 SawParameterPack = true; 1102 ParameterPackLoc = NewTypeParm->getLocation(); 1103 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1104 NewTypeParm->hasDefaultArgument()) { 1105 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1106 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1107 SawDefaultArgument = true; 1108 RedundantDefaultArg = true; 1109 PreviousDefaultArgLoc = NewDefaultLoc; 1110 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1111 // Merge the default argument from the old declaration to the 1112 // new declaration. 1113 SawDefaultArgument = true; 1114 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1115 true); 1116 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1117 } else if (NewTypeParm->hasDefaultArgument()) { 1118 SawDefaultArgument = true; 1119 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1120 } else if (SawDefaultArgument) 1121 MissingDefaultArg = true; 1122 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1123 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1124 // Check the presence of a default argument here. 1125 if (NewNonTypeParm->hasDefaultArgument() && 1126 DiagnoseDefaultTemplateArgument(*this, TPC, 1127 NewNonTypeParm->getLocation(), 1128 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1129 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1130 NewNonTypeParm->setDefaultArgument(0); 1131 } 1132 1133 // Merge default arguments for non-type template parameters 1134 NonTypeTemplateParmDecl *OldNonTypeParm 1135 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1136 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1137 NewNonTypeParm->hasDefaultArgument()) { 1138 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1139 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1140 SawDefaultArgument = true; 1141 RedundantDefaultArg = true; 1142 PreviousDefaultArgLoc = NewDefaultLoc; 1143 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1144 // Merge the default argument from the old declaration to the 1145 // new declaration. 1146 SawDefaultArgument = true; 1147 // FIXME: We need to create a new kind of "default argument" 1148 // expression that points to a previous template template 1149 // parameter. 1150 NewNonTypeParm->setDefaultArgument( 1151 OldNonTypeParm->getDefaultArgument()); 1152 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1153 } else if (NewNonTypeParm->hasDefaultArgument()) { 1154 SawDefaultArgument = true; 1155 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1156 } else if (SawDefaultArgument) 1157 MissingDefaultArg = true; 1158 } else { 1159 // Check the presence of a default argument here. 1160 TemplateTemplateParmDecl *NewTemplateParm 1161 = cast<TemplateTemplateParmDecl>(*NewParam); 1162 if (NewTemplateParm->hasDefaultArgument() && 1163 DiagnoseDefaultTemplateArgument(*this, TPC, 1164 NewTemplateParm->getLocation(), 1165 NewTemplateParm->getDefaultArgument().getSourceRange())) 1166 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1167 1168 // Merge default arguments for template template parameters 1169 TemplateTemplateParmDecl *OldTemplateParm 1170 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1171 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1172 NewTemplateParm->hasDefaultArgument()) { 1173 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1174 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1175 SawDefaultArgument = true; 1176 RedundantDefaultArg = true; 1177 PreviousDefaultArgLoc = NewDefaultLoc; 1178 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1179 // Merge the default argument from the old declaration to the 1180 // new declaration. 1181 SawDefaultArgument = true; 1182 // FIXME: We need to create a new kind of "default argument" expression 1183 // that points to a previous template template parameter. 1184 NewTemplateParm->setDefaultArgument( 1185 OldTemplateParm->getDefaultArgument()); 1186 PreviousDefaultArgLoc 1187 = OldTemplateParm->getDefaultArgument().getLocation(); 1188 } else if (NewTemplateParm->hasDefaultArgument()) { 1189 SawDefaultArgument = true; 1190 PreviousDefaultArgLoc 1191 = NewTemplateParm->getDefaultArgument().getLocation(); 1192 } else if (SawDefaultArgument) 1193 MissingDefaultArg = true; 1194 } 1195 1196 if (RedundantDefaultArg) { 1197 // C++ [temp.param]p12: 1198 // A template-parameter shall not be given default arguments 1199 // by two different declarations in the same scope. 1200 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1201 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1202 Invalid = true; 1203 } else if (MissingDefaultArg) { 1204 // C++ [temp.param]p11: 1205 // If a template-parameter has a default template-argument, 1206 // all subsequent template-parameters shall have a default 1207 // template-argument supplied. 1208 Diag((*NewParam)->getLocation(), 1209 diag::err_template_param_default_arg_missing); 1210 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1211 Invalid = true; 1212 } 1213 1214 // If we have an old template parameter list that we're merging 1215 // in, move on to the next parameter. 1216 if (OldParams) 1217 ++OldParam; 1218 } 1219 1220 return Invalid; 1221} 1222 1223/// \brief Match the given template parameter lists to the given scope 1224/// specifier, returning the template parameter list that applies to the 1225/// name. 1226/// 1227/// \param DeclStartLoc the start of the declaration that has a scope 1228/// specifier or a template parameter list. 1229/// 1230/// \param SS the scope specifier that will be matched to the given template 1231/// parameter lists. This scope specifier precedes a qualified name that is 1232/// being declared. 1233/// 1234/// \param ParamLists the template parameter lists, from the outermost to the 1235/// innermost template parameter lists. 1236/// 1237/// \param NumParamLists the number of template parameter lists in ParamLists. 1238/// 1239/// \param IsFriend Whether to apply the slightly different rules for 1240/// matching template parameters to scope specifiers in friend 1241/// declarations. 1242/// 1243/// \param IsExplicitSpecialization will be set true if the entity being 1244/// declared is an explicit specialization, false otherwise. 1245/// 1246/// \returns the template parameter list, if any, that corresponds to the 1247/// name that is preceded by the scope specifier @p SS. This template 1248/// parameter list may be have template parameters (if we're declaring a 1249/// template) or may have no template parameters (if we're declaring a 1250/// template specialization), or may be NULL (if we were's declaring isn't 1251/// itself a template). 1252TemplateParameterList * 1253Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1254 const CXXScopeSpec &SS, 1255 TemplateParameterList **ParamLists, 1256 unsigned NumParamLists, 1257 bool IsFriend, 1258 bool &IsExplicitSpecialization) { 1259 IsExplicitSpecialization = false; 1260 1261 // Find the template-ids that occur within the nested-name-specifier. These 1262 // template-ids will match up with the template parameter lists. 1263 llvm::SmallVector<const TemplateSpecializationType *, 4> 1264 TemplateIdsInSpecifier; 1265 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1266 ExplicitSpecializationsInSpecifier; 1267 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1268 NNS; NNS = NNS->getPrefix()) { 1269 const Type *T = NNS->getAsType(); 1270 if (!T) break; 1271 1272 // C++0x [temp.expl.spec]p17: 1273 // A member or a member template may be nested within many 1274 // enclosing class templates. In an explicit specialization for 1275 // such a member, the member declaration shall be preceded by a 1276 // template<> for each enclosing class template that is 1277 // explicitly specialized. 1278 // 1279 // Following the existing practice of GNU and EDG, we allow a typedef of a 1280 // template specialization type. 1281 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1282 T = TT->LookThroughTypedefs().getTypePtr(); 1283 1284 if (const TemplateSpecializationType *SpecType 1285 = dyn_cast<TemplateSpecializationType>(T)) { 1286 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1287 if (!Template) 1288 continue; // FIXME: should this be an error? probably... 1289 1290 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1291 ClassTemplateSpecializationDecl *SpecDecl 1292 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1293 // If the nested name specifier refers to an explicit specialization, 1294 // we don't need a template<> header. 1295 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1296 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1297 continue; 1298 } 1299 } 1300 1301 TemplateIdsInSpecifier.push_back(SpecType); 1302 } 1303 } 1304 1305 // Reverse the list of template-ids in the scope specifier, so that we can 1306 // more easily match up the template-ids and the template parameter lists. 1307 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1308 1309 SourceLocation FirstTemplateLoc = DeclStartLoc; 1310 if (NumParamLists) 1311 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1312 1313 // Match the template-ids found in the specifier to the template parameter 1314 // lists. 1315 unsigned Idx = 0; 1316 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1317 Idx != NumTemplateIds; ++Idx) { 1318 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1319 bool DependentTemplateId = TemplateId->isDependentType(); 1320 if (Idx >= NumParamLists) { 1321 // We have a template-id without a corresponding template parameter 1322 // list. 1323 1324 // ...which is fine if this is a friend declaration. 1325 if (IsFriend) { 1326 IsExplicitSpecialization = true; 1327 break; 1328 } 1329 1330 if (DependentTemplateId) { 1331 // FIXME: the location information here isn't great. 1332 Diag(SS.getRange().getBegin(), 1333 diag::err_template_spec_needs_template_parameters) 1334 << TemplateId 1335 << SS.getRange(); 1336 } else { 1337 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1338 << SS.getRange() 1339 << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> "); 1340 IsExplicitSpecialization = true; 1341 } 1342 return 0; 1343 } 1344 1345 // Check the template parameter list against its corresponding template-id. 1346 if (DependentTemplateId) { 1347 TemplateParameterList *ExpectedTemplateParams = 0; 1348 1349 // Are there cases in (e.g.) friends where this won't match? 1350 if (const InjectedClassNameType *Injected 1351 = TemplateId->getAs<InjectedClassNameType>()) { 1352 CXXRecordDecl *Record = Injected->getDecl(); 1353 if (ClassTemplatePartialSpecializationDecl *Partial = 1354 dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 1355 ExpectedTemplateParams = Partial->getTemplateParameters(); 1356 else 1357 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1358 ->getTemplateParameters(); 1359 } 1360 1361 if (ExpectedTemplateParams) 1362 TemplateParameterListsAreEqual(ParamLists[Idx], 1363 ExpectedTemplateParams, 1364 true, TPL_TemplateMatch); 1365 1366 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1367 } else if (ParamLists[Idx]->size() > 0) 1368 Diag(ParamLists[Idx]->getTemplateLoc(), 1369 diag::err_template_param_list_matches_nontemplate) 1370 << TemplateId 1371 << ParamLists[Idx]->getSourceRange(); 1372 else 1373 IsExplicitSpecialization = true; 1374 } 1375 1376 // If there were at least as many template-ids as there were template 1377 // parameter lists, then there are no template parameter lists remaining for 1378 // the declaration itself. 1379 if (Idx >= NumParamLists) 1380 return 0; 1381 1382 // If there were too many template parameter lists, complain about that now. 1383 if (Idx != NumParamLists - 1) { 1384 while (Idx < NumParamLists - 1) { 1385 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1386 Diag(ParamLists[Idx]->getTemplateLoc(), 1387 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1388 : diag::err_template_spec_extra_headers) 1389 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1390 ParamLists[Idx]->getRAngleLoc()); 1391 1392 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1393 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1394 diag::note_explicit_template_spec_does_not_need_header) 1395 << ExplicitSpecializationsInSpecifier.back(); 1396 ExplicitSpecializationsInSpecifier.pop_back(); 1397 } 1398 1399 ++Idx; 1400 } 1401 } 1402 1403 // Return the last template parameter list, which corresponds to the 1404 // entity being declared. 1405 return ParamLists[NumParamLists - 1]; 1406} 1407 1408QualType Sema::CheckTemplateIdType(TemplateName Name, 1409 SourceLocation TemplateLoc, 1410 const TemplateArgumentListInfo &TemplateArgs) { 1411 TemplateDecl *Template = Name.getAsTemplateDecl(); 1412 if (!Template) { 1413 // The template name does not resolve to a template, so we just 1414 // build a dependent template-id type. 1415 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1416 } 1417 1418 // Check that the template argument list is well-formed for this 1419 // template. 1420 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1421 TemplateArgs.size()); 1422 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1423 false, Converted)) 1424 return QualType(); 1425 1426 assert((Converted.structuredSize() == 1427 Template->getTemplateParameters()->size()) && 1428 "Converted template argument list is too short!"); 1429 1430 QualType CanonType; 1431 bool IsCurrentInstantiation = false; 1432 1433 if (Name.isDependent() || 1434 TemplateSpecializationType::anyDependentTemplateArguments( 1435 TemplateArgs)) { 1436 // This class template specialization is a dependent 1437 // type. Therefore, its canonical type is another class template 1438 // specialization type that contains all of the converted 1439 // arguments in canonical form. This ensures that, e.g., A<T> and 1440 // A<T, T> have identical types when A is declared as: 1441 // 1442 // template<typename T, typename U = T> struct A; 1443 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1444 CanonType = Context.getTemplateSpecializationType(CanonName, 1445 Converted.getFlatArguments(), 1446 Converted.flatSize()); 1447 1448 // FIXME: CanonType is not actually the canonical type, and unfortunately 1449 // it is a TemplateSpecializationType that we will never use again. 1450 // In the future, we need to teach getTemplateSpecializationType to only 1451 // build the canonical type and return that to us. 1452 CanonType = Context.getCanonicalType(CanonType); 1453 1454 // This might work out to be a current instantiation, in which 1455 // case the canonical type needs to be the InjectedClassNameType. 1456 // 1457 // TODO: in theory this could be a simple hashtable lookup; most 1458 // changes to CurContext don't change the set of current 1459 // instantiations. 1460 if (isa<ClassTemplateDecl>(Template)) { 1461 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 1462 // If we get out to a namespace, we're done. 1463 if (Ctx->isFileContext()) break; 1464 1465 // If this isn't a record, keep looking. 1466 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 1467 if (!Record) continue; 1468 1469 // Look for one of the two cases with InjectedClassNameTypes 1470 // and check whether it's the same template. 1471 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 1472 !Record->getDescribedClassTemplate()) 1473 continue; 1474 1475 // Fetch the injected class name type and check whether its 1476 // injected type is equal to the type we just built. 1477 QualType ICNT = Context.getTypeDeclType(Record); 1478 QualType Injected = cast<InjectedClassNameType>(ICNT) 1479 ->getInjectedSpecializationType(); 1480 1481 if (CanonType != Injected->getCanonicalTypeInternal()) 1482 continue; 1483 1484 // If so, the canonical type of this TST is the injected 1485 // class name type of the record we just found. 1486 assert(ICNT.isCanonical()); 1487 CanonType = ICNT; 1488 IsCurrentInstantiation = true; 1489 break; 1490 } 1491 } 1492 } else if (ClassTemplateDecl *ClassTemplate 1493 = dyn_cast<ClassTemplateDecl>(Template)) { 1494 // Find the class template specialization declaration that 1495 // corresponds to these arguments. 1496 llvm::FoldingSetNodeID ID; 1497 ClassTemplateSpecializationDecl::Profile(ID, 1498 Converted.getFlatArguments(), 1499 Converted.flatSize(), 1500 Context); 1501 void *InsertPos = 0; 1502 ClassTemplateSpecializationDecl *Decl 1503 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1504 if (!Decl) { 1505 // This is the first time we have referenced this class template 1506 // specialization. Create the canonical declaration and add it to 1507 // the set of specializations. 1508 Decl = ClassTemplateSpecializationDecl::Create(Context, 1509 ClassTemplate->getDeclContext(), 1510 ClassTemplate->getLocation(), 1511 ClassTemplate, 1512 Converted, 0); 1513 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1514 Decl->setLexicalDeclContext(CurContext); 1515 } 1516 1517 CanonType = Context.getTypeDeclType(Decl); 1518 assert(isa<RecordType>(CanonType) && 1519 "type of non-dependent specialization is not a RecordType"); 1520 } 1521 1522 // Build the fully-sugared type for this class template 1523 // specialization, which refers back to the class template 1524 // specialization we created or found. 1525 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType, 1526 IsCurrentInstantiation); 1527} 1528 1529Action::TypeResult 1530Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1531 SourceLocation LAngleLoc, 1532 ASTTemplateArgsPtr TemplateArgsIn, 1533 SourceLocation RAngleLoc) { 1534 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1535 1536 // Translate the parser's template argument list in our AST format. 1537 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1538 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1539 1540 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1541 TemplateArgsIn.release(); 1542 1543 if (Result.isNull()) 1544 return true; 1545 1546 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1547 TemplateSpecializationTypeLoc TL 1548 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1549 TL.setTemplateNameLoc(TemplateLoc); 1550 TL.setLAngleLoc(LAngleLoc); 1551 TL.setRAngleLoc(RAngleLoc); 1552 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1553 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1554 1555 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1556} 1557 1558Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1559 TagUseKind TUK, 1560 DeclSpec::TST TagSpec, 1561 SourceLocation TagLoc) { 1562 if (TypeResult.isInvalid()) 1563 return Sema::TypeResult(); 1564 1565 // FIXME: preserve source info, ideally without copying the DI. 1566 TypeSourceInfo *DI; 1567 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1568 1569 // Verify the tag specifier. 1570 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1571 1572 if (const RecordType *RT = Type->getAs<RecordType>()) { 1573 RecordDecl *D = RT->getDecl(); 1574 1575 IdentifierInfo *Id = D->getIdentifier(); 1576 assert(Id && "templated class must have an identifier"); 1577 1578 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1579 Diag(TagLoc, diag::err_use_with_wrong_tag) 1580 << Type 1581 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 1582 Diag(D->getLocation(), diag::note_previous_use); 1583 } 1584 } 1585 1586 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1587 1588 return ElabType.getAsOpaquePtr(); 1589} 1590 1591Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1592 LookupResult &R, 1593 bool RequiresADL, 1594 const TemplateArgumentListInfo &TemplateArgs) { 1595 // FIXME: Can we do any checking at this point? I guess we could check the 1596 // template arguments that we have against the template name, if the template 1597 // name refers to a single template. That's not a terribly common case, 1598 // though. 1599 1600 // These should be filtered out by our callers. 1601 assert(!R.empty() && "empty lookup results when building templateid"); 1602 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1603 1604 NestedNameSpecifier *Qualifier = 0; 1605 SourceRange QualifierRange; 1606 if (SS.isSet()) { 1607 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1608 QualifierRange = SS.getRange(); 1609 } 1610 1611 // We don't want lookup warnings at this point. 1612 R.suppressDiagnostics(); 1613 1614 bool Dependent 1615 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1616 &TemplateArgs); 1617 UnresolvedLookupExpr *ULE 1618 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1619 Qualifier, QualifierRange, 1620 R.getLookupName(), R.getNameLoc(), 1621 RequiresADL, TemplateArgs); 1622 ULE->addDecls(R.begin(), R.end()); 1623 1624 return Owned(ULE); 1625} 1626 1627// We actually only call this from template instantiation. 1628Sema::OwningExprResult 1629Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 1630 DeclarationName Name, 1631 SourceLocation NameLoc, 1632 const TemplateArgumentListInfo &TemplateArgs) { 1633 DeclContext *DC; 1634 if (!(DC = computeDeclContext(SS, false)) || 1635 DC->isDependentContext() || 1636 RequireCompleteDeclContext(SS)) 1637 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1638 1639 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1640 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1641 1642 if (R.isAmbiguous()) 1643 return ExprError(); 1644 1645 if (R.empty()) { 1646 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1647 << Name << SS.getRange(); 1648 return ExprError(); 1649 } 1650 1651 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1652 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1653 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1654 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1655 return ExprError(); 1656 } 1657 1658 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1659} 1660 1661/// \brief Form a dependent template name. 1662/// 1663/// This action forms a dependent template name given the template 1664/// name and its (presumably dependent) scope specifier. For 1665/// example, given "MetaFun::template apply", the scope specifier \p 1666/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1667/// of the "template" keyword, and "apply" is the \p Name. 1668Sema::TemplateTy 1669Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1670 CXXScopeSpec &SS, 1671 UnqualifiedId &Name, 1672 TypeTy *ObjectType, 1673 bool EnteringContext) { 1674 DeclContext *LookupCtx = 0; 1675 if (SS.isSet()) 1676 LookupCtx = computeDeclContext(SS, EnteringContext); 1677 if (!LookupCtx && ObjectType) 1678 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1679 if (LookupCtx) { 1680 // C++0x [temp.names]p5: 1681 // If a name prefixed by the keyword template is not the name of 1682 // a template, the program is ill-formed. [Note: the keyword 1683 // template may not be applied to non-template members of class 1684 // templates. -end note ] [ Note: as is the case with the 1685 // typename prefix, the template prefix is allowed in cases 1686 // where it is not strictly necessary; i.e., when the 1687 // nested-name-specifier or the expression on the left of the -> 1688 // or . is not dependent on a template-parameter, or the use 1689 // does not appear in the scope of a template. -end note] 1690 // 1691 // Note: C++03 was more strict here, because it banned the use of 1692 // the "template" keyword prior to a template-name that was not a 1693 // dependent name. C++ DR468 relaxed this requirement (the 1694 // "template" keyword is now permitted). We follow the C++0x 1695 // rules, even in C++03 mode, retroactively applying the DR. 1696 TemplateTy Template; 1697 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1698 EnteringContext, Template); 1699 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1700 isa<CXXRecordDecl>(LookupCtx) && 1701 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1702 // This is a dependent template. 1703 } else if (TNK == TNK_Non_template) { 1704 Diag(Name.getSourceRange().getBegin(), 1705 diag::err_template_kw_refers_to_non_template) 1706 << GetNameFromUnqualifiedId(Name) 1707 << Name.getSourceRange(); 1708 return TemplateTy(); 1709 } else { 1710 // We found something; return it. 1711 return Template; 1712 } 1713 } 1714 1715 NestedNameSpecifier *Qualifier 1716 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1717 1718 switch (Name.getKind()) { 1719 case UnqualifiedId::IK_Identifier: 1720 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1721 Name.Identifier)); 1722 1723 case UnqualifiedId::IK_OperatorFunctionId: 1724 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1725 Name.OperatorFunctionId.Operator)); 1726 1727 case UnqualifiedId::IK_LiteralOperatorId: 1728 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1729 1730 default: 1731 break; 1732 } 1733 1734 Diag(Name.getSourceRange().getBegin(), 1735 diag::err_template_kw_refers_to_non_template) 1736 << GetNameFromUnqualifiedId(Name) 1737 << Name.getSourceRange(); 1738 return TemplateTy(); 1739} 1740 1741bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1742 const TemplateArgumentLoc &AL, 1743 TemplateArgumentListBuilder &Converted) { 1744 const TemplateArgument &Arg = AL.getArgument(); 1745 1746 // Check template type parameter. 1747 switch(Arg.getKind()) { 1748 case TemplateArgument::Type: 1749 // C++ [temp.arg.type]p1: 1750 // A template-argument for a template-parameter which is a 1751 // type shall be a type-id. 1752 break; 1753 case TemplateArgument::Template: { 1754 // We have a template type parameter but the template argument 1755 // is a template without any arguments. 1756 SourceRange SR = AL.getSourceRange(); 1757 TemplateName Name = Arg.getAsTemplate(); 1758 Diag(SR.getBegin(), diag::err_template_missing_args) 1759 << Name << SR; 1760 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 1761 Diag(Decl->getLocation(), diag::note_template_decl_here); 1762 1763 return true; 1764 } 1765 default: { 1766 // We have a template type parameter but the template argument 1767 // is not a type. 1768 SourceRange SR = AL.getSourceRange(); 1769 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1770 Diag(Param->getLocation(), diag::note_template_param_here); 1771 1772 return true; 1773 } 1774 } 1775 1776 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1777 return true; 1778 1779 // Add the converted template type argument. 1780 Converted.Append( 1781 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1782 return false; 1783} 1784 1785/// \brief Substitute template arguments into the default template argument for 1786/// the given template type parameter. 1787/// 1788/// \param SemaRef the semantic analysis object for which we are performing 1789/// the substitution. 1790/// 1791/// \param Template the template that we are synthesizing template arguments 1792/// for. 1793/// 1794/// \param TemplateLoc the location of the template name that started the 1795/// template-id we are checking. 1796/// 1797/// \param RAngleLoc the location of the right angle bracket ('>') that 1798/// terminates the template-id. 1799/// 1800/// \param Param the template template parameter whose default we are 1801/// substituting into. 1802/// 1803/// \param Converted the list of template arguments provided for template 1804/// parameters that precede \p Param in the template parameter list. 1805/// 1806/// \returns the substituted template argument, or NULL if an error occurred. 1807static TypeSourceInfo * 1808SubstDefaultTemplateArgument(Sema &SemaRef, 1809 TemplateDecl *Template, 1810 SourceLocation TemplateLoc, 1811 SourceLocation RAngleLoc, 1812 TemplateTypeParmDecl *Param, 1813 TemplateArgumentListBuilder &Converted) { 1814 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1815 1816 // If the argument type is dependent, instantiate it now based 1817 // on the previously-computed template arguments. 1818 if (ArgType->getType()->isDependentType()) { 1819 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1820 /*TakeArgs=*/false); 1821 1822 MultiLevelTemplateArgumentList AllTemplateArgs 1823 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1824 1825 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1826 Template, Converted.getFlatArguments(), 1827 Converted.flatSize(), 1828 SourceRange(TemplateLoc, RAngleLoc)); 1829 1830 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1831 Param->getDefaultArgumentLoc(), 1832 Param->getDeclName()); 1833 } 1834 1835 return ArgType; 1836} 1837 1838/// \brief Substitute template arguments into the default template argument for 1839/// the given non-type template parameter. 1840/// 1841/// \param SemaRef the semantic analysis object for which we are performing 1842/// the substitution. 1843/// 1844/// \param Template the template that we are synthesizing template arguments 1845/// for. 1846/// 1847/// \param TemplateLoc the location of the template name that started the 1848/// template-id we are checking. 1849/// 1850/// \param RAngleLoc the location of the right angle bracket ('>') that 1851/// terminates the template-id. 1852/// 1853/// \param Param the non-type template parameter whose default we are 1854/// substituting into. 1855/// 1856/// \param Converted the list of template arguments provided for template 1857/// parameters that precede \p Param in the template parameter list. 1858/// 1859/// \returns the substituted template argument, or NULL if an error occurred. 1860static Sema::OwningExprResult 1861SubstDefaultTemplateArgument(Sema &SemaRef, 1862 TemplateDecl *Template, 1863 SourceLocation TemplateLoc, 1864 SourceLocation RAngleLoc, 1865 NonTypeTemplateParmDecl *Param, 1866 TemplateArgumentListBuilder &Converted) { 1867 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1868 /*TakeArgs=*/false); 1869 1870 MultiLevelTemplateArgumentList AllTemplateArgs 1871 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1872 1873 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1874 Template, Converted.getFlatArguments(), 1875 Converted.flatSize(), 1876 SourceRange(TemplateLoc, RAngleLoc)); 1877 1878 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1879} 1880 1881/// \brief Substitute template arguments into the default template argument for 1882/// the given template template parameter. 1883/// 1884/// \param SemaRef the semantic analysis object for which we are performing 1885/// the substitution. 1886/// 1887/// \param Template the template that we are synthesizing template arguments 1888/// for. 1889/// 1890/// \param TemplateLoc the location of the template name that started the 1891/// template-id we are checking. 1892/// 1893/// \param RAngleLoc the location of the right angle bracket ('>') that 1894/// terminates the template-id. 1895/// 1896/// \param Param the template template parameter whose default we are 1897/// substituting into. 1898/// 1899/// \param Converted the list of template arguments provided for template 1900/// parameters that precede \p Param in the template parameter list. 1901/// 1902/// \returns the substituted template argument, or NULL if an error occurred. 1903static TemplateName 1904SubstDefaultTemplateArgument(Sema &SemaRef, 1905 TemplateDecl *Template, 1906 SourceLocation TemplateLoc, 1907 SourceLocation RAngleLoc, 1908 TemplateTemplateParmDecl *Param, 1909 TemplateArgumentListBuilder &Converted) { 1910 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1911 /*TakeArgs=*/false); 1912 1913 MultiLevelTemplateArgumentList AllTemplateArgs 1914 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1915 1916 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1917 Template, Converted.getFlatArguments(), 1918 Converted.flatSize(), 1919 SourceRange(TemplateLoc, RAngleLoc)); 1920 1921 return SemaRef.SubstTemplateName( 1922 Param->getDefaultArgument().getArgument().getAsTemplate(), 1923 Param->getDefaultArgument().getTemplateNameLoc(), 1924 AllTemplateArgs); 1925} 1926 1927/// \brief If the given template parameter has a default template 1928/// argument, substitute into that default template argument and 1929/// return the corresponding template argument. 1930TemplateArgumentLoc 1931Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1932 SourceLocation TemplateLoc, 1933 SourceLocation RAngleLoc, 1934 Decl *Param, 1935 TemplateArgumentListBuilder &Converted) { 1936 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1937 if (!TypeParm->hasDefaultArgument()) 1938 return TemplateArgumentLoc(); 1939 1940 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1941 TemplateLoc, 1942 RAngleLoc, 1943 TypeParm, 1944 Converted); 1945 if (DI) 1946 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1947 1948 return TemplateArgumentLoc(); 1949 } 1950 1951 if (NonTypeTemplateParmDecl *NonTypeParm 1952 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1953 if (!NonTypeParm->hasDefaultArgument()) 1954 return TemplateArgumentLoc(); 1955 1956 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1957 TemplateLoc, 1958 RAngleLoc, 1959 NonTypeParm, 1960 Converted); 1961 if (Arg.isInvalid()) 1962 return TemplateArgumentLoc(); 1963 1964 Expr *ArgE = Arg.takeAs<Expr>(); 1965 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1966 } 1967 1968 TemplateTemplateParmDecl *TempTempParm 1969 = cast<TemplateTemplateParmDecl>(Param); 1970 if (!TempTempParm->hasDefaultArgument()) 1971 return TemplateArgumentLoc(); 1972 1973 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1974 TemplateLoc, 1975 RAngleLoc, 1976 TempTempParm, 1977 Converted); 1978 if (TName.isNull()) 1979 return TemplateArgumentLoc(); 1980 1981 return TemplateArgumentLoc(TemplateArgument(TName), 1982 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1983 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1984} 1985 1986/// \brief Check that the given template argument corresponds to the given 1987/// template parameter. 1988bool Sema::CheckTemplateArgument(NamedDecl *Param, 1989 const TemplateArgumentLoc &Arg, 1990 TemplateDecl *Template, 1991 SourceLocation TemplateLoc, 1992 SourceLocation RAngleLoc, 1993 TemplateArgumentListBuilder &Converted, 1994 CheckTemplateArgumentKind CTAK) { 1995 // Check template type parameters. 1996 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1997 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1998 1999 // Check non-type template parameters. 2000 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2001 // Do substitution on the type of the non-type template parameter 2002 // with the template arguments we've seen thus far. 2003 QualType NTTPType = NTTP->getType(); 2004 if (NTTPType->isDependentType()) { 2005 // Do substitution on the type of the non-type template parameter. 2006 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2007 NTTP, Converted.getFlatArguments(), 2008 Converted.flatSize(), 2009 SourceRange(TemplateLoc, RAngleLoc)); 2010 2011 TemplateArgumentList TemplateArgs(Context, Converted, 2012 /*TakeArgs=*/false); 2013 NTTPType = SubstType(NTTPType, 2014 MultiLevelTemplateArgumentList(TemplateArgs), 2015 NTTP->getLocation(), 2016 NTTP->getDeclName()); 2017 // If that worked, check the non-type template parameter type 2018 // for validity. 2019 if (!NTTPType.isNull()) 2020 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2021 NTTP->getLocation()); 2022 if (NTTPType.isNull()) 2023 return true; 2024 } 2025 2026 switch (Arg.getArgument().getKind()) { 2027 case TemplateArgument::Null: 2028 assert(false && "Should never see a NULL template argument here"); 2029 return true; 2030 2031 case TemplateArgument::Expression: { 2032 Expr *E = Arg.getArgument().getAsExpr(); 2033 TemplateArgument Result; 2034 if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK)) 2035 return true; 2036 2037 Converted.Append(Result); 2038 break; 2039 } 2040 2041 case TemplateArgument::Declaration: 2042 case TemplateArgument::Integral: 2043 // We've already checked this template argument, so just copy 2044 // it to the list of converted arguments. 2045 Converted.Append(Arg.getArgument()); 2046 break; 2047 2048 case TemplateArgument::Template: 2049 // We were given a template template argument. It may not be ill-formed; 2050 // see below. 2051 if (DependentTemplateName *DTN 2052 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 2053 // We have a template argument such as \c T::template X, which we 2054 // parsed as a template template argument. However, since we now 2055 // know that we need a non-type template argument, convert this 2056 // template name into an expression. 2057 Expr *E = DependentScopeDeclRefExpr::Create(Context, 2058 DTN->getQualifier(), 2059 Arg.getTemplateQualifierRange(), 2060 DTN->getIdentifier(), 2061 Arg.getTemplateNameLoc()); 2062 2063 TemplateArgument Result; 2064 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 2065 return true; 2066 2067 Converted.Append(Result); 2068 break; 2069 } 2070 2071 // We have a template argument that actually does refer to a class 2072 // template, template alias, or template template parameter, and 2073 // therefore cannot be a non-type template argument. 2074 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2075 << Arg.getSourceRange(); 2076 2077 Diag(Param->getLocation(), diag::note_template_param_here); 2078 return true; 2079 2080 case TemplateArgument::Type: { 2081 // We have a non-type template parameter but the template 2082 // argument is a type. 2083 2084 // C++ [temp.arg]p2: 2085 // In a template-argument, an ambiguity between a type-id and 2086 // an expression is resolved to a type-id, regardless of the 2087 // form of the corresponding template-parameter. 2088 // 2089 // We warn specifically about this case, since it can be rather 2090 // confusing for users. 2091 QualType T = Arg.getArgument().getAsType(); 2092 SourceRange SR = Arg.getSourceRange(); 2093 if (T->isFunctionType()) 2094 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2095 else 2096 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2097 Diag(Param->getLocation(), diag::note_template_param_here); 2098 return true; 2099 } 2100 2101 case TemplateArgument::Pack: 2102 llvm_unreachable("Caller must expand template argument packs"); 2103 break; 2104 } 2105 2106 return false; 2107 } 2108 2109 2110 // Check template template parameters. 2111 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2112 2113 // Substitute into the template parameter list of the template 2114 // template parameter, since previously-supplied template arguments 2115 // may appear within the template template parameter. 2116 { 2117 // Set up a template instantiation context. 2118 LocalInstantiationScope Scope(*this); 2119 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2120 TempParm, Converted.getFlatArguments(), 2121 Converted.flatSize(), 2122 SourceRange(TemplateLoc, RAngleLoc)); 2123 2124 TemplateArgumentList TemplateArgs(Context, Converted, 2125 /*TakeArgs=*/false); 2126 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2127 SubstDecl(TempParm, CurContext, 2128 MultiLevelTemplateArgumentList(TemplateArgs))); 2129 if (!TempParm) 2130 return true; 2131 2132 // FIXME: TempParam is leaked. 2133 } 2134 2135 switch (Arg.getArgument().getKind()) { 2136 case TemplateArgument::Null: 2137 assert(false && "Should never see a NULL template argument here"); 2138 return true; 2139 2140 case TemplateArgument::Template: 2141 if (CheckTemplateArgument(TempParm, Arg)) 2142 return true; 2143 2144 Converted.Append(Arg.getArgument()); 2145 break; 2146 2147 case TemplateArgument::Expression: 2148 case TemplateArgument::Type: 2149 // We have a template template parameter but the template 2150 // argument does not refer to a template. 2151 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2152 return true; 2153 2154 case TemplateArgument::Declaration: 2155 llvm_unreachable( 2156 "Declaration argument with template template parameter"); 2157 break; 2158 case TemplateArgument::Integral: 2159 llvm_unreachable( 2160 "Integral argument with template template parameter"); 2161 break; 2162 2163 case TemplateArgument::Pack: 2164 llvm_unreachable("Caller must expand template argument packs"); 2165 break; 2166 } 2167 2168 return false; 2169} 2170 2171/// \brief Check that the given template argument list is well-formed 2172/// for specializing the given template. 2173bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2174 SourceLocation TemplateLoc, 2175 const TemplateArgumentListInfo &TemplateArgs, 2176 bool PartialTemplateArgs, 2177 TemplateArgumentListBuilder &Converted) { 2178 TemplateParameterList *Params = Template->getTemplateParameters(); 2179 unsigned NumParams = Params->size(); 2180 unsigned NumArgs = TemplateArgs.size(); 2181 bool Invalid = false; 2182 2183 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2184 2185 bool HasParameterPack = 2186 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2187 2188 if ((NumArgs > NumParams && !HasParameterPack) || 2189 (NumArgs < Params->getMinRequiredArguments() && 2190 !PartialTemplateArgs)) { 2191 // FIXME: point at either the first arg beyond what we can handle, 2192 // or the '>', depending on whether we have too many or too few 2193 // arguments. 2194 SourceRange Range; 2195 if (NumArgs > NumParams) 2196 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2197 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2198 << (NumArgs > NumParams) 2199 << (isa<ClassTemplateDecl>(Template)? 0 : 2200 isa<FunctionTemplateDecl>(Template)? 1 : 2201 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2202 << Template << Range; 2203 Diag(Template->getLocation(), diag::note_template_decl_here) 2204 << Params->getSourceRange(); 2205 Invalid = true; 2206 } 2207 2208 // C++ [temp.arg]p1: 2209 // [...] The type and form of each template-argument specified in 2210 // a template-id shall match the type and form specified for the 2211 // corresponding parameter declared by the template in its 2212 // template-parameter-list. 2213 unsigned ArgIdx = 0; 2214 for (TemplateParameterList::iterator Param = Params->begin(), 2215 ParamEnd = Params->end(); 2216 Param != ParamEnd; ++Param, ++ArgIdx) { 2217 if (ArgIdx > NumArgs && PartialTemplateArgs) 2218 break; 2219 2220 // If we have a template parameter pack, check every remaining template 2221 // argument against that template parameter pack. 2222 if ((*Param)->isTemplateParameterPack()) { 2223 Converted.BeginPack(); 2224 for (; ArgIdx < NumArgs; ++ArgIdx) { 2225 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2226 TemplateLoc, RAngleLoc, Converted)) { 2227 Invalid = true; 2228 break; 2229 } 2230 } 2231 Converted.EndPack(); 2232 continue; 2233 } 2234 2235 if (ArgIdx < NumArgs) { 2236 // Check the template argument we were given. 2237 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2238 TemplateLoc, RAngleLoc, Converted)) 2239 return true; 2240 2241 continue; 2242 } 2243 2244 // We have a default template argument that we will use. 2245 TemplateArgumentLoc Arg; 2246 2247 // Retrieve the default template argument from the template 2248 // parameter. For each kind of template parameter, we substitute the 2249 // template arguments provided thus far and any "outer" template arguments 2250 // (when the template parameter was part of a nested template) into 2251 // the default argument. 2252 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2253 if (!TTP->hasDefaultArgument()) { 2254 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2255 break; 2256 } 2257 2258 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2259 Template, 2260 TemplateLoc, 2261 RAngleLoc, 2262 TTP, 2263 Converted); 2264 if (!ArgType) 2265 return true; 2266 2267 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2268 ArgType); 2269 } else if (NonTypeTemplateParmDecl *NTTP 2270 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2271 if (!NTTP->hasDefaultArgument()) { 2272 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2273 break; 2274 } 2275 2276 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2277 TemplateLoc, 2278 RAngleLoc, 2279 NTTP, 2280 Converted); 2281 if (E.isInvalid()) 2282 return true; 2283 2284 Expr *Ex = E.takeAs<Expr>(); 2285 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2286 } else { 2287 TemplateTemplateParmDecl *TempParm 2288 = cast<TemplateTemplateParmDecl>(*Param); 2289 2290 if (!TempParm->hasDefaultArgument()) { 2291 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2292 break; 2293 } 2294 2295 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2296 TemplateLoc, 2297 RAngleLoc, 2298 TempParm, 2299 Converted); 2300 if (Name.isNull()) 2301 return true; 2302 2303 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2304 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2305 TempParm->getDefaultArgument().getTemplateNameLoc()); 2306 } 2307 2308 // Introduce an instantiation record that describes where we are using 2309 // the default template argument. 2310 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2311 Converted.getFlatArguments(), 2312 Converted.flatSize(), 2313 SourceRange(TemplateLoc, RAngleLoc)); 2314 2315 // Check the default template argument. 2316 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2317 RAngleLoc, Converted)) 2318 return true; 2319 } 2320 2321 return Invalid; 2322} 2323 2324/// \brief Check a template argument against its corresponding 2325/// template type parameter. 2326/// 2327/// This routine implements the semantics of C++ [temp.arg.type]. It 2328/// returns true if an error occurred, and false otherwise. 2329bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2330 TypeSourceInfo *ArgInfo) { 2331 assert(ArgInfo && "invalid TypeSourceInfo"); 2332 QualType Arg = ArgInfo->getType(); 2333 2334 // C++ [temp.arg.type]p2: 2335 // A local type, a type with no linkage, an unnamed type or a type 2336 // compounded from any of these types shall not be used as a 2337 // template-argument for a template type-parameter. 2338 // 2339 // FIXME: Perform the recursive and no-linkage type checks. 2340 const TagType *Tag = 0; 2341 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2342 Tag = EnumT; 2343 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2344 Tag = RecordT; 2345 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2346 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2347 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2348 << QualType(Tag, 0) << SR; 2349 } else if (Tag && !Tag->getDecl()->getDeclName() && 2350 !Tag->getDecl()->getTypedefForAnonDecl()) { 2351 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2352 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2353 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2354 return true; 2355 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2356 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2357 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2358 } 2359 2360 return false; 2361} 2362 2363/// \brief Checks whether the given template argument is the address 2364/// of an object or function according to C++ [temp.arg.nontype]p1. 2365static bool 2366CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 2367 NonTypeTemplateParmDecl *Param, 2368 QualType ParamType, 2369 Expr *ArgIn, 2370 TemplateArgument &Converted) { 2371 bool Invalid = false; 2372 Expr *Arg = ArgIn; 2373 QualType ArgType = Arg->getType(); 2374 2375 // See through any implicit casts we added to fix the type. 2376 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2377 Arg = Cast->getSubExpr(); 2378 2379 // C++ [temp.arg.nontype]p1: 2380 // 2381 // A template-argument for a non-type, non-template 2382 // template-parameter shall be one of: [...] 2383 // 2384 // -- the address of an object or function with external 2385 // linkage, including function templates and function 2386 // template-ids but excluding non-static class members, 2387 // expressed as & id-expression where the & is optional if 2388 // the name refers to a function or array, or if the 2389 // corresponding template-parameter is a reference; or 2390 DeclRefExpr *DRE = 0; 2391 2392 // Ignore (and complain about) any excess parentheses. 2393 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2394 if (!Invalid) { 2395 S.Diag(Arg->getSourceRange().getBegin(), 2396 diag::err_template_arg_extra_parens) 2397 << Arg->getSourceRange(); 2398 Invalid = true; 2399 } 2400 2401 Arg = Parens->getSubExpr(); 2402 } 2403 2404 bool AddressTaken = false; 2405 SourceLocation AddrOpLoc; 2406 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2407 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2408 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2409 AddressTaken = true; 2410 AddrOpLoc = UnOp->getOperatorLoc(); 2411 } 2412 } else 2413 DRE = dyn_cast<DeclRefExpr>(Arg); 2414 2415 if (!DRE) { 2416 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 2417 << Arg->getSourceRange(); 2418 S.Diag(Param->getLocation(), diag::note_template_param_here); 2419 return true; 2420 } 2421 2422 // Stop checking the precise nature of the argument if it is value dependent, 2423 // it should be checked when instantiated. 2424 if (Arg->isValueDependent()) { 2425 Converted = TemplateArgument(ArgIn->Retain()); 2426 return false; 2427 } 2428 2429 if (!isa<ValueDecl>(DRE->getDecl())) { 2430 S.Diag(Arg->getSourceRange().getBegin(), 2431 diag::err_template_arg_not_object_or_func_form) 2432 << Arg->getSourceRange(); 2433 S.Diag(Param->getLocation(), diag::note_template_param_here); 2434 return true; 2435 } 2436 2437 NamedDecl *Entity = 0; 2438 2439 // Cannot refer to non-static data members 2440 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) { 2441 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2442 << Field << Arg->getSourceRange(); 2443 S.Diag(Param->getLocation(), diag::note_template_param_here); 2444 return true; 2445 } 2446 2447 // Cannot refer to non-static member functions 2448 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2449 if (!Method->isStatic()) { 2450 S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method) 2451 << Method << Arg->getSourceRange(); 2452 S.Diag(Param->getLocation(), diag::note_template_param_here); 2453 return true; 2454 } 2455 2456 // Functions must have external linkage. 2457 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2458 if (!isExternalLinkage(Func->getLinkage())) { 2459 S.Diag(Arg->getSourceRange().getBegin(), 2460 diag::err_template_arg_function_not_extern) 2461 << Func << Arg->getSourceRange(); 2462 S.Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2463 << true; 2464 return true; 2465 } 2466 2467 // Okay: we've named a function with external linkage. 2468 Entity = Func; 2469 2470 // If the template parameter has pointer type, the function decays. 2471 if (ParamType->isPointerType() && !AddressTaken) 2472 ArgType = S.Context.getPointerType(Func->getType()); 2473 else if (AddressTaken && ParamType->isReferenceType()) { 2474 // If we originally had an address-of operator, but the 2475 // parameter has reference type, complain and (if things look 2476 // like they will work) drop the address-of operator. 2477 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 2478 ParamType.getNonReferenceType())) { 2479 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2480 << ParamType; 2481 S.Diag(Param->getLocation(), diag::note_template_param_here); 2482 return true; 2483 } 2484 2485 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2486 << ParamType 2487 << FixItHint::CreateRemoval(AddrOpLoc); 2488 S.Diag(Param->getLocation(), diag::note_template_param_here); 2489 2490 ArgType = Func->getType(); 2491 } 2492 } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2493 if (!isExternalLinkage(Var->getLinkage())) { 2494 S.Diag(Arg->getSourceRange().getBegin(), 2495 diag::err_template_arg_object_not_extern) 2496 << Var << Arg->getSourceRange(); 2497 S.Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2498 << true; 2499 return true; 2500 } 2501 2502 // A value of reference type is not an object. 2503 if (Var->getType()->isReferenceType()) { 2504 S.Diag(Arg->getSourceRange().getBegin(), 2505 diag::err_template_arg_reference_var) 2506 << Var->getType() << Arg->getSourceRange(); 2507 S.Diag(Param->getLocation(), diag::note_template_param_here); 2508 return true; 2509 } 2510 2511 // Okay: we've named an object with external linkage 2512 Entity = Var; 2513 2514 // If the template parameter has pointer type, we must have taken 2515 // the address of this object. 2516 if (ParamType->isReferenceType()) { 2517 if (AddressTaken) { 2518 // If we originally had an address-of operator, but the 2519 // parameter has reference type, complain and (if things look 2520 // like they will work) drop the address-of operator. 2521 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 2522 ParamType.getNonReferenceType())) { 2523 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2524 << ParamType; 2525 S.Diag(Param->getLocation(), diag::note_template_param_here); 2526 return true; 2527 } 2528 2529 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 2530 << ParamType 2531 << FixItHint::CreateRemoval(AddrOpLoc); 2532 S.Diag(Param->getLocation(), diag::note_template_param_here); 2533 2534 ArgType = Var->getType(); 2535 } 2536 } else if (!AddressTaken && ParamType->isPointerType()) { 2537 if (Var->getType()->isArrayType()) { 2538 // Array-to-pointer decay. 2539 ArgType = S.Context.getArrayDecayedType(Var->getType()); 2540 } else { 2541 // If the template parameter has pointer type but the address of 2542 // this object was not taken, complain and (possibly) recover by 2543 // taking the address of the entity. 2544 ArgType = S.Context.getPointerType(Var->getType()); 2545 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2546 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2547 << ParamType; 2548 S.Diag(Param->getLocation(), diag::note_template_param_here); 2549 return true; 2550 } 2551 2552 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 2553 << ParamType 2554 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 2555 2556 S.Diag(Param->getLocation(), diag::note_template_param_here); 2557 } 2558 } 2559 } else { 2560 // We found something else, but we don't know specifically what it is. 2561 S.Diag(Arg->getSourceRange().getBegin(), 2562 diag::err_template_arg_not_object_or_func) 2563 << Arg->getSourceRange(); 2564 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 2565 return true; 2566 } 2567 2568 if (ParamType->isPointerType() && 2569 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 2570 S.IsQualificationConversion(ArgType, ParamType)) { 2571 // For pointer-to-object types, qualification conversions are 2572 // permitted. 2573 } else { 2574 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 2575 if (!ParamRef->getPointeeType()->isFunctionType()) { 2576 // C++ [temp.arg.nontype]p5b3: 2577 // For a non-type template-parameter of type reference to 2578 // object, no conversions apply. The type referred to by the 2579 // reference may be more cv-qualified than the (otherwise 2580 // identical) type of the template- argument. The 2581 // template-parameter is bound directly to the 2582 // template-argument, which shall be an lvalue. 2583 2584 // FIXME: Other qualifiers? 2585 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 2586 unsigned ArgQuals = ArgType.getCVRQualifiers(); 2587 2588 if ((ParamQuals | ArgQuals) != ParamQuals) { 2589 S.Diag(Arg->getSourceRange().getBegin(), 2590 diag::err_template_arg_ref_bind_ignores_quals) 2591 << ParamType << Arg->getType() 2592 << Arg->getSourceRange(); 2593 S.Diag(Param->getLocation(), diag::note_template_param_here); 2594 return true; 2595 } 2596 } 2597 } 2598 2599 // At this point, the template argument refers to an object or 2600 // function with external linkage. We now need to check whether the 2601 // argument and parameter types are compatible. 2602 if (!S.Context.hasSameUnqualifiedType(ArgType, 2603 ParamType.getNonReferenceType())) { 2604 // We can't perform this conversion or binding. 2605 if (ParamType->isReferenceType()) 2606 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 2607 << ParamType << Arg->getType() << Arg->getSourceRange(); 2608 else 2609 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 2610 << Arg->getType() << ParamType << Arg->getSourceRange(); 2611 S.Diag(Param->getLocation(), diag::note_template_param_here); 2612 return true; 2613 } 2614 } 2615 2616 // Create the template argument. 2617 Converted = TemplateArgument(Entity->getCanonicalDecl()); 2618 S.MarkDeclarationReferenced(Arg->getLocStart(), Entity); 2619 return false; 2620} 2621 2622/// \brief Checks whether the given template argument is a pointer to 2623/// member constant according to C++ [temp.arg.nontype]p1. 2624bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2625 TemplateArgument &Converted) { 2626 bool Invalid = false; 2627 2628 // See through any implicit casts we added to fix the type. 2629 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2630 Arg = Cast->getSubExpr(); 2631 2632 // C++ [temp.arg.nontype]p1: 2633 // 2634 // A template-argument for a non-type, non-template 2635 // template-parameter shall be one of: [...] 2636 // 2637 // -- a pointer to member expressed as described in 5.3.1. 2638 DeclRefExpr *DRE = 0; 2639 2640 // Ignore (and complain about) any excess parentheses. 2641 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2642 if (!Invalid) { 2643 Diag(Arg->getSourceRange().getBegin(), 2644 diag::err_template_arg_extra_parens) 2645 << Arg->getSourceRange(); 2646 Invalid = true; 2647 } 2648 2649 Arg = Parens->getSubExpr(); 2650 } 2651 2652 // A pointer-to-member constant written &Class::member. 2653 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2654 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2655 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2656 if (DRE && !DRE->getQualifier()) 2657 DRE = 0; 2658 } 2659 } 2660 // A constant of pointer-to-member type. 2661 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2662 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2663 if (VD->getType()->isMemberPointerType()) { 2664 if (isa<NonTypeTemplateParmDecl>(VD) || 2665 (isa<VarDecl>(VD) && 2666 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2667 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2668 Converted = TemplateArgument(Arg->Retain()); 2669 else 2670 Converted = TemplateArgument(VD->getCanonicalDecl()); 2671 return Invalid; 2672 } 2673 } 2674 } 2675 2676 DRE = 0; 2677 } 2678 2679 if (!DRE) 2680 return Diag(Arg->getSourceRange().getBegin(), 2681 diag::err_template_arg_not_pointer_to_member_form) 2682 << Arg->getSourceRange(); 2683 2684 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2685 assert((isa<FieldDecl>(DRE->getDecl()) || 2686 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2687 "Only non-static member pointers can make it here"); 2688 2689 // Okay: this is the address of a non-static member, and therefore 2690 // a member pointer constant. 2691 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2692 Converted = TemplateArgument(Arg->Retain()); 2693 else 2694 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2695 return Invalid; 2696 } 2697 2698 // We found something else, but we don't know specifically what it is. 2699 Diag(Arg->getSourceRange().getBegin(), 2700 diag::err_template_arg_not_pointer_to_member_form) 2701 << Arg->getSourceRange(); 2702 Diag(DRE->getDecl()->getLocation(), 2703 diag::note_template_arg_refers_here); 2704 return true; 2705} 2706 2707/// \brief Check a template argument against its corresponding 2708/// non-type template parameter. 2709/// 2710/// This routine implements the semantics of C++ [temp.arg.nontype]. 2711/// It returns true if an error occurred, and false otherwise. \p 2712/// InstantiatedParamType is the type of the non-type template 2713/// parameter after it has been instantiated. 2714/// 2715/// If no error was detected, Converted receives the converted template argument. 2716bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2717 QualType InstantiatedParamType, Expr *&Arg, 2718 TemplateArgument &Converted, 2719 CheckTemplateArgumentKind CTAK) { 2720 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2721 2722 // If either the parameter has a dependent type or the argument is 2723 // type-dependent, there's nothing we can check now. 2724 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2725 // FIXME: Produce a cloned, canonical expression? 2726 Converted = TemplateArgument(Arg); 2727 return false; 2728 } 2729 2730 // C++ [temp.arg.nontype]p5: 2731 // The following conversions are performed on each expression used 2732 // as a non-type template-argument. If a non-type 2733 // template-argument cannot be converted to the type of the 2734 // corresponding template-parameter then the program is 2735 // ill-formed. 2736 // 2737 // -- for a non-type template-parameter of integral or 2738 // enumeration type, integral promotions (4.5) and integral 2739 // conversions (4.7) are applied. 2740 QualType ParamType = InstantiatedParamType; 2741 QualType ArgType = Arg->getType(); 2742 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2743 // C++ [temp.arg.nontype]p1: 2744 // A template-argument for a non-type, non-template 2745 // template-parameter shall be one of: 2746 // 2747 // -- an integral constant-expression of integral or enumeration 2748 // type; or 2749 // -- the name of a non-type template-parameter; or 2750 SourceLocation NonConstantLoc; 2751 llvm::APSInt Value; 2752 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2753 Diag(Arg->getSourceRange().getBegin(), 2754 diag::err_template_arg_not_integral_or_enumeral) 2755 << ArgType << Arg->getSourceRange(); 2756 Diag(Param->getLocation(), diag::note_template_param_here); 2757 return true; 2758 } else if (!Arg->isValueDependent() && 2759 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2760 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2761 << ArgType << Arg->getSourceRange(); 2762 return true; 2763 } 2764 2765 // From here on out, all we care about are the unqualified forms 2766 // of the parameter and argument types. 2767 ParamType = ParamType.getUnqualifiedType(); 2768 ArgType = ArgType.getUnqualifiedType(); 2769 2770 // Try to convert the argument to the parameter's type. 2771 if (Context.hasSameType(ParamType, ArgType)) { 2772 // Okay: no conversion necessary 2773 } else if (CTAK == CTAK_Deduced) { 2774 // C++ [temp.deduct.type]p17: 2775 // If, in the declaration of a function template with a non-type 2776 // template-parameter, the non-type template- parameter is used 2777 // in an expression in the function parameter-list and, if the 2778 // corresponding template-argument is deduced, the 2779 // template-argument type shall match the type of the 2780 // template-parameter exactly, except that a template-argument 2781 // deduced from an array bound may be of any integral type. 2782 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 2783 << ArgType << ParamType; 2784 Diag(Param->getLocation(), diag::note_template_param_here); 2785 return true; 2786 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2787 !ParamType->isEnumeralType()) { 2788 // This is an integral promotion or conversion. 2789 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2790 } else { 2791 // We can't perform this conversion. 2792 Diag(Arg->getSourceRange().getBegin(), 2793 diag::err_template_arg_not_convertible) 2794 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2795 Diag(Param->getLocation(), diag::note_template_param_here); 2796 return true; 2797 } 2798 2799 QualType IntegerType = Context.getCanonicalType(ParamType); 2800 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2801 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2802 2803 if (!Arg->isValueDependent()) { 2804 llvm::APSInt OldValue = Value; 2805 2806 // Coerce the template argument's value to the value it will have 2807 // based on the template parameter's type. 2808 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2809 if (Value.getBitWidth() != AllowedBits) 2810 Value.extOrTrunc(AllowedBits); 2811 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2812 2813 // Complain if an unsigned parameter received a negative value. 2814 if (IntegerType->isUnsignedIntegerType() 2815 && (OldValue.isSigned() && OldValue.isNegative())) { 2816 Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative) 2817 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2818 << Arg->getSourceRange(); 2819 Diag(Param->getLocation(), diag::note_template_param_here); 2820 } 2821 2822 // Complain if we overflowed the template parameter's type. 2823 unsigned RequiredBits; 2824 if (IntegerType->isUnsignedIntegerType()) 2825 RequiredBits = OldValue.getActiveBits(); 2826 else if (OldValue.isUnsigned()) 2827 RequiredBits = OldValue.getActiveBits() + 1; 2828 else 2829 RequiredBits = OldValue.getMinSignedBits(); 2830 if (RequiredBits > AllowedBits) { 2831 Diag(Arg->getSourceRange().getBegin(), 2832 diag::warn_template_arg_too_large) 2833 << OldValue.toString(10) << Value.toString(10) << Param->getType() 2834 << Arg->getSourceRange(); 2835 Diag(Param->getLocation(), diag::note_template_param_here); 2836 } 2837 } 2838 2839 // Add the value of this argument to the list of converted 2840 // arguments. We use the bitwidth and signedness of the template 2841 // parameter. 2842 if (Arg->isValueDependent()) { 2843 // The argument is value-dependent. Create a new 2844 // TemplateArgument with the converted expression. 2845 Converted = TemplateArgument(Arg); 2846 return false; 2847 } 2848 2849 Converted = TemplateArgument(Value, 2850 ParamType->isEnumeralType() ? ParamType 2851 : IntegerType); 2852 return false; 2853 } 2854 2855 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 2856 2857 // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion 2858 // from a template argument of type std::nullptr_t to a non-type 2859 // template parameter of type pointer to object, pointer to 2860 // function, or pointer-to-member, respectively. 2861 if (ArgType->isNullPtrType() && 2862 (ParamType->isPointerType() || ParamType->isMemberPointerType())) { 2863 Converted = TemplateArgument((NamedDecl *)0); 2864 return false; 2865 } 2866 2867 // Handle pointer-to-function, reference-to-function, and 2868 // pointer-to-member-function all in (roughly) the same way. 2869 if (// -- For a non-type template-parameter of type pointer to 2870 // function, only the function-to-pointer conversion (4.3) is 2871 // applied. If the template-argument represents a set of 2872 // overloaded functions (or a pointer to such), the matching 2873 // function is selected from the set (13.4). 2874 (ParamType->isPointerType() && 2875 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2876 // -- For a non-type template-parameter of type reference to 2877 // function, no conversions apply. If the template-argument 2878 // represents a set of overloaded functions, the matching 2879 // function is selected from the set (13.4). 2880 (ParamType->isReferenceType() && 2881 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2882 // -- For a non-type template-parameter of type pointer to 2883 // member function, no conversions apply. If the 2884 // template-argument represents a set of overloaded member 2885 // functions, the matching member function is selected from 2886 // the set (13.4). 2887 (ParamType->isMemberPointerType() && 2888 ParamType->getAs<MemberPointerType>()->getPointeeType() 2889 ->isFunctionType())) { 2890 2891 if (Arg->getType() == Context.OverloadTy) { 2892 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 2893 true, 2894 FoundResult)) { 2895 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2896 return true; 2897 2898 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2899 ArgType = Arg->getType(); 2900 } else 2901 return true; 2902 } 2903 2904 if (!ParamType->isMemberPointerType()) 2905 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2906 ParamType, 2907 Arg, Converted); 2908 2909 if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) { 2910 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2911 Arg->isLvalue(Context) == Expr::LV_Valid); 2912 } else if (!Context.hasSameUnqualifiedType(ArgType, 2913 ParamType.getNonReferenceType())) { 2914 // We can't perform this conversion. 2915 Diag(Arg->getSourceRange().getBegin(), 2916 diag::err_template_arg_not_convertible) 2917 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2918 Diag(Param->getLocation(), diag::note_template_param_here); 2919 return true; 2920 } 2921 2922 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2923 } 2924 2925 if (ParamType->isPointerType()) { 2926 // -- for a non-type template-parameter of type pointer to 2927 // object, qualification conversions (4.4) and the 2928 // array-to-pointer conversion (4.2) are applied. 2929 // C++0x also allows a value of std::nullptr_t. 2930 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2931 "Only object pointers allowed here"); 2932 2933 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2934 ParamType, 2935 Arg, Converted); 2936 } 2937 2938 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2939 // -- For a non-type template-parameter of type reference to 2940 // object, no conversions apply. The type referred to by the 2941 // reference may be more cv-qualified than the (otherwise 2942 // identical) type of the template-argument. The 2943 // template-parameter is bound directly to the 2944 // template-argument, which must be an lvalue. 2945 assert(ParamRefType->getPointeeType()->isObjectType() && 2946 "Only object references allowed here"); 2947 2948 if (Arg->getType() == Context.OverloadTy) { 2949 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 2950 ParamRefType->getPointeeType(), 2951 true, 2952 FoundResult)) { 2953 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2954 return true; 2955 2956 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 2957 ArgType = Arg->getType(); 2958 } else 2959 return true; 2960 } 2961 2962 return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 2963 ParamType, 2964 Arg, Converted); 2965 } 2966 2967 // -- For a non-type template-parameter of type pointer to data 2968 // member, qualification conversions (4.4) are applied. 2969 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2970 2971 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2972 // Types match exactly: nothing more to do here. 2973 } else if (IsQualificationConversion(ArgType, ParamType)) { 2974 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp, 2975 Arg->isLvalue(Context) == Expr::LV_Valid); 2976 } else { 2977 // We can't perform this conversion. 2978 Diag(Arg->getSourceRange().getBegin(), 2979 diag::err_template_arg_not_convertible) 2980 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2981 Diag(Param->getLocation(), diag::note_template_param_here); 2982 return true; 2983 } 2984 2985 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2986} 2987 2988/// \brief Check a template argument against its corresponding 2989/// template template parameter. 2990/// 2991/// This routine implements the semantics of C++ [temp.arg.template]. 2992/// It returns true if an error occurred, and false otherwise. 2993bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2994 const TemplateArgumentLoc &Arg) { 2995 TemplateName Name = Arg.getArgument().getAsTemplate(); 2996 TemplateDecl *Template = Name.getAsTemplateDecl(); 2997 if (!Template) { 2998 // Any dependent template name is fine. 2999 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 3000 return false; 3001 } 3002 3003 // C++ [temp.arg.template]p1: 3004 // A template-argument for a template template-parameter shall be 3005 // the name of a class template, expressed as id-expression. Only 3006 // primary class templates are considered when matching the 3007 // template template argument with the corresponding parameter; 3008 // partial specializations are not considered even if their 3009 // parameter lists match that of the template template parameter. 3010 // 3011 // Note that we also allow template template parameters here, which 3012 // will happen when we are dealing with, e.g., class template 3013 // partial specializations. 3014 if (!isa<ClassTemplateDecl>(Template) && 3015 !isa<TemplateTemplateParmDecl>(Template)) { 3016 assert(isa<FunctionTemplateDecl>(Template) && 3017 "Only function templates are possible here"); 3018 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 3019 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 3020 << Template; 3021 } 3022 3023 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 3024 Param->getTemplateParameters(), 3025 true, 3026 TPL_TemplateTemplateArgumentMatch, 3027 Arg.getLocation()); 3028} 3029 3030/// \brief Given a non-type template argument that refers to a 3031/// declaration and the type of its corresponding non-type template 3032/// parameter, produce an expression that properly refers to that 3033/// declaration. 3034Sema::OwningExprResult 3035Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 3036 QualType ParamType, 3037 SourceLocation Loc) { 3038 assert(Arg.getKind() == TemplateArgument::Declaration && 3039 "Only declaration template arguments permitted here"); 3040 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 3041 3042 if (VD->getDeclContext()->isRecord() && 3043 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 3044 // If the value is a class member, we might have a pointer-to-member. 3045 // Determine whether the non-type template template parameter is of 3046 // pointer-to-member type. If so, we need to build an appropriate 3047 // expression for a pointer-to-member, since a "normal" DeclRefExpr 3048 // would refer to the member itself. 3049 if (ParamType->isMemberPointerType()) { 3050 QualType ClassType 3051 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 3052 NestedNameSpecifier *Qualifier 3053 = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr()); 3054 CXXScopeSpec SS; 3055 SS.setScopeRep(Qualifier); 3056 OwningExprResult RefExpr = BuildDeclRefExpr(VD, 3057 VD->getType().getNonReferenceType(), 3058 Loc, 3059 &SS); 3060 if (RefExpr.isInvalid()) 3061 return ExprError(); 3062 3063 RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3064 assert(!RefExpr.isInvalid() && 3065 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 3066 ParamType)); 3067 return move(RefExpr); 3068 } 3069 } 3070 3071 QualType T = VD->getType().getNonReferenceType(); 3072 if (ParamType->isPointerType()) { 3073 // When the non-type template parameter is a pointer, take the 3074 // address of the declaration. 3075 OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc); 3076 if (RefExpr.isInvalid()) 3077 return ExprError(); 3078 3079 if (T->isFunctionType() || T->isArrayType()) { 3080 // Decay functions and arrays. 3081 Expr *RefE = (Expr *)RefExpr.get(); 3082 DefaultFunctionArrayConversion(RefE); 3083 if (RefE != RefExpr.get()) { 3084 RefExpr.release(); 3085 RefExpr = Owned(RefE); 3086 } 3087 3088 return move(RefExpr); 3089 } 3090 3091 // Take the address of everything else 3092 return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr)); 3093 } 3094 3095 // If the non-type template parameter has reference type, qualify the 3096 // resulting declaration reference with the extra qualifiers on the 3097 // type that the reference refers to. 3098 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) 3099 T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers()); 3100 3101 return BuildDeclRefExpr(VD, T, Loc); 3102} 3103 3104/// \brief Construct a new expression that refers to the given 3105/// integral template argument with the given source-location 3106/// information. 3107/// 3108/// This routine takes care of the mapping from an integral template 3109/// argument (which may have any integral type) to the appropriate 3110/// literal value. 3111Sema::OwningExprResult 3112Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 3113 SourceLocation Loc) { 3114 assert(Arg.getKind() == TemplateArgument::Integral && 3115 "Operation is only value for integral template arguments"); 3116 QualType T = Arg.getIntegralType(); 3117 if (T->isCharType() || T->isWideCharType()) 3118 return Owned(new (Context) CharacterLiteral( 3119 Arg.getAsIntegral()->getZExtValue(), 3120 T->isWideCharType(), 3121 T, 3122 Loc)); 3123 if (T->isBooleanType()) 3124 return Owned(new (Context) CXXBoolLiteralExpr( 3125 Arg.getAsIntegral()->getBoolValue(), 3126 T, 3127 Loc)); 3128 3129 return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc)); 3130} 3131 3132 3133/// \brief Determine whether the given template parameter lists are 3134/// equivalent. 3135/// 3136/// \param New The new template parameter list, typically written in the 3137/// source code as part of a new template declaration. 3138/// 3139/// \param Old The old template parameter list, typically found via 3140/// name lookup of the template declared with this template parameter 3141/// list. 3142/// 3143/// \param Complain If true, this routine will produce a diagnostic if 3144/// the template parameter lists are not equivalent. 3145/// 3146/// \param Kind describes how we are to match the template parameter lists. 3147/// 3148/// \param TemplateArgLoc If this source location is valid, then we 3149/// are actually checking the template parameter list of a template 3150/// argument (New) against the template parameter list of its 3151/// corresponding template template parameter (Old). We produce 3152/// slightly different diagnostics in this scenario. 3153/// 3154/// \returns True if the template parameter lists are equal, false 3155/// otherwise. 3156bool 3157Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 3158 TemplateParameterList *Old, 3159 bool Complain, 3160 TemplateParameterListEqualKind Kind, 3161 SourceLocation TemplateArgLoc) { 3162 if (Old->size() != New->size()) { 3163 if (Complain) { 3164 unsigned NextDiag = diag::err_template_param_list_different_arity; 3165 if (TemplateArgLoc.isValid()) { 3166 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3167 NextDiag = diag::note_template_param_list_different_arity; 3168 } 3169 Diag(New->getTemplateLoc(), NextDiag) 3170 << (New->size() > Old->size()) 3171 << (Kind != TPL_TemplateMatch) 3172 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 3173 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 3174 << (Kind != TPL_TemplateMatch) 3175 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 3176 } 3177 3178 return false; 3179 } 3180 3181 for (TemplateParameterList::iterator OldParm = Old->begin(), 3182 OldParmEnd = Old->end(), NewParm = New->begin(); 3183 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 3184 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 3185 if (Complain) { 3186 unsigned NextDiag = diag::err_template_param_different_kind; 3187 if (TemplateArgLoc.isValid()) { 3188 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 3189 NextDiag = diag::note_template_param_different_kind; 3190 } 3191 Diag((*NewParm)->getLocation(), NextDiag) 3192 << (Kind != TPL_TemplateMatch); 3193 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 3194 << (Kind != TPL_TemplateMatch); 3195 } 3196 return false; 3197 } 3198 3199 if (isa<TemplateTypeParmDecl>(*OldParm)) { 3200 // Okay; all template type parameters are equivalent (since we 3201 // know we're at the same index). 3202 } else if (NonTypeTemplateParmDecl *OldNTTP 3203 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 3204 // The types of non-type template parameters must agree. 3205 NonTypeTemplateParmDecl *NewNTTP 3206 = cast<NonTypeTemplateParmDecl>(*NewParm); 3207 3208 // If we are matching a template template argument to a template 3209 // template parameter and one of the non-type template parameter types 3210 // is dependent, then we must wait until template instantiation time 3211 // to actually compare the arguments. 3212 if (Kind == TPL_TemplateTemplateArgumentMatch && 3213 (OldNTTP->getType()->isDependentType() || 3214 NewNTTP->getType()->isDependentType())) 3215 continue; 3216 3217 if (Context.getCanonicalType(OldNTTP->getType()) != 3218 Context.getCanonicalType(NewNTTP->getType())) { 3219 if (Complain) { 3220 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 3221 if (TemplateArgLoc.isValid()) { 3222 Diag(TemplateArgLoc, 3223 diag::err_template_arg_template_params_mismatch); 3224 NextDiag = diag::note_template_nontype_parm_different_type; 3225 } 3226 Diag(NewNTTP->getLocation(), NextDiag) 3227 << NewNTTP->getType() 3228 << (Kind != TPL_TemplateMatch); 3229 Diag(OldNTTP->getLocation(), 3230 diag::note_template_nontype_parm_prev_declaration) 3231 << OldNTTP->getType(); 3232 } 3233 return false; 3234 } 3235 } else { 3236 // The template parameter lists of template template 3237 // parameters must agree. 3238 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 3239 "Only template template parameters handled here"); 3240 TemplateTemplateParmDecl *OldTTP 3241 = cast<TemplateTemplateParmDecl>(*OldParm); 3242 TemplateTemplateParmDecl *NewTTP 3243 = cast<TemplateTemplateParmDecl>(*NewParm); 3244 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 3245 OldTTP->getTemplateParameters(), 3246 Complain, 3247 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 3248 TemplateArgLoc)) 3249 return false; 3250 } 3251 } 3252 3253 return true; 3254} 3255 3256/// \brief Check whether a template can be declared within this scope. 3257/// 3258/// If the template declaration is valid in this scope, returns 3259/// false. Otherwise, issues a diagnostic and returns true. 3260bool 3261Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 3262 // Find the nearest enclosing declaration scope. 3263 while ((S->getFlags() & Scope::DeclScope) == 0 || 3264 (S->getFlags() & Scope::TemplateParamScope) != 0) 3265 S = S->getParent(); 3266 3267 // C++ [temp]p2: 3268 // A template-declaration can appear only as a namespace scope or 3269 // class scope declaration. 3270 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 3271 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 3272 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 3273 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 3274 << TemplateParams->getSourceRange(); 3275 3276 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 3277 Ctx = Ctx->getParent(); 3278 3279 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 3280 return false; 3281 3282 return Diag(TemplateParams->getTemplateLoc(), 3283 diag::err_template_outside_namespace_or_class_scope) 3284 << TemplateParams->getSourceRange(); 3285} 3286 3287/// \brief Determine what kind of template specialization the given declaration 3288/// is. 3289static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 3290 if (!D) 3291 return TSK_Undeclared; 3292 3293 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3294 return Record->getTemplateSpecializationKind(); 3295 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3296 return Function->getTemplateSpecializationKind(); 3297 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3298 return Var->getTemplateSpecializationKind(); 3299 3300 return TSK_Undeclared; 3301} 3302 3303/// \brief Check whether a specialization is well-formed in the current 3304/// context. 3305/// 3306/// This routine determines whether a template specialization can be declared 3307/// in the current context (C++ [temp.expl.spec]p2). 3308/// 3309/// \param S the semantic analysis object for which this check is being 3310/// performed. 3311/// 3312/// \param Specialized the entity being specialized or instantiated, which 3313/// may be a kind of template (class template, function template, etc.) or 3314/// a member of a class template (member function, static data member, 3315/// member class). 3316/// 3317/// \param PrevDecl the previous declaration of this entity, if any. 3318/// 3319/// \param Loc the location of the explicit specialization or instantiation of 3320/// this entity. 3321/// 3322/// \param IsPartialSpecialization whether this is a partial specialization of 3323/// a class template. 3324/// 3325/// \returns true if there was an error that we cannot recover from, false 3326/// otherwise. 3327static bool CheckTemplateSpecializationScope(Sema &S, 3328 NamedDecl *Specialized, 3329 NamedDecl *PrevDecl, 3330 SourceLocation Loc, 3331 bool IsPartialSpecialization) { 3332 // Keep these "kind" numbers in sync with the %select statements in the 3333 // various diagnostics emitted by this routine. 3334 int EntityKind = 0; 3335 bool isTemplateSpecialization = false; 3336 if (isa<ClassTemplateDecl>(Specialized)) { 3337 EntityKind = IsPartialSpecialization? 1 : 0; 3338 isTemplateSpecialization = true; 3339 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3340 EntityKind = 2; 3341 isTemplateSpecialization = true; 3342 } else if (isa<CXXMethodDecl>(Specialized)) 3343 EntityKind = 3; 3344 else if (isa<VarDecl>(Specialized)) 3345 EntityKind = 4; 3346 else if (isa<RecordDecl>(Specialized)) 3347 EntityKind = 5; 3348 else { 3349 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3350 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3351 return true; 3352 } 3353 3354 // C++ [temp.expl.spec]p2: 3355 // An explicit specialization shall be declared in the namespace 3356 // of which the template is a member, or, for member templates, in 3357 // the namespace of which the enclosing class or enclosing class 3358 // template is a member. An explicit specialization of a member 3359 // function, member class or static data member of a class 3360 // template shall be declared in the namespace of which the class 3361 // template is a member. Such a declaration may also be a 3362 // definition. If the declaration is not a definition, the 3363 // specialization may be defined later in the name- space in which 3364 // the explicit specialization was declared, or in a namespace 3365 // that encloses the one in which the explicit specialization was 3366 // declared. 3367 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3368 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3369 << Specialized; 3370 return true; 3371 } 3372 3373 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3374 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3375 << Specialized; 3376 return true; 3377 } 3378 3379 // C++ [temp.class.spec]p6: 3380 // A class template partial specialization may be declared or redeclared 3381 // in any namespace scope in which its definition may be defined (14.5.1 3382 // and 14.5.2). 3383 bool ComplainedAboutScope = false; 3384 DeclContext *SpecializedContext 3385 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3386 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3387 if ((!PrevDecl || 3388 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3389 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3390 // There is no prior declaration of this entity, so this 3391 // specialization must be in the same context as the template 3392 // itself. 3393 if (!DC->Equals(SpecializedContext)) { 3394 if (isa<TranslationUnitDecl>(SpecializedContext)) 3395 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3396 << EntityKind << Specialized; 3397 else if (isa<NamespaceDecl>(SpecializedContext)) 3398 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3399 << EntityKind << Specialized 3400 << cast<NamedDecl>(SpecializedContext); 3401 3402 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3403 ComplainedAboutScope = true; 3404 } 3405 } 3406 3407 // Make sure that this redeclaration (or definition) occurs in an enclosing 3408 // namespace. 3409 // Note that HandleDeclarator() performs this check for explicit 3410 // specializations of function templates, static data members, and member 3411 // functions, so we skip the check here for those kinds of entities. 3412 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3413 // Should we refactor that check, so that it occurs later? 3414 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3415 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3416 isa<FunctionDecl>(Specialized))) { 3417 if (isa<TranslationUnitDecl>(SpecializedContext)) 3418 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3419 << EntityKind << Specialized; 3420 else if (isa<NamespaceDecl>(SpecializedContext)) 3421 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3422 << EntityKind << Specialized 3423 << cast<NamedDecl>(SpecializedContext); 3424 3425 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3426 } 3427 3428 // FIXME: check for specialization-after-instantiation errors and such. 3429 3430 return false; 3431} 3432 3433/// \brief Check the non-type template arguments of a class template 3434/// partial specialization according to C++ [temp.class.spec]p9. 3435/// 3436/// \param TemplateParams the template parameters of the primary class 3437/// template. 3438/// 3439/// \param TemplateArg the template arguments of the class template 3440/// partial specialization. 3441/// 3442/// \param MirrorsPrimaryTemplate will be set true if the class 3443/// template partial specialization arguments are identical to the 3444/// implicit template arguments of the primary template. This is not 3445/// necessarily an error (C++0x), and it is left to the caller to diagnose 3446/// this condition when it is an error. 3447/// 3448/// \returns true if there was an error, false otherwise. 3449bool Sema::CheckClassTemplatePartialSpecializationArgs( 3450 TemplateParameterList *TemplateParams, 3451 const TemplateArgumentListBuilder &TemplateArgs, 3452 bool &MirrorsPrimaryTemplate) { 3453 // FIXME: the interface to this function will have to change to 3454 // accommodate variadic templates. 3455 MirrorsPrimaryTemplate = true; 3456 3457 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3458 3459 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3460 // Determine whether the template argument list of the partial 3461 // specialization is identical to the implicit argument list of 3462 // the primary template. The caller may need to diagnostic this as 3463 // an error per C++ [temp.class.spec]p9b3. 3464 if (MirrorsPrimaryTemplate) { 3465 if (TemplateTypeParmDecl *TTP 3466 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3467 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3468 Context.getCanonicalType(ArgList[I].getAsType())) 3469 MirrorsPrimaryTemplate = false; 3470 } else if (TemplateTemplateParmDecl *TTP 3471 = dyn_cast<TemplateTemplateParmDecl>( 3472 TemplateParams->getParam(I))) { 3473 TemplateName Name = ArgList[I].getAsTemplate(); 3474 TemplateTemplateParmDecl *ArgDecl 3475 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3476 if (!ArgDecl || 3477 ArgDecl->getIndex() != TTP->getIndex() || 3478 ArgDecl->getDepth() != TTP->getDepth()) 3479 MirrorsPrimaryTemplate = false; 3480 } 3481 } 3482 3483 NonTypeTemplateParmDecl *Param 3484 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3485 if (!Param) { 3486 continue; 3487 } 3488 3489 Expr *ArgExpr = ArgList[I].getAsExpr(); 3490 if (!ArgExpr) { 3491 MirrorsPrimaryTemplate = false; 3492 continue; 3493 } 3494 3495 // C++ [temp.class.spec]p8: 3496 // A non-type argument is non-specialized if it is the name of a 3497 // non-type parameter. All other non-type arguments are 3498 // specialized. 3499 // 3500 // Below, we check the two conditions that only apply to 3501 // specialized non-type arguments, so skip any non-specialized 3502 // arguments. 3503 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3504 if (NonTypeTemplateParmDecl *NTTP 3505 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3506 if (MirrorsPrimaryTemplate && 3507 (Param->getIndex() != NTTP->getIndex() || 3508 Param->getDepth() != NTTP->getDepth())) 3509 MirrorsPrimaryTemplate = false; 3510 3511 continue; 3512 } 3513 3514 // C++ [temp.class.spec]p9: 3515 // Within the argument list of a class template partial 3516 // specialization, the following restrictions apply: 3517 // -- A partially specialized non-type argument expression 3518 // shall not involve a template parameter of the partial 3519 // specialization except when the argument expression is a 3520 // simple identifier. 3521 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3522 Diag(ArgExpr->getLocStart(), 3523 diag::err_dependent_non_type_arg_in_partial_spec) 3524 << ArgExpr->getSourceRange(); 3525 return true; 3526 } 3527 3528 // -- The type of a template parameter corresponding to a 3529 // specialized non-type argument shall not be dependent on a 3530 // parameter of the specialization. 3531 if (Param->getType()->isDependentType()) { 3532 Diag(ArgExpr->getLocStart(), 3533 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3534 << Param->getType() 3535 << ArgExpr->getSourceRange(); 3536 Diag(Param->getLocation(), diag::note_template_param_here); 3537 return true; 3538 } 3539 3540 MirrorsPrimaryTemplate = false; 3541 } 3542 3543 return false; 3544} 3545 3546/// \brief Retrieve the previous declaration of the given declaration. 3547static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3548 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3549 return VD->getPreviousDeclaration(); 3550 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3551 return FD->getPreviousDeclaration(); 3552 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3553 return TD->getPreviousDeclaration(); 3554 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3555 return TD->getPreviousDeclaration(); 3556 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3557 return FTD->getPreviousDeclaration(); 3558 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3559 return CTD->getPreviousDeclaration(); 3560 return 0; 3561} 3562 3563Sema::DeclResult 3564Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3565 TagUseKind TUK, 3566 SourceLocation KWLoc, 3567 CXXScopeSpec &SS, 3568 TemplateTy TemplateD, 3569 SourceLocation TemplateNameLoc, 3570 SourceLocation LAngleLoc, 3571 ASTTemplateArgsPtr TemplateArgsIn, 3572 SourceLocation RAngleLoc, 3573 AttributeList *Attr, 3574 MultiTemplateParamsArg TemplateParameterLists) { 3575 assert(TUK != TUK_Reference && "References are not specializations"); 3576 3577 // Find the class template we're specializing 3578 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3579 ClassTemplateDecl *ClassTemplate 3580 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3581 3582 if (!ClassTemplate) { 3583 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3584 << (Name.getAsTemplateDecl() && 3585 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3586 return true; 3587 } 3588 3589 bool isExplicitSpecialization = false; 3590 bool isPartialSpecialization = false; 3591 3592 // Check the validity of the template headers that introduce this 3593 // template. 3594 // FIXME: We probably shouldn't complain about these headers for 3595 // friend declarations. 3596 TemplateParameterList *TemplateParams 3597 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3598 (TemplateParameterList**)TemplateParameterLists.get(), 3599 TemplateParameterLists.size(), 3600 TUK == TUK_Friend, 3601 isExplicitSpecialization); 3602 if (TemplateParams && TemplateParams->size() > 0) { 3603 isPartialSpecialization = true; 3604 3605 // C++ [temp.class.spec]p10: 3606 // The template parameter list of a specialization shall not 3607 // contain default template argument values. 3608 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3609 Decl *Param = TemplateParams->getParam(I); 3610 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3611 if (TTP->hasDefaultArgument()) { 3612 Diag(TTP->getDefaultArgumentLoc(), 3613 diag::err_default_arg_in_partial_spec); 3614 TTP->removeDefaultArgument(); 3615 } 3616 } else if (NonTypeTemplateParmDecl *NTTP 3617 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3618 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3619 Diag(NTTP->getDefaultArgumentLoc(), 3620 diag::err_default_arg_in_partial_spec) 3621 << DefArg->getSourceRange(); 3622 NTTP->setDefaultArgument(0); 3623 DefArg->Destroy(Context); 3624 } 3625 } else { 3626 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3627 if (TTP->hasDefaultArgument()) { 3628 Diag(TTP->getDefaultArgument().getLocation(), 3629 diag::err_default_arg_in_partial_spec) 3630 << TTP->getDefaultArgument().getSourceRange(); 3631 TTP->setDefaultArgument(TemplateArgumentLoc()); 3632 } 3633 } 3634 } 3635 } else if (TemplateParams) { 3636 if (TUK == TUK_Friend) 3637 Diag(KWLoc, diag::err_template_spec_friend) 3638 << FixItHint::CreateRemoval( 3639 SourceRange(TemplateParams->getTemplateLoc(), 3640 TemplateParams->getRAngleLoc())) 3641 << SourceRange(LAngleLoc, RAngleLoc); 3642 else 3643 isExplicitSpecialization = true; 3644 } else if (TUK != TUK_Friend) { 3645 Diag(KWLoc, diag::err_template_spec_needs_header) 3646 << FixItHint::CreateInsertion(KWLoc, "template<> "); 3647 isExplicitSpecialization = true; 3648 } 3649 3650 // Check that the specialization uses the same tag kind as the 3651 // original template. 3652 TagDecl::TagKind Kind; 3653 switch (TagSpec) { 3654 default: assert(0 && "Unknown tag type!"); 3655 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3656 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3657 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3658 } 3659 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3660 Kind, KWLoc, 3661 *ClassTemplate->getIdentifier())) { 3662 Diag(KWLoc, diag::err_use_with_wrong_tag) 3663 << ClassTemplate 3664 << FixItHint::CreateReplacement(KWLoc, 3665 ClassTemplate->getTemplatedDecl()->getKindName()); 3666 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3667 diag::note_previous_use); 3668 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3669 } 3670 3671 // Translate the parser's template argument list in our AST format. 3672 TemplateArgumentListInfo TemplateArgs; 3673 TemplateArgs.setLAngleLoc(LAngleLoc); 3674 TemplateArgs.setRAngleLoc(RAngleLoc); 3675 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3676 3677 // Check that the template argument list is well-formed for this 3678 // template. 3679 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3680 TemplateArgs.size()); 3681 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3682 TemplateArgs, false, Converted)) 3683 return true; 3684 3685 assert((Converted.structuredSize() == 3686 ClassTemplate->getTemplateParameters()->size()) && 3687 "Converted template argument list is too short!"); 3688 3689 // Find the class template (partial) specialization declaration that 3690 // corresponds to these arguments. 3691 llvm::FoldingSetNodeID ID; 3692 if (isPartialSpecialization) { 3693 bool MirrorsPrimaryTemplate; 3694 if (CheckClassTemplatePartialSpecializationArgs( 3695 ClassTemplate->getTemplateParameters(), 3696 Converted, MirrorsPrimaryTemplate)) 3697 return true; 3698 3699 if (MirrorsPrimaryTemplate) { 3700 // C++ [temp.class.spec]p9b3: 3701 // 3702 // -- The argument list of the specialization shall not be identical 3703 // to the implicit argument list of the primary template. 3704 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3705 << (TUK == TUK_Definition) 3706 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 3707 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3708 ClassTemplate->getIdentifier(), 3709 TemplateNameLoc, 3710 Attr, 3711 TemplateParams, 3712 AS_none); 3713 } 3714 3715 // FIXME: Diagnose friend partial specializations 3716 3717 if (!Name.isDependent() && 3718 !TemplateSpecializationType::anyDependentTemplateArguments( 3719 TemplateArgs.getArgumentArray(), 3720 TemplateArgs.size())) { 3721 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3722 << ClassTemplate->getDeclName(); 3723 isPartialSpecialization = false; 3724 } else { 3725 // FIXME: Template parameter list matters, too 3726 ClassTemplatePartialSpecializationDecl::Profile(ID, 3727 Converted.getFlatArguments(), 3728 Converted.flatSize(), 3729 Context); 3730 } 3731 } 3732 3733 if (!isPartialSpecialization) 3734 ClassTemplateSpecializationDecl::Profile(ID, 3735 Converted.getFlatArguments(), 3736 Converted.flatSize(), 3737 Context); 3738 void *InsertPos = 0; 3739 ClassTemplateSpecializationDecl *PrevDecl = 0; 3740 3741 if (isPartialSpecialization) 3742 PrevDecl 3743 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3744 InsertPos); 3745 else 3746 PrevDecl 3747 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3748 3749 ClassTemplateSpecializationDecl *Specialization = 0; 3750 3751 // Check whether we can declare a class template specialization in 3752 // the current scope. 3753 if (TUK != TUK_Friend && 3754 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3755 TemplateNameLoc, 3756 isPartialSpecialization)) 3757 return true; 3758 3759 // The canonical type 3760 QualType CanonType; 3761 if (PrevDecl && 3762 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3763 TUK == TUK_Friend)) { 3764 // Since the only prior class template specialization with these 3765 // arguments was referenced but not declared, or we're only 3766 // referencing this specialization as a friend, reuse that 3767 // declaration node as our own, updating its source location to 3768 // reflect our new declaration. 3769 Specialization = PrevDecl; 3770 Specialization->setLocation(TemplateNameLoc); 3771 PrevDecl = 0; 3772 CanonType = Context.getTypeDeclType(Specialization); 3773 } else if (isPartialSpecialization) { 3774 // Build the canonical type that describes the converted template 3775 // arguments of the class template partial specialization. 3776 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3777 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3778 Converted.getFlatArguments(), 3779 Converted.flatSize()); 3780 3781 // Create a new class template partial specialization declaration node. 3782 ClassTemplatePartialSpecializationDecl *PrevPartial 3783 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3784 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 3785 : ClassTemplate->getPartialSpecializations().size(); 3786 ClassTemplatePartialSpecializationDecl *Partial 3787 = ClassTemplatePartialSpecializationDecl::Create(Context, 3788 ClassTemplate->getDeclContext(), 3789 TemplateNameLoc, 3790 TemplateParams, 3791 ClassTemplate, 3792 Converted, 3793 TemplateArgs, 3794 CanonType, 3795 PrevPartial, 3796 SequenceNumber); 3797 SetNestedNameSpecifier(Partial, SS); 3798 3799 if (PrevPartial) { 3800 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3801 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3802 } else { 3803 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3804 } 3805 Specialization = Partial; 3806 3807 // If we are providing an explicit specialization of a member class 3808 // template specialization, make a note of that. 3809 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3810 PrevPartial->setMemberSpecialization(); 3811 3812 // Check that all of the template parameters of the class template 3813 // partial specialization are deducible from the template 3814 // arguments. If not, this class template partial specialization 3815 // will never be used. 3816 llvm::SmallVector<bool, 8> DeducibleParams; 3817 DeducibleParams.resize(TemplateParams->size()); 3818 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3819 TemplateParams->getDepth(), 3820 DeducibleParams); 3821 unsigned NumNonDeducible = 0; 3822 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3823 if (!DeducibleParams[I]) 3824 ++NumNonDeducible; 3825 3826 if (NumNonDeducible) { 3827 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3828 << (NumNonDeducible > 1) 3829 << SourceRange(TemplateNameLoc, RAngleLoc); 3830 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3831 if (!DeducibleParams[I]) { 3832 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3833 if (Param->getDeclName()) 3834 Diag(Param->getLocation(), 3835 diag::note_partial_spec_unused_parameter) 3836 << Param->getDeclName(); 3837 else 3838 Diag(Param->getLocation(), 3839 diag::note_partial_spec_unused_parameter) 3840 << std::string("<anonymous>"); 3841 } 3842 } 3843 } 3844 } else { 3845 // Create a new class template specialization declaration node for 3846 // this explicit specialization or friend declaration. 3847 Specialization 3848 = ClassTemplateSpecializationDecl::Create(Context, 3849 ClassTemplate->getDeclContext(), 3850 TemplateNameLoc, 3851 ClassTemplate, 3852 Converted, 3853 PrevDecl); 3854 SetNestedNameSpecifier(Specialization, SS); 3855 3856 if (PrevDecl) { 3857 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3858 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3859 } else { 3860 ClassTemplate->getSpecializations().InsertNode(Specialization, 3861 InsertPos); 3862 } 3863 3864 CanonType = Context.getTypeDeclType(Specialization); 3865 } 3866 3867 // C++ [temp.expl.spec]p6: 3868 // If a template, a member template or the member of a class template is 3869 // explicitly specialized then that specialization shall be declared 3870 // before the first use of that specialization that would cause an implicit 3871 // instantiation to take place, in every translation unit in which such a 3872 // use occurs; no diagnostic is required. 3873 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3874 bool Okay = false; 3875 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3876 // Is there any previous explicit specialization declaration? 3877 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3878 Okay = true; 3879 break; 3880 } 3881 } 3882 3883 if (!Okay) { 3884 SourceRange Range(TemplateNameLoc, RAngleLoc); 3885 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3886 << Context.getTypeDeclType(Specialization) << Range; 3887 3888 Diag(PrevDecl->getPointOfInstantiation(), 3889 diag::note_instantiation_required_here) 3890 << (PrevDecl->getTemplateSpecializationKind() 3891 != TSK_ImplicitInstantiation); 3892 return true; 3893 } 3894 } 3895 3896 // If this is not a friend, note that this is an explicit specialization. 3897 if (TUK != TUK_Friend) 3898 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3899 3900 // Check that this isn't a redefinition of this specialization. 3901 if (TUK == TUK_Definition) { 3902 if (RecordDecl *Def = Specialization->getDefinition()) { 3903 SourceRange Range(TemplateNameLoc, RAngleLoc); 3904 Diag(TemplateNameLoc, diag::err_redefinition) 3905 << Context.getTypeDeclType(Specialization) << Range; 3906 Diag(Def->getLocation(), diag::note_previous_definition); 3907 Specialization->setInvalidDecl(); 3908 return true; 3909 } 3910 } 3911 3912 // Build the fully-sugared type for this class template 3913 // specialization as the user wrote in the specialization 3914 // itself. This means that we'll pretty-print the type retrieved 3915 // from the specialization's declaration the way that the user 3916 // actually wrote the specialization, rather than formatting the 3917 // name based on the "canonical" representation used to store the 3918 // template arguments in the specialization. 3919 TypeSourceInfo *WrittenTy 3920 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3921 TemplateArgs, CanonType); 3922 if (TUK != TUK_Friend) 3923 Specialization->setTypeAsWritten(WrittenTy); 3924 TemplateArgsIn.release(); 3925 3926 // C++ [temp.expl.spec]p9: 3927 // A template explicit specialization is in the scope of the 3928 // namespace in which the template was defined. 3929 // 3930 // We actually implement this paragraph where we set the semantic 3931 // context (in the creation of the ClassTemplateSpecializationDecl), 3932 // but we also maintain the lexical context where the actual 3933 // definition occurs. 3934 Specialization->setLexicalDeclContext(CurContext); 3935 3936 // We may be starting the definition of this specialization. 3937 if (TUK == TUK_Definition) 3938 Specialization->startDefinition(); 3939 3940 if (TUK == TUK_Friend) { 3941 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3942 TemplateNameLoc, 3943 WrittenTy, 3944 /*FIXME:*/KWLoc); 3945 Friend->setAccess(AS_public); 3946 CurContext->addDecl(Friend); 3947 } else { 3948 // Add the specialization into its lexical context, so that it can 3949 // be seen when iterating through the list of declarations in that 3950 // context. However, specializations are not found by name lookup. 3951 CurContext->addDecl(Specialization); 3952 } 3953 return DeclPtrTy::make(Specialization); 3954} 3955 3956Sema::DeclPtrTy 3957Sema::ActOnTemplateDeclarator(Scope *S, 3958 MultiTemplateParamsArg TemplateParameterLists, 3959 Declarator &D) { 3960 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3961} 3962 3963Sema::DeclPtrTy 3964Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3965 MultiTemplateParamsArg TemplateParameterLists, 3966 Declarator &D) { 3967 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3968 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3969 "Not a function declarator!"); 3970 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3971 3972 if (FTI.hasPrototype) { 3973 // FIXME: Diagnose arguments without names in C. 3974 } 3975 3976 Scope *ParentScope = FnBodyScope->getParent(); 3977 3978 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3979 move(TemplateParameterLists), 3980 /*IsFunctionDefinition=*/true); 3981 if (FunctionTemplateDecl *FunctionTemplate 3982 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3983 return ActOnStartOfFunctionDef(FnBodyScope, 3984 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3985 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3986 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3987 return DeclPtrTy(); 3988} 3989 3990/// \brief Strips various properties off an implicit instantiation 3991/// that has just been explicitly specialized. 3992static void StripImplicitInstantiation(NamedDecl *D) { 3993 D->invalidateAttrs(); 3994 3995 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3996 FD->setInlineSpecified(false); 3997 } 3998} 3999 4000/// \brief Diagnose cases where we have an explicit template specialization 4001/// before/after an explicit template instantiation, producing diagnostics 4002/// for those cases where they are required and determining whether the 4003/// new specialization/instantiation will have any effect. 4004/// 4005/// \param NewLoc the location of the new explicit specialization or 4006/// instantiation. 4007/// 4008/// \param NewTSK the kind of the new explicit specialization or instantiation. 4009/// 4010/// \param PrevDecl the previous declaration of the entity. 4011/// 4012/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 4013/// 4014/// \param PrevPointOfInstantiation if valid, indicates where the previus 4015/// declaration was instantiated (either implicitly or explicitly). 4016/// 4017/// \param SuppressNew will be set to true to indicate that the new 4018/// specialization or instantiation has no effect and should be ignored. 4019/// 4020/// \returns true if there was an error that should prevent the introduction of 4021/// the new declaration into the AST, false otherwise. 4022bool 4023Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 4024 TemplateSpecializationKind NewTSK, 4025 NamedDecl *PrevDecl, 4026 TemplateSpecializationKind PrevTSK, 4027 SourceLocation PrevPointOfInstantiation, 4028 bool &SuppressNew) { 4029 SuppressNew = false; 4030 4031 switch (NewTSK) { 4032 case TSK_Undeclared: 4033 case TSK_ImplicitInstantiation: 4034 assert(false && "Don't check implicit instantiations here"); 4035 return false; 4036 4037 case TSK_ExplicitSpecialization: 4038 switch (PrevTSK) { 4039 case TSK_Undeclared: 4040 case TSK_ExplicitSpecialization: 4041 // Okay, we're just specializing something that is either already 4042 // explicitly specialized or has merely been mentioned without any 4043 // instantiation. 4044 return false; 4045 4046 case TSK_ImplicitInstantiation: 4047 if (PrevPointOfInstantiation.isInvalid()) { 4048 // The declaration itself has not actually been instantiated, so it is 4049 // still okay to specialize it. 4050 StripImplicitInstantiation(PrevDecl); 4051 return false; 4052 } 4053 // Fall through 4054 4055 case TSK_ExplicitInstantiationDeclaration: 4056 case TSK_ExplicitInstantiationDefinition: 4057 assert((PrevTSK == TSK_ImplicitInstantiation || 4058 PrevPointOfInstantiation.isValid()) && 4059 "Explicit instantiation without point of instantiation?"); 4060 4061 // C++ [temp.expl.spec]p6: 4062 // If a template, a member template or the member of a class template 4063 // is explicitly specialized then that specialization shall be declared 4064 // before the first use of that specialization that would cause an 4065 // implicit instantiation to take place, in every translation unit in 4066 // which such a use occurs; no diagnostic is required. 4067 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 4068 // Is there any previous explicit specialization declaration? 4069 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 4070 return false; 4071 } 4072 4073 Diag(NewLoc, diag::err_specialization_after_instantiation) 4074 << PrevDecl; 4075 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 4076 << (PrevTSK != TSK_ImplicitInstantiation); 4077 4078 return true; 4079 } 4080 break; 4081 4082 case TSK_ExplicitInstantiationDeclaration: 4083 switch (PrevTSK) { 4084 case TSK_ExplicitInstantiationDeclaration: 4085 // This explicit instantiation declaration is redundant (that's okay). 4086 SuppressNew = true; 4087 return false; 4088 4089 case TSK_Undeclared: 4090 case TSK_ImplicitInstantiation: 4091 // We're explicitly instantiating something that may have already been 4092 // implicitly instantiated; that's fine. 4093 return false; 4094 4095 case TSK_ExplicitSpecialization: 4096 // C++0x [temp.explicit]p4: 4097 // For a given set of template parameters, if an explicit instantiation 4098 // of a template appears after a declaration of an explicit 4099 // specialization for that template, the explicit instantiation has no 4100 // effect. 4101 SuppressNew = true; 4102 return false; 4103 4104 case TSK_ExplicitInstantiationDefinition: 4105 // C++0x [temp.explicit]p10: 4106 // If an entity is the subject of both an explicit instantiation 4107 // declaration and an explicit instantiation definition in the same 4108 // translation unit, the definition shall follow the declaration. 4109 Diag(NewLoc, 4110 diag::err_explicit_instantiation_declaration_after_definition); 4111 Diag(PrevPointOfInstantiation, 4112 diag::note_explicit_instantiation_definition_here); 4113 assert(PrevPointOfInstantiation.isValid() && 4114 "Explicit instantiation without point of instantiation?"); 4115 SuppressNew = true; 4116 return false; 4117 } 4118 break; 4119 4120 case TSK_ExplicitInstantiationDefinition: 4121 switch (PrevTSK) { 4122 case TSK_Undeclared: 4123 case TSK_ImplicitInstantiation: 4124 // We're explicitly instantiating something that may have already been 4125 // implicitly instantiated; that's fine. 4126 return false; 4127 4128 case TSK_ExplicitSpecialization: 4129 // C++ DR 259, C++0x [temp.explicit]p4: 4130 // For a given set of template parameters, if an explicit 4131 // instantiation of a template appears after a declaration of 4132 // an explicit specialization for that template, the explicit 4133 // instantiation has no effect. 4134 // 4135 // In C++98/03 mode, we only give an extension warning here, because it 4136 // is not harmful to try to explicitly instantiate something that 4137 // has been explicitly specialized. 4138 if (!getLangOptions().CPlusPlus0x) { 4139 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 4140 << PrevDecl; 4141 Diag(PrevDecl->getLocation(), 4142 diag::note_previous_template_specialization); 4143 } 4144 SuppressNew = true; 4145 return false; 4146 4147 case TSK_ExplicitInstantiationDeclaration: 4148 // We're explicity instantiating a definition for something for which we 4149 // were previously asked to suppress instantiations. That's fine. 4150 return false; 4151 4152 case TSK_ExplicitInstantiationDefinition: 4153 // C++0x [temp.spec]p5: 4154 // For a given template and a given set of template-arguments, 4155 // - an explicit instantiation definition shall appear at most once 4156 // in a program, 4157 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 4158 << PrevDecl; 4159 Diag(PrevPointOfInstantiation, 4160 diag::note_previous_explicit_instantiation); 4161 SuppressNew = true; 4162 return false; 4163 } 4164 break; 4165 } 4166 4167 assert(false && "Missing specialization/instantiation case?"); 4168 4169 return false; 4170} 4171 4172/// \brief Perform semantic analysis for the given dependent function 4173/// template specialization. The only possible way to get a dependent 4174/// function template specialization is with a friend declaration, 4175/// like so: 4176/// 4177/// template <class T> void foo(T); 4178/// template <class T> class A { 4179/// friend void foo<>(T); 4180/// }; 4181/// 4182/// There really isn't any useful analysis we can do here, so we 4183/// just store the information. 4184bool 4185Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 4186 const TemplateArgumentListInfo &ExplicitTemplateArgs, 4187 LookupResult &Previous) { 4188 // Remove anything from Previous that isn't a function template in 4189 // the correct context. 4190 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4191 LookupResult::Filter F = Previous.makeFilter(); 4192 while (F.hasNext()) { 4193 NamedDecl *D = F.next()->getUnderlyingDecl(); 4194 if (!isa<FunctionTemplateDecl>(D) || 4195 !FDLookupContext->Equals(D->getDeclContext()->getLookupContext())) 4196 F.erase(); 4197 } 4198 F.done(); 4199 4200 // Should this be diagnosed here? 4201 if (Previous.empty()) return true; 4202 4203 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 4204 ExplicitTemplateArgs); 4205 return false; 4206} 4207 4208/// \brief Perform semantic analysis for the given function template 4209/// specialization. 4210/// 4211/// This routine performs all of the semantic analysis required for an 4212/// explicit function template specialization. On successful completion, 4213/// the function declaration \p FD will become a function template 4214/// specialization. 4215/// 4216/// \param FD the function declaration, which will be updated to become a 4217/// function template specialization. 4218/// 4219/// \param HasExplicitTemplateArgs whether any template arguments were 4220/// explicitly provided. 4221/// 4222/// \param LAngleLoc the location of the left angle bracket ('<'), if 4223/// template arguments were explicitly provided. 4224/// 4225/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 4226/// if any. 4227/// 4228/// \param NumExplicitTemplateArgs the number of explicitly-provided template 4229/// arguments. This number may be zero even when HasExplicitTemplateArgs is 4230/// true as in, e.g., \c void sort<>(char*, char*); 4231/// 4232/// \param RAngleLoc the location of the right angle bracket ('>'), if 4233/// template arguments were explicitly provided. 4234/// 4235/// \param PrevDecl the set of declarations that 4236bool 4237Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 4238 const TemplateArgumentListInfo *ExplicitTemplateArgs, 4239 LookupResult &Previous) { 4240 // The set of function template specializations that could match this 4241 // explicit function template specialization. 4242 UnresolvedSet<8> Candidates; 4243 4244 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 4245 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4246 I != E; ++I) { 4247 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 4248 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 4249 // Only consider templates found within the same semantic lookup scope as 4250 // FD. 4251 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 4252 continue; 4253 4254 // C++ [temp.expl.spec]p11: 4255 // A trailing template-argument can be left unspecified in the 4256 // template-id naming an explicit function template specialization 4257 // provided it can be deduced from the function argument type. 4258 // Perform template argument deduction to determine whether we may be 4259 // specializing this template. 4260 // FIXME: It is somewhat wasteful to build 4261 TemplateDeductionInfo Info(Context, FD->getLocation()); 4262 FunctionDecl *Specialization = 0; 4263 if (TemplateDeductionResult TDK 4264 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 4265 FD->getType(), 4266 Specialization, 4267 Info)) { 4268 // FIXME: Template argument deduction failed; record why it failed, so 4269 // that we can provide nifty diagnostics. 4270 (void)TDK; 4271 continue; 4272 } 4273 4274 // Record this candidate. 4275 Candidates.addDecl(Specialization, I.getAccess()); 4276 } 4277 } 4278 4279 // Find the most specialized function template. 4280 UnresolvedSetIterator Result 4281 = getMostSpecialized(Candidates.begin(), Candidates.end(), 4282 TPOC_Other, FD->getLocation(), 4283 PDiag(diag::err_function_template_spec_no_match) 4284 << FD->getDeclName(), 4285 PDiag(diag::err_function_template_spec_ambiguous) 4286 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 4287 PDiag(diag::note_function_template_spec_matched)); 4288 if (Result == Candidates.end()) 4289 return true; 4290 4291 // Ignore access information; it doesn't figure into redeclaration checking. 4292 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4293 Specialization->setLocation(FD->getLocation()); 4294 4295 // FIXME: Check if the prior specialization has a point of instantiation. 4296 // If so, we have run afoul of . 4297 4298 // If this is a friend declaration, then we're not really declaring 4299 // an explicit specialization. 4300 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 4301 4302 // Check the scope of this explicit specialization. 4303 if (!isFriend && 4304 CheckTemplateSpecializationScope(*this, 4305 Specialization->getPrimaryTemplate(), 4306 Specialization, FD->getLocation(), 4307 false)) 4308 return true; 4309 4310 // C++ [temp.expl.spec]p6: 4311 // If a template, a member template or the member of a class template is 4312 // explicitly specialized then that specialization shall be declared 4313 // before the first use of that specialization that would cause an implicit 4314 // instantiation to take place, in every translation unit in which such a 4315 // use occurs; no diagnostic is required. 4316 FunctionTemplateSpecializationInfo *SpecInfo 4317 = Specialization->getTemplateSpecializationInfo(); 4318 assert(SpecInfo && "Function template specialization info missing?"); 4319 4320 bool SuppressNew = false; 4321 if (!isFriend && 4322 CheckSpecializationInstantiationRedecl(FD->getLocation(), 4323 TSK_ExplicitSpecialization, 4324 Specialization, 4325 SpecInfo->getTemplateSpecializationKind(), 4326 SpecInfo->getPointOfInstantiation(), 4327 SuppressNew)) 4328 return true; 4329 4330 // Mark the prior declaration as an explicit specialization, so that later 4331 // clients know that this is an explicit specialization. 4332 if (!isFriend) 4333 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 4334 4335 // Turn the given function declaration into a function template 4336 // specialization, with the template arguments from the previous 4337 // specialization. 4338 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 4339 new (Context) TemplateArgumentList( 4340 *Specialization->getTemplateSpecializationArgs()), 4341 /*InsertPos=*/0, 4342 SpecInfo->getTemplateSpecializationKind()); 4343 4344 // The "previous declaration" for this function template specialization is 4345 // the prior function template specialization. 4346 Previous.clear(); 4347 Previous.addDecl(Specialization); 4348 return false; 4349} 4350 4351/// \brief Perform semantic analysis for the given non-template member 4352/// specialization. 4353/// 4354/// This routine performs all of the semantic analysis required for an 4355/// explicit member function specialization. On successful completion, 4356/// the function declaration \p FD will become a member function 4357/// specialization. 4358/// 4359/// \param Member the member declaration, which will be updated to become a 4360/// specialization. 4361/// 4362/// \param Previous the set of declarations, one of which may be specialized 4363/// by this function specialization; the set will be modified to contain the 4364/// redeclared member. 4365bool 4366Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4367 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4368 4369 // Try to find the member we are instantiating. 4370 NamedDecl *Instantiation = 0; 4371 NamedDecl *InstantiatedFrom = 0; 4372 MemberSpecializationInfo *MSInfo = 0; 4373 4374 if (Previous.empty()) { 4375 // Nowhere to look anyway. 4376 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4377 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4378 I != E; ++I) { 4379 NamedDecl *D = (*I)->getUnderlyingDecl(); 4380 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4381 if (Context.hasSameType(Function->getType(), Method->getType())) { 4382 Instantiation = Method; 4383 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4384 MSInfo = Method->getMemberSpecializationInfo(); 4385 break; 4386 } 4387 } 4388 } 4389 } else if (isa<VarDecl>(Member)) { 4390 VarDecl *PrevVar; 4391 if (Previous.isSingleResult() && 4392 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4393 if (PrevVar->isStaticDataMember()) { 4394 Instantiation = PrevVar; 4395 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4396 MSInfo = PrevVar->getMemberSpecializationInfo(); 4397 } 4398 } else if (isa<RecordDecl>(Member)) { 4399 CXXRecordDecl *PrevRecord; 4400 if (Previous.isSingleResult() && 4401 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4402 Instantiation = PrevRecord; 4403 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4404 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4405 } 4406 } 4407 4408 if (!Instantiation) { 4409 // There is no previous declaration that matches. Since member 4410 // specializations are always out-of-line, the caller will complain about 4411 // this mismatch later. 4412 return false; 4413 } 4414 4415 // If this is a friend, just bail out here before we start turning 4416 // things into explicit specializations. 4417 if (Member->getFriendObjectKind() != Decl::FOK_None) { 4418 // Preserve instantiation information. 4419 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 4420 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 4421 cast<CXXMethodDecl>(InstantiatedFrom), 4422 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 4423 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 4424 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4425 cast<CXXRecordDecl>(InstantiatedFrom), 4426 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 4427 } 4428 4429 Previous.clear(); 4430 Previous.addDecl(Instantiation); 4431 return false; 4432 } 4433 4434 // Make sure that this is a specialization of a member. 4435 if (!InstantiatedFrom) { 4436 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4437 << Member; 4438 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4439 return true; 4440 } 4441 4442 // C++ [temp.expl.spec]p6: 4443 // If a template, a member template or the member of a class template is 4444 // explicitly specialized then that spe- cialization shall be declared 4445 // before the first use of that specialization that would cause an implicit 4446 // instantiation to take place, in every translation unit in which such a 4447 // use occurs; no diagnostic is required. 4448 assert(MSInfo && "Member specialization info missing?"); 4449 4450 bool SuppressNew = false; 4451 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4452 TSK_ExplicitSpecialization, 4453 Instantiation, 4454 MSInfo->getTemplateSpecializationKind(), 4455 MSInfo->getPointOfInstantiation(), 4456 SuppressNew)) 4457 return true; 4458 4459 // Check the scope of this explicit specialization. 4460 if (CheckTemplateSpecializationScope(*this, 4461 InstantiatedFrom, 4462 Instantiation, Member->getLocation(), 4463 false)) 4464 return true; 4465 4466 // Note that this is an explicit instantiation of a member. 4467 // the original declaration to note that it is an explicit specialization 4468 // (if it was previously an implicit instantiation). This latter step 4469 // makes bookkeeping easier. 4470 if (isa<FunctionDecl>(Member)) { 4471 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4472 if (InstantiationFunction->getTemplateSpecializationKind() == 4473 TSK_ImplicitInstantiation) { 4474 InstantiationFunction->setTemplateSpecializationKind( 4475 TSK_ExplicitSpecialization); 4476 InstantiationFunction->setLocation(Member->getLocation()); 4477 } 4478 4479 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4480 cast<CXXMethodDecl>(InstantiatedFrom), 4481 TSK_ExplicitSpecialization); 4482 } else if (isa<VarDecl>(Member)) { 4483 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4484 if (InstantiationVar->getTemplateSpecializationKind() == 4485 TSK_ImplicitInstantiation) { 4486 InstantiationVar->setTemplateSpecializationKind( 4487 TSK_ExplicitSpecialization); 4488 InstantiationVar->setLocation(Member->getLocation()); 4489 } 4490 4491 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4492 cast<VarDecl>(InstantiatedFrom), 4493 TSK_ExplicitSpecialization); 4494 } else { 4495 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4496 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4497 if (InstantiationClass->getTemplateSpecializationKind() == 4498 TSK_ImplicitInstantiation) { 4499 InstantiationClass->setTemplateSpecializationKind( 4500 TSK_ExplicitSpecialization); 4501 InstantiationClass->setLocation(Member->getLocation()); 4502 } 4503 4504 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4505 cast<CXXRecordDecl>(InstantiatedFrom), 4506 TSK_ExplicitSpecialization); 4507 } 4508 4509 // Save the caller the trouble of having to figure out which declaration 4510 // this specialization matches. 4511 Previous.clear(); 4512 Previous.addDecl(Instantiation); 4513 return false; 4514} 4515 4516/// \brief Check the scope of an explicit instantiation. 4517static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4518 SourceLocation InstLoc, 4519 bool WasQualifiedName) { 4520 DeclContext *ExpectedContext 4521 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4522 DeclContext *CurContext = S.CurContext->getLookupContext(); 4523 4524 // C++0x [temp.explicit]p2: 4525 // An explicit instantiation shall appear in an enclosing namespace of its 4526 // template. 4527 // 4528 // This is DR275, which we do not retroactively apply to C++98/03. 4529 if (S.getLangOptions().CPlusPlus0x && 4530 !CurContext->Encloses(ExpectedContext)) { 4531 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4532 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 4533 << D << NS; 4534 else 4535 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 4536 << D; 4537 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4538 return; 4539 } 4540 4541 // C++0x [temp.explicit]p2: 4542 // If the name declared in the explicit instantiation is an unqualified 4543 // name, the explicit instantiation shall appear in the namespace where 4544 // its template is declared or, if that namespace is inline (7.3.1), any 4545 // namespace from its enclosing namespace set. 4546 if (WasQualifiedName) 4547 return; 4548 4549 if (CurContext->Equals(ExpectedContext)) 4550 return; 4551 4552 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4553 << D << ExpectedContext; 4554 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4555} 4556 4557/// \brief Determine whether the given scope specifier has a template-id in it. 4558static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4559 if (!SS.isSet()) 4560 return false; 4561 4562 // C++0x [temp.explicit]p2: 4563 // If the explicit instantiation is for a member function, a member class 4564 // or a static data member of a class template specialization, the name of 4565 // the class template specialization in the qualified-id for the member 4566 // name shall be a simple-template-id. 4567 // 4568 // C++98 has the same restriction, just worded differently. 4569 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4570 NNS; NNS = NNS->getPrefix()) 4571 if (Type *T = NNS->getAsType()) 4572 if (isa<TemplateSpecializationType>(T)) 4573 return true; 4574 4575 return false; 4576} 4577 4578// Explicit instantiation of a class template specialization 4579// FIXME: Implement extern template semantics 4580Sema::DeclResult 4581Sema::ActOnExplicitInstantiation(Scope *S, 4582 SourceLocation ExternLoc, 4583 SourceLocation TemplateLoc, 4584 unsigned TagSpec, 4585 SourceLocation KWLoc, 4586 const CXXScopeSpec &SS, 4587 TemplateTy TemplateD, 4588 SourceLocation TemplateNameLoc, 4589 SourceLocation LAngleLoc, 4590 ASTTemplateArgsPtr TemplateArgsIn, 4591 SourceLocation RAngleLoc, 4592 AttributeList *Attr) { 4593 // Find the class template we're specializing 4594 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4595 ClassTemplateDecl *ClassTemplate 4596 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4597 4598 // Check that the specialization uses the same tag kind as the 4599 // original template. 4600 TagDecl::TagKind Kind; 4601 switch (TagSpec) { 4602 default: assert(0 && "Unknown tag type!"); 4603 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4604 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4605 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4606 } 4607 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4608 Kind, KWLoc, 4609 *ClassTemplate->getIdentifier())) { 4610 Diag(KWLoc, diag::err_use_with_wrong_tag) 4611 << ClassTemplate 4612 << FixItHint::CreateReplacement(KWLoc, 4613 ClassTemplate->getTemplatedDecl()->getKindName()); 4614 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4615 diag::note_previous_use); 4616 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4617 } 4618 4619 // C++0x [temp.explicit]p2: 4620 // There are two forms of explicit instantiation: an explicit instantiation 4621 // definition and an explicit instantiation declaration. An explicit 4622 // instantiation declaration begins with the extern keyword. [...] 4623 TemplateSpecializationKind TSK 4624 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4625 : TSK_ExplicitInstantiationDeclaration; 4626 4627 // Translate the parser's template argument list in our AST format. 4628 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4629 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4630 4631 // Check that the template argument list is well-formed for this 4632 // template. 4633 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4634 TemplateArgs.size()); 4635 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4636 TemplateArgs, false, Converted)) 4637 return true; 4638 4639 assert((Converted.structuredSize() == 4640 ClassTemplate->getTemplateParameters()->size()) && 4641 "Converted template argument list is too short!"); 4642 4643 // Find the class template specialization declaration that 4644 // corresponds to these arguments. 4645 llvm::FoldingSetNodeID ID; 4646 ClassTemplateSpecializationDecl::Profile(ID, 4647 Converted.getFlatArguments(), 4648 Converted.flatSize(), 4649 Context); 4650 void *InsertPos = 0; 4651 ClassTemplateSpecializationDecl *PrevDecl 4652 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4653 4654 // C++0x [temp.explicit]p2: 4655 // [...] An explicit instantiation shall appear in an enclosing 4656 // namespace of its template. [...] 4657 // 4658 // This is C++ DR 275. 4659 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4660 SS.isSet()); 4661 4662 ClassTemplateSpecializationDecl *Specialization = 0; 4663 4664 bool ReusedDecl = false; 4665 if (PrevDecl) { 4666 bool SuppressNew = false; 4667 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4668 PrevDecl, 4669 PrevDecl->getSpecializationKind(), 4670 PrevDecl->getPointOfInstantiation(), 4671 SuppressNew)) 4672 return DeclPtrTy::make(PrevDecl); 4673 4674 if (SuppressNew) 4675 return DeclPtrTy::make(PrevDecl); 4676 4677 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4678 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4679 // Since the only prior class template specialization with these 4680 // arguments was referenced but not declared, reuse that 4681 // declaration node as our own, updating its source location to 4682 // reflect our new declaration. 4683 Specialization = PrevDecl; 4684 Specialization->setLocation(TemplateNameLoc); 4685 PrevDecl = 0; 4686 ReusedDecl = true; 4687 } 4688 } 4689 4690 if (!Specialization) { 4691 // Create a new class template specialization declaration node for 4692 // this explicit specialization. 4693 Specialization 4694 = ClassTemplateSpecializationDecl::Create(Context, 4695 ClassTemplate->getDeclContext(), 4696 TemplateNameLoc, 4697 ClassTemplate, 4698 Converted, PrevDecl); 4699 SetNestedNameSpecifier(Specialization, SS); 4700 4701 if (PrevDecl) { 4702 // Remove the previous declaration from the folding set, since we want 4703 // to introduce a new declaration. 4704 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4705 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4706 } 4707 4708 // Insert the new specialization. 4709 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4710 } 4711 4712 // Build the fully-sugared type for this explicit instantiation as 4713 // the user wrote in the explicit instantiation itself. This means 4714 // that we'll pretty-print the type retrieved from the 4715 // specialization's declaration the way that the user actually wrote 4716 // the explicit instantiation, rather than formatting the name based 4717 // on the "canonical" representation used to store the template 4718 // arguments in the specialization. 4719 TypeSourceInfo *WrittenTy 4720 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4721 TemplateArgs, 4722 Context.getTypeDeclType(Specialization)); 4723 Specialization->setTypeAsWritten(WrittenTy); 4724 TemplateArgsIn.release(); 4725 4726 if (!ReusedDecl) { 4727 // Add the explicit instantiation into its lexical context. However, 4728 // since explicit instantiations are never found by name lookup, we 4729 // just put it into the declaration context directly. 4730 Specialization->setLexicalDeclContext(CurContext); 4731 CurContext->addDecl(Specialization); 4732 } 4733 4734 // C++ [temp.explicit]p3: 4735 // A definition of a class template or class member template 4736 // shall be in scope at the point of the explicit instantiation of 4737 // the class template or class member template. 4738 // 4739 // This check comes when we actually try to perform the 4740 // instantiation. 4741 ClassTemplateSpecializationDecl *Def 4742 = cast_or_null<ClassTemplateSpecializationDecl>( 4743 Specialization->getDefinition()); 4744 if (!Def) 4745 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4746 4747 // Instantiate the members of this class template specialization. 4748 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4749 Specialization->getDefinition()); 4750 if (Def) { 4751 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 4752 4753 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 4754 // TSK_ExplicitInstantiationDefinition 4755 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 4756 TSK == TSK_ExplicitInstantiationDefinition) 4757 Def->setTemplateSpecializationKind(TSK); 4758 4759 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4760 } 4761 4762 return DeclPtrTy::make(Specialization); 4763} 4764 4765// Explicit instantiation of a member class of a class template. 4766Sema::DeclResult 4767Sema::ActOnExplicitInstantiation(Scope *S, 4768 SourceLocation ExternLoc, 4769 SourceLocation TemplateLoc, 4770 unsigned TagSpec, 4771 SourceLocation KWLoc, 4772 CXXScopeSpec &SS, 4773 IdentifierInfo *Name, 4774 SourceLocation NameLoc, 4775 AttributeList *Attr) { 4776 4777 bool Owned = false; 4778 bool IsDependent = false; 4779 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4780 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4781 MultiTemplateParamsArg(*this, 0, 0), 4782 Owned, IsDependent); 4783 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4784 4785 if (!TagD) 4786 return true; 4787 4788 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4789 if (Tag->isEnum()) { 4790 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4791 << Context.getTypeDeclType(Tag); 4792 return true; 4793 } 4794 4795 if (Tag->isInvalidDecl()) 4796 return true; 4797 4798 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4799 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4800 if (!Pattern) { 4801 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4802 << Context.getTypeDeclType(Record); 4803 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4804 return true; 4805 } 4806 4807 // C++0x [temp.explicit]p2: 4808 // If the explicit instantiation is for a class or member class, the 4809 // elaborated-type-specifier in the declaration shall include a 4810 // simple-template-id. 4811 // 4812 // C++98 has the same restriction, just worded differently. 4813 if (!ScopeSpecifierHasTemplateId(SS)) 4814 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4815 << Record << SS.getRange(); 4816 4817 // C++0x [temp.explicit]p2: 4818 // There are two forms of explicit instantiation: an explicit instantiation 4819 // definition and an explicit instantiation declaration. An explicit 4820 // instantiation declaration begins with the extern keyword. [...] 4821 TemplateSpecializationKind TSK 4822 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4823 : TSK_ExplicitInstantiationDeclaration; 4824 4825 // C++0x [temp.explicit]p2: 4826 // [...] An explicit instantiation shall appear in an enclosing 4827 // namespace of its template. [...] 4828 // 4829 // This is C++ DR 275. 4830 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4831 4832 // Verify that it is okay to explicitly instantiate here. 4833 CXXRecordDecl *PrevDecl 4834 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4835 if (!PrevDecl && Record->getDefinition()) 4836 PrevDecl = Record; 4837 if (PrevDecl) { 4838 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4839 bool SuppressNew = false; 4840 assert(MSInfo && "No member specialization information?"); 4841 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4842 PrevDecl, 4843 MSInfo->getTemplateSpecializationKind(), 4844 MSInfo->getPointOfInstantiation(), 4845 SuppressNew)) 4846 return true; 4847 if (SuppressNew) 4848 return TagD; 4849 } 4850 4851 CXXRecordDecl *RecordDef 4852 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4853 if (!RecordDef) { 4854 // C++ [temp.explicit]p3: 4855 // A definition of a member class of a class template shall be in scope 4856 // at the point of an explicit instantiation of the member class. 4857 CXXRecordDecl *Def 4858 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4859 if (!Def) { 4860 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4861 << 0 << Record->getDeclName() << Record->getDeclContext(); 4862 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4863 << Pattern; 4864 return true; 4865 } else { 4866 if (InstantiateClass(NameLoc, Record, Def, 4867 getTemplateInstantiationArgs(Record), 4868 TSK)) 4869 return true; 4870 4871 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4872 if (!RecordDef) 4873 return true; 4874 } 4875 } 4876 4877 // Instantiate all of the members of the class. 4878 InstantiateClassMembers(NameLoc, RecordDef, 4879 getTemplateInstantiationArgs(Record), TSK); 4880 4881 // FIXME: We don't have any representation for explicit instantiations of 4882 // member classes. Such a representation is not needed for compilation, but it 4883 // should be available for clients that want to see all of the declarations in 4884 // the source code. 4885 return TagD; 4886} 4887 4888Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4889 SourceLocation ExternLoc, 4890 SourceLocation TemplateLoc, 4891 Declarator &D) { 4892 // Explicit instantiations always require a name. 4893 DeclarationName Name = GetNameForDeclarator(D); 4894 if (!Name) { 4895 if (!D.isInvalidType()) 4896 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4897 diag::err_explicit_instantiation_requires_name) 4898 << D.getDeclSpec().getSourceRange() 4899 << D.getSourceRange(); 4900 4901 return true; 4902 } 4903 4904 // The scope passed in may not be a decl scope. Zip up the scope tree until 4905 // we find one that is. 4906 while ((S->getFlags() & Scope::DeclScope) == 0 || 4907 (S->getFlags() & Scope::TemplateParamScope) != 0) 4908 S = S->getParent(); 4909 4910 // Determine the type of the declaration. 4911 QualType R = GetTypeForDeclarator(D, S, 0); 4912 if (R.isNull()) 4913 return true; 4914 4915 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4916 // Cannot explicitly instantiate a typedef. 4917 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4918 << Name; 4919 return true; 4920 } 4921 4922 // C++0x [temp.explicit]p1: 4923 // [...] An explicit instantiation of a function template shall not use the 4924 // inline or constexpr specifiers. 4925 // Presumably, this also applies to member functions of class templates as 4926 // well. 4927 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4928 Diag(D.getDeclSpec().getInlineSpecLoc(), 4929 diag::err_explicit_instantiation_inline) 4930 <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4931 4932 // FIXME: check for constexpr specifier. 4933 4934 // C++0x [temp.explicit]p2: 4935 // There are two forms of explicit instantiation: an explicit instantiation 4936 // definition and an explicit instantiation declaration. An explicit 4937 // instantiation declaration begins with the extern keyword. [...] 4938 TemplateSpecializationKind TSK 4939 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4940 : TSK_ExplicitInstantiationDeclaration; 4941 4942 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4943 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4944 4945 if (!R->isFunctionType()) { 4946 // C++ [temp.explicit]p1: 4947 // A [...] static data member of a class template can be explicitly 4948 // instantiated from the member definition associated with its class 4949 // template. 4950 if (Previous.isAmbiguous()) 4951 return true; 4952 4953 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4954 if (!Prev || !Prev->isStaticDataMember()) { 4955 // We expect to see a data data member here. 4956 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4957 << Name; 4958 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4959 P != PEnd; ++P) 4960 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4961 return true; 4962 } 4963 4964 if (!Prev->getInstantiatedFromStaticDataMember()) { 4965 // FIXME: Check for explicit specialization? 4966 Diag(D.getIdentifierLoc(), 4967 diag::err_explicit_instantiation_data_member_not_instantiated) 4968 << Prev; 4969 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4970 // FIXME: Can we provide a note showing where this was declared? 4971 return true; 4972 } 4973 4974 // C++0x [temp.explicit]p2: 4975 // If the explicit instantiation is for a member function, a member class 4976 // or a static data member of a class template specialization, the name of 4977 // the class template specialization in the qualified-id for the member 4978 // name shall be a simple-template-id. 4979 // 4980 // C++98 has the same restriction, just worded differently. 4981 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4982 Diag(D.getIdentifierLoc(), 4983 diag::err_explicit_instantiation_without_qualified_id) 4984 << Prev << D.getCXXScopeSpec().getRange(); 4985 4986 // Check the scope of this explicit instantiation. 4987 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4988 4989 // Verify that it is okay to explicitly instantiate here. 4990 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4991 assert(MSInfo && "Missing static data member specialization info?"); 4992 bool SuppressNew = false; 4993 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4994 MSInfo->getTemplateSpecializationKind(), 4995 MSInfo->getPointOfInstantiation(), 4996 SuppressNew)) 4997 return true; 4998 if (SuppressNew) 4999 return DeclPtrTy(); 5000 5001 // Instantiate static data member. 5002 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5003 if (TSK == TSK_ExplicitInstantiationDefinition) 5004 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 5005 /*DefinitionRequired=*/true); 5006 5007 // FIXME: Create an ExplicitInstantiation node? 5008 return DeclPtrTy(); 5009 } 5010 5011 // If the declarator is a template-id, translate the parser's template 5012 // argument list into our AST format. 5013 bool HasExplicitTemplateArgs = false; 5014 TemplateArgumentListInfo TemplateArgs; 5015 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 5016 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 5017 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 5018 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 5019 ASTTemplateArgsPtr TemplateArgsPtr(*this, 5020 TemplateId->getTemplateArgs(), 5021 TemplateId->NumArgs); 5022 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 5023 HasExplicitTemplateArgs = true; 5024 TemplateArgsPtr.release(); 5025 } 5026 5027 // C++ [temp.explicit]p1: 5028 // A [...] function [...] can be explicitly instantiated from its template. 5029 // A member function [...] of a class template can be explicitly 5030 // instantiated from the member definition associated with its class 5031 // template. 5032 UnresolvedSet<8> Matches; 5033 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 5034 P != PEnd; ++P) { 5035 NamedDecl *Prev = *P; 5036 if (!HasExplicitTemplateArgs) { 5037 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 5038 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 5039 Matches.clear(); 5040 5041 Matches.addDecl(Method, P.getAccess()); 5042 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 5043 break; 5044 } 5045 } 5046 } 5047 5048 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 5049 if (!FunTmpl) 5050 continue; 5051 5052 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 5053 FunctionDecl *Specialization = 0; 5054 if (TemplateDeductionResult TDK 5055 = DeduceTemplateArguments(FunTmpl, 5056 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 5057 R, Specialization, Info)) { 5058 // FIXME: Keep track of almost-matches? 5059 (void)TDK; 5060 continue; 5061 } 5062 5063 Matches.addDecl(Specialization, P.getAccess()); 5064 } 5065 5066 // Find the most specialized function template specialization. 5067 UnresolvedSetIterator Result 5068 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 5069 D.getIdentifierLoc(), 5070 PDiag(diag::err_explicit_instantiation_not_known) << Name, 5071 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 5072 PDiag(diag::note_explicit_instantiation_candidate)); 5073 5074 if (Result == Matches.end()) 5075 return true; 5076 5077 // Ignore access control bits, we don't need them for redeclaration checking. 5078 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5079 5080 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 5081 Diag(D.getIdentifierLoc(), 5082 diag::err_explicit_instantiation_member_function_not_instantiated) 5083 << Specialization 5084 << (Specialization->getTemplateSpecializationKind() == 5085 TSK_ExplicitSpecialization); 5086 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 5087 return true; 5088 } 5089 5090 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 5091 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 5092 PrevDecl = Specialization; 5093 5094 if (PrevDecl) { 5095 bool SuppressNew = false; 5096 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 5097 PrevDecl, 5098 PrevDecl->getTemplateSpecializationKind(), 5099 PrevDecl->getPointOfInstantiation(), 5100 SuppressNew)) 5101 return true; 5102 5103 // FIXME: We may still want to build some representation of this 5104 // explicit specialization. 5105 if (SuppressNew) 5106 return DeclPtrTy(); 5107 } 5108 5109 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 5110 5111 if (TSK == TSK_ExplicitInstantiationDefinition) 5112 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 5113 false, /*DefinitionRequired=*/true); 5114 5115 // C++0x [temp.explicit]p2: 5116 // If the explicit instantiation is for a member function, a member class 5117 // or a static data member of a class template specialization, the name of 5118 // the class template specialization in the qualified-id for the member 5119 // name shall be a simple-template-id. 5120 // 5121 // C++98 has the same restriction, just worded differently. 5122 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 5123 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 5124 D.getCXXScopeSpec().isSet() && 5125 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 5126 Diag(D.getIdentifierLoc(), 5127 diag::err_explicit_instantiation_without_qualified_id) 5128 << Specialization << D.getCXXScopeSpec().getRange(); 5129 5130 CheckExplicitInstantiationScope(*this, 5131 FunTmpl? (NamedDecl *)FunTmpl 5132 : Specialization->getInstantiatedFromMemberFunction(), 5133 D.getIdentifierLoc(), 5134 D.getCXXScopeSpec().isSet()); 5135 5136 // FIXME: Create some kind of ExplicitInstantiationDecl here. 5137 return DeclPtrTy(); 5138} 5139 5140Sema::TypeResult 5141Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 5142 const CXXScopeSpec &SS, IdentifierInfo *Name, 5143 SourceLocation TagLoc, SourceLocation NameLoc) { 5144 // This has to hold, because SS is expected to be defined. 5145 assert(Name && "Expected a name in a dependent tag"); 5146 5147 NestedNameSpecifier *NNS 5148 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5149 if (!NNS) 5150 return true; 5151 5152 ElaboratedTypeKeyword Keyword = ETK_None; 5153 switch (TagDecl::getTagKindForTypeSpec(TagSpec)) { 5154 case TagDecl::TK_struct: Keyword = ETK_Struct; break; 5155 case TagDecl::TK_class: Keyword = ETK_Class; break; 5156 case TagDecl::TK_union: Keyword = ETK_Union; break; 5157 case TagDecl::TK_enum: Keyword = ETK_Enum; break; 5158 } 5159 assert(Keyword != ETK_None && "Invalid tag kind!"); 5160 5161 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 5162 Diag(NameLoc, diag::err_dependent_tag_decl) 5163 << (TUK == TUK_Definition) << TagDecl::getTagKindForTypeSpec(TagSpec) 5164 << SS.getRange(); 5165 return true; 5166 } 5167 5168 return Context.getDependentNameType(Keyword, NNS, Name).getAsOpaquePtr(); 5169} 5170 5171static void FillTypeLoc(DependentNameTypeLoc TL, 5172 SourceLocation TypenameLoc, 5173 SourceRange QualifierRange) { 5174 // FIXME: typename, qualifier range 5175 TL.setNameLoc(TypenameLoc); 5176} 5177 5178static void FillTypeLoc(QualifiedNameTypeLoc TL, 5179 SourceLocation TypenameLoc, 5180 SourceRange QualifierRange) { 5181 // FIXME: typename, qualifier range 5182 TL.setNameLoc(TypenameLoc); 5183} 5184 5185Sema::TypeResult 5186Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5187 const IdentifierInfo &II, SourceLocation IdLoc) { 5188 NestedNameSpecifier *NNS 5189 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5190 if (!NNS) 5191 return true; 5192 5193 QualType T = CheckTypenameType(ETK_Typename, NNS, II, 5194 SourceRange(TypenameLoc, IdLoc)); 5195 if (T.isNull()) 5196 return true; 5197 5198 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5199 if (isa<DependentNameType>(T)) { 5200 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5201 // FIXME: fill inner type loc 5202 FillTypeLoc(TL, TypenameLoc, SS.getRange()); 5203 } else { 5204 QualifiedNameTypeLoc TL = cast<QualifiedNameTypeLoc>(TSI->getTypeLoc()); 5205 // FIXME: fill inner type loc 5206 FillTypeLoc(TL, TypenameLoc, SS.getRange()); 5207 } 5208 5209 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5210} 5211 5212Sema::TypeResult 5213Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 5214 SourceLocation TemplateLoc, TypeTy *Ty) { 5215 QualType T = GetTypeFromParser(Ty); 5216 NestedNameSpecifier *NNS 5217 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 5218 const TemplateSpecializationType *TemplateId 5219 = T->getAs<TemplateSpecializationType>(); 5220 assert(TemplateId && "Expected a template specialization type"); 5221 5222 if (computeDeclContext(SS, false)) { 5223 // If we can compute a declaration context, then the "typename" 5224 // keyword was superfluous. Just build a QualifiedNameType to keep 5225 // track of the nested-name-specifier. 5226 5227 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 5228 5229 T = Context.getQualifiedNameType(NNS, T); 5230 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5231 QualifiedNameTypeLoc TL = cast<QualifiedNameTypeLoc>(TSI->getTypeLoc()); 5232 // FIXME: fill inner type loc 5233 FillTypeLoc(TL, TypenameLoc, SS.getRange()); 5234 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5235 } 5236 5237 T = Context.getDependentNameType(ETK_Typename, NNS, TemplateId); 5238 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 5239 DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc()); 5240 // FIXME: fill inner type loc 5241 FillTypeLoc(TL, TypenameLoc, SS.getRange()); 5242 return CreateLocInfoType(T, TSI).getAsOpaquePtr(); 5243} 5244 5245/// \brief Build the type that describes a C++ typename specifier, 5246/// e.g., "typename T::type". 5247QualType 5248Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 5249 NestedNameSpecifier *NNS, const IdentifierInfo &II, 5250 SourceRange Range) { 5251 CXXRecordDecl *CurrentInstantiation = 0; 5252 if (NNS->isDependent()) { 5253 CurrentInstantiation = getCurrentInstantiationOf(NNS); 5254 5255 // If the nested-name-specifier does not refer to the current 5256 // instantiation, then build a typename type. 5257 if (!CurrentInstantiation) 5258 return Context.getDependentNameType(Keyword, NNS, &II); 5259 5260 // The nested-name-specifier refers to the current instantiation, so the 5261 // "typename" keyword itself is superfluous. In C++03, the program is 5262 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 5263 // extraneous "typename" keywords, and we retroactively apply this DR to 5264 // C++03 code. 5265 } 5266 5267 DeclContext *Ctx = 0; 5268 5269 if (CurrentInstantiation) 5270 Ctx = CurrentInstantiation; 5271 else { 5272 CXXScopeSpec SS; 5273 SS.setScopeRep(NNS); 5274 SS.setRange(Range); 5275 if (RequireCompleteDeclContext(SS)) 5276 return QualType(); 5277 5278 Ctx = computeDeclContext(SS); 5279 } 5280 assert(Ctx && "No declaration context?"); 5281 5282 DeclarationName Name(&II); 5283 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 5284 LookupQualifiedName(Result, Ctx); 5285 unsigned DiagID = 0; 5286 Decl *Referenced = 0; 5287 switch (Result.getResultKind()) { 5288 case LookupResult::NotFound: 5289 DiagID = diag::err_typename_nested_not_found; 5290 break; 5291 5292 case LookupResult::NotFoundInCurrentInstantiation: 5293 // Okay, it's a member of an unknown instantiation. 5294 return Context.getDependentNameType(Keyword, NNS, &II); 5295 5296 case LookupResult::Found: 5297 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 5298 // We found a type. Build a QualifiedNameType, since the 5299 // typename-specifier was just sugar. FIXME: Tell 5300 // QualifiedNameType that it has a "typename" prefix. 5301 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 5302 } 5303 5304 DiagID = diag::err_typename_nested_not_type; 5305 Referenced = Result.getFoundDecl(); 5306 break; 5307 5308 case LookupResult::FoundUnresolvedValue: 5309 llvm_unreachable("unresolved using decl in non-dependent context"); 5310 return QualType(); 5311 5312 case LookupResult::FoundOverloaded: 5313 DiagID = diag::err_typename_nested_not_type; 5314 Referenced = *Result.begin(); 5315 break; 5316 5317 case LookupResult::Ambiguous: 5318 return QualType(); 5319 } 5320 5321 // If we get here, it's because name lookup did not find a 5322 // type. Emit an appropriate diagnostic and return an error. 5323 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 5324 if (Referenced) 5325 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 5326 << Name; 5327 return QualType(); 5328} 5329 5330namespace { 5331 // See Sema::RebuildTypeInCurrentInstantiation 5332 class CurrentInstantiationRebuilder 5333 : public TreeTransform<CurrentInstantiationRebuilder> { 5334 SourceLocation Loc; 5335 DeclarationName Entity; 5336 5337 public: 5338 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 5339 5340 CurrentInstantiationRebuilder(Sema &SemaRef, 5341 SourceLocation Loc, 5342 DeclarationName Entity) 5343 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 5344 Loc(Loc), Entity(Entity) { } 5345 5346 /// \brief Determine whether the given type \p T has already been 5347 /// transformed. 5348 /// 5349 /// For the purposes of type reconstruction, a type has already been 5350 /// transformed if it is NULL or if it is not dependent. 5351 bool AlreadyTransformed(QualType T) { 5352 return T.isNull() || !T->isDependentType(); 5353 } 5354 5355 /// \brief Returns the location of the entity whose type is being 5356 /// rebuilt. 5357 SourceLocation getBaseLocation() { return Loc; } 5358 5359 /// \brief Returns the name of the entity whose type is being rebuilt. 5360 DeclarationName getBaseEntity() { return Entity; } 5361 5362 /// \brief Sets the "base" location and entity when that 5363 /// information is known based on another transformation. 5364 void setBase(SourceLocation Loc, DeclarationName Entity) { 5365 this->Loc = Loc; 5366 this->Entity = Entity; 5367 } 5368 5369 /// \brief Transforms an expression by returning the expression itself 5370 /// (an identity function). 5371 /// 5372 /// FIXME: This is completely unsafe; we will need to actually clone the 5373 /// expressions. 5374 Sema::OwningExprResult TransformExpr(Expr *E) { 5375 return getSema().Owned(E->Retain()); 5376 } 5377 5378 /// \brief Transforms a typename type by determining whether the type now 5379 /// refers to a member of the current instantiation, and then 5380 /// type-checking and building a QualifiedNameType (when possible). 5381 QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL, 5382 QualType ObjectType); 5383 }; 5384} 5385 5386QualType 5387CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB, 5388 DependentNameTypeLoc TL, 5389 QualType ObjectType) { 5390 DependentNameType *T = TL.getTypePtr(); 5391 5392 NestedNameSpecifier *NNS 5393 = TransformNestedNameSpecifier(T->getQualifier(), 5394 /*FIXME:*/SourceRange(getBaseLocation()), 5395 ObjectType); 5396 if (!NNS) 5397 return QualType(); 5398 5399 // If the nested-name-specifier did not change, and we cannot compute the 5400 // context corresponding to the nested-name-specifier, then this 5401 // typename type will not change; exit early. 5402 CXXScopeSpec SS; 5403 SS.setRange(SourceRange(getBaseLocation())); 5404 SS.setScopeRep(NNS); 5405 5406 QualType Result; 5407 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 5408 Result = QualType(T, 0); 5409 5410 // Rebuild the typename type, which will probably turn into a 5411 // QualifiedNameType. 5412 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 5413 QualType NewTemplateId 5414 = TransformType(QualType(TemplateId, 0)); 5415 if (NewTemplateId.isNull()) 5416 return QualType(); 5417 5418 if (NNS == T->getQualifier() && 5419 NewTemplateId == QualType(TemplateId, 0)) 5420 Result = QualType(T, 0); 5421 else 5422 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5423 NNS, NewTemplateId); 5424 } else 5425 Result = getDerived().RebuildDependentNameType(T->getKeyword(), 5426 NNS, T->getIdentifier(), 5427 SourceRange(TL.getNameLoc())); 5428 5429 if (Result.isNull()) 5430 return QualType(); 5431 5432 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result); 5433 NewTL.setNameLoc(TL.getNameLoc()); 5434 return Result; 5435} 5436 5437/// \brief Rebuilds a type within the context of the current instantiation. 5438/// 5439/// The type \p T is part of the type of an out-of-line member definition of 5440/// a class template (or class template partial specialization) that was parsed 5441/// and constructed before we entered the scope of the class template (or 5442/// partial specialization thereof). This routine will rebuild that type now 5443/// that we have entered the declarator's scope, which may produce different 5444/// canonical types, e.g., 5445/// 5446/// \code 5447/// template<typename T> 5448/// struct X { 5449/// typedef T* pointer; 5450/// pointer data(); 5451/// }; 5452/// 5453/// template<typename T> 5454/// typename X<T>::pointer X<T>::data() { ... } 5455/// \endcode 5456/// 5457/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 5458/// since we do not know that we can look into X<T> when we parsed the type. 5459/// This function will rebuild the type, performing the lookup of "pointer" 5460/// in X<T> and returning a QualifiedNameType whose canonical type is the same 5461/// as the canonical type of T*, allowing the return types of the out-of-line 5462/// definition and the declaration to match. 5463TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 5464 SourceLocation Loc, 5465 DeclarationName Name) { 5466 if (!T || !T->getType()->isDependentType()) 5467 return T; 5468 5469 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5470 return Rebuilder.TransformType(T); 5471} 5472 5473bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 5474 if (SS.isInvalid()) return true; 5475 5476 NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 5477 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 5478 DeclarationName()); 5479 NestedNameSpecifier *Rebuilt = 5480 Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange()); 5481 if (!Rebuilt) return true; 5482 5483 SS.setScopeRep(Rebuilt); 5484 return false; 5485} 5486 5487/// \brief Produces a formatted string that describes the binding of 5488/// template parameters to template arguments. 5489std::string 5490Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5491 const TemplateArgumentList &Args) { 5492 // FIXME: For variadic templates, we'll need to get the structured list. 5493 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5494 Args.flat_size()); 5495} 5496 5497std::string 5498Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5499 const TemplateArgument *Args, 5500 unsigned NumArgs) { 5501 std::string Result; 5502 5503 if (!Params || Params->size() == 0 || NumArgs == 0) 5504 return Result; 5505 5506 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5507 if (I >= NumArgs) 5508 break; 5509 5510 if (I == 0) 5511 Result += "[with "; 5512 else 5513 Result += ", "; 5514 5515 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5516 Result += Id->getName(); 5517 } else { 5518 Result += '$'; 5519 Result += llvm::utostr(I); 5520 } 5521 5522 Result += " = "; 5523 5524 switch (Args[I].getKind()) { 5525 case TemplateArgument::Null: 5526 Result += "<no value>"; 5527 break; 5528 5529 case TemplateArgument::Type: { 5530 std::string TypeStr; 5531 Args[I].getAsType().getAsStringInternal(TypeStr, 5532 Context.PrintingPolicy); 5533 Result += TypeStr; 5534 break; 5535 } 5536 5537 case TemplateArgument::Declaration: { 5538 bool Unnamed = true; 5539 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5540 if (ND->getDeclName()) { 5541 Unnamed = false; 5542 Result += ND->getNameAsString(); 5543 } 5544 } 5545 5546 if (Unnamed) { 5547 Result += "<anonymous>"; 5548 } 5549 break; 5550 } 5551 5552 case TemplateArgument::Template: { 5553 std::string Str; 5554 llvm::raw_string_ostream OS(Str); 5555 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5556 Result += OS.str(); 5557 break; 5558 } 5559 5560 case TemplateArgument::Integral: { 5561 Result += Args[I].getAsIntegral()->toString(10); 5562 break; 5563 } 5564 5565 case TemplateArgument::Expression: { 5566 // FIXME: This is non-optimal, since we're regurgitating the 5567 // expression we were given. 5568 std::string Str; 5569 { 5570 llvm::raw_string_ostream OS(Str); 5571 Args[I].getAsExpr()->printPretty(OS, Context, 0, 5572 Context.PrintingPolicy); 5573 } 5574 Result += Str; 5575 break; 5576 } 5577 5578 case TemplateArgument::Pack: 5579 // FIXME: Format template argument packs 5580 Result += "<template argument pack>"; 5581 break; 5582 } 5583 } 5584 5585 Result += ']'; 5586 return Result; 5587} 5588