SemaTemplate.cpp revision 895162da2d52f4243f61081d7436de66af4503fc
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  // The set of class templates we've already seen.
67  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
68  LookupResult::Filter filter = R.makeFilter();
69  while (filter.hasNext()) {
70    NamedDecl *Orig = filter.next();
71    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
72    if (!Repl)
73      filter.erase();
74    else if (Repl != Orig) {
75
76      // C++ [temp.local]p3:
77      //   A lookup that finds an injected-class-name (10.2) can result in an
78      //   ambiguity in certain cases (for example, if it is found in more than
79      //   one base class). If all of the injected-class-names that are found
80      //   refer to specializations of the same class template, and if the name
81      //   is followed by a template-argument-list, the reference refers to the
82      //   class template itself and not a specialization thereof, and is not
83      //   ambiguous.
84      //
85      // FIXME: Will we eventually have to do the same for alias templates?
86      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
87        if (!ClassTemplates.insert(ClassTmpl)) {
88          filter.erase();
89          continue;
90        }
91
92      filter.replace(Repl);
93    }
94  }
95  filter.done();
96}
97
98TemplateNameKind Sema::isTemplateName(Scope *S,
99                                      CXXScopeSpec &SS,
100                                      UnqualifiedId &Name,
101                                      TypeTy *ObjectTypePtr,
102                                      bool EnteringContext,
103                                      TemplateTy &TemplateResult) {
104  assert(getLangOptions().CPlusPlus && "No template names in C!");
105
106  DeclarationName TName;
107
108  switch (Name.getKind()) {
109  case UnqualifiedId::IK_Identifier:
110    TName = DeclarationName(Name.Identifier);
111    break;
112
113  case UnqualifiedId::IK_OperatorFunctionId:
114    TName = Context.DeclarationNames.getCXXOperatorName(
115                                              Name.OperatorFunctionId.Operator);
116    break;
117
118  case UnqualifiedId::IK_LiteralOperatorId:
119    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
120    break;
121
122  default:
123    return TNK_Non_template;
124  }
125
126  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
127
128  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
129                 LookupOrdinaryName);
130  R.suppressDiagnostics();
131  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
132  if (R.empty() || R.isAmbiguous())
133    return TNK_Non_template;
134
135  TemplateName Template;
136  TemplateNameKind TemplateKind;
137
138  unsigned ResultCount = R.end() - R.begin();
139  if (ResultCount > 1) {
140    // We assume that we'll preserve the qualifier from a function
141    // template name in other ways.
142    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
143    TemplateKind = TNK_Function_template;
144  } else {
145    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
146
147    if (SS.isSet() && !SS.isInvalid()) {
148      NestedNameSpecifier *Qualifier
149        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
150      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
151    } else {
152      Template = TemplateName(TD);
153    }
154
155    if (isa<FunctionTemplateDecl>(TD))
156      TemplateKind = TNK_Function_template;
157    else {
158      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
159      TemplateKind = TNK_Type_template;
160    }
161  }
162
163  TemplateResult = TemplateTy::make(Template);
164  return TemplateKind;
165}
166
167bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
168                                       SourceLocation IILoc,
169                                       Scope *S,
170                                       const CXXScopeSpec *SS,
171                                       TemplateTy &SuggestedTemplate,
172                                       TemplateNameKind &SuggestedKind) {
173  // We can't recover unless there's a dependent scope specifier preceding the
174  // template name.
175  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
176      computeDeclContext(*SS))
177    return false;
178
179  // The code is missing a 'template' keyword prior to the dependent template
180  // name.
181  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
182  Diag(IILoc, diag::err_template_kw_missing)
183    << Qualifier << II.getName()
184    << FixItHint::CreateInsertion(IILoc, "template ");
185  SuggestedTemplate
186    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
187  SuggestedKind = TNK_Dependent_template_name;
188  return true;
189}
190
191void Sema::LookupTemplateName(LookupResult &Found,
192                              Scope *S, CXXScopeSpec &SS,
193                              QualType ObjectType,
194                              bool EnteringContext) {
195  // Determine where to perform name lookup
196  DeclContext *LookupCtx = 0;
197  bool isDependent = false;
198  if (!ObjectType.isNull()) {
199    // This nested-name-specifier occurs in a member access expression, e.g.,
200    // x->B::f, and we are looking into the type of the object.
201    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
202    LookupCtx = computeDeclContext(ObjectType);
203    isDependent = ObjectType->isDependentType();
204    assert((isDependent || !ObjectType->isIncompleteType()) &&
205           "Caller should have completed object type");
206  } else if (SS.isSet()) {
207    // This nested-name-specifier occurs after another nested-name-specifier,
208    // so long into the context associated with the prior nested-name-specifier.
209    LookupCtx = computeDeclContext(SS, EnteringContext);
210    isDependent = isDependentScopeSpecifier(SS);
211
212    // The declaration context must be complete.
213    if (LookupCtx && RequireCompleteDeclContext(SS))
214      return;
215  }
216
217  bool ObjectTypeSearchedInScope = false;
218  if (LookupCtx) {
219    // Perform "qualified" name lookup into the declaration context we
220    // computed, which is either the type of the base of a member access
221    // expression or the declaration context associated with a prior
222    // nested-name-specifier.
223    LookupQualifiedName(Found, LookupCtx);
224
225    if (!ObjectType.isNull() && Found.empty()) {
226      // C++ [basic.lookup.classref]p1:
227      //   In a class member access expression (5.2.5), if the . or -> token is
228      //   immediately followed by an identifier followed by a <, the
229      //   identifier must be looked up to determine whether the < is the
230      //   beginning of a template argument list (14.2) or a less-than operator.
231      //   The identifier is first looked up in the class of the object
232      //   expression. If the identifier is not found, it is then looked up in
233      //   the context of the entire postfix-expression and shall name a class
234      //   or function template.
235      //
236      // FIXME: When we're instantiating a template, do we actually have to
237      // look in the scope of the template? Seems fishy...
238      if (S) LookupName(Found, S);
239      ObjectTypeSearchedInScope = true;
240    }
241  } else if (isDependent) {
242    // We cannot look into a dependent object type or nested nme
243    // specifier.
244    return;
245  } else {
246    // Perform unqualified name lookup in the current scope.
247    LookupName(Found, S);
248  }
249
250  if (Found.empty() && !isDependent) {
251    // If we did not find any names, attempt to correct any typos.
252    DeclarationName Name = Found.getLookupName();
253    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
254                                                 false, CTC_CXXCasts)) {
255      FilterAcceptableTemplateNames(Context, Found);
256      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
257        if (LookupCtx)
258          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
259            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
260            << FixItHint::CreateReplacement(Found.getNameLoc(),
261                                          Found.getLookupName().getAsString());
262        else
263          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
264            << Name << Found.getLookupName()
265            << FixItHint::CreateReplacement(Found.getNameLoc(),
266                                          Found.getLookupName().getAsString());
267        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
268          Diag(Template->getLocation(), diag::note_previous_decl)
269            << Template->getDeclName();
270      } else
271        Found.clear();
272    } else {
273      Found.clear();
274    }
275  }
276
277  FilterAcceptableTemplateNames(Context, Found);
278  if (Found.empty())
279    return;
280
281  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
282    // C++ [basic.lookup.classref]p1:
283    //   [...] If the lookup in the class of the object expression finds a
284    //   template, the name is also looked up in the context of the entire
285    //   postfix-expression and [...]
286    //
287    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
288                            LookupOrdinaryName);
289    LookupName(FoundOuter, S);
290    FilterAcceptableTemplateNames(Context, FoundOuter);
291
292    if (FoundOuter.empty()) {
293      //   - if the name is not found, the name found in the class of the
294      //     object expression is used, otherwise
295    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
296      //   - if the name is found in the context of the entire
297      //     postfix-expression and does not name a class template, the name
298      //     found in the class of the object expression is used, otherwise
299    } else {
300      //   - if the name found is a class template, it must refer to the same
301      //     entity as the one found in the class of the object expression,
302      //     otherwise the program is ill-formed.
303      if (!Found.isSingleResult() ||
304          Found.getFoundDecl()->getCanonicalDecl()
305            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
306        Diag(Found.getNameLoc(),
307             diag::err_nested_name_member_ref_lookup_ambiguous)
308          << Found.getLookupName();
309        Diag(Found.getRepresentativeDecl()->getLocation(),
310             diag::note_ambig_member_ref_object_type)
311          << ObjectType;
312        Diag(FoundOuter.getFoundDecl()->getLocation(),
313             diag::note_ambig_member_ref_scope);
314
315        // Recover by taking the template that we found in the object
316        // expression's type.
317      }
318    }
319  }
320}
321
322/// ActOnDependentIdExpression - Handle a dependent id-expression that
323/// was just parsed.  This is only possible with an explicit scope
324/// specifier naming a dependent type.
325Sema::OwningExprResult
326Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
327                                 DeclarationName Name,
328                                 SourceLocation NameLoc,
329                                 bool isAddressOfOperand,
330                           const TemplateArgumentListInfo *TemplateArgs) {
331  NestedNameSpecifier *Qualifier
332    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
333
334  if (!isAddressOfOperand &&
335      isa<CXXMethodDecl>(CurContext) &&
336      cast<CXXMethodDecl>(CurContext)->isInstance()) {
337    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
338
339    // Since the 'this' expression is synthesized, we don't need to
340    // perform the double-lookup check.
341    NamedDecl *FirstQualifierInScope = 0;
342
343    return Owned(CXXDependentScopeMemberExpr::Create(Context,
344                                                     /*This*/ 0, ThisType,
345                                                     /*IsArrow*/ true,
346                                                     /*Op*/ SourceLocation(),
347                                                     Qualifier, SS.getRange(),
348                                                     FirstQualifierInScope,
349                                                     Name, NameLoc,
350                                                     TemplateArgs));
351  }
352
353  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
354}
355
356Sema::OwningExprResult
357Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
358                                DeclarationName Name,
359                                SourceLocation NameLoc,
360                                const TemplateArgumentListInfo *TemplateArgs) {
361  return Owned(DependentScopeDeclRefExpr::Create(Context,
362               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
363                                                 SS.getRange(),
364                                                 Name, NameLoc,
365                                                 TemplateArgs));
366}
367
368/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
369/// that the template parameter 'PrevDecl' is being shadowed by a new
370/// declaration at location Loc. Returns true to indicate that this is
371/// an error, and false otherwise.
372bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
373  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
374
375  // Microsoft Visual C++ permits template parameters to be shadowed.
376  if (getLangOptions().Microsoft)
377    return false;
378
379  // C++ [temp.local]p4:
380  //   A template-parameter shall not be redeclared within its
381  //   scope (including nested scopes).
382  Diag(Loc, diag::err_template_param_shadow)
383    << cast<NamedDecl>(PrevDecl)->getDeclName();
384  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
385  return true;
386}
387
388/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
389/// the parameter D to reference the templated declaration and return a pointer
390/// to the template declaration. Otherwise, do nothing to D and return null.
391TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
392  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
393    D = DeclPtrTy::make(Temp->getTemplatedDecl());
394    return Temp;
395  }
396  return 0;
397}
398
399static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
400                                            const ParsedTemplateArgument &Arg) {
401
402  switch (Arg.getKind()) {
403  case ParsedTemplateArgument::Type: {
404    TypeSourceInfo *DI;
405    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
406    if (!DI)
407      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
408    return TemplateArgumentLoc(TemplateArgument(T), DI);
409  }
410
411  case ParsedTemplateArgument::NonType: {
412    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
413    return TemplateArgumentLoc(TemplateArgument(E), E);
414  }
415
416  case ParsedTemplateArgument::Template: {
417    TemplateName Template
418      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
419    return TemplateArgumentLoc(TemplateArgument(Template),
420                               Arg.getScopeSpec().getRange(),
421                               Arg.getLocation());
422  }
423  }
424
425  llvm_unreachable("Unhandled parsed template argument");
426  return TemplateArgumentLoc();
427}
428
429/// \brief Translates template arguments as provided by the parser
430/// into template arguments used by semantic analysis.
431void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
432                                      TemplateArgumentListInfo &TemplateArgs) {
433 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
434   TemplateArgs.addArgument(translateTemplateArgument(*this,
435                                                      TemplateArgsIn[I]));
436}
437
438/// ActOnTypeParameter - Called when a C++ template type parameter
439/// (e.g., "typename T") has been parsed. Typename specifies whether
440/// the keyword "typename" was used to declare the type parameter
441/// (otherwise, "class" was used), and KeyLoc is the location of the
442/// "class" or "typename" keyword. ParamName is the name of the
443/// parameter (NULL indicates an unnamed template parameter) and
444/// ParamName is the location of the parameter name (if any).
445/// If the type parameter has a default argument, it will be added
446/// later via ActOnTypeParameterDefault.
447Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
448                                         SourceLocation EllipsisLoc,
449                                         SourceLocation KeyLoc,
450                                         IdentifierInfo *ParamName,
451                                         SourceLocation ParamNameLoc,
452                                         unsigned Depth, unsigned Position) {
453  assert(S->isTemplateParamScope() &&
454         "Template type parameter not in template parameter scope!");
455  bool Invalid = false;
456
457  if (ParamName) {
458    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
459                                           LookupOrdinaryName,
460                                           ForRedeclaration);
461    if (PrevDecl && PrevDecl->isTemplateParameter())
462      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
463                                                           PrevDecl);
464  }
465
466  SourceLocation Loc = ParamNameLoc;
467  if (!ParamName)
468    Loc = KeyLoc;
469
470  TemplateTypeParmDecl *Param
471    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
472                                   Loc, Depth, Position, ParamName, Typename,
473                                   Ellipsis);
474  if (Invalid)
475    Param->setInvalidDecl();
476
477  if (ParamName) {
478    // Add the template parameter into the current scope.
479    S->AddDecl(DeclPtrTy::make(Param));
480    IdResolver.AddDecl(Param);
481  }
482
483  return DeclPtrTy::make(Param);
484}
485
486/// ActOnTypeParameterDefault - Adds a default argument (the type
487/// Default) to the given template type parameter (TypeParam).
488void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
489                                     SourceLocation EqualLoc,
490                                     SourceLocation DefaultLoc,
491                                     TypeTy *DefaultT) {
492  TemplateTypeParmDecl *Parm
493    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
494
495  TypeSourceInfo *DefaultTInfo;
496  GetTypeFromParser(DefaultT, &DefaultTInfo);
497
498  assert(DefaultTInfo && "expected source information for type");
499
500  // C++0x [temp.param]p9:
501  // A default template-argument may be specified for any kind of
502  // template-parameter that is not a template parameter pack.
503  if (Parm->isParameterPack()) {
504    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
505    return;
506  }
507
508  // C++ [temp.param]p14:
509  //   A template-parameter shall not be used in its own default argument.
510  // FIXME: Implement this check! Needs a recursive walk over the types.
511
512  // Check the template argument itself.
513  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
514    Parm->setInvalidDecl();
515    return;
516  }
517
518  Parm->setDefaultArgument(DefaultTInfo, false);
519}
520
521/// \brief Check that the type of a non-type template parameter is
522/// well-formed.
523///
524/// \returns the (possibly-promoted) parameter type if valid;
525/// otherwise, produces a diagnostic and returns a NULL type.
526QualType
527Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
528  // C++ [temp.param]p4:
529  //
530  // A non-type template-parameter shall have one of the following
531  // (optionally cv-qualified) types:
532  //
533  //       -- integral or enumeration type,
534  if (T->isIntegralType() || T->isEnumeralType() ||
535      //   -- pointer to object or pointer to function,
536      (T->isPointerType() &&
537       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
538        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
539      //   -- reference to object or reference to function,
540      T->isReferenceType() ||
541      //   -- pointer to member.
542      T->isMemberPointerType() ||
543      // If T is a dependent type, we can't do the check now, so we
544      // assume that it is well-formed.
545      T->isDependentType())
546    return T;
547  // C++ [temp.param]p8:
548  //
549  //   A non-type template-parameter of type "array of T" or
550  //   "function returning T" is adjusted to be of type "pointer to
551  //   T" or "pointer to function returning T", respectively.
552  else if (T->isArrayType())
553    // FIXME: Keep the type prior to promotion?
554    return Context.getArrayDecayedType(T);
555  else if (T->isFunctionType())
556    // FIXME: Keep the type prior to promotion?
557    return Context.getPointerType(T);
558
559  Diag(Loc, diag::err_template_nontype_parm_bad_type)
560    << T;
561
562  return QualType();
563}
564
565/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
566/// template parameter (e.g., "int Size" in "template<int Size>
567/// class Array") has been parsed. S is the current scope and D is
568/// the parsed declarator.
569Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
570                                                    unsigned Depth,
571                                                    unsigned Position) {
572  TypeSourceInfo *TInfo = 0;
573  QualType T = GetTypeForDeclarator(D, S, &TInfo);
574
575  assert(S->isTemplateParamScope() &&
576         "Non-type template parameter not in template parameter scope!");
577  bool Invalid = false;
578
579  IdentifierInfo *ParamName = D.getIdentifier();
580  if (ParamName) {
581    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
582                                           LookupOrdinaryName,
583                                           ForRedeclaration);
584    if (PrevDecl && PrevDecl->isTemplateParameter())
585      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
586                                                           PrevDecl);
587  }
588
589  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
590  if (T.isNull()) {
591    T = Context.IntTy; // Recover with an 'int' type.
592    Invalid = true;
593  }
594
595  NonTypeTemplateParmDecl *Param
596    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
597                                      D.getIdentifierLoc(),
598                                      Depth, Position, ParamName, T, TInfo);
599  if (Invalid)
600    Param->setInvalidDecl();
601
602  if (D.getIdentifier()) {
603    // Add the template parameter into the current scope.
604    S->AddDecl(DeclPtrTy::make(Param));
605    IdResolver.AddDecl(Param);
606  }
607  return DeclPtrTy::make(Param);
608}
609
610/// \brief Adds a default argument to the given non-type template
611/// parameter.
612void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
613                                                SourceLocation EqualLoc,
614                                                ExprArg DefaultE) {
615  NonTypeTemplateParmDecl *TemplateParm
616    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
617  Expr *Default = static_cast<Expr *>(DefaultE.get());
618
619  // C++ [temp.param]p14:
620  //   A template-parameter shall not be used in its own default argument.
621  // FIXME: Implement this check! Needs a recursive walk over the types.
622
623  // Check the well-formedness of the default template argument.
624  TemplateArgument Converted;
625  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
626                            Converted)) {
627    TemplateParm->setInvalidDecl();
628    return;
629  }
630
631  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
632}
633
634
635/// ActOnTemplateTemplateParameter - Called when a C++ template template
636/// parameter (e.g. T in template <template <typename> class T> class array)
637/// has been parsed. S is the current scope.
638Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
639                                                     SourceLocation TmpLoc,
640                                                     TemplateParamsTy *Params,
641                                                     IdentifierInfo *Name,
642                                                     SourceLocation NameLoc,
643                                                     unsigned Depth,
644                                                     unsigned Position) {
645  assert(S->isTemplateParamScope() &&
646         "Template template parameter not in template parameter scope!");
647
648  // Construct the parameter object.
649  TemplateTemplateParmDecl *Param =
650    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
651                                     TmpLoc, Depth, Position, Name,
652                                     (TemplateParameterList*)Params);
653
654  // Make sure the parameter is valid.
655  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
656  // do anything yet. However, if the template parameter list or (eventual)
657  // default value is ever invalidated, that will propagate here.
658  bool Invalid = false;
659  if (Invalid) {
660    Param->setInvalidDecl();
661  }
662
663  // If the tt-param has a name, then link the identifier into the scope
664  // and lookup mechanisms.
665  if (Name) {
666    S->AddDecl(DeclPtrTy::make(Param));
667    IdResolver.AddDecl(Param);
668  }
669
670  return DeclPtrTy::make(Param);
671}
672
673/// \brief Adds a default argument to the given template template
674/// parameter.
675void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
676                                                 SourceLocation EqualLoc,
677                                        const ParsedTemplateArgument &Default) {
678  TemplateTemplateParmDecl *TemplateParm
679    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
680
681  // C++ [temp.param]p14:
682  //   A template-parameter shall not be used in its own default argument.
683  // FIXME: Implement this check! Needs a recursive walk over the types.
684
685  // Check only that we have a template template argument. We don't want to
686  // try to check well-formedness now, because our template template parameter
687  // might have dependent types in its template parameters, which we wouldn't
688  // be able to match now.
689  //
690  // If none of the template template parameter's template arguments mention
691  // other template parameters, we could actually perform more checking here.
692  // However, it isn't worth doing.
693  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
694  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
695    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
696      << DefaultArg.getSourceRange();
697    return;
698  }
699
700  TemplateParm->setDefaultArgument(DefaultArg);
701}
702
703/// ActOnTemplateParameterList - Builds a TemplateParameterList that
704/// contains the template parameters in Params/NumParams.
705Sema::TemplateParamsTy *
706Sema::ActOnTemplateParameterList(unsigned Depth,
707                                 SourceLocation ExportLoc,
708                                 SourceLocation TemplateLoc,
709                                 SourceLocation LAngleLoc,
710                                 DeclPtrTy *Params, unsigned NumParams,
711                                 SourceLocation RAngleLoc) {
712  if (ExportLoc.isValid())
713    Diag(ExportLoc, diag::warn_template_export_unsupported);
714
715  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
716                                       (NamedDecl**)Params, NumParams,
717                                       RAngleLoc);
718}
719
720static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
721  if (SS.isSet())
722    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
723                        SS.getRange());
724}
725
726Sema::DeclResult
727Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
728                         SourceLocation KWLoc, CXXScopeSpec &SS,
729                         IdentifierInfo *Name, SourceLocation NameLoc,
730                         AttributeList *Attr,
731                         TemplateParameterList *TemplateParams,
732                         AccessSpecifier AS) {
733  assert(TemplateParams && TemplateParams->size() > 0 &&
734         "No template parameters");
735  assert(TUK != TUK_Reference && "Can only declare or define class templates");
736  bool Invalid = false;
737
738  // Check that we can declare a template here.
739  if (CheckTemplateDeclScope(S, TemplateParams))
740    return true;
741
742  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
743  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
744
745  // There is no such thing as an unnamed class template.
746  if (!Name) {
747    Diag(KWLoc, diag::err_template_unnamed_class);
748    return true;
749  }
750
751  // Find any previous declaration with this name.
752  DeclContext *SemanticContext;
753  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
754                        ForRedeclaration);
755  if (SS.isNotEmpty() && !SS.isInvalid()) {
756    if (RequireCompleteDeclContext(SS))
757      return true;
758
759    SemanticContext = computeDeclContext(SS, true);
760    if (!SemanticContext) {
761      // FIXME: Produce a reasonable diagnostic here
762      return true;
763    }
764
765    LookupQualifiedName(Previous, SemanticContext);
766  } else {
767    SemanticContext = CurContext;
768    LookupName(Previous, S);
769  }
770
771  if (Previous.isAmbiguous())
772    return true;
773
774  NamedDecl *PrevDecl = 0;
775  if (Previous.begin() != Previous.end())
776    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
777
778  // If there is a previous declaration with the same name, check
779  // whether this is a valid redeclaration.
780  ClassTemplateDecl *PrevClassTemplate
781    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
782
783  // We may have found the injected-class-name of a class template,
784  // class template partial specialization, or class template specialization.
785  // In these cases, grab the template that is being defined or specialized.
786  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
787      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
788    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
789    PrevClassTemplate
790      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
791    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
792      PrevClassTemplate
793        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
794            ->getSpecializedTemplate();
795    }
796  }
797
798  if (TUK == TUK_Friend) {
799    // C++ [namespace.memdef]p3:
800    //   [...] When looking for a prior declaration of a class or a function
801    //   declared as a friend, and when the name of the friend class or
802    //   function is neither a qualified name nor a template-id, scopes outside
803    //   the innermost enclosing namespace scope are not considered.
804    if (!SS.isSet()) {
805      DeclContext *OutermostContext = CurContext;
806      while (!OutermostContext->isFileContext())
807        OutermostContext = OutermostContext->getLookupParent();
808
809      if (PrevDecl &&
810          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
811           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
812        SemanticContext = PrevDecl->getDeclContext();
813      } else {
814        // Declarations in outer scopes don't matter. However, the outermost
815        // context we computed is the semantic context for our new
816        // declaration.
817        PrevDecl = PrevClassTemplate = 0;
818        SemanticContext = OutermostContext;
819      }
820    }
821
822    if (CurContext->isDependentContext()) {
823      // If this is a dependent context, we don't want to link the friend
824      // class template to the template in scope, because that would perform
825      // checking of the template parameter lists that can't be performed
826      // until the outer context is instantiated.
827      PrevDecl = PrevClassTemplate = 0;
828    }
829  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
830    PrevDecl = PrevClassTemplate = 0;
831
832  if (PrevClassTemplate) {
833    // Ensure that the template parameter lists are compatible.
834    if (!TemplateParameterListsAreEqual(TemplateParams,
835                                   PrevClassTemplate->getTemplateParameters(),
836                                        /*Complain=*/true,
837                                        TPL_TemplateMatch))
838      return true;
839
840    // C++ [temp.class]p4:
841    //   In a redeclaration, partial specialization, explicit
842    //   specialization or explicit instantiation of a class template,
843    //   the class-key shall agree in kind with the original class
844    //   template declaration (7.1.5.3).
845    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
846    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
847      Diag(KWLoc, diag::err_use_with_wrong_tag)
848        << Name
849        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
850      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
851      Kind = PrevRecordDecl->getTagKind();
852    }
853
854    // Check for redefinition of this class template.
855    if (TUK == TUK_Definition) {
856      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
857        Diag(NameLoc, diag::err_redefinition) << Name;
858        Diag(Def->getLocation(), diag::note_previous_definition);
859        // FIXME: Would it make sense to try to "forget" the previous
860        // definition, as part of error recovery?
861        return true;
862      }
863    }
864  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
865    // Maybe we will complain about the shadowed template parameter.
866    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
867    // Just pretend that we didn't see the previous declaration.
868    PrevDecl = 0;
869  } else if (PrevDecl) {
870    // C++ [temp]p5:
871    //   A class template shall not have the same name as any other
872    //   template, class, function, object, enumeration, enumerator,
873    //   namespace, or type in the same scope (3.3), except as specified
874    //   in (14.5.4).
875    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
876    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
877    return true;
878  }
879
880  // Check the template parameter list of this declaration, possibly
881  // merging in the template parameter list from the previous class
882  // template declaration.
883  if (CheckTemplateParameterList(TemplateParams,
884            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
885                                 TPC_ClassTemplate))
886    Invalid = true;
887
888  if (SS.isSet()) {
889    // If the name of the template was qualified, we must be defining the
890    // template out-of-line.
891    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
892        !(TUK == TUK_Friend && CurContext->isDependentContext()))
893      Diag(NameLoc, diag::err_member_def_does_not_match)
894        << Name << SemanticContext << SS.getRange();
895  }
896
897  CXXRecordDecl *NewClass =
898    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
899                          PrevClassTemplate?
900                            PrevClassTemplate->getTemplatedDecl() : 0,
901                          /*DelayTypeCreation=*/true);
902  SetNestedNameSpecifier(NewClass, SS);
903
904  ClassTemplateDecl *NewTemplate
905    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
906                                DeclarationName(Name), TemplateParams,
907                                NewClass, PrevClassTemplate);
908  NewClass->setDescribedClassTemplate(NewTemplate);
909
910  // Build the type for the class template declaration now.
911  QualType T = NewTemplate->getInjectedClassNameSpecialization(Context);
912  T = Context.getInjectedClassNameType(NewClass, T);
913  assert(T->isDependentType() && "Class template type is not dependent?");
914  (void)T;
915
916  // If we are providing an explicit specialization of a member that is a
917  // class template, make a note of that.
918  if (PrevClassTemplate &&
919      PrevClassTemplate->getInstantiatedFromMemberTemplate())
920    PrevClassTemplate->setMemberSpecialization();
921
922  // Set the access specifier.
923  if (!Invalid && TUK != TUK_Friend)
924    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
925
926  // Set the lexical context of these templates
927  NewClass->setLexicalDeclContext(CurContext);
928  NewTemplate->setLexicalDeclContext(CurContext);
929
930  if (TUK == TUK_Definition)
931    NewClass->startDefinition();
932
933  if (Attr)
934    ProcessDeclAttributeList(S, NewClass, Attr);
935
936  if (TUK != TUK_Friend)
937    PushOnScopeChains(NewTemplate, S);
938  else {
939    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
940      NewTemplate->setAccess(PrevClassTemplate->getAccess());
941      NewClass->setAccess(PrevClassTemplate->getAccess());
942    }
943
944    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
945                                       PrevClassTemplate != NULL);
946
947    // Friend templates are visible in fairly strange ways.
948    if (!CurContext->isDependentContext()) {
949      DeclContext *DC = SemanticContext->getLookupContext();
950      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
951      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
952        PushOnScopeChains(NewTemplate, EnclosingScope,
953                          /* AddToContext = */ false);
954    }
955
956    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
957                                            NewClass->getLocation(),
958                                            NewTemplate,
959                                    /*FIXME:*/NewClass->getLocation());
960    Friend->setAccess(AS_public);
961    CurContext->addDecl(Friend);
962  }
963
964  if (Invalid) {
965    NewTemplate->setInvalidDecl();
966    NewClass->setInvalidDecl();
967  }
968  return DeclPtrTy::make(NewTemplate);
969}
970
971/// \brief Diagnose the presence of a default template argument on a
972/// template parameter, which is ill-formed in certain contexts.
973///
974/// \returns true if the default template argument should be dropped.
975static bool DiagnoseDefaultTemplateArgument(Sema &S,
976                                            Sema::TemplateParamListContext TPC,
977                                            SourceLocation ParamLoc,
978                                            SourceRange DefArgRange) {
979  switch (TPC) {
980  case Sema::TPC_ClassTemplate:
981    return false;
982
983  case Sema::TPC_FunctionTemplate:
984    // C++ [temp.param]p9:
985    //   A default template-argument shall not be specified in a
986    //   function template declaration or a function template
987    //   definition [...]
988    // (This sentence is not in C++0x, per DR226).
989    if (!S.getLangOptions().CPlusPlus0x)
990      S.Diag(ParamLoc,
991             diag::err_template_parameter_default_in_function_template)
992        << DefArgRange;
993    return false;
994
995  case Sema::TPC_ClassTemplateMember:
996    // C++0x [temp.param]p9:
997    //   A default template-argument shall not be specified in the
998    //   template-parameter-lists of the definition of a member of a
999    //   class template that appears outside of the member's class.
1000    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1001      << DefArgRange;
1002    return true;
1003
1004  case Sema::TPC_FriendFunctionTemplate:
1005    // C++ [temp.param]p9:
1006    //   A default template-argument shall not be specified in a
1007    //   friend template declaration.
1008    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1009      << DefArgRange;
1010    return true;
1011
1012    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1013    // for friend function templates if there is only a single
1014    // declaration (and it is a definition). Strange!
1015  }
1016
1017  return false;
1018}
1019
1020/// \brief Checks the validity of a template parameter list, possibly
1021/// considering the template parameter list from a previous
1022/// declaration.
1023///
1024/// If an "old" template parameter list is provided, it must be
1025/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1026/// template parameter list.
1027///
1028/// \param NewParams Template parameter list for a new template
1029/// declaration. This template parameter list will be updated with any
1030/// default arguments that are carried through from the previous
1031/// template parameter list.
1032///
1033/// \param OldParams If provided, template parameter list from a
1034/// previous declaration of the same template. Default template
1035/// arguments will be merged from the old template parameter list to
1036/// the new template parameter list.
1037///
1038/// \param TPC Describes the context in which we are checking the given
1039/// template parameter list.
1040///
1041/// \returns true if an error occurred, false otherwise.
1042bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1043                                      TemplateParameterList *OldParams,
1044                                      TemplateParamListContext TPC) {
1045  bool Invalid = false;
1046
1047  // C++ [temp.param]p10:
1048  //   The set of default template-arguments available for use with a
1049  //   template declaration or definition is obtained by merging the
1050  //   default arguments from the definition (if in scope) and all
1051  //   declarations in scope in the same way default function
1052  //   arguments are (8.3.6).
1053  bool SawDefaultArgument = false;
1054  SourceLocation PreviousDefaultArgLoc;
1055
1056  bool SawParameterPack = false;
1057  SourceLocation ParameterPackLoc;
1058
1059  // Dummy initialization to avoid warnings.
1060  TemplateParameterList::iterator OldParam = NewParams->end();
1061  if (OldParams)
1062    OldParam = OldParams->begin();
1063
1064  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1065                                    NewParamEnd = NewParams->end();
1066       NewParam != NewParamEnd; ++NewParam) {
1067    // Variables used to diagnose redundant default arguments
1068    bool RedundantDefaultArg = false;
1069    SourceLocation OldDefaultLoc;
1070    SourceLocation NewDefaultLoc;
1071
1072    // Variables used to diagnose missing default arguments
1073    bool MissingDefaultArg = false;
1074
1075    // C++0x [temp.param]p11:
1076    // If a template parameter of a class template is a template parameter pack,
1077    // it must be the last template parameter.
1078    if (SawParameterPack) {
1079      Diag(ParameterPackLoc,
1080           diag::err_template_param_pack_must_be_last_template_parameter);
1081      Invalid = true;
1082    }
1083
1084    if (TemplateTypeParmDecl *NewTypeParm
1085          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1086      // Check the presence of a default argument here.
1087      if (NewTypeParm->hasDefaultArgument() &&
1088          DiagnoseDefaultTemplateArgument(*this, TPC,
1089                                          NewTypeParm->getLocation(),
1090               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1091                                                       .getFullSourceRange()))
1092        NewTypeParm->removeDefaultArgument();
1093
1094      // Merge default arguments for template type parameters.
1095      TemplateTypeParmDecl *OldTypeParm
1096          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1097
1098      if (NewTypeParm->isParameterPack()) {
1099        assert(!NewTypeParm->hasDefaultArgument() &&
1100               "Parameter packs can't have a default argument!");
1101        SawParameterPack = true;
1102        ParameterPackLoc = NewTypeParm->getLocation();
1103      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1104                 NewTypeParm->hasDefaultArgument()) {
1105        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1106        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1107        SawDefaultArgument = true;
1108        RedundantDefaultArg = true;
1109        PreviousDefaultArgLoc = NewDefaultLoc;
1110      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1111        // Merge the default argument from the old declaration to the
1112        // new declaration.
1113        SawDefaultArgument = true;
1114        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1115                                        true);
1116        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1117      } else if (NewTypeParm->hasDefaultArgument()) {
1118        SawDefaultArgument = true;
1119        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1120      } else if (SawDefaultArgument)
1121        MissingDefaultArg = true;
1122    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1123               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1124      // Check the presence of a default argument here.
1125      if (NewNonTypeParm->hasDefaultArgument() &&
1126          DiagnoseDefaultTemplateArgument(*this, TPC,
1127                                          NewNonTypeParm->getLocation(),
1128                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1129        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1130        NewNonTypeParm->setDefaultArgument(0);
1131      }
1132
1133      // Merge default arguments for non-type template parameters
1134      NonTypeTemplateParmDecl *OldNonTypeParm
1135        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1136      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1137          NewNonTypeParm->hasDefaultArgument()) {
1138        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1139        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1140        SawDefaultArgument = true;
1141        RedundantDefaultArg = true;
1142        PreviousDefaultArgLoc = NewDefaultLoc;
1143      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1144        // Merge the default argument from the old declaration to the
1145        // new declaration.
1146        SawDefaultArgument = true;
1147        // FIXME: We need to create a new kind of "default argument"
1148        // expression that points to a previous template template
1149        // parameter.
1150        NewNonTypeParm->setDefaultArgument(
1151                                        OldNonTypeParm->getDefaultArgument());
1152        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1153      } else if (NewNonTypeParm->hasDefaultArgument()) {
1154        SawDefaultArgument = true;
1155        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1156      } else if (SawDefaultArgument)
1157        MissingDefaultArg = true;
1158    } else {
1159      // Check the presence of a default argument here.
1160      TemplateTemplateParmDecl *NewTemplateParm
1161        = cast<TemplateTemplateParmDecl>(*NewParam);
1162      if (NewTemplateParm->hasDefaultArgument() &&
1163          DiagnoseDefaultTemplateArgument(*this, TPC,
1164                                          NewTemplateParm->getLocation(),
1165                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1166        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1167
1168      // Merge default arguments for template template parameters
1169      TemplateTemplateParmDecl *OldTemplateParm
1170        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1171      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1172          NewTemplateParm->hasDefaultArgument()) {
1173        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1174        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1175        SawDefaultArgument = true;
1176        RedundantDefaultArg = true;
1177        PreviousDefaultArgLoc = NewDefaultLoc;
1178      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1179        // Merge the default argument from the old declaration to the
1180        // new declaration.
1181        SawDefaultArgument = true;
1182        // FIXME: We need to create a new kind of "default argument" expression
1183        // that points to a previous template template parameter.
1184        NewTemplateParm->setDefaultArgument(
1185                                        OldTemplateParm->getDefaultArgument());
1186        PreviousDefaultArgLoc
1187          = OldTemplateParm->getDefaultArgument().getLocation();
1188      } else if (NewTemplateParm->hasDefaultArgument()) {
1189        SawDefaultArgument = true;
1190        PreviousDefaultArgLoc
1191          = NewTemplateParm->getDefaultArgument().getLocation();
1192      } else if (SawDefaultArgument)
1193        MissingDefaultArg = true;
1194    }
1195
1196    if (RedundantDefaultArg) {
1197      // C++ [temp.param]p12:
1198      //   A template-parameter shall not be given default arguments
1199      //   by two different declarations in the same scope.
1200      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1201      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1202      Invalid = true;
1203    } else if (MissingDefaultArg) {
1204      // C++ [temp.param]p11:
1205      //   If a template-parameter has a default template-argument,
1206      //   all subsequent template-parameters shall have a default
1207      //   template-argument supplied.
1208      Diag((*NewParam)->getLocation(),
1209           diag::err_template_param_default_arg_missing);
1210      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1211      Invalid = true;
1212    }
1213
1214    // If we have an old template parameter list that we're merging
1215    // in, move on to the next parameter.
1216    if (OldParams)
1217      ++OldParam;
1218  }
1219
1220  return Invalid;
1221}
1222
1223/// \brief Match the given template parameter lists to the given scope
1224/// specifier, returning the template parameter list that applies to the
1225/// name.
1226///
1227/// \param DeclStartLoc the start of the declaration that has a scope
1228/// specifier or a template parameter list.
1229///
1230/// \param SS the scope specifier that will be matched to the given template
1231/// parameter lists. This scope specifier precedes a qualified name that is
1232/// being declared.
1233///
1234/// \param ParamLists the template parameter lists, from the outermost to the
1235/// innermost template parameter lists.
1236///
1237/// \param NumParamLists the number of template parameter lists in ParamLists.
1238///
1239/// \param IsFriend Whether to apply the slightly different rules for
1240/// matching template parameters to scope specifiers in friend
1241/// declarations.
1242///
1243/// \param IsExplicitSpecialization will be set true if the entity being
1244/// declared is an explicit specialization, false otherwise.
1245///
1246/// \returns the template parameter list, if any, that corresponds to the
1247/// name that is preceded by the scope specifier @p SS. This template
1248/// parameter list may be have template parameters (if we're declaring a
1249/// template) or may have no template parameters (if we're declaring a
1250/// template specialization), or may be NULL (if we were's declaring isn't
1251/// itself a template).
1252TemplateParameterList *
1253Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1254                                              const CXXScopeSpec &SS,
1255                                          TemplateParameterList **ParamLists,
1256                                              unsigned NumParamLists,
1257                                              bool IsFriend,
1258                                              bool &IsExplicitSpecialization) {
1259  IsExplicitSpecialization = false;
1260
1261  // Find the template-ids that occur within the nested-name-specifier. These
1262  // template-ids will match up with the template parameter lists.
1263  llvm::SmallVector<const TemplateSpecializationType *, 4>
1264    TemplateIdsInSpecifier;
1265  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1266    ExplicitSpecializationsInSpecifier;
1267  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1268       NNS; NNS = NNS->getPrefix()) {
1269    const Type *T = NNS->getAsType();
1270    if (!T) break;
1271
1272    // C++0x [temp.expl.spec]p17:
1273    //   A member or a member template may be nested within many
1274    //   enclosing class templates. In an explicit specialization for
1275    //   such a member, the member declaration shall be preceded by a
1276    //   template<> for each enclosing class template that is
1277    //   explicitly specialized.
1278    //
1279    // Following the existing practice of GNU and EDG, we allow a typedef of a
1280    // template specialization type.
1281    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1282      T = TT->LookThroughTypedefs().getTypePtr();
1283
1284    if (const TemplateSpecializationType *SpecType
1285                                  = dyn_cast<TemplateSpecializationType>(T)) {
1286      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1287      if (!Template)
1288        continue; // FIXME: should this be an error? probably...
1289
1290      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1291        ClassTemplateSpecializationDecl *SpecDecl
1292          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1293        // If the nested name specifier refers to an explicit specialization,
1294        // we don't need a template<> header.
1295        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1296          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1297          continue;
1298        }
1299      }
1300
1301      TemplateIdsInSpecifier.push_back(SpecType);
1302    }
1303  }
1304
1305  // Reverse the list of template-ids in the scope specifier, so that we can
1306  // more easily match up the template-ids and the template parameter lists.
1307  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1308
1309  SourceLocation FirstTemplateLoc = DeclStartLoc;
1310  if (NumParamLists)
1311    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1312
1313  // Match the template-ids found in the specifier to the template parameter
1314  // lists.
1315  unsigned Idx = 0;
1316  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1317       Idx != NumTemplateIds; ++Idx) {
1318    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1319    bool DependentTemplateId = TemplateId->isDependentType();
1320    if (Idx >= NumParamLists) {
1321      // We have a template-id without a corresponding template parameter
1322      // list.
1323
1324      // ...which is fine if this is a friend declaration.
1325      if (IsFriend) {
1326        IsExplicitSpecialization = true;
1327        break;
1328      }
1329
1330      if (DependentTemplateId) {
1331        // FIXME: the location information here isn't great.
1332        Diag(SS.getRange().getBegin(),
1333             diag::err_template_spec_needs_template_parameters)
1334          << TemplateId
1335          << SS.getRange();
1336      } else {
1337        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1338          << SS.getRange()
1339          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1340        IsExplicitSpecialization = true;
1341      }
1342      return 0;
1343    }
1344
1345    // Check the template parameter list against its corresponding template-id.
1346    if (DependentTemplateId) {
1347      TemplateParameterList *ExpectedTemplateParams = 0;
1348
1349      // Are there cases in (e.g.) friends where this won't match?
1350      if (const InjectedClassNameType *Injected
1351            = TemplateId->getAs<InjectedClassNameType>()) {
1352        CXXRecordDecl *Record = Injected->getDecl();
1353        if (ClassTemplatePartialSpecializationDecl *Partial =
1354              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1355          ExpectedTemplateParams = Partial->getTemplateParameters();
1356        else
1357          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1358            ->getTemplateParameters();
1359      }
1360
1361      if (ExpectedTemplateParams)
1362        TemplateParameterListsAreEqual(ParamLists[Idx],
1363                                       ExpectedTemplateParams,
1364                                       true, TPL_TemplateMatch);
1365
1366      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1367    } else if (ParamLists[Idx]->size() > 0)
1368      Diag(ParamLists[Idx]->getTemplateLoc(),
1369           diag::err_template_param_list_matches_nontemplate)
1370        << TemplateId
1371        << ParamLists[Idx]->getSourceRange();
1372    else
1373      IsExplicitSpecialization = true;
1374  }
1375
1376  // If there were at least as many template-ids as there were template
1377  // parameter lists, then there are no template parameter lists remaining for
1378  // the declaration itself.
1379  if (Idx >= NumParamLists)
1380    return 0;
1381
1382  // If there were too many template parameter lists, complain about that now.
1383  if (Idx != NumParamLists - 1) {
1384    while (Idx < NumParamLists - 1) {
1385      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1386      Diag(ParamLists[Idx]->getTemplateLoc(),
1387           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1388                               : diag::err_template_spec_extra_headers)
1389        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1390                       ParamLists[Idx]->getRAngleLoc());
1391
1392      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1393        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1394             diag::note_explicit_template_spec_does_not_need_header)
1395          << ExplicitSpecializationsInSpecifier.back();
1396        ExplicitSpecializationsInSpecifier.pop_back();
1397      }
1398
1399      ++Idx;
1400    }
1401  }
1402
1403  // Return the last template parameter list, which corresponds to the
1404  // entity being declared.
1405  return ParamLists[NumParamLists - 1];
1406}
1407
1408QualType Sema::CheckTemplateIdType(TemplateName Name,
1409                                   SourceLocation TemplateLoc,
1410                              const TemplateArgumentListInfo &TemplateArgs) {
1411  TemplateDecl *Template = Name.getAsTemplateDecl();
1412  if (!Template) {
1413    // The template name does not resolve to a template, so we just
1414    // build a dependent template-id type.
1415    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1416  }
1417
1418  // Check that the template argument list is well-formed for this
1419  // template.
1420  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1421                                        TemplateArgs.size());
1422  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1423                                false, Converted))
1424    return QualType();
1425
1426  assert((Converted.structuredSize() ==
1427            Template->getTemplateParameters()->size()) &&
1428         "Converted template argument list is too short!");
1429
1430  QualType CanonType;
1431  bool IsCurrentInstantiation = false;
1432
1433  if (Name.isDependent() ||
1434      TemplateSpecializationType::anyDependentTemplateArguments(
1435                                                      TemplateArgs)) {
1436    // This class template specialization is a dependent
1437    // type. Therefore, its canonical type is another class template
1438    // specialization type that contains all of the converted
1439    // arguments in canonical form. This ensures that, e.g., A<T> and
1440    // A<T, T> have identical types when A is declared as:
1441    //
1442    //   template<typename T, typename U = T> struct A;
1443    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1444    CanonType = Context.getTemplateSpecializationType(CanonName,
1445                                                   Converted.getFlatArguments(),
1446                                                   Converted.flatSize());
1447
1448    // FIXME: CanonType is not actually the canonical type, and unfortunately
1449    // it is a TemplateSpecializationType that we will never use again.
1450    // In the future, we need to teach getTemplateSpecializationType to only
1451    // build the canonical type and return that to us.
1452    CanonType = Context.getCanonicalType(CanonType);
1453
1454    // This might work out to be a current instantiation, in which
1455    // case the canonical type needs to be the InjectedClassNameType.
1456    //
1457    // TODO: in theory this could be a simple hashtable lookup; most
1458    // changes to CurContext don't change the set of current
1459    // instantiations.
1460    if (isa<ClassTemplateDecl>(Template)) {
1461      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1462        // If we get out to a namespace, we're done.
1463        if (Ctx->isFileContext()) break;
1464
1465        // If this isn't a record, keep looking.
1466        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1467        if (!Record) continue;
1468
1469        // Look for one of the two cases with InjectedClassNameTypes
1470        // and check whether it's the same template.
1471        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1472            !Record->getDescribedClassTemplate())
1473          continue;
1474
1475        // Fetch the injected class name type and check whether its
1476        // injected type is equal to the type we just built.
1477        QualType ICNT = Context.getTypeDeclType(Record);
1478        QualType Injected = cast<InjectedClassNameType>(ICNT)
1479          ->getInjectedSpecializationType();
1480
1481        if (CanonType != Injected->getCanonicalTypeInternal())
1482          continue;
1483
1484        // If so, the canonical type of this TST is the injected
1485        // class name type of the record we just found.
1486        assert(ICNT.isCanonical());
1487        CanonType = ICNT;
1488        IsCurrentInstantiation = true;
1489        break;
1490      }
1491    }
1492  } else if (ClassTemplateDecl *ClassTemplate
1493               = dyn_cast<ClassTemplateDecl>(Template)) {
1494    // Find the class template specialization declaration that
1495    // corresponds to these arguments.
1496    llvm::FoldingSetNodeID ID;
1497    ClassTemplateSpecializationDecl::Profile(ID,
1498                                             Converted.getFlatArguments(),
1499                                             Converted.flatSize(),
1500                                             Context);
1501    void *InsertPos = 0;
1502    ClassTemplateSpecializationDecl *Decl
1503      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1504    if (!Decl) {
1505      // This is the first time we have referenced this class template
1506      // specialization. Create the canonical declaration and add it to
1507      // the set of specializations.
1508      Decl = ClassTemplateSpecializationDecl::Create(Context,
1509                                    ClassTemplate->getDeclContext(),
1510                                    ClassTemplate->getLocation(),
1511                                    ClassTemplate,
1512                                    Converted, 0);
1513      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1514      Decl->setLexicalDeclContext(CurContext);
1515    }
1516
1517    CanonType = Context.getTypeDeclType(Decl);
1518    assert(isa<RecordType>(CanonType) &&
1519           "type of non-dependent specialization is not a RecordType");
1520  }
1521
1522  // Build the fully-sugared type for this class template
1523  // specialization, which refers back to the class template
1524  // specialization we created or found.
1525  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType,
1526                                               IsCurrentInstantiation);
1527}
1528
1529Action::TypeResult
1530Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1531                          SourceLocation LAngleLoc,
1532                          ASTTemplateArgsPtr TemplateArgsIn,
1533                          SourceLocation RAngleLoc) {
1534  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1535
1536  // Translate the parser's template argument list in our AST format.
1537  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1538  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1539
1540  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1541  TemplateArgsIn.release();
1542
1543  if (Result.isNull())
1544    return true;
1545
1546  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1547  TemplateSpecializationTypeLoc TL
1548    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1549  TL.setTemplateNameLoc(TemplateLoc);
1550  TL.setLAngleLoc(LAngleLoc);
1551  TL.setRAngleLoc(RAngleLoc);
1552  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1553    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1554
1555  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1556}
1557
1558Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1559                                              TagUseKind TUK,
1560                                              DeclSpec::TST TagSpec,
1561                                              SourceLocation TagLoc) {
1562  if (TypeResult.isInvalid())
1563    return Sema::TypeResult();
1564
1565  // FIXME: preserve source info, ideally without copying the DI.
1566  TypeSourceInfo *DI;
1567  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1568
1569  // Verify the tag specifier.
1570  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1571
1572  if (const RecordType *RT = Type->getAs<RecordType>()) {
1573    RecordDecl *D = RT->getDecl();
1574
1575    IdentifierInfo *Id = D->getIdentifier();
1576    assert(Id && "templated class must have an identifier");
1577
1578    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1579      Diag(TagLoc, diag::err_use_with_wrong_tag)
1580        << Type
1581        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1582      Diag(D->getLocation(), diag::note_previous_use);
1583    }
1584  }
1585
1586  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1587
1588  return ElabType.getAsOpaquePtr();
1589}
1590
1591Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1592                                                 LookupResult &R,
1593                                                 bool RequiresADL,
1594                                 const TemplateArgumentListInfo &TemplateArgs) {
1595  // FIXME: Can we do any checking at this point? I guess we could check the
1596  // template arguments that we have against the template name, if the template
1597  // name refers to a single template. That's not a terribly common case,
1598  // though.
1599
1600  // These should be filtered out by our callers.
1601  assert(!R.empty() && "empty lookup results when building templateid");
1602  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1603
1604  NestedNameSpecifier *Qualifier = 0;
1605  SourceRange QualifierRange;
1606  if (SS.isSet()) {
1607    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1608    QualifierRange = SS.getRange();
1609  }
1610
1611  // We don't want lookup warnings at this point.
1612  R.suppressDiagnostics();
1613
1614  bool Dependent
1615    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1616                                              &TemplateArgs);
1617  UnresolvedLookupExpr *ULE
1618    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1619                                   Qualifier, QualifierRange,
1620                                   R.getLookupName(), R.getNameLoc(),
1621                                   RequiresADL, TemplateArgs);
1622  ULE->addDecls(R.begin(), R.end());
1623
1624  return Owned(ULE);
1625}
1626
1627// We actually only call this from template instantiation.
1628Sema::OwningExprResult
1629Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1630                                   DeclarationName Name,
1631                                   SourceLocation NameLoc,
1632                             const TemplateArgumentListInfo &TemplateArgs) {
1633  DeclContext *DC;
1634  if (!(DC = computeDeclContext(SS, false)) ||
1635      DC->isDependentContext() ||
1636      RequireCompleteDeclContext(SS))
1637    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1638
1639  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1640  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1641
1642  if (R.isAmbiguous())
1643    return ExprError();
1644
1645  if (R.empty()) {
1646    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1647      << Name << SS.getRange();
1648    return ExprError();
1649  }
1650
1651  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1652    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1653      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1654    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1655    return ExprError();
1656  }
1657
1658  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1659}
1660
1661/// \brief Form a dependent template name.
1662///
1663/// This action forms a dependent template name given the template
1664/// name and its (presumably dependent) scope specifier. For
1665/// example, given "MetaFun::template apply", the scope specifier \p
1666/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1667/// of the "template" keyword, and "apply" is the \p Name.
1668Sema::TemplateTy
1669Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1670                                 CXXScopeSpec &SS,
1671                                 UnqualifiedId &Name,
1672                                 TypeTy *ObjectType,
1673                                 bool EnteringContext) {
1674  DeclContext *LookupCtx = 0;
1675  if (SS.isSet())
1676    LookupCtx = computeDeclContext(SS, EnteringContext);
1677  if (!LookupCtx && ObjectType)
1678    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1679  if (LookupCtx) {
1680    // C++0x [temp.names]p5:
1681    //   If a name prefixed by the keyword template is not the name of
1682    //   a template, the program is ill-formed. [Note: the keyword
1683    //   template may not be applied to non-template members of class
1684    //   templates. -end note ] [ Note: as is the case with the
1685    //   typename prefix, the template prefix is allowed in cases
1686    //   where it is not strictly necessary; i.e., when the
1687    //   nested-name-specifier or the expression on the left of the ->
1688    //   or . is not dependent on a template-parameter, or the use
1689    //   does not appear in the scope of a template. -end note]
1690    //
1691    // Note: C++03 was more strict here, because it banned the use of
1692    // the "template" keyword prior to a template-name that was not a
1693    // dependent name. C++ DR468 relaxed this requirement (the
1694    // "template" keyword is now permitted). We follow the C++0x
1695    // rules, even in C++03 mode, retroactively applying the DR.
1696    TemplateTy Template;
1697    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1698                                          EnteringContext, Template);
1699    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1700        isa<CXXRecordDecl>(LookupCtx) &&
1701        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1702      // This is a dependent template.
1703    } else if (TNK == TNK_Non_template) {
1704      Diag(Name.getSourceRange().getBegin(),
1705           diag::err_template_kw_refers_to_non_template)
1706        << GetNameFromUnqualifiedId(Name)
1707        << Name.getSourceRange();
1708      return TemplateTy();
1709    } else {
1710      // We found something; return it.
1711      return Template;
1712    }
1713  }
1714
1715  NestedNameSpecifier *Qualifier
1716    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1717
1718  switch (Name.getKind()) {
1719  case UnqualifiedId::IK_Identifier:
1720    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1721                                                             Name.Identifier));
1722
1723  case UnqualifiedId::IK_OperatorFunctionId:
1724    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1725                                             Name.OperatorFunctionId.Operator));
1726
1727  case UnqualifiedId::IK_LiteralOperatorId:
1728    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1729
1730  default:
1731    break;
1732  }
1733
1734  Diag(Name.getSourceRange().getBegin(),
1735       diag::err_template_kw_refers_to_non_template)
1736    << GetNameFromUnqualifiedId(Name)
1737    << Name.getSourceRange();
1738  return TemplateTy();
1739}
1740
1741bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1742                                     const TemplateArgumentLoc &AL,
1743                                     TemplateArgumentListBuilder &Converted) {
1744  const TemplateArgument &Arg = AL.getArgument();
1745
1746  // Check template type parameter.
1747  switch(Arg.getKind()) {
1748  case TemplateArgument::Type:
1749    // C++ [temp.arg.type]p1:
1750    //   A template-argument for a template-parameter which is a
1751    //   type shall be a type-id.
1752    break;
1753  case TemplateArgument::Template: {
1754    // We have a template type parameter but the template argument
1755    // is a template without any arguments.
1756    SourceRange SR = AL.getSourceRange();
1757    TemplateName Name = Arg.getAsTemplate();
1758    Diag(SR.getBegin(), diag::err_template_missing_args)
1759      << Name << SR;
1760    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1761      Diag(Decl->getLocation(), diag::note_template_decl_here);
1762
1763    return true;
1764  }
1765  default: {
1766    // We have a template type parameter but the template argument
1767    // is not a type.
1768    SourceRange SR = AL.getSourceRange();
1769    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1770    Diag(Param->getLocation(), diag::note_template_param_here);
1771
1772    return true;
1773  }
1774  }
1775
1776  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1777    return true;
1778
1779  // Add the converted template type argument.
1780  Converted.Append(
1781                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1782  return false;
1783}
1784
1785/// \brief Substitute template arguments into the default template argument for
1786/// the given template type parameter.
1787///
1788/// \param SemaRef the semantic analysis object for which we are performing
1789/// the substitution.
1790///
1791/// \param Template the template that we are synthesizing template arguments
1792/// for.
1793///
1794/// \param TemplateLoc the location of the template name that started the
1795/// template-id we are checking.
1796///
1797/// \param RAngleLoc the location of the right angle bracket ('>') that
1798/// terminates the template-id.
1799///
1800/// \param Param the template template parameter whose default we are
1801/// substituting into.
1802///
1803/// \param Converted the list of template arguments provided for template
1804/// parameters that precede \p Param in the template parameter list.
1805///
1806/// \returns the substituted template argument, or NULL if an error occurred.
1807static TypeSourceInfo *
1808SubstDefaultTemplateArgument(Sema &SemaRef,
1809                             TemplateDecl *Template,
1810                             SourceLocation TemplateLoc,
1811                             SourceLocation RAngleLoc,
1812                             TemplateTypeParmDecl *Param,
1813                             TemplateArgumentListBuilder &Converted) {
1814  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1815
1816  // If the argument type is dependent, instantiate it now based
1817  // on the previously-computed template arguments.
1818  if (ArgType->getType()->isDependentType()) {
1819    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1820                                      /*TakeArgs=*/false);
1821
1822    MultiLevelTemplateArgumentList AllTemplateArgs
1823      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1824
1825    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1826                                     Template, Converted.getFlatArguments(),
1827                                     Converted.flatSize(),
1828                                     SourceRange(TemplateLoc, RAngleLoc));
1829
1830    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1831                                Param->getDefaultArgumentLoc(),
1832                                Param->getDeclName());
1833  }
1834
1835  return ArgType;
1836}
1837
1838/// \brief Substitute template arguments into the default template argument for
1839/// the given non-type template parameter.
1840///
1841/// \param SemaRef the semantic analysis object for which we are performing
1842/// the substitution.
1843///
1844/// \param Template the template that we are synthesizing template arguments
1845/// for.
1846///
1847/// \param TemplateLoc the location of the template name that started the
1848/// template-id we are checking.
1849///
1850/// \param RAngleLoc the location of the right angle bracket ('>') that
1851/// terminates the template-id.
1852///
1853/// \param Param the non-type template parameter whose default we are
1854/// substituting into.
1855///
1856/// \param Converted the list of template arguments provided for template
1857/// parameters that precede \p Param in the template parameter list.
1858///
1859/// \returns the substituted template argument, or NULL if an error occurred.
1860static Sema::OwningExprResult
1861SubstDefaultTemplateArgument(Sema &SemaRef,
1862                             TemplateDecl *Template,
1863                             SourceLocation TemplateLoc,
1864                             SourceLocation RAngleLoc,
1865                             NonTypeTemplateParmDecl *Param,
1866                             TemplateArgumentListBuilder &Converted) {
1867  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1868                                    /*TakeArgs=*/false);
1869
1870  MultiLevelTemplateArgumentList AllTemplateArgs
1871    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1872
1873  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1874                                   Template, Converted.getFlatArguments(),
1875                                   Converted.flatSize(),
1876                                   SourceRange(TemplateLoc, RAngleLoc));
1877
1878  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1879}
1880
1881/// \brief Substitute template arguments into the default template argument for
1882/// the given template template parameter.
1883///
1884/// \param SemaRef the semantic analysis object for which we are performing
1885/// the substitution.
1886///
1887/// \param Template the template that we are synthesizing template arguments
1888/// for.
1889///
1890/// \param TemplateLoc the location of the template name that started the
1891/// template-id we are checking.
1892///
1893/// \param RAngleLoc the location of the right angle bracket ('>') that
1894/// terminates the template-id.
1895///
1896/// \param Param the template template parameter whose default we are
1897/// substituting into.
1898///
1899/// \param Converted the list of template arguments provided for template
1900/// parameters that precede \p Param in the template parameter list.
1901///
1902/// \returns the substituted template argument, or NULL if an error occurred.
1903static TemplateName
1904SubstDefaultTemplateArgument(Sema &SemaRef,
1905                             TemplateDecl *Template,
1906                             SourceLocation TemplateLoc,
1907                             SourceLocation RAngleLoc,
1908                             TemplateTemplateParmDecl *Param,
1909                             TemplateArgumentListBuilder &Converted) {
1910  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1911                                    /*TakeArgs=*/false);
1912
1913  MultiLevelTemplateArgumentList AllTemplateArgs
1914    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1915
1916  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1917                                   Template, Converted.getFlatArguments(),
1918                                   Converted.flatSize(),
1919                                   SourceRange(TemplateLoc, RAngleLoc));
1920
1921  return SemaRef.SubstTemplateName(
1922                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1923                              Param->getDefaultArgument().getTemplateNameLoc(),
1924                                   AllTemplateArgs);
1925}
1926
1927/// \brief If the given template parameter has a default template
1928/// argument, substitute into that default template argument and
1929/// return the corresponding template argument.
1930TemplateArgumentLoc
1931Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1932                                              SourceLocation TemplateLoc,
1933                                              SourceLocation RAngleLoc,
1934                                              Decl *Param,
1935                                     TemplateArgumentListBuilder &Converted) {
1936  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1937    if (!TypeParm->hasDefaultArgument())
1938      return TemplateArgumentLoc();
1939
1940    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1941                                                      TemplateLoc,
1942                                                      RAngleLoc,
1943                                                      TypeParm,
1944                                                      Converted);
1945    if (DI)
1946      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1947
1948    return TemplateArgumentLoc();
1949  }
1950
1951  if (NonTypeTemplateParmDecl *NonTypeParm
1952        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1953    if (!NonTypeParm->hasDefaultArgument())
1954      return TemplateArgumentLoc();
1955
1956    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1957                                                        TemplateLoc,
1958                                                        RAngleLoc,
1959                                                        NonTypeParm,
1960                                                        Converted);
1961    if (Arg.isInvalid())
1962      return TemplateArgumentLoc();
1963
1964    Expr *ArgE = Arg.takeAs<Expr>();
1965    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1966  }
1967
1968  TemplateTemplateParmDecl *TempTempParm
1969    = cast<TemplateTemplateParmDecl>(Param);
1970  if (!TempTempParm->hasDefaultArgument())
1971    return TemplateArgumentLoc();
1972
1973  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1974                                                    TemplateLoc,
1975                                                    RAngleLoc,
1976                                                    TempTempParm,
1977                                                    Converted);
1978  if (TName.isNull())
1979    return TemplateArgumentLoc();
1980
1981  return TemplateArgumentLoc(TemplateArgument(TName),
1982                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1983                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1984}
1985
1986/// \brief Check that the given template argument corresponds to the given
1987/// template parameter.
1988bool Sema::CheckTemplateArgument(NamedDecl *Param,
1989                                 const TemplateArgumentLoc &Arg,
1990                                 TemplateDecl *Template,
1991                                 SourceLocation TemplateLoc,
1992                                 SourceLocation RAngleLoc,
1993                                 TemplateArgumentListBuilder &Converted,
1994                                 CheckTemplateArgumentKind CTAK) {
1995  // Check template type parameters.
1996  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1997    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1998
1999  // Check non-type template parameters.
2000  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2001    // Do substitution on the type of the non-type template parameter
2002    // with the template arguments we've seen thus far.
2003    QualType NTTPType = NTTP->getType();
2004    if (NTTPType->isDependentType()) {
2005      // Do substitution on the type of the non-type template parameter.
2006      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2007                                 NTTP, Converted.getFlatArguments(),
2008                                 Converted.flatSize(),
2009                                 SourceRange(TemplateLoc, RAngleLoc));
2010
2011      TemplateArgumentList TemplateArgs(Context, Converted,
2012                                        /*TakeArgs=*/false);
2013      NTTPType = SubstType(NTTPType,
2014                           MultiLevelTemplateArgumentList(TemplateArgs),
2015                           NTTP->getLocation(),
2016                           NTTP->getDeclName());
2017      // If that worked, check the non-type template parameter type
2018      // for validity.
2019      if (!NTTPType.isNull())
2020        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2021                                                     NTTP->getLocation());
2022      if (NTTPType.isNull())
2023        return true;
2024    }
2025
2026    switch (Arg.getArgument().getKind()) {
2027    case TemplateArgument::Null:
2028      assert(false && "Should never see a NULL template argument here");
2029      return true;
2030
2031    case TemplateArgument::Expression: {
2032      Expr *E = Arg.getArgument().getAsExpr();
2033      TemplateArgument Result;
2034      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2035        return true;
2036
2037      Converted.Append(Result);
2038      break;
2039    }
2040
2041    case TemplateArgument::Declaration:
2042    case TemplateArgument::Integral:
2043      // We've already checked this template argument, so just copy
2044      // it to the list of converted arguments.
2045      Converted.Append(Arg.getArgument());
2046      break;
2047
2048    case TemplateArgument::Template:
2049      // We were given a template template argument. It may not be ill-formed;
2050      // see below.
2051      if (DependentTemplateName *DTN
2052            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2053        // We have a template argument such as \c T::template X, which we
2054        // parsed as a template template argument. However, since we now
2055        // know that we need a non-type template argument, convert this
2056        // template name into an expression.
2057        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2058                                                    DTN->getQualifier(),
2059                                               Arg.getTemplateQualifierRange(),
2060                                                    DTN->getIdentifier(),
2061                                                    Arg.getTemplateNameLoc());
2062
2063        TemplateArgument Result;
2064        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2065          return true;
2066
2067        Converted.Append(Result);
2068        break;
2069      }
2070
2071      // We have a template argument that actually does refer to a class
2072      // template, template alias, or template template parameter, and
2073      // therefore cannot be a non-type template argument.
2074      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2075        << Arg.getSourceRange();
2076
2077      Diag(Param->getLocation(), diag::note_template_param_here);
2078      return true;
2079
2080    case TemplateArgument::Type: {
2081      // We have a non-type template parameter but the template
2082      // argument is a type.
2083
2084      // C++ [temp.arg]p2:
2085      //   In a template-argument, an ambiguity between a type-id and
2086      //   an expression is resolved to a type-id, regardless of the
2087      //   form of the corresponding template-parameter.
2088      //
2089      // We warn specifically about this case, since it can be rather
2090      // confusing for users.
2091      QualType T = Arg.getArgument().getAsType();
2092      SourceRange SR = Arg.getSourceRange();
2093      if (T->isFunctionType())
2094        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2095      else
2096        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2097      Diag(Param->getLocation(), diag::note_template_param_here);
2098      return true;
2099    }
2100
2101    case TemplateArgument::Pack:
2102      llvm_unreachable("Caller must expand template argument packs");
2103      break;
2104    }
2105
2106    return false;
2107  }
2108
2109
2110  // Check template template parameters.
2111  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2112
2113  // Substitute into the template parameter list of the template
2114  // template parameter, since previously-supplied template arguments
2115  // may appear within the template template parameter.
2116  {
2117    // Set up a template instantiation context.
2118    LocalInstantiationScope Scope(*this);
2119    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2120                               TempParm, Converted.getFlatArguments(),
2121                               Converted.flatSize(),
2122                               SourceRange(TemplateLoc, RAngleLoc));
2123
2124    TemplateArgumentList TemplateArgs(Context, Converted,
2125                                      /*TakeArgs=*/false);
2126    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2127                      SubstDecl(TempParm, CurContext,
2128                                MultiLevelTemplateArgumentList(TemplateArgs)));
2129    if (!TempParm)
2130      return true;
2131
2132    // FIXME: TempParam is leaked.
2133  }
2134
2135  switch (Arg.getArgument().getKind()) {
2136  case TemplateArgument::Null:
2137    assert(false && "Should never see a NULL template argument here");
2138    return true;
2139
2140  case TemplateArgument::Template:
2141    if (CheckTemplateArgument(TempParm, Arg))
2142      return true;
2143
2144    Converted.Append(Arg.getArgument());
2145    break;
2146
2147  case TemplateArgument::Expression:
2148  case TemplateArgument::Type:
2149    // We have a template template parameter but the template
2150    // argument does not refer to a template.
2151    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2152    return true;
2153
2154  case TemplateArgument::Declaration:
2155    llvm_unreachable(
2156                       "Declaration argument with template template parameter");
2157    break;
2158  case TemplateArgument::Integral:
2159    llvm_unreachable(
2160                          "Integral argument with template template parameter");
2161    break;
2162
2163  case TemplateArgument::Pack:
2164    llvm_unreachable("Caller must expand template argument packs");
2165    break;
2166  }
2167
2168  return false;
2169}
2170
2171/// \brief Check that the given template argument list is well-formed
2172/// for specializing the given template.
2173bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2174                                     SourceLocation TemplateLoc,
2175                                const TemplateArgumentListInfo &TemplateArgs,
2176                                     bool PartialTemplateArgs,
2177                                     TemplateArgumentListBuilder &Converted) {
2178  TemplateParameterList *Params = Template->getTemplateParameters();
2179  unsigned NumParams = Params->size();
2180  unsigned NumArgs = TemplateArgs.size();
2181  bool Invalid = false;
2182
2183  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2184
2185  bool HasParameterPack =
2186    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2187
2188  if ((NumArgs > NumParams && !HasParameterPack) ||
2189      (NumArgs < Params->getMinRequiredArguments() &&
2190       !PartialTemplateArgs)) {
2191    // FIXME: point at either the first arg beyond what we can handle,
2192    // or the '>', depending on whether we have too many or too few
2193    // arguments.
2194    SourceRange Range;
2195    if (NumArgs > NumParams)
2196      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2197    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2198      << (NumArgs > NumParams)
2199      << (isa<ClassTemplateDecl>(Template)? 0 :
2200          isa<FunctionTemplateDecl>(Template)? 1 :
2201          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2202      << Template << Range;
2203    Diag(Template->getLocation(), diag::note_template_decl_here)
2204      << Params->getSourceRange();
2205    Invalid = true;
2206  }
2207
2208  // C++ [temp.arg]p1:
2209  //   [...] The type and form of each template-argument specified in
2210  //   a template-id shall match the type and form specified for the
2211  //   corresponding parameter declared by the template in its
2212  //   template-parameter-list.
2213  unsigned ArgIdx = 0;
2214  for (TemplateParameterList::iterator Param = Params->begin(),
2215                                       ParamEnd = Params->end();
2216       Param != ParamEnd; ++Param, ++ArgIdx) {
2217    if (ArgIdx > NumArgs && PartialTemplateArgs)
2218      break;
2219
2220    // If we have a template parameter pack, check every remaining template
2221    // argument against that template parameter pack.
2222    if ((*Param)->isTemplateParameterPack()) {
2223      Converted.BeginPack();
2224      for (; ArgIdx < NumArgs; ++ArgIdx) {
2225        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2226                                  TemplateLoc, RAngleLoc, Converted)) {
2227          Invalid = true;
2228          break;
2229        }
2230      }
2231      Converted.EndPack();
2232      continue;
2233    }
2234
2235    if (ArgIdx < NumArgs) {
2236      // Check the template argument we were given.
2237      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2238                                TemplateLoc, RAngleLoc, Converted))
2239        return true;
2240
2241      continue;
2242    }
2243
2244    // We have a default template argument that we will use.
2245    TemplateArgumentLoc Arg;
2246
2247    // Retrieve the default template argument from the template
2248    // parameter. For each kind of template parameter, we substitute the
2249    // template arguments provided thus far and any "outer" template arguments
2250    // (when the template parameter was part of a nested template) into
2251    // the default argument.
2252    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2253      if (!TTP->hasDefaultArgument()) {
2254        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2255        break;
2256      }
2257
2258      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2259                                                             Template,
2260                                                             TemplateLoc,
2261                                                             RAngleLoc,
2262                                                             TTP,
2263                                                             Converted);
2264      if (!ArgType)
2265        return true;
2266
2267      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2268                                ArgType);
2269    } else if (NonTypeTemplateParmDecl *NTTP
2270                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2271      if (!NTTP->hasDefaultArgument()) {
2272        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2273        break;
2274      }
2275
2276      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2277                                                              TemplateLoc,
2278                                                              RAngleLoc,
2279                                                              NTTP,
2280                                                              Converted);
2281      if (E.isInvalid())
2282        return true;
2283
2284      Expr *Ex = E.takeAs<Expr>();
2285      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2286    } else {
2287      TemplateTemplateParmDecl *TempParm
2288        = cast<TemplateTemplateParmDecl>(*Param);
2289
2290      if (!TempParm->hasDefaultArgument()) {
2291        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2292        break;
2293      }
2294
2295      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2296                                                       TemplateLoc,
2297                                                       RAngleLoc,
2298                                                       TempParm,
2299                                                       Converted);
2300      if (Name.isNull())
2301        return true;
2302
2303      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2304                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2305                  TempParm->getDefaultArgument().getTemplateNameLoc());
2306    }
2307
2308    // Introduce an instantiation record that describes where we are using
2309    // the default template argument.
2310    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2311                                        Converted.getFlatArguments(),
2312                                        Converted.flatSize(),
2313                                        SourceRange(TemplateLoc, RAngleLoc));
2314
2315    // Check the default template argument.
2316    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2317                              RAngleLoc, Converted))
2318      return true;
2319  }
2320
2321  return Invalid;
2322}
2323
2324/// \brief Check a template argument against its corresponding
2325/// template type parameter.
2326///
2327/// This routine implements the semantics of C++ [temp.arg.type]. It
2328/// returns true if an error occurred, and false otherwise.
2329bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2330                                 TypeSourceInfo *ArgInfo) {
2331  assert(ArgInfo && "invalid TypeSourceInfo");
2332  QualType Arg = ArgInfo->getType();
2333
2334  // C++ [temp.arg.type]p2:
2335  //   A local type, a type with no linkage, an unnamed type or a type
2336  //   compounded from any of these types shall not be used as a
2337  //   template-argument for a template type-parameter.
2338  //
2339  // FIXME: Perform the recursive and no-linkage type checks.
2340  const TagType *Tag = 0;
2341  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2342    Tag = EnumT;
2343  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2344    Tag = RecordT;
2345  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2346    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2347    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2348      << QualType(Tag, 0) << SR;
2349  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2350           !Tag->getDecl()->getTypedefForAnonDecl()) {
2351    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2352    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2353    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2354    return true;
2355  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2356    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2357    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2358  }
2359
2360  return false;
2361}
2362
2363/// \brief Checks whether the given template argument is the address
2364/// of an object or function according to C++ [temp.arg.nontype]p1.
2365static bool
2366CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2367                                               NonTypeTemplateParmDecl *Param,
2368                                               QualType ParamType,
2369                                               Expr *ArgIn,
2370                                               TemplateArgument &Converted) {
2371  bool Invalid = false;
2372  Expr *Arg = ArgIn;
2373  QualType ArgType = Arg->getType();
2374
2375  // See through any implicit casts we added to fix the type.
2376  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2377    Arg = Cast->getSubExpr();
2378
2379  // C++ [temp.arg.nontype]p1:
2380  //
2381  //   A template-argument for a non-type, non-template
2382  //   template-parameter shall be one of: [...]
2383  //
2384  //     -- the address of an object or function with external
2385  //        linkage, including function templates and function
2386  //        template-ids but excluding non-static class members,
2387  //        expressed as & id-expression where the & is optional if
2388  //        the name refers to a function or array, or if the
2389  //        corresponding template-parameter is a reference; or
2390  DeclRefExpr *DRE = 0;
2391
2392  // Ignore (and complain about) any excess parentheses.
2393  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2394    if (!Invalid) {
2395      S.Diag(Arg->getSourceRange().getBegin(),
2396             diag::err_template_arg_extra_parens)
2397        << Arg->getSourceRange();
2398      Invalid = true;
2399    }
2400
2401    Arg = Parens->getSubExpr();
2402  }
2403
2404  bool AddressTaken = false;
2405  SourceLocation AddrOpLoc;
2406  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2407    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2408      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2409      AddressTaken = true;
2410      AddrOpLoc = UnOp->getOperatorLoc();
2411    }
2412  } else
2413    DRE = dyn_cast<DeclRefExpr>(Arg);
2414
2415  if (!DRE) {
2416    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2417      << Arg->getSourceRange();
2418    S.Diag(Param->getLocation(), diag::note_template_param_here);
2419    return true;
2420  }
2421
2422  // Stop checking the precise nature of the argument if it is value dependent,
2423  // it should be checked when instantiated.
2424  if (Arg->isValueDependent()) {
2425    Converted = TemplateArgument(ArgIn->Retain());
2426    return false;
2427  }
2428
2429  if (!isa<ValueDecl>(DRE->getDecl())) {
2430    S.Diag(Arg->getSourceRange().getBegin(),
2431           diag::err_template_arg_not_object_or_func_form)
2432      << Arg->getSourceRange();
2433    S.Diag(Param->getLocation(), diag::note_template_param_here);
2434    return true;
2435  }
2436
2437  NamedDecl *Entity = 0;
2438
2439  // Cannot refer to non-static data members
2440  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2441    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2442      << Field << Arg->getSourceRange();
2443    S.Diag(Param->getLocation(), diag::note_template_param_here);
2444    return true;
2445  }
2446
2447  // Cannot refer to non-static member functions
2448  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2449    if (!Method->isStatic()) {
2450      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2451        << Method << Arg->getSourceRange();
2452      S.Diag(Param->getLocation(), diag::note_template_param_here);
2453      return true;
2454    }
2455
2456  // Functions must have external linkage.
2457  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2458    if (!isExternalLinkage(Func->getLinkage())) {
2459      S.Diag(Arg->getSourceRange().getBegin(),
2460             diag::err_template_arg_function_not_extern)
2461        << Func << Arg->getSourceRange();
2462      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2463        << true;
2464      return true;
2465    }
2466
2467    // Okay: we've named a function with external linkage.
2468    Entity = Func;
2469
2470    // If the template parameter has pointer type, the function decays.
2471    if (ParamType->isPointerType() && !AddressTaken)
2472      ArgType = S.Context.getPointerType(Func->getType());
2473    else if (AddressTaken && ParamType->isReferenceType()) {
2474      // If we originally had an address-of operator, but the
2475      // parameter has reference type, complain and (if things look
2476      // like they will work) drop the address-of operator.
2477      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2478                                            ParamType.getNonReferenceType())) {
2479        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2480          << ParamType;
2481        S.Diag(Param->getLocation(), diag::note_template_param_here);
2482        return true;
2483      }
2484
2485      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2486        << ParamType
2487        << FixItHint::CreateRemoval(AddrOpLoc);
2488      S.Diag(Param->getLocation(), diag::note_template_param_here);
2489
2490      ArgType = Func->getType();
2491    }
2492  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2493    if (!isExternalLinkage(Var->getLinkage())) {
2494      S.Diag(Arg->getSourceRange().getBegin(),
2495             diag::err_template_arg_object_not_extern)
2496        << Var << Arg->getSourceRange();
2497      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2498        << true;
2499      return true;
2500    }
2501
2502    // A value of reference type is not an object.
2503    if (Var->getType()->isReferenceType()) {
2504      S.Diag(Arg->getSourceRange().getBegin(),
2505             diag::err_template_arg_reference_var)
2506        << Var->getType() << Arg->getSourceRange();
2507      S.Diag(Param->getLocation(), diag::note_template_param_here);
2508      return true;
2509    }
2510
2511    // Okay: we've named an object with external linkage
2512    Entity = Var;
2513
2514    // If the template parameter has pointer type, we must have taken
2515    // the address of this object.
2516    if (ParamType->isReferenceType()) {
2517      if (AddressTaken) {
2518        // If we originally had an address-of operator, but the
2519        // parameter has reference type, complain and (if things look
2520        // like they will work) drop the address-of operator.
2521        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2522                                            ParamType.getNonReferenceType())) {
2523          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2524            << ParamType;
2525          S.Diag(Param->getLocation(), diag::note_template_param_here);
2526          return true;
2527        }
2528
2529        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2530          << ParamType
2531          << FixItHint::CreateRemoval(AddrOpLoc);
2532        S.Diag(Param->getLocation(), diag::note_template_param_here);
2533
2534        ArgType = Var->getType();
2535      }
2536    } else if (!AddressTaken && ParamType->isPointerType()) {
2537      if (Var->getType()->isArrayType()) {
2538        // Array-to-pointer decay.
2539        ArgType = S.Context.getArrayDecayedType(Var->getType());
2540      } else {
2541        // If the template parameter has pointer type but the address of
2542        // this object was not taken, complain and (possibly) recover by
2543        // taking the address of the entity.
2544        ArgType = S.Context.getPointerType(Var->getType());
2545        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2546          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2547            << ParamType;
2548          S.Diag(Param->getLocation(), diag::note_template_param_here);
2549          return true;
2550        }
2551
2552        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2553          << ParamType
2554          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2555
2556        S.Diag(Param->getLocation(), diag::note_template_param_here);
2557      }
2558    }
2559  } else {
2560    // We found something else, but we don't know specifically what it is.
2561    S.Diag(Arg->getSourceRange().getBegin(),
2562           diag::err_template_arg_not_object_or_func)
2563      << Arg->getSourceRange();
2564    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2565    return true;
2566  }
2567
2568  if (ParamType->isPointerType() &&
2569      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2570      S.IsQualificationConversion(ArgType, ParamType)) {
2571    // For pointer-to-object types, qualification conversions are
2572    // permitted.
2573  } else {
2574    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2575      if (!ParamRef->getPointeeType()->isFunctionType()) {
2576        // C++ [temp.arg.nontype]p5b3:
2577        //   For a non-type template-parameter of type reference to
2578        //   object, no conversions apply. The type referred to by the
2579        //   reference may be more cv-qualified than the (otherwise
2580        //   identical) type of the template- argument. The
2581        //   template-parameter is bound directly to the
2582        //   template-argument, which shall be an lvalue.
2583
2584        // FIXME: Other qualifiers?
2585        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2586        unsigned ArgQuals = ArgType.getCVRQualifiers();
2587
2588        if ((ParamQuals | ArgQuals) != ParamQuals) {
2589          S.Diag(Arg->getSourceRange().getBegin(),
2590                 diag::err_template_arg_ref_bind_ignores_quals)
2591            << ParamType << Arg->getType()
2592            << Arg->getSourceRange();
2593          S.Diag(Param->getLocation(), diag::note_template_param_here);
2594          return true;
2595        }
2596      }
2597    }
2598
2599    // At this point, the template argument refers to an object or
2600    // function with external linkage. We now need to check whether the
2601    // argument and parameter types are compatible.
2602    if (!S.Context.hasSameUnqualifiedType(ArgType,
2603                                          ParamType.getNonReferenceType())) {
2604      // We can't perform this conversion or binding.
2605      if (ParamType->isReferenceType())
2606        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2607          << ParamType << Arg->getType() << Arg->getSourceRange();
2608      else
2609        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2610          << Arg->getType() << ParamType << Arg->getSourceRange();
2611      S.Diag(Param->getLocation(), diag::note_template_param_here);
2612      return true;
2613    }
2614  }
2615
2616  // Create the template argument.
2617  Converted = TemplateArgument(Entity->getCanonicalDecl());
2618  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2619  return false;
2620}
2621
2622/// \brief Checks whether the given template argument is a pointer to
2623/// member constant according to C++ [temp.arg.nontype]p1.
2624bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2625                                                TemplateArgument &Converted) {
2626  bool Invalid = false;
2627
2628  // See through any implicit casts we added to fix the type.
2629  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2630    Arg = Cast->getSubExpr();
2631
2632  // C++ [temp.arg.nontype]p1:
2633  //
2634  //   A template-argument for a non-type, non-template
2635  //   template-parameter shall be one of: [...]
2636  //
2637  //     -- a pointer to member expressed as described in 5.3.1.
2638  DeclRefExpr *DRE = 0;
2639
2640  // Ignore (and complain about) any excess parentheses.
2641  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2642    if (!Invalid) {
2643      Diag(Arg->getSourceRange().getBegin(),
2644           diag::err_template_arg_extra_parens)
2645        << Arg->getSourceRange();
2646      Invalid = true;
2647    }
2648
2649    Arg = Parens->getSubExpr();
2650  }
2651
2652  // A pointer-to-member constant written &Class::member.
2653  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2654    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2655      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2656      if (DRE && !DRE->getQualifier())
2657        DRE = 0;
2658    }
2659  }
2660  // A constant of pointer-to-member type.
2661  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2662    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2663      if (VD->getType()->isMemberPointerType()) {
2664        if (isa<NonTypeTemplateParmDecl>(VD) ||
2665            (isa<VarDecl>(VD) &&
2666             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2667          if (Arg->isTypeDependent() || Arg->isValueDependent())
2668            Converted = TemplateArgument(Arg->Retain());
2669          else
2670            Converted = TemplateArgument(VD->getCanonicalDecl());
2671          return Invalid;
2672        }
2673      }
2674    }
2675
2676    DRE = 0;
2677  }
2678
2679  if (!DRE)
2680    return Diag(Arg->getSourceRange().getBegin(),
2681                diag::err_template_arg_not_pointer_to_member_form)
2682      << Arg->getSourceRange();
2683
2684  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2685    assert((isa<FieldDecl>(DRE->getDecl()) ||
2686            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2687           "Only non-static member pointers can make it here");
2688
2689    // Okay: this is the address of a non-static member, and therefore
2690    // a member pointer constant.
2691    if (Arg->isTypeDependent() || Arg->isValueDependent())
2692      Converted = TemplateArgument(Arg->Retain());
2693    else
2694      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2695    return Invalid;
2696  }
2697
2698  // We found something else, but we don't know specifically what it is.
2699  Diag(Arg->getSourceRange().getBegin(),
2700       diag::err_template_arg_not_pointer_to_member_form)
2701      << Arg->getSourceRange();
2702  Diag(DRE->getDecl()->getLocation(),
2703       diag::note_template_arg_refers_here);
2704  return true;
2705}
2706
2707/// \brief Check a template argument against its corresponding
2708/// non-type template parameter.
2709///
2710/// This routine implements the semantics of C++ [temp.arg.nontype].
2711/// It returns true if an error occurred, and false otherwise. \p
2712/// InstantiatedParamType is the type of the non-type template
2713/// parameter after it has been instantiated.
2714///
2715/// If no error was detected, Converted receives the converted template argument.
2716bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2717                                 QualType InstantiatedParamType, Expr *&Arg,
2718                                 TemplateArgument &Converted,
2719                                 CheckTemplateArgumentKind CTAK) {
2720  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2721
2722  // If either the parameter has a dependent type or the argument is
2723  // type-dependent, there's nothing we can check now.
2724  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2725    // FIXME: Produce a cloned, canonical expression?
2726    Converted = TemplateArgument(Arg);
2727    return false;
2728  }
2729
2730  // C++ [temp.arg.nontype]p5:
2731  //   The following conversions are performed on each expression used
2732  //   as a non-type template-argument. If a non-type
2733  //   template-argument cannot be converted to the type of the
2734  //   corresponding template-parameter then the program is
2735  //   ill-formed.
2736  //
2737  //     -- for a non-type template-parameter of integral or
2738  //        enumeration type, integral promotions (4.5) and integral
2739  //        conversions (4.7) are applied.
2740  QualType ParamType = InstantiatedParamType;
2741  QualType ArgType = Arg->getType();
2742  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2743    // C++ [temp.arg.nontype]p1:
2744    //   A template-argument for a non-type, non-template
2745    //   template-parameter shall be one of:
2746    //
2747    //     -- an integral constant-expression of integral or enumeration
2748    //        type; or
2749    //     -- the name of a non-type template-parameter; or
2750    SourceLocation NonConstantLoc;
2751    llvm::APSInt Value;
2752    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2753      Diag(Arg->getSourceRange().getBegin(),
2754           diag::err_template_arg_not_integral_or_enumeral)
2755        << ArgType << Arg->getSourceRange();
2756      Diag(Param->getLocation(), diag::note_template_param_here);
2757      return true;
2758    } else if (!Arg->isValueDependent() &&
2759               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2760      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2761        << ArgType << Arg->getSourceRange();
2762      return true;
2763    }
2764
2765    // From here on out, all we care about are the unqualified forms
2766    // of the parameter and argument types.
2767    ParamType = ParamType.getUnqualifiedType();
2768    ArgType = ArgType.getUnqualifiedType();
2769
2770    // Try to convert the argument to the parameter's type.
2771    if (Context.hasSameType(ParamType, ArgType)) {
2772      // Okay: no conversion necessary
2773    } else if (CTAK == CTAK_Deduced) {
2774      // C++ [temp.deduct.type]p17:
2775      //   If, in the declaration of a function template with a non-type
2776      //   template-parameter, the non-type template- parameter is used
2777      //   in an expression in the function parameter-list and, if the
2778      //   corresponding template-argument is deduced, the
2779      //   template-argument type shall match the type of the
2780      //   template-parameter exactly, except that a template-argument
2781      //   deduced from an array bound may be of any integral type.
2782      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2783        << ArgType << ParamType;
2784      Diag(Param->getLocation(), diag::note_template_param_here);
2785      return true;
2786    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2787               !ParamType->isEnumeralType()) {
2788      // This is an integral promotion or conversion.
2789      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2790    } else {
2791      // We can't perform this conversion.
2792      Diag(Arg->getSourceRange().getBegin(),
2793           diag::err_template_arg_not_convertible)
2794        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2795      Diag(Param->getLocation(), diag::note_template_param_here);
2796      return true;
2797    }
2798
2799    QualType IntegerType = Context.getCanonicalType(ParamType);
2800    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2801      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2802
2803    if (!Arg->isValueDependent()) {
2804      llvm::APSInt OldValue = Value;
2805
2806      // Coerce the template argument's value to the value it will have
2807      // based on the template parameter's type.
2808      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2809      if (Value.getBitWidth() != AllowedBits)
2810        Value.extOrTrunc(AllowedBits);
2811      Value.setIsSigned(IntegerType->isSignedIntegerType());
2812
2813      // Complain if an unsigned parameter received a negative value.
2814      if (IntegerType->isUnsignedIntegerType()
2815          && (OldValue.isSigned() && OldValue.isNegative())) {
2816        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2817          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2818          << Arg->getSourceRange();
2819        Diag(Param->getLocation(), diag::note_template_param_here);
2820      }
2821
2822      // Complain if we overflowed the template parameter's type.
2823      unsigned RequiredBits;
2824      if (IntegerType->isUnsignedIntegerType())
2825        RequiredBits = OldValue.getActiveBits();
2826      else if (OldValue.isUnsigned())
2827        RequiredBits = OldValue.getActiveBits() + 1;
2828      else
2829        RequiredBits = OldValue.getMinSignedBits();
2830      if (RequiredBits > AllowedBits) {
2831        Diag(Arg->getSourceRange().getBegin(),
2832             diag::warn_template_arg_too_large)
2833          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2834          << Arg->getSourceRange();
2835        Diag(Param->getLocation(), diag::note_template_param_here);
2836      }
2837    }
2838
2839    // Add the value of this argument to the list of converted
2840    // arguments. We use the bitwidth and signedness of the template
2841    // parameter.
2842    if (Arg->isValueDependent()) {
2843      // The argument is value-dependent. Create a new
2844      // TemplateArgument with the converted expression.
2845      Converted = TemplateArgument(Arg);
2846      return false;
2847    }
2848
2849    Converted = TemplateArgument(Value,
2850                                 ParamType->isEnumeralType() ? ParamType
2851                                                             : IntegerType);
2852    return false;
2853  }
2854
2855  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2856
2857  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2858  // from a template argument of type std::nullptr_t to a non-type
2859  // template parameter of type pointer to object, pointer to
2860  // function, or pointer-to-member, respectively.
2861  if (ArgType->isNullPtrType() &&
2862      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2863    Converted = TemplateArgument((NamedDecl *)0);
2864    return false;
2865  }
2866
2867  // Handle pointer-to-function, reference-to-function, and
2868  // pointer-to-member-function all in (roughly) the same way.
2869  if (// -- For a non-type template-parameter of type pointer to
2870      //    function, only the function-to-pointer conversion (4.3) is
2871      //    applied. If the template-argument represents a set of
2872      //    overloaded functions (or a pointer to such), the matching
2873      //    function is selected from the set (13.4).
2874      (ParamType->isPointerType() &&
2875       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2876      // -- For a non-type template-parameter of type reference to
2877      //    function, no conversions apply. If the template-argument
2878      //    represents a set of overloaded functions, the matching
2879      //    function is selected from the set (13.4).
2880      (ParamType->isReferenceType() &&
2881       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2882      // -- For a non-type template-parameter of type pointer to
2883      //    member function, no conversions apply. If the
2884      //    template-argument represents a set of overloaded member
2885      //    functions, the matching member function is selected from
2886      //    the set (13.4).
2887      (ParamType->isMemberPointerType() &&
2888       ParamType->getAs<MemberPointerType>()->getPointeeType()
2889         ->isFunctionType())) {
2890
2891    if (Arg->getType() == Context.OverloadTy) {
2892      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2893                                                                true,
2894                                                                FoundResult)) {
2895        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2896          return true;
2897
2898        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2899        ArgType = Arg->getType();
2900      } else
2901        return true;
2902    }
2903
2904    if (!ParamType->isMemberPointerType())
2905      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2906                                                            ParamType,
2907                                                            Arg, Converted);
2908
2909    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2910      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2911                        Arg->isLvalue(Context) == Expr::LV_Valid);
2912    } else if (!Context.hasSameUnqualifiedType(ArgType,
2913                                           ParamType.getNonReferenceType())) {
2914      // We can't perform this conversion.
2915      Diag(Arg->getSourceRange().getBegin(),
2916           diag::err_template_arg_not_convertible)
2917        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2918      Diag(Param->getLocation(), diag::note_template_param_here);
2919      return true;
2920    }
2921
2922    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2923  }
2924
2925  if (ParamType->isPointerType()) {
2926    //   -- for a non-type template-parameter of type pointer to
2927    //      object, qualification conversions (4.4) and the
2928    //      array-to-pointer conversion (4.2) are applied.
2929    // C++0x also allows a value of std::nullptr_t.
2930    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2931           "Only object pointers allowed here");
2932
2933    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2934                                                          ParamType,
2935                                                          Arg, Converted);
2936  }
2937
2938  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2939    //   -- For a non-type template-parameter of type reference to
2940    //      object, no conversions apply. The type referred to by the
2941    //      reference may be more cv-qualified than the (otherwise
2942    //      identical) type of the template-argument. The
2943    //      template-parameter is bound directly to the
2944    //      template-argument, which must be an lvalue.
2945    assert(ParamRefType->getPointeeType()->isObjectType() &&
2946           "Only object references allowed here");
2947
2948    if (Arg->getType() == Context.OverloadTy) {
2949      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2950                                                 ParamRefType->getPointeeType(),
2951                                                                true,
2952                                                                FoundResult)) {
2953        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2954          return true;
2955
2956        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2957        ArgType = Arg->getType();
2958      } else
2959        return true;
2960    }
2961
2962    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2963                                                          ParamType,
2964                                                          Arg, Converted);
2965  }
2966
2967  //     -- For a non-type template-parameter of type pointer to data
2968  //        member, qualification conversions (4.4) are applied.
2969  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2970
2971  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2972    // Types match exactly: nothing more to do here.
2973  } else if (IsQualificationConversion(ArgType, ParamType)) {
2974    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2975                      Arg->isLvalue(Context) == Expr::LV_Valid);
2976  } else {
2977    // We can't perform this conversion.
2978    Diag(Arg->getSourceRange().getBegin(),
2979         diag::err_template_arg_not_convertible)
2980      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2981    Diag(Param->getLocation(), diag::note_template_param_here);
2982    return true;
2983  }
2984
2985  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2986}
2987
2988/// \brief Check a template argument against its corresponding
2989/// template template parameter.
2990///
2991/// This routine implements the semantics of C++ [temp.arg.template].
2992/// It returns true if an error occurred, and false otherwise.
2993bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2994                                 const TemplateArgumentLoc &Arg) {
2995  TemplateName Name = Arg.getArgument().getAsTemplate();
2996  TemplateDecl *Template = Name.getAsTemplateDecl();
2997  if (!Template) {
2998    // Any dependent template name is fine.
2999    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3000    return false;
3001  }
3002
3003  // C++ [temp.arg.template]p1:
3004  //   A template-argument for a template template-parameter shall be
3005  //   the name of a class template, expressed as id-expression. Only
3006  //   primary class templates are considered when matching the
3007  //   template template argument with the corresponding parameter;
3008  //   partial specializations are not considered even if their
3009  //   parameter lists match that of the template template parameter.
3010  //
3011  // Note that we also allow template template parameters here, which
3012  // will happen when we are dealing with, e.g., class template
3013  // partial specializations.
3014  if (!isa<ClassTemplateDecl>(Template) &&
3015      !isa<TemplateTemplateParmDecl>(Template)) {
3016    assert(isa<FunctionTemplateDecl>(Template) &&
3017           "Only function templates are possible here");
3018    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3019    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3020      << Template;
3021  }
3022
3023  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3024                                         Param->getTemplateParameters(),
3025                                         true,
3026                                         TPL_TemplateTemplateArgumentMatch,
3027                                         Arg.getLocation());
3028}
3029
3030/// \brief Given a non-type template argument that refers to a
3031/// declaration and the type of its corresponding non-type template
3032/// parameter, produce an expression that properly refers to that
3033/// declaration.
3034Sema::OwningExprResult
3035Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3036                                              QualType ParamType,
3037                                              SourceLocation Loc) {
3038  assert(Arg.getKind() == TemplateArgument::Declaration &&
3039         "Only declaration template arguments permitted here");
3040  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3041
3042  if (VD->getDeclContext()->isRecord() &&
3043      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3044    // If the value is a class member, we might have a pointer-to-member.
3045    // Determine whether the non-type template template parameter is of
3046    // pointer-to-member type. If so, we need to build an appropriate
3047    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3048    // would refer to the member itself.
3049    if (ParamType->isMemberPointerType()) {
3050      QualType ClassType
3051        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3052      NestedNameSpecifier *Qualifier
3053        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
3054      CXXScopeSpec SS;
3055      SS.setScopeRep(Qualifier);
3056      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
3057                                           VD->getType().getNonReferenceType(),
3058                                                  Loc,
3059                                                  &SS);
3060      if (RefExpr.isInvalid())
3061        return ExprError();
3062
3063      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3064      assert(!RefExpr.isInvalid() &&
3065             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3066                                 ParamType));
3067      return move(RefExpr);
3068    }
3069  }
3070
3071  QualType T = VD->getType().getNonReferenceType();
3072  if (ParamType->isPointerType()) {
3073    // When the non-type template parameter is a pointer, take the
3074    // address of the declaration.
3075    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3076    if (RefExpr.isInvalid())
3077      return ExprError();
3078
3079    if (T->isFunctionType() || T->isArrayType()) {
3080      // Decay functions and arrays.
3081      Expr *RefE = (Expr *)RefExpr.get();
3082      DefaultFunctionArrayConversion(RefE);
3083      if (RefE != RefExpr.get()) {
3084        RefExpr.release();
3085        RefExpr = Owned(RefE);
3086      }
3087
3088      return move(RefExpr);
3089    }
3090
3091    // Take the address of everything else
3092    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3093  }
3094
3095  // If the non-type template parameter has reference type, qualify the
3096  // resulting declaration reference with the extra qualifiers on the
3097  // type that the reference refers to.
3098  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3099    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3100
3101  return BuildDeclRefExpr(VD, T, Loc);
3102}
3103
3104/// \brief Construct a new expression that refers to the given
3105/// integral template argument with the given source-location
3106/// information.
3107///
3108/// This routine takes care of the mapping from an integral template
3109/// argument (which may have any integral type) to the appropriate
3110/// literal value.
3111Sema::OwningExprResult
3112Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3113                                                  SourceLocation Loc) {
3114  assert(Arg.getKind() == TemplateArgument::Integral &&
3115         "Operation is only value for integral template arguments");
3116  QualType T = Arg.getIntegralType();
3117  if (T->isCharType() || T->isWideCharType())
3118    return Owned(new (Context) CharacterLiteral(
3119                                             Arg.getAsIntegral()->getZExtValue(),
3120                                             T->isWideCharType(),
3121                                             T,
3122                                             Loc));
3123  if (T->isBooleanType())
3124    return Owned(new (Context) CXXBoolLiteralExpr(
3125                                            Arg.getAsIntegral()->getBoolValue(),
3126                                            T,
3127                                            Loc));
3128
3129  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3130}
3131
3132
3133/// \brief Determine whether the given template parameter lists are
3134/// equivalent.
3135///
3136/// \param New  The new template parameter list, typically written in the
3137/// source code as part of a new template declaration.
3138///
3139/// \param Old  The old template parameter list, typically found via
3140/// name lookup of the template declared with this template parameter
3141/// list.
3142///
3143/// \param Complain  If true, this routine will produce a diagnostic if
3144/// the template parameter lists are not equivalent.
3145///
3146/// \param Kind describes how we are to match the template parameter lists.
3147///
3148/// \param TemplateArgLoc If this source location is valid, then we
3149/// are actually checking the template parameter list of a template
3150/// argument (New) against the template parameter list of its
3151/// corresponding template template parameter (Old). We produce
3152/// slightly different diagnostics in this scenario.
3153///
3154/// \returns True if the template parameter lists are equal, false
3155/// otherwise.
3156bool
3157Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3158                                     TemplateParameterList *Old,
3159                                     bool Complain,
3160                                     TemplateParameterListEqualKind Kind,
3161                                     SourceLocation TemplateArgLoc) {
3162  if (Old->size() != New->size()) {
3163    if (Complain) {
3164      unsigned NextDiag = diag::err_template_param_list_different_arity;
3165      if (TemplateArgLoc.isValid()) {
3166        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3167        NextDiag = diag::note_template_param_list_different_arity;
3168      }
3169      Diag(New->getTemplateLoc(), NextDiag)
3170          << (New->size() > Old->size())
3171          << (Kind != TPL_TemplateMatch)
3172          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3173      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3174        << (Kind != TPL_TemplateMatch)
3175        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3176    }
3177
3178    return false;
3179  }
3180
3181  for (TemplateParameterList::iterator OldParm = Old->begin(),
3182         OldParmEnd = Old->end(), NewParm = New->begin();
3183       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3184    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3185      if (Complain) {
3186        unsigned NextDiag = diag::err_template_param_different_kind;
3187        if (TemplateArgLoc.isValid()) {
3188          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3189          NextDiag = diag::note_template_param_different_kind;
3190        }
3191        Diag((*NewParm)->getLocation(), NextDiag)
3192          << (Kind != TPL_TemplateMatch);
3193        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3194          << (Kind != TPL_TemplateMatch);
3195      }
3196      return false;
3197    }
3198
3199    if (isa<TemplateTypeParmDecl>(*OldParm)) {
3200      // Okay; all template type parameters are equivalent (since we
3201      // know we're at the same index).
3202    } else if (NonTypeTemplateParmDecl *OldNTTP
3203                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3204      // The types of non-type template parameters must agree.
3205      NonTypeTemplateParmDecl *NewNTTP
3206        = cast<NonTypeTemplateParmDecl>(*NewParm);
3207
3208      // If we are matching a template template argument to a template
3209      // template parameter and one of the non-type template parameter types
3210      // is dependent, then we must wait until template instantiation time
3211      // to actually compare the arguments.
3212      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3213          (OldNTTP->getType()->isDependentType() ||
3214           NewNTTP->getType()->isDependentType()))
3215        continue;
3216
3217      if (Context.getCanonicalType(OldNTTP->getType()) !=
3218            Context.getCanonicalType(NewNTTP->getType())) {
3219        if (Complain) {
3220          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3221          if (TemplateArgLoc.isValid()) {
3222            Diag(TemplateArgLoc,
3223                 diag::err_template_arg_template_params_mismatch);
3224            NextDiag = diag::note_template_nontype_parm_different_type;
3225          }
3226          Diag(NewNTTP->getLocation(), NextDiag)
3227            << NewNTTP->getType()
3228            << (Kind != TPL_TemplateMatch);
3229          Diag(OldNTTP->getLocation(),
3230               diag::note_template_nontype_parm_prev_declaration)
3231            << OldNTTP->getType();
3232        }
3233        return false;
3234      }
3235    } else {
3236      // The template parameter lists of template template
3237      // parameters must agree.
3238      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3239             "Only template template parameters handled here");
3240      TemplateTemplateParmDecl *OldTTP
3241        = cast<TemplateTemplateParmDecl>(*OldParm);
3242      TemplateTemplateParmDecl *NewTTP
3243        = cast<TemplateTemplateParmDecl>(*NewParm);
3244      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3245                                          OldTTP->getTemplateParameters(),
3246                                          Complain,
3247              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3248                                          TemplateArgLoc))
3249        return false;
3250    }
3251  }
3252
3253  return true;
3254}
3255
3256/// \brief Check whether a template can be declared within this scope.
3257///
3258/// If the template declaration is valid in this scope, returns
3259/// false. Otherwise, issues a diagnostic and returns true.
3260bool
3261Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3262  // Find the nearest enclosing declaration scope.
3263  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3264         (S->getFlags() & Scope::TemplateParamScope) != 0)
3265    S = S->getParent();
3266
3267  // C++ [temp]p2:
3268  //   A template-declaration can appear only as a namespace scope or
3269  //   class scope declaration.
3270  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3271  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3272      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3273    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3274             << TemplateParams->getSourceRange();
3275
3276  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3277    Ctx = Ctx->getParent();
3278
3279  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3280    return false;
3281
3282  return Diag(TemplateParams->getTemplateLoc(),
3283              diag::err_template_outside_namespace_or_class_scope)
3284    << TemplateParams->getSourceRange();
3285}
3286
3287/// \brief Determine what kind of template specialization the given declaration
3288/// is.
3289static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3290  if (!D)
3291    return TSK_Undeclared;
3292
3293  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3294    return Record->getTemplateSpecializationKind();
3295  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3296    return Function->getTemplateSpecializationKind();
3297  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3298    return Var->getTemplateSpecializationKind();
3299
3300  return TSK_Undeclared;
3301}
3302
3303/// \brief Check whether a specialization is well-formed in the current
3304/// context.
3305///
3306/// This routine determines whether a template specialization can be declared
3307/// in the current context (C++ [temp.expl.spec]p2).
3308///
3309/// \param S the semantic analysis object for which this check is being
3310/// performed.
3311///
3312/// \param Specialized the entity being specialized or instantiated, which
3313/// may be a kind of template (class template, function template, etc.) or
3314/// a member of a class template (member function, static data member,
3315/// member class).
3316///
3317/// \param PrevDecl the previous declaration of this entity, if any.
3318///
3319/// \param Loc the location of the explicit specialization or instantiation of
3320/// this entity.
3321///
3322/// \param IsPartialSpecialization whether this is a partial specialization of
3323/// a class template.
3324///
3325/// \returns true if there was an error that we cannot recover from, false
3326/// otherwise.
3327static bool CheckTemplateSpecializationScope(Sema &S,
3328                                             NamedDecl *Specialized,
3329                                             NamedDecl *PrevDecl,
3330                                             SourceLocation Loc,
3331                                             bool IsPartialSpecialization) {
3332  // Keep these "kind" numbers in sync with the %select statements in the
3333  // various diagnostics emitted by this routine.
3334  int EntityKind = 0;
3335  bool isTemplateSpecialization = false;
3336  if (isa<ClassTemplateDecl>(Specialized)) {
3337    EntityKind = IsPartialSpecialization? 1 : 0;
3338    isTemplateSpecialization = true;
3339  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3340    EntityKind = 2;
3341    isTemplateSpecialization = true;
3342  } else if (isa<CXXMethodDecl>(Specialized))
3343    EntityKind = 3;
3344  else if (isa<VarDecl>(Specialized))
3345    EntityKind = 4;
3346  else if (isa<RecordDecl>(Specialized))
3347    EntityKind = 5;
3348  else {
3349    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3350    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3351    return true;
3352  }
3353
3354  // C++ [temp.expl.spec]p2:
3355  //   An explicit specialization shall be declared in the namespace
3356  //   of which the template is a member, or, for member templates, in
3357  //   the namespace of which the enclosing class or enclosing class
3358  //   template is a member. An explicit specialization of a member
3359  //   function, member class or static data member of a class
3360  //   template shall be declared in the namespace of which the class
3361  //   template is a member. Such a declaration may also be a
3362  //   definition. If the declaration is not a definition, the
3363  //   specialization may be defined later in the name- space in which
3364  //   the explicit specialization was declared, or in a namespace
3365  //   that encloses the one in which the explicit specialization was
3366  //   declared.
3367  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3368    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3369      << Specialized;
3370    return true;
3371  }
3372
3373  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3374    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3375      << Specialized;
3376    return true;
3377  }
3378
3379  // C++ [temp.class.spec]p6:
3380  //   A class template partial specialization may be declared or redeclared
3381  //   in any namespace scope in which its definition may be defined (14.5.1
3382  //   and 14.5.2).
3383  bool ComplainedAboutScope = false;
3384  DeclContext *SpecializedContext
3385    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3386  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3387  if ((!PrevDecl ||
3388       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3389       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3390    // There is no prior declaration of this entity, so this
3391    // specialization must be in the same context as the template
3392    // itself.
3393    if (!DC->Equals(SpecializedContext)) {
3394      if (isa<TranslationUnitDecl>(SpecializedContext))
3395        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3396        << EntityKind << Specialized;
3397      else if (isa<NamespaceDecl>(SpecializedContext))
3398        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3399        << EntityKind << Specialized
3400        << cast<NamedDecl>(SpecializedContext);
3401
3402      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3403      ComplainedAboutScope = true;
3404    }
3405  }
3406
3407  // Make sure that this redeclaration (or definition) occurs in an enclosing
3408  // namespace.
3409  // Note that HandleDeclarator() performs this check for explicit
3410  // specializations of function templates, static data members, and member
3411  // functions, so we skip the check here for those kinds of entities.
3412  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3413  // Should we refactor that check, so that it occurs later?
3414  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3415      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3416        isa<FunctionDecl>(Specialized))) {
3417    if (isa<TranslationUnitDecl>(SpecializedContext))
3418      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3419        << EntityKind << Specialized;
3420    else if (isa<NamespaceDecl>(SpecializedContext))
3421      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3422        << EntityKind << Specialized
3423        << cast<NamedDecl>(SpecializedContext);
3424
3425    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3426  }
3427
3428  // FIXME: check for specialization-after-instantiation errors and such.
3429
3430  return false;
3431}
3432
3433/// \brief Check the non-type template arguments of a class template
3434/// partial specialization according to C++ [temp.class.spec]p9.
3435///
3436/// \param TemplateParams the template parameters of the primary class
3437/// template.
3438///
3439/// \param TemplateArg the template arguments of the class template
3440/// partial specialization.
3441///
3442/// \param MirrorsPrimaryTemplate will be set true if the class
3443/// template partial specialization arguments are identical to the
3444/// implicit template arguments of the primary template. This is not
3445/// necessarily an error (C++0x), and it is left to the caller to diagnose
3446/// this condition when it is an error.
3447///
3448/// \returns true if there was an error, false otherwise.
3449bool Sema::CheckClassTemplatePartialSpecializationArgs(
3450                                        TemplateParameterList *TemplateParams,
3451                             const TemplateArgumentListBuilder &TemplateArgs,
3452                                        bool &MirrorsPrimaryTemplate) {
3453  // FIXME: the interface to this function will have to change to
3454  // accommodate variadic templates.
3455  MirrorsPrimaryTemplate = true;
3456
3457  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3458
3459  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3460    // Determine whether the template argument list of the partial
3461    // specialization is identical to the implicit argument list of
3462    // the primary template. The caller may need to diagnostic this as
3463    // an error per C++ [temp.class.spec]p9b3.
3464    if (MirrorsPrimaryTemplate) {
3465      if (TemplateTypeParmDecl *TTP
3466            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3467        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3468              Context.getCanonicalType(ArgList[I].getAsType()))
3469          MirrorsPrimaryTemplate = false;
3470      } else if (TemplateTemplateParmDecl *TTP
3471                   = dyn_cast<TemplateTemplateParmDecl>(
3472                                                 TemplateParams->getParam(I))) {
3473        TemplateName Name = ArgList[I].getAsTemplate();
3474        TemplateTemplateParmDecl *ArgDecl
3475          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3476        if (!ArgDecl ||
3477            ArgDecl->getIndex() != TTP->getIndex() ||
3478            ArgDecl->getDepth() != TTP->getDepth())
3479          MirrorsPrimaryTemplate = false;
3480      }
3481    }
3482
3483    NonTypeTemplateParmDecl *Param
3484      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3485    if (!Param) {
3486      continue;
3487    }
3488
3489    Expr *ArgExpr = ArgList[I].getAsExpr();
3490    if (!ArgExpr) {
3491      MirrorsPrimaryTemplate = false;
3492      continue;
3493    }
3494
3495    // C++ [temp.class.spec]p8:
3496    //   A non-type argument is non-specialized if it is the name of a
3497    //   non-type parameter. All other non-type arguments are
3498    //   specialized.
3499    //
3500    // Below, we check the two conditions that only apply to
3501    // specialized non-type arguments, so skip any non-specialized
3502    // arguments.
3503    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3504      if (NonTypeTemplateParmDecl *NTTP
3505            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3506        if (MirrorsPrimaryTemplate &&
3507            (Param->getIndex() != NTTP->getIndex() ||
3508             Param->getDepth() != NTTP->getDepth()))
3509          MirrorsPrimaryTemplate = false;
3510
3511        continue;
3512      }
3513
3514    // C++ [temp.class.spec]p9:
3515    //   Within the argument list of a class template partial
3516    //   specialization, the following restrictions apply:
3517    //     -- A partially specialized non-type argument expression
3518    //        shall not involve a template parameter of the partial
3519    //        specialization except when the argument expression is a
3520    //        simple identifier.
3521    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3522      Diag(ArgExpr->getLocStart(),
3523           diag::err_dependent_non_type_arg_in_partial_spec)
3524        << ArgExpr->getSourceRange();
3525      return true;
3526    }
3527
3528    //     -- The type of a template parameter corresponding to a
3529    //        specialized non-type argument shall not be dependent on a
3530    //        parameter of the specialization.
3531    if (Param->getType()->isDependentType()) {
3532      Diag(ArgExpr->getLocStart(),
3533           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3534        << Param->getType()
3535        << ArgExpr->getSourceRange();
3536      Diag(Param->getLocation(), diag::note_template_param_here);
3537      return true;
3538    }
3539
3540    MirrorsPrimaryTemplate = false;
3541  }
3542
3543  return false;
3544}
3545
3546/// \brief Retrieve the previous declaration of the given declaration.
3547static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3548  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3549    return VD->getPreviousDeclaration();
3550  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3551    return FD->getPreviousDeclaration();
3552  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3553    return TD->getPreviousDeclaration();
3554  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3555    return TD->getPreviousDeclaration();
3556  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3557    return FTD->getPreviousDeclaration();
3558  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3559    return CTD->getPreviousDeclaration();
3560  return 0;
3561}
3562
3563Sema::DeclResult
3564Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3565                                       TagUseKind TUK,
3566                                       SourceLocation KWLoc,
3567                                       CXXScopeSpec &SS,
3568                                       TemplateTy TemplateD,
3569                                       SourceLocation TemplateNameLoc,
3570                                       SourceLocation LAngleLoc,
3571                                       ASTTemplateArgsPtr TemplateArgsIn,
3572                                       SourceLocation RAngleLoc,
3573                                       AttributeList *Attr,
3574                               MultiTemplateParamsArg TemplateParameterLists) {
3575  assert(TUK != TUK_Reference && "References are not specializations");
3576
3577  // Find the class template we're specializing
3578  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3579  ClassTemplateDecl *ClassTemplate
3580    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3581
3582  if (!ClassTemplate) {
3583    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3584      << (Name.getAsTemplateDecl() &&
3585          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3586    return true;
3587  }
3588
3589  bool isExplicitSpecialization = false;
3590  bool isPartialSpecialization = false;
3591
3592  // Check the validity of the template headers that introduce this
3593  // template.
3594  // FIXME: We probably shouldn't complain about these headers for
3595  // friend declarations.
3596  TemplateParameterList *TemplateParams
3597    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3598                        (TemplateParameterList**)TemplateParameterLists.get(),
3599                                              TemplateParameterLists.size(),
3600                                              TUK == TUK_Friend,
3601                                              isExplicitSpecialization);
3602  if (TemplateParams && TemplateParams->size() > 0) {
3603    isPartialSpecialization = true;
3604
3605    // C++ [temp.class.spec]p10:
3606    //   The template parameter list of a specialization shall not
3607    //   contain default template argument values.
3608    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3609      Decl *Param = TemplateParams->getParam(I);
3610      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3611        if (TTP->hasDefaultArgument()) {
3612          Diag(TTP->getDefaultArgumentLoc(),
3613               diag::err_default_arg_in_partial_spec);
3614          TTP->removeDefaultArgument();
3615        }
3616      } else if (NonTypeTemplateParmDecl *NTTP
3617                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3618        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3619          Diag(NTTP->getDefaultArgumentLoc(),
3620               diag::err_default_arg_in_partial_spec)
3621            << DefArg->getSourceRange();
3622          NTTP->setDefaultArgument(0);
3623          DefArg->Destroy(Context);
3624        }
3625      } else {
3626        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3627        if (TTP->hasDefaultArgument()) {
3628          Diag(TTP->getDefaultArgument().getLocation(),
3629               diag::err_default_arg_in_partial_spec)
3630            << TTP->getDefaultArgument().getSourceRange();
3631          TTP->setDefaultArgument(TemplateArgumentLoc());
3632        }
3633      }
3634    }
3635  } else if (TemplateParams) {
3636    if (TUK == TUK_Friend)
3637      Diag(KWLoc, diag::err_template_spec_friend)
3638        << FixItHint::CreateRemoval(
3639                                SourceRange(TemplateParams->getTemplateLoc(),
3640                                            TemplateParams->getRAngleLoc()))
3641        << SourceRange(LAngleLoc, RAngleLoc);
3642    else
3643      isExplicitSpecialization = true;
3644  } else if (TUK != TUK_Friend) {
3645    Diag(KWLoc, diag::err_template_spec_needs_header)
3646      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3647    isExplicitSpecialization = true;
3648  }
3649
3650  // Check that the specialization uses the same tag kind as the
3651  // original template.
3652  TagDecl::TagKind Kind;
3653  switch (TagSpec) {
3654  default: assert(0 && "Unknown tag type!");
3655  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3656  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3657  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3658  }
3659  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3660                                    Kind, KWLoc,
3661                                    *ClassTemplate->getIdentifier())) {
3662    Diag(KWLoc, diag::err_use_with_wrong_tag)
3663      << ClassTemplate
3664      << FixItHint::CreateReplacement(KWLoc,
3665                            ClassTemplate->getTemplatedDecl()->getKindName());
3666    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3667         diag::note_previous_use);
3668    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3669  }
3670
3671  // Translate the parser's template argument list in our AST format.
3672  TemplateArgumentListInfo TemplateArgs;
3673  TemplateArgs.setLAngleLoc(LAngleLoc);
3674  TemplateArgs.setRAngleLoc(RAngleLoc);
3675  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3676
3677  // Check that the template argument list is well-formed for this
3678  // template.
3679  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3680                                        TemplateArgs.size());
3681  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3682                                TemplateArgs, false, Converted))
3683    return true;
3684
3685  assert((Converted.structuredSize() ==
3686            ClassTemplate->getTemplateParameters()->size()) &&
3687         "Converted template argument list is too short!");
3688
3689  // Find the class template (partial) specialization declaration that
3690  // corresponds to these arguments.
3691  llvm::FoldingSetNodeID ID;
3692  if (isPartialSpecialization) {
3693    bool MirrorsPrimaryTemplate;
3694    if (CheckClassTemplatePartialSpecializationArgs(
3695                                         ClassTemplate->getTemplateParameters(),
3696                                         Converted, MirrorsPrimaryTemplate))
3697      return true;
3698
3699    if (MirrorsPrimaryTemplate) {
3700      // C++ [temp.class.spec]p9b3:
3701      //
3702      //   -- The argument list of the specialization shall not be identical
3703      //      to the implicit argument list of the primary template.
3704      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3705        << (TUK == TUK_Definition)
3706        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3707      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3708                                ClassTemplate->getIdentifier(),
3709                                TemplateNameLoc,
3710                                Attr,
3711                                TemplateParams,
3712                                AS_none);
3713    }
3714
3715    // FIXME: Diagnose friend partial specializations
3716
3717    if (!Name.isDependent() &&
3718        !TemplateSpecializationType::anyDependentTemplateArguments(
3719                                             TemplateArgs.getArgumentArray(),
3720                                                         TemplateArgs.size())) {
3721      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3722        << ClassTemplate->getDeclName();
3723      isPartialSpecialization = false;
3724    } else {
3725      // FIXME: Template parameter list matters, too
3726      ClassTemplatePartialSpecializationDecl::Profile(ID,
3727                                                  Converted.getFlatArguments(),
3728                                                      Converted.flatSize(),
3729                                                      Context);
3730    }
3731  }
3732
3733  if (!isPartialSpecialization)
3734    ClassTemplateSpecializationDecl::Profile(ID,
3735                                             Converted.getFlatArguments(),
3736                                             Converted.flatSize(),
3737                                             Context);
3738  void *InsertPos = 0;
3739  ClassTemplateSpecializationDecl *PrevDecl = 0;
3740
3741  if (isPartialSpecialization)
3742    PrevDecl
3743      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3744                                                                    InsertPos);
3745  else
3746    PrevDecl
3747      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3748
3749  ClassTemplateSpecializationDecl *Specialization = 0;
3750
3751  // Check whether we can declare a class template specialization in
3752  // the current scope.
3753  if (TUK != TUK_Friend &&
3754      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3755                                       TemplateNameLoc,
3756                                       isPartialSpecialization))
3757    return true;
3758
3759  // The canonical type
3760  QualType CanonType;
3761  if (PrevDecl &&
3762      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3763               TUK == TUK_Friend)) {
3764    // Since the only prior class template specialization with these
3765    // arguments was referenced but not declared, or we're only
3766    // referencing this specialization as a friend, reuse that
3767    // declaration node as our own, updating its source location to
3768    // reflect our new declaration.
3769    Specialization = PrevDecl;
3770    Specialization->setLocation(TemplateNameLoc);
3771    PrevDecl = 0;
3772    CanonType = Context.getTypeDeclType(Specialization);
3773  } else if (isPartialSpecialization) {
3774    // Build the canonical type that describes the converted template
3775    // arguments of the class template partial specialization.
3776    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3777    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3778                                                  Converted.getFlatArguments(),
3779                                                  Converted.flatSize());
3780
3781    // Create a new class template partial specialization declaration node.
3782    ClassTemplatePartialSpecializationDecl *PrevPartial
3783      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3784    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3785                            : ClassTemplate->getPartialSpecializations().size();
3786    ClassTemplatePartialSpecializationDecl *Partial
3787      = ClassTemplatePartialSpecializationDecl::Create(Context,
3788                                             ClassTemplate->getDeclContext(),
3789                                                       TemplateNameLoc,
3790                                                       TemplateParams,
3791                                                       ClassTemplate,
3792                                                       Converted,
3793                                                       TemplateArgs,
3794                                                       CanonType,
3795                                                       PrevPartial,
3796                                                       SequenceNumber);
3797    SetNestedNameSpecifier(Partial, SS);
3798
3799    if (PrevPartial) {
3800      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3801      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3802    } else {
3803      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3804    }
3805    Specialization = Partial;
3806
3807    // If we are providing an explicit specialization of a member class
3808    // template specialization, make a note of that.
3809    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3810      PrevPartial->setMemberSpecialization();
3811
3812    // Check that all of the template parameters of the class template
3813    // partial specialization are deducible from the template
3814    // arguments. If not, this class template partial specialization
3815    // will never be used.
3816    llvm::SmallVector<bool, 8> DeducibleParams;
3817    DeducibleParams.resize(TemplateParams->size());
3818    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3819                               TemplateParams->getDepth(),
3820                               DeducibleParams);
3821    unsigned NumNonDeducible = 0;
3822    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3823      if (!DeducibleParams[I])
3824        ++NumNonDeducible;
3825
3826    if (NumNonDeducible) {
3827      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3828        << (NumNonDeducible > 1)
3829        << SourceRange(TemplateNameLoc, RAngleLoc);
3830      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3831        if (!DeducibleParams[I]) {
3832          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3833          if (Param->getDeclName())
3834            Diag(Param->getLocation(),
3835                 diag::note_partial_spec_unused_parameter)
3836              << Param->getDeclName();
3837          else
3838            Diag(Param->getLocation(),
3839                 diag::note_partial_spec_unused_parameter)
3840              << std::string("<anonymous>");
3841        }
3842      }
3843    }
3844  } else {
3845    // Create a new class template specialization declaration node for
3846    // this explicit specialization or friend declaration.
3847    Specialization
3848      = ClassTemplateSpecializationDecl::Create(Context,
3849                                             ClassTemplate->getDeclContext(),
3850                                                TemplateNameLoc,
3851                                                ClassTemplate,
3852                                                Converted,
3853                                                PrevDecl);
3854    SetNestedNameSpecifier(Specialization, SS);
3855
3856    if (PrevDecl) {
3857      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3858      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3859    } else {
3860      ClassTemplate->getSpecializations().InsertNode(Specialization,
3861                                                     InsertPos);
3862    }
3863
3864    CanonType = Context.getTypeDeclType(Specialization);
3865  }
3866
3867  // C++ [temp.expl.spec]p6:
3868  //   If a template, a member template or the member of a class template is
3869  //   explicitly specialized then that specialization shall be declared
3870  //   before the first use of that specialization that would cause an implicit
3871  //   instantiation to take place, in every translation unit in which such a
3872  //   use occurs; no diagnostic is required.
3873  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3874    bool Okay = false;
3875    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3876      // Is there any previous explicit specialization declaration?
3877      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3878        Okay = true;
3879        break;
3880      }
3881    }
3882
3883    if (!Okay) {
3884      SourceRange Range(TemplateNameLoc, RAngleLoc);
3885      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3886        << Context.getTypeDeclType(Specialization) << Range;
3887
3888      Diag(PrevDecl->getPointOfInstantiation(),
3889           diag::note_instantiation_required_here)
3890        << (PrevDecl->getTemplateSpecializationKind()
3891                                                != TSK_ImplicitInstantiation);
3892      return true;
3893    }
3894  }
3895
3896  // If this is not a friend, note that this is an explicit specialization.
3897  if (TUK != TUK_Friend)
3898    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3899
3900  // Check that this isn't a redefinition of this specialization.
3901  if (TUK == TUK_Definition) {
3902    if (RecordDecl *Def = Specialization->getDefinition()) {
3903      SourceRange Range(TemplateNameLoc, RAngleLoc);
3904      Diag(TemplateNameLoc, diag::err_redefinition)
3905        << Context.getTypeDeclType(Specialization) << Range;
3906      Diag(Def->getLocation(), diag::note_previous_definition);
3907      Specialization->setInvalidDecl();
3908      return true;
3909    }
3910  }
3911
3912  // Build the fully-sugared type for this class template
3913  // specialization as the user wrote in the specialization
3914  // itself. This means that we'll pretty-print the type retrieved
3915  // from the specialization's declaration the way that the user
3916  // actually wrote the specialization, rather than formatting the
3917  // name based on the "canonical" representation used to store the
3918  // template arguments in the specialization.
3919  TypeSourceInfo *WrittenTy
3920    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3921                                                TemplateArgs, CanonType);
3922  if (TUK != TUK_Friend)
3923    Specialization->setTypeAsWritten(WrittenTy);
3924  TemplateArgsIn.release();
3925
3926  // C++ [temp.expl.spec]p9:
3927  //   A template explicit specialization is in the scope of the
3928  //   namespace in which the template was defined.
3929  //
3930  // We actually implement this paragraph where we set the semantic
3931  // context (in the creation of the ClassTemplateSpecializationDecl),
3932  // but we also maintain the lexical context where the actual
3933  // definition occurs.
3934  Specialization->setLexicalDeclContext(CurContext);
3935
3936  // We may be starting the definition of this specialization.
3937  if (TUK == TUK_Definition)
3938    Specialization->startDefinition();
3939
3940  if (TUK == TUK_Friend) {
3941    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3942                                            TemplateNameLoc,
3943                                            WrittenTy,
3944                                            /*FIXME:*/KWLoc);
3945    Friend->setAccess(AS_public);
3946    CurContext->addDecl(Friend);
3947  } else {
3948    // Add the specialization into its lexical context, so that it can
3949    // be seen when iterating through the list of declarations in that
3950    // context. However, specializations are not found by name lookup.
3951    CurContext->addDecl(Specialization);
3952  }
3953  return DeclPtrTy::make(Specialization);
3954}
3955
3956Sema::DeclPtrTy
3957Sema::ActOnTemplateDeclarator(Scope *S,
3958                              MultiTemplateParamsArg TemplateParameterLists,
3959                              Declarator &D) {
3960  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3961}
3962
3963Sema::DeclPtrTy
3964Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3965                               MultiTemplateParamsArg TemplateParameterLists,
3966                                      Declarator &D) {
3967  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3968  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3969         "Not a function declarator!");
3970  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3971
3972  if (FTI.hasPrototype) {
3973    // FIXME: Diagnose arguments without names in C.
3974  }
3975
3976  Scope *ParentScope = FnBodyScope->getParent();
3977
3978  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3979                                  move(TemplateParameterLists),
3980                                  /*IsFunctionDefinition=*/true);
3981  if (FunctionTemplateDecl *FunctionTemplate
3982        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3983    return ActOnStartOfFunctionDef(FnBodyScope,
3984                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3985  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3986    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3987  return DeclPtrTy();
3988}
3989
3990/// \brief Strips various properties off an implicit instantiation
3991/// that has just been explicitly specialized.
3992static void StripImplicitInstantiation(NamedDecl *D) {
3993  D->invalidateAttrs();
3994
3995  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3996    FD->setInlineSpecified(false);
3997  }
3998}
3999
4000/// \brief Diagnose cases where we have an explicit template specialization
4001/// before/after an explicit template instantiation, producing diagnostics
4002/// for those cases where they are required and determining whether the
4003/// new specialization/instantiation will have any effect.
4004///
4005/// \param NewLoc the location of the new explicit specialization or
4006/// instantiation.
4007///
4008/// \param NewTSK the kind of the new explicit specialization or instantiation.
4009///
4010/// \param PrevDecl the previous declaration of the entity.
4011///
4012/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4013///
4014/// \param PrevPointOfInstantiation if valid, indicates where the previus
4015/// declaration was instantiated (either implicitly or explicitly).
4016///
4017/// \param SuppressNew will be set to true to indicate that the new
4018/// specialization or instantiation has no effect and should be ignored.
4019///
4020/// \returns true if there was an error that should prevent the introduction of
4021/// the new declaration into the AST, false otherwise.
4022bool
4023Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4024                                             TemplateSpecializationKind NewTSK,
4025                                             NamedDecl *PrevDecl,
4026                                             TemplateSpecializationKind PrevTSK,
4027                                        SourceLocation PrevPointOfInstantiation,
4028                                             bool &SuppressNew) {
4029  SuppressNew = false;
4030
4031  switch (NewTSK) {
4032  case TSK_Undeclared:
4033  case TSK_ImplicitInstantiation:
4034    assert(false && "Don't check implicit instantiations here");
4035    return false;
4036
4037  case TSK_ExplicitSpecialization:
4038    switch (PrevTSK) {
4039    case TSK_Undeclared:
4040    case TSK_ExplicitSpecialization:
4041      // Okay, we're just specializing something that is either already
4042      // explicitly specialized or has merely been mentioned without any
4043      // instantiation.
4044      return false;
4045
4046    case TSK_ImplicitInstantiation:
4047      if (PrevPointOfInstantiation.isInvalid()) {
4048        // The declaration itself has not actually been instantiated, so it is
4049        // still okay to specialize it.
4050        StripImplicitInstantiation(PrevDecl);
4051        return false;
4052      }
4053      // Fall through
4054
4055    case TSK_ExplicitInstantiationDeclaration:
4056    case TSK_ExplicitInstantiationDefinition:
4057      assert((PrevTSK == TSK_ImplicitInstantiation ||
4058              PrevPointOfInstantiation.isValid()) &&
4059             "Explicit instantiation without point of instantiation?");
4060
4061      // C++ [temp.expl.spec]p6:
4062      //   If a template, a member template or the member of a class template
4063      //   is explicitly specialized then that specialization shall be declared
4064      //   before the first use of that specialization that would cause an
4065      //   implicit instantiation to take place, in every translation unit in
4066      //   which such a use occurs; no diagnostic is required.
4067      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4068        // Is there any previous explicit specialization declaration?
4069        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4070          return false;
4071      }
4072
4073      Diag(NewLoc, diag::err_specialization_after_instantiation)
4074        << PrevDecl;
4075      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4076        << (PrevTSK != TSK_ImplicitInstantiation);
4077
4078      return true;
4079    }
4080    break;
4081
4082  case TSK_ExplicitInstantiationDeclaration:
4083    switch (PrevTSK) {
4084    case TSK_ExplicitInstantiationDeclaration:
4085      // This explicit instantiation declaration is redundant (that's okay).
4086      SuppressNew = true;
4087      return false;
4088
4089    case TSK_Undeclared:
4090    case TSK_ImplicitInstantiation:
4091      // We're explicitly instantiating something that may have already been
4092      // implicitly instantiated; that's fine.
4093      return false;
4094
4095    case TSK_ExplicitSpecialization:
4096      // C++0x [temp.explicit]p4:
4097      //   For a given set of template parameters, if an explicit instantiation
4098      //   of a template appears after a declaration of an explicit
4099      //   specialization for that template, the explicit instantiation has no
4100      //   effect.
4101      SuppressNew = true;
4102      return false;
4103
4104    case TSK_ExplicitInstantiationDefinition:
4105      // C++0x [temp.explicit]p10:
4106      //   If an entity is the subject of both an explicit instantiation
4107      //   declaration and an explicit instantiation definition in the same
4108      //   translation unit, the definition shall follow the declaration.
4109      Diag(NewLoc,
4110           diag::err_explicit_instantiation_declaration_after_definition);
4111      Diag(PrevPointOfInstantiation,
4112           diag::note_explicit_instantiation_definition_here);
4113      assert(PrevPointOfInstantiation.isValid() &&
4114             "Explicit instantiation without point of instantiation?");
4115      SuppressNew = true;
4116      return false;
4117    }
4118    break;
4119
4120  case TSK_ExplicitInstantiationDefinition:
4121    switch (PrevTSK) {
4122    case TSK_Undeclared:
4123    case TSK_ImplicitInstantiation:
4124      // We're explicitly instantiating something that may have already been
4125      // implicitly instantiated; that's fine.
4126      return false;
4127
4128    case TSK_ExplicitSpecialization:
4129      // C++ DR 259, C++0x [temp.explicit]p4:
4130      //   For a given set of template parameters, if an explicit
4131      //   instantiation of a template appears after a declaration of
4132      //   an explicit specialization for that template, the explicit
4133      //   instantiation has no effect.
4134      //
4135      // In C++98/03 mode, we only give an extension warning here, because it
4136      // is not harmful to try to explicitly instantiate something that
4137      // has been explicitly specialized.
4138      if (!getLangOptions().CPlusPlus0x) {
4139        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4140          << PrevDecl;
4141        Diag(PrevDecl->getLocation(),
4142             diag::note_previous_template_specialization);
4143      }
4144      SuppressNew = true;
4145      return false;
4146
4147    case TSK_ExplicitInstantiationDeclaration:
4148      // We're explicity instantiating a definition for something for which we
4149      // were previously asked to suppress instantiations. That's fine.
4150      return false;
4151
4152    case TSK_ExplicitInstantiationDefinition:
4153      // C++0x [temp.spec]p5:
4154      //   For a given template and a given set of template-arguments,
4155      //     - an explicit instantiation definition shall appear at most once
4156      //       in a program,
4157      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4158        << PrevDecl;
4159      Diag(PrevPointOfInstantiation,
4160           diag::note_previous_explicit_instantiation);
4161      SuppressNew = true;
4162      return false;
4163    }
4164    break;
4165  }
4166
4167  assert(false && "Missing specialization/instantiation case?");
4168
4169  return false;
4170}
4171
4172/// \brief Perform semantic analysis for the given dependent function
4173/// template specialization.  The only possible way to get a dependent
4174/// function template specialization is with a friend declaration,
4175/// like so:
4176///
4177///   template <class T> void foo(T);
4178///   template <class T> class A {
4179///     friend void foo<>(T);
4180///   };
4181///
4182/// There really isn't any useful analysis we can do here, so we
4183/// just store the information.
4184bool
4185Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4186                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4187                                                   LookupResult &Previous) {
4188  // Remove anything from Previous that isn't a function template in
4189  // the correct context.
4190  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4191  LookupResult::Filter F = Previous.makeFilter();
4192  while (F.hasNext()) {
4193    NamedDecl *D = F.next()->getUnderlyingDecl();
4194    if (!isa<FunctionTemplateDecl>(D) ||
4195        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4196      F.erase();
4197  }
4198  F.done();
4199
4200  // Should this be diagnosed here?
4201  if (Previous.empty()) return true;
4202
4203  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4204                                         ExplicitTemplateArgs);
4205  return false;
4206}
4207
4208/// \brief Perform semantic analysis for the given function template
4209/// specialization.
4210///
4211/// This routine performs all of the semantic analysis required for an
4212/// explicit function template specialization. On successful completion,
4213/// the function declaration \p FD will become a function template
4214/// specialization.
4215///
4216/// \param FD the function declaration, which will be updated to become a
4217/// function template specialization.
4218///
4219/// \param HasExplicitTemplateArgs whether any template arguments were
4220/// explicitly provided.
4221///
4222/// \param LAngleLoc the location of the left angle bracket ('<'), if
4223/// template arguments were explicitly provided.
4224///
4225/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4226/// if any.
4227///
4228/// \param NumExplicitTemplateArgs the number of explicitly-provided template
4229/// arguments. This number may be zero even when HasExplicitTemplateArgs is
4230/// true as in, e.g., \c void sort<>(char*, char*);
4231///
4232/// \param RAngleLoc the location of the right angle bracket ('>'), if
4233/// template arguments were explicitly provided.
4234///
4235/// \param PrevDecl the set of declarations that
4236bool
4237Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4238                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4239                                          LookupResult &Previous) {
4240  // The set of function template specializations that could match this
4241  // explicit function template specialization.
4242  UnresolvedSet<8> Candidates;
4243
4244  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4245  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4246         I != E; ++I) {
4247    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4248    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4249      // Only consider templates found within the same semantic lookup scope as
4250      // FD.
4251      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4252        continue;
4253
4254      // C++ [temp.expl.spec]p11:
4255      //   A trailing template-argument can be left unspecified in the
4256      //   template-id naming an explicit function template specialization
4257      //   provided it can be deduced from the function argument type.
4258      // Perform template argument deduction to determine whether we may be
4259      // specializing this template.
4260      // FIXME: It is somewhat wasteful to build
4261      TemplateDeductionInfo Info(Context, FD->getLocation());
4262      FunctionDecl *Specialization = 0;
4263      if (TemplateDeductionResult TDK
4264            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4265                                      FD->getType(),
4266                                      Specialization,
4267                                      Info)) {
4268        // FIXME: Template argument deduction failed; record why it failed, so
4269        // that we can provide nifty diagnostics.
4270        (void)TDK;
4271        continue;
4272      }
4273
4274      // Record this candidate.
4275      Candidates.addDecl(Specialization, I.getAccess());
4276    }
4277  }
4278
4279  // Find the most specialized function template.
4280  UnresolvedSetIterator Result
4281    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4282                         TPOC_Other, FD->getLocation(),
4283                  PDiag(diag::err_function_template_spec_no_match)
4284                    << FD->getDeclName(),
4285                  PDiag(diag::err_function_template_spec_ambiguous)
4286                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4287                  PDiag(diag::note_function_template_spec_matched));
4288  if (Result == Candidates.end())
4289    return true;
4290
4291  // Ignore access information;  it doesn't figure into redeclaration checking.
4292  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4293  Specialization->setLocation(FD->getLocation());
4294
4295  // FIXME: Check if the prior specialization has a point of instantiation.
4296  // If so, we have run afoul of .
4297
4298  // If this is a friend declaration, then we're not really declaring
4299  // an explicit specialization.
4300  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4301
4302  // Check the scope of this explicit specialization.
4303  if (!isFriend &&
4304      CheckTemplateSpecializationScope(*this,
4305                                       Specialization->getPrimaryTemplate(),
4306                                       Specialization, FD->getLocation(),
4307                                       false))
4308    return true;
4309
4310  // C++ [temp.expl.spec]p6:
4311  //   If a template, a member template or the member of a class template is
4312  //   explicitly specialized then that specialization shall be declared
4313  //   before the first use of that specialization that would cause an implicit
4314  //   instantiation to take place, in every translation unit in which such a
4315  //   use occurs; no diagnostic is required.
4316  FunctionTemplateSpecializationInfo *SpecInfo
4317    = Specialization->getTemplateSpecializationInfo();
4318  assert(SpecInfo && "Function template specialization info missing?");
4319
4320  bool SuppressNew = false;
4321  if (!isFriend &&
4322      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4323                                             TSK_ExplicitSpecialization,
4324                                             Specialization,
4325                                   SpecInfo->getTemplateSpecializationKind(),
4326                                         SpecInfo->getPointOfInstantiation(),
4327                                             SuppressNew))
4328    return true;
4329
4330  // Mark the prior declaration as an explicit specialization, so that later
4331  // clients know that this is an explicit specialization.
4332  if (!isFriend)
4333    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4334
4335  // Turn the given function declaration into a function template
4336  // specialization, with the template arguments from the previous
4337  // specialization.
4338  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4339                         new (Context) TemplateArgumentList(
4340                             *Specialization->getTemplateSpecializationArgs()),
4341                                        /*InsertPos=*/0,
4342                                    SpecInfo->getTemplateSpecializationKind());
4343
4344  // The "previous declaration" for this function template specialization is
4345  // the prior function template specialization.
4346  Previous.clear();
4347  Previous.addDecl(Specialization);
4348  return false;
4349}
4350
4351/// \brief Perform semantic analysis for the given non-template member
4352/// specialization.
4353///
4354/// This routine performs all of the semantic analysis required for an
4355/// explicit member function specialization. On successful completion,
4356/// the function declaration \p FD will become a member function
4357/// specialization.
4358///
4359/// \param Member the member declaration, which will be updated to become a
4360/// specialization.
4361///
4362/// \param Previous the set of declarations, one of which may be specialized
4363/// by this function specialization;  the set will be modified to contain the
4364/// redeclared member.
4365bool
4366Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4367  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4368
4369  // Try to find the member we are instantiating.
4370  NamedDecl *Instantiation = 0;
4371  NamedDecl *InstantiatedFrom = 0;
4372  MemberSpecializationInfo *MSInfo = 0;
4373
4374  if (Previous.empty()) {
4375    // Nowhere to look anyway.
4376  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4377    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4378           I != E; ++I) {
4379      NamedDecl *D = (*I)->getUnderlyingDecl();
4380      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4381        if (Context.hasSameType(Function->getType(), Method->getType())) {
4382          Instantiation = Method;
4383          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4384          MSInfo = Method->getMemberSpecializationInfo();
4385          break;
4386        }
4387      }
4388    }
4389  } else if (isa<VarDecl>(Member)) {
4390    VarDecl *PrevVar;
4391    if (Previous.isSingleResult() &&
4392        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4393      if (PrevVar->isStaticDataMember()) {
4394        Instantiation = PrevVar;
4395        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4396        MSInfo = PrevVar->getMemberSpecializationInfo();
4397      }
4398  } else if (isa<RecordDecl>(Member)) {
4399    CXXRecordDecl *PrevRecord;
4400    if (Previous.isSingleResult() &&
4401        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4402      Instantiation = PrevRecord;
4403      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4404      MSInfo = PrevRecord->getMemberSpecializationInfo();
4405    }
4406  }
4407
4408  if (!Instantiation) {
4409    // There is no previous declaration that matches. Since member
4410    // specializations are always out-of-line, the caller will complain about
4411    // this mismatch later.
4412    return false;
4413  }
4414
4415  // If this is a friend, just bail out here before we start turning
4416  // things into explicit specializations.
4417  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4418    // Preserve instantiation information.
4419    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4420      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4421                                      cast<CXXMethodDecl>(InstantiatedFrom),
4422        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4423    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4424      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4425                                      cast<CXXRecordDecl>(InstantiatedFrom),
4426        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4427    }
4428
4429    Previous.clear();
4430    Previous.addDecl(Instantiation);
4431    return false;
4432  }
4433
4434  // Make sure that this is a specialization of a member.
4435  if (!InstantiatedFrom) {
4436    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4437      << Member;
4438    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4439    return true;
4440  }
4441
4442  // C++ [temp.expl.spec]p6:
4443  //   If a template, a member template or the member of a class template is
4444  //   explicitly specialized then that spe- cialization shall be declared
4445  //   before the first use of that specialization that would cause an implicit
4446  //   instantiation to take place, in every translation unit in which such a
4447  //   use occurs; no diagnostic is required.
4448  assert(MSInfo && "Member specialization info missing?");
4449
4450  bool SuppressNew = false;
4451  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4452                                             TSK_ExplicitSpecialization,
4453                                             Instantiation,
4454                                     MSInfo->getTemplateSpecializationKind(),
4455                                           MSInfo->getPointOfInstantiation(),
4456                                             SuppressNew))
4457    return true;
4458
4459  // Check the scope of this explicit specialization.
4460  if (CheckTemplateSpecializationScope(*this,
4461                                       InstantiatedFrom,
4462                                       Instantiation, Member->getLocation(),
4463                                       false))
4464    return true;
4465
4466  // Note that this is an explicit instantiation of a member.
4467  // the original declaration to note that it is an explicit specialization
4468  // (if it was previously an implicit instantiation). This latter step
4469  // makes bookkeeping easier.
4470  if (isa<FunctionDecl>(Member)) {
4471    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4472    if (InstantiationFunction->getTemplateSpecializationKind() ==
4473          TSK_ImplicitInstantiation) {
4474      InstantiationFunction->setTemplateSpecializationKind(
4475                                                  TSK_ExplicitSpecialization);
4476      InstantiationFunction->setLocation(Member->getLocation());
4477    }
4478
4479    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4480                                        cast<CXXMethodDecl>(InstantiatedFrom),
4481                                                  TSK_ExplicitSpecialization);
4482  } else if (isa<VarDecl>(Member)) {
4483    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4484    if (InstantiationVar->getTemplateSpecializationKind() ==
4485          TSK_ImplicitInstantiation) {
4486      InstantiationVar->setTemplateSpecializationKind(
4487                                                  TSK_ExplicitSpecialization);
4488      InstantiationVar->setLocation(Member->getLocation());
4489    }
4490
4491    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4492                                                cast<VarDecl>(InstantiatedFrom),
4493                                                TSK_ExplicitSpecialization);
4494  } else {
4495    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4496    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4497    if (InstantiationClass->getTemplateSpecializationKind() ==
4498          TSK_ImplicitInstantiation) {
4499      InstantiationClass->setTemplateSpecializationKind(
4500                                                   TSK_ExplicitSpecialization);
4501      InstantiationClass->setLocation(Member->getLocation());
4502    }
4503
4504    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4505                                        cast<CXXRecordDecl>(InstantiatedFrom),
4506                                                   TSK_ExplicitSpecialization);
4507  }
4508
4509  // Save the caller the trouble of having to figure out which declaration
4510  // this specialization matches.
4511  Previous.clear();
4512  Previous.addDecl(Instantiation);
4513  return false;
4514}
4515
4516/// \brief Check the scope of an explicit instantiation.
4517static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4518                                            SourceLocation InstLoc,
4519                                            bool WasQualifiedName) {
4520  DeclContext *ExpectedContext
4521    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4522  DeclContext *CurContext = S.CurContext->getLookupContext();
4523
4524  // C++0x [temp.explicit]p2:
4525  //   An explicit instantiation shall appear in an enclosing namespace of its
4526  //   template.
4527  //
4528  // This is DR275, which we do not retroactively apply to C++98/03.
4529  if (S.getLangOptions().CPlusPlus0x &&
4530      !CurContext->Encloses(ExpectedContext)) {
4531    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4532      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4533        << D << NS;
4534    else
4535      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4536        << D;
4537    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4538    return;
4539  }
4540
4541  // C++0x [temp.explicit]p2:
4542  //   If the name declared in the explicit instantiation is an unqualified
4543  //   name, the explicit instantiation shall appear in the namespace where
4544  //   its template is declared or, if that namespace is inline (7.3.1), any
4545  //   namespace from its enclosing namespace set.
4546  if (WasQualifiedName)
4547    return;
4548
4549  if (CurContext->Equals(ExpectedContext))
4550    return;
4551
4552  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4553    << D << ExpectedContext;
4554  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4555}
4556
4557/// \brief Determine whether the given scope specifier has a template-id in it.
4558static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4559  if (!SS.isSet())
4560    return false;
4561
4562  // C++0x [temp.explicit]p2:
4563  //   If the explicit instantiation is for a member function, a member class
4564  //   or a static data member of a class template specialization, the name of
4565  //   the class template specialization in the qualified-id for the member
4566  //   name shall be a simple-template-id.
4567  //
4568  // C++98 has the same restriction, just worded differently.
4569  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4570       NNS; NNS = NNS->getPrefix())
4571    if (Type *T = NNS->getAsType())
4572      if (isa<TemplateSpecializationType>(T))
4573        return true;
4574
4575  return false;
4576}
4577
4578// Explicit instantiation of a class template specialization
4579// FIXME: Implement extern template semantics
4580Sema::DeclResult
4581Sema::ActOnExplicitInstantiation(Scope *S,
4582                                 SourceLocation ExternLoc,
4583                                 SourceLocation TemplateLoc,
4584                                 unsigned TagSpec,
4585                                 SourceLocation KWLoc,
4586                                 const CXXScopeSpec &SS,
4587                                 TemplateTy TemplateD,
4588                                 SourceLocation TemplateNameLoc,
4589                                 SourceLocation LAngleLoc,
4590                                 ASTTemplateArgsPtr TemplateArgsIn,
4591                                 SourceLocation RAngleLoc,
4592                                 AttributeList *Attr) {
4593  // Find the class template we're specializing
4594  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4595  ClassTemplateDecl *ClassTemplate
4596    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4597
4598  // Check that the specialization uses the same tag kind as the
4599  // original template.
4600  TagDecl::TagKind Kind;
4601  switch (TagSpec) {
4602  default: assert(0 && "Unknown tag type!");
4603  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4604  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4605  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4606  }
4607  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4608                                    Kind, KWLoc,
4609                                    *ClassTemplate->getIdentifier())) {
4610    Diag(KWLoc, diag::err_use_with_wrong_tag)
4611      << ClassTemplate
4612      << FixItHint::CreateReplacement(KWLoc,
4613                            ClassTemplate->getTemplatedDecl()->getKindName());
4614    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4615         diag::note_previous_use);
4616    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4617  }
4618
4619  // C++0x [temp.explicit]p2:
4620  //   There are two forms of explicit instantiation: an explicit instantiation
4621  //   definition and an explicit instantiation declaration. An explicit
4622  //   instantiation declaration begins with the extern keyword. [...]
4623  TemplateSpecializationKind TSK
4624    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4625                           : TSK_ExplicitInstantiationDeclaration;
4626
4627  // Translate the parser's template argument list in our AST format.
4628  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4629  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4630
4631  // Check that the template argument list is well-formed for this
4632  // template.
4633  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4634                                        TemplateArgs.size());
4635  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4636                                TemplateArgs, false, Converted))
4637    return true;
4638
4639  assert((Converted.structuredSize() ==
4640            ClassTemplate->getTemplateParameters()->size()) &&
4641         "Converted template argument list is too short!");
4642
4643  // Find the class template specialization declaration that
4644  // corresponds to these arguments.
4645  llvm::FoldingSetNodeID ID;
4646  ClassTemplateSpecializationDecl::Profile(ID,
4647                                           Converted.getFlatArguments(),
4648                                           Converted.flatSize(),
4649                                           Context);
4650  void *InsertPos = 0;
4651  ClassTemplateSpecializationDecl *PrevDecl
4652    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4653
4654  // C++0x [temp.explicit]p2:
4655  //   [...] An explicit instantiation shall appear in an enclosing
4656  //   namespace of its template. [...]
4657  //
4658  // This is C++ DR 275.
4659  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4660                                  SS.isSet());
4661
4662  ClassTemplateSpecializationDecl *Specialization = 0;
4663
4664  bool ReusedDecl = false;
4665  if (PrevDecl) {
4666    bool SuppressNew = false;
4667    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4668                                               PrevDecl,
4669                                              PrevDecl->getSpecializationKind(),
4670                                            PrevDecl->getPointOfInstantiation(),
4671                                               SuppressNew))
4672      return DeclPtrTy::make(PrevDecl);
4673
4674    if (SuppressNew)
4675      return DeclPtrTy::make(PrevDecl);
4676
4677    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4678        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4679      // Since the only prior class template specialization with these
4680      // arguments was referenced but not declared, reuse that
4681      // declaration node as our own, updating its source location to
4682      // reflect our new declaration.
4683      Specialization = PrevDecl;
4684      Specialization->setLocation(TemplateNameLoc);
4685      PrevDecl = 0;
4686      ReusedDecl = true;
4687    }
4688  }
4689
4690  if (!Specialization) {
4691    // Create a new class template specialization declaration node for
4692    // this explicit specialization.
4693    Specialization
4694      = ClassTemplateSpecializationDecl::Create(Context,
4695                                             ClassTemplate->getDeclContext(),
4696                                                TemplateNameLoc,
4697                                                ClassTemplate,
4698                                                Converted, PrevDecl);
4699    SetNestedNameSpecifier(Specialization, SS);
4700
4701    if (PrevDecl) {
4702      // Remove the previous declaration from the folding set, since we want
4703      // to introduce a new declaration.
4704      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4705      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4706    }
4707
4708    // Insert the new specialization.
4709    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4710  }
4711
4712  // Build the fully-sugared type for this explicit instantiation as
4713  // the user wrote in the explicit instantiation itself. This means
4714  // that we'll pretty-print the type retrieved from the
4715  // specialization's declaration the way that the user actually wrote
4716  // the explicit instantiation, rather than formatting the name based
4717  // on the "canonical" representation used to store the template
4718  // arguments in the specialization.
4719  TypeSourceInfo *WrittenTy
4720    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4721                                                TemplateArgs,
4722                                  Context.getTypeDeclType(Specialization));
4723  Specialization->setTypeAsWritten(WrittenTy);
4724  TemplateArgsIn.release();
4725
4726  if (!ReusedDecl) {
4727    // Add the explicit instantiation into its lexical context. However,
4728    // since explicit instantiations are never found by name lookup, we
4729    // just put it into the declaration context directly.
4730    Specialization->setLexicalDeclContext(CurContext);
4731    CurContext->addDecl(Specialization);
4732  }
4733
4734  // C++ [temp.explicit]p3:
4735  //   A definition of a class template or class member template
4736  //   shall be in scope at the point of the explicit instantiation of
4737  //   the class template or class member template.
4738  //
4739  // This check comes when we actually try to perform the
4740  // instantiation.
4741  ClassTemplateSpecializationDecl *Def
4742    = cast_or_null<ClassTemplateSpecializationDecl>(
4743                                              Specialization->getDefinition());
4744  if (!Def)
4745    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4746
4747  // Instantiate the members of this class template specialization.
4748  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4749                                       Specialization->getDefinition());
4750  if (Def) {
4751    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4752
4753    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4754    // TSK_ExplicitInstantiationDefinition
4755    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4756        TSK == TSK_ExplicitInstantiationDefinition)
4757      Def->setTemplateSpecializationKind(TSK);
4758
4759    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4760  }
4761
4762  return DeclPtrTy::make(Specialization);
4763}
4764
4765// Explicit instantiation of a member class of a class template.
4766Sema::DeclResult
4767Sema::ActOnExplicitInstantiation(Scope *S,
4768                                 SourceLocation ExternLoc,
4769                                 SourceLocation TemplateLoc,
4770                                 unsigned TagSpec,
4771                                 SourceLocation KWLoc,
4772                                 CXXScopeSpec &SS,
4773                                 IdentifierInfo *Name,
4774                                 SourceLocation NameLoc,
4775                                 AttributeList *Attr) {
4776
4777  bool Owned = false;
4778  bool IsDependent = false;
4779  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4780                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4781                            MultiTemplateParamsArg(*this, 0, 0),
4782                            Owned, IsDependent);
4783  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4784
4785  if (!TagD)
4786    return true;
4787
4788  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4789  if (Tag->isEnum()) {
4790    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4791      << Context.getTypeDeclType(Tag);
4792    return true;
4793  }
4794
4795  if (Tag->isInvalidDecl())
4796    return true;
4797
4798  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4799  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4800  if (!Pattern) {
4801    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4802      << Context.getTypeDeclType(Record);
4803    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4804    return true;
4805  }
4806
4807  // C++0x [temp.explicit]p2:
4808  //   If the explicit instantiation is for a class or member class, the
4809  //   elaborated-type-specifier in the declaration shall include a
4810  //   simple-template-id.
4811  //
4812  // C++98 has the same restriction, just worded differently.
4813  if (!ScopeSpecifierHasTemplateId(SS))
4814    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4815      << Record << SS.getRange();
4816
4817  // C++0x [temp.explicit]p2:
4818  //   There are two forms of explicit instantiation: an explicit instantiation
4819  //   definition and an explicit instantiation declaration. An explicit
4820  //   instantiation declaration begins with the extern keyword. [...]
4821  TemplateSpecializationKind TSK
4822    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4823                           : TSK_ExplicitInstantiationDeclaration;
4824
4825  // C++0x [temp.explicit]p2:
4826  //   [...] An explicit instantiation shall appear in an enclosing
4827  //   namespace of its template. [...]
4828  //
4829  // This is C++ DR 275.
4830  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4831
4832  // Verify that it is okay to explicitly instantiate here.
4833  CXXRecordDecl *PrevDecl
4834    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4835  if (!PrevDecl && Record->getDefinition())
4836    PrevDecl = Record;
4837  if (PrevDecl) {
4838    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4839    bool SuppressNew = false;
4840    assert(MSInfo && "No member specialization information?");
4841    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4842                                               PrevDecl,
4843                                        MSInfo->getTemplateSpecializationKind(),
4844                                             MSInfo->getPointOfInstantiation(),
4845                                               SuppressNew))
4846      return true;
4847    if (SuppressNew)
4848      return TagD;
4849  }
4850
4851  CXXRecordDecl *RecordDef
4852    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4853  if (!RecordDef) {
4854    // C++ [temp.explicit]p3:
4855    //   A definition of a member class of a class template shall be in scope
4856    //   at the point of an explicit instantiation of the member class.
4857    CXXRecordDecl *Def
4858      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4859    if (!Def) {
4860      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4861        << 0 << Record->getDeclName() << Record->getDeclContext();
4862      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4863        << Pattern;
4864      return true;
4865    } else {
4866      if (InstantiateClass(NameLoc, Record, Def,
4867                           getTemplateInstantiationArgs(Record),
4868                           TSK))
4869        return true;
4870
4871      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4872      if (!RecordDef)
4873        return true;
4874    }
4875  }
4876
4877  // Instantiate all of the members of the class.
4878  InstantiateClassMembers(NameLoc, RecordDef,
4879                          getTemplateInstantiationArgs(Record), TSK);
4880
4881  // FIXME: We don't have any representation for explicit instantiations of
4882  // member classes. Such a representation is not needed for compilation, but it
4883  // should be available for clients that want to see all of the declarations in
4884  // the source code.
4885  return TagD;
4886}
4887
4888Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4889                                                  SourceLocation ExternLoc,
4890                                                  SourceLocation TemplateLoc,
4891                                                  Declarator &D) {
4892  // Explicit instantiations always require a name.
4893  DeclarationName Name = GetNameForDeclarator(D);
4894  if (!Name) {
4895    if (!D.isInvalidType())
4896      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4897           diag::err_explicit_instantiation_requires_name)
4898        << D.getDeclSpec().getSourceRange()
4899        << D.getSourceRange();
4900
4901    return true;
4902  }
4903
4904  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4905  // we find one that is.
4906  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4907         (S->getFlags() & Scope::TemplateParamScope) != 0)
4908    S = S->getParent();
4909
4910  // Determine the type of the declaration.
4911  QualType R = GetTypeForDeclarator(D, S, 0);
4912  if (R.isNull())
4913    return true;
4914
4915  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4916    // Cannot explicitly instantiate a typedef.
4917    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4918      << Name;
4919    return true;
4920  }
4921
4922  // C++0x [temp.explicit]p1:
4923  //   [...] An explicit instantiation of a function template shall not use the
4924  //   inline or constexpr specifiers.
4925  // Presumably, this also applies to member functions of class templates as
4926  // well.
4927  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4928    Diag(D.getDeclSpec().getInlineSpecLoc(),
4929         diag::err_explicit_instantiation_inline)
4930      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4931
4932  // FIXME: check for constexpr specifier.
4933
4934  // C++0x [temp.explicit]p2:
4935  //   There are two forms of explicit instantiation: an explicit instantiation
4936  //   definition and an explicit instantiation declaration. An explicit
4937  //   instantiation declaration begins with the extern keyword. [...]
4938  TemplateSpecializationKind TSK
4939    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4940                           : TSK_ExplicitInstantiationDeclaration;
4941
4942  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4943  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4944
4945  if (!R->isFunctionType()) {
4946    // C++ [temp.explicit]p1:
4947    //   A [...] static data member of a class template can be explicitly
4948    //   instantiated from the member definition associated with its class
4949    //   template.
4950    if (Previous.isAmbiguous())
4951      return true;
4952
4953    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4954    if (!Prev || !Prev->isStaticDataMember()) {
4955      // We expect to see a data data member here.
4956      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4957        << Name;
4958      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4959           P != PEnd; ++P)
4960        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4961      return true;
4962    }
4963
4964    if (!Prev->getInstantiatedFromStaticDataMember()) {
4965      // FIXME: Check for explicit specialization?
4966      Diag(D.getIdentifierLoc(),
4967           diag::err_explicit_instantiation_data_member_not_instantiated)
4968        << Prev;
4969      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4970      // FIXME: Can we provide a note showing where this was declared?
4971      return true;
4972    }
4973
4974    // C++0x [temp.explicit]p2:
4975    //   If the explicit instantiation is for a member function, a member class
4976    //   or a static data member of a class template specialization, the name of
4977    //   the class template specialization in the qualified-id for the member
4978    //   name shall be a simple-template-id.
4979    //
4980    // C++98 has the same restriction, just worded differently.
4981    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4982      Diag(D.getIdentifierLoc(),
4983           diag::err_explicit_instantiation_without_qualified_id)
4984        << Prev << D.getCXXScopeSpec().getRange();
4985
4986    // Check the scope of this explicit instantiation.
4987    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4988
4989    // Verify that it is okay to explicitly instantiate here.
4990    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4991    assert(MSInfo && "Missing static data member specialization info?");
4992    bool SuppressNew = false;
4993    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4994                                        MSInfo->getTemplateSpecializationKind(),
4995                                              MSInfo->getPointOfInstantiation(),
4996                                               SuppressNew))
4997      return true;
4998    if (SuppressNew)
4999      return DeclPtrTy();
5000
5001    // Instantiate static data member.
5002    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5003    if (TSK == TSK_ExplicitInstantiationDefinition)
5004      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
5005                                            /*DefinitionRequired=*/true);
5006
5007    // FIXME: Create an ExplicitInstantiation node?
5008    return DeclPtrTy();
5009  }
5010
5011  // If the declarator is a template-id, translate the parser's template
5012  // argument list into our AST format.
5013  bool HasExplicitTemplateArgs = false;
5014  TemplateArgumentListInfo TemplateArgs;
5015  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5016    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5017    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5018    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5019    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5020                                       TemplateId->getTemplateArgs(),
5021                                       TemplateId->NumArgs);
5022    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5023    HasExplicitTemplateArgs = true;
5024    TemplateArgsPtr.release();
5025  }
5026
5027  // C++ [temp.explicit]p1:
5028  //   A [...] function [...] can be explicitly instantiated from its template.
5029  //   A member function [...] of a class template can be explicitly
5030  //  instantiated from the member definition associated with its class
5031  //  template.
5032  UnresolvedSet<8> Matches;
5033  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5034       P != PEnd; ++P) {
5035    NamedDecl *Prev = *P;
5036    if (!HasExplicitTemplateArgs) {
5037      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5038        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5039          Matches.clear();
5040
5041          Matches.addDecl(Method, P.getAccess());
5042          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5043            break;
5044        }
5045      }
5046    }
5047
5048    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5049    if (!FunTmpl)
5050      continue;
5051
5052    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5053    FunctionDecl *Specialization = 0;
5054    if (TemplateDeductionResult TDK
5055          = DeduceTemplateArguments(FunTmpl,
5056                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5057                                    R, Specialization, Info)) {
5058      // FIXME: Keep track of almost-matches?
5059      (void)TDK;
5060      continue;
5061    }
5062
5063    Matches.addDecl(Specialization, P.getAccess());
5064  }
5065
5066  // Find the most specialized function template specialization.
5067  UnresolvedSetIterator Result
5068    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5069                         D.getIdentifierLoc(),
5070                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5071                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5072                         PDiag(diag::note_explicit_instantiation_candidate));
5073
5074  if (Result == Matches.end())
5075    return true;
5076
5077  // Ignore access control bits, we don't need them for redeclaration checking.
5078  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5079
5080  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5081    Diag(D.getIdentifierLoc(),
5082         diag::err_explicit_instantiation_member_function_not_instantiated)
5083      << Specialization
5084      << (Specialization->getTemplateSpecializationKind() ==
5085          TSK_ExplicitSpecialization);
5086    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5087    return true;
5088  }
5089
5090  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5091  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5092    PrevDecl = Specialization;
5093
5094  if (PrevDecl) {
5095    bool SuppressNew = false;
5096    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5097                                               PrevDecl,
5098                                     PrevDecl->getTemplateSpecializationKind(),
5099                                          PrevDecl->getPointOfInstantiation(),
5100                                               SuppressNew))
5101      return true;
5102
5103    // FIXME: We may still want to build some representation of this
5104    // explicit specialization.
5105    if (SuppressNew)
5106      return DeclPtrTy();
5107  }
5108
5109  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5110
5111  if (TSK == TSK_ExplicitInstantiationDefinition)
5112    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
5113                                  false, /*DefinitionRequired=*/true);
5114
5115  // C++0x [temp.explicit]p2:
5116  //   If the explicit instantiation is for a member function, a member class
5117  //   or a static data member of a class template specialization, the name of
5118  //   the class template specialization in the qualified-id for the member
5119  //   name shall be a simple-template-id.
5120  //
5121  // C++98 has the same restriction, just worded differently.
5122  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5123  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5124      D.getCXXScopeSpec().isSet() &&
5125      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5126    Diag(D.getIdentifierLoc(),
5127         diag::err_explicit_instantiation_without_qualified_id)
5128    << Specialization << D.getCXXScopeSpec().getRange();
5129
5130  CheckExplicitInstantiationScope(*this,
5131                   FunTmpl? (NamedDecl *)FunTmpl
5132                          : Specialization->getInstantiatedFromMemberFunction(),
5133                                  D.getIdentifierLoc(),
5134                                  D.getCXXScopeSpec().isSet());
5135
5136  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5137  return DeclPtrTy();
5138}
5139
5140Sema::TypeResult
5141Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5142                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5143                        SourceLocation TagLoc, SourceLocation NameLoc) {
5144  // This has to hold, because SS is expected to be defined.
5145  assert(Name && "Expected a name in a dependent tag");
5146
5147  NestedNameSpecifier *NNS
5148    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5149  if (!NNS)
5150    return true;
5151
5152  ElaboratedTypeKeyword Keyword = ETK_None;
5153  switch (TagDecl::getTagKindForTypeSpec(TagSpec)) {
5154  case TagDecl::TK_struct: Keyword = ETK_Struct; break;
5155  case TagDecl::TK_class: Keyword = ETK_Class; break;
5156  case TagDecl::TK_union: Keyword = ETK_Union; break;
5157  case TagDecl::TK_enum: Keyword = ETK_Enum; break;
5158  }
5159  assert(Keyword != ETK_None && "Invalid tag kind!");
5160
5161  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5162    Diag(NameLoc, diag::err_dependent_tag_decl)
5163      << (TUK == TUK_Definition) << TagDecl::getTagKindForTypeSpec(TagSpec)
5164      << SS.getRange();
5165    return true;
5166  }
5167
5168  return Context.getDependentNameType(Keyword, NNS, Name).getAsOpaquePtr();
5169}
5170
5171static void FillTypeLoc(DependentNameTypeLoc TL,
5172                        SourceLocation TypenameLoc,
5173                        SourceRange QualifierRange) {
5174  // FIXME: typename, qualifier range
5175  TL.setNameLoc(TypenameLoc);
5176}
5177
5178static void FillTypeLoc(QualifiedNameTypeLoc TL,
5179                        SourceLocation TypenameLoc,
5180                        SourceRange QualifierRange) {
5181  // FIXME: typename, qualifier range
5182  TL.setNameLoc(TypenameLoc);
5183}
5184
5185Sema::TypeResult
5186Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5187                        const IdentifierInfo &II, SourceLocation IdLoc) {
5188  NestedNameSpecifier *NNS
5189    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5190  if (!NNS)
5191    return true;
5192
5193  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5194                                 SourceRange(TypenameLoc, IdLoc));
5195  if (T.isNull())
5196    return true;
5197
5198  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5199  if (isa<DependentNameType>(T)) {
5200    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5201    // FIXME: fill inner type loc
5202    FillTypeLoc(TL, TypenameLoc, SS.getRange());
5203  } else {
5204    QualifiedNameTypeLoc TL = cast<QualifiedNameTypeLoc>(TSI->getTypeLoc());
5205    // FIXME: fill inner type loc
5206    FillTypeLoc(TL, TypenameLoc, SS.getRange());
5207  }
5208
5209  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5210}
5211
5212Sema::TypeResult
5213Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5214                        SourceLocation TemplateLoc, TypeTy *Ty) {
5215  QualType T = GetTypeFromParser(Ty);
5216  NestedNameSpecifier *NNS
5217    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5218  const TemplateSpecializationType *TemplateId
5219    = T->getAs<TemplateSpecializationType>();
5220  assert(TemplateId && "Expected a template specialization type");
5221
5222  if (computeDeclContext(SS, false)) {
5223    // If we can compute a declaration context, then the "typename"
5224    // keyword was superfluous. Just build a QualifiedNameType to keep
5225    // track of the nested-name-specifier.
5226
5227    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
5228
5229    T = Context.getQualifiedNameType(NNS, T);
5230    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5231    QualifiedNameTypeLoc TL = cast<QualifiedNameTypeLoc>(TSI->getTypeLoc());
5232    // FIXME: fill inner type loc
5233    FillTypeLoc(TL, TypenameLoc, SS.getRange());
5234    return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5235  }
5236
5237  T = Context.getDependentNameType(ETK_Typename, NNS, TemplateId);
5238  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5239  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5240  // FIXME: fill inner type loc
5241  FillTypeLoc(TL, TypenameLoc, SS.getRange());
5242  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5243}
5244
5245/// \brief Build the type that describes a C++ typename specifier,
5246/// e.g., "typename T::type".
5247QualType
5248Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5249                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5250                        SourceRange Range) {
5251  CXXRecordDecl *CurrentInstantiation = 0;
5252  if (NNS->isDependent()) {
5253    CurrentInstantiation = getCurrentInstantiationOf(NNS);
5254
5255    // If the nested-name-specifier does not refer to the current
5256    // instantiation, then build a typename type.
5257    if (!CurrentInstantiation)
5258      return Context.getDependentNameType(Keyword, NNS, &II);
5259
5260    // The nested-name-specifier refers to the current instantiation, so the
5261    // "typename" keyword itself is superfluous. In C++03, the program is
5262    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
5263    // extraneous "typename" keywords, and we retroactively apply this DR to
5264    // C++03 code.
5265  }
5266
5267  DeclContext *Ctx = 0;
5268
5269  if (CurrentInstantiation)
5270    Ctx = CurrentInstantiation;
5271  else {
5272    CXXScopeSpec SS;
5273    SS.setScopeRep(NNS);
5274    SS.setRange(Range);
5275    if (RequireCompleteDeclContext(SS))
5276      return QualType();
5277
5278    Ctx = computeDeclContext(SS);
5279  }
5280  assert(Ctx && "No declaration context?");
5281
5282  DeclarationName Name(&II);
5283  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
5284  LookupQualifiedName(Result, Ctx);
5285  unsigned DiagID = 0;
5286  Decl *Referenced = 0;
5287  switch (Result.getResultKind()) {
5288  case LookupResult::NotFound:
5289    DiagID = diag::err_typename_nested_not_found;
5290    break;
5291
5292  case LookupResult::NotFoundInCurrentInstantiation:
5293    // Okay, it's a member of an unknown instantiation.
5294    return Context.getDependentNameType(Keyword, NNS, &II);
5295
5296  case LookupResult::Found:
5297    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5298      // We found a type. Build a QualifiedNameType, since the
5299      // typename-specifier was just sugar. FIXME: Tell
5300      // QualifiedNameType that it has a "typename" prefix.
5301      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
5302    }
5303
5304    DiagID = diag::err_typename_nested_not_type;
5305    Referenced = Result.getFoundDecl();
5306    break;
5307
5308  case LookupResult::FoundUnresolvedValue:
5309    llvm_unreachable("unresolved using decl in non-dependent context");
5310    return QualType();
5311
5312  case LookupResult::FoundOverloaded:
5313    DiagID = diag::err_typename_nested_not_type;
5314    Referenced = *Result.begin();
5315    break;
5316
5317  case LookupResult::Ambiguous:
5318    return QualType();
5319  }
5320
5321  // If we get here, it's because name lookup did not find a
5322  // type. Emit an appropriate diagnostic and return an error.
5323  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
5324  if (Referenced)
5325    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5326      << Name;
5327  return QualType();
5328}
5329
5330namespace {
5331  // See Sema::RebuildTypeInCurrentInstantiation
5332  class CurrentInstantiationRebuilder
5333    : public TreeTransform<CurrentInstantiationRebuilder> {
5334    SourceLocation Loc;
5335    DeclarationName Entity;
5336
5337  public:
5338    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5339
5340    CurrentInstantiationRebuilder(Sema &SemaRef,
5341                                  SourceLocation Loc,
5342                                  DeclarationName Entity)
5343    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5344      Loc(Loc), Entity(Entity) { }
5345
5346    /// \brief Determine whether the given type \p T has already been
5347    /// transformed.
5348    ///
5349    /// For the purposes of type reconstruction, a type has already been
5350    /// transformed if it is NULL or if it is not dependent.
5351    bool AlreadyTransformed(QualType T) {
5352      return T.isNull() || !T->isDependentType();
5353    }
5354
5355    /// \brief Returns the location of the entity whose type is being
5356    /// rebuilt.
5357    SourceLocation getBaseLocation() { return Loc; }
5358
5359    /// \brief Returns the name of the entity whose type is being rebuilt.
5360    DeclarationName getBaseEntity() { return Entity; }
5361
5362    /// \brief Sets the "base" location and entity when that
5363    /// information is known based on another transformation.
5364    void setBase(SourceLocation Loc, DeclarationName Entity) {
5365      this->Loc = Loc;
5366      this->Entity = Entity;
5367    }
5368
5369    /// \brief Transforms an expression by returning the expression itself
5370    /// (an identity function).
5371    ///
5372    /// FIXME: This is completely unsafe; we will need to actually clone the
5373    /// expressions.
5374    Sema::OwningExprResult TransformExpr(Expr *E) {
5375      return getSema().Owned(E->Retain());
5376    }
5377
5378    /// \brief Transforms a typename type by determining whether the type now
5379    /// refers to a member of the current instantiation, and then
5380    /// type-checking and building a QualifiedNameType (when possible).
5381    QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL,
5382                                   QualType ObjectType);
5383  };
5384}
5385
5386QualType
5387CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB,
5388                                                     DependentNameTypeLoc TL,
5389                                                     QualType ObjectType) {
5390  DependentNameType *T = TL.getTypePtr();
5391
5392  NestedNameSpecifier *NNS
5393    = TransformNestedNameSpecifier(T->getQualifier(),
5394                                   /*FIXME:*/SourceRange(getBaseLocation()),
5395                                   ObjectType);
5396  if (!NNS)
5397    return QualType();
5398
5399  // If the nested-name-specifier did not change, and we cannot compute the
5400  // context corresponding to the nested-name-specifier, then this
5401  // typename type will not change; exit early.
5402  CXXScopeSpec SS;
5403  SS.setRange(SourceRange(getBaseLocation()));
5404  SS.setScopeRep(NNS);
5405
5406  QualType Result;
5407  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
5408    Result = QualType(T, 0);
5409
5410  // Rebuild the typename type, which will probably turn into a
5411  // QualifiedNameType.
5412  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
5413    QualType NewTemplateId
5414      = TransformType(QualType(TemplateId, 0));
5415    if (NewTemplateId.isNull())
5416      return QualType();
5417
5418    if (NNS == T->getQualifier() &&
5419        NewTemplateId == QualType(TemplateId, 0))
5420      Result = QualType(T, 0);
5421    else
5422      Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5423                                                     NNS, NewTemplateId);
5424  } else
5425    Result = getDerived().RebuildDependentNameType(T->getKeyword(),
5426                                                   NNS, T->getIdentifier(),
5427                                                  SourceRange(TL.getNameLoc()));
5428
5429  if (Result.isNull())
5430    return QualType();
5431
5432  DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
5433  NewTL.setNameLoc(TL.getNameLoc());
5434  return Result;
5435}
5436
5437/// \brief Rebuilds a type within the context of the current instantiation.
5438///
5439/// The type \p T is part of the type of an out-of-line member definition of
5440/// a class template (or class template partial specialization) that was parsed
5441/// and constructed before we entered the scope of the class template (or
5442/// partial specialization thereof). This routine will rebuild that type now
5443/// that we have entered the declarator's scope, which may produce different
5444/// canonical types, e.g.,
5445///
5446/// \code
5447/// template<typename T>
5448/// struct X {
5449///   typedef T* pointer;
5450///   pointer data();
5451/// };
5452///
5453/// template<typename T>
5454/// typename X<T>::pointer X<T>::data() { ... }
5455/// \endcode
5456///
5457/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5458/// since we do not know that we can look into X<T> when we parsed the type.
5459/// This function will rebuild the type, performing the lookup of "pointer"
5460/// in X<T> and returning a QualifiedNameType whose canonical type is the same
5461/// as the canonical type of T*, allowing the return types of the out-of-line
5462/// definition and the declaration to match.
5463TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5464                                                        SourceLocation Loc,
5465                                                        DeclarationName Name) {
5466  if (!T || !T->getType()->isDependentType())
5467    return T;
5468
5469  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5470  return Rebuilder.TransformType(T);
5471}
5472
5473bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5474  if (SS.isInvalid()) return true;
5475
5476  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5477  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5478                                          DeclarationName());
5479  NestedNameSpecifier *Rebuilt =
5480    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5481  if (!Rebuilt) return true;
5482
5483  SS.setScopeRep(Rebuilt);
5484  return false;
5485}
5486
5487/// \brief Produces a formatted string that describes the binding of
5488/// template parameters to template arguments.
5489std::string
5490Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5491                                      const TemplateArgumentList &Args) {
5492  // FIXME: For variadic templates, we'll need to get the structured list.
5493  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5494                                         Args.flat_size());
5495}
5496
5497std::string
5498Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5499                                      const TemplateArgument *Args,
5500                                      unsigned NumArgs) {
5501  std::string Result;
5502
5503  if (!Params || Params->size() == 0 || NumArgs == 0)
5504    return Result;
5505
5506  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5507    if (I >= NumArgs)
5508      break;
5509
5510    if (I == 0)
5511      Result += "[with ";
5512    else
5513      Result += ", ";
5514
5515    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5516      Result += Id->getName();
5517    } else {
5518      Result += '$';
5519      Result += llvm::utostr(I);
5520    }
5521
5522    Result += " = ";
5523
5524    switch (Args[I].getKind()) {
5525      case TemplateArgument::Null:
5526        Result += "<no value>";
5527        break;
5528
5529      case TemplateArgument::Type: {
5530        std::string TypeStr;
5531        Args[I].getAsType().getAsStringInternal(TypeStr,
5532                                                Context.PrintingPolicy);
5533        Result += TypeStr;
5534        break;
5535      }
5536
5537      case TemplateArgument::Declaration: {
5538        bool Unnamed = true;
5539        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5540          if (ND->getDeclName()) {
5541            Unnamed = false;
5542            Result += ND->getNameAsString();
5543          }
5544        }
5545
5546        if (Unnamed) {
5547          Result += "<anonymous>";
5548        }
5549        break;
5550      }
5551
5552      case TemplateArgument::Template: {
5553        std::string Str;
5554        llvm::raw_string_ostream OS(Str);
5555        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5556        Result += OS.str();
5557        break;
5558      }
5559
5560      case TemplateArgument::Integral: {
5561        Result += Args[I].getAsIntegral()->toString(10);
5562        break;
5563      }
5564
5565      case TemplateArgument::Expression: {
5566        // FIXME: This is non-optimal, since we're regurgitating the
5567        // expression we were given.
5568        std::string Str;
5569        {
5570          llvm::raw_string_ostream OS(Str);
5571          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5572                                           Context.PrintingPolicy);
5573        }
5574        Result += Str;
5575        break;
5576      }
5577
5578      case TemplateArgument::Pack:
5579        // FIXME: Format template argument packs
5580        Result += "<template argument pack>";
5581        break;
5582    }
5583  }
5584
5585  Result += ']';
5586  return Result;
5587}
5588