SemaTemplate.cpp revision 9b623639378d53a675921ddfa7316034d571881e
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "llvm/ADT/StringExtras.h"
28using namespace clang;
29using namespace sema;
30
31/// \brief Determine whether the declaration found is acceptable as the name
32/// of a template and, if so, return that template declaration. Otherwise,
33/// returns NULL.
34static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
35                                           NamedDecl *Orig) {
36  NamedDecl *D = Orig->getUnderlyingDecl();
37
38  if (isa<TemplateDecl>(D))
39    return Orig;
40
41  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
42    // C++ [temp.local]p1:
43    //   Like normal (non-template) classes, class templates have an
44    //   injected-class-name (Clause 9). The injected-class-name
45    //   can be used with or without a template-argument-list. When
46    //   it is used without a template-argument-list, it is
47    //   equivalent to the injected-class-name followed by the
48    //   template-parameters of the class template enclosed in
49    //   <>. When it is used with a template-argument-list, it
50    //   refers to the specified class template specialization,
51    //   which could be the current specialization or another
52    //   specialization.
53    if (Record->isInjectedClassName()) {
54      Record = cast<CXXRecordDecl>(Record->getDeclContext());
55      if (Record->getDescribedClassTemplate())
56        return Record->getDescribedClassTemplate();
57
58      if (ClassTemplateSpecializationDecl *Spec
59            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
60        return Spec->getSpecializedTemplate();
61    }
62
63    return 0;
64  }
65
66  return 0;
67}
68
69static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
70  // The set of class templates we've already seen.
71  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
72  LookupResult::Filter filter = R.makeFilter();
73  while (filter.hasNext()) {
74    NamedDecl *Orig = filter.next();
75    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
76    if (!Repl)
77      filter.erase();
78    else if (Repl != Orig) {
79
80      // C++ [temp.local]p3:
81      //   A lookup that finds an injected-class-name (10.2) can result in an
82      //   ambiguity in certain cases (for example, if it is found in more than
83      //   one base class). If all of the injected-class-names that are found
84      //   refer to specializations of the same class template, and if the name
85      //   is followed by a template-argument-list, the reference refers to the
86      //   class template itself and not a specialization thereof, and is not
87      //   ambiguous.
88      //
89      // FIXME: Will we eventually have to do the same for alias templates?
90      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
91        if (!ClassTemplates.insert(ClassTmpl)) {
92          filter.erase();
93          continue;
94        }
95
96      // FIXME: we promote access to public here as a workaround to
97      // the fact that LookupResult doesn't let us remember that we
98      // found this template through a particular injected class name,
99      // which means we end up doing nasty things to the invariants.
100      // Pretending that access is public is *much* safer.
101      filter.replace(Repl, AS_public);
102    }
103  }
104  filter.done();
105}
106
107TemplateNameKind Sema::isTemplateName(Scope *S,
108                                      CXXScopeSpec &SS,
109                                      bool hasTemplateKeyword,
110                                      UnqualifiedId &Name,
111                                      ParsedType ObjectTypePtr,
112                                      bool EnteringContext,
113                                      TemplateTy &TemplateResult,
114                                      bool &MemberOfUnknownSpecialization) {
115  assert(getLangOptions().CPlusPlus && "No template names in C!");
116
117  DeclarationName TName;
118  MemberOfUnknownSpecialization = false;
119
120  switch (Name.getKind()) {
121  case UnqualifiedId::IK_Identifier:
122    TName = DeclarationName(Name.Identifier);
123    break;
124
125  case UnqualifiedId::IK_OperatorFunctionId:
126    TName = Context.DeclarationNames.getCXXOperatorName(
127                                              Name.OperatorFunctionId.Operator);
128    break;
129
130  case UnqualifiedId::IK_LiteralOperatorId:
131    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
132    break;
133
134  default:
135    return TNK_Non_template;
136  }
137
138  QualType ObjectType = ObjectTypePtr.get();
139
140  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
141                 LookupOrdinaryName);
142  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
143                     MemberOfUnknownSpecialization);
144  if (R.empty()) return TNK_Non_template;
145  if (R.isAmbiguous()) {
146    // Suppress diagnostics;  we'll redo this lookup later.
147    R.suppressDiagnostics();
148
149    // FIXME: we might have ambiguous templates, in which case we
150    // should at least parse them properly!
151    return TNK_Non_template;
152  }
153
154  TemplateName Template;
155  TemplateNameKind TemplateKind;
156
157  unsigned ResultCount = R.end() - R.begin();
158  if (ResultCount > 1) {
159    // We assume that we'll preserve the qualifier from a function
160    // template name in other ways.
161    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
162    TemplateKind = TNK_Function_template;
163
164    // We'll do this lookup again later.
165    R.suppressDiagnostics();
166  } else {
167    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
168
169    if (SS.isSet() && !SS.isInvalid()) {
170      NestedNameSpecifier *Qualifier
171        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
172      Template = Context.getQualifiedTemplateName(Qualifier,
173                                                  hasTemplateKeyword, TD);
174    } else {
175      Template = TemplateName(TD);
176    }
177
178    if (isa<FunctionTemplateDecl>(TD)) {
179      TemplateKind = TNK_Function_template;
180
181      // We'll do this lookup again later.
182      R.suppressDiagnostics();
183    } else {
184      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
185      TemplateKind = TNK_Type_template;
186    }
187  }
188
189  TemplateResult = TemplateTy::make(Template);
190  return TemplateKind;
191}
192
193bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
194                                       SourceLocation IILoc,
195                                       Scope *S,
196                                       const CXXScopeSpec *SS,
197                                       TemplateTy &SuggestedTemplate,
198                                       TemplateNameKind &SuggestedKind) {
199  // We can't recover unless there's a dependent scope specifier preceding the
200  // template name.
201  // FIXME: Typo correction?
202  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
203      computeDeclContext(*SS))
204    return false;
205
206  // The code is missing a 'template' keyword prior to the dependent template
207  // name.
208  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
209  Diag(IILoc, diag::err_template_kw_missing)
210    << Qualifier << II.getName()
211    << FixItHint::CreateInsertion(IILoc, "template ");
212  SuggestedTemplate
213    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
214  SuggestedKind = TNK_Dependent_template_name;
215  return true;
216}
217
218void Sema::LookupTemplateName(LookupResult &Found,
219                              Scope *S, CXXScopeSpec &SS,
220                              QualType ObjectType,
221                              bool EnteringContext,
222                              bool &MemberOfUnknownSpecialization) {
223  // Determine where to perform name lookup
224  MemberOfUnknownSpecialization = false;
225  DeclContext *LookupCtx = 0;
226  bool isDependent = false;
227  if (!ObjectType.isNull()) {
228    // This nested-name-specifier occurs in a member access expression, e.g.,
229    // x->B::f, and we are looking into the type of the object.
230    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
231    LookupCtx = computeDeclContext(ObjectType);
232    isDependent = ObjectType->isDependentType();
233    assert((isDependent || !ObjectType->isIncompleteType()) &&
234           "Caller should have completed object type");
235  } else if (SS.isSet()) {
236    // This nested-name-specifier occurs after another nested-name-specifier,
237    // so long into the context associated with the prior nested-name-specifier.
238    LookupCtx = computeDeclContext(SS, EnteringContext);
239    isDependent = isDependentScopeSpecifier(SS);
240
241    // The declaration context must be complete.
242    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
243      return;
244  }
245
246  bool ObjectTypeSearchedInScope = false;
247  if (LookupCtx) {
248    // Perform "qualified" name lookup into the declaration context we
249    // computed, which is either the type of the base of a member access
250    // expression or the declaration context associated with a prior
251    // nested-name-specifier.
252    LookupQualifiedName(Found, LookupCtx);
253
254    if (!ObjectType.isNull() && Found.empty()) {
255      // C++ [basic.lookup.classref]p1:
256      //   In a class member access expression (5.2.5), if the . or -> token is
257      //   immediately followed by an identifier followed by a <, the
258      //   identifier must be looked up to determine whether the < is the
259      //   beginning of a template argument list (14.2) or a less-than operator.
260      //   The identifier is first looked up in the class of the object
261      //   expression. If the identifier is not found, it is then looked up in
262      //   the context of the entire postfix-expression and shall name a class
263      //   or function template.
264      if (S) LookupName(Found, S);
265      ObjectTypeSearchedInScope = true;
266    }
267  } else if (isDependent && (!S || ObjectType.isNull())) {
268    // We cannot look into a dependent object type or nested nme
269    // specifier.
270    MemberOfUnknownSpecialization = true;
271    return;
272  } else {
273    // Perform unqualified name lookup in the current scope.
274    LookupName(Found, S);
275  }
276
277  if (Found.empty() && !isDependent) {
278    // If we did not find any names, attempt to correct any typos.
279    DeclarationName Name = Found.getLookupName();
280    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
281                                                false, CTC_CXXCasts)) {
282      FilterAcceptableTemplateNames(Context, Found);
283      if (!Found.empty()) {
284        if (LookupCtx)
285          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
286            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
287            << FixItHint::CreateReplacement(Found.getNameLoc(),
288                                          Found.getLookupName().getAsString());
289        else
290          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
291            << Name << Found.getLookupName()
292            << FixItHint::CreateReplacement(Found.getNameLoc(),
293                                          Found.getLookupName().getAsString());
294        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
295          Diag(Template->getLocation(), diag::note_previous_decl)
296            << Template->getDeclName();
297      }
298    } else {
299      Found.clear();
300      Found.setLookupName(Name);
301    }
302  }
303
304  FilterAcceptableTemplateNames(Context, Found);
305  if (Found.empty()) {
306    if (isDependent)
307      MemberOfUnknownSpecialization = true;
308    return;
309  }
310
311  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
312    // C++ [basic.lookup.classref]p1:
313    //   [...] If the lookup in the class of the object expression finds a
314    //   template, the name is also looked up in the context of the entire
315    //   postfix-expression and [...]
316    //
317    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
318                            LookupOrdinaryName);
319    LookupName(FoundOuter, S);
320    FilterAcceptableTemplateNames(Context, FoundOuter);
321
322    if (FoundOuter.empty()) {
323      //   - if the name is not found, the name found in the class of the
324      //     object expression is used, otherwise
325    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
326      //   - if the name is found in the context of the entire
327      //     postfix-expression and does not name a class template, the name
328      //     found in the class of the object expression is used, otherwise
329    } else if (!Found.isSuppressingDiagnostics()) {
330      //   - if the name found is a class template, it must refer to the same
331      //     entity as the one found in the class of the object expression,
332      //     otherwise the program is ill-formed.
333      if (!Found.isSingleResult() ||
334          Found.getFoundDecl()->getCanonicalDecl()
335            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
336        Diag(Found.getNameLoc(),
337             diag::ext_nested_name_member_ref_lookup_ambiguous)
338          << Found.getLookupName()
339          << ObjectType;
340        Diag(Found.getRepresentativeDecl()->getLocation(),
341             diag::note_ambig_member_ref_object_type)
342          << ObjectType;
343        Diag(FoundOuter.getFoundDecl()->getLocation(),
344             diag::note_ambig_member_ref_scope);
345
346        // Recover by taking the template that we found in the object
347        // expression's type.
348      }
349    }
350  }
351}
352
353/// ActOnDependentIdExpression - Handle a dependent id-expression that
354/// was just parsed.  This is only possible with an explicit scope
355/// specifier naming a dependent type.
356ExprResult
357Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
358                                 const DeclarationNameInfo &NameInfo,
359                                 bool isAddressOfOperand,
360                           const TemplateArgumentListInfo *TemplateArgs) {
361  NestedNameSpecifier *Qualifier
362    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
363
364  DeclContext *DC = getFunctionLevelDeclContext();
365
366  if (!isAddressOfOperand &&
367      isa<CXXMethodDecl>(DC) &&
368      cast<CXXMethodDecl>(DC)->isInstance()) {
369    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
370
371    // Since the 'this' expression is synthesized, we don't need to
372    // perform the double-lookup check.
373    NamedDecl *FirstQualifierInScope = 0;
374
375    return Owned(CXXDependentScopeMemberExpr::Create(Context,
376                                                     /*This*/ 0, ThisType,
377                                                     /*IsArrow*/ true,
378                                                     /*Op*/ SourceLocation(),
379                                                     Qualifier, SS.getRange(),
380                                                     FirstQualifierInScope,
381                                                     NameInfo,
382                                                     TemplateArgs));
383  }
384
385  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
386}
387
388ExprResult
389Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
390                                const DeclarationNameInfo &NameInfo,
391                                const TemplateArgumentListInfo *TemplateArgs) {
392  return Owned(DependentScopeDeclRefExpr::Create(Context,
393               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
394                                                 SS.getRange(),
395                                                 NameInfo,
396                                                 TemplateArgs));
397}
398
399/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
400/// that the template parameter 'PrevDecl' is being shadowed by a new
401/// declaration at location Loc. Returns true to indicate that this is
402/// an error, and false otherwise.
403bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
404  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
405
406  // Microsoft Visual C++ permits template parameters to be shadowed.
407  if (getLangOptions().Microsoft)
408    return false;
409
410  // C++ [temp.local]p4:
411  //   A template-parameter shall not be redeclared within its
412  //   scope (including nested scopes).
413  Diag(Loc, diag::err_template_param_shadow)
414    << cast<NamedDecl>(PrevDecl)->getDeclName();
415  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
416  return true;
417}
418
419/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
420/// the parameter D to reference the templated declaration and return a pointer
421/// to the template declaration. Otherwise, do nothing to D and return null.
422TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
423  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
424    D = Temp->getTemplatedDecl();
425    return Temp;
426  }
427  return 0;
428}
429
430static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
431                                            const ParsedTemplateArgument &Arg) {
432
433  switch (Arg.getKind()) {
434  case ParsedTemplateArgument::Type: {
435    TypeSourceInfo *DI;
436    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
437    if (!DI)
438      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
439    return TemplateArgumentLoc(TemplateArgument(T), DI);
440  }
441
442  case ParsedTemplateArgument::NonType: {
443    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
444    return TemplateArgumentLoc(TemplateArgument(E), E);
445  }
446
447  case ParsedTemplateArgument::Template: {
448    TemplateName Template = Arg.getAsTemplate().get();
449    return TemplateArgumentLoc(TemplateArgument(Template),
450                               Arg.getScopeSpec().getRange(),
451                               Arg.getLocation());
452  }
453  }
454
455  llvm_unreachable("Unhandled parsed template argument");
456  return TemplateArgumentLoc();
457}
458
459/// \brief Translates template arguments as provided by the parser
460/// into template arguments used by semantic analysis.
461void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
462                                      TemplateArgumentListInfo &TemplateArgs) {
463 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
464   TemplateArgs.addArgument(translateTemplateArgument(*this,
465                                                      TemplateArgsIn[I]));
466}
467
468/// ActOnTypeParameter - Called when a C++ template type parameter
469/// (e.g., "typename T") has been parsed. Typename specifies whether
470/// the keyword "typename" was used to declare the type parameter
471/// (otherwise, "class" was used), and KeyLoc is the location of the
472/// "class" or "typename" keyword. ParamName is the name of the
473/// parameter (NULL indicates an unnamed template parameter) and
474/// ParamName is the location of the parameter name (if any).
475/// If the type parameter has a default argument, it will be added
476/// later via ActOnTypeParameterDefault.
477Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
478                               SourceLocation EllipsisLoc,
479                               SourceLocation KeyLoc,
480                               IdentifierInfo *ParamName,
481                               SourceLocation ParamNameLoc,
482                               unsigned Depth, unsigned Position,
483                               SourceLocation EqualLoc,
484                               ParsedType DefaultArg) {
485  assert(S->isTemplateParamScope() &&
486         "Template type parameter not in template parameter scope!");
487  bool Invalid = false;
488
489  if (ParamName) {
490    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
491                                           LookupOrdinaryName,
492                                           ForRedeclaration);
493    if (PrevDecl && PrevDecl->isTemplateParameter())
494      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
495                                                           PrevDecl);
496  }
497
498  SourceLocation Loc = ParamNameLoc;
499  if (!ParamName)
500    Loc = KeyLoc;
501
502  TemplateTypeParmDecl *Param
503    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
504                                   Loc, Depth, Position, ParamName, Typename,
505                                   Ellipsis);
506  if (Invalid)
507    Param->setInvalidDecl();
508
509  if (ParamName) {
510    // Add the template parameter into the current scope.
511    S->AddDecl(Param);
512    IdResolver.AddDecl(Param);
513  }
514
515  // Handle the default argument, if provided.
516  if (DefaultArg) {
517    TypeSourceInfo *DefaultTInfo;
518    GetTypeFromParser(DefaultArg, &DefaultTInfo);
519
520    assert(DefaultTInfo && "expected source information for type");
521
522    // C++0x [temp.param]p9:
523    // A default template-argument may be specified for any kind of
524    // template-parameter that is not a template parameter pack.
525    if (Ellipsis) {
526      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
527      return Param;
528    }
529
530    // Check the template argument itself.
531    if (CheckTemplateArgument(Param, DefaultTInfo)) {
532      Param->setInvalidDecl();
533      return Param;
534    }
535
536    Param->setDefaultArgument(DefaultTInfo, false);
537  }
538
539  return Param;
540}
541
542/// \brief Check that the type of a non-type template parameter is
543/// well-formed.
544///
545/// \returns the (possibly-promoted) parameter type if valid;
546/// otherwise, produces a diagnostic and returns a NULL type.
547QualType
548Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
549  // We don't allow variably-modified types as the type of non-type template
550  // parameters.
551  if (T->isVariablyModifiedType()) {
552    Diag(Loc, diag::err_variably_modified_nontype_template_param)
553      << T;
554    return QualType();
555  }
556
557  // C++ [temp.param]p4:
558  //
559  // A non-type template-parameter shall have one of the following
560  // (optionally cv-qualified) types:
561  //
562  //       -- integral or enumeration type,
563  if (T->isIntegralOrEnumerationType() ||
564      //   -- pointer to object or pointer to function,
565      T->isPointerType() ||
566      //   -- reference to object or reference to function,
567      T->isReferenceType() ||
568      //   -- pointer to member.
569      T->isMemberPointerType() ||
570      // If T is a dependent type, we can't do the check now, so we
571      // assume that it is well-formed.
572      T->isDependentType())
573    return T;
574  // C++ [temp.param]p8:
575  //
576  //   A non-type template-parameter of type "array of T" or
577  //   "function returning T" is adjusted to be of type "pointer to
578  //   T" or "pointer to function returning T", respectively.
579  else if (T->isArrayType())
580    // FIXME: Keep the type prior to promotion?
581    return Context.getArrayDecayedType(T);
582  else if (T->isFunctionType())
583    // FIXME: Keep the type prior to promotion?
584    return Context.getPointerType(T);
585
586  Diag(Loc, diag::err_template_nontype_parm_bad_type)
587    << T;
588
589  return QualType();
590}
591
592Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
593                                          unsigned Depth,
594                                          unsigned Position,
595                                          SourceLocation EqualLoc,
596                                          Expr *Default) {
597  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
598  QualType T = TInfo->getType();
599
600  assert(S->isTemplateParamScope() &&
601         "Non-type template parameter not in template parameter scope!");
602  bool Invalid = false;
603
604  IdentifierInfo *ParamName = D.getIdentifier();
605  if (ParamName) {
606    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
607                                           LookupOrdinaryName,
608                                           ForRedeclaration);
609    if (PrevDecl && PrevDecl->isTemplateParameter())
610      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
611                                                           PrevDecl);
612  }
613
614  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
615  if (T.isNull()) {
616    T = Context.IntTy; // Recover with an 'int' type.
617    Invalid = true;
618  }
619
620  NonTypeTemplateParmDecl *Param
621    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
622                                      D.getIdentifierLoc(),
623                                      Depth, Position, ParamName, T, TInfo);
624  if (Invalid)
625    Param->setInvalidDecl();
626
627  if (D.getIdentifier()) {
628    // Add the template parameter into the current scope.
629    S->AddDecl(Param);
630    IdResolver.AddDecl(Param);
631  }
632
633  // Check the well-formedness of the default template argument, if provided.
634  if (Default) {
635    TemplateArgument Converted;
636    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
637      Param->setInvalidDecl();
638      return Param;
639    }
640
641    Param->setDefaultArgument(Default, false);
642  }
643
644  return Param;
645}
646
647/// ActOnTemplateTemplateParameter - Called when a C++ template template
648/// parameter (e.g. T in template <template <typename> class T> class array)
649/// has been parsed. S is the current scope.
650Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
651                                           SourceLocation TmpLoc,
652                                           TemplateParamsTy *Params,
653                                           IdentifierInfo *Name,
654                                           SourceLocation NameLoc,
655                                           unsigned Depth,
656                                           unsigned Position,
657                                           SourceLocation EqualLoc,
658                                       const ParsedTemplateArgument &Default) {
659  assert(S->isTemplateParamScope() &&
660         "Template template parameter not in template parameter scope!");
661
662  // Construct the parameter object.
663  TemplateTemplateParmDecl *Param =
664    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
665                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
666                                     Depth, Position, Name,
667                                     (TemplateParameterList*)Params);
668
669  // If the template template parameter has a name, then link the identifier
670  // into the scope and lookup mechanisms.
671  if (Name) {
672    S->AddDecl(Param);
673    IdResolver.AddDecl(Param);
674  }
675
676  if (!Default.isInvalid()) {
677    // Check only that we have a template template argument. We don't want to
678    // try to check well-formedness now, because our template template parameter
679    // might have dependent types in its template parameters, which we wouldn't
680    // be able to match now.
681    //
682    // If none of the template template parameter's template arguments mention
683    // other template parameters, we could actually perform more checking here.
684    // However, it isn't worth doing.
685    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
686    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
687      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
688        << DefaultArg.getSourceRange();
689      return Param;
690    }
691
692    Param->setDefaultArgument(DefaultArg, false);
693  }
694
695  return Param;
696}
697
698/// ActOnTemplateParameterList - Builds a TemplateParameterList that
699/// contains the template parameters in Params/NumParams.
700Sema::TemplateParamsTy *
701Sema::ActOnTemplateParameterList(unsigned Depth,
702                                 SourceLocation ExportLoc,
703                                 SourceLocation TemplateLoc,
704                                 SourceLocation LAngleLoc,
705                                 Decl **Params, unsigned NumParams,
706                                 SourceLocation RAngleLoc) {
707  if (ExportLoc.isValid())
708    Diag(ExportLoc, diag::warn_template_export_unsupported);
709
710  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
711                                       (NamedDecl**)Params, NumParams,
712                                       RAngleLoc);
713}
714
715static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
716  if (SS.isSet())
717    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
718                        SS.getRange());
719}
720
721DeclResult
722Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
723                         SourceLocation KWLoc, CXXScopeSpec &SS,
724                         IdentifierInfo *Name, SourceLocation NameLoc,
725                         AttributeList *Attr,
726                         TemplateParameterList *TemplateParams,
727                         AccessSpecifier AS) {
728  assert(TemplateParams && TemplateParams->size() > 0 &&
729         "No template parameters");
730  assert(TUK != TUK_Reference && "Can only declare or define class templates");
731  bool Invalid = false;
732
733  // Check that we can declare a template here.
734  if (CheckTemplateDeclScope(S, TemplateParams))
735    return true;
736
737  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
738  assert(Kind != TTK_Enum && "can't build template of enumerated type");
739
740  // There is no such thing as an unnamed class template.
741  if (!Name) {
742    Diag(KWLoc, diag::err_template_unnamed_class);
743    return true;
744  }
745
746  // Find any previous declaration with this name.
747  DeclContext *SemanticContext;
748  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
749                        ForRedeclaration);
750  if (SS.isNotEmpty() && !SS.isInvalid()) {
751    SemanticContext = computeDeclContext(SS, true);
752    if (!SemanticContext) {
753      // FIXME: Produce a reasonable diagnostic here
754      return true;
755    }
756
757    if (RequireCompleteDeclContext(SS, SemanticContext))
758      return true;
759
760    LookupQualifiedName(Previous, SemanticContext);
761  } else {
762    SemanticContext = CurContext;
763    LookupName(Previous, S);
764  }
765
766  if (Previous.isAmbiguous())
767    return true;
768
769  NamedDecl *PrevDecl = 0;
770  if (Previous.begin() != Previous.end())
771    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
772
773  // If there is a previous declaration with the same name, check
774  // whether this is a valid redeclaration.
775  ClassTemplateDecl *PrevClassTemplate
776    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
777
778  // We may have found the injected-class-name of a class template,
779  // class template partial specialization, or class template specialization.
780  // In these cases, grab the template that is being defined or specialized.
781  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
782      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
783    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
784    PrevClassTemplate
785      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
786    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
787      PrevClassTemplate
788        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
789            ->getSpecializedTemplate();
790    }
791  }
792
793  if (TUK == TUK_Friend) {
794    // C++ [namespace.memdef]p3:
795    //   [...] When looking for a prior declaration of a class or a function
796    //   declared as a friend, and when the name of the friend class or
797    //   function is neither a qualified name nor a template-id, scopes outside
798    //   the innermost enclosing namespace scope are not considered.
799    if (!SS.isSet()) {
800      DeclContext *OutermostContext = CurContext;
801      while (!OutermostContext->isFileContext())
802        OutermostContext = OutermostContext->getLookupParent();
803
804      if (PrevDecl &&
805          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
806           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
807        SemanticContext = PrevDecl->getDeclContext();
808      } else {
809        // Declarations in outer scopes don't matter. However, the outermost
810        // context we computed is the semantic context for our new
811        // declaration.
812        PrevDecl = PrevClassTemplate = 0;
813        SemanticContext = OutermostContext;
814      }
815    }
816
817    if (CurContext->isDependentContext()) {
818      // If this is a dependent context, we don't want to link the friend
819      // class template to the template in scope, because that would perform
820      // checking of the template parameter lists that can't be performed
821      // until the outer context is instantiated.
822      PrevDecl = PrevClassTemplate = 0;
823    }
824  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
825    PrevDecl = PrevClassTemplate = 0;
826
827  if (PrevClassTemplate) {
828    // Ensure that the template parameter lists are compatible.
829    if (!TemplateParameterListsAreEqual(TemplateParams,
830                                   PrevClassTemplate->getTemplateParameters(),
831                                        /*Complain=*/true,
832                                        TPL_TemplateMatch))
833      return true;
834
835    // C++ [temp.class]p4:
836    //   In a redeclaration, partial specialization, explicit
837    //   specialization or explicit instantiation of a class template,
838    //   the class-key shall agree in kind with the original class
839    //   template declaration (7.1.5.3).
840    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
841    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
842      Diag(KWLoc, diag::err_use_with_wrong_tag)
843        << Name
844        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
845      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
846      Kind = PrevRecordDecl->getTagKind();
847    }
848
849    // Check for redefinition of this class template.
850    if (TUK == TUK_Definition) {
851      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
852        Diag(NameLoc, diag::err_redefinition) << Name;
853        Diag(Def->getLocation(), diag::note_previous_definition);
854        // FIXME: Would it make sense to try to "forget" the previous
855        // definition, as part of error recovery?
856        return true;
857      }
858    }
859  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
860    // Maybe we will complain about the shadowed template parameter.
861    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
862    // Just pretend that we didn't see the previous declaration.
863    PrevDecl = 0;
864  } else if (PrevDecl) {
865    // C++ [temp]p5:
866    //   A class template shall not have the same name as any other
867    //   template, class, function, object, enumeration, enumerator,
868    //   namespace, or type in the same scope (3.3), except as specified
869    //   in (14.5.4).
870    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
871    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
872    return true;
873  }
874
875  // Check the template parameter list of this declaration, possibly
876  // merging in the template parameter list from the previous class
877  // template declaration.
878  if (CheckTemplateParameterList(TemplateParams,
879            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
880                                 TPC_ClassTemplate))
881    Invalid = true;
882
883  if (SS.isSet()) {
884    // If the name of the template was qualified, we must be defining the
885    // template out-of-line.
886    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
887        !(TUK == TUK_Friend && CurContext->isDependentContext()))
888      Diag(NameLoc, diag::err_member_def_does_not_match)
889        << Name << SemanticContext << SS.getRange();
890  }
891
892  CXXRecordDecl *NewClass =
893    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
894                          PrevClassTemplate?
895                            PrevClassTemplate->getTemplatedDecl() : 0,
896                          /*DelayTypeCreation=*/true);
897  SetNestedNameSpecifier(NewClass, SS);
898
899  ClassTemplateDecl *NewTemplate
900    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
901                                DeclarationName(Name), TemplateParams,
902                                NewClass, PrevClassTemplate);
903  NewClass->setDescribedClassTemplate(NewTemplate);
904
905  // Build the type for the class template declaration now.
906  QualType T = NewTemplate->getInjectedClassNameSpecialization();
907  T = Context.getInjectedClassNameType(NewClass, T);
908  assert(T->isDependentType() && "Class template type is not dependent?");
909  (void)T;
910
911  // If we are providing an explicit specialization of a member that is a
912  // class template, make a note of that.
913  if (PrevClassTemplate &&
914      PrevClassTemplate->getInstantiatedFromMemberTemplate())
915    PrevClassTemplate->setMemberSpecialization();
916
917  // Set the access specifier.
918  if (!Invalid && TUK != TUK_Friend)
919    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
920
921  // Set the lexical context of these templates
922  NewClass->setLexicalDeclContext(CurContext);
923  NewTemplate->setLexicalDeclContext(CurContext);
924
925  if (TUK == TUK_Definition)
926    NewClass->startDefinition();
927
928  if (Attr)
929    ProcessDeclAttributeList(S, NewClass, Attr);
930
931  if (TUK != TUK_Friend)
932    PushOnScopeChains(NewTemplate, S);
933  else {
934    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
935      NewTemplate->setAccess(PrevClassTemplate->getAccess());
936      NewClass->setAccess(PrevClassTemplate->getAccess());
937    }
938
939    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
940                                       PrevClassTemplate != NULL);
941
942    // Friend templates are visible in fairly strange ways.
943    if (!CurContext->isDependentContext()) {
944      DeclContext *DC = SemanticContext->getRedeclContext();
945      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
946      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
947        PushOnScopeChains(NewTemplate, EnclosingScope,
948                          /* AddToContext = */ false);
949    }
950
951    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
952                                            NewClass->getLocation(),
953                                            NewTemplate,
954                                    /*FIXME:*/NewClass->getLocation());
955    Friend->setAccess(AS_public);
956    CurContext->addDecl(Friend);
957  }
958
959  if (Invalid) {
960    NewTemplate->setInvalidDecl();
961    NewClass->setInvalidDecl();
962  }
963  return NewTemplate;
964}
965
966/// \brief Diagnose the presence of a default template argument on a
967/// template parameter, which is ill-formed in certain contexts.
968///
969/// \returns true if the default template argument should be dropped.
970static bool DiagnoseDefaultTemplateArgument(Sema &S,
971                                            Sema::TemplateParamListContext TPC,
972                                            SourceLocation ParamLoc,
973                                            SourceRange DefArgRange) {
974  switch (TPC) {
975  case Sema::TPC_ClassTemplate:
976    return false;
977
978  case Sema::TPC_FunctionTemplate:
979    // C++ [temp.param]p9:
980    //   A default template-argument shall not be specified in a
981    //   function template declaration or a function template
982    //   definition [...]
983    // (This sentence is not in C++0x, per DR226).
984    if (!S.getLangOptions().CPlusPlus0x)
985      S.Diag(ParamLoc,
986             diag::err_template_parameter_default_in_function_template)
987        << DefArgRange;
988    return false;
989
990  case Sema::TPC_ClassTemplateMember:
991    // C++0x [temp.param]p9:
992    //   A default template-argument shall not be specified in the
993    //   template-parameter-lists of the definition of a member of a
994    //   class template that appears outside of the member's class.
995    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
996      << DefArgRange;
997    return true;
998
999  case Sema::TPC_FriendFunctionTemplate:
1000    // C++ [temp.param]p9:
1001    //   A default template-argument shall not be specified in a
1002    //   friend template declaration.
1003    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1004      << DefArgRange;
1005    return true;
1006
1007    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1008    // for friend function templates if there is only a single
1009    // declaration (and it is a definition). Strange!
1010  }
1011
1012  return false;
1013}
1014
1015/// \brief Checks the validity of a template parameter list, possibly
1016/// considering the template parameter list from a previous
1017/// declaration.
1018///
1019/// If an "old" template parameter list is provided, it must be
1020/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1021/// template parameter list.
1022///
1023/// \param NewParams Template parameter list for a new template
1024/// declaration. This template parameter list will be updated with any
1025/// default arguments that are carried through from the previous
1026/// template parameter list.
1027///
1028/// \param OldParams If provided, template parameter list from a
1029/// previous declaration of the same template. Default template
1030/// arguments will be merged from the old template parameter list to
1031/// the new template parameter list.
1032///
1033/// \param TPC Describes the context in which we are checking the given
1034/// template parameter list.
1035///
1036/// \returns true if an error occurred, false otherwise.
1037bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1038                                      TemplateParameterList *OldParams,
1039                                      TemplateParamListContext TPC) {
1040  bool Invalid = false;
1041
1042  // C++ [temp.param]p10:
1043  //   The set of default template-arguments available for use with a
1044  //   template declaration or definition is obtained by merging the
1045  //   default arguments from the definition (if in scope) and all
1046  //   declarations in scope in the same way default function
1047  //   arguments are (8.3.6).
1048  bool SawDefaultArgument = false;
1049  SourceLocation PreviousDefaultArgLoc;
1050
1051  bool SawParameterPack = false;
1052  SourceLocation ParameterPackLoc;
1053
1054  // Dummy initialization to avoid warnings.
1055  TemplateParameterList::iterator OldParam = NewParams->end();
1056  if (OldParams)
1057    OldParam = OldParams->begin();
1058
1059  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1060                                    NewParamEnd = NewParams->end();
1061       NewParam != NewParamEnd; ++NewParam) {
1062    // Variables used to diagnose redundant default arguments
1063    bool RedundantDefaultArg = false;
1064    SourceLocation OldDefaultLoc;
1065    SourceLocation NewDefaultLoc;
1066
1067    // Variables used to diagnose missing default arguments
1068    bool MissingDefaultArg = false;
1069
1070    // C++0x [temp.param]p11:
1071    // If a template parameter of a class template is a template parameter pack,
1072    // it must be the last template parameter.
1073    if (SawParameterPack) {
1074      Diag(ParameterPackLoc,
1075           diag::err_template_param_pack_must_be_last_template_parameter);
1076      Invalid = true;
1077    }
1078
1079    if (TemplateTypeParmDecl *NewTypeParm
1080          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1081      // Check the presence of a default argument here.
1082      if (NewTypeParm->hasDefaultArgument() &&
1083          DiagnoseDefaultTemplateArgument(*this, TPC,
1084                                          NewTypeParm->getLocation(),
1085               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1086                                                       .getSourceRange()))
1087        NewTypeParm->removeDefaultArgument();
1088
1089      // Merge default arguments for template type parameters.
1090      TemplateTypeParmDecl *OldTypeParm
1091          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1092
1093      if (NewTypeParm->isParameterPack()) {
1094        assert(!NewTypeParm->hasDefaultArgument() &&
1095               "Parameter packs can't have a default argument!");
1096        SawParameterPack = true;
1097        ParameterPackLoc = NewTypeParm->getLocation();
1098      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1099                 NewTypeParm->hasDefaultArgument()) {
1100        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1101        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1102        SawDefaultArgument = true;
1103        RedundantDefaultArg = true;
1104        PreviousDefaultArgLoc = NewDefaultLoc;
1105      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1106        // Merge the default argument from the old declaration to the
1107        // new declaration.
1108        SawDefaultArgument = true;
1109        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1110                                        true);
1111        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1112      } else if (NewTypeParm->hasDefaultArgument()) {
1113        SawDefaultArgument = true;
1114        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1115      } else if (SawDefaultArgument)
1116        MissingDefaultArg = true;
1117    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1118               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1119      // Check the presence of a default argument here.
1120      if (NewNonTypeParm->hasDefaultArgument() &&
1121          DiagnoseDefaultTemplateArgument(*this, TPC,
1122                                          NewNonTypeParm->getLocation(),
1123                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1124        NewNonTypeParm->removeDefaultArgument();
1125      }
1126
1127      // Merge default arguments for non-type template parameters
1128      NonTypeTemplateParmDecl *OldNonTypeParm
1129        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1130      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1131          NewNonTypeParm->hasDefaultArgument()) {
1132        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1133        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1134        SawDefaultArgument = true;
1135        RedundantDefaultArg = true;
1136        PreviousDefaultArgLoc = NewDefaultLoc;
1137      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1138        // Merge the default argument from the old declaration to the
1139        // new declaration.
1140        SawDefaultArgument = true;
1141        // FIXME: We need to create a new kind of "default argument"
1142        // expression that points to a previous template template
1143        // parameter.
1144        NewNonTypeParm->setDefaultArgument(
1145                                         OldNonTypeParm->getDefaultArgument(),
1146                                         /*Inherited=*/ true);
1147        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1148      } else if (NewNonTypeParm->hasDefaultArgument()) {
1149        SawDefaultArgument = true;
1150        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1151      } else if (SawDefaultArgument)
1152        MissingDefaultArg = true;
1153    } else {
1154      // Check the presence of a default argument here.
1155      TemplateTemplateParmDecl *NewTemplateParm
1156        = cast<TemplateTemplateParmDecl>(*NewParam);
1157      if (NewTemplateParm->hasDefaultArgument() &&
1158          DiagnoseDefaultTemplateArgument(*this, TPC,
1159                                          NewTemplateParm->getLocation(),
1160                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1161        NewTemplateParm->removeDefaultArgument();
1162
1163      // Merge default arguments for template template parameters
1164      TemplateTemplateParmDecl *OldTemplateParm
1165        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1166      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1167          NewTemplateParm->hasDefaultArgument()) {
1168        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1169        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1170        SawDefaultArgument = true;
1171        RedundantDefaultArg = true;
1172        PreviousDefaultArgLoc = NewDefaultLoc;
1173      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1174        // Merge the default argument from the old declaration to the
1175        // new declaration.
1176        SawDefaultArgument = true;
1177        // FIXME: We need to create a new kind of "default argument" expression
1178        // that points to a previous template template parameter.
1179        NewTemplateParm->setDefaultArgument(
1180                                          OldTemplateParm->getDefaultArgument(),
1181                                          /*Inherited=*/ true);
1182        PreviousDefaultArgLoc
1183          = OldTemplateParm->getDefaultArgument().getLocation();
1184      } else if (NewTemplateParm->hasDefaultArgument()) {
1185        SawDefaultArgument = true;
1186        PreviousDefaultArgLoc
1187          = NewTemplateParm->getDefaultArgument().getLocation();
1188      } else if (SawDefaultArgument)
1189        MissingDefaultArg = true;
1190    }
1191
1192    if (RedundantDefaultArg) {
1193      // C++ [temp.param]p12:
1194      //   A template-parameter shall not be given default arguments
1195      //   by two different declarations in the same scope.
1196      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1197      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1198      Invalid = true;
1199    } else if (MissingDefaultArg) {
1200      // C++ [temp.param]p11:
1201      //   If a template-parameter has a default template-argument,
1202      //   all subsequent template-parameters shall have a default
1203      //   template-argument supplied.
1204      Diag((*NewParam)->getLocation(),
1205           diag::err_template_param_default_arg_missing);
1206      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1207      Invalid = true;
1208    }
1209
1210    // If we have an old template parameter list that we're merging
1211    // in, move on to the next parameter.
1212    if (OldParams)
1213      ++OldParam;
1214  }
1215
1216  return Invalid;
1217}
1218
1219/// \brief Match the given template parameter lists to the given scope
1220/// specifier, returning the template parameter list that applies to the
1221/// name.
1222///
1223/// \param DeclStartLoc the start of the declaration that has a scope
1224/// specifier or a template parameter list.
1225///
1226/// \param SS the scope specifier that will be matched to the given template
1227/// parameter lists. This scope specifier precedes a qualified name that is
1228/// being declared.
1229///
1230/// \param ParamLists the template parameter lists, from the outermost to the
1231/// innermost template parameter lists.
1232///
1233/// \param NumParamLists the number of template parameter lists in ParamLists.
1234///
1235/// \param IsFriend Whether to apply the slightly different rules for
1236/// matching template parameters to scope specifiers in friend
1237/// declarations.
1238///
1239/// \param IsExplicitSpecialization will be set true if the entity being
1240/// declared is an explicit specialization, false otherwise.
1241///
1242/// \returns the template parameter list, if any, that corresponds to the
1243/// name that is preceded by the scope specifier @p SS. This template
1244/// parameter list may be have template parameters (if we're declaring a
1245/// template) or may have no template parameters (if we're declaring a
1246/// template specialization), or may be NULL (if we were's declaring isn't
1247/// itself a template).
1248TemplateParameterList *
1249Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1250                                              const CXXScopeSpec &SS,
1251                                          TemplateParameterList **ParamLists,
1252                                              unsigned NumParamLists,
1253                                              bool IsFriend,
1254                                              bool &IsExplicitSpecialization,
1255                                              bool &Invalid) {
1256  IsExplicitSpecialization = false;
1257
1258  // Find the template-ids that occur within the nested-name-specifier. These
1259  // template-ids will match up with the template parameter lists.
1260  llvm::SmallVector<const TemplateSpecializationType *, 4>
1261    TemplateIdsInSpecifier;
1262  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1263    ExplicitSpecializationsInSpecifier;
1264  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1265       NNS; NNS = NNS->getPrefix()) {
1266    const Type *T = NNS->getAsType();
1267    if (!T) break;
1268
1269    // C++0x [temp.expl.spec]p17:
1270    //   A member or a member template may be nested within many
1271    //   enclosing class templates. In an explicit specialization for
1272    //   such a member, the member declaration shall be preceded by a
1273    //   template<> for each enclosing class template that is
1274    //   explicitly specialized.
1275    //
1276    // Following the existing practice of GNU and EDG, we allow a typedef of a
1277    // template specialization type.
1278    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1279      T = TT->LookThroughTypedefs().getTypePtr();
1280
1281    if (const TemplateSpecializationType *SpecType
1282                                  = dyn_cast<TemplateSpecializationType>(T)) {
1283      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1284      if (!Template)
1285        continue; // FIXME: should this be an error? probably...
1286
1287      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1288        ClassTemplateSpecializationDecl *SpecDecl
1289          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1290        // If the nested name specifier refers to an explicit specialization,
1291        // we don't need a template<> header.
1292        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1293          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1294          continue;
1295        }
1296      }
1297
1298      TemplateIdsInSpecifier.push_back(SpecType);
1299    }
1300  }
1301
1302  // Reverse the list of template-ids in the scope specifier, so that we can
1303  // more easily match up the template-ids and the template parameter lists.
1304  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1305
1306  SourceLocation FirstTemplateLoc = DeclStartLoc;
1307  if (NumParamLists)
1308    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1309
1310  // Match the template-ids found in the specifier to the template parameter
1311  // lists.
1312  unsigned Idx = 0;
1313  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1314       Idx != NumTemplateIds; ++Idx) {
1315    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1316    bool DependentTemplateId = TemplateId->isDependentType();
1317    if (Idx >= NumParamLists) {
1318      // We have a template-id without a corresponding template parameter
1319      // list.
1320
1321      // ...which is fine if this is a friend declaration.
1322      if (IsFriend) {
1323        IsExplicitSpecialization = true;
1324        break;
1325      }
1326
1327      if (DependentTemplateId) {
1328        // FIXME: the location information here isn't great.
1329        Diag(SS.getRange().getBegin(),
1330             diag::err_template_spec_needs_template_parameters)
1331          << TemplateId
1332          << SS.getRange();
1333        Invalid = true;
1334      } else {
1335        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1336          << SS.getRange()
1337          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1338        IsExplicitSpecialization = true;
1339      }
1340      return 0;
1341    }
1342
1343    // Check the template parameter list against its corresponding template-id.
1344    if (DependentTemplateId) {
1345      TemplateParameterList *ExpectedTemplateParams = 0;
1346
1347      // Are there cases in (e.g.) friends where this won't match?
1348      if (const InjectedClassNameType *Injected
1349            = TemplateId->getAs<InjectedClassNameType>()) {
1350        CXXRecordDecl *Record = Injected->getDecl();
1351        if (ClassTemplatePartialSpecializationDecl *Partial =
1352              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1353          ExpectedTemplateParams = Partial->getTemplateParameters();
1354        else
1355          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1356            ->getTemplateParameters();
1357      }
1358
1359      if (ExpectedTemplateParams)
1360        TemplateParameterListsAreEqual(ParamLists[Idx],
1361                                       ExpectedTemplateParams,
1362                                       true, TPL_TemplateMatch);
1363
1364      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1365    } else if (ParamLists[Idx]->size() > 0)
1366      Diag(ParamLists[Idx]->getTemplateLoc(),
1367           diag::err_template_param_list_matches_nontemplate)
1368        << TemplateId
1369        << ParamLists[Idx]->getSourceRange();
1370    else
1371      IsExplicitSpecialization = true;
1372  }
1373
1374  // If there were at least as many template-ids as there were template
1375  // parameter lists, then there are no template parameter lists remaining for
1376  // the declaration itself.
1377  if (Idx >= NumParamLists) {
1378    // Silently drop template member friend declarations.
1379    // TODO: implement these
1380    if (IsFriend && NumParamLists) Invalid = true;
1381
1382    return 0;
1383  }
1384
1385  // If there were too many template parameter lists, complain about that now.
1386  if (Idx != NumParamLists - 1) {
1387    while (Idx < NumParamLists - 1) {
1388      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1389      Diag(ParamLists[Idx]->getTemplateLoc(),
1390           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1391                               : diag::err_template_spec_extra_headers)
1392        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1393                       ParamLists[Idx]->getRAngleLoc());
1394
1395      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1396        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1397             diag::note_explicit_template_spec_does_not_need_header)
1398          << ExplicitSpecializationsInSpecifier.back();
1399        ExplicitSpecializationsInSpecifier.pop_back();
1400      }
1401
1402      // We have a template parameter list with no corresponding scope, which
1403      // means that the resulting template declaration can't be instantiated
1404      // properly (we'll end up with dependent nodes when we shouldn't).
1405      if (!isExplicitSpecHeader)
1406        Invalid = true;
1407
1408      ++Idx;
1409    }
1410  }
1411
1412  // Silently drop template member template friend declarations.
1413  // TODO: implement these
1414  if (IsFriend && NumParamLists > 1)
1415    Invalid = true;
1416
1417  // Return the last template parameter list, which corresponds to the
1418  // entity being declared.
1419  return ParamLists[NumParamLists - 1];
1420}
1421
1422QualType Sema::CheckTemplateIdType(TemplateName Name,
1423                                   SourceLocation TemplateLoc,
1424                              const TemplateArgumentListInfo &TemplateArgs) {
1425  TemplateDecl *Template = Name.getAsTemplateDecl();
1426  if (!Template) {
1427    // The template name does not resolve to a template, so we just
1428    // build a dependent template-id type.
1429    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1430  }
1431
1432  // Check that the template argument list is well-formed for this
1433  // template.
1434  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1435                                        TemplateArgs.size());
1436  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1437                                false, Converted))
1438    return QualType();
1439
1440  assert((Converted.structuredSize() ==
1441            Template->getTemplateParameters()->size()) &&
1442         "Converted template argument list is too short!");
1443
1444  QualType CanonType;
1445
1446  if (Name.isDependent() ||
1447      TemplateSpecializationType::anyDependentTemplateArguments(
1448                                                      TemplateArgs)) {
1449    // This class template specialization is a dependent
1450    // type. Therefore, its canonical type is another class template
1451    // specialization type that contains all of the converted
1452    // arguments in canonical form. This ensures that, e.g., A<T> and
1453    // A<T, T> have identical types when A is declared as:
1454    //
1455    //   template<typename T, typename U = T> struct A;
1456    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1457    CanonType = Context.getTemplateSpecializationType(CanonName,
1458                                                   Converted.getFlatArguments(),
1459                                                   Converted.flatSize());
1460
1461    // FIXME: CanonType is not actually the canonical type, and unfortunately
1462    // it is a TemplateSpecializationType that we will never use again.
1463    // In the future, we need to teach getTemplateSpecializationType to only
1464    // build the canonical type and return that to us.
1465    CanonType = Context.getCanonicalType(CanonType);
1466
1467    // This might work out to be a current instantiation, in which
1468    // case the canonical type needs to be the InjectedClassNameType.
1469    //
1470    // TODO: in theory this could be a simple hashtable lookup; most
1471    // changes to CurContext don't change the set of current
1472    // instantiations.
1473    if (isa<ClassTemplateDecl>(Template)) {
1474      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1475        // If we get out to a namespace, we're done.
1476        if (Ctx->isFileContext()) break;
1477
1478        // If this isn't a record, keep looking.
1479        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1480        if (!Record) continue;
1481
1482        // Look for one of the two cases with InjectedClassNameTypes
1483        // and check whether it's the same template.
1484        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1485            !Record->getDescribedClassTemplate())
1486          continue;
1487
1488        // Fetch the injected class name type and check whether its
1489        // injected type is equal to the type we just built.
1490        QualType ICNT = Context.getTypeDeclType(Record);
1491        QualType Injected = cast<InjectedClassNameType>(ICNT)
1492          ->getInjectedSpecializationType();
1493
1494        if (CanonType != Injected->getCanonicalTypeInternal())
1495          continue;
1496
1497        // If so, the canonical type of this TST is the injected
1498        // class name type of the record we just found.
1499        assert(ICNT.isCanonical());
1500        CanonType = ICNT;
1501        break;
1502      }
1503    }
1504  } else if (ClassTemplateDecl *ClassTemplate
1505               = dyn_cast<ClassTemplateDecl>(Template)) {
1506    // Find the class template specialization declaration that
1507    // corresponds to these arguments.
1508    void *InsertPos = 0;
1509    ClassTemplateSpecializationDecl *Decl
1510      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
1511                                          Converted.flatSize(), InsertPos);
1512    if (!Decl) {
1513      // This is the first time we have referenced this class template
1514      // specialization. Create the canonical declaration and add it to
1515      // the set of specializations.
1516      Decl = ClassTemplateSpecializationDecl::Create(Context,
1517                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1518                                                ClassTemplate->getDeclContext(),
1519                                                ClassTemplate->getLocation(),
1520                                                ClassTemplate,
1521                                                Converted, 0);
1522      ClassTemplate->AddSpecialization(Decl, InsertPos);
1523      Decl->setLexicalDeclContext(CurContext);
1524    }
1525
1526    CanonType = Context.getTypeDeclType(Decl);
1527    assert(isa<RecordType>(CanonType) &&
1528           "type of non-dependent specialization is not a RecordType");
1529  }
1530
1531  // Build the fully-sugared type for this class template
1532  // specialization, which refers back to the class template
1533  // specialization we created or found.
1534  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1535}
1536
1537TypeResult
1538Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1539                          SourceLocation LAngleLoc,
1540                          ASTTemplateArgsPtr TemplateArgsIn,
1541                          SourceLocation RAngleLoc) {
1542  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1543
1544  // Translate the parser's template argument list in our AST format.
1545  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1546  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1547
1548  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1549  TemplateArgsIn.release();
1550
1551  if (Result.isNull())
1552    return true;
1553
1554  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1555  TemplateSpecializationTypeLoc TL
1556    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1557  TL.setTemplateNameLoc(TemplateLoc);
1558  TL.setLAngleLoc(LAngleLoc);
1559  TL.setRAngleLoc(RAngleLoc);
1560  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1561    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1562
1563  return CreateParsedType(Result, DI);
1564}
1565
1566TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1567                                        TagUseKind TUK,
1568                                        TypeSpecifierType TagSpec,
1569                                        SourceLocation TagLoc) {
1570  if (TypeResult.isInvalid())
1571    return ::TypeResult();
1572
1573  // FIXME: preserve source info, ideally without copying the DI.
1574  TypeSourceInfo *DI;
1575  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1576
1577  // Verify the tag specifier.
1578  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1579
1580  if (const RecordType *RT = Type->getAs<RecordType>()) {
1581    RecordDecl *D = RT->getDecl();
1582
1583    IdentifierInfo *Id = D->getIdentifier();
1584    assert(Id && "templated class must have an identifier");
1585
1586    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1587      Diag(TagLoc, diag::err_use_with_wrong_tag)
1588        << Type
1589        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1590      Diag(D->getLocation(), diag::note_previous_use);
1591    }
1592  }
1593
1594  ElaboratedTypeKeyword Keyword
1595    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1596  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1597
1598  return ParsedType::make(ElabType);
1599}
1600
1601ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1602                                                 LookupResult &R,
1603                                                 bool RequiresADL,
1604                                 const TemplateArgumentListInfo &TemplateArgs) {
1605  // FIXME: Can we do any checking at this point? I guess we could check the
1606  // template arguments that we have against the template name, if the template
1607  // name refers to a single template. That's not a terribly common case,
1608  // though.
1609
1610  // These should be filtered out by our callers.
1611  assert(!R.empty() && "empty lookup results when building templateid");
1612  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1613
1614  NestedNameSpecifier *Qualifier = 0;
1615  SourceRange QualifierRange;
1616  if (SS.isSet()) {
1617    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1618    QualifierRange = SS.getRange();
1619  }
1620
1621  // We don't want lookup warnings at this point.
1622  R.suppressDiagnostics();
1623
1624  bool Dependent
1625    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1626                                              &TemplateArgs);
1627  UnresolvedLookupExpr *ULE
1628    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1629                                   Qualifier, QualifierRange,
1630                                   R.getLookupNameInfo(),
1631                                   RequiresADL, TemplateArgs,
1632                                   R.begin(), R.end());
1633
1634  return Owned(ULE);
1635}
1636
1637// We actually only call this from template instantiation.
1638ExprResult
1639Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1640                                   const DeclarationNameInfo &NameInfo,
1641                             const TemplateArgumentListInfo &TemplateArgs) {
1642  DeclContext *DC;
1643  if (!(DC = computeDeclContext(SS, false)) ||
1644      DC->isDependentContext() ||
1645      RequireCompleteDeclContext(SS, DC))
1646    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1647
1648  bool MemberOfUnknownSpecialization;
1649  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1650  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1651                     MemberOfUnknownSpecialization);
1652
1653  if (R.isAmbiguous())
1654    return ExprError();
1655
1656  if (R.empty()) {
1657    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1658      << NameInfo.getName() << SS.getRange();
1659    return ExprError();
1660  }
1661
1662  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1663    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1664      << (NestedNameSpecifier*) SS.getScopeRep()
1665      << NameInfo.getName() << SS.getRange();
1666    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1667    return ExprError();
1668  }
1669
1670  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1671}
1672
1673/// \brief Form a dependent template name.
1674///
1675/// This action forms a dependent template name given the template
1676/// name and its (presumably dependent) scope specifier. For
1677/// example, given "MetaFun::template apply", the scope specifier \p
1678/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1679/// of the "template" keyword, and "apply" is the \p Name.
1680TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1681                                                  SourceLocation TemplateKWLoc,
1682                                                  CXXScopeSpec &SS,
1683                                                  UnqualifiedId &Name,
1684                                                  ParsedType ObjectType,
1685                                                  bool EnteringContext,
1686                                                  TemplateTy &Result) {
1687  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1688      !getLangOptions().CPlusPlus0x)
1689    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1690      << FixItHint::CreateRemoval(TemplateKWLoc);
1691
1692  DeclContext *LookupCtx = 0;
1693  if (SS.isSet())
1694    LookupCtx = computeDeclContext(SS, EnteringContext);
1695  if (!LookupCtx && ObjectType)
1696    LookupCtx = computeDeclContext(ObjectType.get());
1697  if (LookupCtx) {
1698    // C++0x [temp.names]p5:
1699    //   If a name prefixed by the keyword template is not the name of
1700    //   a template, the program is ill-formed. [Note: the keyword
1701    //   template may not be applied to non-template members of class
1702    //   templates. -end note ] [ Note: as is the case with the
1703    //   typename prefix, the template prefix is allowed in cases
1704    //   where it is not strictly necessary; i.e., when the
1705    //   nested-name-specifier or the expression on the left of the ->
1706    //   or . is not dependent on a template-parameter, or the use
1707    //   does not appear in the scope of a template. -end note]
1708    //
1709    // Note: C++03 was more strict here, because it banned the use of
1710    // the "template" keyword prior to a template-name that was not a
1711    // dependent name. C++ DR468 relaxed this requirement (the
1712    // "template" keyword is now permitted). We follow the C++0x
1713    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1714    bool MemberOfUnknownSpecialization;
1715    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1716                                          ObjectType, EnteringContext, Result,
1717                                          MemberOfUnknownSpecialization);
1718    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1719        isa<CXXRecordDecl>(LookupCtx) &&
1720        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1721      // This is a dependent template. Handle it below.
1722    } else if (TNK == TNK_Non_template) {
1723      Diag(Name.getSourceRange().getBegin(),
1724           diag::err_template_kw_refers_to_non_template)
1725        << GetNameFromUnqualifiedId(Name).getName()
1726        << Name.getSourceRange()
1727        << TemplateKWLoc;
1728      return TNK_Non_template;
1729    } else {
1730      // We found something; return it.
1731      return TNK;
1732    }
1733  }
1734
1735  NestedNameSpecifier *Qualifier
1736    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1737
1738  switch (Name.getKind()) {
1739  case UnqualifiedId::IK_Identifier:
1740    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1741                                                              Name.Identifier));
1742    return TNK_Dependent_template_name;
1743
1744  case UnqualifiedId::IK_OperatorFunctionId:
1745    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1746                                             Name.OperatorFunctionId.Operator));
1747    return TNK_Dependent_template_name;
1748
1749  case UnqualifiedId::IK_LiteralOperatorId:
1750    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1751
1752  default:
1753    break;
1754  }
1755
1756  Diag(Name.getSourceRange().getBegin(),
1757       diag::err_template_kw_refers_to_non_template)
1758    << GetNameFromUnqualifiedId(Name).getName()
1759    << Name.getSourceRange()
1760    << TemplateKWLoc;
1761  return TNK_Non_template;
1762}
1763
1764bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1765                                     const TemplateArgumentLoc &AL,
1766                                     TemplateArgumentListBuilder &Converted) {
1767  const TemplateArgument &Arg = AL.getArgument();
1768
1769  // Check template type parameter.
1770  switch(Arg.getKind()) {
1771  case TemplateArgument::Type:
1772    // C++ [temp.arg.type]p1:
1773    //   A template-argument for a template-parameter which is a
1774    //   type shall be a type-id.
1775    break;
1776  case TemplateArgument::Template: {
1777    // We have a template type parameter but the template argument
1778    // is a template without any arguments.
1779    SourceRange SR = AL.getSourceRange();
1780    TemplateName Name = Arg.getAsTemplate();
1781    Diag(SR.getBegin(), diag::err_template_missing_args)
1782      << Name << SR;
1783    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1784      Diag(Decl->getLocation(), diag::note_template_decl_here);
1785
1786    return true;
1787  }
1788  default: {
1789    // We have a template type parameter but the template argument
1790    // is not a type.
1791    SourceRange SR = AL.getSourceRange();
1792    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1793    Diag(Param->getLocation(), diag::note_template_param_here);
1794
1795    return true;
1796  }
1797  }
1798
1799  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1800    return true;
1801
1802  // Add the converted template type argument.
1803  Converted.Append(
1804                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1805  return false;
1806}
1807
1808/// \brief Substitute template arguments into the default template argument for
1809/// the given template type parameter.
1810///
1811/// \param SemaRef the semantic analysis object for which we are performing
1812/// the substitution.
1813///
1814/// \param Template the template that we are synthesizing template arguments
1815/// for.
1816///
1817/// \param TemplateLoc the location of the template name that started the
1818/// template-id we are checking.
1819///
1820/// \param RAngleLoc the location of the right angle bracket ('>') that
1821/// terminates the template-id.
1822///
1823/// \param Param the template template parameter whose default we are
1824/// substituting into.
1825///
1826/// \param Converted the list of template arguments provided for template
1827/// parameters that precede \p Param in the template parameter list.
1828///
1829/// \returns the substituted template argument, or NULL if an error occurred.
1830static TypeSourceInfo *
1831SubstDefaultTemplateArgument(Sema &SemaRef,
1832                             TemplateDecl *Template,
1833                             SourceLocation TemplateLoc,
1834                             SourceLocation RAngleLoc,
1835                             TemplateTypeParmDecl *Param,
1836                             TemplateArgumentListBuilder &Converted) {
1837  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1838
1839  // If the argument type is dependent, instantiate it now based
1840  // on the previously-computed template arguments.
1841  if (ArgType->getType()->isDependentType()) {
1842    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1843                                      /*TakeArgs=*/false);
1844
1845    MultiLevelTemplateArgumentList AllTemplateArgs
1846      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1847
1848    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1849                                     Template, Converted.getFlatArguments(),
1850                                     Converted.flatSize(),
1851                                     SourceRange(TemplateLoc, RAngleLoc));
1852
1853    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1854                                Param->getDefaultArgumentLoc(),
1855                                Param->getDeclName());
1856  }
1857
1858  return ArgType;
1859}
1860
1861/// \brief Substitute template arguments into the default template argument for
1862/// the given non-type template parameter.
1863///
1864/// \param SemaRef the semantic analysis object for which we are performing
1865/// the substitution.
1866///
1867/// \param Template the template that we are synthesizing template arguments
1868/// for.
1869///
1870/// \param TemplateLoc the location of the template name that started the
1871/// template-id we are checking.
1872///
1873/// \param RAngleLoc the location of the right angle bracket ('>') that
1874/// terminates the template-id.
1875///
1876/// \param Param the non-type template parameter whose default we are
1877/// substituting into.
1878///
1879/// \param Converted the list of template arguments provided for template
1880/// parameters that precede \p Param in the template parameter list.
1881///
1882/// \returns the substituted template argument, or NULL if an error occurred.
1883static ExprResult
1884SubstDefaultTemplateArgument(Sema &SemaRef,
1885                             TemplateDecl *Template,
1886                             SourceLocation TemplateLoc,
1887                             SourceLocation RAngleLoc,
1888                             NonTypeTemplateParmDecl *Param,
1889                             TemplateArgumentListBuilder &Converted) {
1890  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1891                                    /*TakeArgs=*/false);
1892
1893  MultiLevelTemplateArgumentList AllTemplateArgs
1894    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1895
1896  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1897                                   Template, Converted.getFlatArguments(),
1898                                   Converted.flatSize(),
1899                                   SourceRange(TemplateLoc, RAngleLoc));
1900
1901  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1902}
1903
1904/// \brief Substitute template arguments into the default template argument for
1905/// the given template template parameter.
1906///
1907/// \param SemaRef the semantic analysis object for which we are performing
1908/// the substitution.
1909///
1910/// \param Template the template that we are synthesizing template arguments
1911/// for.
1912///
1913/// \param TemplateLoc the location of the template name that started the
1914/// template-id we are checking.
1915///
1916/// \param RAngleLoc the location of the right angle bracket ('>') that
1917/// terminates the template-id.
1918///
1919/// \param Param the template template parameter whose default we are
1920/// substituting into.
1921///
1922/// \param Converted the list of template arguments provided for template
1923/// parameters that precede \p Param in the template parameter list.
1924///
1925/// \returns the substituted template argument, or NULL if an error occurred.
1926static TemplateName
1927SubstDefaultTemplateArgument(Sema &SemaRef,
1928                             TemplateDecl *Template,
1929                             SourceLocation TemplateLoc,
1930                             SourceLocation RAngleLoc,
1931                             TemplateTemplateParmDecl *Param,
1932                             TemplateArgumentListBuilder &Converted) {
1933  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1934                                    /*TakeArgs=*/false);
1935
1936  MultiLevelTemplateArgumentList AllTemplateArgs
1937    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1938
1939  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1940                                   Template, Converted.getFlatArguments(),
1941                                   Converted.flatSize(),
1942                                   SourceRange(TemplateLoc, RAngleLoc));
1943
1944  return SemaRef.SubstTemplateName(
1945                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1946                              Param->getDefaultArgument().getTemplateNameLoc(),
1947                                   AllTemplateArgs);
1948}
1949
1950/// \brief If the given template parameter has a default template
1951/// argument, substitute into that default template argument and
1952/// return the corresponding template argument.
1953TemplateArgumentLoc
1954Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1955                                              SourceLocation TemplateLoc,
1956                                              SourceLocation RAngleLoc,
1957                                              Decl *Param,
1958                                     TemplateArgumentListBuilder &Converted) {
1959  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1960    if (!TypeParm->hasDefaultArgument())
1961      return TemplateArgumentLoc();
1962
1963    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1964                                                      TemplateLoc,
1965                                                      RAngleLoc,
1966                                                      TypeParm,
1967                                                      Converted);
1968    if (DI)
1969      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1970
1971    return TemplateArgumentLoc();
1972  }
1973
1974  if (NonTypeTemplateParmDecl *NonTypeParm
1975        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1976    if (!NonTypeParm->hasDefaultArgument())
1977      return TemplateArgumentLoc();
1978
1979    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1980                                                        TemplateLoc,
1981                                                        RAngleLoc,
1982                                                        NonTypeParm,
1983                                                        Converted);
1984    if (Arg.isInvalid())
1985      return TemplateArgumentLoc();
1986
1987    Expr *ArgE = Arg.takeAs<Expr>();
1988    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1989  }
1990
1991  TemplateTemplateParmDecl *TempTempParm
1992    = cast<TemplateTemplateParmDecl>(Param);
1993  if (!TempTempParm->hasDefaultArgument())
1994    return TemplateArgumentLoc();
1995
1996  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1997                                                    TemplateLoc,
1998                                                    RAngleLoc,
1999                                                    TempTempParm,
2000                                                    Converted);
2001  if (TName.isNull())
2002    return TemplateArgumentLoc();
2003
2004  return TemplateArgumentLoc(TemplateArgument(TName),
2005                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2006                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2007}
2008
2009/// \brief Check that the given template argument corresponds to the given
2010/// template parameter.
2011bool Sema::CheckTemplateArgument(NamedDecl *Param,
2012                                 const TemplateArgumentLoc &Arg,
2013                                 TemplateDecl *Template,
2014                                 SourceLocation TemplateLoc,
2015                                 SourceLocation RAngleLoc,
2016                                 TemplateArgumentListBuilder &Converted,
2017                                 CheckTemplateArgumentKind CTAK) {
2018  // Check template type parameters.
2019  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2020    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2021
2022  // Check non-type template parameters.
2023  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2024    // Do substitution on the type of the non-type template parameter
2025    // with the template arguments we've seen thus far.
2026    QualType NTTPType = NTTP->getType();
2027    if (NTTPType->isDependentType()) {
2028      // Do substitution on the type of the non-type template parameter.
2029      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2030                                 NTTP, Converted.getFlatArguments(),
2031                                 Converted.flatSize(),
2032                                 SourceRange(TemplateLoc, RAngleLoc));
2033
2034      TemplateArgumentList TemplateArgs(Context, Converted,
2035                                        /*TakeArgs=*/false);
2036      NTTPType = SubstType(NTTPType,
2037                           MultiLevelTemplateArgumentList(TemplateArgs),
2038                           NTTP->getLocation(),
2039                           NTTP->getDeclName());
2040      // If that worked, check the non-type template parameter type
2041      // for validity.
2042      if (!NTTPType.isNull())
2043        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2044                                                     NTTP->getLocation());
2045      if (NTTPType.isNull())
2046        return true;
2047    }
2048
2049    switch (Arg.getArgument().getKind()) {
2050    case TemplateArgument::Null:
2051      assert(false && "Should never see a NULL template argument here");
2052      return true;
2053
2054    case TemplateArgument::Expression: {
2055      Expr *E = Arg.getArgument().getAsExpr();
2056      TemplateArgument Result;
2057      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2058        return true;
2059
2060      Converted.Append(Result);
2061      break;
2062    }
2063
2064    case TemplateArgument::Declaration:
2065    case TemplateArgument::Integral:
2066      // We've already checked this template argument, so just copy
2067      // it to the list of converted arguments.
2068      Converted.Append(Arg.getArgument());
2069      break;
2070
2071    case TemplateArgument::Template:
2072      // We were given a template template argument. It may not be ill-formed;
2073      // see below.
2074      if (DependentTemplateName *DTN
2075            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2076        // We have a template argument such as \c T::template X, which we
2077        // parsed as a template template argument. However, since we now
2078        // know that we need a non-type template argument, convert this
2079        // template name into an expression.
2080
2081        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2082                                     Arg.getTemplateNameLoc());
2083
2084        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2085                                                    DTN->getQualifier(),
2086                                               Arg.getTemplateQualifierRange(),
2087                                                    NameInfo);
2088
2089        TemplateArgument Result;
2090        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2091          return true;
2092
2093        Converted.Append(Result);
2094        break;
2095      }
2096
2097      // We have a template argument that actually does refer to a class
2098      // template, template alias, or template template parameter, and
2099      // therefore cannot be a non-type template argument.
2100      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2101        << Arg.getSourceRange();
2102
2103      Diag(Param->getLocation(), diag::note_template_param_here);
2104      return true;
2105
2106    case TemplateArgument::Type: {
2107      // We have a non-type template parameter but the template
2108      // argument is a type.
2109
2110      // C++ [temp.arg]p2:
2111      //   In a template-argument, an ambiguity between a type-id and
2112      //   an expression is resolved to a type-id, regardless of the
2113      //   form of the corresponding template-parameter.
2114      //
2115      // We warn specifically about this case, since it can be rather
2116      // confusing for users.
2117      QualType T = Arg.getArgument().getAsType();
2118      SourceRange SR = Arg.getSourceRange();
2119      if (T->isFunctionType())
2120        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2121      else
2122        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2123      Diag(Param->getLocation(), diag::note_template_param_here);
2124      return true;
2125    }
2126
2127    case TemplateArgument::Pack:
2128      llvm_unreachable("Caller must expand template argument packs");
2129      break;
2130    }
2131
2132    return false;
2133  }
2134
2135
2136  // Check template template parameters.
2137  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2138
2139  // Substitute into the template parameter list of the template
2140  // template parameter, since previously-supplied template arguments
2141  // may appear within the template template parameter.
2142  {
2143    // Set up a template instantiation context.
2144    LocalInstantiationScope Scope(*this);
2145    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2146                               TempParm, Converted.getFlatArguments(),
2147                               Converted.flatSize(),
2148                               SourceRange(TemplateLoc, RAngleLoc));
2149
2150    TemplateArgumentList TemplateArgs(Context, Converted,
2151                                      /*TakeArgs=*/false);
2152    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2153                      SubstDecl(TempParm, CurContext,
2154                                MultiLevelTemplateArgumentList(TemplateArgs)));
2155    if (!TempParm)
2156      return true;
2157
2158    // FIXME: TempParam is leaked.
2159  }
2160
2161  switch (Arg.getArgument().getKind()) {
2162  case TemplateArgument::Null:
2163    assert(false && "Should never see a NULL template argument here");
2164    return true;
2165
2166  case TemplateArgument::Template:
2167    if (CheckTemplateArgument(TempParm, Arg))
2168      return true;
2169
2170    Converted.Append(Arg.getArgument());
2171    break;
2172
2173  case TemplateArgument::Expression:
2174  case TemplateArgument::Type:
2175    // We have a template template parameter but the template
2176    // argument does not refer to a template.
2177    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2178    return true;
2179
2180  case TemplateArgument::Declaration:
2181    llvm_unreachable(
2182                       "Declaration argument with template template parameter");
2183    break;
2184  case TemplateArgument::Integral:
2185    llvm_unreachable(
2186                          "Integral argument with template template parameter");
2187    break;
2188
2189  case TemplateArgument::Pack:
2190    llvm_unreachable("Caller must expand template argument packs");
2191    break;
2192  }
2193
2194  return false;
2195}
2196
2197/// \brief Check that the given template argument list is well-formed
2198/// for specializing the given template.
2199bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2200                                     SourceLocation TemplateLoc,
2201                                const TemplateArgumentListInfo &TemplateArgs,
2202                                     bool PartialTemplateArgs,
2203                                     TemplateArgumentListBuilder &Converted) {
2204  TemplateParameterList *Params = Template->getTemplateParameters();
2205  unsigned NumParams = Params->size();
2206  unsigned NumArgs = TemplateArgs.size();
2207  bool Invalid = false;
2208
2209  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2210
2211  bool HasParameterPack =
2212    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2213
2214  if ((NumArgs > NumParams && !HasParameterPack) ||
2215      (NumArgs < Params->getMinRequiredArguments() &&
2216       !PartialTemplateArgs)) {
2217    // FIXME: point at either the first arg beyond what we can handle,
2218    // or the '>', depending on whether we have too many or too few
2219    // arguments.
2220    SourceRange Range;
2221    if (NumArgs > NumParams)
2222      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2223    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2224      << (NumArgs > NumParams)
2225      << (isa<ClassTemplateDecl>(Template)? 0 :
2226          isa<FunctionTemplateDecl>(Template)? 1 :
2227          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2228      << Template << Range;
2229    Diag(Template->getLocation(), diag::note_template_decl_here)
2230      << Params->getSourceRange();
2231    Invalid = true;
2232  }
2233
2234  // C++ [temp.arg]p1:
2235  //   [...] The type and form of each template-argument specified in
2236  //   a template-id shall match the type and form specified for the
2237  //   corresponding parameter declared by the template in its
2238  //   template-parameter-list.
2239  unsigned ArgIdx = 0;
2240  for (TemplateParameterList::iterator Param = Params->begin(),
2241                                       ParamEnd = Params->end();
2242       Param != ParamEnd; ++Param, ++ArgIdx) {
2243    if (ArgIdx > NumArgs && PartialTemplateArgs)
2244      break;
2245
2246    // If we have a template parameter pack, check every remaining template
2247    // argument against that template parameter pack.
2248    if ((*Param)->isTemplateParameterPack()) {
2249      Converted.BeginPack();
2250      for (; ArgIdx < NumArgs; ++ArgIdx) {
2251        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2252                                  TemplateLoc, RAngleLoc, Converted)) {
2253          Invalid = true;
2254          break;
2255        }
2256      }
2257      Converted.EndPack();
2258      continue;
2259    }
2260
2261    if (ArgIdx < NumArgs) {
2262      // Check the template argument we were given.
2263      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2264                                TemplateLoc, RAngleLoc, Converted))
2265        return true;
2266
2267      continue;
2268    }
2269
2270    // We have a default template argument that we will use.
2271    TemplateArgumentLoc Arg;
2272
2273    // Retrieve the default template argument from the template
2274    // parameter. For each kind of template parameter, we substitute the
2275    // template arguments provided thus far and any "outer" template arguments
2276    // (when the template parameter was part of a nested template) into
2277    // the default argument.
2278    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2279      if (!TTP->hasDefaultArgument()) {
2280        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2281        break;
2282      }
2283
2284      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2285                                                             Template,
2286                                                             TemplateLoc,
2287                                                             RAngleLoc,
2288                                                             TTP,
2289                                                             Converted);
2290      if (!ArgType)
2291        return true;
2292
2293      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2294                                ArgType);
2295    } else if (NonTypeTemplateParmDecl *NTTP
2296                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2297      if (!NTTP->hasDefaultArgument()) {
2298        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2299        break;
2300      }
2301
2302      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2303                                                              TemplateLoc,
2304                                                              RAngleLoc,
2305                                                              NTTP,
2306                                                              Converted);
2307      if (E.isInvalid())
2308        return true;
2309
2310      Expr *Ex = E.takeAs<Expr>();
2311      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2312    } else {
2313      TemplateTemplateParmDecl *TempParm
2314        = cast<TemplateTemplateParmDecl>(*Param);
2315
2316      if (!TempParm->hasDefaultArgument()) {
2317        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2318        break;
2319      }
2320
2321      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2322                                                       TemplateLoc,
2323                                                       RAngleLoc,
2324                                                       TempParm,
2325                                                       Converted);
2326      if (Name.isNull())
2327        return true;
2328
2329      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2330                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2331                  TempParm->getDefaultArgument().getTemplateNameLoc());
2332    }
2333
2334    // Introduce an instantiation record that describes where we are using
2335    // the default template argument.
2336    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2337                                        Converted.getFlatArguments(),
2338                                        Converted.flatSize(),
2339                                        SourceRange(TemplateLoc, RAngleLoc));
2340
2341    // Check the default template argument.
2342    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2343                              RAngleLoc, Converted))
2344      return true;
2345  }
2346
2347  return Invalid;
2348}
2349
2350/// \brief Check a template argument against its corresponding
2351/// template type parameter.
2352///
2353/// This routine implements the semantics of C++ [temp.arg.type]. It
2354/// returns true if an error occurred, and false otherwise.
2355bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2356                                 TypeSourceInfo *ArgInfo) {
2357  assert(ArgInfo && "invalid TypeSourceInfo");
2358  QualType Arg = ArgInfo->getType();
2359
2360  // C++03 [temp.arg.type]p2:
2361  //   A local type, a type with no linkage, an unnamed type or a type
2362  //   compounded from any of these types shall not be used as a
2363  //   template-argument for a template type-parameter.
2364  // C++0x allows these, and even in C++03 we allow them as an extension with
2365  // a warning.
2366  //
2367  // FIXME: We're not handling the "type compounded from any of these types"
2368  // case.
2369  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2370  if (!LangOpts.CPlusPlus0x) {
2371    const TagType *Tag = 0;
2372    if (const EnumType *EnumT = Arg->getAs<EnumType>())
2373      Tag = EnumT;
2374    else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2375      Tag = RecordT;
2376    if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2377      SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2378      Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2379        << QualType(Tag, 0) << SR;
2380    } else if (Tag && !Tag->getDecl()->getDeclName() &&
2381               !Tag->getDecl()->getTypedefForAnonDecl()) {
2382      Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2383      Diag(Tag->getDecl()->getLocation(),
2384           diag::note_template_unnamed_type_here);
2385    }
2386  }
2387
2388  if (Arg->isVariablyModifiedType()) {
2389    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2390  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2391    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2392  }
2393
2394  return false;
2395}
2396
2397/// \brief Checks whether the given template argument is the address
2398/// of an object or function according to C++ [temp.arg.nontype]p1.
2399static bool
2400CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2401                                               NonTypeTemplateParmDecl *Param,
2402                                               QualType ParamType,
2403                                               Expr *ArgIn,
2404                                               TemplateArgument &Converted) {
2405  bool Invalid = false;
2406  Expr *Arg = ArgIn;
2407  QualType ArgType = Arg->getType();
2408
2409  // See through any implicit casts we added to fix the type.
2410  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2411    Arg = Cast->getSubExpr();
2412
2413  // C++ [temp.arg.nontype]p1:
2414  //
2415  //   A template-argument for a non-type, non-template
2416  //   template-parameter shall be one of: [...]
2417  //
2418  //     -- the address of an object or function with external
2419  //        linkage, including function templates and function
2420  //        template-ids but excluding non-static class members,
2421  //        expressed as & id-expression where the & is optional if
2422  //        the name refers to a function or array, or if the
2423  //        corresponding template-parameter is a reference; or
2424  DeclRefExpr *DRE = 0;
2425
2426  // In C++98/03 mode, give an extension warning on any extra parentheses.
2427  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2428  bool ExtraParens = false;
2429  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2430    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2431      S.Diag(Arg->getSourceRange().getBegin(),
2432             diag::ext_template_arg_extra_parens)
2433        << Arg->getSourceRange();
2434      ExtraParens = true;
2435    }
2436
2437    Arg = Parens->getSubExpr();
2438  }
2439
2440  bool AddressTaken = false;
2441  SourceLocation AddrOpLoc;
2442  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2443    if (UnOp->getOpcode() == UO_AddrOf) {
2444      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2445      AddressTaken = true;
2446      AddrOpLoc = UnOp->getOperatorLoc();
2447    }
2448  } else
2449    DRE = dyn_cast<DeclRefExpr>(Arg);
2450
2451  if (!DRE) {
2452    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2453      << Arg->getSourceRange();
2454    S.Diag(Param->getLocation(), diag::note_template_param_here);
2455    return true;
2456  }
2457
2458  // Stop checking the precise nature of the argument if it is value dependent,
2459  // it should be checked when instantiated.
2460  if (Arg->isValueDependent()) {
2461    Converted = TemplateArgument(ArgIn->Retain());
2462    return false;
2463  }
2464
2465  if (!isa<ValueDecl>(DRE->getDecl())) {
2466    S.Diag(Arg->getSourceRange().getBegin(),
2467           diag::err_template_arg_not_object_or_func_form)
2468      << Arg->getSourceRange();
2469    S.Diag(Param->getLocation(), diag::note_template_param_here);
2470    return true;
2471  }
2472
2473  NamedDecl *Entity = 0;
2474
2475  // Cannot refer to non-static data members
2476  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2477    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2478      << Field << Arg->getSourceRange();
2479    S.Diag(Param->getLocation(), diag::note_template_param_here);
2480    return true;
2481  }
2482
2483  // Cannot refer to non-static member functions
2484  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2485    if (!Method->isStatic()) {
2486      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2487        << Method << Arg->getSourceRange();
2488      S.Diag(Param->getLocation(), diag::note_template_param_here);
2489      return true;
2490    }
2491
2492  // Functions must have external linkage.
2493  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2494    if (!isExternalLinkage(Func->getLinkage())) {
2495      S.Diag(Arg->getSourceRange().getBegin(),
2496             diag::err_template_arg_function_not_extern)
2497        << Func << Arg->getSourceRange();
2498      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2499        << true;
2500      return true;
2501    }
2502
2503    // Okay: we've named a function with external linkage.
2504    Entity = Func;
2505
2506    // If the template parameter has pointer type, the function decays.
2507    if (ParamType->isPointerType() && !AddressTaken)
2508      ArgType = S.Context.getPointerType(Func->getType());
2509    else if (AddressTaken && ParamType->isReferenceType()) {
2510      // If we originally had an address-of operator, but the
2511      // parameter has reference type, complain and (if things look
2512      // like they will work) drop the address-of operator.
2513      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2514                                            ParamType.getNonReferenceType())) {
2515        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2516          << ParamType;
2517        S.Diag(Param->getLocation(), diag::note_template_param_here);
2518        return true;
2519      }
2520
2521      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2522        << ParamType
2523        << FixItHint::CreateRemoval(AddrOpLoc);
2524      S.Diag(Param->getLocation(), diag::note_template_param_here);
2525
2526      ArgType = Func->getType();
2527    }
2528  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2529    if (!isExternalLinkage(Var->getLinkage())) {
2530      S.Diag(Arg->getSourceRange().getBegin(),
2531             diag::err_template_arg_object_not_extern)
2532        << Var << Arg->getSourceRange();
2533      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2534        << true;
2535      return true;
2536    }
2537
2538    // A value of reference type is not an object.
2539    if (Var->getType()->isReferenceType()) {
2540      S.Diag(Arg->getSourceRange().getBegin(),
2541             diag::err_template_arg_reference_var)
2542        << Var->getType() << Arg->getSourceRange();
2543      S.Diag(Param->getLocation(), diag::note_template_param_here);
2544      return true;
2545    }
2546
2547    // Okay: we've named an object with external linkage
2548    Entity = Var;
2549
2550    // If the template parameter has pointer type, we must have taken
2551    // the address of this object.
2552    if (ParamType->isReferenceType()) {
2553      if (AddressTaken) {
2554        // If we originally had an address-of operator, but the
2555        // parameter has reference type, complain and (if things look
2556        // like they will work) drop the address-of operator.
2557        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2558                                            ParamType.getNonReferenceType())) {
2559          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2560            << ParamType;
2561          S.Diag(Param->getLocation(), diag::note_template_param_here);
2562          return true;
2563        }
2564
2565        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2566          << ParamType
2567          << FixItHint::CreateRemoval(AddrOpLoc);
2568        S.Diag(Param->getLocation(), diag::note_template_param_here);
2569
2570        ArgType = Var->getType();
2571      }
2572    } else if (!AddressTaken && ParamType->isPointerType()) {
2573      if (Var->getType()->isArrayType()) {
2574        // Array-to-pointer decay.
2575        ArgType = S.Context.getArrayDecayedType(Var->getType());
2576      } else {
2577        // If the template parameter has pointer type but the address of
2578        // this object was not taken, complain and (possibly) recover by
2579        // taking the address of the entity.
2580        ArgType = S.Context.getPointerType(Var->getType());
2581        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2582          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2583            << ParamType;
2584          S.Diag(Param->getLocation(), diag::note_template_param_here);
2585          return true;
2586        }
2587
2588        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2589          << ParamType
2590          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2591
2592        S.Diag(Param->getLocation(), diag::note_template_param_here);
2593      }
2594    }
2595  } else {
2596    // We found something else, but we don't know specifically what it is.
2597    S.Diag(Arg->getSourceRange().getBegin(),
2598           diag::err_template_arg_not_object_or_func)
2599      << Arg->getSourceRange();
2600    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2601    return true;
2602  }
2603
2604  if (ParamType->isPointerType() &&
2605      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2606      S.IsQualificationConversion(ArgType, ParamType)) {
2607    // For pointer-to-object types, qualification conversions are
2608    // permitted.
2609  } else {
2610    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2611      if (!ParamRef->getPointeeType()->isFunctionType()) {
2612        // C++ [temp.arg.nontype]p5b3:
2613        //   For a non-type template-parameter of type reference to
2614        //   object, no conversions apply. The type referred to by the
2615        //   reference may be more cv-qualified than the (otherwise
2616        //   identical) type of the template- argument. The
2617        //   template-parameter is bound directly to the
2618        //   template-argument, which shall be an lvalue.
2619
2620        // FIXME: Other qualifiers?
2621        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2622        unsigned ArgQuals = ArgType.getCVRQualifiers();
2623
2624        if ((ParamQuals | ArgQuals) != ParamQuals) {
2625          S.Diag(Arg->getSourceRange().getBegin(),
2626                 diag::err_template_arg_ref_bind_ignores_quals)
2627            << ParamType << Arg->getType()
2628            << Arg->getSourceRange();
2629          S.Diag(Param->getLocation(), diag::note_template_param_here);
2630          return true;
2631        }
2632      }
2633    }
2634
2635    // At this point, the template argument refers to an object or
2636    // function with external linkage. We now need to check whether the
2637    // argument and parameter types are compatible.
2638    if (!S.Context.hasSameUnqualifiedType(ArgType,
2639                                          ParamType.getNonReferenceType())) {
2640      // We can't perform this conversion or binding.
2641      if (ParamType->isReferenceType())
2642        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2643          << ParamType << Arg->getType() << Arg->getSourceRange();
2644      else
2645        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2646          << Arg->getType() << ParamType << Arg->getSourceRange();
2647      S.Diag(Param->getLocation(), diag::note_template_param_here);
2648      return true;
2649    }
2650  }
2651
2652  // Create the template argument.
2653  Converted = TemplateArgument(Entity->getCanonicalDecl());
2654  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2655  return false;
2656}
2657
2658/// \brief Checks whether the given template argument is a pointer to
2659/// member constant according to C++ [temp.arg.nontype]p1.
2660bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2661                                                TemplateArgument &Converted) {
2662  bool Invalid = false;
2663
2664  // See through any implicit casts we added to fix the type.
2665  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2666    Arg = Cast->getSubExpr();
2667
2668  // C++ [temp.arg.nontype]p1:
2669  //
2670  //   A template-argument for a non-type, non-template
2671  //   template-parameter shall be one of: [...]
2672  //
2673  //     -- a pointer to member expressed as described in 5.3.1.
2674  DeclRefExpr *DRE = 0;
2675
2676  // In C++98/03 mode, give an extension warning on any extra parentheses.
2677  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2678  bool ExtraParens = false;
2679  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2680    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
2681      Diag(Arg->getSourceRange().getBegin(),
2682           diag::ext_template_arg_extra_parens)
2683        << Arg->getSourceRange();
2684      ExtraParens = true;
2685    }
2686
2687    Arg = Parens->getSubExpr();
2688  }
2689
2690  // A pointer-to-member constant written &Class::member.
2691  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2692    if (UnOp->getOpcode() == UO_AddrOf) {
2693      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2694      if (DRE && !DRE->getQualifier())
2695        DRE = 0;
2696    }
2697  }
2698  // A constant of pointer-to-member type.
2699  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2700    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2701      if (VD->getType()->isMemberPointerType()) {
2702        if (isa<NonTypeTemplateParmDecl>(VD) ||
2703            (isa<VarDecl>(VD) &&
2704             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2705          if (Arg->isTypeDependent() || Arg->isValueDependent())
2706            Converted = TemplateArgument(Arg->Retain());
2707          else
2708            Converted = TemplateArgument(VD->getCanonicalDecl());
2709          return Invalid;
2710        }
2711      }
2712    }
2713
2714    DRE = 0;
2715  }
2716
2717  if (!DRE)
2718    return Diag(Arg->getSourceRange().getBegin(),
2719                diag::err_template_arg_not_pointer_to_member_form)
2720      << Arg->getSourceRange();
2721
2722  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2723    assert((isa<FieldDecl>(DRE->getDecl()) ||
2724            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2725           "Only non-static member pointers can make it here");
2726
2727    // Okay: this is the address of a non-static member, and therefore
2728    // a member pointer constant.
2729    if (Arg->isTypeDependent() || Arg->isValueDependent())
2730      Converted = TemplateArgument(Arg->Retain());
2731    else
2732      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2733    return Invalid;
2734  }
2735
2736  // We found something else, but we don't know specifically what it is.
2737  Diag(Arg->getSourceRange().getBegin(),
2738       diag::err_template_arg_not_pointer_to_member_form)
2739      << Arg->getSourceRange();
2740  Diag(DRE->getDecl()->getLocation(),
2741       diag::note_template_arg_refers_here);
2742  return true;
2743}
2744
2745/// \brief Check a template argument against its corresponding
2746/// non-type template parameter.
2747///
2748/// This routine implements the semantics of C++ [temp.arg.nontype].
2749/// It returns true if an error occurred, and false otherwise. \p
2750/// InstantiatedParamType is the type of the non-type template
2751/// parameter after it has been instantiated.
2752///
2753/// If no error was detected, Converted receives the converted template argument.
2754bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2755                                 QualType InstantiatedParamType, Expr *&Arg,
2756                                 TemplateArgument &Converted,
2757                                 CheckTemplateArgumentKind CTAK) {
2758  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2759
2760  // If either the parameter has a dependent type or the argument is
2761  // type-dependent, there's nothing we can check now.
2762  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2763    // FIXME: Produce a cloned, canonical expression?
2764    Converted = TemplateArgument(Arg);
2765    return false;
2766  }
2767
2768  // C++ [temp.arg.nontype]p5:
2769  //   The following conversions are performed on each expression used
2770  //   as a non-type template-argument. If a non-type
2771  //   template-argument cannot be converted to the type of the
2772  //   corresponding template-parameter then the program is
2773  //   ill-formed.
2774  //
2775  //     -- for a non-type template-parameter of integral or
2776  //        enumeration type, integral promotions (4.5) and integral
2777  //        conversions (4.7) are applied.
2778  QualType ParamType = InstantiatedParamType;
2779  QualType ArgType = Arg->getType();
2780  if (ParamType->isIntegralOrEnumerationType()) {
2781    // C++ [temp.arg.nontype]p1:
2782    //   A template-argument for a non-type, non-template
2783    //   template-parameter shall be one of:
2784    //
2785    //     -- an integral constant-expression of integral or enumeration
2786    //        type; or
2787    //     -- the name of a non-type template-parameter; or
2788    SourceLocation NonConstantLoc;
2789    llvm::APSInt Value;
2790    if (!ArgType->isIntegralOrEnumerationType()) {
2791      Diag(Arg->getSourceRange().getBegin(),
2792           diag::err_template_arg_not_integral_or_enumeral)
2793        << ArgType << Arg->getSourceRange();
2794      Diag(Param->getLocation(), diag::note_template_param_here);
2795      return true;
2796    } else if (!Arg->isValueDependent() &&
2797               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2798      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2799        << ArgType << Arg->getSourceRange();
2800      return true;
2801    }
2802
2803    // From here on out, all we care about are the unqualified forms
2804    // of the parameter and argument types.
2805    ParamType = ParamType.getUnqualifiedType();
2806    ArgType = ArgType.getUnqualifiedType();
2807
2808    // Try to convert the argument to the parameter's type.
2809    if (Context.hasSameType(ParamType, ArgType)) {
2810      // Okay: no conversion necessary
2811    } else if (CTAK == CTAK_Deduced) {
2812      // C++ [temp.deduct.type]p17:
2813      //   If, in the declaration of a function template with a non-type
2814      //   template-parameter, the non-type template- parameter is used
2815      //   in an expression in the function parameter-list and, if the
2816      //   corresponding template-argument is deduced, the
2817      //   template-argument type shall match the type of the
2818      //   template-parameter exactly, except that a template-argument
2819      //   deduced from an array bound may be of any integral type.
2820      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2821        << ArgType << ParamType;
2822      Diag(Param->getLocation(), diag::note_template_param_here);
2823      return true;
2824    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2825               !ParamType->isEnumeralType()) {
2826      // This is an integral promotion or conversion.
2827      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
2828    } else {
2829      // We can't perform this conversion.
2830      Diag(Arg->getSourceRange().getBegin(),
2831           diag::err_template_arg_not_convertible)
2832        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2833      Diag(Param->getLocation(), diag::note_template_param_here);
2834      return true;
2835    }
2836
2837    QualType IntegerType = Context.getCanonicalType(ParamType);
2838    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2839      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2840
2841    if (!Arg->isValueDependent()) {
2842      llvm::APSInt OldValue = Value;
2843
2844      // Coerce the template argument's value to the value it will have
2845      // based on the template parameter's type.
2846      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2847      if (Value.getBitWidth() != AllowedBits)
2848        Value.extOrTrunc(AllowedBits);
2849      Value.setIsSigned(IntegerType->isSignedIntegerType());
2850
2851      // Complain if an unsigned parameter received a negative value.
2852      if (IntegerType->isUnsignedIntegerType()
2853          && (OldValue.isSigned() && OldValue.isNegative())) {
2854        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2855          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2856          << Arg->getSourceRange();
2857        Diag(Param->getLocation(), diag::note_template_param_here);
2858      }
2859
2860      // Complain if we overflowed the template parameter's type.
2861      unsigned RequiredBits;
2862      if (IntegerType->isUnsignedIntegerType())
2863        RequiredBits = OldValue.getActiveBits();
2864      else if (OldValue.isUnsigned())
2865        RequiredBits = OldValue.getActiveBits() + 1;
2866      else
2867        RequiredBits = OldValue.getMinSignedBits();
2868      if (RequiredBits > AllowedBits) {
2869        Diag(Arg->getSourceRange().getBegin(),
2870             diag::warn_template_arg_too_large)
2871          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2872          << Arg->getSourceRange();
2873        Diag(Param->getLocation(), diag::note_template_param_here);
2874      }
2875    }
2876
2877    // Add the value of this argument to the list of converted
2878    // arguments. We use the bitwidth and signedness of the template
2879    // parameter.
2880    if (Arg->isValueDependent()) {
2881      // The argument is value-dependent. Create a new
2882      // TemplateArgument with the converted expression.
2883      Converted = TemplateArgument(Arg);
2884      return false;
2885    }
2886
2887    Converted = TemplateArgument(Value,
2888                                 ParamType->isEnumeralType() ? ParamType
2889                                                             : IntegerType);
2890    return false;
2891  }
2892
2893  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2894
2895  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2896  // from a template argument of type std::nullptr_t to a non-type
2897  // template parameter of type pointer to object, pointer to
2898  // function, or pointer-to-member, respectively.
2899  if (ArgType->isNullPtrType() &&
2900      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2901    Converted = TemplateArgument((NamedDecl *)0);
2902    return false;
2903  }
2904
2905  // Handle pointer-to-function, reference-to-function, and
2906  // pointer-to-member-function all in (roughly) the same way.
2907  if (// -- For a non-type template-parameter of type pointer to
2908      //    function, only the function-to-pointer conversion (4.3) is
2909      //    applied. If the template-argument represents a set of
2910      //    overloaded functions (or a pointer to such), the matching
2911      //    function is selected from the set (13.4).
2912      (ParamType->isPointerType() &&
2913       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2914      // -- For a non-type template-parameter of type reference to
2915      //    function, no conversions apply. If the template-argument
2916      //    represents a set of overloaded functions, the matching
2917      //    function is selected from the set (13.4).
2918      (ParamType->isReferenceType() &&
2919       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2920      // -- For a non-type template-parameter of type pointer to
2921      //    member function, no conversions apply. If the
2922      //    template-argument represents a set of overloaded member
2923      //    functions, the matching member function is selected from
2924      //    the set (13.4).
2925      (ParamType->isMemberPointerType() &&
2926       ParamType->getAs<MemberPointerType>()->getPointeeType()
2927         ->isFunctionType())) {
2928
2929    if (Arg->getType() == Context.OverloadTy) {
2930      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2931                                                                true,
2932                                                                FoundResult)) {
2933        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2934          return true;
2935
2936        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2937        ArgType = Arg->getType();
2938      } else
2939        return true;
2940    }
2941
2942    if (!ParamType->isMemberPointerType())
2943      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2944                                                            ParamType,
2945                                                            Arg, Converted);
2946
2947    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2948      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
2949    } else if (!Context.hasSameUnqualifiedType(ArgType,
2950                                           ParamType.getNonReferenceType())) {
2951      // We can't perform this conversion.
2952      Diag(Arg->getSourceRange().getBegin(),
2953           diag::err_template_arg_not_convertible)
2954        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2955      Diag(Param->getLocation(), diag::note_template_param_here);
2956      return true;
2957    }
2958
2959    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2960  }
2961
2962  if (ParamType->isPointerType()) {
2963    //   -- for a non-type template-parameter of type pointer to
2964    //      object, qualification conversions (4.4) and the
2965    //      array-to-pointer conversion (4.2) are applied.
2966    // C++0x also allows a value of std::nullptr_t.
2967    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
2968           "Only object pointers allowed here");
2969
2970    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2971                                                          ParamType,
2972                                                          Arg, Converted);
2973  }
2974
2975  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2976    //   -- For a non-type template-parameter of type reference to
2977    //      object, no conversions apply. The type referred to by the
2978    //      reference may be more cv-qualified than the (otherwise
2979    //      identical) type of the template-argument. The
2980    //      template-parameter is bound directly to the
2981    //      template-argument, which must be an lvalue.
2982    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
2983           "Only object references allowed here");
2984
2985    if (Arg->getType() == Context.OverloadTy) {
2986      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2987                                                 ParamRefType->getPointeeType(),
2988                                                                true,
2989                                                                FoundResult)) {
2990        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2991          return true;
2992
2993        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2994        ArgType = Arg->getType();
2995      } else
2996        return true;
2997    }
2998
2999    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3000                                                          ParamType,
3001                                                          Arg, Converted);
3002  }
3003
3004  //     -- For a non-type template-parameter of type pointer to data
3005  //        member, qualification conversions (4.4) are applied.
3006  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3007
3008  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3009    // Types match exactly: nothing more to do here.
3010  } else if (IsQualificationConversion(ArgType, ParamType)) {
3011    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3012  } else {
3013    // We can't perform this conversion.
3014    Diag(Arg->getSourceRange().getBegin(),
3015         diag::err_template_arg_not_convertible)
3016      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3017    Diag(Param->getLocation(), diag::note_template_param_here);
3018    return true;
3019  }
3020
3021  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3022}
3023
3024/// \brief Check a template argument against its corresponding
3025/// template template parameter.
3026///
3027/// This routine implements the semantics of C++ [temp.arg.template].
3028/// It returns true if an error occurred, and false otherwise.
3029bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3030                                 const TemplateArgumentLoc &Arg) {
3031  TemplateName Name = Arg.getArgument().getAsTemplate();
3032  TemplateDecl *Template = Name.getAsTemplateDecl();
3033  if (!Template) {
3034    // Any dependent template name is fine.
3035    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3036    return false;
3037  }
3038
3039  // C++ [temp.arg.template]p1:
3040  //   A template-argument for a template template-parameter shall be
3041  //   the name of a class template, expressed as id-expression. Only
3042  //   primary class templates are considered when matching the
3043  //   template template argument with the corresponding parameter;
3044  //   partial specializations are not considered even if their
3045  //   parameter lists match that of the template template parameter.
3046  //
3047  // Note that we also allow template template parameters here, which
3048  // will happen when we are dealing with, e.g., class template
3049  // partial specializations.
3050  if (!isa<ClassTemplateDecl>(Template) &&
3051      !isa<TemplateTemplateParmDecl>(Template)) {
3052    assert(isa<FunctionTemplateDecl>(Template) &&
3053           "Only function templates are possible here");
3054    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3055    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3056      << Template;
3057  }
3058
3059  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3060                                         Param->getTemplateParameters(),
3061                                         true,
3062                                         TPL_TemplateTemplateArgumentMatch,
3063                                         Arg.getLocation());
3064}
3065
3066/// \brief Given a non-type template argument that refers to a
3067/// declaration and the type of its corresponding non-type template
3068/// parameter, produce an expression that properly refers to that
3069/// declaration.
3070ExprResult
3071Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3072                                              QualType ParamType,
3073                                              SourceLocation Loc) {
3074  assert(Arg.getKind() == TemplateArgument::Declaration &&
3075         "Only declaration template arguments permitted here");
3076  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3077
3078  if (VD->getDeclContext()->isRecord() &&
3079      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3080    // If the value is a class member, we might have a pointer-to-member.
3081    // Determine whether the non-type template template parameter is of
3082    // pointer-to-member type. If so, we need to build an appropriate
3083    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3084    // would refer to the member itself.
3085    if (ParamType->isMemberPointerType()) {
3086      QualType ClassType
3087        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3088      NestedNameSpecifier *Qualifier
3089        = NestedNameSpecifier::Create(Context, 0, false,
3090                                      ClassType.getTypePtr());
3091      CXXScopeSpec SS;
3092      SS.setScopeRep(Qualifier);
3093      ExprResult RefExpr = BuildDeclRefExpr(VD,
3094                                           VD->getType().getNonReferenceType(),
3095                                                  Loc,
3096                                                  &SS);
3097      if (RefExpr.isInvalid())
3098        return ExprError();
3099
3100      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3101
3102      // We might need to perform a trailing qualification conversion, since
3103      // the element type on the parameter could be more qualified than the
3104      // element type in the expression we constructed.
3105      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3106                                    ParamType.getUnqualifiedType())) {
3107        Expr *RefE = RefExpr.takeAs<Expr>();
3108        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3109        RefExpr = Owned(RefE);
3110      }
3111
3112      assert(!RefExpr.isInvalid() &&
3113             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3114                                 ParamType.getUnqualifiedType()));
3115      return move(RefExpr);
3116    }
3117  }
3118
3119  QualType T = VD->getType().getNonReferenceType();
3120  if (ParamType->isPointerType()) {
3121    // When the non-type template parameter is a pointer, take the
3122    // address of the declaration.
3123    ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3124    if (RefExpr.isInvalid())
3125      return ExprError();
3126
3127    if (T->isFunctionType() || T->isArrayType()) {
3128      // Decay functions and arrays.
3129      Expr *RefE = (Expr *)RefExpr.get();
3130      DefaultFunctionArrayConversion(RefE);
3131      if (RefE != RefExpr.get()) {
3132        RefExpr.release();
3133        RefExpr = Owned(RefE);
3134      }
3135
3136      return move(RefExpr);
3137    }
3138
3139    // Take the address of everything else
3140    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3141  }
3142
3143  // If the non-type template parameter has reference type, qualify the
3144  // resulting declaration reference with the extra qualifiers on the
3145  // type that the reference refers to.
3146  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3147    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3148
3149  return BuildDeclRefExpr(VD, T, Loc);
3150}
3151
3152/// \brief Construct a new expression that refers to the given
3153/// integral template argument with the given source-location
3154/// information.
3155///
3156/// This routine takes care of the mapping from an integral template
3157/// argument (which may have any integral type) to the appropriate
3158/// literal value.
3159ExprResult
3160Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3161                                                  SourceLocation Loc) {
3162  assert(Arg.getKind() == TemplateArgument::Integral &&
3163         "Operation is only value for integral template arguments");
3164  QualType T = Arg.getIntegralType();
3165  if (T->isCharType() || T->isWideCharType())
3166    return Owned(new (Context) CharacterLiteral(
3167                                             Arg.getAsIntegral()->getZExtValue(),
3168                                             T->isWideCharType(),
3169                                             T,
3170                                             Loc));
3171  if (T->isBooleanType())
3172    return Owned(new (Context) CXXBoolLiteralExpr(
3173                                            Arg.getAsIntegral()->getBoolValue(),
3174                                            T,
3175                                            Loc));
3176
3177  return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3178}
3179
3180
3181/// \brief Determine whether the given template parameter lists are
3182/// equivalent.
3183///
3184/// \param New  The new template parameter list, typically written in the
3185/// source code as part of a new template declaration.
3186///
3187/// \param Old  The old template parameter list, typically found via
3188/// name lookup of the template declared with this template parameter
3189/// list.
3190///
3191/// \param Complain  If true, this routine will produce a diagnostic if
3192/// the template parameter lists are not equivalent.
3193///
3194/// \param Kind describes how we are to match the template parameter lists.
3195///
3196/// \param TemplateArgLoc If this source location is valid, then we
3197/// are actually checking the template parameter list of a template
3198/// argument (New) against the template parameter list of its
3199/// corresponding template template parameter (Old). We produce
3200/// slightly different diagnostics in this scenario.
3201///
3202/// \returns True if the template parameter lists are equal, false
3203/// otherwise.
3204bool
3205Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3206                                     TemplateParameterList *Old,
3207                                     bool Complain,
3208                                     TemplateParameterListEqualKind Kind,
3209                                     SourceLocation TemplateArgLoc) {
3210  if (Old->size() != New->size()) {
3211    if (Complain) {
3212      unsigned NextDiag = diag::err_template_param_list_different_arity;
3213      if (TemplateArgLoc.isValid()) {
3214        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3215        NextDiag = diag::note_template_param_list_different_arity;
3216      }
3217      Diag(New->getTemplateLoc(), NextDiag)
3218          << (New->size() > Old->size())
3219          << (Kind != TPL_TemplateMatch)
3220          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3221      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3222        << (Kind != TPL_TemplateMatch)
3223        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3224    }
3225
3226    return false;
3227  }
3228
3229  for (TemplateParameterList::iterator OldParm = Old->begin(),
3230         OldParmEnd = Old->end(), NewParm = New->begin();
3231       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3232    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3233      if (Complain) {
3234        unsigned NextDiag = diag::err_template_param_different_kind;
3235        if (TemplateArgLoc.isValid()) {
3236          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3237          NextDiag = diag::note_template_param_different_kind;
3238        }
3239        Diag((*NewParm)->getLocation(), NextDiag)
3240          << (Kind != TPL_TemplateMatch);
3241        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3242          << (Kind != TPL_TemplateMatch);
3243      }
3244      return false;
3245    }
3246
3247    if (TemplateTypeParmDecl *OldTTP
3248                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3249      // Template type parameters are equivalent if either both are template
3250      // type parameter packs or neither are (since we know we're at the same
3251      // index).
3252      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3253      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3254        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3255        // allow one to match a template parameter pack in the template
3256        // parameter list of a template template parameter to one or more
3257        // template parameters in the template parameter list of the
3258        // corresponding template template argument.
3259        if (Complain) {
3260          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3261          if (TemplateArgLoc.isValid()) {
3262            Diag(TemplateArgLoc,
3263                 diag::err_template_arg_template_params_mismatch);
3264            NextDiag = diag::note_template_parameter_pack_non_pack;
3265          }
3266          Diag(NewTTP->getLocation(), NextDiag)
3267            << 0 << NewTTP->isParameterPack();
3268          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3269            << 0 << OldTTP->isParameterPack();
3270        }
3271        return false;
3272      }
3273    } else if (NonTypeTemplateParmDecl *OldNTTP
3274                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3275      // The types of non-type template parameters must agree.
3276      NonTypeTemplateParmDecl *NewNTTP
3277        = cast<NonTypeTemplateParmDecl>(*NewParm);
3278
3279      // If we are matching a template template argument to a template
3280      // template parameter and one of the non-type template parameter types
3281      // is dependent, then we must wait until template instantiation time
3282      // to actually compare the arguments.
3283      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3284          (OldNTTP->getType()->isDependentType() ||
3285           NewNTTP->getType()->isDependentType()))
3286        continue;
3287
3288      if (Context.getCanonicalType(OldNTTP->getType()) !=
3289            Context.getCanonicalType(NewNTTP->getType())) {
3290        if (Complain) {
3291          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3292          if (TemplateArgLoc.isValid()) {
3293            Diag(TemplateArgLoc,
3294                 diag::err_template_arg_template_params_mismatch);
3295            NextDiag = diag::note_template_nontype_parm_different_type;
3296          }
3297          Diag(NewNTTP->getLocation(), NextDiag)
3298            << NewNTTP->getType()
3299            << (Kind != TPL_TemplateMatch);
3300          Diag(OldNTTP->getLocation(),
3301               diag::note_template_nontype_parm_prev_declaration)
3302            << OldNTTP->getType();
3303        }
3304        return false;
3305      }
3306    } else {
3307      // The template parameter lists of template template
3308      // parameters must agree.
3309      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3310             "Only template template parameters handled here");
3311      TemplateTemplateParmDecl *OldTTP
3312        = cast<TemplateTemplateParmDecl>(*OldParm);
3313      TemplateTemplateParmDecl *NewTTP
3314        = cast<TemplateTemplateParmDecl>(*NewParm);
3315      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3316                                          OldTTP->getTemplateParameters(),
3317                                          Complain,
3318              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3319                                          TemplateArgLoc))
3320        return false;
3321    }
3322  }
3323
3324  return true;
3325}
3326
3327/// \brief Check whether a template can be declared within this scope.
3328///
3329/// If the template declaration is valid in this scope, returns
3330/// false. Otherwise, issues a diagnostic and returns true.
3331bool
3332Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3333  // Find the nearest enclosing declaration scope.
3334  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3335         (S->getFlags() & Scope::TemplateParamScope) != 0)
3336    S = S->getParent();
3337
3338  // C++ [temp]p2:
3339  //   A template-declaration can appear only as a namespace scope or
3340  //   class scope declaration.
3341  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3342  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3343      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3344    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3345             << TemplateParams->getSourceRange();
3346
3347  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3348    Ctx = Ctx->getParent();
3349
3350  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3351    return false;
3352
3353  return Diag(TemplateParams->getTemplateLoc(),
3354              diag::err_template_outside_namespace_or_class_scope)
3355    << TemplateParams->getSourceRange();
3356}
3357
3358/// \brief Determine what kind of template specialization the given declaration
3359/// is.
3360static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3361  if (!D)
3362    return TSK_Undeclared;
3363
3364  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3365    return Record->getTemplateSpecializationKind();
3366  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3367    return Function->getTemplateSpecializationKind();
3368  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3369    return Var->getTemplateSpecializationKind();
3370
3371  return TSK_Undeclared;
3372}
3373
3374/// \brief Check whether a specialization is well-formed in the current
3375/// context.
3376///
3377/// This routine determines whether a template specialization can be declared
3378/// in the current context (C++ [temp.expl.spec]p2).
3379///
3380/// \param S the semantic analysis object for which this check is being
3381/// performed.
3382///
3383/// \param Specialized the entity being specialized or instantiated, which
3384/// may be a kind of template (class template, function template, etc.) or
3385/// a member of a class template (member function, static data member,
3386/// member class).
3387///
3388/// \param PrevDecl the previous declaration of this entity, if any.
3389///
3390/// \param Loc the location of the explicit specialization or instantiation of
3391/// this entity.
3392///
3393/// \param IsPartialSpecialization whether this is a partial specialization of
3394/// a class template.
3395///
3396/// \returns true if there was an error that we cannot recover from, false
3397/// otherwise.
3398static bool CheckTemplateSpecializationScope(Sema &S,
3399                                             NamedDecl *Specialized,
3400                                             NamedDecl *PrevDecl,
3401                                             SourceLocation Loc,
3402                                             bool IsPartialSpecialization) {
3403  // Keep these "kind" numbers in sync with the %select statements in the
3404  // various diagnostics emitted by this routine.
3405  int EntityKind = 0;
3406  bool isTemplateSpecialization = false;
3407  if (isa<ClassTemplateDecl>(Specialized)) {
3408    EntityKind = IsPartialSpecialization? 1 : 0;
3409    isTemplateSpecialization = true;
3410  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3411    EntityKind = 2;
3412    isTemplateSpecialization = true;
3413  } else if (isa<CXXMethodDecl>(Specialized))
3414    EntityKind = 3;
3415  else if (isa<VarDecl>(Specialized))
3416    EntityKind = 4;
3417  else if (isa<RecordDecl>(Specialized))
3418    EntityKind = 5;
3419  else {
3420    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3421    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3422    return true;
3423  }
3424
3425  // C++ [temp.expl.spec]p2:
3426  //   An explicit specialization shall be declared in the namespace
3427  //   of which the template is a member, or, for member templates, in
3428  //   the namespace of which the enclosing class or enclosing class
3429  //   template is a member. An explicit specialization of a member
3430  //   function, member class or static data member of a class
3431  //   template shall be declared in the namespace of which the class
3432  //   template is a member. Such a declaration may also be a
3433  //   definition. If the declaration is not a definition, the
3434  //   specialization may be defined later in the name- space in which
3435  //   the explicit specialization was declared, or in a namespace
3436  //   that encloses the one in which the explicit specialization was
3437  //   declared.
3438  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3439    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3440      << Specialized;
3441    return true;
3442  }
3443
3444  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3445    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3446      << Specialized;
3447    return true;
3448  }
3449
3450  // C++ [temp.class.spec]p6:
3451  //   A class template partial specialization may be declared or redeclared
3452  //   in any namespace scope in which its definition may be defined (14.5.1
3453  //   and 14.5.2).
3454  bool ComplainedAboutScope = false;
3455  DeclContext *SpecializedContext
3456    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3457  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3458  if ((!PrevDecl ||
3459       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3460       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3461    // C++ [temp.exp.spec]p2:
3462    //   An explicit specialization shall be declared in the namespace of which
3463    //   the template is a member, or, for member templates, in the namespace
3464    //   of which the enclosing class or enclosing class template is a member.
3465    //   An explicit specialization of a member function, member class or
3466    //   static data member of a class template shall be declared in the
3467    //   namespace of which the class template is a member.
3468    //
3469    // C++0x [temp.expl.spec]p2:
3470    //   An explicit specialization shall be declared in a namespace enclosing
3471    //   the specialized template.
3472    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3473        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3474      bool IsCPlusPlus0xExtension
3475        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3476      if (isa<TranslationUnitDecl>(SpecializedContext))
3477        S.Diag(Loc, IsCPlusPlus0xExtension
3478                      ? diag::ext_template_spec_decl_out_of_scope_global
3479                      : diag::err_template_spec_decl_out_of_scope_global)
3480          << EntityKind << Specialized;
3481      else if (isa<NamespaceDecl>(SpecializedContext))
3482        S.Diag(Loc, IsCPlusPlus0xExtension
3483                      ? diag::ext_template_spec_decl_out_of_scope
3484                      : diag::err_template_spec_decl_out_of_scope)
3485          << EntityKind << Specialized
3486          << cast<NamedDecl>(SpecializedContext);
3487
3488      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3489      ComplainedAboutScope = true;
3490    }
3491  }
3492
3493  // Make sure that this redeclaration (or definition) occurs in an enclosing
3494  // namespace.
3495  // Note that HandleDeclarator() performs this check for explicit
3496  // specializations of function templates, static data members, and member
3497  // functions, so we skip the check here for those kinds of entities.
3498  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3499  // Should we refactor that check, so that it occurs later?
3500  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3501      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3502        isa<FunctionDecl>(Specialized))) {
3503    if (isa<TranslationUnitDecl>(SpecializedContext))
3504      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3505        << EntityKind << Specialized;
3506    else if (isa<NamespaceDecl>(SpecializedContext))
3507      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3508        << EntityKind << Specialized
3509        << cast<NamedDecl>(SpecializedContext);
3510
3511    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3512  }
3513
3514  // FIXME: check for specialization-after-instantiation errors and such.
3515
3516  return false;
3517}
3518
3519/// \brief Check the non-type template arguments of a class template
3520/// partial specialization according to C++ [temp.class.spec]p9.
3521///
3522/// \param TemplateParams the template parameters of the primary class
3523/// template.
3524///
3525/// \param TemplateArg the template arguments of the class template
3526/// partial specialization.
3527///
3528/// \param MirrorsPrimaryTemplate will be set true if the class
3529/// template partial specialization arguments are identical to the
3530/// implicit template arguments of the primary template. This is not
3531/// necessarily an error (C++0x), and it is left to the caller to diagnose
3532/// this condition when it is an error.
3533///
3534/// \returns true if there was an error, false otherwise.
3535bool Sema::CheckClassTemplatePartialSpecializationArgs(
3536                                        TemplateParameterList *TemplateParams,
3537                             const TemplateArgumentListBuilder &TemplateArgs,
3538                                        bool &MirrorsPrimaryTemplate) {
3539  // FIXME: the interface to this function will have to change to
3540  // accommodate variadic templates.
3541  MirrorsPrimaryTemplate = true;
3542
3543  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3544
3545  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3546    // Determine whether the template argument list of the partial
3547    // specialization is identical to the implicit argument list of
3548    // the primary template. The caller may need to diagnostic this as
3549    // an error per C++ [temp.class.spec]p9b3.
3550    if (MirrorsPrimaryTemplate) {
3551      if (TemplateTypeParmDecl *TTP
3552            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3553        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3554              Context.getCanonicalType(ArgList[I].getAsType()))
3555          MirrorsPrimaryTemplate = false;
3556      } else if (TemplateTemplateParmDecl *TTP
3557                   = dyn_cast<TemplateTemplateParmDecl>(
3558                                                 TemplateParams->getParam(I))) {
3559        TemplateName Name = ArgList[I].getAsTemplate();
3560        TemplateTemplateParmDecl *ArgDecl
3561          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3562        if (!ArgDecl ||
3563            ArgDecl->getIndex() != TTP->getIndex() ||
3564            ArgDecl->getDepth() != TTP->getDepth())
3565          MirrorsPrimaryTemplate = false;
3566      }
3567    }
3568
3569    NonTypeTemplateParmDecl *Param
3570      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3571    if (!Param) {
3572      continue;
3573    }
3574
3575    Expr *ArgExpr = ArgList[I].getAsExpr();
3576    if (!ArgExpr) {
3577      MirrorsPrimaryTemplate = false;
3578      continue;
3579    }
3580
3581    // C++ [temp.class.spec]p8:
3582    //   A non-type argument is non-specialized if it is the name of a
3583    //   non-type parameter. All other non-type arguments are
3584    //   specialized.
3585    //
3586    // Below, we check the two conditions that only apply to
3587    // specialized non-type arguments, so skip any non-specialized
3588    // arguments.
3589    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3590      if (NonTypeTemplateParmDecl *NTTP
3591            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3592        if (MirrorsPrimaryTemplate &&
3593            (Param->getIndex() != NTTP->getIndex() ||
3594             Param->getDepth() != NTTP->getDepth()))
3595          MirrorsPrimaryTemplate = false;
3596
3597        continue;
3598      }
3599
3600    // C++ [temp.class.spec]p9:
3601    //   Within the argument list of a class template partial
3602    //   specialization, the following restrictions apply:
3603    //     -- A partially specialized non-type argument expression
3604    //        shall not involve a template parameter of the partial
3605    //        specialization except when the argument expression is a
3606    //        simple identifier.
3607    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3608      Diag(ArgExpr->getLocStart(),
3609           diag::err_dependent_non_type_arg_in_partial_spec)
3610        << ArgExpr->getSourceRange();
3611      return true;
3612    }
3613
3614    //     -- The type of a template parameter corresponding to a
3615    //        specialized non-type argument shall not be dependent on a
3616    //        parameter of the specialization.
3617    if (Param->getType()->isDependentType()) {
3618      Diag(ArgExpr->getLocStart(),
3619           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3620        << Param->getType()
3621        << ArgExpr->getSourceRange();
3622      Diag(Param->getLocation(), diag::note_template_param_here);
3623      return true;
3624    }
3625
3626    MirrorsPrimaryTemplate = false;
3627  }
3628
3629  return false;
3630}
3631
3632/// \brief Retrieve the previous declaration of the given declaration.
3633static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3634  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3635    return VD->getPreviousDeclaration();
3636  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3637    return FD->getPreviousDeclaration();
3638  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3639    return TD->getPreviousDeclaration();
3640  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3641    return TD->getPreviousDeclaration();
3642  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3643    return FTD->getPreviousDeclaration();
3644  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3645    return CTD->getPreviousDeclaration();
3646  return 0;
3647}
3648
3649DeclResult
3650Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3651                                       TagUseKind TUK,
3652                                       SourceLocation KWLoc,
3653                                       CXXScopeSpec &SS,
3654                                       TemplateTy TemplateD,
3655                                       SourceLocation TemplateNameLoc,
3656                                       SourceLocation LAngleLoc,
3657                                       ASTTemplateArgsPtr TemplateArgsIn,
3658                                       SourceLocation RAngleLoc,
3659                                       AttributeList *Attr,
3660                               MultiTemplateParamsArg TemplateParameterLists) {
3661  assert(TUK != TUK_Reference && "References are not specializations");
3662
3663  // Find the class template we're specializing
3664  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3665  ClassTemplateDecl *ClassTemplate
3666    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3667
3668  if (!ClassTemplate) {
3669    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3670      << (Name.getAsTemplateDecl() &&
3671          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3672    return true;
3673  }
3674
3675  bool isExplicitSpecialization = false;
3676  bool isPartialSpecialization = false;
3677
3678  // Check the validity of the template headers that introduce this
3679  // template.
3680  // FIXME: We probably shouldn't complain about these headers for
3681  // friend declarations.
3682  bool Invalid = false;
3683  TemplateParameterList *TemplateParams
3684    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3685                        (TemplateParameterList**)TemplateParameterLists.get(),
3686                                              TemplateParameterLists.size(),
3687                                              TUK == TUK_Friend,
3688                                              isExplicitSpecialization,
3689                                              Invalid);
3690  if (Invalid)
3691    return true;
3692
3693  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3694  if (TemplateParams)
3695    --NumMatchedTemplateParamLists;
3696
3697  if (TemplateParams && TemplateParams->size() > 0) {
3698    isPartialSpecialization = true;
3699
3700    // C++ [temp.class.spec]p10:
3701    //   The template parameter list of a specialization shall not
3702    //   contain default template argument values.
3703    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3704      Decl *Param = TemplateParams->getParam(I);
3705      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3706        if (TTP->hasDefaultArgument()) {
3707          Diag(TTP->getDefaultArgumentLoc(),
3708               diag::err_default_arg_in_partial_spec);
3709          TTP->removeDefaultArgument();
3710        }
3711      } else if (NonTypeTemplateParmDecl *NTTP
3712                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3713        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3714          Diag(NTTP->getDefaultArgumentLoc(),
3715               diag::err_default_arg_in_partial_spec)
3716            << DefArg->getSourceRange();
3717          NTTP->removeDefaultArgument();
3718        }
3719      } else {
3720        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3721        if (TTP->hasDefaultArgument()) {
3722          Diag(TTP->getDefaultArgument().getLocation(),
3723               diag::err_default_arg_in_partial_spec)
3724            << TTP->getDefaultArgument().getSourceRange();
3725          TTP->removeDefaultArgument();
3726        }
3727      }
3728    }
3729  } else if (TemplateParams) {
3730    if (TUK == TUK_Friend)
3731      Diag(KWLoc, diag::err_template_spec_friend)
3732        << FixItHint::CreateRemoval(
3733                                SourceRange(TemplateParams->getTemplateLoc(),
3734                                            TemplateParams->getRAngleLoc()))
3735        << SourceRange(LAngleLoc, RAngleLoc);
3736    else
3737      isExplicitSpecialization = true;
3738  } else if (TUK != TUK_Friend) {
3739    Diag(KWLoc, diag::err_template_spec_needs_header)
3740      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3741    isExplicitSpecialization = true;
3742  }
3743
3744  // Check that the specialization uses the same tag kind as the
3745  // original template.
3746  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3747  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3748  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3749                                    Kind, KWLoc,
3750                                    *ClassTemplate->getIdentifier())) {
3751    Diag(KWLoc, diag::err_use_with_wrong_tag)
3752      << ClassTemplate
3753      << FixItHint::CreateReplacement(KWLoc,
3754                            ClassTemplate->getTemplatedDecl()->getKindName());
3755    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3756         diag::note_previous_use);
3757    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3758  }
3759
3760  // Translate the parser's template argument list in our AST format.
3761  TemplateArgumentListInfo TemplateArgs;
3762  TemplateArgs.setLAngleLoc(LAngleLoc);
3763  TemplateArgs.setRAngleLoc(RAngleLoc);
3764  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3765
3766  // Check that the template argument list is well-formed for this
3767  // template.
3768  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3769                                        TemplateArgs.size());
3770  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3771                                TemplateArgs, false, Converted))
3772    return true;
3773
3774  assert((Converted.structuredSize() ==
3775            ClassTemplate->getTemplateParameters()->size()) &&
3776         "Converted template argument list is too short!");
3777
3778  // Find the class template (partial) specialization declaration that
3779  // corresponds to these arguments.
3780  if (isPartialSpecialization) {
3781    bool MirrorsPrimaryTemplate;
3782    if (CheckClassTemplatePartialSpecializationArgs(
3783                                         ClassTemplate->getTemplateParameters(),
3784                                         Converted, MirrorsPrimaryTemplate))
3785      return true;
3786
3787    if (MirrorsPrimaryTemplate) {
3788      // C++ [temp.class.spec]p9b3:
3789      //
3790      //   -- The argument list of the specialization shall not be identical
3791      //      to the implicit argument list of the primary template.
3792      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3793        << (TUK == TUK_Definition)
3794        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3795      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3796                                ClassTemplate->getIdentifier(),
3797                                TemplateNameLoc,
3798                                Attr,
3799                                TemplateParams,
3800                                AS_none);
3801    }
3802
3803    // FIXME: Diagnose friend partial specializations
3804
3805    if (!Name.isDependent() &&
3806        !TemplateSpecializationType::anyDependentTemplateArguments(
3807                                             TemplateArgs.getArgumentArray(),
3808                                                         TemplateArgs.size())) {
3809      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3810        << ClassTemplate->getDeclName();
3811      isPartialSpecialization = false;
3812    }
3813  }
3814
3815  void *InsertPos = 0;
3816  ClassTemplateSpecializationDecl *PrevDecl = 0;
3817
3818  if (isPartialSpecialization)
3819    // FIXME: Template parameter list matters, too
3820    PrevDecl
3821      = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
3822                                                 Converted.flatSize(),
3823                                                 InsertPos);
3824  else
3825    PrevDecl
3826      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
3827                                          Converted.flatSize(), InsertPos);
3828
3829  ClassTemplateSpecializationDecl *Specialization = 0;
3830
3831  // Check whether we can declare a class template specialization in
3832  // the current scope.
3833  if (TUK != TUK_Friend &&
3834      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3835                                       TemplateNameLoc,
3836                                       isPartialSpecialization))
3837    return true;
3838
3839  // The canonical type
3840  QualType CanonType;
3841  if (PrevDecl &&
3842      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3843               TUK == TUK_Friend)) {
3844    // Since the only prior class template specialization with these
3845    // arguments was referenced but not declared, or we're only
3846    // referencing this specialization as a friend, reuse that
3847    // declaration node as our own, updating its source location to
3848    // reflect our new declaration.
3849    Specialization = PrevDecl;
3850    Specialization->setLocation(TemplateNameLoc);
3851    PrevDecl = 0;
3852    CanonType = Context.getTypeDeclType(Specialization);
3853  } else if (isPartialSpecialization) {
3854    // Build the canonical type that describes the converted template
3855    // arguments of the class template partial specialization.
3856    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3857    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3858                                                  Converted.getFlatArguments(),
3859                                                  Converted.flatSize());
3860
3861    // Create a new class template partial specialization declaration node.
3862    ClassTemplatePartialSpecializationDecl *PrevPartial
3863      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3864    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3865                            : ClassTemplate->getNextPartialSpecSequenceNumber();
3866    ClassTemplatePartialSpecializationDecl *Partial
3867      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3868                                             ClassTemplate->getDeclContext(),
3869                                                       TemplateNameLoc,
3870                                                       TemplateParams,
3871                                                       ClassTemplate,
3872                                                       Converted,
3873                                                       TemplateArgs,
3874                                                       CanonType,
3875                                                       PrevPartial,
3876                                                       SequenceNumber);
3877    SetNestedNameSpecifier(Partial, SS);
3878    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3879      Partial->setTemplateParameterListsInfo(Context,
3880                                             NumMatchedTemplateParamLists,
3881                    (TemplateParameterList**) TemplateParameterLists.release());
3882    }
3883
3884    if (!PrevPartial)
3885      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
3886    Specialization = Partial;
3887
3888    // If we are providing an explicit specialization of a member class
3889    // template specialization, make a note of that.
3890    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3891      PrevPartial->setMemberSpecialization();
3892
3893    // Check that all of the template parameters of the class template
3894    // partial specialization are deducible from the template
3895    // arguments. If not, this class template partial specialization
3896    // will never be used.
3897    llvm::SmallVector<bool, 8> DeducibleParams;
3898    DeducibleParams.resize(TemplateParams->size());
3899    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3900                               TemplateParams->getDepth(),
3901                               DeducibleParams);
3902    unsigned NumNonDeducible = 0;
3903    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3904      if (!DeducibleParams[I])
3905        ++NumNonDeducible;
3906
3907    if (NumNonDeducible) {
3908      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3909        << (NumNonDeducible > 1)
3910        << SourceRange(TemplateNameLoc, RAngleLoc);
3911      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3912        if (!DeducibleParams[I]) {
3913          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3914          if (Param->getDeclName())
3915            Diag(Param->getLocation(),
3916                 diag::note_partial_spec_unused_parameter)
3917              << Param->getDeclName();
3918          else
3919            Diag(Param->getLocation(),
3920                 diag::note_partial_spec_unused_parameter)
3921              << "<anonymous>";
3922        }
3923      }
3924    }
3925  } else {
3926    // Create a new class template specialization declaration node for
3927    // this explicit specialization or friend declaration.
3928    Specialization
3929      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3930                                             ClassTemplate->getDeclContext(),
3931                                                TemplateNameLoc,
3932                                                ClassTemplate,
3933                                                Converted,
3934                                                PrevDecl);
3935    SetNestedNameSpecifier(Specialization, SS);
3936    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3937      Specialization->setTemplateParameterListsInfo(Context,
3938                                                  NumMatchedTemplateParamLists,
3939                    (TemplateParameterList**) TemplateParameterLists.release());
3940    }
3941
3942    if (!PrevDecl)
3943      ClassTemplate->AddSpecialization(Specialization, InsertPos);
3944
3945    CanonType = Context.getTypeDeclType(Specialization);
3946  }
3947
3948  // C++ [temp.expl.spec]p6:
3949  //   If a template, a member template or the member of a class template is
3950  //   explicitly specialized then that specialization shall be declared
3951  //   before the first use of that specialization that would cause an implicit
3952  //   instantiation to take place, in every translation unit in which such a
3953  //   use occurs; no diagnostic is required.
3954  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3955    bool Okay = false;
3956    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3957      // Is there any previous explicit specialization declaration?
3958      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3959        Okay = true;
3960        break;
3961      }
3962    }
3963
3964    if (!Okay) {
3965      SourceRange Range(TemplateNameLoc, RAngleLoc);
3966      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3967        << Context.getTypeDeclType(Specialization) << Range;
3968
3969      Diag(PrevDecl->getPointOfInstantiation(),
3970           diag::note_instantiation_required_here)
3971        << (PrevDecl->getTemplateSpecializationKind()
3972                                                != TSK_ImplicitInstantiation);
3973      return true;
3974    }
3975  }
3976
3977  // If this is not a friend, note that this is an explicit specialization.
3978  if (TUK != TUK_Friend)
3979    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3980
3981  // Check that this isn't a redefinition of this specialization.
3982  if (TUK == TUK_Definition) {
3983    if (RecordDecl *Def = Specialization->getDefinition()) {
3984      SourceRange Range(TemplateNameLoc, RAngleLoc);
3985      Diag(TemplateNameLoc, diag::err_redefinition)
3986        << Context.getTypeDeclType(Specialization) << Range;
3987      Diag(Def->getLocation(), diag::note_previous_definition);
3988      Specialization->setInvalidDecl();
3989      return true;
3990    }
3991  }
3992
3993  // Build the fully-sugared type for this class template
3994  // specialization as the user wrote in the specialization
3995  // itself. This means that we'll pretty-print the type retrieved
3996  // from the specialization's declaration the way that the user
3997  // actually wrote the specialization, rather than formatting the
3998  // name based on the "canonical" representation used to store the
3999  // template arguments in the specialization.
4000  TypeSourceInfo *WrittenTy
4001    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4002                                                TemplateArgs, CanonType);
4003  if (TUK != TUK_Friend) {
4004    Specialization->setTypeAsWritten(WrittenTy);
4005    if (TemplateParams)
4006      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4007  }
4008  TemplateArgsIn.release();
4009
4010  // C++ [temp.expl.spec]p9:
4011  //   A template explicit specialization is in the scope of the
4012  //   namespace in which the template was defined.
4013  //
4014  // We actually implement this paragraph where we set the semantic
4015  // context (in the creation of the ClassTemplateSpecializationDecl),
4016  // but we also maintain the lexical context where the actual
4017  // definition occurs.
4018  Specialization->setLexicalDeclContext(CurContext);
4019
4020  // We may be starting the definition of this specialization.
4021  if (TUK == TUK_Definition)
4022    Specialization->startDefinition();
4023
4024  if (TUK == TUK_Friend) {
4025    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4026                                            TemplateNameLoc,
4027                                            WrittenTy,
4028                                            /*FIXME:*/KWLoc);
4029    Friend->setAccess(AS_public);
4030    CurContext->addDecl(Friend);
4031  } else {
4032    // Add the specialization into its lexical context, so that it can
4033    // be seen when iterating through the list of declarations in that
4034    // context. However, specializations are not found by name lookup.
4035    CurContext->addDecl(Specialization);
4036  }
4037  return Specialization;
4038}
4039
4040Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4041                              MultiTemplateParamsArg TemplateParameterLists,
4042                                    Declarator &D) {
4043  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4044}
4045
4046Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4047                               MultiTemplateParamsArg TemplateParameterLists,
4048                                            Declarator &D) {
4049  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4050  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4051         "Not a function declarator!");
4052  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4053
4054  if (FTI.hasPrototype) {
4055    // FIXME: Diagnose arguments without names in C.
4056  }
4057
4058  Scope *ParentScope = FnBodyScope->getParent();
4059
4060  Decl *DP = HandleDeclarator(ParentScope, D,
4061                              move(TemplateParameterLists),
4062                              /*IsFunctionDefinition=*/true);
4063  if (FunctionTemplateDecl *FunctionTemplate
4064        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4065    return ActOnStartOfFunctionDef(FnBodyScope,
4066                                   FunctionTemplate->getTemplatedDecl());
4067  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4068    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4069  return 0;
4070}
4071
4072/// \brief Strips various properties off an implicit instantiation
4073/// that has just been explicitly specialized.
4074static void StripImplicitInstantiation(NamedDecl *D) {
4075  D->dropAttrs();
4076
4077  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4078    FD->setInlineSpecified(false);
4079  }
4080}
4081
4082/// \brief Diagnose cases where we have an explicit template specialization
4083/// before/after an explicit template instantiation, producing diagnostics
4084/// for those cases where they are required and determining whether the
4085/// new specialization/instantiation will have any effect.
4086///
4087/// \param NewLoc the location of the new explicit specialization or
4088/// instantiation.
4089///
4090/// \param NewTSK the kind of the new explicit specialization or instantiation.
4091///
4092/// \param PrevDecl the previous declaration of the entity.
4093///
4094/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4095///
4096/// \param PrevPointOfInstantiation if valid, indicates where the previus
4097/// declaration was instantiated (either implicitly or explicitly).
4098///
4099/// \param HasNoEffect will be set to true to indicate that the new
4100/// specialization or instantiation has no effect and should be ignored.
4101///
4102/// \returns true if there was an error that should prevent the introduction of
4103/// the new declaration into the AST, false otherwise.
4104bool
4105Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4106                                             TemplateSpecializationKind NewTSK,
4107                                             NamedDecl *PrevDecl,
4108                                             TemplateSpecializationKind PrevTSK,
4109                                        SourceLocation PrevPointOfInstantiation,
4110                                             bool &HasNoEffect) {
4111  HasNoEffect = false;
4112
4113  switch (NewTSK) {
4114  case TSK_Undeclared:
4115  case TSK_ImplicitInstantiation:
4116    assert(false && "Don't check implicit instantiations here");
4117    return false;
4118
4119  case TSK_ExplicitSpecialization:
4120    switch (PrevTSK) {
4121    case TSK_Undeclared:
4122    case TSK_ExplicitSpecialization:
4123      // Okay, we're just specializing something that is either already
4124      // explicitly specialized or has merely been mentioned without any
4125      // instantiation.
4126      return false;
4127
4128    case TSK_ImplicitInstantiation:
4129      if (PrevPointOfInstantiation.isInvalid()) {
4130        // The declaration itself has not actually been instantiated, so it is
4131        // still okay to specialize it.
4132        StripImplicitInstantiation(PrevDecl);
4133        return false;
4134      }
4135      // Fall through
4136
4137    case TSK_ExplicitInstantiationDeclaration:
4138    case TSK_ExplicitInstantiationDefinition:
4139      assert((PrevTSK == TSK_ImplicitInstantiation ||
4140              PrevPointOfInstantiation.isValid()) &&
4141             "Explicit instantiation without point of instantiation?");
4142
4143      // C++ [temp.expl.spec]p6:
4144      //   If a template, a member template or the member of a class template
4145      //   is explicitly specialized then that specialization shall be declared
4146      //   before the first use of that specialization that would cause an
4147      //   implicit instantiation to take place, in every translation unit in
4148      //   which such a use occurs; no diagnostic is required.
4149      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4150        // Is there any previous explicit specialization declaration?
4151        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4152          return false;
4153      }
4154
4155      Diag(NewLoc, diag::err_specialization_after_instantiation)
4156        << PrevDecl;
4157      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4158        << (PrevTSK != TSK_ImplicitInstantiation);
4159
4160      return true;
4161    }
4162    break;
4163
4164  case TSK_ExplicitInstantiationDeclaration:
4165    switch (PrevTSK) {
4166    case TSK_ExplicitInstantiationDeclaration:
4167      // This explicit instantiation declaration is redundant (that's okay).
4168      HasNoEffect = true;
4169      return false;
4170
4171    case TSK_Undeclared:
4172    case TSK_ImplicitInstantiation:
4173      // We're explicitly instantiating something that may have already been
4174      // implicitly instantiated; that's fine.
4175      return false;
4176
4177    case TSK_ExplicitSpecialization:
4178      // C++0x [temp.explicit]p4:
4179      //   For a given set of template parameters, if an explicit instantiation
4180      //   of a template appears after a declaration of an explicit
4181      //   specialization for that template, the explicit instantiation has no
4182      //   effect.
4183      HasNoEffect = true;
4184      return false;
4185
4186    case TSK_ExplicitInstantiationDefinition:
4187      // C++0x [temp.explicit]p10:
4188      //   If an entity is the subject of both an explicit instantiation
4189      //   declaration and an explicit instantiation definition in the same
4190      //   translation unit, the definition shall follow the declaration.
4191      Diag(NewLoc,
4192           diag::err_explicit_instantiation_declaration_after_definition);
4193      Diag(PrevPointOfInstantiation,
4194           diag::note_explicit_instantiation_definition_here);
4195      assert(PrevPointOfInstantiation.isValid() &&
4196             "Explicit instantiation without point of instantiation?");
4197      HasNoEffect = true;
4198      return false;
4199    }
4200    break;
4201
4202  case TSK_ExplicitInstantiationDefinition:
4203    switch (PrevTSK) {
4204    case TSK_Undeclared:
4205    case TSK_ImplicitInstantiation:
4206      // We're explicitly instantiating something that may have already been
4207      // implicitly instantiated; that's fine.
4208      return false;
4209
4210    case TSK_ExplicitSpecialization:
4211      // C++ DR 259, C++0x [temp.explicit]p4:
4212      //   For a given set of template parameters, if an explicit
4213      //   instantiation of a template appears after a declaration of
4214      //   an explicit specialization for that template, the explicit
4215      //   instantiation has no effect.
4216      //
4217      // In C++98/03 mode, we only give an extension warning here, because it
4218      // is not harmful to try to explicitly instantiate something that
4219      // has been explicitly specialized.
4220      if (!getLangOptions().CPlusPlus0x) {
4221        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4222          << PrevDecl;
4223        Diag(PrevDecl->getLocation(),
4224             diag::note_previous_template_specialization);
4225      }
4226      HasNoEffect = true;
4227      return false;
4228
4229    case TSK_ExplicitInstantiationDeclaration:
4230      // We're explicity instantiating a definition for something for which we
4231      // were previously asked to suppress instantiations. That's fine.
4232      return false;
4233
4234    case TSK_ExplicitInstantiationDefinition:
4235      // C++0x [temp.spec]p5:
4236      //   For a given template and a given set of template-arguments,
4237      //     - an explicit instantiation definition shall appear at most once
4238      //       in a program,
4239      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4240        << PrevDecl;
4241      Diag(PrevPointOfInstantiation,
4242           diag::note_previous_explicit_instantiation);
4243      HasNoEffect = true;
4244      return false;
4245    }
4246    break;
4247  }
4248
4249  assert(false && "Missing specialization/instantiation case?");
4250
4251  return false;
4252}
4253
4254/// \brief Perform semantic analysis for the given dependent function
4255/// template specialization.  The only possible way to get a dependent
4256/// function template specialization is with a friend declaration,
4257/// like so:
4258///
4259///   template <class T> void foo(T);
4260///   template <class T> class A {
4261///     friend void foo<>(T);
4262///   };
4263///
4264/// There really isn't any useful analysis we can do here, so we
4265/// just store the information.
4266bool
4267Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4268                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4269                                                   LookupResult &Previous) {
4270  // Remove anything from Previous that isn't a function template in
4271  // the correct context.
4272  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4273  LookupResult::Filter F = Previous.makeFilter();
4274  while (F.hasNext()) {
4275    NamedDecl *D = F.next()->getUnderlyingDecl();
4276    if (!isa<FunctionTemplateDecl>(D) ||
4277        !FDLookupContext->InEnclosingNamespaceSetOf(
4278                              D->getDeclContext()->getRedeclContext()))
4279      F.erase();
4280  }
4281  F.done();
4282
4283  // Should this be diagnosed here?
4284  if (Previous.empty()) return true;
4285
4286  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4287                                         ExplicitTemplateArgs);
4288  return false;
4289}
4290
4291/// \brief Perform semantic analysis for the given function template
4292/// specialization.
4293///
4294/// This routine performs all of the semantic analysis required for an
4295/// explicit function template specialization. On successful completion,
4296/// the function declaration \p FD will become a function template
4297/// specialization.
4298///
4299/// \param FD the function declaration, which will be updated to become a
4300/// function template specialization.
4301///
4302/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4303/// if any. Note that this may be valid info even when 0 arguments are
4304/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4305/// as it anyway contains info on the angle brackets locations.
4306///
4307/// \param PrevDecl the set of declarations that may be specialized by
4308/// this function specialization.
4309bool
4310Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4311                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4312                                          LookupResult &Previous) {
4313  // The set of function template specializations that could match this
4314  // explicit function template specialization.
4315  UnresolvedSet<8> Candidates;
4316
4317  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4318  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4319         I != E; ++I) {
4320    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4321    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4322      // Only consider templates found within the same semantic lookup scope as
4323      // FD.
4324      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4325                                Ovl->getDeclContext()->getRedeclContext()))
4326        continue;
4327
4328      // C++ [temp.expl.spec]p11:
4329      //   A trailing template-argument can be left unspecified in the
4330      //   template-id naming an explicit function template specialization
4331      //   provided it can be deduced from the function argument type.
4332      // Perform template argument deduction to determine whether we may be
4333      // specializing this template.
4334      // FIXME: It is somewhat wasteful to build
4335      TemplateDeductionInfo Info(Context, FD->getLocation());
4336      FunctionDecl *Specialization = 0;
4337      if (TemplateDeductionResult TDK
4338            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4339                                      FD->getType(),
4340                                      Specialization,
4341                                      Info)) {
4342        // FIXME: Template argument deduction failed; record why it failed, so
4343        // that we can provide nifty diagnostics.
4344        (void)TDK;
4345        continue;
4346      }
4347
4348      // Record this candidate.
4349      Candidates.addDecl(Specialization, I.getAccess());
4350    }
4351  }
4352
4353  // Find the most specialized function template.
4354  UnresolvedSetIterator Result
4355    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4356                         TPOC_Other, FD->getLocation(),
4357                  PDiag(diag::err_function_template_spec_no_match)
4358                    << FD->getDeclName(),
4359                  PDiag(diag::err_function_template_spec_ambiguous)
4360                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4361                  PDiag(diag::note_function_template_spec_matched));
4362  if (Result == Candidates.end())
4363    return true;
4364
4365  // Ignore access information;  it doesn't figure into redeclaration checking.
4366  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4367  Specialization->setLocation(FD->getLocation());
4368
4369  // FIXME: Check if the prior specialization has a point of instantiation.
4370  // If so, we have run afoul of .
4371
4372  // If this is a friend declaration, then we're not really declaring
4373  // an explicit specialization.
4374  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4375
4376  // Check the scope of this explicit specialization.
4377  if (!isFriend &&
4378      CheckTemplateSpecializationScope(*this,
4379                                       Specialization->getPrimaryTemplate(),
4380                                       Specialization, FD->getLocation(),
4381                                       false))
4382    return true;
4383
4384  // C++ [temp.expl.spec]p6:
4385  //   If a template, a member template or the member of a class template is
4386  //   explicitly specialized then that specialization shall be declared
4387  //   before the first use of that specialization that would cause an implicit
4388  //   instantiation to take place, in every translation unit in which such a
4389  //   use occurs; no diagnostic is required.
4390  FunctionTemplateSpecializationInfo *SpecInfo
4391    = Specialization->getTemplateSpecializationInfo();
4392  assert(SpecInfo && "Function template specialization info missing?");
4393
4394  bool HasNoEffect = false;
4395  if (!isFriend &&
4396      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4397                                             TSK_ExplicitSpecialization,
4398                                             Specialization,
4399                                   SpecInfo->getTemplateSpecializationKind(),
4400                                         SpecInfo->getPointOfInstantiation(),
4401                                             HasNoEffect))
4402    return true;
4403
4404  // Mark the prior declaration as an explicit specialization, so that later
4405  // clients know that this is an explicit specialization.
4406  if (!isFriend) {
4407    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4408    MarkUnusedFileScopedDecl(Specialization);
4409  }
4410
4411  // Turn the given function declaration into a function template
4412  // specialization, with the template arguments from the previous
4413  // specialization.
4414  // Take copies of (semantic and syntactic) template argument lists.
4415  const TemplateArgumentList* TemplArgs = new (Context)
4416    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4417  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4418    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4419  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4420                                        TemplArgs, /*InsertPos=*/0,
4421                                    SpecInfo->getTemplateSpecializationKind(),
4422                                        TemplArgsAsWritten);
4423
4424  // The "previous declaration" for this function template specialization is
4425  // the prior function template specialization.
4426  Previous.clear();
4427  Previous.addDecl(Specialization);
4428  return false;
4429}
4430
4431/// \brief Perform semantic analysis for the given non-template member
4432/// specialization.
4433///
4434/// This routine performs all of the semantic analysis required for an
4435/// explicit member function specialization. On successful completion,
4436/// the function declaration \p FD will become a member function
4437/// specialization.
4438///
4439/// \param Member the member declaration, which will be updated to become a
4440/// specialization.
4441///
4442/// \param Previous the set of declarations, one of which may be specialized
4443/// by this function specialization;  the set will be modified to contain the
4444/// redeclared member.
4445bool
4446Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4447  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4448
4449  // Try to find the member we are instantiating.
4450  NamedDecl *Instantiation = 0;
4451  NamedDecl *InstantiatedFrom = 0;
4452  MemberSpecializationInfo *MSInfo = 0;
4453
4454  if (Previous.empty()) {
4455    // Nowhere to look anyway.
4456  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4457    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4458           I != E; ++I) {
4459      NamedDecl *D = (*I)->getUnderlyingDecl();
4460      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4461        if (Context.hasSameType(Function->getType(), Method->getType())) {
4462          Instantiation = Method;
4463          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4464          MSInfo = Method->getMemberSpecializationInfo();
4465          break;
4466        }
4467      }
4468    }
4469  } else if (isa<VarDecl>(Member)) {
4470    VarDecl *PrevVar;
4471    if (Previous.isSingleResult() &&
4472        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4473      if (PrevVar->isStaticDataMember()) {
4474        Instantiation = PrevVar;
4475        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4476        MSInfo = PrevVar->getMemberSpecializationInfo();
4477      }
4478  } else if (isa<RecordDecl>(Member)) {
4479    CXXRecordDecl *PrevRecord;
4480    if (Previous.isSingleResult() &&
4481        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4482      Instantiation = PrevRecord;
4483      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4484      MSInfo = PrevRecord->getMemberSpecializationInfo();
4485    }
4486  }
4487
4488  if (!Instantiation) {
4489    // There is no previous declaration that matches. Since member
4490    // specializations are always out-of-line, the caller will complain about
4491    // this mismatch later.
4492    return false;
4493  }
4494
4495  // If this is a friend, just bail out here before we start turning
4496  // things into explicit specializations.
4497  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4498    // Preserve instantiation information.
4499    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4500      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4501                                      cast<CXXMethodDecl>(InstantiatedFrom),
4502        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4503    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4504      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4505                                      cast<CXXRecordDecl>(InstantiatedFrom),
4506        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4507    }
4508
4509    Previous.clear();
4510    Previous.addDecl(Instantiation);
4511    return false;
4512  }
4513
4514  // Make sure that this is a specialization of a member.
4515  if (!InstantiatedFrom) {
4516    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4517      << Member;
4518    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4519    return true;
4520  }
4521
4522  // C++ [temp.expl.spec]p6:
4523  //   If a template, a member template or the member of a class template is
4524  //   explicitly specialized then that spe- cialization shall be declared
4525  //   before the first use of that specialization that would cause an implicit
4526  //   instantiation to take place, in every translation unit in which such a
4527  //   use occurs; no diagnostic is required.
4528  assert(MSInfo && "Member specialization info missing?");
4529
4530  bool HasNoEffect = false;
4531  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4532                                             TSK_ExplicitSpecialization,
4533                                             Instantiation,
4534                                     MSInfo->getTemplateSpecializationKind(),
4535                                           MSInfo->getPointOfInstantiation(),
4536                                             HasNoEffect))
4537    return true;
4538
4539  // Check the scope of this explicit specialization.
4540  if (CheckTemplateSpecializationScope(*this,
4541                                       InstantiatedFrom,
4542                                       Instantiation, Member->getLocation(),
4543                                       false))
4544    return true;
4545
4546  // Note that this is an explicit instantiation of a member.
4547  // the original declaration to note that it is an explicit specialization
4548  // (if it was previously an implicit instantiation). This latter step
4549  // makes bookkeeping easier.
4550  if (isa<FunctionDecl>(Member)) {
4551    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4552    if (InstantiationFunction->getTemplateSpecializationKind() ==
4553          TSK_ImplicitInstantiation) {
4554      InstantiationFunction->setTemplateSpecializationKind(
4555                                                  TSK_ExplicitSpecialization);
4556      InstantiationFunction->setLocation(Member->getLocation());
4557    }
4558
4559    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4560                                        cast<CXXMethodDecl>(InstantiatedFrom),
4561                                                  TSK_ExplicitSpecialization);
4562    MarkUnusedFileScopedDecl(InstantiationFunction);
4563  } else if (isa<VarDecl>(Member)) {
4564    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4565    if (InstantiationVar->getTemplateSpecializationKind() ==
4566          TSK_ImplicitInstantiation) {
4567      InstantiationVar->setTemplateSpecializationKind(
4568                                                  TSK_ExplicitSpecialization);
4569      InstantiationVar->setLocation(Member->getLocation());
4570    }
4571
4572    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4573                                                cast<VarDecl>(InstantiatedFrom),
4574                                                TSK_ExplicitSpecialization);
4575    MarkUnusedFileScopedDecl(InstantiationVar);
4576  } else {
4577    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4578    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4579    if (InstantiationClass->getTemplateSpecializationKind() ==
4580          TSK_ImplicitInstantiation) {
4581      InstantiationClass->setTemplateSpecializationKind(
4582                                                   TSK_ExplicitSpecialization);
4583      InstantiationClass->setLocation(Member->getLocation());
4584    }
4585
4586    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4587                                        cast<CXXRecordDecl>(InstantiatedFrom),
4588                                                   TSK_ExplicitSpecialization);
4589  }
4590
4591  // Save the caller the trouble of having to figure out which declaration
4592  // this specialization matches.
4593  Previous.clear();
4594  Previous.addDecl(Instantiation);
4595  return false;
4596}
4597
4598/// \brief Check the scope of an explicit instantiation.
4599///
4600/// \returns true if a serious error occurs, false otherwise.
4601static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4602                                            SourceLocation InstLoc,
4603                                            bool WasQualifiedName) {
4604  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4605  DeclContext *CurContext = S.CurContext->getRedeclContext();
4606
4607  if (CurContext->isRecord()) {
4608    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4609      << D;
4610    return true;
4611  }
4612
4613  // C++0x [temp.explicit]p2:
4614  //   An explicit instantiation shall appear in an enclosing namespace of its
4615  //   template.
4616  //
4617  // This is DR275, which we do not retroactively apply to C++98/03.
4618  if (S.getLangOptions().CPlusPlus0x &&
4619      !CurContext->Encloses(OrigContext)) {
4620    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4621      S.Diag(InstLoc,
4622             S.getLangOptions().CPlusPlus0x?
4623                 diag::err_explicit_instantiation_out_of_scope
4624               : diag::warn_explicit_instantiation_out_of_scope_0x)
4625        << D << NS;
4626    else
4627      S.Diag(InstLoc,
4628             S.getLangOptions().CPlusPlus0x?
4629                 diag::err_explicit_instantiation_must_be_global
4630               : diag::warn_explicit_instantiation_out_of_scope_0x)
4631        << D;
4632    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4633    return false;
4634  }
4635
4636  // C++0x [temp.explicit]p2:
4637  //   If the name declared in the explicit instantiation is an unqualified
4638  //   name, the explicit instantiation shall appear in the namespace where
4639  //   its template is declared or, if that namespace is inline (7.3.1), any
4640  //   namespace from its enclosing namespace set.
4641  if (WasQualifiedName)
4642    return false;
4643
4644  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4645    return false;
4646
4647  S.Diag(InstLoc,
4648         S.getLangOptions().CPlusPlus0x?
4649             diag::err_explicit_instantiation_unqualified_wrong_namespace
4650           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4651    << D << OrigContext;
4652  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4653  return false;
4654}
4655
4656/// \brief Determine whether the given scope specifier has a template-id in it.
4657static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4658  if (!SS.isSet())
4659    return false;
4660
4661  // C++0x [temp.explicit]p2:
4662  //   If the explicit instantiation is for a member function, a member class
4663  //   or a static data member of a class template specialization, the name of
4664  //   the class template specialization in the qualified-id for the member
4665  //   name shall be a simple-template-id.
4666  //
4667  // C++98 has the same restriction, just worded differently.
4668  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4669       NNS; NNS = NNS->getPrefix())
4670    if (Type *T = NNS->getAsType())
4671      if (isa<TemplateSpecializationType>(T))
4672        return true;
4673
4674  return false;
4675}
4676
4677// Explicit instantiation of a class template specialization
4678DeclResult
4679Sema::ActOnExplicitInstantiation(Scope *S,
4680                                 SourceLocation ExternLoc,
4681                                 SourceLocation TemplateLoc,
4682                                 unsigned TagSpec,
4683                                 SourceLocation KWLoc,
4684                                 const CXXScopeSpec &SS,
4685                                 TemplateTy TemplateD,
4686                                 SourceLocation TemplateNameLoc,
4687                                 SourceLocation LAngleLoc,
4688                                 ASTTemplateArgsPtr TemplateArgsIn,
4689                                 SourceLocation RAngleLoc,
4690                                 AttributeList *Attr) {
4691  // Find the class template we're specializing
4692  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4693  ClassTemplateDecl *ClassTemplate
4694    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4695
4696  // Check that the specialization uses the same tag kind as the
4697  // original template.
4698  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4699  assert(Kind != TTK_Enum &&
4700         "Invalid enum tag in class template explicit instantiation!");
4701  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4702                                    Kind, KWLoc,
4703                                    *ClassTemplate->getIdentifier())) {
4704    Diag(KWLoc, diag::err_use_with_wrong_tag)
4705      << ClassTemplate
4706      << FixItHint::CreateReplacement(KWLoc,
4707                            ClassTemplate->getTemplatedDecl()->getKindName());
4708    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4709         diag::note_previous_use);
4710    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4711  }
4712
4713  // C++0x [temp.explicit]p2:
4714  //   There are two forms of explicit instantiation: an explicit instantiation
4715  //   definition and an explicit instantiation declaration. An explicit
4716  //   instantiation declaration begins with the extern keyword. [...]
4717  TemplateSpecializationKind TSK
4718    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4719                           : TSK_ExplicitInstantiationDeclaration;
4720
4721  // Translate the parser's template argument list in our AST format.
4722  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4723  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4724
4725  // Check that the template argument list is well-formed for this
4726  // template.
4727  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4728                                        TemplateArgs.size());
4729  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4730                                TemplateArgs, false, Converted))
4731    return true;
4732
4733  assert((Converted.structuredSize() ==
4734            ClassTemplate->getTemplateParameters()->size()) &&
4735         "Converted template argument list is too short!");
4736
4737  // Find the class template specialization declaration that
4738  // corresponds to these arguments.
4739  void *InsertPos = 0;
4740  ClassTemplateSpecializationDecl *PrevDecl
4741    = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
4742                                        Converted.flatSize(), InsertPos);
4743
4744  TemplateSpecializationKind PrevDecl_TSK
4745    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4746
4747  // C++0x [temp.explicit]p2:
4748  //   [...] An explicit instantiation shall appear in an enclosing
4749  //   namespace of its template. [...]
4750  //
4751  // This is C++ DR 275.
4752  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4753                                      SS.isSet()))
4754    return true;
4755
4756  ClassTemplateSpecializationDecl *Specialization = 0;
4757
4758  bool ReusedDecl = false;
4759  bool HasNoEffect = false;
4760  if (PrevDecl) {
4761    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4762                                               PrevDecl, PrevDecl_TSK,
4763                                            PrevDecl->getPointOfInstantiation(),
4764                                               HasNoEffect))
4765      return PrevDecl;
4766
4767    // Even though HasNoEffect == true means that this explicit instantiation
4768    // has no effect on semantics, we go on to put its syntax in the AST.
4769
4770    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4771        PrevDecl_TSK == TSK_Undeclared) {
4772      // Since the only prior class template specialization with these
4773      // arguments was referenced but not declared, reuse that
4774      // declaration node as our own, updating the source location
4775      // for the template name to reflect our new declaration.
4776      // (Other source locations will be updated later.)
4777      Specialization = PrevDecl;
4778      Specialization->setLocation(TemplateNameLoc);
4779      PrevDecl = 0;
4780      ReusedDecl = true;
4781    }
4782  }
4783
4784  if (!Specialization) {
4785    // Create a new class template specialization declaration node for
4786    // this explicit specialization.
4787    Specialization
4788      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4789                                             ClassTemplate->getDeclContext(),
4790                                                TemplateNameLoc,
4791                                                ClassTemplate,
4792                                                Converted, PrevDecl);
4793    SetNestedNameSpecifier(Specialization, SS);
4794
4795    if (!HasNoEffect && !PrevDecl) {
4796      // Insert the new specialization.
4797      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4798    }
4799  }
4800
4801  // Build the fully-sugared type for this explicit instantiation as
4802  // the user wrote in the explicit instantiation itself. This means
4803  // that we'll pretty-print the type retrieved from the
4804  // specialization's declaration the way that the user actually wrote
4805  // the explicit instantiation, rather than formatting the name based
4806  // on the "canonical" representation used to store the template
4807  // arguments in the specialization.
4808  TypeSourceInfo *WrittenTy
4809    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4810                                                TemplateArgs,
4811                                  Context.getTypeDeclType(Specialization));
4812  Specialization->setTypeAsWritten(WrittenTy);
4813  TemplateArgsIn.release();
4814
4815  // Set source locations for keywords.
4816  Specialization->setExternLoc(ExternLoc);
4817  Specialization->setTemplateKeywordLoc(TemplateLoc);
4818
4819  // Add the explicit instantiation into its lexical context. However,
4820  // since explicit instantiations are never found by name lookup, we
4821  // just put it into the declaration context directly.
4822  Specialization->setLexicalDeclContext(CurContext);
4823  CurContext->addDecl(Specialization);
4824
4825  // Syntax is now OK, so return if it has no other effect on semantics.
4826  if (HasNoEffect) {
4827    // Set the template specialization kind.
4828    Specialization->setTemplateSpecializationKind(TSK);
4829    return Specialization;
4830  }
4831
4832  // C++ [temp.explicit]p3:
4833  //   A definition of a class template or class member template
4834  //   shall be in scope at the point of the explicit instantiation of
4835  //   the class template or class member template.
4836  //
4837  // This check comes when we actually try to perform the
4838  // instantiation.
4839  ClassTemplateSpecializationDecl *Def
4840    = cast_or_null<ClassTemplateSpecializationDecl>(
4841                                              Specialization->getDefinition());
4842  if (!Def)
4843    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4844  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4845    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4846    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4847  }
4848
4849  // Instantiate the members of this class template specialization.
4850  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4851                                       Specialization->getDefinition());
4852  if (Def) {
4853    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4854
4855    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4856    // TSK_ExplicitInstantiationDefinition
4857    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4858        TSK == TSK_ExplicitInstantiationDefinition)
4859      Def->setTemplateSpecializationKind(TSK);
4860
4861    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4862  }
4863
4864  // Set the template specialization kind.
4865  Specialization->setTemplateSpecializationKind(TSK);
4866  return Specialization;
4867}
4868
4869// Explicit instantiation of a member class of a class template.
4870DeclResult
4871Sema::ActOnExplicitInstantiation(Scope *S,
4872                                 SourceLocation ExternLoc,
4873                                 SourceLocation TemplateLoc,
4874                                 unsigned TagSpec,
4875                                 SourceLocation KWLoc,
4876                                 CXXScopeSpec &SS,
4877                                 IdentifierInfo *Name,
4878                                 SourceLocation NameLoc,
4879                                 AttributeList *Attr) {
4880
4881  bool Owned = false;
4882  bool IsDependent = false;
4883  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
4884                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
4885                        MultiTemplateParamsArg(*this, 0, 0),
4886                        Owned, IsDependent, false,
4887                        TypeResult());
4888  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4889
4890  if (!TagD)
4891    return true;
4892
4893  TagDecl *Tag = cast<TagDecl>(TagD);
4894  if (Tag->isEnum()) {
4895    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4896      << Context.getTypeDeclType(Tag);
4897    return true;
4898  }
4899
4900  if (Tag->isInvalidDecl())
4901    return true;
4902
4903  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4904  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4905  if (!Pattern) {
4906    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4907      << Context.getTypeDeclType(Record);
4908    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4909    return true;
4910  }
4911
4912  // C++0x [temp.explicit]p2:
4913  //   If the explicit instantiation is for a class or member class, the
4914  //   elaborated-type-specifier in the declaration shall include a
4915  //   simple-template-id.
4916  //
4917  // C++98 has the same restriction, just worded differently.
4918  if (!ScopeSpecifierHasTemplateId(SS))
4919    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
4920      << Record << SS.getRange();
4921
4922  // C++0x [temp.explicit]p2:
4923  //   There are two forms of explicit instantiation: an explicit instantiation
4924  //   definition and an explicit instantiation declaration. An explicit
4925  //   instantiation declaration begins with the extern keyword. [...]
4926  TemplateSpecializationKind TSK
4927    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4928                           : TSK_ExplicitInstantiationDeclaration;
4929
4930  // C++0x [temp.explicit]p2:
4931  //   [...] An explicit instantiation shall appear in an enclosing
4932  //   namespace of its template. [...]
4933  //
4934  // This is C++ DR 275.
4935  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4936
4937  // Verify that it is okay to explicitly instantiate here.
4938  CXXRecordDecl *PrevDecl
4939    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4940  if (!PrevDecl && Record->getDefinition())
4941    PrevDecl = Record;
4942  if (PrevDecl) {
4943    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4944    bool HasNoEffect = false;
4945    assert(MSInfo && "No member specialization information?");
4946    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4947                                               PrevDecl,
4948                                        MSInfo->getTemplateSpecializationKind(),
4949                                             MSInfo->getPointOfInstantiation(),
4950                                               HasNoEffect))
4951      return true;
4952    if (HasNoEffect)
4953      return TagD;
4954  }
4955
4956  CXXRecordDecl *RecordDef
4957    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4958  if (!RecordDef) {
4959    // C++ [temp.explicit]p3:
4960    //   A definition of a member class of a class template shall be in scope
4961    //   at the point of an explicit instantiation of the member class.
4962    CXXRecordDecl *Def
4963      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4964    if (!Def) {
4965      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4966        << 0 << Record->getDeclName() << Record->getDeclContext();
4967      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4968        << Pattern;
4969      return true;
4970    } else {
4971      if (InstantiateClass(NameLoc, Record, Def,
4972                           getTemplateInstantiationArgs(Record),
4973                           TSK))
4974        return true;
4975
4976      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4977      if (!RecordDef)
4978        return true;
4979    }
4980  }
4981
4982  // Instantiate all of the members of the class.
4983  InstantiateClassMembers(NameLoc, RecordDef,
4984                          getTemplateInstantiationArgs(Record), TSK);
4985
4986  if (TSK == TSK_ExplicitInstantiationDefinition)
4987    MarkVTableUsed(NameLoc, RecordDef, true);
4988
4989  // FIXME: We don't have any representation for explicit instantiations of
4990  // member classes. Such a representation is not needed for compilation, but it
4991  // should be available for clients that want to see all of the declarations in
4992  // the source code.
4993  return TagD;
4994}
4995
4996DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4997                                            SourceLocation ExternLoc,
4998                                            SourceLocation TemplateLoc,
4999                                            Declarator &D) {
5000  // Explicit instantiations always require a name.
5001  // TODO: check if/when DNInfo should replace Name.
5002  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5003  DeclarationName Name = NameInfo.getName();
5004  if (!Name) {
5005    if (!D.isInvalidType())
5006      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5007           diag::err_explicit_instantiation_requires_name)
5008        << D.getDeclSpec().getSourceRange()
5009        << D.getSourceRange();
5010
5011    return true;
5012  }
5013
5014  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5015  // we find one that is.
5016  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5017         (S->getFlags() & Scope::TemplateParamScope) != 0)
5018    S = S->getParent();
5019
5020  // Determine the type of the declaration.
5021  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5022  QualType R = T->getType();
5023  if (R.isNull())
5024    return true;
5025
5026  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5027    // Cannot explicitly instantiate a typedef.
5028    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5029      << Name;
5030    return true;
5031  }
5032
5033  // C++0x [temp.explicit]p1:
5034  //   [...] An explicit instantiation of a function template shall not use the
5035  //   inline or constexpr specifiers.
5036  // Presumably, this also applies to member functions of class templates as
5037  // well.
5038  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5039    Diag(D.getDeclSpec().getInlineSpecLoc(),
5040         diag::err_explicit_instantiation_inline)
5041      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5042
5043  // FIXME: check for constexpr specifier.
5044
5045  // C++0x [temp.explicit]p2:
5046  //   There are two forms of explicit instantiation: an explicit instantiation
5047  //   definition and an explicit instantiation declaration. An explicit
5048  //   instantiation declaration begins with the extern keyword. [...]
5049  TemplateSpecializationKind TSK
5050    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5051                           : TSK_ExplicitInstantiationDeclaration;
5052
5053  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5054  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5055
5056  if (!R->isFunctionType()) {
5057    // C++ [temp.explicit]p1:
5058    //   A [...] static data member of a class template can be explicitly
5059    //   instantiated from the member definition associated with its class
5060    //   template.
5061    if (Previous.isAmbiguous())
5062      return true;
5063
5064    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5065    if (!Prev || !Prev->isStaticDataMember()) {
5066      // We expect to see a data data member here.
5067      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5068        << Name;
5069      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5070           P != PEnd; ++P)
5071        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5072      return true;
5073    }
5074
5075    if (!Prev->getInstantiatedFromStaticDataMember()) {
5076      // FIXME: Check for explicit specialization?
5077      Diag(D.getIdentifierLoc(),
5078           diag::err_explicit_instantiation_data_member_not_instantiated)
5079        << Prev;
5080      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5081      // FIXME: Can we provide a note showing where this was declared?
5082      return true;
5083    }
5084
5085    // C++0x [temp.explicit]p2:
5086    //   If the explicit instantiation is for a member function, a member class
5087    //   or a static data member of a class template specialization, the name of
5088    //   the class template specialization in the qualified-id for the member
5089    //   name shall be a simple-template-id.
5090    //
5091    // C++98 has the same restriction, just worded differently.
5092    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5093      Diag(D.getIdentifierLoc(),
5094           diag::ext_explicit_instantiation_without_qualified_id)
5095        << Prev << D.getCXXScopeSpec().getRange();
5096
5097    // Check the scope of this explicit instantiation.
5098    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5099
5100    // Verify that it is okay to explicitly instantiate here.
5101    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5102    assert(MSInfo && "Missing static data member specialization info?");
5103    bool HasNoEffect = false;
5104    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5105                                        MSInfo->getTemplateSpecializationKind(),
5106                                              MSInfo->getPointOfInstantiation(),
5107                                               HasNoEffect))
5108      return true;
5109    if (HasNoEffect)
5110      return (Decl*) 0;
5111
5112    // Instantiate static data member.
5113    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5114    if (TSK == TSK_ExplicitInstantiationDefinition)
5115      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5116
5117    // FIXME: Create an ExplicitInstantiation node?
5118    return (Decl*) 0;
5119  }
5120
5121  // If the declarator is a template-id, translate the parser's template
5122  // argument list into our AST format.
5123  bool HasExplicitTemplateArgs = false;
5124  TemplateArgumentListInfo TemplateArgs;
5125  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5126    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5127    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5128    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5129    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5130                                       TemplateId->getTemplateArgs(),
5131                                       TemplateId->NumArgs);
5132    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5133    HasExplicitTemplateArgs = true;
5134    TemplateArgsPtr.release();
5135  }
5136
5137  // C++ [temp.explicit]p1:
5138  //   A [...] function [...] can be explicitly instantiated from its template.
5139  //   A member function [...] of a class template can be explicitly
5140  //  instantiated from the member definition associated with its class
5141  //  template.
5142  UnresolvedSet<8> Matches;
5143  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5144       P != PEnd; ++P) {
5145    NamedDecl *Prev = *P;
5146    if (!HasExplicitTemplateArgs) {
5147      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5148        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5149          Matches.clear();
5150
5151          Matches.addDecl(Method, P.getAccess());
5152          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5153            break;
5154        }
5155      }
5156    }
5157
5158    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5159    if (!FunTmpl)
5160      continue;
5161
5162    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5163    FunctionDecl *Specialization = 0;
5164    if (TemplateDeductionResult TDK
5165          = DeduceTemplateArguments(FunTmpl,
5166                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5167                                    R, Specialization, Info)) {
5168      // FIXME: Keep track of almost-matches?
5169      (void)TDK;
5170      continue;
5171    }
5172
5173    Matches.addDecl(Specialization, P.getAccess());
5174  }
5175
5176  // Find the most specialized function template specialization.
5177  UnresolvedSetIterator Result
5178    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5179                         D.getIdentifierLoc(),
5180                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5181                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5182                         PDiag(diag::note_explicit_instantiation_candidate));
5183
5184  if (Result == Matches.end())
5185    return true;
5186
5187  // Ignore access control bits, we don't need them for redeclaration checking.
5188  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5189
5190  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5191    Diag(D.getIdentifierLoc(),
5192         diag::err_explicit_instantiation_member_function_not_instantiated)
5193      << Specialization
5194      << (Specialization->getTemplateSpecializationKind() ==
5195          TSK_ExplicitSpecialization);
5196    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5197    return true;
5198  }
5199
5200  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5201  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5202    PrevDecl = Specialization;
5203
5204  if (PrevDecl) {
5205    bool HasNoEffect = false;
5206    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5207                                               PrevDecl,
5208                                     PrevDecl->getTemplateSpecializationKind(),
5209                                          PrevDecl->getPointOfInstantiation(),
5210                                               HasNoEffect))
5211      return true;
5212
5213    // FIXME: We may still want to build some representation of this
5214    // explicit specialization.
5215    if (HasNoEffect)
5216      return (Decl*) 0;
5217  }
5218
5219  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5220
5221  if (TSK == TSK_ExplicitInstantiationDefinition)
5222    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5223
5224  // C++0x [temp.explicit]p2:
5225  //   If the explicit instantiation is for a member function, a member class
5226  //   or a static data member of a class template specialization, the name of
5227  //   the class template specialization in the qualified-id for the member
5228  //   name shall be a simple-template-id.
5229  //
5230  // C++98 has the same restriction, just worded differently.
5231  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5232  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5233      D.getCXXScopeSpec().isSet() &&
5234      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5235    Diag(D.getIdentifierLoc(),
5236         diag::ext_explicit_instantiation_without_qualified_id)
5237    << Specialization << D.getCXXScopeSpec().getRange();
5238
5239  CheckExplicitInstantiationScope(*this,
5240                   FunTmpl? (NamedDecl *)FunTmpl
5241                          : Specialization->getInstantiatedFromMemberFunction(),
5242                                  D.getIdentifierLoc(),
5243                                  D.getCXXScopeSpec().isSet());
5244
5245  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5246  return (Decl*) 0;
5247}
5248
5249TypeResult
5250Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5251                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5252                        SourceLocation TagLoc, SourceLocation NameLoc) {
5253  // This has to hold, because SS is expected to be defined.
5254  assert(Name && "Expected a name in a dependent tag");
5255
5256  NestedNameSpecifier *NNS
5257    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5258  if (!NNS)
5259    return true;
5260
5261  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5262
5263  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5264    Diag(NameLoc, diag::err_dependent_tag_decl)
5265      << (TUK == TUK_Definition) << Kind << SS.getRange();
5266    return true;
5267  }
5268
5269  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5270  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5271}
5272
5273TypeResult
5274Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5275                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5276                        SourceLocation IdLoc) {
5277  NestedNameSpecifier *NNS
5278    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5279  if (!NNS)
5280    return true;
5281
5282  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5283      !getLangOptions().CPlusPlus0x)
5284    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5285      << FixItHint::CreateRemoval(TypenameLoc);
5286
5287  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5288                                 TypenameLoc, SS.getRange(), IdLoc);
5289  if (T.isNull())
5290    return true;
5291
5292  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5293  if (isa<DependentNameType>(T)) {
5294    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5295    TL.setKeywordLoc(TypenameLoc);
5296    TL.setQualifierRange(SS.getRange());
5297    TL.setNameLoc(IdLoc);
5298  } else {
5299    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5300    TL.setKeywordLoc(TypenameLoc);
5301    TL.setQualifierRange(SS.getRange());
5302    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5303  }
5304
5305  return CreateParsedType(T, TSI);
5306}
5307
5308TypeResult
5309Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5310                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5311                        ParsedType Ty) {
5312  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5313      !getLangOptions().CPlusPlus0x)
5314    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5315      << FixItHint::CreateRemoval(TypenameLoc);
5316
5317  TypeSourceInfo *InnerTSI = 0;
5318  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5319
5320  assert(isa<TemplateSpecializationType>(T) &&
5321         "Expected a template specialization type");
5322
5323  if (computeDeclContext(SS, false)) {
5324    // If we can compute a declaration context, then the "typename"
5325    // keyword was superfluous. Just build an ElaboratedType to keep
5326    // track of the nested-name-specifier.
5327
5328    // Push the inner type, preserving its source locations if possible.
5329    TypeLocBuilder Builder;
5330    if (InnerTSI)
5331      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5332    else
5333      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5334
5335    /* Note: NNS already embedded in template specialization type T. */
5336    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5337    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5338    TL.setKeywordLoc(TypenameLoc);
5339    TL.setQualifierRange(SS.getRange());
5340
5341    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5342    return CreateParsedType(T, TSI);
5343  }
5344
5345  // TODO: it's really silly that we make a template specialization
5346  // type earlier only to drop it again here.
5347  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5348  DependentTemplateName *DTN =
5349    TST->getTemplateName().getAsDependentTemplateName();
5350  assert(DTN && "dependent template has non-dependent name?");
5351  assert(DTN->getQualifier()
5352         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5353  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5354                                                     DTN->getQualifier(),
5355                                                     DTN->getIdentifier(),
5356                                                     TST->getNumArgs(),
5357                                                     TST->getArgs());
5358  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5359  DependentTemplateSpecializationTypeLoc TL =
5360    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5361  if (InnerTSI) {
5362    TemplateSpecializationTypeLoc TSTL =
5363      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5364    TL.setLAngleLoc(TSTL.getLAngleLoc());
5365    TL.setRAngleLoc(TSTL.getRAngleLoc());
5366    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5367      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5368  } else {
5369    TL.initializeLocal(SourceLocation());
5370  }
5371  TL.setKeywordLoc(TypenameLoc);
5372  TL.setQualifierRange(SS.getRange());
5373  return CreateParsedType(T, TSI);
5374}
5375
5376/// \brief Build the type that describes a C++ typename specifier,
5377/// e.g., "typename T::type".
5378QualType
5379Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5380                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5381                        SourceLocation KeywordLoc, SourceRange NNSRange,
5382                        SourceLocation IILoc) {
5383  CXXScopeSpec SS;
5384  SS.setScopeRep(NNS);
5385  SS.setRange(NNSRange);
5386
5387  DeclContext *Ctx = computeDeclContext(SS);
5388  if (!Ctx) {
5389    // If the nested-name-specifier is dependent and couldn't be
5390    // resolved to a type, build a typename type.
5391    assert(NNS->isDependent());
5392    return Context.getDependentNameType(Keyword, NNS, &II);
5393  }
5394
5395  // If the nested-name-specifier refers to the current instantiation,
5396  // the "typename" keyword itself is superfluous. In C++03, the
5397  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5398  // allows such extraneous "typename" keywords, and we retroactively
5399  // apply this DR to C++03 code with only a warning. In any case we continue.
5400
5401  if (RequireCompleteDeclContext(SS, Ctx))
5402    return QualType();
5403
5404  DeclarationName Name(&II);
5405  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5406  LookupQualifiedName(Result, Ctx);
5407  unsigned DiagID = 0;
5408  Decl *Referenced = 0;
5409  switch (Result.getResultKind()) {
5410  case LookupResult::NotFound:
5411    DiagID = diag::err_typename_nested_not_found;
5412    break;
5413
5414  case LookupResult::NotFoundInCurrentInstantiation:
5415    // Okay, it's a member of an unknown instantiation.
5416    return Context.getDependentNameType(Keyword, NNS, &II);
5417
5418  case LookupResult::Found:
5419    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5420      // We found a type. Build an ElaboratedType, since the
5421      // typename-specifier was just sugar.
5422      return Context.getElaboratedType(ETK_Typename, NNS,
5423                                       Context.getTypeDeclType(Type));
5424    }
5425
5426    DiagID = diag::err_typename_nested_not_type;
5427    Referenced = Result.getFoundDecl();
5428    break;
5429
5430  case LookupResult::FoundUnresolvedValue:
5431    llvm_unreachable("unresolved using decl in non-dependent context");
5432    return QualType();
5433
5434  case LookupResult::FoundOverloaded:
5435    DiagID = diag::err_typename_nested_not_type;
5436    Referenced = *Result.begin();
5437    break;
5438
5439  case LookupResult::Ambiguous:
5440    return QualType();
5441  }
5442
5443  // If we get here, it's because name lookup did not find a
5444  // type. Emit an appropriate diagnostic and return an error.
5445  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5446                        IILoc);
5447  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5448  if (Referenced)
5449    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5450      << Name;
5451  return QualType();
5452}
5453
5454namespace {
5455  // See Sema::RebuildTypeInCurrentInstantiation
5456  class CurrentInstantiationRebuilder
5457    : public TreeTransform<CurrentInstantiationRebuilder> {
5458    SourceLocation Loc;
5459    DeclarationName Entity;
5460
5461  public:
5462    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5463
5464    CurrentInstantiationRebuilder(Sema &SemaRef,
5465                                  SourceLocation Loc,
5466                                  DeclarationName Entity)
5467    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5468      Loc(Loc), Entity(Entity) { }
5469
5470    /// \brief Determine whether the given type \p T has already been
5471    /// transformed.
5472    ///
5473    /// For the purposes of type reconstruction, a type has already been
5474    /// transformed if it is NULL or if it is not dependent.
5475    bool AlreadyTransformed(QualType T) {
5476      return T.isNull() || !T->isDependentType();
5477    }
5478
5479    /// \brief Returns the location of the entity whose type is being
5480    /// rebuilt.
5481    SourceLocation getBaseLocation() { return Loc; }
5482
5483    /// \brief Returns the name of the entity whose type is being rebuilt.
5484    DeclarationName getBaseEntity() { return Entity; }
5485
5486    /// \brief Sets the "base" location and entity when that
5487    /// information is known based on another transformation.
5488    void setBase(SourceLocation Loc, DeclarationName Entity) {
5489      this->Loc = Loc;
5490      this->Entity = Entity;
5491    }
5492  };
5493}
5494
5495/// \brief Rebuilds a type within the context of the current instantiation.
5496///
5497/// The type \p T is part of the type of an out-of-line member definition of
5498/// a class template (or class template partial specialization) that was parsed
5499/// and constructed before we entered the scope of the class template (or
5500/// partial specialization thereof). This routine will rebuild that type now
5501/// that we have entered the declarator's scope, which may produce different
5502/// canonical types, e.g.,
5503///
5504/// \code
5505/// template<typename T>
5506/// struct X {
5507///   typedef T* pointer;
5508///   pointer data();
5509/// };
5510///
5511/// template<typename T>
5512/// typename X<T>::pointer X<T>::data() { ... }
5513/// \endcode
5514///
5515/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5516/// since we do not know that we can look into X<T> when we parsed the type.
5517/// This function will rebuild the type, performing the lookup of "pointer"
5518/// in X<T> and returning an ElaboratedType whose canonical type is the same
5519/// as the canonical type of T*, allowing the return types of the out-of-line
5520/// definition and the declaration to match.
5521TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5522                                                        SourceLocation Loc,
5523                                                        DeclarationName Name) {
5524  if (!T || !T->getType()->isDependentType())
5525    return T;
5526
5527  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5528  return Rebuilder.TransformType(T);
5529}
5530
5531ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5532  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5533                                          DeclarationName());
5534  return Rebuilder.TransformExpr(E);
5535}
5536
5537bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5538  if (SS.isInvalid()) return true;
5539
5540  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5541  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5542                                          DeclarationName());
5543  NestedNameSpecifier *Rebuilt =
5544    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5545  if (!Rebuilt) return true;
5546
5547  SS.setScopeRep(Rebuilt);
5548  return false;
5549}
5550
5551/// \brief Produces a formatted string that describes the binding of
5552/// template parameters to template arguments.
5553std::string
5554Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5555                                      const TemplateArgumentList &Args) {
5556  // FIXME: For variadic templates, we'll need to get the structured list.
5557  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5558                                         Args.flat_size());
5559}
5560
5561std::string
5562Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5563                                      const TemplateArgument *Args,
5564                                      unsigned NumArgs) {
5565  std::string Result;
5566
5567  if (!Params || Params->size() == 0 || NumArgs == 0)
5568    return Result;
5569
5570  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5571    if (I >= NumArgs)
5572      break;
5573
5574    if (I == 0)
5575      Result += "[with ";
5576    else
5577      Result += ", ";
5578
5579    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5580      Result += Id->getName();
5581    } else {
5582      Result += '$';
5583      Result += llvm::utostr(I);
5584    }
5585
5586    Result += " = ";
5587
5588    switch (Args[I].getKind()) {
5589      case TemplateArgument::Null:
5590        Result += "<no value>";
5591        break;
5592
5593      case TemplateArgument::Type: {
5594        std::string TypeStr;
5595        Args[I].getAsType().getAsStringInternal(TypeStr,
5596                                                Context.PrintingPolicy);
5597        Result += TypeStr;
5598        break;
5599      }
5600
5601      case TemplateArgument::Declaration: {
5602        bool Unnamed = true;
5603        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5604          if (ND->getDeclName()) {
5605            Unnamed = false;
5606            Result += ND->getNameAsString();
5607          }
5608        }
5609
5610        if (Unnamed) {
5611          Result += "<anonymous>";
5612        }
5613        break;
5614      }
5615
5616      case TemplateArgument::Template: {
5617        std::string Str;
5618        llvm::raw_string_ostream OS(Str);
5619        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5620        Result += OS.str();
5621        break;
5622      }
5623
5624      case TemplateArgument::Integral: {
5625        Result += Args[I].getAsIntegral()->toString(10);
5626        break;
5627      }
5628
5629      case TemplateArgument::Expression: {
5630        // FIXME: This is non-optimal, since we're regurgitating the
5631        // expression we were given.
5632        std::string Str;
5633        {
5634          llvm::raw_string_ostream OS(Str);
5635          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5636                                           Context.PrintingPolicy);
5637        }
5638        Result += Str;
5639        break;
5640      }
5641
5642      case TemplateArgument::Pack:
5643        // FIXME: Format template argument packs
5644        Result += "<template argument pack>";
5645        break;
5646    }
5647  }
5648
5649  Result += ']';
5650  return Result;
5651}
5652