SemaTemplate.cpp revision 89db1455a28af887f64bf56ffc8aaf3b7acadda5
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "Sema.h" 13#include "Lookup.h" 14#include "TreeTransform.h" 15#include "clang/AST/ASTContext.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/DeclFriend.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/Parse/DeclSpec.h" 21#include "clang/Parse/Template.h" 22#include "clang/Basic/LangOptions.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/StringExtras.h" 25using namespace clang; 26 27/// \brief Determine whether the declaration found is acceptable as the name 28/// of a template and, if so, return that template declaration. Otherwise, 29/// returns NULL. 30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { 31 if (!D) 32 return 0; 33 34 if (isa<TemplateDecl>(D)) 35 return D; 36 37 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 38 // C++ [temp.local]p1: 39 // Like normal (non-template) classes, class templates have an 40 // injected-class-name (Clause 9). The injected-class-name 41 // can be used with or without a template-argument-list. When 42 // it is used without a template-argument-list, it is 43 // equivalent to the injected-class-name followed by the 44 // template-parameters of the class template enclosed in 45 // <>. When it is used with a template-argument-list, it 46 // refers to the specified class template specialization, 47 // which could be the current specialization or another 48 // specialization. 49 if (Record->isInjectedClassName()) { 50 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 51 if (Record->getDescribedClassTemplate()) 52 return Record->getDescribedClassTemplate(); 53 54 if (ClassTemplateSpecializationDecl *Spec 55 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 56 return Spec->getSpecializedTemplate(); 57 } 58 59 return 0; 60 } 61 62 return 0; 63} 64 65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { 66 LookupResult::Filter filter = R.makeFilter(); 67 while (filter.hasNext()) { 68 NamedDecl *Orig = filter.next(); 69 NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); 70 if (!Repl) 71 filter.erase(); 72 else if (Repl != Orig) 73 filter.replace(Repl); 74 } 75 filter.done(); 76} 77 78TemplateNameKind Sema::isTemplateName(Scope *S, 79 const CXXScopeSpec &SS, 80 UnqualifiedId &Name, 81 TypeTy *ObjectTypePtr, 82 bool EnteringContext, 83 TemplateTy &TemplateResult) { 84 assert(getLangOptions().CPlusPlus && "No template names in C!"); 85 86 DeclarationName TName; 87 88 switch (Name.getKind()) { 89 case UnqualifiedId::IK_Identifier: 90 TName = DeclarationName(Name.Identifier); 91 break; 92 93 case UnqualifiedId::IK_OperatorFunctionId: 94 TName = Context.DeclarationNames.getCXXOperatorName( 95 Name.OperatorFunctionId.Operator); 96 break; 97 98 case UnqualifiedId::IK_LiteralOperatorId: 99 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 100 break; 101 102 default: 103 return TNK_Non_template; 104 } 105 106 QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); 107 108 LookupResult R(*this, TName, Name.getSourceRange().getBegin(), 109 LookupOrdinaryName); 110 R.suppressDiagnostics(); 111 LookupTemplateName(R, S, SS, ObjectType, EnteringContext); 112 if (R.empty()) 113 return TNK_Non_template; 114 115 TemplateName Template; 116 TemplateNameKind TemplateKind; 117 118 unsigned ResultCount = R.end() - R.begin(); 119 if (ResultCount > 1) { 120 // We assume that we'll preserve the qualifier from a function 121 // template name in other ways. 122 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 123 TemplateKind = TNK_Function_template; 124 } else { 125 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 126 127 if (SS.isSet() && !SS.isInvalid()) { 128 NestedNameSpecifier *Qualifier 129 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 130 Template = Context.getQualifiedTemplateName(Qualifier, false, TD); 131 } else { 132 Template = TemplateName(TD); 133 } 134 135 if (isa<FunctionTemplateDecl>(TD)) 136 TemplateKind = TNK_Function_template; 137 else { 138 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); 139 TemplateKind = TNK_Type_template; 140 } 141 } 142 143 TemplateResult = TemplateTy::make(Template); 144 return TemplateKind; 145} 146 147bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 148 SourceLocation IILoc, 149 Scope *S, 150 const CXXScopeSpec *SS, 151 TemplateTy &SuggestedTemplate, 152 TemplateNameKind &SuggestedKind) { 153 // We can't recover unless there's a dependent scope specifier preceding the 154 // template name. 155 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 156 computeDeclContext(*SS)) 157 return false; 158 159 // The code is missing a 'template' keyword prior to the dependent template 160 // name. 161 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 162 Diag(IILoc, diag::err_template_kw_missing) 163 << Qualifier << II.getName() 164 << CodeModificationHint::CreateInsertion(IILoc, "template "); 165 SuggestedTemplate 166 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 167 SuggestedKind = TNK_Dependent_template_name; 168 return true; 169} 170 171void Sema::LookupTemplateName(LookupResult &Found, 172 Scope *S, const CXXScopeSpec &SS, 173 QualType ObjectType, 174 bool EnteringContext) { 175 // Determine where to perform name lookup 176 DeclContext *LookupCtx = 0; 177 bool isDependent = false; 178 if (!ObjectType.isNull()) { 179 // This nested-name-specifier occurs in a member access expression, e.g., 180 // x->B::f, and we are looking into the type of the object. 181 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 182 LookupCtx = computeDeclContext(ObjectType); 183 isDependent = ObjectType->isDependentType(); 184 assert((isDependent || !ObjectType->isIncompleteType()) && 185 "Caller should have completed object type"); 186 } else if (SS.isSet()) { 187 // This nested-name-specifier occurs after another nested-name-specifier, 188 // so long into the context associated with the prior nested-name-specifier. 189 LookupCtx = computeDeclContext(SS, EnteringContext); 190 isDependent = isDependentScopeSpecifier(SS); 191 192 // The declaration context must be complete. 193 if (LookupCtx && RequireCompleteDeclContext(SS)) 194 return; 195 } 196 197 bool ObjectTypeSearchedInScope = false; 198 if (LookupCtx) { 199 // Perform "qualified" name lookup into the declaration context we 200 // computed, which is either the type of the base of a member access 201 // expression or the declaration context associated with a prior 202 // nested-name-specifier. 203 LookupQualifiedName(Found, LookupCtx); 204 205 if (!ObjectType.isNull() && Found.empty()) { 206 // C++ [basic.lookup.classref]p1: 207 // In a class member access expression (5.2.5), if the . or -> token is 208 // immediately followed by an identifier followed by a <, the 209 // identifier must be looked up to determine whether the < is the 210 // beginning of a template argument list (14.2) or a less-than operator. 211 // The identifier is first looked up in the class of the object 212 // expression. If the identifier is not found, it is then looked up in 213 // the context of the entire postfix-expression and shall name a class 214 // or function template. 215 // 216 // FIXME: When we're instantiating a template, do we actually have to 217 // look in the scope of the template? Seems fishy... 218 if (S) LookupName(Found, S); 219 ObjectTypeSearchedInScope = true; 220 } 221 } else if (isDependent) { 222 // We cannot look into a dependent object type or nested nme 223 // specifier. 224 return; 225 } else { 226 // Perform unqualified name lookup in the current scope. 227 LookupName(Found, S); 228 } 229 230 // FIXME: Cope with ambiguous name-lookup results. 231 assert(!Found.isAmbiguous() && 232 "Cannot handle template name-lookup ambiguities"); 233 234 if (Found.empty() && !isDependent) { 235 // If we did not find any names, attempt to correct any typos. 236 DeclarationName Name = Found.getLookupName(); 237 if (CorrectTypo(Found, S, &SS, LookupCtx)) { 238 FilterAcceptableTemplateNames(Context, Found); 239 if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { 240 if (LookupCtx) 241 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 242 << Name << LookupCtx << Found.getLookupName() << SS.getRange() 243 << CodeModificationHint::CreateReplacement(Found.getNameLoc(), 244 Found.getLookupName().getAsString()); 245 else 246 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 247 << Name << Found.getLookupName() 248 << CodeModificationHint::CreateReplacement(Found.getNameLoc(), 249 Found.getLookupName().getAsString()); 250 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 251 Diag(Template->getLocation(), diag::note_previous_decl) 252 << Template->getDeclName(); 253 } else 254 Found.clear(); 255 } else { 256 Found.clear(); 257 } 258 } 259 260 FilterAcceptableTemplateNames(Context, Found); 261 if (Found.empty()) 262 return; 263 264 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { 265 // C++ [basic.lookup.classref]p1: 266 // [...] If the lookup in the class of the object expression finds a 267 // template, the name is also looked up in the context of the entire 268 // postfix-expression and [...] 269 // 270 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 271 LookupOrdinaryName); 272 LookupName(FoundOuter, S); 273 FilterAcceptableTemplateNames(Context, FoundOuter); 274 // FIXME: Handle ambiguities in this lookup better 275 276 if (FoundOuter.empty()) { 277 // - if the name is not found, the name found in the class of the 278 // object expression is used, otherwise 279 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { 280 // - if the name is found in the context of the entire 281 // postfix-expression and does not name a class template, the name 282 // found in the class of the object expression is used, otherwise 283 } else { 284 // - if the name found is a class template, it must refer to the same 285 // entity as the one found in the class of the object expression, 286 // otherwise the program is ill-formed. 287 if (!Found.isSingleResult() || 288 Found.getFoundDecl()->getCanonicalDecl() 289 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 290 Diag(Found.getNameLoc(), 291 diag::err_nested_name_member_ref_lookup_ambiguous) 292 << Found.getLookupName(); 293 Diag(Found.getRepresentativeDecl()->getLocation(), 294 diag::note_ambig_member_ref_object_type) 295 << ObjectType; 296 Diag(FoundOuter.getFoundDecl()->getLocation(), 297 diag::note_ambig_member_ref_scope); 298 299 // Recover by taking the template that we found in the object 300 // expression's type. 301 } 302 } 303 } 304} 305 306/// ActOnDependentIdExpression - Handle a dependent id-expression that 307/// was just parsed. This is only possible with an explicit scope 308/// specifier naming a dependent type. 309Sema::OwningExprResult 310Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 311 DeclarationName Name, 312 SourceLocation NameLoc, 313 bool isAddressOfOperand, 314 const TemplateArgumentListInfo *TemplateArgs) { 315 NestedNameSpecifier *Qualifier 316 = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 317 318 if (!isAddressOfOperand && 319 isa<CXXMethodDecl>(CurContext) && 320 cast<CXXMethodDecl>(CurContext)->isInstance()) { 321 QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); 322 323 // Since the 'this' expression is synthesized, we don't need to 324 // perform the double-lookup check. 325 NamedDecl *FirstQualifierInScope = 0; 326 327 return Owned(CXXDependentScopeMemberExpr::Create(Context, 328 /*This*/ 0, ThisType, 329 /*IsArrow*/ true, 330 /*Op*/ SourceLocation(), 331 Qualifier, SS.getRange(), 332 FirstQualifierInScope, 333 Name, NameLoc, 334 TemplateArgs)); 335 } 336 337 return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); 338} 339 340Sema::OwningExprResult 341Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 342 DeclarationName Name, 343 SourceLocation NameLoc, 344 const TemplateArgumentListInfo *TemplateArgs) { 345 return Owned(DependentScopeDeclRefExpr::Create(Context, 346 static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 347 SS.getRange(), 348 Name, NameLoc, 349 TemplateArgs)); 350} 351 352/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 353/// that the template parameter 'PrevDecl' is being shadowed by a new 354/// declaration at location Loc. Returns true to indicate that this is 355/// an error, and false otherwise. 356bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 357 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 358 359 // Microsoft Visual C++ permits template parameters to be shadowed. 360 if (getLangOptions().Microsoft) 361 return false; 362 363 // C++ [temp.local]p4: 364 // A template-parameter shall not be redeclared within its 365 // scope (including nested scopes). 366 Diag(Loc, diag::err_template_param_shadow) 367 << cast<NamedDecl>(PrevDecl)->getDeclName(); 368 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 369 return true; 370} 371 372/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 373/// the parameter D to reference the templated declaration and return a pointer 374/// to the template declaration. Otherwise, do nothing to D and return null. 375TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { 376 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { 377 D = DeclPtrTy::make(Temp->getTemplatedDecl()); 378 return Temp; 379 } 380 return 0; 381} 382 383static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 384 const ParsedTemplateArgument &Arg) { 385 386 switch (Arg.getKind()) { 387 case ParsedTemplateArgument::Type: { 388 TypeSourceInfo *DI; 389 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 390 if (!DI) 391 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 392 return TemplateArgumentLoc(TemplateArgument(T), DI); 393 } 394 395 case ParsedTemplateArgument::NonType: { 396 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 397 return TemplateArgumentLoc(TemplateArgument(E), E); 398 } 399 400 case ParsedTemplateArgument::Template: { 401 TemplateName Template 402 = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); 403 return TemplateArgumentLoc(TemplateArgument(Template), 404 Arg.getScopeSpec().getRange(), 405 Arg.getLocation()); 406 } 407 } 408 409 llvm_unreachable("Unhandled parsed template argument"); 410 return TemplateArgumentLoc(); 411} 412 413/// \brief Translates template arguments as provided by the parser 414/// into template arguments used by semantic analysis. 415void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 416 TemplateArgumentListInfo &TemplateArgs) { 417 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 418 TemplateArgs.addArgument(translateTemplateArgument(*this, 419 TemplateArgsIn[I])); 420} 421 422/// ActOnTypeParameter - Called when a C++ template type parameter 423/// (e.g., "typename T") has been parsed. Typename specifies whether 424/// the keyword "typename" was used to declare the type parameter 425/// (otherwise, "class" was used), and KeyLoc is the location of the 426/// "class" or "typename" keyword. ParamName is the name of the 427/// parameter (NULL indicates an unnamed template parameter) and 428/// ParamName is the location of the parameter name (if any). 429/// If the type parameter has a default argument, it will be added 430/// later via ActOnTypeParameterDefault. 431Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 432 SourceLocation EllipsisLoc, 433 SourceLocation KeyLoc, 434 IdentifierInfo *ParamName, 435 SourceLocation ParamNameLoc, 436 unsigned Depth, unsigned Position) { 437 assert(S->isTemplateParamScope() && 438 "Template type parameter not in template parameter scope!"); 439 bool Invalid = false; 440 441 if (ParamName) { 442 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 443 if (PrevDecl && PrevDecl->isTemplateParameter()) 444 Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, 445 PrevDecl); 446 } 447 448 SourceLocation Loc = ParamNameLoc; 449 if (!ParamName) 450 Loc = KeyLoc; 451 452 TemplateTypeParmDecl *Param 453 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 454 Loc, Depth, Position, ParamName, Typename, 455 Ellipsis); 456 if (Invalid) 457 Param->setInvalidDecl(); 458 459 if (ParamName) { 460 // Add the template parameter into the current scope. 461 S->AddDecl(DeclPtrTy::make(Param)); 462 IdResolver.AddDecl(Param); 463 } 464 465 return DeclPtrTy::make(Param); 466} 467 468/// ActOnTypeParameterDefault - Adds a default argument (the type 469/// Default) to the given template type parameter (TypeParam). 470void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, 471 SourceLocation EqualLoc, 472 SourceLocation DefaultLoc, 473 TypeTy *DefaultT) { 474 TemplateTypeParmDecl *Parm 475 = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); 476 477 TypeSourceInfo *DefaultTInfo; 478 GetTypeFromParser(DefaultT, &DefaultTInfo); 479 480 assert(DefaultTInfo && "expected source information for type"); 481 482 // C++0x [temp.param]p9: 483 // A default template-argument may be specified for any kind of 484 // template-parameter that is not a template parameter pack. 485 if (Parm->isParameterPack()) { 486 Diag(DefaultLoc, diag::err_template_param_pack_default_arg); 487 return; 488 } 489 490 // C++ [temp.param]p14: 491 // A template-parameter shall not be used in its own default argument. 492 // FIXME: Implement this check! Needs a recursive walk over the types. 493 494 // Check the template argument itself. 495 if (CheckTemplateArgument(Parm, DefaultTInfo)) { 496 Parm->setInvalidDecl(); 497 return; 498 } 499 500 Parm->setDefaultArgument(DefaultTInfo, false); 501} 502 503/// \brief Check that the type of a non-type template parameter is 504/// well-formed. 505/// 506/// \returns the (possibly-promoted) parameter type if valid; 507/// otherwise, produces a diagnostic and returns a NULL type. 508QualType 509Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 510 // C++ [temp.param]p4: 511 // 512 // A non-type template-parameter shall have one of the following 513 // (optionally cv-qualified) types: 514 // 515 // -- integral or enumeration type, 516 if (T->isIntegralType() || T->isEnumeralType() || 517 // -- pointer to object or pointer to function, 518 (T->isPointerType() && 519 (T->getAs<PointerType>()->getPointeeType()->isObjectType() || 520 T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || 521 // -- reference to object or reference to function, 522 T->isReferenceType() || 523 // -- pointer to member. 524 T->isMemberPointerType() || 525 // If T is a dependent type, we can't do the check now, so we 526 // assume that it is well-formed. 527 T->isDependentType()) 528 return T; 529 // C++ [temp.param]p8: 530 // 531 // A non-type template-parameter of type "array of T" or 532 // "function returning T" is adjusted to be of type "pointer to 533 // T" or "pointer to function returning T", respectively. 534 else if (T->isArrayType()) 535 // FIXME: Keep the type prior to promotion? 536 return Context.getArrayDecayedType(T); 537 else if (T->isFunctionType()) 538 // FIXME: Keep the type prior to promotion? 539 return Context.getPointerType(T); 540 541 Diag(Loc, diag::err_template_nontype_parm_bad_type) 542 << T; 543 544 return QualType(); 545} 546 547/// ActOnNonTypeTemplateParameter - Called when a C++ non-type 548/// template parameter (e.g., "int Size" in "template<int Size> 549/// class Array") has been parsed. S is the current scope and D is 550/// the parsed declarator. 551Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 552 unsigned Depth, 553 unsigned Position) { 554 TypeSourceInfo *TInfo = 0; 555 QualType T = GetTypeForDeclarator(D, S, &TInfo); 556 557 assert(S->isTemplateParamScope() && 558 "Non-type template parameter not in template parameter scope!"); 559 bool Invalid = false; 560 561 IdentifierInfo *ParamName = D.getIdentifier(); 562 if (ParamName) { 563 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); 564 if (PrevDecl && PrevDecl->isTemplateParameter()) 565 Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 566 PrevDecl); 567 } 568 569 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 570 if (T.isNull()) { 571 T = Context.IntTy; // Recover with an 'int' type. 572 Invalid = true; 573 } 574 575 NonTypeTemplateParmDecl *Param 576 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 577 D.getIdentifierLoc(), 578 Depth, Position, ParamName, T, TInfo); 579 if (Invalid) 580 Param->setInvalidDecl(); 581 582 if (D.getIdentifier()) { 583 // Add the template parameter into the current scope. 584 S->AddDecl(DeclPtrTy::make(Param)); 585 IdResolver.AddDecl(Param); 586 } 587 return DeclPtrTy::make(Param); 588} 589 590/// \brief Adds a default argument to the given non-type template 591/// parameter. 592void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, 593 SourceLocation EqualLoc, 594 ExprArg DefaultE) { 595 NonTypeTemplateParmDecl *TemplateParm 596 = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 597 Expr *Default = static_cast<Expr *>(DefaultE.get()); 598 599 // C++ [temp.param]p14: 600 // A template-parameter shall not be used in its own default argument. 601 // FIXME: Implement this check! Needs a recursive walk over the types. 602 603 // Check the well-formedness of the default template argument. 604 TemplateArgument Converted; 605 if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, 606 Converted)) { 607 TemplateParm->setInvalidDecl(); 608 return; 609 } 610 611 TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); 612} 613 614 615/// ActOnTemplateTemplateParameter - Called when a C++ template template 616/// parameter (e.g. T in template <template <typename> class T> class array) 617/// has been parsed. S is the current scope. 618Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, 619 SourceLocation TmpLoc, 620 TemplateParamsTy *Params, 621 IdentifierInfo *Name, 622 SourceLocation NameLoc, 623 unsigned Depth, 624 unsigned Position) { 625 assert(S->isTemplateParamScope() && 626 "Template template parameter not in template parameter scope!"); 627 628 // Construct the parameter object. 629 TemplateTemplateParmDecl *Param = 630 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 631 TmpLoc, Depth, Position, Name, 632 (TemplateParameterList*)Params); 633 634 // Make sure the parameter is valid. 635 // FIXME: Decl object is not currently invalidated anywhere so this doesn't 636 // do anything yet. However, if the template parameter list or (eventual) 637 // default value is ever invalidated, that will propagate here. 638 bool Invalid = false; 639 if (Invalid) { 640 Param->setInvalidDecl(); 641 } 642 643 // If the tt-param has a name, then link the identifier into the scope 644 // and lookup mechanisms. 645 if (Name) { 646 S->AddDecl(DeclPtrTy::make(Param)); 647 IdResolver.AddDecl(Param); 648 } 649 650 return DeclPtrTy::make(Param); 651} 652 653/// \brief Adds a default argument to the given template template 654/// parameter. 655void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, 656 SourceLocation EqualLoc, 657 const ParsedTemplateArgument &Default) { 658 TemplateTemplateParmDecl *TemplateParm 659 = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); 660 661 // C++ [temp.param]p14: 662 // A template-parameter shall not be used in its own default argument. 663 // FIXME: Implement this check! Needs a recursive walk over the types. 664 665 // Check only that we have a template template argument. We don't want to 666 // try to check well-formedness now, because our template template parameter 667 // might have dependent types in its template parameters, which we wouldn't 668 // be able to match now. 669 // 670 // If none of the template template parameter's template arguments mention 671 // other template parameters, we could actually perform more checking here. 672 // However, it isn't worth doing. 673 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 674 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 675 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 676 << DefaultArg.getSourceRange(); 677 return; 678 } 679 680 TemplateParm->setDefaultArgument(DefaultArg); 681} 682 683/// ActOnTemplateParameterList - Builds a TemplateParameterList that 684/// contains the template parameters in Params/NumParams. 685Sema::TemplateParamsTy * 686Sema::ActOnTemplateParameterList(unsigned Depth, 687 SourceLocation ExportLoc, 688 SourceLocation TemplateLoc, 689 SourceLocation LAngleLoc, 690 DeclPtrTy *Params, unsigned NumParams, 691 SourceLocation RAngleLoc) { 692 if (ExportLoc.isValid()) 693 Diag(ExportLoc, diag::warn_template_export_unsupported); 694 695 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 696 (NamedDecl**)Params, NumParams, 697 RAngleLoc); 698} 699 700static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 701 if (SS.isSet()) 702 T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()), 703 SS.getRange()); 704} 705 706Sema::DeclResult 707Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 708 SourceLocation KWLoc, const CXXScopeSpec &SS, 709 IdentifierInfo *Name, SourceLocation NameLoc, 710 AttributeList *Attr, 711 TemplateParameterList *TemplateParams, 712 AccessSpecifier AS) { 713 assert(TemplateParams && TemplateParams->size() > 0 && 714 "No template parameters"); 715 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 716 bool Invalid = false; 717 718 // Check that we can declare a template here. 719 if (CheckTemplateDeclScope(S, TemplateParams)) 720 return true; 721 722 TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); 723 assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); 724 725 // There is no such thing as an unnamed class template. 726 if (!Name) { 727 Diag(KWLoc, diag::err_template_unnamed_class); 728 return true; 729 } 730 731 // Find any previous declaration with this name. 732 DeclContext *SemanticContext; 733 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 734 ForRedeclaration); 735 if (SS.isNotEmpty() && !SS.isInvalid()) { 736 if (RequireCompleteDeclContext(SS)) 737 return true; 738 739 SemanticContext = computeDeclContext(SS, true); 740 if (!SemanticContext) { 741 // FIXME: Produce a reasonable diagnostic here 742 return true; 743 } 744 745 LookupQualifiedName(Previous, SemanticContext); 746 } else { 747 SemanticContext = CurContext; 748 LookupName(Previous, S); 749 } 750 751 assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); 752 NamedDecl *PrevDecl = 0; 753 if (Previous.begin() != Previous.end()) 754 PrevDecl = *Previous.begin(); 755 756 // If there is a previous declaration with the same name, check 757 // whether this is a valid redeclaration. 758 ClassTemplateDecl *PrevClassTemplate 759 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 760 761 // We may have found the injected-class-name of a class template, 762 // class template partial specialization, or class template specialization. 763 // In these cases, grab the template that is being defined or specialized. 764 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 765 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 766 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 767 PrevClassTemplate 768 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 769 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 770 PrevClassTemplate 771 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 772 ->getSpecializedTemplate(); 773 } 774 } 775 776 if (TUK == TUK_Friend) { 777 // C++ [namespace.memdef]p3: 778 // [...] When looking for a prior declaration of a class or a function 779 // declared as a friend, and when the name of the friend class or 780 // function is neither a qualified name nor a template-id, scopes outside 781 // the innermost enclosing namespace scope are not considered. 782 DeclContext *OutermostContext = CurContext; 783 while (!OutermostContext->isFileContext()) 784 OutermostContext = OutermostContext->getLookupParent(); 785 786 if (PrevDecl && 787 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 788 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 789 SemanticContext = PrevDecl->getDeclContext(); 790 } else { 791 // Declarations in outer scopes don't matter. However, the outermost 792 // context we computed is the semantic context for our new 793 // declaration. 794 PrevDecl = PrevClassTemplate = 0; 795 SemanticContext = OutermostContext; 796 } 797 798 if (CurContext->isDependentContext()) { 799 // If this is a dependent context, we don't want to link the friend 800 // class template to the template in scope, because that would perform 801 // checking of the template parameter lists that can't be performed 802 // until the outer context is instantiated. 803 PrevDecl = PrevClassTemplate = 0; 804 } 805 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 806 PrevDecl = PrevClassTemplate = 0; 807 808 if (PrevClassTemplate) { 809 // Ensure that the template parameter lists are compatible. 810 if (!TemplateParameterListsAreEqual(TemplateParams, 811 PrevClassTemplate->getTemplateParameters(), 812 /*Complain=*/true, 813 TPL_TemplateMatch)) 814 return true; 815 816 // C++ [temp.class]p4: 817 // In a redeclaration, partial specialization, explicit 818 // specialization or explicit instantiation of a class template, 819 // the class-key shall agree in kind with the original class 820 // template declaration (7.1.5.3). 821 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 822 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { 823 Diag(KWLoc, diag::err_use_with_wrong_tag) 824 << Name 825 << CodeModificationHint::CreateReplacement(KWLoc, 826 PrevRecordDecl->getKindName()); 827 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 828 Kind = PrevRecordDecl->getTagKind(); 829 } 830 831 // Check for redefinition of this class template. 832 if (TUK == TUK_Definition) { 833 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 834 Diag(NameLoc, diag::err_redefinition) << Name; 835 Diag(Def->getLocation(), diag::note_previous_definition); 836 // FIXME: Would it make sense to try to "forget" the previous 837 // definition, as part of error recovery? 838 return true; 839 } 840 } 841 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 842 // Maybe we will complain about the shadowed template parameter. 843 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 844 // Just pretend that we didn't see the previous declaration. 845 PrevDecl = 0; 846 } else if (PrevDecl) { 847 // C++ [temp]p5: 848 // A class template shall not have the same name as any other 849 // template, class, function, object, enumeration, enumerator, 850 // namespace, or type in the same scope (3.3), except as specified 851 // in (14.5.4). 852 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 853 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 854 return true; 855 } 856 857 // Check the template parameter list of this declaration, possibly 858 // merging in the template parameter list from the previous class 859 // template declaration. 860 if (CheckTemplateParameterList(TemplateParams, 861 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 862 TPC_ClassTemplate)) 863 Invalid = true; 864 865 // FIXME: If we had a scope specifier, we better have a previous template 866 // declaration! 867 868 CXXRecordDecl *NewClass = 869 CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, 870 PrevClassTemplate? 871 PrevClassTemplate->getTemplatedDecl() : 0, 872 /*DelayTypeCreation=*/true); 873 SetNestedNameSpecifier(NewClass, SS); 874 875 ClassTemplateDecl *NewTemplate 876 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 877 DeclarationName(Name), TemplateParams, 878 NewClass, PrevClassTemplate); 879 NewClass->setDescribedClassTemplate(NewTemplate); 880 881 // Build the type for the class template declaration now. 882 QualType T = NewTemplate->getInjectedClassNameSpecialization(Context); 883 T = Context.getInjectedClassNameType(NewClass, T); 884 assert(T->isDependentType() && "Class template type is not dependent?"); 885 (void)T; 886 887 // If we are providing an explicit specialization of a member that is a 888 // class template, make a note of that. 889 if (PrevClassTemplate && 890 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 891 PrevClassTemplate->setMemberSpecialization(); 892 893 // Set the access specifier. 894 if (!Invalid && TUK != TUK_Friend) 895 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 896 897 // Set the lexical context of these templates 898 NewClass->setLexicalDeclContext(CurContext); 899 NewTemplate->setLexicalDeclContext(CurContext); 900 901 if (TUK == TUK_Definition) 902 NewClass->startDefinition(); 903 904 if (Attr) 905 ProcessDeclAttributeList(S, NewClass, Attr); 906 907 if (TUK != TUK_Friend) 908 PushOnScopeChains(NewTemplate, S); 909 else { 910 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 911 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 912 NewClass->setAccess(PrevClassTemplate->getAccess()); 913 } 914 915 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 916 PrevClassTemplate != NULL); 917 918 // Friend templates are visible in fairly strange ways. 919 if (!CurContext->isDependentContext()) { 920 DeclContext *DC = SemanticContext->getLookupContext(); 921 DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); 922 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 923 PushOnScopeChains(NewTemplate, EnclosingScope, 924 /* AddToContext = */ false); 925 } 926 927 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 928 NewClass->getLocation(), 929 NewTemplate, 930 /*FIXME:*/NewClass->getLocation()); 931 Friend->setAccess(AS_public); 932 CurContext->addDecl(Friend); 933 } 934 935 if (Invalid) { 936 NewTemplate->setInvalidDecl(); 937 NewClass->setInvalidDecl(); 938 } 939 return DeclPtrTy::make(NewTemplate); 940} 941 942/// \brief Diagnose the presence of a default template argument on a 943/// template parameter, which is ill-formed in certain contexts. 944/// 945/// \returns true if the default template argument should be dropped. 946static bool DiagnoseDefaultTemplateArgument(Sema &S, 947 Sema::TemplateParamListContext TPC, 948 SourceLocation ParamLoc, 949 SourceRange DefArgRange) { 950 switch (TPC) { 951 case Sema::TPC_ClassTemplate: 952 return false; 953 954 case Sema::TPC_FunctionTemplate: 955 // C++ [temp.param]p9: 956 // A default template-argument shall not be specified in a 957 // function template declaration or a function template 958 // definition [...] 959 // (This sentence is not in C++0x, per DR226). 960 if (!S.getLangOptions().CPlusPlus0x) 961 S.Diag(ParamLoc, 962 diag::err_template_parameter_default_in_function_template) 963 << DefArgRange; 964 return false; 965 966 case Sema::TPC_ClassTemplateMember: 967 // C++0x [temp.param]p9: 968 // A default template-argument shall not be specified in the 969 // template-parameter-lists of the definition of a member of a 970 // class template that appears outside of the member's class. 971 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 972 << DefArgRange; 973 return true; 974 975 case Sema::TPC_FriendFunctionTemplate: 976 // C++ [temp.param]p9: 977 // A default template-argument shall not be specified in a 978 // friend template declaration. 979 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 980 << DefArgRange; 981 return true; 982 983 // FIXME: C++0x [temp.param]p9 allows default template-arguments 984 // for friend function templates if there is only a single 985 // declaration (and it is a definition). Strange! 986 } 987 988 return false; 989} 990 991/// \brief Checks the validity of a template parameter list, possibly 992/// considering the template parameter list from a previous 993/// declaration. 994/// 995/// If an "old" template parameter list is provided, it must be 996/// equivalent (per TemplateParameterListsAreEqual) to the "new" 997/// template parameter list. 998/// 999/// \param NewParams Template parameter list for a new template 1000/// declaration. This template parameter list will be updated with any 1001/// default arguments that are carried through from the previous 1002/// template parameter list. 1003/// 1004/// \param OldParams If provided, template parameter list from a 1005/// previous declaration of the same template. Default template 1006/// arguments will be merged from the old template parameter list to 1007/// the new template parameter list. 1008/// 1009/// \param TPC Describes the context in which we are checking the given 1010/// template parameter list. 1011/// 1012/// \returns true if an error occurred, false otherwise. 1013bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1014 TemplateParameterList *OldParams, 1015 TemplateParamListContext TPC) { 1016 bool Invalid = false; 1017 1018 // C++ [temp.param]p10: 1019 // The set of default template-arguments available for use with a 1020 // template declaration or definition is obtained by merging the 1021 // default arguments from the definition (if in scope) and all 1022 // declarations in scope in the same way default function 1023 // arguments are (8.3.6). 1024 bool SawDefaultArgument = false; 1025 SourceLocation PreviousDefaultArgLoc; 1026 1027 bool SawParameterPack = false; 1028 SourceLocation ParameterPackLoc; 1029 1030 // Dummy initialization to avoid warnings. 1031 TemplateParameterList::iterator OldParam = NewParams->end(); 1032 if (OldParams) 1033 OldParam = OldParams->begin(); 1034 1035 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1036 NewParamEnd = NewParams->end(); 1037 NewParam != NewParamEnd; ++NewParam) { 1038 // Variables used to diagnose redundant default arguments 1039 bool RedundantDefaultArg = false; 1040 SourceLocation OldDefaultLoc; 1041 SourceLocation NewDefaultLoc; 1042 1043 // Variables used to diagnose missing default arguments 1044 bool MissingDefaultArg = false; 1045 1046 // C++0x [temp.param]p11: 1047 // If a template parameter of a class template is a template parameter pack, 1048 // it must be the last template parameter. 1049 if (SawParameterPack) { 1050 Diag(ParameterPackLoc, 1051 diag::err_template_param_pack_must_be_last_template_parameter); 1052 Invalid = true; 1053 } 1054 1055 if (TemplateTypeParmDecl *NewTypeParm 1056 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1057 // Check the presence of a default argument here. 1058 if (NewTypeParm->hasDefaultArgument() && 1059 DiagnoseDefaultTemplateArgument(*this, TPC, 1060 NewTypeParm->getLocation(), 1061 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1062 .getFullSourceRange())) 1063 NewTypeParm->removeDefaultArgument(); 1064 1065 // Merge default arguments for template type parameters. 1066 TemplateTypeParmDecl *OldTypeParm 1067 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1068 1069 if (NewTypeParm->isParameterPack()) { 1070 assert(!NewTypeParm->hasDefaultArgument() && 1071 "Parameter packs can't have a default argument!"); 1072 SawParameterPack = true; 1073 ParameterPackLoc = NewTypeParm->getLocation(); 1074 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1075 NewTypeParm->hasDefaultArgument()) { 1076 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1077 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1078 SawDefaultArgument = true; 1079 RedundantDefaultArg = true; 1080 PreviousDefaultArgLoc = NewDefaultLoc; 1081 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1082 // Merge the default argument from the old declaration to the 1083 // new declaration. 1084 SawDefaultArgument = true; 1085 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1086 true); 1087 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1088 } else if (NewTypeParm->hasDefaultArgument()) { 1089 SawDefaultArgument = true; 1090 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1091 } else if (SawDefaultArgument) 1092 MissingDefaultArg = true; 1093 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1094 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1095 // Check the presence of a default argument here. 1096 if (NewNonTypeParm->hasDefaultArgument() && 1097 DiagnoseDefaultTemplateArgument(*this, TPC, 1098 NewNonTypeParm->getLocation(), 1099 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1100 NewNonTypeParm->getDefaultArgument()->Destroy(Context); 1101 NewNonTypeParm->setDefaultArgument(0); 1102 } 1103 1104 // Merge default arguments for non-type template parameters 1105 NonTypeTemplateParmDecl *OldNonTypeParm 1106 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1107 if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1108 NewNonTypeParm->hasDefaultArgument()) { 1109 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1110 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1111 SawDefaultArgument = true; 1112 RedundantDefaultArg = true; 1113 PreviousDefaultArgLoc = NewDefaultLoc; 1114 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1115 // Merge the default argument from the old declaration to the 1116 // new declaration. 1117 SawDefaultArgument = true; 1118 // FIXME: We need to create a new kind of "default argument" 1119 // expression that points to a previous template template 1120 // parameter. 1121 NewNonTypeParm->setDefaultArgument( 1122 OldNonTypeParm->getDefaultArgument()); 1123 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1124 } else if (NewNonTypeParm->hasDefaultArgument()) { 1125 SawDefaultArgument = true; 1126 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1127 } else if (SawDefaultArgument) 1128 MissingDefaultArg = true; 1129 } else { 1130 // Check the presence of a default argument here. 1131 TemplateTemplateParmDecl *NewTemplateParm 1132 = cast<TemplateTemplateParmDecl>(*NewParam); 1133 if (NewTemplateParm->hasDefaultArgument() && 1134 DiagnoseDefaultTemplateArgument(*this, TPC, 1135 NewTemplateParm->getLocation(), 1136 NewTemplateParm->getDefaultArgument().getSourceRange())) 1137 NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); 1138 1139 // Merge default arguments for template template parameters 1140 TemplateTemplateParmDecl *OldTemplateParm 1141 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1142 if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1143 NewTemplateParm->hasDefaultArgument()) { 1144 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1145 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1146 SawDefaultArgument = true; 1147 RedundantDefaultArg = true; 1148 PreviousDefaultArgLoc = NewDefaultLoc; 1149 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1150 // Merge the default argument from the old declaration to the 1151 // new declaration. 1152 SawDefaultArgument = true; 1153 // FIXME: We need to create a new kind of "default argument" expression 1154 // that points to a previous template template parameter. 1155 NewTemplateParm->setDefaultArgument( 1156 OldTemplateParm->getDefaultArgument()); 1157 PreviousDefaultArgLoc 1158 = OldTemplateParm->getDefaultArgument().getLocation(); 1159 } else if (NewTemplateParm->hasDefaultArgument()) { 1160 SawDefaultArgument = true; 1161 PreviousDefaultArgLoc 1162 = NewTemplateParm->getDefaultArgument().getLocation(); 1163 } else if (SawDefaultArgument) 1164 MissingDefaultArg = true; 1165 } 1166 1167 if (RedundantDefaultArg) { 1168 // C++ [temp.param]p12: 1169 // A template-parameter shall not be given default arguments 1170 // by two different declarations in the same scope. 1171 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1172 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1173 Invalid = true; 1174 } else if (MissingDefaultArg) { 1175 // C++ [temp.param]p11: 1176 // If a template-parameter has a default template-argument, 1177 // all subsequent template-parameters shall have a default 1178 // template-argument supplied. 1179 Diag((*NewParam)->getLocation(), 1180 diag::err_template_param_default_arg_missing); 1181 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1182 Invalid = true; 1183 } 1184 1185 // If we have an old template parameter list that we're merging 1186 // in, move on to the next parameter. 1187 if (OldParams) 1188 ++OldParam; 1189 } 1190 1191 return Invalid; 1192} 1193 1194/// \brief Match the given template parameter lists to the given scope 1195/// specifier, returning the template parameter list that applies to the 1196/// name. 1197/// 1198/// \param DeclStartLoc the start of the declaration that has a scope 1199/// specifier or a template parameter list. 1200/// 1201/// \param SS the scope specifier that will be matched to the given template 1202/// parameter lists. This scope specifier precedes a qualified name that is 1203/// being declared. 1204/// 1205/// \param ParamLists the template parameter lists, from the outermost to the 1206/// innermost template parameter lists. 1207/// 1208/// \param NumParamLists the number of template parameter lists in ParamLists. 1209/// 1210/// \param IsExplicitSpecialization will be set true if the entity being 1211/// declared is an explicit specialization, false otherwise. 1212/// 1213/// \returns the template parameter list, if any, that corresponds to the 1214/// name that is preceded by the scope specifier @p SS. This template 1215/// parameter list may be have template parameters (if we're declaring a 1216/// template) or may have no template parameters (if we're declaring a 1217/// template specialization), or may be NULL (if we were's declaring isn't 1218/// itself a template). 1219TemplateParameterList * 1220Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1221 const CXXScopeSpec &SS, 1222 TemplateParameterList **ParamLists, 1223 unsigned NumParamLists, 1224 bool &IsExplicitSpecialization) { 1225 IsExplicitSpecialization = false; 1226 1227 // Find the template-ids that occur within the nested-name-specifier. These 1228 // template-ids will match up with the template parameter lists. 1229 llvm::SmallVector<const TemplateSpecializationType *, 4> 1230 TemplateIdsInSpecifier; 1231 llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> 1232 ExplicitSpecializationsInSpecifier; 1233 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 1234 NNS; NNS = NNS->getPrefix()) { 1235 const Type *T = NNS->getAsType(); 1236 if (!T) break; 1237 1238 // C++0x [temp.expl.spec]p17: 1239 // A member or a member template may be nested within many 1240 // enclosing class templates. In an explicit specialization for 1241 // such a member, the member declaration shall be preceded by a 1242 // template<> for each enclosing class template that is 1243 // explicitly specialized. 1244 // 1245 // Following the existing practice of GNU and EDG, we allow a typedef of a 1246 // template specialization type. 1247 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 1248 T = TT->LookThroughTypedefs().getTypePtr(); 1249 1250 if (const TemplateSpecializationType *SpecType 1251 = dyn_cast<TemplateSpecializationType>(T)) { 1252 TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); 1253 if (!Template) 1254 continue; // FIXME: should this be an error? probably... 1255 1256 if (const RecordType *Record = SpecType->getAs<RecordType>()) { 1257 ClassTemplateSpecializationDecl *SpecDecl 1258 = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); 1259 // If the nested name specifier refers to an explicit specialization, 1260 // we don't need a template<> header. 1261 if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { 1262 ExplicitSpecializationsInSpecifier.push_back(SpecDecl); 1263 continue; 1264 } 1265 } 1266 1267 TemplateIdsInSpecifier.push_back(SpecType); 1268 } 1269 } 1270 1271 // Reverse the list of template-ids in the scope specifier, so that we can 1272 // more easily match up the template-ids and the template parameter lists. 1273 std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); 1274 1275 SourceLocation FirstTemplateLoc = DeclStartLoc; 1276 if (NumParamLists) 1277 FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); 1278 1279 // Match the template-ids found in the specifier to the template parameter 1280 // lists. 1281 unsigned Idx = 0; 1282 for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); 1283 Idx != NumTemplateIds; ++Idx) { 1284 QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); 1285 bool DependentTemplateId = TemplateId->isDependentType(); 1286 if (Idx >= NumParamLists) { 1287 // We have a template-id without a corresponding template parameter 1288 // list. 1289 if (DependentTemplateId) { 1290 // FIXME: the location information here isn't great. 1291 Diag(SS.getRange().getBegin(), 1292 diag::err_template_spec_needs_template_parameters) 1293 << TemplateId 1294 << SS.getRange(); 1295 } else { 1296 Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) 1297 << SS.getRange() 1298 << CodeModificationHint::CreateInsertion(FirstTemplateLoc, 1299 "template<> "); 1300 IsExplicitSpecialization = true; 1301 } 1302 return 0; 1303 } 1304 1305 // Check the template parameter list against its corresponding template-id. 1306 if (DependentTemplateId) { 1307 TemplateDecl *Template 1308 = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); 1309 1310 if (ClassTemplateDecl *ClassTemplate 1311 = dyn_cast<ClassTemplateDecl>(Template)) { 1312 TemplateParameterList *ExpectedTemplateParams = 0; 1313 // Is this template-id naming the primary template? 1314 if (Context.hasSameType(TemplateId, 1315 ClassTemplate->getInjectedClassNameSpecialization(Context))) 1316 ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); 1317 // ... or a partial specialization? 1318 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 1319 = ClassTemplate->findPartialSpecialization(TemplateId)) 1320 ExpectedTemplateParams = PartialSpec->getTemplateParameters(); 1321 1322 if (ExpectedTemplateParams) 1323 TemplateParameterListsAreEqual(ParamLists[Idx], 1324 ExpectedTemplateParams, 1325 true, TPL_TemplateMatch); 1326 } 1327 1328 CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); 1329 } else if (ParamLists[Idx]->size() > 0) 1330 Diag(ParamLists[Idx]->getTemplateLoc(), 1331 diag::err_template_param_list_matches_nontemplate) 1332 << TemplateId 1333 << ParamLists[Idx]->getSourceRange(); 1334 else 1335 IsExplicitSpecialization = true; 1336 } 1337 1338 // If there were at least as many template-ids as there were template 1339 // parameter lists, then there are no template parameter lists remaining for 1340 // the declaration itself. 1341 if (Idx >= NumParamLists) 1342 return 0; 1343 1344 // If there were too many template parameter lists, complain about that now. 1345 if (Idx != NumParamLists - 1) { 1346 while (Idx < NumParamLists - 1) { 1347 bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; 1348 Diag(ParamLists[Idx]->getTemplateLoc(), 1349 isExplicitSpecHeader? diag::warn_template_spec_extra_headers 1350 : diag::err_template_spec_extra_headers) 1351 << SourceRange(ParamLists[Idx]->getTemplateLoc(), 1352 ParamLists[Idx]->getRAngleLoc()); 1353 1354 if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { 1355 Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), 1356 diag::note_explicit_template_spec_does_not_need_header) 1357 << ExplicitSpecializationsInSpecifier.back(); 1358 ExplicitSpecializationsInSpecifier.pop_back(); 1359 } 1360 1361 ++Idx; 1362 } 1363 } 1364 1365 // Return the last template parameter list, which corresponds to the 1366 // entity being declared. 1367 return ParamLists[NumParamLists - 1]; 1368} 1369 1370QualType Sema::CheckTemplateIdType(TemplateName Name, 1371 SourceLocation TemplateLoc, 1372 const TemplateArgumentListInfo &TemplateArgs) { 1373 TemplateDecl *Template = Name.getAsTemplateDecl(); 1374 if (!Template) { 1375 // The template name does not resolve to a template, so we just 1376 // build a dependent template-id type. 1377 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1378 } 1379 1380 // Check that the template argument list is well-formed for this 1381 // template. 1382 TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), 1383 TemplateArgs.size()); 1384 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1385 false, Converted)) 1386 return QualType(); 1387 1388 assert((Converted.structuredSize() == 1389 Template->getTemplateParameters()->size()) && 1390 "Converted template argument list is too short!"); 1391 1392 QualType CanonType; 1393 1394 if (Name.isDependent() || 1395 TemplateSpecializationType::anyDependentTemplateArguments( 1396 TemplateArgs)) { 1397 // This class template specialization is a dependent 1398 // type. Therefore, its canonical type is another class template 1399 // specialization type that contains all of the converted 1400 // arguments in canonical form. This ensures that, e.g., A<T> and 1401 // A<T, T> have identical types when A is declared as: 1402 // 1403 // template<typename T, typename U = T> struct A; 1404 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 1405 CanonType = Context.getTemplateSpecializationType(CanonName, 1406 Converted.getFlatArguments(), 1407 Converted.flatSize()); 1408 1409 // FIXME: CanonType is not actually the canonical type, and unfortunately 1410 // it is a TemplateSpecializationType that we will never use again. 1411 // In the future, we need to teach getTemplateSpecializationType to only 1412 // build the canonical type and return that to us. 1413 CanonType = Context.getCanonicalType(CanonType); 1414 } else if (ClassTemplateDecl *ClassTemplate 1415 = dyn_cast<ClassTemplateDecl>(Template)) { 1416 // Find the class template specialization declaration that 1417 // corresponds to these arguments. 1418 llvm::FoldingSetNodeID ID; 1419 ClassTemplateSpecializationDecl::Profile(ID, 1420 Converted.getFlatArguments(), 1421 Converted.flatSize(), 1422 Context); 1423 void *InsertPos = 0; 1424 ClassTemplateSpecializationDecl *Decl 1425 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 1426 if (!Decl) { 1427 // This is the first time we have referenced this class template 1428 // specialization. Create the canonical declaration and add it to 1429 // the set of specializations. 1430 Decl = ClassTemplateSpecializationDecl::Create(Context, 1431 ClassTemplate->getDeclContext(), 1432 ClassTemplate->getLocation(), 1433 ClassTemplate, 1434 Converted, 0); 1435 ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); 1436 Decl->setLexicalDeclContext(CurContext); 1437 } 1438 1439 CanonType = Context.getTypeDeclType(Decl); 1440 assert(isa<RecordType>(CanonType) && 1441 "type of non-dependent specialization is not a RecordType"); 1442 } 1443 1444 // Build the fully-sugared type for this class template 1445 // specialization, which refers back to the class template 1446 // specialization we created or found. 1447 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 1448} 1449 1450Action::TypeResult 1451Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, 1452 SourceLocation LAngleLoc, 1453 ASTTemplateArgsPtr TemplateArgsIn, 1454 SourceLocation RAngleLoc) { 1455 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 1456 1457 // Translate the parser's template argument list in our AST format. 1458 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 1459 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 1460 1461 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 1462 TemplateArgsIn.release(); 1463 1464 if (Result.isNull()) 1465 return true; 1466 1467 TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); 1468 TemplateSpecializationTypeLoc TL 1469 = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); 1470 TL.setTemplateNameLoc(TemplateLoc); 1471 TL.setLAngleLoc(LAngleLoc); 1472 TL.setRAngleLoc(RAngleLoc); 1473 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 1474 TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 1475 1476 return CreateLocInfoType(Result, DI).getAsOpaquePtr(); 1477} 1478 1479Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, 1480 TagUseKind TUK, 1481 DeclSpec::TST TagSpec, 1482 SourceLocation TagLoc) { 1483 if (TypeResult.isInvalid()) 1484 return Sema::TypeResult(); 1485 1486 // FIXME: preserve source info, ideally without copying the DI. 1487 TypeSourceInfo *DI; 1488 QualType Type = GetTypeFromParser(TypeResult.get(), &DI); 1489 1490 // Verify the tag specifier. 1491 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 1492 1493 if (const RecordType *RT = Type->getAs<RecordType>()) { 1494 RecordDecl *D = RT->getDecl(); 1495 1496 IdentifierInfo *Id = D->getIdentifier(); 1497 assert(Id && "templated class must have an identifier"); 1498 1499 if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { 1500 Diag(TagLoc, diag::err_use_with_wrong_tag) 1501 << Type 1502 << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), 1503 D->getKindName()); 1504 Diag(D->getLocation(), diag::note_previous_use); 1505 } 1506 } 1507 1508 QualType ElabType = Context.getElaboratedType(Type, TagKind); 1509 1510 return ElabType.getAsOpaquePtr(); 1511} 1512 1513Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 1514 LookupResult &R, 1515 bool RequiresADL, 1516 const TemplateArgumentListInfo &TemplateArgs) { 1517 // FIXME: Can we do any checking at this point? I guess we could check the 1518 // template arguments that we have against the template name, if the template 1519 // name refers to a single template. That's not a terribly common case, 1520 // though. 1521 1522 // These should be filtered out by our callers. 1523 assert(!R.empty() && "empty lookup results when building templateid"); 1524 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 1525 1526 NestedNameSpecifier *Qualifier = 0; 1527 SourceRange QualifierRange; 1528 if (SS.isSet()) { 1529 Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); 1530 QualifierRange = SS.getRange(); 1531 } 1532 1533 // We don't want lookup warnings at this point. 1534 R.suppressDiagnostics(); 1535 1536 bool Dependent 1537 = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 1538 &TemplateArgs); 1539 UnresolvedLookupExpr *ULE 1540 = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), 1541 Qualifier, QualifierRange, 1542 R.getLookupName(), R.getNameLoc(), 1543 RequiresADL, TemplateArgs); 1544 ULE->addDecls(R.begin(), R.end()); 1545 1546 return Owned(ULE); 1547} 1548 1549// We actually only call this from template instantiation. 1550Sema::OwningExprResult 1551Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS, 1552 DeclarationName Name, 1553 SourceLocation NameLoc, 1554 const TemplateArgumentListInfo &TemplateArgs) { 1555 DeclContext *DC; 1556 if (!(DC = computeDeclContext(SS, false)) || 1557 DC->isDependentContext() || 1558 RequireCompleteDeclContext(SS)) 1559 return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); 1560 1561 LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); 1562 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); 1563 1564 if (R.isAmbiguous()) 1565 return ExprError(); 1566 1567 if (R.empty()) { 1568 Diag(NameLoc, diag::err_template_kw_refers_to_non_template) 1569 << Name << SS.getRange(); 1570 return ExprError(); 1571 } 1572 1573 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 1574 Diag(NameLoc, diag::err_template_kw_refers_to_class_template) 1575 << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); 1576 Diag(Temp->getLocation(), diag::note_referenced_class_template); 1577 return ExprError(); 1578 } 1579 1580 return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); 1581} 1582 1583/// \brief Form a dependent template name. 1584/// 1585/// This action forms a dependent template name given the template 1586/// name and its (presumably dependent) scope specifier. For 1587/// example, given "MetaFun::template apply", the scope specifier \p 1588/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 1589/// of the "template" keyword, and "apply" is the \p Name. 1590Sema::TemplateTy 1591Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, 1592 const CXXScopeSpec &SS, 1593 UnqualifiedId &Name, 1594 TypeTy *ObjectType, 1595 bool EnteringContext) { 1596 DeclContext *LookupCtx = 0; 1597 if (SS.isSet()) 1598 LookupCtx = computeDeclContext(SS, EnteringContext); 1599 if (!LookupCtx && ObjectType) 1600 LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); 1601 if (LookupCtx) { 1602 // C++0x [temp.names]p5: 1603 // If a name prefixed by the keyword template is not the name of 1604 // a template, the program is ill-formed. [Note: the keyword 1605 // template may not be applied to non-template members of class 1606 // templates. -end note ] [ Note: as is the case with the 1607 // typename prefix, the template prefix is allowed in cases 1608 // where it is not strictly necessary; i.e., when the 1609 // nested-name-specifier or the expression on the left of the -> 1610 // or . is not dependent on a template-parameter, or the use 1611 // does not appear in the scope of a template. -end note] 1612 // 1613 // Note: C++03 was more strict here, because it banned the use of 1614 // the "template" keyword prior to a template-name that was not a 1615 // dependent name. C++ DR468 relaxed this requirement (the 1616 // "template" keyword is now permitted). We follow the C++0x 1617 // rules, even in C++03 mode, retroactively applying the DR. 1618 TemplateTy Template; 1619 TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, 1620 EnteringContext, Template); 1621 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 1622 isa<CXXRecordDecl>(LookupCtx) && 1623 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { 1624 // This is a dependent template. 1625 } else if (TNK == TNK_Non_template) { 1626 Diag(Name.getSourceRange().getBegin(), 1627 diag::err_template_kw_refers_to_non_template) 1628 << GetNameFromUnqualifiedId(Name) 1629 << Name.getSourceRange(); 1630 return TemplateTy(); 1631 } else { 1632 // We found something; return it. 1633 return Template; 1634 } 1635 } 1636 1637 NestedNameSpecifier *Qualifier 1638 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 1639 1640 switch (Name.getKind()) { 1641 case UnqualifiedId::IK_Identifier: 1642 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1643 Name.Identifier)); 1644 1645 case UnqualifiedId::IK_OperatorFunctionId: 1646 return TemplateTy::make(Context.getDependentTemplateName(Qualifier, 1647 Name.OperatorFunctionId.Operator)); 1648 1649 case UnqualifiedId::IK_LiteralOperatorId: 1650 assert(false && "We don't support these; Parse shouldn't have allowed propagation"); 1651 1652 default: 1653 break; 1654 } 1655 1656 Diag(Name.getSourceRange().getBegin(), 1657 diag::err_template_kw_refers_to_non_template) 1658 << GetNameFromUnqualifiedId(Name) 1659 << Name.getSourceRange(); 1660 return TemplateTy(); 1661} 1662 1663bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 1664 const TemplateArgumentLoc &AL, 1665 TemplateArgumentListBuilder &Converted) { 1666 const TemplateArgument &Arg = AL.getArgument(); 1667 1668 // Check template type parameter. 1669 if (Arg.getKind() != TemplateArgument::Type) { 1670 // C++ [temp.arg.type]p1: 1671 // A template-argument for a template-parameter which is a 1672 // type shall be a type-id. 1673 1674 // We have a template type parameter but the template argument 1675 // is not a type. 1676 SourceRange SR = AL.getSourceRange(); 1677 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 1678 Diag(Param->getLocation(), diag::note_template_param_here); 1679 1680 return true; 1681 } 1682 1683 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 1684 return true; 1685 1686 // Add the converted template type argument. 1687 Converted.Append( 1688 TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); 1689 return false; 1690} 1691 1692/// \brief Substitute template arguments into the default template argument for 1693/// the given template type parameter. 1694/// 1695/// \param SemaRef the semantic analysis object for which we are performing 1696/// the substitution. 1697/// 1698/// \param Template the template that we are synthesizing template arguments 1699/// for. 1700/// 1701/// \param TemplateLoc the location of the template name that started the 1702/// template-id we are checking. 1703/// 1704/// \param RAngleLoc the location of the right angle bracket ('>') that 1705/// terminates the template-id. 1706/// 1707/// \param Param the template template parameter whose default we are 1708/// substituting into. 1709/// 1710/// \param Converted the list of template arguments provided for template 1711/// parameters that precede \p Param in the template parameter list. 1712/// 1713/// \returns the substituted template argument, or NULL if an error occurred. 1714static TypeSourceInfo * 1715SubstDefaultTemplateArgument(Sema &SemaRef, 1716 TemplateDecl *Template, 1717 SourceLocation TemplateLoc, 1718 SourceLocation RAngleLoc, 1719 TemplateTypeParmDecl *Param, 1720 TemplateArgumentListBuilder &Converted) { 1721 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 1722 1723 // If the argument type is dependent, instantiate it now based 1724 // on the previously-computed template arguments. 1725 if (ArgType->getType()->isDependentType()) { 1726 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1727 /*TakeArgs=*/false); 1728 1729 MultiLevelTemplateArgumentList AllTemplateArgs 1730 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1731 1732 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1733 Template, Converted.getFlatArguments(), 1734 Converted.flatSize(), 1735 SourceRange(TemplateLoc, RAngleLoc)); 1736 1737 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 1738 Param->getDefaultArgumentLoc(), 1739 Param->getDeclName()); 1740 } 1741 1742 return ArgType; 1743} 1744 1745/// \brief Substitute template arguments into the default template argument for 1746/// the given non-type template parameter. 1747/// 1748/// \param SemaRef the semantic analysis object for which we are performing 1749/// the substitution. 1750/// 1751/// \param Template the template that we are synthesizing template arguments 1752/// for. 1753/// 1754/// \param TemplateLoc the location of the template name that started the 1755/// template-id we are checking. 1756/// 1757/// \param RAngleLoc the location of the right angle bracket ('>') that 1758/// terminates the template-id. 1759/// 1760/// \param Param the non-type template parameter whose default we are 1761/// substituting into. 1762/// 1763/// \param Converted the list of template arguments provided for template 1764/// parameters that precede \p Param in the template parameter list. 1765/// 1766/// \returns the substituted template argument, or NULL if an error occurred. 1767static Sema::OwningExprResult 1768SubstDefaultTemplateArgument(Sema &SemaRef, 1769 TemplateDecl *Template, 1770 SourceLocation TemplateLoc, 1771 SourceLocation RAngleLoc, 1772 NonTypeTemplateParmDecl *Param, 1773 TemplateArgumentListBuilder &Converted) { 1774 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1775 /*TakeArgs=*/false); 1776 1777 MultiLevelTemplateArgumentList AllTemplateArgs 1778 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1779 1780 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1781 Template, Converted.getFlatArguments(), 1782 Converted.flatSize(), 1783 SourceRange(TemplateLoc, RAngleLoc)); 1784 1785 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 1786} 1787 1788/// \brief Substitute template arguments into the default template argument for 1789/// the given template template parameter. 1790/// 1791/// \param SemaRef the semantic analysis object for which we are performing 1792/// the substitution. 1793/// 1794/// \param Template the template that we are synthesizing template arguments 1795/// for. 1796/// 1797/// \param TemplateLoc the location of the template name that started the 1798/// template-id we are checking. 1799/// 1800/// \param RAngleLoc the location of the right angle bracket ('>') that 1801/// terminates the template-id. 1802/// 1803/// \param Param the template template parameter whose default we are 1804/// substituting into. 1805/// 1806/// \param Converted the list of template arguments provided for template 1807/// parameters that precede \p Param in the template parameter list. 1808/// 1809/// \returns the substituted template argument, or NULL if an error occurred. 1810static TemplateName 1811SubstDefaultTemplateArgument(Sema &SemaRef, 1812 TemplateDecl *Template, 1813 SourceLocation TemplateLoc, 1814 SourceLocation RAngleLoc, 1815 TemplateTemplateParmDecl *Param, 1816 TemplateArgumentListBuilder &Converted) { 1817 TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, 1818 /*TakeArgs=*/false); 1819 1820 MultiLevelTemplateArgumentList AllTemplateArgs 1821 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 1822 1823 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 1824 Template, Converted.getFlatArguments(), 1825 Converted.flatSize(), 1826 SourceRange(TemplateLoc, RAngleLoc)); 1827 1828 return SemaRef.SubstTemplateName( 1829 Param->getDefaultArgument().getArgument().getAsTemplate(), 1830 Param->getDefaultArgument().getTemplateNameLoc(), 1831 AllTemplateArgs); 1832} 1833 1834/// \brief If the given template parameter has a default template 1835/// argument, substitute into that default template argument and 1836/// return the corresponding template argument. 1837TemplateArgumentLoc 1838Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 1839 SourceLocation TemplateLoc, 1840 SourceLocation RAngleLoc, 1841 Decl *Param, 1842 TemplateArgumentListBuilder &Converted) { 1843 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 1844 if (!TypeParm->hasDefaultArgument()) 1845 return TemplateArgumentLoc(); 1846 1847 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 1848 TemplateLoc, 1849 RAngleLoc, 1850 TypeParm, 1851 Converted); 1852 if (DI) 1853 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 1854 1855 return TemplateArgumentLoc(); 1856 } 1857 1858 if (NonTypeTemplateParmDecl *NonTypeParm 1859 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1860 if (!NonTypeParm->hasDefaultArgument()) 1861 return TemplateArgumentLoc(); 1862 1863 OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 1864 TemplateLoc, 1865 RAngleLoc, 1866 NonTypeParm, 1867 Converted); 1868 if (Arg.isInvalid()) 1869 return TemplateArgumentLoc(); 1870 1871 Expr *ArgE = Arg.takeAs<Expr>(); 1872 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 1873 } 1874 1875 TemplateTemplateParmDecl *TempTempParm 1876 = cast<TemplateTemplateParmDecl>(Param); 1877 if (!TempTempParm->hasDefaultArgument()) 1878 return TemplateArgumentLoc(); 1879 1880 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 1881 TemplateLoc, 1882 RAngleLoc, 1883 TempTempParm, 1884 Converted); 1885 if (TName.isNull()) 1886 return TemplateArgumentLoc(); 1887 1888 return TemplateArgumentLoc(TemplateArgument(TName), 1889 TempTempParm->getDefaultArgument().getTemplateQualifierRange(), 1890 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 1891} 1892 1893/// \brief Check that the given template argument corresponds to the given 1894/// template parameter. 1895bool Sema::CheckTemplateArgument(NamedDecl *Param, 1896 const TemplateArgumentLoc &Arg, 1897 TemplateDecl *Template, 1898 SourceLocation TemplateLoc, 1899 SourceLocation RAngleLoc, 1900 TemplateArgumentListBuilder &Converted) { 1901 // Check template type parameters. 1902 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 1903 return CheckTemplateTypeArgument(TTP, Arg, Converted); 1904 1905 // Check non-type template parameters. 1906 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 1907 // Do substitution on the type of the non-type template parameter 1908 // with the template arguments we've seen thus far. 1909 QualType NTTPType = NTTP->getType(); 1910 if (NTTPType->isDependentType()) { 1911 // Do substitution on the type of the non-type template parameter. 1912 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 1913 NTTP, Converted.getFlatArguments(), 1914 Converted.flatSize(), 1915 SourceRange(TemplateLoc, RAngleLoc)); 1916 1917 TemplateArgumentList TemplateArgs(Context, Converted, 1918 /*TakeArgs=*/false); 1919 NTTPType = SubstType(NTTPType, 1920 MultiLevelTemplateArgumentList(TemplateArgs), 1921 NTTP->getLocation(), 1922 NTTP->getDeclName()); 1923 // If that worked, check the non-type template parameter type 1924 // for validity. 1925 if (!NTTPType.isNull()) 1926 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 1927 NTTP->getLocation()); 1928 if (NTTPType.isNull()) 1929 return true; 1930 } 1931 1932 switch (Arg.getArgument().getKind()) { 1933 case TemplateArgument::Null: 1934 assert(false && "Should never see a NULL template argument here"); 1935 return true; 1936 1937 case TemplateArgument::Expression: { 1938 Expr *E = Arg.getArgument().getAsExpr(); 1939 TemplateArgument Result; 1940 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1941 return true; 1942 1943 Converted.Append(Result); 1944 break; 1945 } 1946 1947 case TemplateArgument::Declaration: 1948 case TemplateArgument::Integral: 1949 // We've already checked this template argument, so just copy 1950 // it to the list of converted arguments. 1951 Converted.Append(Arg.getArgument()); 1952 break; 1953 1954 case TemplateArgument::Template: 1955 // We were given a template template argument. It may not be ill-formed; 1956 // see below. 1957 if (DependentTemplateName *DTN 1958 = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { 1959 // We have a template argument such as \c T::template X, which we 1960 // parsed as a template template argument. However, since we now 1961 // know that we need a non-type template argument, convert this 1962 // template name into an expression. 1963 Expr *E = DependentScopeDeclRefExpr::Create(Context, 1964 DTN->getQualifier(), 1965 Arg.getTemplateQualifierRange(), 1966 DTN->getIdentifier(), 1967 Arg.getTemplateNameLoc()); 1968 1969 TemplateArgument Result; 1970 if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) 1971 return true; 1972 1973 Converted.Append(Result); 1974 break; 1975 } 1976 1977 // We have a template argument that actually does refer to a class 1978 // template, template alias, or template template parameter, and 1979 // therefore cannot be a non-type template argument. 1980 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 1981 << Arg.getSourceRange(); 1982 1983 Diag(Param->getLocation(), diag::note_template_param_here); 1984 return true; 1985 1986 case TemplateArgument::Type: { 1987 // We have a non-type template parameter but the template 1988 // argument is a type. 1989 1990 // C++ [temp.arg]p2: 1991 // In a template-argument, an ambiguity between a type-id and 1992 // an expression is resolved to a type-id, regardless of the 1993 // form of the corresponding template-parameter. 1994 // 1995 // We warn specifically about this case, since it can be rather 1996 // confusing for users. 1997 QualType T = Arg.getArgument().getAsType(); 1998 SourceRange SR = Arg.getSourceRange(); 1999 if (T->isFunctionType()) 2000 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2001 else 2002 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2003 Diag(Param->getLocation(), diag::note_template_param_here); 2004 return true; 2005 } 2006 2007 case TemplateArgument::Pack: 2008 llvm_unreachable("Caller must expand template argument packs"); 2009 break; 2010 } 2011 2012 return false; 2013 } 2014 2015 2016 // Check template template parameters. 2017 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2018 2019 // Substitute into the template parameter list of the template 2020 // template parameter, since previously-supplied template arguments 2021 // may appear within the template template parameter. 2022 { 2023 // Set up a template instantiation context. 2024 LocalInstantiationScope Scope(*this); 2025 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2026 TempParm, Converted.getFlatArguments(), 2027 Converted.flatSize(), 2028 SourceRange(TemplateLoc, RAngleLoc)); 2029 2030 TemplateArgumentList TemplateArgs(Context, Converted, 2031 /*TakeArgs=*/false); 2032 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2033 SubstDecl(TempParm, CurContext, 2034 MultiLevelTemplateArgumentList(TemplateArgs))); 2035 if (!TempParm) 2036 return true; 2037 2038 // FIXME: TempParam is leaked. 2039 } 2040 2041 switch (Arg.getArgument().getKind()) { 2042 case TemplateArgument::Null: 2043 assert(false && "Should never see a NULL template argument here"); 2044 return true; 2045 2046 case TemplateArgument::Template: 2047 if (CheckTemplateArgument(TempParm, Arg)) 2048 return true; 2049 2050 Converted.Append(Arg.getArgument()); 2051 break; 2052 2053 case TemplateArgument::Expression: 2054 case TemplateArgument::Type: 2055 // We have a template template parameter but the template 2056 // argument does not refer to a template. 2057 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); 2058 return true; 2059 2060 case TemplateArgument::Declaration: 2061 llvm_unreachable( 2062 "Declaration argument with template template parameter"); 2063 break; 2064 case TemplateArgument::Integral: 2065 llvm_unreachable( 2066 "Integral argument with template template parameter"); 2067 break; 2068 2069 case TemplateArgument::Pack: 2070 llvm_unreachable("Caller must expand template argument packs"); 2071 break; 2072 } 2073 2074 return false; 2075} 2076 2077/// \brief Check that the given template argument list is well-formed 2078/// for specializing the given template. 2079bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 2080 SourceLocation TemplateLoc, 2081 const TemplateArgumentListInfo &TemplateArgs, 2082 bool PartialTemplateArgs, 2083 TemplateArgumentListBuilder &Converted) { 2084 TemplateParameterList *Params = Template->getTemplateParameters(); 2085 unsigned NumParams = Params->size(); 2086 unsigned NumArgs = TemplateArgs.size(); 2087 bool Invalid = false; 2088 2089 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 2090 2091 bool HasParameterPack = 2092 NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); 2093 2094 if ((NumArgs > NumParams && !HasParameterPack) || 2095 (NumArgs < Params->getMinRequiredArguments() && 2096 !PartialTemplateArgs)) { 2097 // FIXME: point at either the first arg beyond what we can handle, 2098 // or the '>', depending on whether we have too many or too few 2099 // arguments. 2100 SourceRange Range; 2101 if (NumArgs > NumParams) 2102 Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); 2103 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 2104 << (NumArgs > NumParams) 2105 << (isa<ClassTemplateDecl>(Template)? 0 : 2106 isa<FunctionTemplateDecl>(Template)? 1 : 2107 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 2108 << Template << Range; 2109 Diag(Template->getLocation(), diag::note_template_decl_here) 2110 << Params->getSourceRange(); 2111 Invalid = true; 2112 } 2113 2114 // C++ [temp.arg]p1: 2115 // [...] The type and form of each template-argument specified in 2116 // a template-id shall match the type and form specified for the 2117 // corresponding parameter declared by the template in its 2118 // template-parameter-list. 2119 unsigned ArgIdx = 0; 2120 for (TemplateParameterList::iterator Param = Params->begin(), 2121 ParamEnd = Params->end(); 2122 Param != ParamEnd; ++Param, ++ArgIdx) { 2123 if (ArgIdx > NumArgs && PartialTemplateArgs) 2124 break; 2125 2126 // If we have a template parameter pack, check every remaining template 2127 // argument against that template parameter pack. 2128 if ((*Param)->isTemplateParameterPack()) { 2129 Converted.BeginPack(); 2130 for (; ArgIdx < NumArgs; ++ArgIdx) { 2131 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2132 TemplateLoc, RAngleLoc, Converted)) { 2133 Invalid = true; 2134 break; 2135 } 2136 } 2137 Converted.EndPack(); 2138 continue; 2139 } 2140 2141 if (ArgIdx < NumArgs) { 2142 // Check the template argument we were given. 2143 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 2144 TemplateLoc, RAngleLoc, Converted)) 2145 return true; 2146 2147 continue; 2148 } 2149 2150 // We have a default template argument that we will use. 2151 TemplateArgumentLoc Arg; 2152 2153 // Retrieve the default template argument from the template 2154 // parameter. For each kind of template parameter, we substitute the 2155 // template arguments provided thus far and any "outer" template arguments 2156 // (when the template parameter was part of a nested template) into 2157 // the default argument. 2158 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 2159 if (!TTP->hasDefaultArgument()) { 2160 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2161 break; 2162 } 2163 2164 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 2165 Template, 2166 TemplateLoc, 2167 RAngleLoc, 2168 TTP, 2169 Converted); 2170 if (!ArgType) 2171 return true; 2172 2173 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 2174 ArgType); 2175 } else if (NonTypeTemplateParmDecl *NTTP 2176 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 2177 if (!NTTP->hasDefaultArgument()) { 2178 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2179 break; 2180 } 2181 2182 Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, 2183 TemplateLoc, 2184 RAngleLoc, 2185 NTTP, 2186 Converted); 2187 if (E.isInvalid()) 2188 return true; 2189 2190 Expr *Ex = E.takeAs<Expr>(); 2191 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 2192 } else { 2193 TemplateTemplateParmDecl *TempParm 2194 = cast<TemplateTemplateParmDecl>(*Param); 2195 2196 if (!TempParm->hasDefaultArgument()) { 2197 assert((Invalid || PartialTemplateArgs) && "Missing default argument"); 2198 break; 2199 } 2200 2201 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 2202 TemplateLoc, 2203 RAngleLoc, 2204 TempParm, 2205 Converted); 2206 if (Name.isNull()) 2207 return true; 2208 2209 Arg = TemplateArgumentLoc(TemplateArgument(Name), 2210 TempParm->getDefaultArgument().getTemplateQualifierRange(), 2211 TempParm->getDefaultArgument().getTemplateNameLoc()); 2212 } 2213 2214 // Introduce an instantiation record that describes where we are using 2215 // the default template argument. 2216 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, 2217 Converted.getFlatArguments(), 2218 Converted.flatSize(), 2219 SourceRange(TemplateLoc, RAngleLoc)); 2220 2221 // Check the default template argument. 2222 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 2223 RAngleLoc, Converted)) 2224 return true; 2225 } 2226 2227 return Invalid; 2228} 2229 2230/// \brief Check a template argument against its corresponding 2231/// template type parameter. 2232/// 2233/// This routine implements the semantics of C++ [temp.arg.type]. It 2234/// returns true if an error occurred, and false otherwise. 2235bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 2236 TypeSourceInfo *ArgInfo) { 2237 assert(ArgInfo && "invalid TypeSourceInfo"); 2238 QualType Arg = ArgInfo->getType(); 2239 2240 // C++ [temp.arg.type]p2: 2241 // A local type, a type with no linkage, an unnamed type or a type 2242 // compounded from any of these types shall not be used as a 2243 // template-argument for a template type-parameter. 2244 // 2245 // FIXME: Perform the recursive and no-linkage type checks. 2246 const TagType *Tag = 0; 2247 if (const EnumType *EnumT = Arg->getAs<EnumType>()) 2248 Tag = EnumT; 2249 else if (const RecordType *RecordT = Arg->getAs<RecordType>()) 2250 Tag = RecordT; 2251 if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { 2252 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2253 return Diag(SR.getBegin(), diag::err_template_arg_local_type) 2254 << QualType(Tag, 0) << SR; 2255 } else if (Tag && !Tag->getDecl()->getDeclName() && 2256 !Tag->getDecl()->getTypedefForAnonDecl()) { 2257 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2258 Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; 2259 Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); 2260 return true; 2261 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 2262 SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); 2263 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 2264 } 2265 2266 return false; 2267} 2268 2269/// \brief Checks whether the given template argument is the address 2270/// of an object or function according to C++ [temp.arg.nontype]p1. 2271bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, 2272 NamedDecl *&Entity) { 2273 bool Invalid = false; 2274 2275 // See through any implicit casts we added to fix the type. 2276 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2277 Arg = Cast->getSubExpr(); 2278 2279 // C++0x allows nullptr, and there's no further checking to be done for that. 2280 if (Arg->getType()->isNullPtrType()) 2281 return false; 2282 2283 // C++ [temp.arg.nontype]p1: 2284 // 2285 // A template-argument for a non-type, non-template 2286 // template-parameter shall be one of: [...] 2287 // 2288 // -- the address of an object or function with external 2289 // linkage, including function templates and function 2290 // template-ids but excluding non-static class members, 2291 // expressed as & id-expression where the & is optional if 2292 // the name refers to a function or array, or if the 2293 // corresponding template-parameter is a reference; or 2294 DeclRefExpr *DRE = 0; 2295 2296 // Ignore (and complain about) any excess parentheses. 2297 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2298 if (!Invalid) { 2299 Diag(Arg->getSourceRange().getBegin(), 2300 diag::err_template_arg_extra_parens) 2301 << Arg->getSourceRange(); 2302 Invalid = true; 2303 } 2304 2305 Arg = Parens->getSubExpr(); 2306 } 2307 2308 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2309 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 2310 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2311 } else 2312 DRE = dyn_cast<DeclRefExpr>(Arg); 2313 2314 if (!DRE) 2315 return Diag(Arg->getSourceRange().getBegin(), 2316 diag::err_template_arg_not_decl_ref) 2317 << Arg->getSourceRange(); 2318 2319 // Stop checking the precise nature of the argument if it is value dependent, 2320 // it should be checked when instantiated. 2321 if (Arg->isValueDependent()) 2322 return false; 2323 2324 if (!isa<ValueDecl>(DRE->getDecl())) 2325 return Diag(Arg->getSourceRange().getBegin(), 2326 diag::err_template_arg_not_object_or_func_form) 2327 << Arg->getSourceRange(); 2328 2329 // Cannot refer to non-static data members 2330 if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) 2331 return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) 2332 << Field << Arg->getSourceRange(); 2333 2334 // Cannot refer to non-static member functions 2335 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) 2336 if (!Method->isStatic()) 2337 return Diag(Arg->getSourceRange().getBegin(), 2338 diag::err_template_arg_method) 2339 << Method << Arg->getSourceRange(); 2340 2341 // Functions must have external linkage. 2342 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { 2343 if (!isExternalLinkage(Func->getLinkage())) { 2344 Diag(Arg->getSourceRange().getBegin(), 2345 diag::err_template_arg_function_not_extern) 2346 << Func << Arg->getSourceRange(); 2347 Diag(Func->getLocation(), diag::note_template_arg_internal_object) 2348 << true; 2349 return true; 2350 } 2351 2352 // Okay: we've named a function with external linkage. 2353 Entity = Func; 2354 return Invalid; 2355 } 2356 2357 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 2358 if (!isExternalLinkage(Var->getLinkage())) { 2359 Diag(Arg->getSourceRange().getBegin(), 2360 diag::err_template_arg_object_not_extern) 2361 << Var << Arg->getSourceRange(); 2362 Diag(Var->getLocation(), diag::note_template_arg_internal_object) 2363 << true; 2364 return true; 2365 } 2366 2367 // Okay: we've named an object with external linkage 2368 Entity = Var; 2369 return Invalid; 2370 } 2371 2372 // We found something else, but we don't know specifically what it is. 2373 Diag(Arg->getSourceRange().getBegin(), 2374 diag::err_template_arg_not_object_or_func) 2375 << Arg->getSourceRange(); 2376 Diag(DRE->getDecl()->getLocation(), 2377 diag::note_template_arg_refers_here); 2378 return true; 2379} 2380 2381/// \brief Checks whether the given template argument is a pointer to 2382/// member constant according to C++ [temp.arg.nontype]p1. 2383bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, 2384 TemplateArgument &Converted) { 2385 bool Invalid = false; 2386 2387 // See through any implicit casts we added to fix the type. 2388 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 2389 Arg = Cast->getSubExpr(); 2390 2391 // C++0x allows nullptr, and there's no further checking to be done for that. 2392 if (Arg->getType()->isNullPtrType()) 2393 return false; 2394 2395 // C++ [temp.arg.nontype]p1: 2396 // 2397 // A template-argument for a non-type, non-template 2398 // template-parameter shall be one of: [...] 2399 // 2400 // -- a pointer to member expressed as described in 5.3.1. 2401 DeclRefExpr *DRE = 0; 2402 2403 // Ignore (and complain about) any excess parentheses. 2404 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 2405 if (!Invalid) { 2406 Diag(Arg->getSourceRange().getBegin(), 2407 diag::err_template_arg_extra_parens) 2408 << Arg->getSourceRange(); 2409 Invalid = true; 2410 } 2411 2412 Arg = Parens->getSubExpr(); 2413 } 2414 2415 // A pointer-to-member constant written &Class::member. 2416 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 2417 if (UnOp->getOpcode() == UnaryOperator::AddrOf) { 2418 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 2419 if (DRE && !DRE->getQualifier()) 2420 DRE = 0; 2421 } 2422 } 2423 // A constant of pointer-to-member type. 2424 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 2425 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 2426 if (VD->getType()->isMemberPointerType()) { 2427 if (isa<NonTypeTemplateParmDecl>(VD) || 2428 (isa<VarDecl>(VD) && 2429 Context.getCanonicalType(VD->getType()).isConstQualified())) { 2430 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2431 Converted = TemplateArgument(Arg->Retain()); 2432 else 2433 Converted = TemplateArgument(VD->getCanonicalDecl()); 2434 return Invalid; 2435 } 2436 } 2437 } 2438 2439 DRE = 0; 2440 } 2441 2442 if (!DRE) 2443 return Diag(Arg->getSourceRange().getBegin(), 2444 diag::err_template_arg_not_pointer_to_member_form) 2445 << Arg->getSourceRange(); 2446 2447 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 2448 assert((isa<FieldDecl>(DRE->getDecl()) || 2449 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 2450 "Only non-static member pointers can make it here"); 2451 2452 // Okay: this is the address of a non-static member, and therefore 2453 // a member pointer constant. 2454 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2455 Converted = TemplateArgument(Arg->Retain()); 2456 else 2457 Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); 2458 return Invalid; 2459 } 2460 2461 // We found something else, but we don't know specifically what it is. 2462 Diag(Arg->getSourceRange().getBegin(), 2463 diag::err_template_arg_not_pointer_to_member_form) 2464 << Arg->getSourceRange(); 2465 Diag(DRE->getDecl()->getLocation(), 2466 diag::note_template_arg_refers_here); 2467 return true; 2468} 2469 2470/// \brief Check a template argument against its corresponding 2471/// non-type template parameter. 2472/// 2473/// This routine implements the semantics of C++ [temp.arg.nontype]. 2474/// It returns true if an error occurred, and false otherwise. \p 2475/// InstantiatedParamType is the type of the non-type template 2476/// parameter after it has been instantiated. 2477/// 2478/// If no error was detected, Converted receives the converted template argument. 2479bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 2480 QualType InstantiatedParamType, Expr *&Arg, 2481 TemplateArgument &Converted) { 2482 SourceLocation StartLoc = Arg->getSourceRange().getBegin(); 2483 2484 // If either the parameter has a dependent type or the argument is 2485 // type-dependent, there's nothing we can check now. 2486 // FIXME: Add template argument to Converted! 2487 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 2488 // FIXME: Produce a cloned, canonical expression? 2489 Converted = TemplateArgument(Arg); 2490 return false; 2491 } 2492 2493 // C++ [temp.arg.nontype]p5: 2494 // The following conversions are performed on each expression used 2495 // as a non-type template-argument. If a non-type 2496 // template-argument cannot be converted to the type of the 2497 // corresponding template-parameter then the program is 2498 // ill-formed. 2499 // 2500 // -- for a non-type template-parameter of integral or 2501 // enumeration type, integral promotions (4.5) and integral 2502 // conversions (4.7) are applied. 2503 QualType ParamType = InstantiatedParamType; 2504 QualType ArgType = Arg->getType(); 2505 if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { 2506 // C++ [temp.arg.nontype]p1: 2507 // A template-argument for a non-type, non-template 2508 // template-parameter shall be one of: 2509 // 2510 // -- an integral constant-expression of integral or enumeration 2511 // type; or 2512 // -- the name of a non-type template-parameter; or 2513 SourceLocation NonConstantLoc; 2514 llvm::APSInt Value; 2515 if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { 2516 Diag(Arg->getSourceRange().getBegin(), 2517 diag::err_template_arg_not_integral_or_enumeral) 2518 << ArgType << Arg->getSourceRange(); 2519 Diag(Param->getLocation(), diag::note_template_param_here); 2520 return true; 2521 } else if (!Arg->isValueDependent() && 2522 !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { 2523 Diag(NonConstantLoc, diag::err_template_arg_not_ice) 2524 << ArgType << Arg->getSourceRange(); 2525 return true; 2526 } 2527 2528 // FIXME: We need some way to more easily get the unqualified form 2529 // of the types without going all the way to the 2530 // canonical type. 2531 if (Context.getCanonicalType(ParamType).getCVRQualifiers()) 2532 ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); 2533 if (Context.getCanonicalType(ArgType).getCVRQualifiers()) 2534 ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); 2535 2536 // Try to convert the argument to the parameter's type. 2537 if (Context.hasSameType(ParamType, ArgType)) { 2538 // Okay: no conversion necessary 2539 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 2540 !ParamType->isEnumeralType()) { 2541 // This is an integral promotion or conversion. 2542 ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); 2543 } else { 2544 // We can't perform this conversion. 2545 Diag(Arg->getSourceRange().getBegin(), 2546 diag::err_template_arg_not_convertible) 2547 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2548 Diag(Param->getLocation(), diag::note_template_param_here); 2549 return true; 2550 } 2551 2552 QualType IntegerType = Context.getCanonicalType(ParamType); 2553 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 2554 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 2555 2556 if (!Arg->isValueDependent()) { 2557 // Check that an unsigned parameter does not receive a negative 2558 // value. 2559 if (IntegerType->isUnsignedIntegerType() 2560 && (Value.isSigned() && Value.isNegative())) { 2561 Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) 2562 << Value.toString(10) << Param->getType() 2563 << Arg->getSourceRange(); 2564 Diag(Param->getLocation(), diag::note_template_param_here); 2565 return true; 2566 } 2567 2568 // Check that we don't overflow the template parameter type. 2569 unsigned AllowedBits = Context.getTypeSize(IntegerType); 2570 unsigned RequiredBits; 2571 if (IntegerType->isUnsignedIntegerType()) 2572 RequiredBits = Value.getActiveBits(); 2573 else if (Value.isUnsigned()) 2574 RequiredBits = Value.getActiveBits() + 1; 2575 else 2576 RequiredBits = Value.getMinSignedBits(); 2577 if (RequiredBits > AllowedBits) { 2578 Diag(Arg->getSourceRange().getBegin(), 2579 diag::err_template_arg_too_large) 2580 << Value.toString(10) << Param->getType() 2581 << Arg->getSourceRange(); 2582 Diag(Param->getLocation(), diag::note_template_param_here); 2583 return true; 2584 } 2585 2586 if (Value.getBitWidth() != AllowedBits) 2587 Value.extOrTrunc(AllowedBits); 2588 Value.setIsSigned(IntegerType->isSignedIntegerType()); 2589 } 2590 2591 // Add the value of this argument to the list of converted 2592 // arguments. We use the bitwidth and signedness of the template 2593 // parameter. 2594 if (Arg->isValueDependent()) { 2595 // The argument is value-dependent. Create a new 2596 // TemplateArgument with the converted expression. 2597 Converted = TemplateArgument(Arg); 2598 return false; 2599 } 2600 2601 Converted = TemplateArgument(Value, 2602 ParamType->isEnumeralType() ? ParamType 2603 : IntegerType); 2604 return false; 2605 } 2606 2607 // Handle pointer-to-function, reference-to-function, and 2608 // pointer-to-member-function all in (roughly) the same way. 2609 if (// -- For a non-type template-parameter of type pointer to 2610 // function, only the function-to-pointer conversion (4.3) is 2611 // applied. If the template-argument represents a set of 2612 // overloaded functions (or a pointer to such), the matching 2613 // function is selected from the set (13.4). 2614 // In C++0x, any std::nullptr_t value can be converted. 2615 (ParamType->isPointerType() && 2616 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 2617 // -- For a non-type template-parameter of type reference to 2618 // function, no conversions apply. If the template-argument 2619 // represents a set of overloaded functions, the matching 2620 // function is selected from the set (13.4). 2621 (ParamType->isReferenceType() && 2622 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 2623 // -- For a non-type template-parameter of type pointer to 2624 // member function, no conversions apply. If the 2625 // template-argument represents a set of overloaded member 2626 // functions, the matching member function is selected from 2627 // the set (13.4). 2628 // Again, C++0x allows a std::nullptr_t value. 2629 (ParamType->isMemberPointerType() && 2630 ParamType->getAs<MemberPointerType>()->getPointeeType() 2631 ->isFunctionType())) { 2632 if (Context.hasSameUnqualifiedType(ArgType, 2633 ParamType.getNonReferenceType())) { 2634 // We don't have to do anything: the types already match. 2635 } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || 2636 ParamType->isMemberPointerType())) { 2637 ArgType = ParamType; 2638 if (ParamType->isMemberPointerType()) 2639 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2640 else 2641 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2642 } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2643 ArgType = Context.getPointerType(ArgType); 2644 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2645 } else if (FunctionDecl *Fn 2646 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { 2647 if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) 2648 return true; 2649 2650 Arg = FixOverloadedFunctionReference(Arg, Fn); 2651 ArgType = Arg->getType(); 2652 if (ArgType->isFunctionType() && ParamType->isPointerType()) { 2653 ArgType = Context.getPointerType(Arg->getType()); 2654 ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); 2655 } 2656 } 2657 2658 if (!Context.hasSameUnqualifiedType(ArgType, 2659 ParamType.getNonReferenceType())) { 2660 // We can't perform this conversion. 2661 Diag(Arg->getSourceRange().getBegin(), 2662 diag::err_template_arg_not_convertible) 2663 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2664 Diag(Param->getLocation(), diag::note_template_param_here); 2665 return true; 2666 } 2667 2668 if (ParamType->isMemberPointerType()) 2669 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2670 2671 NamedDecl *Entity = 0; 2672 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2673 return true; 2674 2675 if (Arg->isValueDependent()) { 2676 Converted = TemplateArgument(Arg); 2677 } else { 2678 if (Entity) 2679 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2680 Converted = TemplateArgument(Entity); 2681 } 2682 return false; 2683 } 2684 2685 if (ParamType->isPointerType()) { 2686 // -- for a non-type template-parameter of type pointer to 2687 // object, qualification conversions (4.4) and the 2688 // array-to-pointer conversion (4.2) are applied. 2689 // C++0x also allows a value of std::nullptr_t. 2690 assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && 2691 "Only object pointers allowed here"); 2692 2693 if (ArgType->isNullPtrType()) { 2694 ArgType = ParamType; 2695 ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); 2696 } else if (ArgType->isArrayType()) { 2697 ArgType = Context.getArrayDecayedType(ArgType); 2698 ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); 2699 } 2700 2701 if (IsQualificationConversion(ArgType, ParamType)) { 2702 ArgType = ParamType; 2703 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2704 } 2705 2706 if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { 2707 // We can't perform this conversion. 2708 Diag(Arg->getSourceRange().getBegin(), 2709 diag::err_template_arg_not_convertible) 2710 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2711 Diag(Param->getLocation(), diag::note_template_param_here); 2712 return true; 2713 } 2714 2715 NamedDecl *Entity = 0; 2716 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2717 return true; 2718 2719 if (Arg->isValueDependent()) { 2720 Converted = TemplateArgument(Arg); 2721 } else { 2722 if (Entity) 2723 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2724 Converted = TemplateArgument(Entity); 2725 } 2726 return false; 2727 } 2728 2729 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 2730 // -- For a non-type template-parameter of type reference to 2731 // object, no conversions apply. The type referred to by the 2732 // reference may be more cv-qualified than the (otherwise 2733 // identical) type of the template-argument. The 2734 // template-parameter is bound directly to the 2735 // template-argument, which must be an lvalue. 2736 assert(ParamRefType->getPointeeType()->isObjectType() && 2737 "Only object references allowed here"); 2738 2739 QualType ReferredType = ParamRefType->getPointeeType(); 2740 if (!Context.hasSameUnqualifiedType(ReferredType, ArgType)) { 2741 Diag(Arg->getSourceRange().getBegin(), 2742 diag::err_template_arg_no_ref_bind) 2743 << InstantiatedParamType << Arg->getType() 2744 << Arg->getSourceRange(); 2745 Diag(Param->getLocation(), diag::note_template_param_here); 2746 return true; 2747 } 2748 2749 unsigned ParamQuals 2750 = Context.getCanonicalType(ReferredType).getCVRQualifiers(); 2751 unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); 2752 2753 if ((ParamQuals | ArgQuals) != ParamQuals) { 2754 Diag(Arg->getSourceRange().getBegin(), 2755 diag::err_template_arg_ref_bind_ignores_quals) 2756 << InstantiatedParamType << Arg->getType() 2757 << Arg->getSourceRange(); 2758 Diag(Param->getLocation(), diag::note_template_param_here); 2759 return true; 2760 } 2761 2762 NamedDecl *Entity = 0; 2763 if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) 2764 return true; 2765 2766 if (Arg->isValueDependent()) { 2767 Converted = TemplateArgument(Arg); 2768 } else { 2769 Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); 2770 Converted = TemplateArgument(Entity); 2771 } 2772 return false; 2773 } 2774 2775 // -- For a non-type template-parameter of type pointer to data 2776 // member, qualification conversions (4.4) are applied. 2777 // C++0x allows std::nullptr_t values. 2778 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 2779 2780 if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { 2781 // Types match exactly: nothing more to do here. 2782 } else if (ArgType->isNullPtrType()) { 2783 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); 2784 } else if (IsQualificationConversion(ArgType, ParamType)) { 2785 ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); 2786 } else { 2787 // We can't perform this conversion. 2788 Diag(Arg->getSourceRange().getBegin(), 2789 diag::err_template_arg_not_convertible) 2790 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 2791 Diag(Param->getLocation(), diag::note_template_param_here); 2792 return true; 2793 } 2794 2795 return CheckTemplateArgumentPointerToMember(Arg, Converted); 2796} 2797 2798/// \brief Check a template argument against its corresponding 2799/// template template parameter. 2800/// 2801/// This routine implements the semantics of C++ [temp.arg.template]. 2802/// It returns true if an error occurred, and false otherwise. 2803bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 2804 const TemplateArgumentLoc &Arg) { 2805 TemplateName Name = Arg.getArgument().getAsTemplate(); 2806 TemplateDecl *Template = Name.getAsTemplateDecl(); 2807 if (!Template) { 2808 // Any dependent template name is fine. 2809 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 2810 return false; 2811 } 2812 2813 // C++ [temp.arg.template]p1: 2814 // A template-argument for a template template-parameter shall be 2815 // the name of a class template, expressed as id-expression. Only 2816 // primary class templates are considered when matching the 2817 // template template argument with the corresponding parameter; 2818 // partial specializations are not considered even if their 2819 // parameter lists match that of the template template parameter. 2820 // 2821 // Note that we also allow template template parameters here, which 2822 // will happen when we are dealing with, e.g., class template 2823 // partial specializations. 2824 if (!isa<ClassTemplateDecl>(Template) && 2825 !isa<TemplateTemplateParmDecl>(Template)) { 2826 assert(isa<FunctionTemplateDecl>(Template) && 2827 "Only function templates are possible here"); 2828 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 2829 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 2830 << Template; 2831 } 2832 2833 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 2834 Param->getTemplateParameters(), 2835 true, 2836 TPL_TemplateTemplateArgumentMatch, 2837 Arg.getLocation()); 2838} 2839 2840/// \brief Determine whether the given template parameter lists are 2841/// equivalent. 2842/// 2843/// \param New The new template parameter list, typically written in the 2844/// source code as part of a new template declaration. 2845/// 2846/// \param Old The old template parameter list, typically found via 2847/// name lookup of the template declared with this template parameter 2848/// list. 2849/// 2850/// \param Complain If true, this routine will produce a diagnostic if 2851/// the template parameter lists are not equivalent. 2852/// 2853/// \param Kind describes how we are to match the template parameter lists. 2854/// 2855/// \param TemplateArgLoc If this source location is valid, then we 2856/// are actually checking the template parameter list of a template 2857/// argument (New) against the template parameter list of its 2858/// corresponding template template parameter (Old). We produce 2859/// slightly different diagnostics in this scenario. 2860/// 2861/// \returns True if the template parameter lists are equal, false 2862/// otherwise. 2863bool 2864Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 2865 TemplateParameterList *Old, 2866 bool Complain, 2867 TemplateParameterListEqualKind Kind, 2868 SourceLocation TemplateArgLoc) { 2869 if (Old->size() != New->size()) { 2870 if (Complain) { 2871 unsigned NextDiag = diag::err_template_param_list_different_arity; 2872 if (TemplateArgLoc.isValid()) { 2873 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2874 NextDiag = diag::note_template_param_list_different_arity; 2875 } 2876 Diag(New->getTemplateLoc(), NextDiag) 2877 << (New->size() > Old->size()) 2878 << (Kind != TPL_TemplateMatch) 2879 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 2880 Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 2881 << (Kind != TPL_TemplateMatch) 2882 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 2883 } 2884 2885 return false; 2886 } 2887 2888 for (TemplateParameterList::iterator OldParm = Old->begin(), 2889 OldParmEnd = Old->end(), NewParm = New->begin(); 2890 OldParm != OldParmEnd; ++OldParm, ++NewParm) { 2891 if ((*OldParm)->getKind() != (*NewParm)->getKind()) { 2892 if (Complain) { 2893 unsigned NextDiag = diag::err_template_param_different_kind; 2894 if (TemplateArgLoc.isValid()) { 2895 Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 2896 NextDiag = diag::note_template_param_different_kind; 2897 } 2898 Diag((*NewParm)->getLocation(), NextDiag) 2899 << (Kind != TPL_TemplateMatch); 2900 Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) 2901 << (Kind != TPL_TemplateMatch); 2902 } 2903 return false; 2904 } 2905 2906 if (isa<TemplateTypeParmDecl>(*OldParm)) { 2907 // Okay; all template type parameters are equivalent (since we 2908 // know we're at the same index). 2909 } else if (NonTypeTemplateParmDecl *OldNTTP 2910 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { 2911 // The types of non-type template parameters must agree. 2912 NonTypeTemplateParmDecl *NewNTTP 2913 = cast<NonTypeTemplateParmDecl>(*NewParm); 2914 2915 // If we are matching a template template argument to a template 2916 // template parameter and one of the non-type template parameter types 2917 // is dependent, then we must wait until template instantiation time 2918 // to actually compare the arguments. 2919 if (Kind == TPL_TemplateTemplateArgumentMatch && 2920 (OldNTTP->getType()->isDependentType() || 2921 NewNTTP->getType()->isDependentType())) 2922 continue; 2923 2924 if (Context.getCanonicalType(OldNTTP->getType()) != 2925 Context.getCanonicalType(NewNTTP->getType())) { 2926 if (Complain) { 2927 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 2928 if (TemplateArgLoc.isValid()) { 2929 Diag(TemplateArgLoc, 2930 diag::err_template_arg_template_params_mismatch); 2931 NextDiag = diag::note_template_nontype_parm_different_type; 2932 } 2933 Diag(NewNTTP->getLocation(), NextDiag) 2934 << NewNTTP->getType() 2935 << (Kind != TPL_TemplateMatch); 2936 Diag(OldNTTP->getLocation(), 2937 diag::note_template_nontype_parm_prev_declaration) 2938 << OldNTTP->getType(); 2939 } 2940 return false; 2941 } 2942 } else { 2943 // The template parameter lists of template template 2944 // parameters must agree. 2945 assert(isa<TemplateTemplateParmDecl>(*OldParm) && 2946 "Only template template parameters handled here"); 2947 TemplateTemplateParmDecl *OldTTP 2948 = cast<TemplateTemplateParmDecl>(*OldParm); 2949 TemplateTemplateParmDecl *NewTTP 2950 = cast<TemplateTemplateParmDecl>(*NewParm); 2951 if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 2952 OldTTP->getTemplateParameters(), 2953 Complain, 2954 (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), 2955 TemplateArgLoc)) 2956 return false; 2957 } 2958 } 2959 2960 return true; 2961} 2962 2963/// \brief Check whether a template can be declared within this scope. 2964/// 2965/// If the template declaration is valid in this scope, returns 2966/// false. Otherwise, issues a diagnostic and returns true. 2967bool 2968Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 2969 // Find the nearest enclosing declaration scope. 2970 while ((S->getFlags() & Scope::DeclScope) == 0 || 2971 (S->getFlags() & Scope::TemplateParamScope) != 0) 2972 S = S->getParent(); 2973 2974 // C++ [temp]p2: 2975 // A template-declaration can appear only as a namespace scope or 2976 // class scope declaration. 2977 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 2978 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 2979 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 2980 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 2981 << TemplateParams->getSourceRange(); 2982 2983 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 2984 Ctx = Ctx->getParent(); 2985 2986 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 2987 return false; 2988 2989 return Diag(TemplateParams->getTemplateLoc(), 2990 diag::err_template_outside_namespace_or_class_scope) 2991 << TemplateParams->getSourceRange(); 2992} 2993 2994/// \brief Determine what kind of template specialization the given declaration 2995/// is. 2996static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { 2997 if (!D) 2998 return TSK_Undeclared; 2999 3000 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 3001 return Record->getTemplateSpecializationKind(); 3002 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 3003 return Function->getTemplateSpecializationKind(); 3004 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 3005 return Var->getTemplateSpecializationKind(); 3006 3007 return TSK_Undeclared; 3008} 3009 3010/// \brief Check whether a specialization is well-formed in the current 3011/// context. 3012/// 3013/// This routine determines whether a template specialization can be declared 3014/// in the current context (C++ [temp.expl.spec]p2). 3015/// 3016/// \param S the semantic analysis object for which this check is being 3017/// performed. 3018/// 3019/// \param Specialized the entity being specialized or instantiated, which 3020/// may be a kind of template (class template, function template, etc.) or 3021/// a member of a class template (member function, static data member, 3022/// member class). 3023/// 3024/// \param PrevDecl the previous declaration of this entity, if any. 3025/// 3026/// \param Loc the location of the explicit specialization or instantiation of 3027/// this entity. 3028/// 3029/// \param IsPartialSpecialization whether this is a partial specialization of 3030/// a class template. 3031/// 3032/// \returns true if there was an error that we cannot recover from, false 3033/// otherwise. 3034static bool CheckTemplateSpecializationScope(Sema &S, 3035 NamedDecl *Specialized, 3036 NamedDecl *PrevDecl, 3037 SourceLocation Loc, 3038 bool IsPartialSpecialization) { 3039 // Keep these "kind" numbers in sync with the %select statements in the 3040 // various diagnostics emitted by this routine. 3041 int EntityKind = 0; 3042 bool isTemplateSpecialization = false; 3043 if (isa<ClassTemplateDecl>(Specialized)) { 3044 EntityKind = IsPartialSpecialization? 1 : 0; 3045 isTemplateSpecialization = true; 3046 } else if (isa<FunctionTemplateDecl>(Specialized)) { 3047 EntityKind = 2; 3048 isTemplateSpecialization = true; 3049 } else if (isa<CXXMethodDecl>(Specialized)) 3050 EntityKind = 3; 3051 else if (isa<VarDecl>(Specialized)) 3052 EntityKind = 4; 3053 else if (isa<RecordDecl>(Specialized)) 3054 EntityKind = 5; 3055 else { 3056 S.Diag(Loc, diag::err_template_spec_unknown_kind); 3057 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3058 return true; 3059 } 3060 3061 // C++ [temp.expl.spec]p2: 3062 // An explicit specialization shall be declared in the namespace 3063 // of which the template is a member, or, for member templates, in 3064 // the namespace of which the enclosing class or enclosing class 3065 // template is a member. An explicit specialization of a member 3066 // function, member class or static data member of a class 3067 // template shall be declared in the namespace of which the class 3068 // template is a member. Such a declaration may also be a 3069 // definition. If the declaration is not a definition, the 3070 // specialization may be defined later in the name- space in which 3071 // the explicit specialization was declared, or in a namespace 3072 // that encloses the one in which the explicit specialization was 3073 // declared. 3074 if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { 3075 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 3076 << Specialized; 3077 return true; 3078 } 3079 3080 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 3081 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 3082 << Specialized; 3083 return true; 3084 } 3085 3086 // C++ [temp.class.spec]p6: 3087 // A class template partial specialization may be declared or redeclared 3088 // in any namespace scope in which its definition may be defined (14.5.1 3089 // and 14.5.2). 3090 bool ComplainedAboutScope = false; 3091 DeclContext *SpecializedContext 3092 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 3093 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 3094 if ((!PrevDecl || 3095 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 3096 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 3097 // There is no prior declaration of this entity, so this 3098 // specialization must be in the same context as the template 3099 // itself. 3100 if (!DC->Equals(SpecializedContext)) { 3101 if (isa<TranslationUnitDecl>(SpecializedContext)) 3102 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 3103 << EntityKind << Specialized; 3104 else if (isa<NamespaceDecl>(SpecializedContext)) 3105 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) 3106 << EntityKind << Specialized 3107 << cast<NamedDecl>(SpecializedContext); 3108 3109 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3110 ComplainedAboutScope = true; 3111 } 3112 } 3113 3114 // Make sure that this redeclaration (or definition) occurs in an enclosing 3115 // namespace. 3116 // Note that HandleDeclarator() performs this check for explicit 3117 // specializations of function templates, static data members, and member 3118 // functions, so we skip the check here for those kinds of entities. 3119 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 3120 // Should we refactor that check, so that it occurs later? 3121 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 3122 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 3123 isa<FunctionDecl>(Specialized))) { 3124 if (isa<TranslationUnitDecl>(SpecializedContext)) 3125 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 3126 << EntityKind << Specialized; 3127 else if (isa<NamespaceDecl>(SpecializedContext)) 3128 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 3129 << EntityKind << Specialized 3130 << cast<NamedDecl>(SpecializedContext); 3131 3132 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 3133 } 3134 3135 // FIXME: check for specialization-after-instantiation errors and such. 3136 3137 return false; 3138} 3139 3140/// \brief Check the non-type template arguments of a class template 3141/// partial specialization according to C++ [temp.class.spec]p9. 3142/// 3143/// \param TemplateParams the template parameters of the primary class 3144/// template. 3145/// 3146/// \param TemplateArg the template arguments of the class template 3147/// partial specialization. 3148/// 3149/// \param MirrorsPrimaryTemplate will be set true if the class 3150/// template partial specialization arguments are identical to the 3151/// implicit template arguments of the primary template. This is not 3152/// necessarily an error (C++0x), and it is left to the caller to diagnose 3153/// this condition when it is an error. 3154/// 3155/// \returns true if there was an error, false otherwise. 3156bool Sema::CheckClassTemplatePartialSpecializationArgs( 3157 TemplateParameterList *TemplateParams, 3158 const TemplateArgumentListBuilder &TemplateArgs, 3159 bool &MirrorsPrimaryTemplate) { 3160 // FIXME: the interface to this function will have to change to 3161 // accommodate variadic templates. 3162 MirrorsPrimaryTemplate = true; 3163 3164 const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); 3165 3166 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3167 // Determine whether the template argument list of the partial 3168 // specialization is identical to the implicit argument list of 3169 // the primary template. The caller may need to diagnostic this as 3170 // an error per C++ [temp.class.spec]p9b3. 3171 if (MirrorsPrimaryTemplate) { 3172 if (TemplateTypeParmDecl *TTP 3173 = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { 3174 if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != 3175 Context.getCanonicalType(ArgList[I].getAsType())) 3176 MirrorsPrimaryTemplate = false; 3177 } else if (TemplateTemplateParmDecl *TTP 3178 = dyn_cast<TemplateTemplateParmDecl>( 3179 TemplateParams->getParam(I))) { 3180 TemplateName Name = ArgList[I].getAsTemplate(); 3181 TemplateTemplateParmDecl *ArgDecl 3182 = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); 3183 if (!ArgDecl || 3184 ArgDecl->getIndex() != TTP->getIndex() || 3185 ArgDecl->getDepth() != TTP->getDepth()) 3186 MirrorsPrimaryTemplate = false; 3187 } 3188 } 3189 3190 NonTypeTemplateParmDecl *Param 3191 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 3192 if (!Param) { 3193 continue; 3194 } 3195 3196 Expr *ArgExpr = ArgList[I].getAsExpr(); 3197 if (!ArgExpr) { 3198 MirrorsPrimaryTemplate = false; 3199 continue; 3200 } 3201 3202 // C++ [temp.class.spec]p8: 3203 // A non-type argument is non-specialized if it is the name of a 3204 // non-type parameter. All other non-type arguments are 3205 // specialized. 3206 // 3207 // Below, we check the two conditions that only apply to 3208 // specialized non-type arguments, so skip any non-specialized 3209 // arguments. 3210 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 3211 if (NonTypeTemplateParmDecl *NTTP 3212 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { 3213 if (MirrorsPrimaryTemplate && 3214 (Param->getIndex() != NTTP->getIndex() || 3215 Param->getDepth() != NTTP->getDepth())) 3216 MirrorsPrimaryTemplate = false; 3217 3218 continue; 3219 } 3220 3221 // C++ [temp.class.spec]p9: 3222 // Within the argument list of a class template partial 3223 // specialization, the following restrictions apply: 3224 // -- A partially specialized non-type argument expression 3225 // shall not involve a template parameter of the partial 3226 // specialization except when the argument expression is a 3227 // simple identifier. 3228 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 3229 Diag(ArgExpr->getLocStart(), 3230 diag::err_dependent_non_type_arg_in_partial_spec) 3231 << ArgExpr->getSourceRange(); 3232 return true; 3233 } 3234 3235 // -- The type of a template parameter corresponding to a 3236 // specialized non-type argument shall not be dependent on a 3237 // parameter of the specialization. 3238 if (Param->getType()->isDependentType()) { 3239 Diag(ArgExpr->getLocStart(), 3240 diag::err_dependent_typed_non_type_arg_in_partial_spec) 3241 << Param->getType() 3242 << ArgExpr->getSourceRange(); 3243 Diag(Param->getLocation(), diag::note_template_param_here); 3244 return true; 3245 } 3246 3247 MirrorsPrimaryTemplate = false; 3248 } 3249 3250 return false; 3251} 3252 3253/// \brief Retrieve the previous declaration of the given declaration. 3254static NamedDecl *getPreviousDecl(NamedDecl *ND) { 3255 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 3256 return VD->getPreviousDeclaration(); 3257 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 3258 return FD->getPreviousDeclaration(); 3259 if (TagDecl *TD = dyn_cast<TagDecl>(ND)) 3260 return TD->getPreviousDeclaration(); 3261 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND)) 3262 return TD->getPreviousDeclaration(); 3263 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 3264 return FTD->getPreviousDeclaration(); 3265 if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND)) 3266 return CTD->getPreviousDeclaration(); 3267 return 0; 3268} 3269 3270Sema::DeclResult 3271Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 3272 TagUseKind TUK, 3273 SourceLocation KWLoc, 3274 const CXXScopeSpec &SS, 3275 TemplateTy TemplateD, 3276 SourceLocation TemplateNameLoc, 3277 SourceLocation LAngleLoc, 3278 ASTTemplateArgsPtr TemplateArgsIn, 3279 SourceLocation RAngleLoc, 3280 AttributeList *Attr, 3281 MultiTemplateParamsArg TemplateParameterLists) { 3282 assert(TUK != TUK_Reference && "References are not specializations"); 3283 3284 // Find the class template we're specializing 3285 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 3286 ClassTemplateDecl *ClassTemplate 3287 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 3288 3289 if (!ClassTemplate) { 3290 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 3291 << (Name.getAsTemplateDecl() && 3292 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 3293 return true; 3294 } 3295 3296 bool isExplicitSpecialization = false; 3297 bool isPartialSpecialization = false; 3298 3299 // Check the validity of the template headers that introduce this 3300 // template. 3301 // FIXME: We probably shouldn't complain about these headers for 3302 // friend declarations. 3303 TemplateParameterList *TemplateParams 3304 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, 3305 (TemplateParameterList**)TemplateParameterLists.get(), 3306 TemplateParameterLists.size(), 3307 isExplicitSpecialization); 3308 if (TemplateParams && TemplateParams->size() > 0) { 3309 isPartialSpecialization = true; 3310 3311 // C++ [temp.class.spec]p10: 3312 // The template parameter list of a specialization shall not 3313 // contain default template argument values. 3314 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 3315 Decl *Param = TemplateParams->getParam(I); 3316 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 3317 if (TTP->hasDefaultArgument()) { 3318 Diag(TTP->getDefaultArgumentLoc(), 3319 diag::err_default_arg_in_partial_spec); 3320 TTP->removeDefaultArgument(); 3321 } 3322 } else if (NonTypeTemplateParmDecl *NTTP 3323 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3324 if (Expr *DefArg = NTTP->getDefaultArgument()) { 3325 Diag(NTTP->getDefaultArgumentLoc(), 3326 diag::err_default_arg_in_partial_spec) 3327 << DefArg->getSourceRange(); 3328 NTTP->setDefaultArgument(0); 3329 DefArg->Destroy(Context); 3330 } 3331 } else { 3332 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 3333 if (TTP->hasDefaultArgument()) { 3334 Diag(TTP->getDefaultArgument().getLocation(), 3335 diag::err_default_arg_in_partial_spec) 3336 << TTP->getDefaultArgument().getSourceRange(); 3337 TTP->setDefaultArgument(TemplateArgumentLoc()); 3338 } 3339 } 3340 } 3341 } else if (TemplateParams) { 3342 if (TUK == TUK_Friend) 3343 Diag(KWLoc, diag::err_template_spec_friend) 3344 << CodeModificationHint::CreateRemoval( 3345 SourceRange(TemplateParams->getTemplateLoc(), 3346 TemplateParams->getRAngleLoc())) 3347 << SourceRange(LAngleLoc, RAngleLoc); 3348 else 3349 isExplicitSpecialization = true; 3350 } else if (TUK != TUK_Friend) { 3351 Diag(KWLoc, diag::err_template_spec_needs_header) 3352 << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); 3353 isExplicitSpecialization = true; 3354 } 3355 3356 // Check that the specialization uses the same tag kind as the 3357 // original template. 3358 TagDecl::TagKind Kind; 3359 switch (TagSpec) { 3360 default: assert(0 && "Unknown tag type!"); 3361 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 3362 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 3363 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 3364 } 3365 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 3366 Kind, KWLoc, 3367 *ClassTemplate->getIdentifier())) { 3368 Diag(KWLoc, diag::err_use_with_wrong_tag) 3369 << ClassTemplate 3370 << CodeModificationHint::CreateReplacement(KWLoc, 3371 ClassTemplate->getTemplatedDecl()->getKindName()); 3372 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 3373 diag::note_previous_use); 3374 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 3375 } 3376 3377 // Translate the parser's template argument list in our AST format. 3378 TemplateArgumentListInfo TemplateArgs; 3379 TemplateArgs.setLAngleLoc(LAngleLoc); 3380 TemplateArgs.setRAngleLoc(RAngleLoc); 3381 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3382 3383 // Check that the template argument list is well-formed for this 3384 // template. 3385 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 3386 TemplateArgs.size()); 3387 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 3388 TemplateArgs, false, Converted)) 3389 return true; 3390 3391 assert((Converted.structuredSize() == 3392 ClassTemplate->getTemplateParameters()->size()) && 3393 "Converted template argument list is too short!"); 3394 3395 // Find the class template (partial) specialization declaration that 3396 // corresponds to these arguments. 3397 llvm::FoldingSetNodeID ID; 3398 if (isPartialSpecialization) { 3399 bool MirrorsPrimaryTemplate; 3400 if (CheckClassTemplatePartialSpecializationArgs( 3401 ClassTemplate->getTemplateParameters(), 3402 Converted, MirrorsPrimaryTemplate)) 3403 return true; 3404 3405 if (MirrorsPrimaryTemplate) { 3406 // C++ [temp.class.spec]p9b3: 3407 // 3408 // -- The argument list of the specialization shall not be identical 3409 // to the implicit argument list of the primary template. 3410 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 3411 << (TUK == TUK_Definition) 3412 << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, 3413 RAngleLoc)); 3414 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 3415 ClassTemplate->getIdentifier(), 3416 TemplateNameLoc, 3417 Attr, 3418 TemplateParams, 3419 AS_none); 3420 } 3421 3422 // FIXME: Diagnose friend partial specializations 3423 3424 if (!Name.isDependent() && 3425 !TemplateSpecializationType::anyDependentTemplateArguments( 3426 TemplateArgs.getArgumentArray(), 3427 TemplateArgs.size())) { 3428 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 3429 << ClassTemplate->getDeclName(); 3430 isPartialSpecialization = false; 3431 } else { 3432 // FIXME: Template parameter list matters, too 3433 ClassTemplatePartialSpecializationDecl::Profile(ID, 3434 Converted.getFlatArguments(), 3435 Converted.flatSize(), 3436 Context); 3437 } 3438 } 3439 3440 if (!isPartialSpecialization) 3441 ClassTemplateSpecializationDecl::Profile(ID, 3442 Converted.getFlatArguments(), 3443 Converted.flatSize(), 3444 Context); 3445 void *InsertPos = 0; 3446 ClassTemplateSpecializationDecl *PrevDecl = 0; 3447 3448 if (isPartialSpecialization) 3449 PrevDecl 3450 = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, 3451 InsertPos); 3452 else 3453 PrevDecl 3454 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 3455 3456 ClassTemplateSpecializationDecl *Specialization = 0; 3457 3458 // Check whether we can declare a class template specialization in 3459 // the current scope. 3460 if (TUK != TUK_Friend && 3461 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 3462 TemplateNameLoc, 3463 isPartialSpecialization)) 3464 return true; 3465 3466 // The canonical type 3467 QualType CanonType; 3468 if (PrevDecl && 3469 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 3470 TUK == TUK_Friend)) { 3471 // Since the only prior class template specialization with these 3472 // arguments was referenced but not declared, or we're only 3473 // referencing this specialization as a friend, reuse that 3474 // declaration node as our own, updating its source location to 3475 // reflect our new declaration. 3476 Specialization = PrevDecl; 3477 Specialization->setLocation(TemplateNameLoc); 3478 PrevDecl = 0; 3479 CanonType = Context.getTypeDeclType(Specialization); 3480 } else if (isPartialSpecialization) { 3481 // Build the canonical type that describes the converted template 3482 // arguments of the class template partial specialization. 3483 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 3484 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 3485 Converted.getFlatArguments(), 3486 Converted.flatSize()); 3487 3488 // Create a new class template partial specialization declaration node. 3489 ClassTemplatePartialSpecializationDecl *PrevPartial 3490 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 3491 ClassTemplatePartialSpecializationDecl *Partial 3492 = ClassTemplatePartialSpecializationDecl::Create(Context, 3493 ClassTemplate->getDeclContext(), 3494 TemplateNameLoc, 3495 TemplateParams, 3496 ClassTemplate, 3497 Converted, 3498 TemplateArgs, 3499 CanonType, 3500 PrevPartial); 3501 SetNestedNameSpecifier(Partial, SS); 3502 3503 if (PrevPartial) { 3504 ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); 3505 ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); 3506 } else { 3507 ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); 3508 } 3509 Specialization = Partial; 3510 3511 // If we are providing an explicit specialization of a member class 3512 // template specialization, make a note of that. 3513 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 3514 PrevPartial->setMemberSpecialization(); 3515 3516 // Check that all of the template parameters of the class template 3517 // partial specialization are deducible from the template 3518 // arguments. If not, this class template partial specialization 3519 // will never be used. 3520 llvm::SmallVector<bool, 8> DeducibleParams; 3521 DeducibleParams.resize(TemplateParams->size()); 3522 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 3523 TemplateParams->getDepth(), 3524 DeducibleParams); 3525 unsigned NumNonDeducible = 0; 3526 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) 3527 if (!DeducibleParams[I]) 3528 ++NumNonDeducible; 3529 3530 if (NumNonDeducible) { 3531 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 3532 << (NumNonDeducible > 1) 3533 << SourceRange(TemplateNameLoc, RAngleLoc); 3534 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 3535 if (!DeducibleParams[I]) { 3536 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 3537 if (Param->getDeclName()) 3538 Diag(Param->getLocation(), 3539 diag::note_partial_spec_unused_parameter) 3540 << Param->getDeclName(); 3541 else 3542 Diag(Param->getLocation(), 3543 diag::note_partial_spec_unused_parameter) 3544 << std::string("<anonymous>"); 3545 } 3546 } 3547 } 3548 } else { 3549 // Create a new class template specialization declaration node for 3550 // this explicit specialization or friend declaration. 3551 Specialization 3552 = ClassTemplateSpecializationDecl::Create(Context, 3553 ClassTemplate->getDeclContext(), 3554 TemplateNameLoc, 3555 ClassTemplate, 3556 Converted, 3557 PrevDecl); 3558 SetNestedNameSpecifier(Specialization, SS); 3559 3560 if (PrevDecl) { 3561 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 3562 ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); 3563 } else { 3564 ClassTemplate->getSpecializations().InsertNode(Specialization, 3565 InsertPos); 3566 } 3567 3568 CanonType = Context.getTypeDeclType(Specialization); 3569 } 3570 3571 // C++ [temp.expl.spec]p6: 3572 // If a template, a member template or the member of a class template is 3573 // explicitly specialized then that specialization shall be declared 3574 // before the first use of that specialization that would cause an implicit 3575 // instantiation to take place, in every translation unit in which such a 3576 // use occurs; no diagnostic is required. 3577 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 3578 bool Okay = false; 3579 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3580 // Is there any previous explicit specialization declaration? 3581 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 3582 Okay = true; 3583 break; 3584 } 3585 } 3586 3587 if (!Okay) { 3588 SourceRange Range(TemplateNameLoc, RAngleLoc); 3589 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 3590 << Context.getTypeDeclType(Specialization) << Range; 3591 3592 Diag(PrevDecl->getPointOfInstantiation(), 3593 diag::note_instantiation_required_here) 3594 << (PrevDecl->getTemplateSpecializationKind() 3595 != TSK_ImplicitInstantiation); 3596 return true; 3597 } 3598 } 3599 3600 // If this is not a friend, note that this is an explicit specialization. 3601 if (TUK != TUK_Friend) 3602 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 3603 3604 // Check that this isn't a redefinition of this specialization. 3605 if (TUK == TUK_Definition) { 3606 if (RecordDecl *Def = Specialization->getDefinition()) { 3607 SourceRange Range(TemplateNameLoc, RAngleLoc); 3608 Diag(TemplateNameLoc, diag::err_redefinition) 3609 << Context.getTypeDeclType(Specialization) << Range; 3610 Diag(Def->getLocation(), diag::note_previous_definition); 3611 Specialization->setInvalidDecl(); 3612 return true; 3613 } 3614 } 3615 3616 // Build the fully-sugared type for this class template 3617 // specialization as the user wrote in the specialization 3618 // itself. This means that we'll pretty-print the type retrieved 3619 // from the specialization's declaration the way that the user 3620 // actually wrote the specialization, rather than formatting the 3621 // name based on the "canonical" representation used to store the 3622 // template arguments in the specialization. 3623 TypeSourceInfo *WrittenTy 3624 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 3625 TemplateArgs, CanonType); 3626 if (TUK != TUK_Friend) 3627 Specialization->setTypeAsWritten(WrittenTy); 3628 TemplateArgsIn.release(); 3629 3630 // C++ [temp.expl.spec]p9: 3631 // A template explicit specialization is in the scope of the 3632 // namespace in which the template was defined. 3633 // 3634 // We actually implement this paragraph where we set the semantic 3635 // context (in the creation of the ClassTemplateSpecializationDecl), 3636 // but we also maintain the lexical context where the actual 3637 // definition occurs. 3638 Specialization->setLexicalDeclContext(CurContext); 3639 3640 // We may be starting the definition of this specialization. 3641 if (TUK == TUK_Definition) 3642 Specialization->startDefinition(); 3643 3644 if (TUK == TUK_Friend) { 3645 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 3646 TemplateNameLoc, 3647 WrittenTy->getType().getTypePtr(), 3648 /*FIXME:*/KWLoc); 3649 Friend->setAccess(AS_public); 3650 CurContext->addDecl(Friend); 3651 } else { 3652 // Add the specialization into its lexical context, so that it can 3653 // be seen when iterating through the list of declarations in that 3654 // context. However, specializations are not found by name lookup. 3655 CurContext->addDecl(Specialization); 3656 } 3657 return DeclPtrTy::make(Specialization); 3658} 3659 3660Sema::DeclPtrTy 3661Sema::ActOnTemplateDeclarator(Scope *S, 3662 MultiTemplateParamsArg TemplateParameterLists, 3663 Declarator &D) { 3664 return HandleDeclarator(S, D, move(TemplateParameterLists), false); 3665} 3666 3667Sema::DeclPtrTy 3668Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 3669 MultiTemplateParamsArg TemplateParameterLists, 3670 Declarator &D) { 3671 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 3672 assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && 3673 "Not a function declarator!"); 3674 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; 3675 3676 if (FTI.hasPrototype) { 3677 // FIXME: Diagnose arguments without names in C. 3678 } 3679 3680 Scope *ParentScope = FnBodyScope->getParent(); 3681 3682 DeclPtrTy DP = HandleDeclarator(ParentScope, D, 3683 move(TemplateParameterLists), 3684 /*IsFunctionDefinition=*/true); 3685 if (FunctionTemplateDecl *FunctionTemplate 3686 = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) 3687 return ActOnStartOfFunctionDef(FnBodyScope, 3688 DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); 3689 if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) 3690 return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); 3691 return DeclPtrTy(); 3692} 3693 3694/// \brief Strips various properties off an implicit instantiation 3695/// that has just been explicitly specialized. 3696static void StripImplicitInstantiation(NamedDecl *D) { 3697 D->invalidateAttrs(); 3698 3699 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3700 FD->setInlineSpecified(false); 3701 } 3702} 3703 3704/// \brief Diagnose cases where we have an explicit template specialization 3705/// before/after an explicit template instantiation, producing diagnostics 3706/// for those cases where they are required and determining whether the 3707/// new specialization/instantiation will have any effect. 3708/// 3709/// \param NewLoc the location of the new explicit specialization or 3710/// instantiation. 3711/// 3712/// \param NewTSK the kind of the new explicit specialization or instantiation. 3713/// 3714/// \param PrevDecl the previous declaration of the entity. 3715/// 3716/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 3717/// 3718/// \param PrevPointOfInstantiation if valid, indicates where the previus 3719/// declaration was instantiated (either implicitly or explicitly). 3720/// 3721/// \param SuppressNew will be set to true to indicate that the new 3722/// specialization or instantiation has no effect and should be ignored. 3723/// 3724/// \returns true if there was an error that should prevent the introduction of 3725/// the new declaration into the AST, false otherwise. 3726bool 3727Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 3728 TemplateSpecializationKind NewTSK, 3729 NamedDecl *PrevDecl, 3730 TemplateSpecializationKind PrevTSK, 3731 SourceLocation PrevPointOfInstantiation, 3732 bool &SuppressNew) { 3733 SuppressNew = false; 3734 3735 switch (NewTSK) { 3736 case TSK_Undeclared: 3737 case TSK_ImplicitInstantiation: 3738 assert(false && "Don't check implicit instantiations here"); 3739 return false; 3740 3741 case TSK_ExplicitSpecialization: 3742 switch (PrevTSK) { 3743 case TSK_Undeclared: 3744 case TSK_ExplicitSpecialization: 3745 // Okay, we're just specializing something that is either already 3746 // explicitly specialized or has merely been mentioned without any 3747 // instantiation. 3748 return false; 3749 3750 case TSK_ImplicitInstantiation: 3751 if (PrevPointOfInstantiation.isInvalid()) { 3752 // The declaration itself has not actually been instantiated, so it is 3753 // still okay to specialize it. 3754 StripImplicitInstantiation(PrevDecl); 3755 return false; 3756 } 3757 // Fall through 3758 3759 case TSK_ExplicitInstantiationDeclaration: 3760 case TSK_ExplicitInstantiationDefinition: 3761 assert((PrevTSK == TSK_ImplicitInstantiation || 3762 PrevPointOfInstantiation.isValid()) && 3763 "Explicit instantiation without point of instantiation?"); 3764 3765 // C++ [temp.expl.spec]p6: 3766 // If a template, a member template or the member of a class template 3767 // is explicitly specialized then that specialization shall be declared 3768 // before the first use of that specialization that would cause an 3769 // implicit instantiation to take place, in every translation unit in 3770 // which such a use occurs; no diagnostic is required. 3771 for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) { 3772 // Is there any previous explicit specialization declaration? 3773 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 3774 return false; 3775 } 3776 3777 Diag(NewLoc, diag::err_specialization_after_instantiation) 3778 << PrevDecl; 3779 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 3780 << (PrevTSK != TSK_ImplicitInstantiation); 3781 3782 return true; 3783 } 3784 break; 3785 3786 case TSK_ExplicitInstantiationDeclaration: 3787 switch (PrevTSK) { 3788 case TSK_ExplicitInstantiationDeclaration: 3789 // This explicit instantiation declaration is redundant (that's okay). 3790 SuppressNew = true; 3791 return false; 3792 3793 case TSK_Undeclared: 3794 case TSK_ImplicitInstantiation: 3795 // We're explicitly instantiating something that may have already been 3796 // implicitly instantiated; that's fine. 3797 return false; 3798 3799 case TSK_ExplicitSpecialization: 3800 // C++0x [temp.explicit]p4: 3801 // For a given set of template parameters, if an explicit instantiation 3802 // of a template appears after a declaration of an explicit 3803 // specialization for that template, the explicit instantiation has no 3804 // effect. 3805 SuppressNew = true; 3806 return false; 3807 3808 case TSK_ExplicitInstantiationDefinition: 3809 // C++0x [temp.explicit]p10: 3810 // If an entity is the subject of both an explicit instantiation 3811 // declaration and an explicit instantiation definition in the same 3812 // translation unit, the definition shall follow the declaration. 3813 Diag(NewLoc, 3814 diag::err_explicit_instantiation_declaration_after_definition); 3815 Diag(PrevPointOfInstantiation, 3816 diag::note_explicit_instantiation_definition_here); 3817 assert(PrevPointOfInstantiation.isValid() && 3818 "Explicit instantiation without point of instantiation?"); 3819 SuppressNew = true; 3820 return false; 3821 } 3822 break; 3823 3824 case TSK_ExplicitInstantiationDefinition: 3825 switch (PrevTSK) { 3826 case TSK_Undeclared: 3827 case TSK_ImplicitInstantiation: 3828 // We're explicitly instantiating something that may have already been 3829 // implicitly instantiated; that's fine. 3830 return false; 3831 3832 case TSK_ExplicitSpecialization: 3833 // C++ DR 259, C++0x [temp.explicit]p4: 3834 // For a given set of template parameters, if an explicit 3835 // instantiation of a template appears after a declaration of 3836 // an explicit specialization for that template, the explicit 3837 // instantiation has no effect. 3838 // 3839 // In C++98/03 mode, we only give an extension warning here, because it 3840 // is not not harmful to try to explicitly instantiate something that 3841 // has been explicitly specialized. 3842 if (!getLangOptions().CPlusPlus0x) { 3843 Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) 3844 << PrevDecl; 3845 Diag(PrevDecl->getLocation(), 3846 diag::note_previous_template_specialization); 3847 } 3848 SuppressNew = true; 3849 return false; 3850 3851 case TSK_ExplicitInstantiationDeclaration: 3852 // We're explicity instantiating a definition for something for which we 3853 // were previously asked to suppress instantiations. That's fine. 3854 return false; 3855 3856 case TSK_ExplicitInstantiationDefinition: 3857 // C++0x [temp.spec]p5: 3858 // For a given template and a given set of template-arguments, 3859 // - an explicit instantiation definition shall appear at most once 3860 // in a program, 3861 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 3862 << PrevDecl; 3863 Diag(PrevPointOfInstantiation, 3864 diag::note_previous_explicit_instantiation); 3865 SuppressNew = true; 3866 return false; 3867 } 3868 break; 3869 } 3870 3871 assert(false && "Missing specialization/instantiation case?"); 3872 3873 return false; 3874} 3875 3876/// \brief Perform semantic analysis for the given function template 3877/// specialization. 3878/// 3879/// This routine performs all of the semantic analysis required for an 3880/// explicit function template specialization. On successful completion, 3881/// the function declaration \p FD will become a function template 3882/// specialization. 3883/// 3884/// \param FD the function declaration, which will be updated to become a 3885/// function template specialization. 3886/// 3887/// \param HasExplicitTemplateArgs whether any template arguments were 3888/// explicitly provided. 3889/// 3890/// \param LAngleLoc the location of the left angle bracket ('<'), if 3891/// template arguments were explicitly provided. 3892/// 3893/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 3894/// if any. 3895/// 3896/// \param NumExplicitTemplateArgs the number of explicitly-provided template 3897/// arguments. This number may be zero even when HasExplicitTemplateArgs is 3898/// true as in, e.g., \c void sort<>(char*, char*); 3899/// 3900/// \param RAngleLoc the location of the right angle bracket ('>'), if 3901/// template arguments were explicitly provided. 3902/// 3903/// \param PrevDecl the set of declarations that 3904bool 3905Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 3906 const TemplateArgumentListInfo *ExplicitTemplateArgs, 3907 LookupResult &Previous) { 3908 // The set of function template specializations that could match this 3909 // explicit function template specialization. 3910 UnresolvedSet<8> Candidates; 3911 3912 DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); 3913 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 3914 I != E; ++I) { 3915 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 3916 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 3917 // Only consider templates found within the same semantic lookup scope as 3918 // FD. 3919 if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) 3920 continue; 3921 3922 // C++ [temp.expl.spec]p11: 3923 // A trailing template-argument can be left unspecified in the 3924 // template-id naming an explicit function template specialization 3925 // provided it can be deduced from the function argument type. 3926 // Perform template argument deduction to determine whether we may be 3927 // specializing this template. 3928 // FIXME: It is somewhat wasteful to build 3929 TemplateDeductionInfo Info(Context, FD->getLocation()); 3930 FunctionDecl *Specialization = 0; 3931 if (TemplateDeductionResult TDK 3932 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, 3933 FD->getType(), 3934 Specialization, 3935 Info)) { 3936 // FIXME: Template argument deduction failed; record why it failed, so 3937 // that we can provide nifty diagnostics. 3938 (void)TDK; 3939 continue; 3940 } 3941 3942 // Record this candidate. 3943 Candidates.addDecl(Specialization, I.getAccess()); 3944 } 3945 } 3946 3947 // Find the most specialized function template. 3948 UnresolvedSetIterator Result 3949 = getMostSpecialized(Candidates.begin(), Candidates.end(), 3950 TPOC_Other, FD->getLocation(), 3951 PartialDiagnostic(diag::err_function_template_spec_no_match) 3952 << FD->getDeclName(), 3953 PartialDiagnostic(diag::err_function_template_spec_ambiguous) 3954 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 3955 PartialDiagnostic(diag::note_function_template_spec_matched)); 3956 if (Result == Candidates.end()) 3957 return true; 3958 3959 // Ignore access information; it doesn't figure into redeclaration checking. 3960 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 3961 3962 // FIXME: Check if the prior specialization has a point of instantiation. 3963 // If so, we have run afoul of . 3964 3965 // Check the scope of this explicit specialization. 3966 if (CheckTemplateSpecializationScope(*this, 3967 Specialization->getPrimaryTemplate(), 3968 Specialization, FD->getLocation(), 3969 false)) 3970 return true; 3971 3972 // C++ [temp.expl.spec]p6: 3973 // If a template, a member template or the member of a class template is 3974 // explicitly specialized then that specialization shall be declared 3975 // before the first use of that specialization that would cause an implicit 3976 // instantiation to take place, in every translation unit in which such a 3977 // use occurs; no diagnostic is required. 3978 FunctionTemplateSpecializationInfo *SpecInfo 3979 = Specialization->getTemplateSpecializationInfo(); 3980 assert(SpecInfo && "Function template specialization info missing?"); 3981 3982 bool SuppressNew = false; 3983 if (CheckSpecializationInstantiationRedecl(FD->getLocation(), 3984 TSK_ExplicitSpecialization, 3985 Specialization, 3986 SpecInfo->getTemplateSpecializationKind(), 3987 SpecInfo->getPointOfInstantiation(), 3988 SuppressNew)) 3989 return true; 3990 3991 // Mark the prior declaration as an explicit specialization, so that later 3992 // clients know that this is an explicit specialization. 3993 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 3994 3995 // Turn the given function declaration into a function template 3996 // specialization, with the template arguments from the previous 3997 // specialization. 3998 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 3999 new (Context) TemplateArgumentList( 4000 *Specialization->getTemplateSpecializationArgs()), 4001 /*InsertPos=*/0, 4002 TSK_ExplicitSpecialization); 4003 4004 // The "previous declaration" for this function template specialization is 4005 // the prior function template specialization. 4006 Previous.clear(); 4007 Previous.addDecl(Specialization); 4008 return false; 4009} 4010 4011/// \brief Perform semantic analysis for the given non-template member 4012/// specialization. 4013/// 4014/// This routine performs all of the semantic analysis required for an 4015/// explicit member function specialization. On successful completion, 4016/// the function declaration \p FD will become a member function 4017/// specialization. 4018/// 4019/// \param Member the member declaration, which will be updated to become a 4020/// specialization. 4021/// 4022/// \param Previous the set of declarations, one of which may be specialized 4023/// by this function specialization; the set will be modified to contain the 4024/// redeclared member. 4025bool 4026Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 4027 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 4028 4029 // Try to find the member we are instantiating. 4030 NamedDecl *Instantiation = 0; 4031 NamedDecl *InstantiatedFrom = 0; 4032 MemberSpecializationInfo *MSInfo = 0; 4033 4034 if (Previous.empty()) { 4035 // Nowhere to look anyway. 4036 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 4037 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 4038 I != E; ++I) { 4039 NamedDecl *D = (*I)->getUnderlyingDecl(); 4040 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 4041 if (Context.hasSameType(Function->getType(), Method->getType())) { 4042 Instantiation = Method; 4043 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 4044 MSInfo = Method->getMemberSpecializationInfo(); 4045 break; 4046 } 4047 } 4048 } 4049 } else if (isa<VarDecl>(Member)) { 4050 VarDecl *PrevVar; 4051 if (Previous.isSingleResult() && 4052 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 4053 if (PrevVar->isStaticDataMember()) { 4054 Instantiation = PrevVar; 4055 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 4056 MSInfo = PrevVar->getMemberSpecializationInfo(); 4057 } 4058 } else if (isa<RecordDecl>(Member)) { 4059 CXXRecordDecl *PrevRecord; 4060 if (Previous.isSingleResult() && 4061 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 4062 Instantiation = PrevRecord; 4063 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 4064 MSInfo = PrevRecord->getMemberSpecializationInfo(); 4065 } 4066 } 4067 4068 if (!Instantiation) { 4069 // There is no previous declaration that matches. Since member 4070 // specializations are always out-of-line, the caller will complain about 4071 // this mismatch later. 4072 return false; 4073 } 4074 4075 // Make sure that this is a specialization of a member. 4076 if (!InstantiatedFrom) { 4077 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 4078 << Member; 4079 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 4080 return true; 4081 } 4082 4083 // C++ [temp.expl.spec]p6: 4084 // If a template, a member template or the member of a class template is 4085 // explicitly specialized then that spe- cialization shall be declared 4086 // before the first use of that specialization that would cause an implicit 4087 // instantiation to take place, in every translation unit in which such a 4088 // use occurs; no diagnostic is required. 4089 assert(MSInfo && "Member specialization info missing?"); 4090 4091 bool SuppressNew = false; 4092 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 4093 TSK_ExplicitSpecialization, 4094 Instantiation, 4095 MSInfo->getTemplateSpecializationKind(), 4096 MSInfo->getPointOfInstantiation(), 4097 SuppressNew)) 4098 return true; 4099 4100 // Check the scope of this explicit specialization. 4101 if (CheckTemplateSpecializationScope(*this, 4102 InstantiatedFrom, 4103 Instantiation, Member->getLocation(), 4104 false)) 4105 return true; 4106 4107 // Note that this is an explicit instantiation of a member. 4108 // the original declaration to note that it is an explicit specialization 4109 // (if it was previously an implicit instantiation). This latter step 4110 // makes bookkeeping easier. 4111 if (isa<FunctionDecl>(Member)) { 4112 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 4113 if (InstantiationFunction->getTemplateSpecializationKind() == 4114 TSK_ImplicitInstantiation) { 4115 InstantiationFunction->setTemplateSpecializationKind( 4116 TSK_ExplicitSpecialization); 4117 InstantiationFunction->setLocation(Member->getLocation()); 4118 } 4119 4120 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 4121 cast<CXXMethodDecl>(InstantiatedFrom), 4122 TSK_ExplicitSpecialization); 4123 } else if (isa<VarDecl>(Member)) { 4124 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 4125 if (InstantiationVar->getTemplateSpecializationKind() == 4126 TSK_ImplicitInstantiation) { 4127 InstantiationVar->setTemplateSpecializationKind( 4128 TSK_ExplicitSpecialization); 4129 InstantiationVar->setLocation(Member->getLocation()); 4130 } 4131 4132 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 4133 cast<VarDecl>(InstantiatedFrom), 4134 TSK_ExplicitSpecialization); 4135 } else { 4136 assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); 4137 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 4138 if (InstantiationClass->getTemplateSpecializationKind() == 4139 TSK_ImplicitInstantiation) { 4140 InstantiationClass->setTemplateSpecializationKind( 4141 TSK_ExplicitSpecialization); 4142 InstantiationClass->setLocation(Member->getLocation()); 4143 } 4144 4145 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 4146 cast<CXXRecordDecl>(InstantiatedFrom), 4147 TSK_ExplicitSpecialization); 4148 } 4149 4150 // Save the caller the trouble of having to figure out which declaration 4151 // this specialization matches. 4152 Previous.clear(); 4153 Previous.addDecl(Instantiation); 4154 return false; 4155} 4156 4157/// \brief Check the scope of an explicit instantiation. 4158static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 4159 SourceLocation InstLoc, 4160 bool WasQualifiedName) { 4161 DeclContext *ExpectedContext 4162 = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); 4163 DeclContext *CurContext = S.CurContext->getLookupContext(); 4164 4165 // C++0x [temp.explicit]p2: 4166 // An explicit instantiation shall appear in an enclosing namespace of its 4167 // template. 4168 // 4169 // This is DR275, which we do not retroactively apply to C++98/03. 4170 if (S.getLangOptions().CPlusPlus0x && 4171 !CurContext->Encloses(ExpectedContext)) { 4172 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) 4173 S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) 4174 << D << NS; 4175 else 4176 S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) 4177 << D; 4178 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4179 return; 4180 } 4181 4182 // C++0x [temp.explicit]p2: 4183 // If the name declared in the explicit instantiation is an unqualified 4184 // name, the explicit instantiation shall appear in the namespace where 4185 // its template is declared or, if that namespace is inline (7.3.1), any 4186 // namespace from its enclosing namespace set. 4187 if (WasQualifiedName) 4188 return; 4189 4190 if (CurContext->Equals(ExpectedContext)) 4191 return; 4192 4193 S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) 4194 << D << ExpectedContext; 4195 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 4196} 4197 4198/// \brief Determine whether the given scope specifier has a template-id in it. 4199static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 4200 if (!SS.isSet()) 4201 return false; 4202 4203 // C++0x [temp.explicit]p2: 4204 // If the explicit instantiation is for a member function, a member class 4205 // or a static data member of a class template specialization, the name of 4206 // the class template specialization in the qualified-id for the member 4207 // name shall be a simple-template-id. 4208 // 4209 // C++98 has the same restriction, just worded differently. 4210 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 4211 NNS; NNS = NNS->getPrefix()) 4212 if (Type *T = NNS->getAsType()) 4213 if (isa<TemplateSpecializationType>(T)) 4214 return true; 4215 4216 return false; 4217} 4218 4219// Explicit instantiation of a class template specialization 4220// FIXME: Implement extern template semantics 4221Sema::DeclResult 4222Sema::ActOnExplicitInstantiation(Scope *S, 4223 SourceLocation ExternLoc, 4224 SourceLocation TemplateLoc, 4225 unsigned TagSpec, 4226 SourceLocation KWLoc, 4227 const CXXScopeSpec &SS, 4228 TemplateTy TemplateD, 4229 SourceLocation TemplateNameLoc, 4230 SourceLocation LAngleLoc, 4231 ASTTemplateArgsPtr TemplateArgsIn, 4232 SourceLocation RAngleLoc, 4233 AttributeList *Attr) { 4234 // Find the class template we're specializing 4235 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 4236 ClassTemplateDecl *ClassTemplate 4237 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 4238 4239 // Check that the specialization uses the same tag kind as the 4240 // original template. 4241 TagDecl::TagKind Kind; 4242 switch (TagSpec) { 4243 default: assert(0 && "Unknown tag type!"); 4244 case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; 4245 case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; 4246 case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; 4247 } 4248 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 4249 Kind, KWLoc, 4250 *ClassTemplate->getIdentifier())) { 4251 Diag(KWLoc, diag::err_use_with_wrong_tag) 4252 << ClassTemplate 4253 << CodeModificationHint::CreateReplacement(KWLoc, 4254 ClassTemplate->getTemplatedDecl()->getKindName()); 4255 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 4256 diag::note_previous_use); 4257 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 4258 } 4259 4260 // C++0x [temp.explicit]p2: 4261 // There are two forms of explicit instantiation: an explicit instantiation 4262 // definition and an explicit instantiation declaration. An explicit 4263 // instantiation declaration begins with the extern keyword. [...] 4264 TemplateSpecializationKind TSK 4265 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4266 : TSK_ExplicitInstantiationDeclaration; 4267 4268 // Translate the parser's template argument list in our AST format. 4269 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 4270 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 4271 4272 // Check that the template argument list is well-formed for this 4273 // template. 4274 TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), 4275 TemplateArgs.size()); 4276 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 4277 TemplateArgs, false, Converted)) 4278 return true; 4279 4280 assert((Converted.structuredSize() == 4281 ClassTemplate->getTemplateParameters()->size()) && 4282 "Converted template argument list is too short!"); 4283 4284 // Find the class template specialization declaration that 4285 // corresponds to these arguments. 4286 llvm::FoldingSetNodeID ID; 4287 ClassTemplateSpecializationDecl::Profile(ID, 4288 Converted.getFlatArguments(), 4289 Converted.flatSize(), 4290 Context); 4291 void *InsertPos = 0; 4292 ClassTemplateSpecializationDecl *PrevDecl 4293 = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4294 4295 // C++0x [temp.explicit]p2: 4296 // [...] An explicit instantiation shall appear in an enclosing 4297 // namespace of its template. [...] 4298 // 4299 // This is C++ DR 275. 4300 CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 4301 SS.isSet()); 4302 4303 ClassTemplateSpecializationDecl *Specialization = 0; 4304 4305 bool ReusedDecl = false; 4306 if (PrevDecl) { 4307 bool SuppressNew = false; 4308 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 4309 PrevDecl, 4310 PrevDecl->getSpecializationKind(), 4311 PrevDecl->getPointOfInstantiation(), 4312 SuppressNew)) 4313 return DeclPtrTy::make(PrevDecl); 4314 4315 if (SuppressNew) 4316 return DeclPtrTy::make(PrevDecl); 4317 4318 if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || 4319 PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4320 // Since the only prior class template specialization with these 4321 // arguments was referenced but not declared, reuse that 4322 // declaration node as our own, updating its source location to 4323 // reflect our new declaration. 4324 Specialization = PrevDecl; 4325 Specialization->setLocation(TemplateNameLoc); 4326 PrevDecl = 0; 4327 ReusedDecl = true; 4328 } 4329 } 4330 4331 if (!Specialization) { 4332 // Create a new class template specialization declaration node for 4333 // this explicit specialization. 4334 Specialization 4335 = ClassTemplateSpecializationDecl::Create(Context, 4336 ClassTemplate->getDeclContext(), 4337 TemplateNameLoc, 4338 ClassTemplate, 4339 Converted, PrevDecl); 4340 SetNestedNameSpecifier(Specialization, SS); 4341 4342 if (PrevDecl) { 4343 // Remove the previous declaration from the folding set, since we want 4344 // to introduce a new declaration. 4345 ClassTemplate->getSpecializations().RemoveNode(PrevDecl); 4346 ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); 4347 } 4348 4349 // Insert the new specialization. 4350 ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); 4351 } 4352 4353 // Build the fully-sugared type for this explicit instantiation as 4354 // the user wrote in the explicit instantiation itself. This means 4355 // that we'll pretty-print the type retrieved from the 4356 // specialization's declaration the way that the user actually wrote 4357 // the explicit instantiation, rather than formatting the name based 4358 // on the "canonical" representation used to store the template 4359 // arguments in the specialization. 4360 TypeSourceInfo *WrittenTy 4361 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 4362 TemplateArgs, 4363 Context.getTypeDeclType(Specialization)); 4364 Specialization->setTypeAsWritten(WrittenTy); 4365 TemplateArgsIn.release(); 4366 4367 if (!ReusedDecl) { 4368 // Add the explicit instantiation into its lexical context. However, 4369 // since explicit instantiations are never found by name lookup, we 4370 // just put it into the declaration context directly. 4371 Specialization->setLexicalDeclContext(CurContext); 4372 CurContext->addDecl(Specialization); 4373 } 4374 4375 // C++ [temp.explicit]p3: 4376 // A definition of a class template or class member template 4377 // shall be in scope at the point of the explicit instantiation of 4378 // the class template or class member template. 4379 // 4380 // This check comes when we actually try to perform the 4381 // instantiation. 4382 ClassTemplateSpecializationDecl *Def 4383 = cast_or_null<ClassTemplateSpecializationDecl>( 4384 Specialization->getDefinition()); 4385 if (!Def) 4386 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 4387 4388 // Instantiate the members of this class template specialization. 4389 Def = cast_or_null<ClassTemplateSpecializationDecl>( 4390 Specialization->getDefinition()); 4391 if (Def) 4392 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 4393 4394 return DeclPtrTy::make(Specialization); 4395} 4396 4397// Explicit instantiation of a member class of a class template. 4398Sema::DeclResult 4399Sema::ActOnExplicitInstantiation(Scope *S, 4400 SourceLocation ExternLoc, 4401 SourceLocation TemplateLoc, 4402 unsigned TagSpec, 4403 SourceLocation KWLoc, 4404 const CXXScopeSpec &SS, 4405 IdentifierInfo *Name, 4406 SourceLocation NameLoc, 4407 AttributeList *Attr) { 4408 4409 bool Owned = false; 4410 bool IsDependent = false; 4411 DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, 4412 KWLoc, SS, Name, NameLoc, Attr, AS_none, 4413 MultiTemplateParamsArg(*this, 0, 0), 4414 Owned, IsDependent); 4415 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 4416 4417 if (!TagD) 4418 return true; 4419 4420 TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); 4421 if (Tag->isEnum()) { 4422 Diag(TemplateLoc, diag::err_explicit_instantiation_enum) 4423 << Context.getTypeDeclType(Tag); 4424 return true; 4425 } 4426 4427 if (Tag->isInvalidDecl()) 4428 return true; 4429 4430 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 4431 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 4432 if (!Pattern) { 4433 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 4434 << Context.getTypeDeclType(Record); 4435 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 4436 return true; 4437 } 4438 4439 // C++0x [temp.explicit]p2: 4440 // If the explicit instantiation is for a class or member class, the 4441 // elaborated-type-specifier in the declaration shall include a 4442 // simple-template-id. 4443 // 4444 // C++98 has the same restriction, just worded differently. 4445 if (!ScopeSpecifierHasTemplateId(SS)) 4446 Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) 4447 << Record << SS.getRange(); 4448 4449 // C++0x [temp.explicit]p2: 4450 // There are two forms of explicit instantiation: an explicit instantiation 4451 // definition and an explicit instantiation declaration. An explicit 4452 // instantiation declaration begins with the extern keyword. [...] 4453 TemplateSpecializationKind TSK 4454 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4455 : TSK_ExplicitInstantiationDeclaration; 4456 4457 // C++0x [temp.explicit]p2: 4458 // [...] An explicit instantiation shall appear in an enclosing 4459 // namespace of its template. [...] 4460 // 4461 // This is C++ DR 275. 4462 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 4463 4464 // Verify that it is okay to explicitly instantiate here. 4465 CXXRecordDecl *PrevDecl 4466 = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); 4467 if (!PrevDecl && Record->getDefinition()) 4468 PrevDecl = Record; 4469 if (PrevDecl) { 4470 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 4471 bool SuppressNew = false; 4472 assert(MSInfo && "No member specialization information?"); 4473 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 4474 PrevDecl, 4475 MSInfo->getTemplateSpecializationKind(), 4476 MSInfo->getPointOfInstantiation(), 4477 SuppressNew)) 4478 return true; 4479 if (SuppressNew) 4480 return TagD; 4481 } 4482 4483 CXXRecordDecl *RecordDef 4484 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4485 if (!RecordDef) { 4486 // C++ [temp.explicit]p3: 4487 // A definition of a member class of a class template shall be in scope 4488 // at the point of an explicit instantiation of the member class. 4489 CXXRecordDecl *Def 4490 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 4491 if (!Def) { 4492 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 4493 << 0 << Record->getDeclName() << Record->getDeclContext(); 4494 Diag(Pattern->getLocation(), diag::note_forward_declaration) 4495 << Pattern; 4496 return true; 4497 } else { 4498 if (InstantiateClass(NameLoc, Record, Def, 4499 getTemplateInstantiationArgs(Record), 4500 TSK)) 4501 return true; 4502 4503 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 4504 if (!RecordDef) 4505 return true; 4506 } 4507 } 4508 4509 // Instantiate all of the members of the class. 4510 InstantiateClassMembers(NameLoc, RecordDef, 4511 getTemplateInstantiationArgs(Record), TSK); 4512 4513 // FIXME: We don't have any representation for explicit instantiations of 4514 // member classes. Such a representation is not needed for compilation, but it 4515 // should be available for clients that want to see all of the declarations in 4516 // the source code. 4517 return TagD; 4518} 4519 4520Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 4521 SourceLocation ExternLoc, 4522 SourceLocation TemplateLoc, 4523 Declarator &D) { 4524 // Explicit instantiations always require a name. 4525 DeclarationName Name = GetNameForDeclarator(D); 4526 if (!Name) { 4527 if (!D.isInvalidType()) 4528 Diag(D.getDeclSpec().getSourceRange().getBegin(), 4529 diag::err_explicit_instantiation_requires_name) 4530 << D.getDeclSpec().getSourceRange() 4531 << D.getSourceRange(); 4532 4533 return true; 4534 } 4535 4536 // The scope passed in may not be a decl scope. Zip up the scope tree until 4537 // we find one that is. 4538 while ((S->getFlags() & Scope::DeclScope) == 0 || 4539 (S->getFlags() & Scope::TemplateParamScope) != 0) 4540 S = S->getParent(); 4541 4542 // Determine the type of the declaration. 4543 QualType R = GetTypeForDeclarator(D, S, 0); 4544 if (R.isNull()) 4545 return true; 4546 4547 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 4548 // Cannot explicitly instantiate a typedef. 4549 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 4550 << Name; 4551 return true; 4552 } 4553 4554 // C++0x [temp.explicit]p1: 4555 // [...] An explicit instantiation of a function template shall not use the 4556 // inline or constexpr specifiers. 4557 // Presumably, this also applies to member functions of class templates as 4558 // well. 4559 if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) 4560 Diag(D.getDeclSpec().getInlineSpecLoc(), 4561 diag::err_explicit_instantiation_inline) 4562 <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 4563 4564 // FIXME: check for constexpr specifier. 4565 4566 // C++0x [temp.explicit]p2: 4567 // There are two forms of explicit instantiation: an explicit instantiation 4568 // definition and an explicit instantiation declaration. An explicit 4569 // instantiation declaration begins with the extern keyword. [...] 4570 TemplateSpecializationKind TSK 4571 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 4572 : TSK_ExplicitInstantiationDeclaration; 4573 4574 LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); 4575 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 4576 4577 if (!R->isFunctionType()) { 4578 // C++ [temp.explicit]p1: 4579 // A [...] static data member of a class template can be explicitly 4580 // instantiated from the member definition associated with its class 4581 // template. 4582 if (Previous.isAmbiguous()) 4583 return true; 4584 4585 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 4586 if (!Prev || !Prev->isStaticDataMember()) { 4587 // We expect to see a data data member here. 4588 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 4589 << Name; 4590 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4591 P != PEnd; ++P) 4592 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 4593 return true; 4594 } 4595 4596 if (!Prev->getInstantiatedFromStaticDataMember()) { 4597 // FIXME: Check for explicit specialization? 4598 Diag(D.getIdentifierLoc(), 4599 diag::err_explicit_instantiation_data_member_not_instantiated) 4600 << Prev; 4601 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 4602 // FIXME: Can we provide a note showing where this was declared? 4603 return true; 4604 } 4605 4606 // C++0x [temp.explicit]p2: 4607 // If the explicit instantiation is for a member function, a member class 4608 // or a static data member of a class template specialization, the name of 4609 // the class template specialization in the qualified-id for the member 4610 // name shall be a simple-template-id. 4611 // 4612 // C++98 has the same restriction, just worded differently. 4613 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4614 Diag(D.getIdentifierLoc(), 4615 diag::err_explicit_instantiation_without_qualified_id) 4616 << Prev << D.getCXXScopeSpec().getRange(); 4617 4618 // Check the scope of this explicit instantiation. 4619 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 4620 4621 // Verify that it is okay to explicitly instantiate here. 4622 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 4623 assert(MSInfo && "Missing static data member specialization info?"); 4624 bool SuppressNew = false; 4625 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 4626 MSInfo->getTemplateSpecializationKind(), 4627 MSInfo->getPointOfInstantiation(), 4628 SuppressNew)) 4629 return true; 4630 if (SuppressNew) 4631 return DeclPtrTy(); 4632 4633 // Instantiate static data member. 4634 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4635 if (TSK == TSK_ExplicitInstantiationDefinition) 4636 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, 4637 /*DefinitionRequired=*/true); 4638 4639 // FIXME: Create an ExplicitInstantiation node? 4640 return DeclPtrTy(); 4641 } 4642 4643 // If the declarator is a template-id, translate the parser's template 4644 // argument list into our AST format. 4645 bool HasExplicitTemplateArgs = false; 4646 TemplateArgumentListInfo TemplateArgs; 4647 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 4648 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4649 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 4650 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 4651 ASTTemplateArgsPtr TemplateArgsPtr(*this, 4652 TemplateId->getTemplateArgs(), 4653 TemplateId->NumArgs); 4654 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 4655 HasExplicitTemplateArgs = true; 4656 TemplateArgsPtr.release(); 4657 } 4658 4659 // C++ [temp.explicit]p1: 4660 // A [...] function [...] can be explicitly instantiated from its template. 4661 // A member function [...] of a class template can be explicitly 4662 // instantiated from the member definition associated with its class 4663 // template. 4664 UnresolvedSet<8> Matches; 4665 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 4666 P != PEnd; ++P) { 4667 NamedDecl *Prev = *P; 4668 if (!HasExplicitTemplateArgs) { 4669 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 4670 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 4671 Matches.clear(); 4672 4673 Matches.addDecl(Method, P.getAccess()); 4674 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 4675 break; 4676 } 4677 } 4678 } 4679 4680 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 4681 if (!FunTmpl) 4682 continue; 4683 4684 TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); 4685 FunctionDecl *Specialization = 0; 4686 if (TemplateDeductionResult TDK 4687 = DeduceTemplateArguments(FunTmpl, 4688 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 4689 R, Specialization, Info)) { 4690 // FIXME: Keep track of almost-matches? 4691 (void)TDK; 4692 continue; 4693 } 4694 4695 Matches.addDecl(Specialization, P.getAccess()); 4696 } 4697 4698 // Find the most specialized function template specialization. 4699 UnresolvedSetIterator Result 4700 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 4701 D.getIdentifierLoc(), 4702 PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, 4703 PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, 4704 PartialDiagnostic(diag::note_explicit_instantiation_candidate)); 4705 4706 if (Result == Matches.end()) 4707 return true; 4708 4709 // Ignore access control bits, we don't need them for redeclaration checking. 4710 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 4711 4712 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 4713 Diag(D.getIdentifierLoc(), 4714 diag::err_explicit_instantiation_member_function_not_instantiated) 4715 << Specialization 4716 << (Specialization->getTemplateSpecializationKind() == 4717 TSK_ExplicitSpecialization); 4718 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 4719 return true; 4720 } 4721 4722 FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); 4723 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 4724 PrevDecl = Specialization; 4725 4726 if (PrevDecl) { 4727 bool SuppressNew = false; 4728 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 4729 PrevDecl, 4730 PrevDecl->getTemplateSpecializationKind(), 4731 PrevDecl->getPointOfInstantiation(), 4732 SuppressNew)) 4733 return true; 4734 4735 // FIXME: We may still want to build some representation of this 4736 // explicit specialization. 4737 if (SuppressNew) 4738 return DeclPtrTy(); 4739 } 4740 4741 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 4742 4743 if (TSK == TSK_ExplicitInstantiationDefinition) 4744 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, 4745 false, /*DefinitionRequired=*/true); 4746 4747 // C++0x [temp.explicit]p2: 4748 // If the explicit instantiation is for a member function, a member class 4749 // or a static data member of a class template specialization, the name of 4750 // the class template specialization in the qualified-id for the member 4751 // name shall be a simple-template-id. 4752 // 4753 // C++98 has the same restriction, just worded differently. 4754 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 4755 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 4756 D.getCXXScopeSpec().isSet() && 4757 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 4758 Diag(D.getIdentifierLoc(), 4759 diag::err_explicit_instantiation_without_qualified_id) 4760 << Specialization << D.getCXXScopeSpec().getRange(); 4761 4762 CheckExplicitInstantiationScope(*this, 4763 FunTmpl? (NamedDecl *)FunTmpl 4764 : Specialization->getInstantiatedFromMemberFunction(), 4765 D.getIdentifierLoc(), 4766 D.getCXXScopeSpec().isSet()); 4767 4768 // FIXME: Create some kind of ExplicitInstantiationDecl here. 4769 return DeclPtrTy(); 4770} 4771 4772Sema::TypeResult 4773Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 4774 const CXXScopeSpec &SS, IdentifierInfo *Name, 4775 SourceLocation TagLoc, SourceLocation NameLoc) { 4776 // This has to hold, because SS is expected to be defined. 4777 assert(Name && "Expected a name in a dependent tag"); 4778 4779 NestedNameSpecifier *NNS 4780 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4781 if (!NNS) 4782 return true; 4783 4784 QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); 4785 if (T.isNull()) 4786 return true; 4787 4788 TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); 4789 QualType ElabType = Context.getElaboratedType(T, TagKind); 4790 4791 return ElabType.getAsOpaquePtr(); 4792} 4793 4794Sema::TypeResult 4795Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4796 const IdentifierInfo &II, SourceLocation IdLoc) { 4797 NestedNameSpecifier *NNS 4798 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4799 if (!NNS) 4800 return true; 4801 4802 QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); 4803 if (T.isNull()) 4804 return true; 4805 return T.getAsOpaquePtr(); 4806} 4807 4808Sema::TypeResult 4809Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, 4810 SourceLocation TemplateLoc, TypeTy *Ty) { 4811 QualType T = GetTypeFromParser(Ty); 4812 NestedNameSpecifier *NNS 4813 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 4814 const TemplateSpecializationType *TemplateId 4815 = T->getAs<TemplateSpecializationType>(); 4816 assert(TemplateId && "Expected a template specialization type"); 4817 4818 if (computeDeclContext(SS, false)) { 4819 // If we can compute a declaration context, then the "typename" 4820 // keyword was superfluous. Just build a QualifiedNameType to keep 4821 // track of the nested-name-specifier. 4822 4823 // FIXME: Note that the QualifiedNameType had the "typename" keyword! 4824 return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); 4825 } 4826 4827 return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); 4828} 4829 4830/// \brief Build the type that describes a C++ typename specifier, 4831/// e.g., "typename T::type". 4832QualType 4833Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, 4834 SourceRange Range) { 4835 CXXRecordDecl *CurrentInstantiation = 0; 4836 if (NNS->isDependent()) { 4837 CurrentInstantiation = getCurrentInstantiationOf(NNS); 4838 4839 // If the nested-name-specifier does not refer to the current 4840 // instantiation, then build a typename type. 4841 if (!CurrentInstantiation) 4842 return Context.getTypenameType(NNS, &II); 4843 4844 // The nested-name-specifier refers to the current instantiation, so the 4845 // "typename" keyword itself is superfluous. In C++03, the program is 4846 // actually ill-formed. However, DR 382 (in C++0x CD1) allows such 4847 // extraneous "typename" keywords, and we retroactively apply this DR to 4848 // C++03 code. 4849 } 4850 4851 DeclContext *Ctx = 0; 4852 4853 if (CurrentInstantiation) 4854 Ctx = CurrentInstantiation; 4855 else { 4856 CXXScopeSpec SS; 4857 SS.setScopeRep(NNS); 4858 SS.setRange(Range); 4859 if (RequireCompleteDeclContext(SS)) 4860 return QualType(); 4861 4862 Ctx = computeDeclContext(SS); 4863 } 4864 assert(Ctx && "No declaration context?"); 4865 4866 DeclarationName Name(&II); 4867 LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); 4868 LookupQualifiedName(Result, Ctx); 4869 unsigned DiagID = 0; 4870 Decl *Referenced = 0; 4871 switch (Result.getResultKind()) { 4872 case LookupResult::NotFound: 4873 DiagID = diag::err_typename_nested_not_found; 4874 break; 4875 4876 case LookupResult::NotFoundInCurrentInstantiation: 4877 // Okay, it's a member of an unknown instantiation. 4878 return Context.getTypenameType(NNS, &II); 4879 4880 case LookupResult::Found: 4881 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 4882 // We found a type. Build a QualifiedNameType, since the 4883 // typename-specifier was just sugar. FIXME: Tell 4884 // QualifiedNameType that it has a "typename" prefix. 4885 return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); 4886 } 4887 4888 DiagID = diag::err_typename_nested_not_type; 4889 Referenced = Result.getFoundDecl(); 4890 break; 4891 4892 case LookupResult::FoundUnresolvedValue: 4893 llvm_unreachable("unresolved using decl in non-dependent context"); 4894 return QualType(); 4895 4896 case LookupResult::FoundOverloaded: 4897 DiagID = diag::err_typename_nested_not_type; 4898 Referenced = *Result.begin(); 4899 break; 4900 4901 case LookupResult::Ambiguous: 4902 return QualType(); 4903 } 4904 4905 // If we get here, it's because name lookup did not find a 4906 // type. Emit an appropriate diagnostic and return an error. 4907 Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; 4908 if (Referenced) 4909 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 4910 << Name; 4911 return QualType(); 4912} 4913 4914namespace { 4915 // See Sema::RebuildTypeInCurrentInstantiation 4916 class CurrentInstantiationRebuilder 4917 : public TreeTransform<CurrentInstantiationRebuilder> { 4918 SourceLocation Loc; 4919 DeclarationName Entity; 4920 4921 public: 4922 CurrentInstantiationRebuilder(Sema &SemaRef, 4923 SourceLocation Loc, 4924 DeclarationName Entity) 4925 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 4926 Loc(Loc), Entity(Entity) { } 4927 4928 /// \brief Determine whether the given type \p T has already been 4929 /// transformed. 4930 /// 4931 /// For the purposes of type reconstruction, a type has already been 4932 /// transformed if it is NULL or if it is not dependent. 4933 bool AlreadyTransformed(QualType T) { 4934 return T.isNull() || !T->isDependentType(); 4935 } 4936 4937 /// \brief Returns the location of the entity whose type is being 4938 /// rebuilt. 4939 SourceLocation getBaseLocation() { return Loc; } 4940 4941 /// \brief Returns the name of the entity whose type is being rebuilt. 4942 DeclarationName getBaseEntity() { return Entity; } 4943 4944 /// \brief Sets the "base" location and entity when that 4945 /// information is known based on another transformation. 4946 void setBase(SourceLocation Loc, DeclarationName Entity) { 4947 this->Loc = Loc; 4948 this->Entity = Entity; 4949 } 4950 4951 /// \brief Transforms an expression by returning the expression itself 4952 /// (an identity function). 4953 /// 4954 /// FIXME: This is completely unsafe; we will need to actually clone the 4955 /// expressions. 4956 Sema::OwningExprResult TransformExpr(Expr *E) { 4957 return getSema().Owned(E); 4958 } 4959 4960 /// \brief Transforms a typename type by determining whether the type now 4961 /// refers to a member of the current instantiation, and then 4962 /// type-checking and building a QualifiedNameType (when possible). 4963 QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL, 4964 QualType ObjectType); 4965 }; 4966} 4967 4968QualType 4969CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, 4970 TypenameTypeLoc TL, 4971 QualType ObjectType) { 4972 TypenameType *T = TL.getTypePtr(); 4973 4974 NestedNameSpecifier *NNS 4975 = TransformNestedNameSpecifier(T->getQualifier(), 4976 /*FIXME:*/SourceRange(getBaseLocation()), 4977 ObjectType); 4978 if (!NNS) 4979 return QualType(); 4980 4981 // If the nested-name-specifier did not change, and we cannot compute the 4982 // context corresponding to the nested-name-specifier, then this 4983 // typename type will not change; exit early. 4984 CXXScopeSpec SS; 4985 SS.setRange(SourceRange(getBaseLocation())); 4986 SS.setScopeRep(NNS); 4987 4988 QualType Result; 4989 if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) 4990 Result = QualType(T, 0); 4991 4992 // Rebuild the typename type, which will probably turn into a 4993 // QualifiedNameType. 4994 else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { 4995 QualType NewTemplateId 4996 = TransformType(QualType(TemplateId, 0)); 4997 if (NewTemplateId.isNull()) 4998 return QualType(); 4999 5000 if (NNS == T->getQualifier() && 5001 NewTemplateId == QualType(TemplateId, 0)) 5002 Result = QualType(T, 0); 5003 else 5004 Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); 5005 } else 5006 Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), 5007 SourceRange(TL.getNameLoc())); 5008 5009 if (Result.isNull()) 5010 return QualType(); 5011 5012 TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); 5013 NewTL.setNameLoc(TL.getNameLoc()); 5014 return Result; 5015} 5016 5017/// \brief Rebuilds a type within the context of the current instantiation. 5018/// 5019/// The type \p T is part of the type of an out-of-line member definition of 5020/// a class template (or class template partial specialization) that was parsed 5021/// and constructed before we entered the scope of the class template (or 5022/// partial specialization thereof). This routine will rebuild that type now 5023/// that we have entered the declarator's scope, which may produce different 5024/// canonical types, e.g., 5025/// 5026/// \code 5027/// template<typename T> 5028/// struct X { 5029/// typedef T* pointer; 5030/// pointer data(); 5031/// }; 5032/// 5033/// template<typename T> 5034/// typename X<T>::pointer X<T>::data() { ... } 5035/// \endcode 5036/// 5037/// Here, the type "typename X<T>::pointer" will be created as a TypenameType, 5038/// since we do not know that we can look into X<T> when we parsed the type. 5039/// This function will rebuild the type, performing the lookup of "pointer" 5040/// in X<T> and returning a QualifiedNameType whose canonical type is the same 5041/// as the canonical type of T*, allowing the return types of the out-of-line 5042/// definition and the declaration to match. 5043QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, 5044 DeclarationName Name) { 5045 if (T.isNull() || !T->isDependentType()) 5046 return T; 5047 5048 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 5049 return Rebuilder.TransformType(T); 5050} 5051 5052/// \brief Produces a formatted string that describes the binding of 5053/// template parameters to template arguments. 5054std::string 5055Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5056 const TemplateArgumentList &Args) { 5057 // FIXME: For variadic templates, we'll need to get the structured list. 5058 return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), 5059 Args.flat_size()); 5060} 5061 5062std::string 5063Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 5064 const TemplateArgument *Args, 5065 unsigned NumArgs) { 5066 std::string Result; 5067 5068 if (!Params || Params->size() == 0 || NumArgs == 0) 5069 return Result; 5070 5071 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 5072 if (I >= NumArgs) 5073 break; 5074 5075 if (I == 0) 5076 Result += "[with "; 5077 else 5078 Result += ", "; 5079 5080 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 5081 Result += Id->getName(); 5082 } else { 5083 Result += '$'; 5084 Result += llvm::utostr(I); 5085 } 5086 5087 Result += " = "; 5088 5089 switch (Args[I].getKind()) { 5090 case TemplateArgument::Null: 5091 Result += "<no value>"; 5092 break; 5093 5094 case TemplateArgument::Type: { 5095 std::string TypeStr; 5096 Args[I].getAsType().getAsStringInternal(TypeStr, 5097 Context.PrintingPolicy); 5098 Result += TypeStr; 5099 break; 5100 } 5101 5102 case TemplateArgument::Declaration: { 5103 bool Unnamed = true; 5104 if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { 5105 if (ND->getDeclName()) { 5106 Unnamed = false; 5107 Result += ND->getNameAsString(); 5108 } 5109 } 5110 5111 if (Unnamed) { 5112 Result += "<anonymous>"; 5113 } 5114 break; 5115 } 5116 5117 case TemplateArgument::Template: { 5118 std::string Str; 5119 llvm::raw_string_ostream OS(Str); 5120 Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); 5121 Result += OS.str(); 5122 break; 5123 } 5124 5125 case TemplateArgument::Integral: { 5126 Result += Args[I].getAsIntegral()->toString(10); 5127 break; 5128 } 5129 5130 case TemplateArgument::Expression: { 5131 assert(false && "No expressions in deduced template arguments!"); 5132 Result += "<expression>"; 5133 break; 5134 } 5135 5136 case TemplateArgument::Pack: 5137 // FIXME: Format template argument packs 5138 Result += "<template argument pack>"; 5139 break; 5140 } 5141 } 5142 5143 Result += ']'; 5144 return Result; 5145} 5146