SemaTemplate.cpp revision 9bff9a91fbd6213e2d042aadd8ede92bed6be666
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2
3//
4//                     The LLVM Compiler Infrastructure
5//
6// This file is distributed under the University of Illinois Open Source
7// License. See LICENSE.TXT for details.
8//===----------------------------------------------------------------------===/
9
10//
11//  This file implements semantic analysis for C++ templates.
12//===----------------------------------------------------------------------===/
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Basic/LangOptions.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      TemplateTy &TemplateResult,
31                                      const CXXScopeSpec *SS) {
32  NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
33
34  TemplateNameKind TNK = TNK_Non_template;
35  TemplateDecl *Template = 0;
36
37  if (IIDecl) {
38    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
39      if (isa<FunctionTemplateDecl>(IIDecl))
40        TNK = TNK_Function_template;
41      else if (isa<ClassTemplateDecl>(IIDecl) ||
42               isa<TemplateTemplateParmDecl>(IIDecl))
43        TNK = TNK_Type_template;
44      else
45        assert(false && "Unknown template declaration kind");
46    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
47      // C++ [temp.local]p1:
48      //   Like normal (non-template) classes, class templates have an
49      //   injected-class-name (Clause 9). The injected-class-name
50      //   can be used with or without a template-argument-list. When
51      //   it is used without a template-argument-list, it is
52      //   equivalent to the injected-class-name followed by the
53      //   template-parameters of the class template enclosed in
54      //   <>. When it is used with a template-argument-list, it
55      //   refers to the specified class template specialization,
56      //   which could be the current specialization or another
57      //   specialization.
58      if (Record->isInjectedClassName()) {
59        Record = cast<CXXRecordDecl>(Context.getCanonicalDecl(Record));
60        if ((Template = Record->getDescribedClassTemplate()))
61          TNK = TNK_Type_template;
62        else if (ClassTemplateSpecializationDecl *Spec
63                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
64          Template = Spec->getSpecializedTemplate();
65          TNK = TNK_Type_template;
66        }
67      }
68    }
69
70    // FIXME: What follows is a gross hack.
71    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(IIDecl)) {
72      if (FD->getType()->isDependentType()) {
73        TemplateResult = TemplateTy::make(FD);
74        return TNK_Function_template;
75      }
76    } else if (OverloadedFunctionDecl *Ovl
77                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
78      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
79                                                  FEnd = Ovl->function_end();
80           F != FEnd; ++F) {
81        if ((*F)->getType()->isDependentType()) {
82          TemplateResult = TemplateTy::make(Ovl);
83          return TNK_Function_template;
84        }
85      }
86    }
87
88    if (TNK != TNK_Non_template) {
89      if (SS && SS->isSet() && !SS->isInvalid()) {
90        NestedNameSpecifier *Qualifier
91          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
92        TemplateResult
93          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
94                                                              false,
95                                                              Template));
96      } else
97        TemplateResult = TemplateTy::make(TemplateName(Template));
98    }
99  }
100  return TNK;
101}
102
103/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
104/// that the template parameter 'PrevDecl' is being shadowed by a new
105/// declaration at location Loc. Returns true to indicate that this is
106/// an error, and false otherwise.
107bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
108  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
109
110  // Microsoft Visual C++ permits template parameters to be shadowed.
111  if (getLangOptions().Microsoft)
112    return false;
113
114  // C++ [temp.local]p4:
115  //   A template-parameter shall not be redeclared within its
116  //   scope (including nested scopes).
117  Diag(Loc, diag::err_template_param_shadow)
118    << cast<NamedDecl>(PrevDecl)->getDeclName();
119  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
120  return true;
121}
122
123/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
124/// the parameter D to reference the templated declaration and return a pointer
125/// to the template declaration. Otherwise, do nothing to D and return null.
126TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
127  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
128    D = DeclPtrTy::make(Temp->getTemplatedDecl());
129    return Temp;
130  }
131  return 0;
132}
133
134/// ActOnTypeParameter - Called when a C++ template type parameter
135/// (e.g., "typename T") has been parsed. Typename specifies whether
136/// the keyword "typename" was used to declare the type parameter
137/// (otherwise, "class" was used), and KeyLoc is the location of the
138/// "class" or "typename" keyword. ParamName is the name of the
139/// parameter (NULL indicates an unnamed template parameter) and
140/// ParamName is the location of the parameter name (if any).
141/// If the type parameter has a default argument, it will be added
142/// later via ActOnTypeParameterDefault.
143Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename,
144                                         SourceLocation KeyLoc,
145                                         IdentifierInfo *ParamName,
146                                         SourceLocation ParamNameLoc,
147                                         unsigned Depth, unsigned Position) {
148  assert(S->isTemplateParamScope() &&
149	 "Template type parameter not in template parameter scope!");
150  bool Invalid = false;
151
152  if (ParamName) {
153    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
154    if (PrevDecl && PrevDecl->isTemplateParameter())
155      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
156							   PrevDecl);
157  }
158
159  SourceLocation Loc = ParamNameLoc;
160  if (!ParamName)
161    Loc = KeyLoc;
162
163  TemplateTypeParmDecl *Param
164    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
165                                   Depth, Position, ParamName, Typename);
166  if (Invalid)
167    Param->setInvalidDecl();
168
169  if (ParamName) {
170    // Add the template parameter into the current scope.
171    S->AddDecl(DeclPtrTy::make(Param));
172    IdResolver.AddDecl(Param);
173  }
174
175  return DeclPtrTy::make(Param);
176}
177
178/// ActOnTypeParameterDefault - Adds a default argument (the type
179/// Default) to the given template type parameter (TypeParam).
180void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
181                                     SourceLocation EqualLoc,
182                                     SourceLocation DefaultLoc,
183                                     TypeTy *DefaultT) {
184  TemplateTypeParmDecl *Parm
185    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
186  QualType Default = QualType::getFromOpaquePtr(DefaultT);
187
188  // C++ [temp.param]p14:
189  //   A template-parameter shall not be used in its own default argument.
190  // FIXME: Implement this check! Needs a recursive walk over the types.
191
192  // Check the template argument itself.
193  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
194    Parm->setInvalidDecl();
195    return;
196  }
197
198  Parm->setDefaultArgument(Default, DefaultLoc, false);
199}
200
201/// \brief Check that the type of a non-type template parameter is
202/// well-formed.
203///
204/// \returns the (possibly-promoted) parameter type if valid;
205/// otherwise, produces a diagnostic and returns a NULL type.
206QualType
207Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
208  // C++ [temp.param]p4:
209  //
210  // A non-type template-parameter shall have one of the following
211  // (optionally cv-qualified) types:
212  //
213  //       -- integral or enumeration type,
214  if (T->isIntegralType() || T->isEnumeralType() ||
215      //   -- pointer to object or pointer to function,
216      (T->isPointerType() &&
217       (T->getAsPointerType()->getPointeeType()->isObjectType() ||
218        T->getAsPointerType()->getPointeeType()->isFunctionType())) ||
219      //   -- reference to object or reference to function,
220      T->isReferenceType() ||
221      //   -- pointer to member.
222      T->isMemberPointerType() ||
223      // If T is a dependent type, we can't do the check now, so we
224      // assume that it is well-formed.
225      T->isDependentType())
226    return T;
227  // C++ [temp.param]p8:
228  //
229  //   A non-type template-parameter of type "array of T" or
230  //   "function returning T" is adjusted to be of type "pointer to
231  //   T" or "pointer to function returning T", respectively.
232  else if (T->isArrayType())
233    // FIXME: Keep the type prior to promotion?
234    return Context.getArrayDecayedType(T);
235  else if (T->isFunctionType())
236    // FIXME: Keep the type prior to promotion?
237    return Context.getPointerType(T);
238
239  Diag(Loc, diag::err_template_nontype_parm_bad_type)
240    << T;
241
242  return QualType();
243}
244
245/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
246/// template parameter (e.g., "int Size" in "template<int Size>
247/// class Array") has been parsed. S is the current scope and D is
248/// the parsed declarator.
249Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
250                                                    unsigned Depth,
251                                                    unsigned Position) {
252  QualType T = GetTypeForDeclarator(D, S);
253
254  assert(S->isTemplateParamScope() &&
255         "Non-type template parameter not in template parameter scope!");
256  bool Invalid = false;
257
258  IdentifierInfo *ParamName = D.getIdentifier();
259  if (ParamName) {
260    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
261    if (PrevDecl && PrevDecl->isTemplateParameter())
262      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
263                                                           PrevDecl);
264  }
265
266  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
267  if (T.isNull()) {
268    T = Context.IntTy; // Recover with an 'int' type.
269    Invalid = true;
270  }
271
272  NonTypeTemplateParmDecl *Param
273    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
274                                      Depth, Position, ParamName, T);
275  if (Invalid)
276    Param->setInvalidDecl();
277
278  if (D.getIdentifier()) {
279    // Add the template parameter into the current scope.
280    S->AddDecl(DeclPtrTy::make(Param));
281    IdResolver.AddDecl(Param);
282  }
283  return DeclPtrTy::make(Param);
284}
285
286/// \brief Adds a default argument to the given non-type template
287/// parameter.
288void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
289                                                SourceLocation EqualLoc,
290                                                ExprArg DefaultE) {
291  NonTypeTemplateParmDecl *TemplateParm
292    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
293  Expr *Default = static_cast<Expr *>(DefaultE.get());
294
295  // C++ [temp.param]p14:
296  //   A template-parameter shall not be used in its own default argument.
297  // FIXME: Implement this check! Needs a recursive walk over the types.
298
299  // Check the well-formedness of the default template argument.
300  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default)) {
301    TemplateParm->setInvalidDecl();
302    return;
303  }
304
305  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
306}
307
308
309/// ActOnTemplateTemplateParameter - Called when a C++ template template
310/// parameter (e.g. T in template <template <typename> class T> class array)
311/// has been parsed. S is the current scope.
312Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
313                                                     SourceLocation TmpLoc,
314                                                     TemplateParamsTy *Params,
315                                                     IdentifierInfo *Name,
316                                                     SourceLocation NameLoc,
317                                                     unsigned Depth,
318                                                     unsigned Position)
319{
320  assert(S->isTemplateParamScope() &&
321         "Template template parameter not in template parameter scope!");
322
323  // Construct the parameter object.
324  TemplateTemplateParmDecl *Param =
325    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
326                                     Position, Name,
327                                     (TemplateParameterList*)Params);
328
329  // Make sure the parameter is valid.
330  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
331  // do anything yet. However, if the template parameter list or (eventual)
332  // default value is ever invalidated, that will propagate here.
333  bool Invalid = false;
334  if (Invalid) {
335    Param->setInvalidDecl();
336  }
337
338  // If the tt-param has a name, then link the identifier into the scope
339  // and lookup mechanisms.
340  if (Name) {
341    S->AddDecl(DeclPtrTy::make(Param));
342    IdResolver.AddDecl(Param);
343  }
344
345  return DeclPtrTy::make(Param);
346}
347
348/// \brief Adds a default argument to the given template template
349/// parameter.
350void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
351                                                 SourceLocation EqualLoc,
352                                                 ExprArg DefaultE) {
353  TemplateTemplateParmDecl *TemplateParm
354    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
355
356  // Since a template-template parameter's default argument is an
357  // id-expression, it must be a DeclRefExpr.
358  DeclRefExpr *Default
359    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
360
361  // C++ [temp.param]p14:
362  //   A template-parameter shall not be used in its own default argument.
363  // FIXME: Implement this check! Needs a recursive walk over the types.
364
365  // Check the well-formedness of the template argument.
366  if (!isa<TemplateDecl>(Default->getDecl())) {
367    Diag(Default->getSourceRange().getBegin(),
368         diag::err_template_arg_must_be_template)
369      << Default->getSourceRange();
370    TemplateParm->setInvalidDecl();
371    return;
372  }
373  if (CheckTemplateArgument(TemplateParm, Default)) {
374    TemplateParm->setInvalidDecl();
375    return;
376  }
377
378  DefaultE.release();
379  TemplateParm->setDefaultArgument(Default);
380}
381
382/// ActOnTemplateParameterList - Builds a TemplateParameterList that
383/// contains the template parameters in Params/NumParams.
384Sema::TemplateParamsTy *
385Sema::ActOnTemplateParameterList(unsigned Depth,
386                                 SourceLocation ExportLoc,
387                                 SourceLocation TemplateLoc,
388                                 SourceLocation LAngleLoc,
389                                 DeclPtrTy *Params, unsigned NumParams,
390                                 SourceLocation RAngleLoc) {
391  if (ExportLoc.isValid())
392    Diag(ExportLoc, diag::note_template_export_unsupported);
393
394  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
395                                       (Decl**)Params, NumParams, RAngleLoc);
396}
397
398Sema::DeclResult
399Sema::ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
400                         SourceLocation KWLoc, const CXXScopeSpec &SS,
401                         IdentifierInfo *Name, SourceLocation NameLoc,
402                         AttributeList *Attr,
403                         MultiTemplateParamsArg TemplateParameterLists,
404                         AccessSpecifier AS) {
405  assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
406  assert(TK != TK_Reference && "Can only declare or define class templates");
407  bool Invalid = false;
408
409  // Check that we can declare a template here.
410  if (CheckTemplateDeclScope(S, TemplateParameterLists))
411    return true;
412
413  TagDecl::TagKind Kind;
414  switch (TagSpec) {
415  default: assert(0 && "Unknown tag type!");
416  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
417  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
418  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
419  }
420
421  // There is no such thing as an unnamed class template.
422  if (!Name) {
423    Diag(KWLoc, diag::err_template_unnamed_class);
424    return true;
425  }
426
427  // Find any previous declaration with this name.
428  LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
429                                           true);
430  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
431  NamedDecl *PrevDecl = 0;
432  if (Previous.begin() != Previous.end())
433    PrevDecl = *Previous.begin();
434
435  DeclContext *SemanticContext = CurContext;
436  if (SS.isNotEmpty() && !SS.isInvalid()) {
437    SemanticContext = computeDeclContext(SS);
438
439    // FIXME: need to match up several levels of template parameter lists here.
440  }
441
442  // FIXME: member templates!
443  TemplateParameterList *TemplateParams
444    = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
445
446  // If there is a previous declaration with the same name, check
447  // whether this is a valid redeclaration.
448  ClassTemplateDecl *PrevClassTemplate
449    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
450  if (PrevClassTemplate) {
451    // Ensure that the template parameter lists are compatible.
452    if (!TemplateParameterListsAreEqual(TemplateParams,
453                                   PrevClassTemplate->getTemplateParameters(),
454                                        /*Complain=*/true))
455      return true;
456
457    // C++ [temp.class]p4:
458    //   In a redeclaration, partial specialization, explicit
459    //   specialization or explicit instantiation of a class template,
460    //   the class-key shall agree in kind with the original class
461    //   template declaration (7.1.5.3).
462    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
463    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
464      Diag(KWLoc, diag::err_use_with_wrong_tag)
465        << Name
466        << CodeModificationHint::CreateReplacement(KWLoc,
467                            PrevRecordDecl->getKindName());
468      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
469      Kind = PrevRecordDecl->getTagKind();
470    }
471
472    // Check for redefinition of this class template.
473    if (TK == TK_Definition) {
474      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
475        Diag(NameLoc, diag::err_redefinition) << Name;
476        Diag(Def->getLocation(), diag::note_previous_definition);
477        // FIXME: Would it make sense to try to "forget" the previous
478        // definition, as part of error recovery?
479        return true;
480      }
481    }
482  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
483    // Maybe we will complain about the shadowed template parameter.
484    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
485    // Just pretend that we didn't see the previous declaration.
486    PrevDecl = 0;
487  } else if (PrevDecl) {
488    // C++ [temp]p5:
489    //   A class template shall not have the same name as any other
490    //   template, class, function, object, enumeration, enumerator,
491    //   namespace, or type in the same scope (3.3), except as specified
492    //   in (14.5.4).
493    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
494    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
495    return true;
496  }
497
498  // Check the template parameter list of this declaration, possibly
499  // merging in the template parameter list from the previous class
500  // template declaration.
501  if (CheckTemplateParameterList(TemplateParams,
502            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
503    Invalid = true;
504
505  // FIXME: If we had a scope specifier, we better have a previous template
506  // declaration!
507
508  CXXRecordDecl *NewClass =
509    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name,
510                          PrevClassTemplate?
511                            PrevClassTemplate->getTemplatedDecl() : 0,
512                          /*DelayTypeCreation=*/true);
513
514  ClassTemplateDecl *NewTemplate
515    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
516                                DeclarationName(Name), TemplateParams,
517                                NewClass, PrevClassTemplate);
518  NewClass->setDescribedClassTemplate(NewTemplate);
519
520  // Build the type for the class template declaration now.
521  QualType T =
522    Context.getTypeDeclType(NewClass,
523                            PrevClassTemplate?
524                              PrevClassTemplate->getTemplatedDecl() : 0);
525  assert(T->isDependentType() && "Class template type is not dependent?");
526  (void)T;
527
528  // Set the access specifier.
529  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
530
531  // Set the lexical context of these templates
532  NewClass->setLexicalDeclContext(CurContext);
533  NewTemplate->setLexicalDeclContext(CurContext);
534
535  if (TK == TK_Definition)
536    NewClass->startDefinition();
537
538  if (Attr)
539    ProcessDeclAttributeList(NewClass, Attr);
540
541  PushOnScopeChains(NewTemplate, S);
542
543  if (Invalid) {
544    NewTemplate->setInvalidDecl();
545    NewClass->setInvalidDecl();
546  }
547  return DeclPtrTy::make(NewTemplate);
548}
549
550/// \brief Checks the validity of a template parameter list, possibly
551/// considering the template parameter list from a previous
552/// declaration.
553///
554/// If an "old" template parameter list is provided, it must be
555/// equivalent (per TemplateParameterListsAreEqual) to the "new"
556/// template parameter list.
557///
558/// \param NewParams Template parameter list for a new template
559/// declaration. This template parameter list will be updated with any
560/// default arguments that are carried through from the previous
561/// template parameter list.
562///
563/// \param OldParams If provided, template parameter list from a
564/// previous declaration of the same template. Default template
565/// arguments will be merged from the old template parameter list to
566/// the new template parameter list.
567///
568/// \returns true if an error occurred, false otherwise.
569bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
570                                      TemplateParameterList *OldParams) {
571  bool Invalid = false;
572
573  // C++ [temp.param]p10:
574  //   The set of default template-arguments available for use with a
575  //   template declaration or definition is obtained by merging the
576  //   default arguments from the definition (if in scope) and all
577  //   declarations in scope in the same way default function
578  //   arguments are (8.3.6).
579  bool SawDefaultArgument = false;
580  SourceLocation PreviousDefaultArgLoc;
581
582  // Dummy initialization to avoid warnings.
583  TemplateParameterList::iterator OldParam = NewParams->end();
584  if (OldParams)
585    OldParam = OldParams->begin();
586
587  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
588                                    NewParamEnd = NewParams->end();
589       NewParam != NewParamEnd; ++NewParam) {
590    // Variables used to diagnose redundant default arguments
591    bool RedundantDefaultArg = false;
592    SourceLocation OldDefaultLoc;
593    SourceLocation NewDefaultLoc;
594
595    // Variables used to diagnose missing default arguments
596    bool MissingDefaultArg = false;
597
598    // Merge default arguments for template type parameters.
599    if (TemplateTypeParmDecl *NewTypeParm
600          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
601      TemplateTypeParmDecl *OldTypeParm
602          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
603
604      if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
605          NewTypeParm->hasDefaultArgument()) {
606        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
607        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
608        SawDefaultArgument = true;
609        RedundantDefaultArg = true;
610        PreviousDefaultArgLoc = NewDefaultLoc;
611      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
612        // Merge the default argument from the old declaration to the
613        // new declaration.
614        SawDefaultArgument = true;
615        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
616                                        OldTypeParm->getDefaultArgumentLoc(),
617                                        true);
618        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
619      } else if (NewTypeParm->hasDefaultArgument()) {
620        SawDefaultArgument = true;
621        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
622      } else if (SawDefaultArgument)
623        MissingDefaultArg = true;
624    }
625    // Merge default arguments for non-type template parameters
626    else if (NonTypeTemplateParmDecl *NewNonTypeParm
627               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
628      NonTypeTemplateParmDecl *OldNonTypeParm
629        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
630      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
631          NewNonTypeParm->hasDefaultArgument()) {
632        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
633        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
634        SawDefaultArgument = true;
635        RedundantDefaultArg = true;
636        PreviousDefaultArgLoc = NewDefaultLoc;
637      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
638        // Merge the default argument from the old declaration to the
639        // new declaration.
640        SawDefaultArgument = true;
641        // FIXME: We need to create a new kind of "default argument"
642        // expression that points to a previous template template
643        // parameter.
644        NewNonTypeParm->setDefaultArgument(
645                                        OldNonTypeParm->getDefaultArgument());
646        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
647      } else if (NewNonTypeParm->hasDefaultArgument()) {
648        SawDefaultArgument = true;
649        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
650      } else if (SawDefaultArgument)
651        MissingDefaultArg = true;
652    }
653    // Merge default arguments for template template parameters
654    else {
655      TemplateTemplateParmDecl *NewTemplateParm
656        = cast<TemplateTemplateParmDecl>(*NewParam);
657      TemplateTemplateParmDecl *OldTemplateParm
658        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
659      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
660          NewTemplateParm->hasDefaultArgument()) {
661        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
662        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
663        SawDefaultArgument = true;
664        RedundantDefaultArg = true;
665        PreviousDefaultArgLoc = NewDefaultLoc;
666      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
667        // Merge the default argument from the old declaration to the
668        // new declaration.
669        SawDefaultArgument = true;
670        // FIXME: We need to create a new kind of "default argument" expression
671        // that points to a previous template template parameter.
672        NewTemplateParm->setDefaultArgument(
673                                        OldTemplateParm->getDefaultArgument());
674        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
675      } else if (NewTemplateParm->hasDefaultArgument()) {
676        SawDefaultArgument = true;
677        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
678      } else if (SawDefaultArgument)
679        MissingDefaultArg = true;
680    }
681
682    if (RedundantDefaultArg) {
683      // C++ [temp.param]p12:
684      //   A template-parameter shall not be given default arguments
685      //   by two different declarations in the same scope.
686      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
687      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
688      Invalid = true;
689    } else if (MissingDefaultArg) {
690      // C++ [temp.param]p11:
691      //   If a template-parameter has a default template-argument,
692      //   all subsequent template-parameters shall have a default
693      //   template-argument supplied.
694      Diag((*NewParam)->getLocation(),
695           diag::err_template_param_default_arg_missing);
696      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
697      Invalid = true;
698    }
699
700    // If we have an old template parameter list that we're merging
701    // in, move on to the next parameter.
702    if (OldParams)
703      ++OldParam;
704  }
705
706  return Invalid;
707}
708
709/// \brief Translates template arguments as provided by the parser
710/// into template arguments used by semantic analysis.
711static void
712translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
713                           SourceLocation *TemplateArgLocs,
714                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
715  TemplateArgs.reserve(TemplateArgsIn.size());
716
717  void **Args = TemplateArgsIn.getArgs();
718  bool *ArgIsType = TemplateArgsIn.getArgIsType();
719  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
720    TemplateArgs.push_back(
721      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
722                                       QualType::getFromOpaquePtr(Args[Arg]))
723                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
724  }
725}
726
727/// \brief Build a canonical version of a template argument list.
728///
729/// This function builds a canonical version of the given template
730/// argument list, where each of the template arguments has been
731/// converted into its canonical form. This routine is typically used
732/// to canonicalize a template argument list when the template name
733/// itself is dependent. When the template name refers to an actual
734/// template declaration, Sema::CheckTemplateArgumentList should be
735/// used to check and canonicalize the template arguments.
736///
737/// \param TemplateArgs The incoming template arguments.
738///
739/// \param NumTemplateArgs The number of template arguments in \p
740/// TemplateArgs.
741///
742/// \param Canonical A vector to be filled with the canonical versions
743/// of the template arguments.
744///
745/// \param Context The ASTContext in which the template arguments live.
746static void CanonicalizeTemplateArguments(const TemplateArgument *TemplateArgs,
747                                          unsigned NumTemplateArgs,
748                            llvm::SmallVectorImpl<TemplateArgument> &Canonical,
749                                          ASTContext &Context) {
750  Canonical.reserve(NumTemplateArgs);
751  for (unsigned Idx = 0; Idx < NumTemplateArgs; ++Idx) {
752    switch (TemplateArgs[Idx].getKind()) {
753    case TemplateArgument::Null:
754      assert(false && "Should never see a NULL template argument here");
755      break;
756
757    case TemplateArgument::Expression:
758      // FIXME: Build canonical expression (!)
759      Canonical.push_back(TemplateArgs[Idx]);
760      break;
761
762    case TemplateArgument::Declaration:
763      Canonical.push_back(
764                 TemplateArgument(SourceLocation(),
765                    Context.getCanonicalDecl(TemplateArgs[Idx].getAsDecl())));
766      break;
767
768    case TemplateArgument::Integral:
769      Canonical.push_back(TemplateArgument(SourceLocation(),
770                                           *TemplateArgs[Idx].getAsIntegral(),
771                                        TemplateArgs[Idx].getIntegralType()));
772      break;
773
774    case TemplateArgument::Type: {
775      QualType CanonType
776        = Context.getCanonicalType(TemplateArgs[Idx].getAsType());
777      Canonical.push_back(TemplateArgument(SourceLocation(), CanonType));
778      break;
779    }
780    }
781  }
782}
783
784QualType Sema::CheckTemplateIdType(TemplateName Name,
785                                   SourceLocation TemplateLoc,
786                                   SourceLocation LAngleLoc,
787                                   const TemplateArgument *TemplateArgs,
788                                   unsigned NumTemplateArgs,
789                                   SourceLocation RAngleLoc) {
790  TemplateDecl *Template = Name.getAsTemplateDecl();
791  if (!Template) {
792    // The template name does not resolve to a template, so we just
793    // build a dependent template-id type.
794
795    // Canonicalize the template arguments to build the canonical
796    // template-id type.
797    llvm::SmallVector<TemplateArgument, 16> CanonicalTemplateArgs;
798    CanonicalizeTemplateArguments(TemplateArgs, NumTemplateArgs,
799                                  CanonicalTemplateArgs, Context);
800
801    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
802    QualType CanonType
803      = Context.getTemplateSpecializationType(CanonName,
804                                              &CanonicalTemplateArgs[0],
805                                              CanonicalTemplateArgs.size());
806
807    // Build the dependent template-id type.
808    return Context.getTemplateSpecializationType(Name, TemplateArgs,
809                                                 NumTemplateArgs, CanonType);
810  }
811
812  // Check that the template argument list is well-formed for this
813  // template.
814  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
815  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
816                                TemplateArgs, NumTemplateArgs, RAngleLoc,
817                                ConvertedTemplateArgs))
818    return QualType();
819
820  assert((ConvertedTemplateArgs.size() ==
821            Template->getTemplateParameters()->size()) &&
822         "Converted template argument list is too short!");
823
824  QualType CanonType;
825
826  if (TemplateSpecializationType::anyDependentTemplateArguments(
827                                                      TemplateArgs,
828                                                      NumTemplateArgs)) {
829    // This class template specialization is a dependent
830    // type. Therefore, its canonical type is another class template
831    // specialization type that contains all of the converted
832    // arguments in canonical form. This ensures that, e.g., A<T> and
833    // A<T, T> have identical types when A is declared as:
834    //
835    //   template<typename T, typename U = T> struct A;
836    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
837    CanonType = Context.getTemplateSpecializationType(CanonName,
838                                                    &ConvertedTemplateArgs[0],
839                                                ConvertedTemplateArgs.size());
840  } else if (ClassTemplateDecl *ClassTemplate
841               = dyn_cast<ClassTemplateDecl>(Template)) {
842    // Find the class template specialization declaration that
843    // corresponds to these arguments.
844    llvm::FoldingSetNodeID ID;
845    ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
846                                             ConvertedTemplateArgs.size());
847    void *InsertPos = 0;
848    ClassTemplateSpecializationDecl *Decl
849      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
850    if (!Decl) {
851      // This is the first time we have referenced this class template
852      // specialization. Create the canonical declaration and add it to
853      // the set of specializations.
854      Decl = ClassTemplateSpecializationDecl::Create(Context,
855                                           ClassTemplate->getDeclContext(),
856                                                     TemplateLoc,
857                                                     ClassTemplate,
858                                                     &ConvertedTemplateArgs[0],
859                                                  ConvertedTemplateArgs.size(),
860                                                     0);
861      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
862      Decl->setLexicalDeclContext(CurContext);
863    }
864
865    CanonType = Context.getTypeDeclType(Decl);
866  }
867
868  // Build the fully-sugared type for this class template
869  // specialization, which refers back to the class template
870  // specialization we created or found.
871  return Context.getTemplateSpecializationType(Name, TemplateArgs,
872                                               NumTemplateArgs, CanonType);
873}
874
875Action::TypeResult
876Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
877                          SourceLocation LAngleLoc,
878                          ASTTemplateArgsPtr TemplateArgsIn,
879                          SourceLocation *TemplateArgLocs,
880                          SourceLocation RAngleLoc) {
881  TemplateName Template = TemplateD.getAsVal<TemplateName>();
882
883  // Translate the parser's template argument list in our AST format.
884  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
885  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
886
887  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
888                                        TemplateArgs.data(),
889                                        TemplateArgs.size(),
890                                        RAngleLoc);
891  TemplateArgsIn.release();
892
893  if (Result.isNull())
894    return true;
895
896  return Result.getAsOpaquePtr();
897}
898
899/// \brief Form a dependent template name.
900///
901/// This action forms a dependent template name given the template
902/// name and its (presumably dependent) scope specifier. For
903/// example, given "MetaFun::template apply", the scope specifier \p
904/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
905/// of the "template" keyword, and "apply" is the \p Name.
906Sema::TemplateTy
907Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
908                                 const IdentifierInfo &Name,
909                                 SourceLocation NameLoc,
910                                 const CXXScopeSpec &SS) {
911  if (!SS.isSet() || SS.isInvalid())
912    return TemplateTy();
913
914  NestedNameSpecifier *Qualifier
915    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
916
917  // FIXME: member of the current instantiation
918
919  if (!Qualifier->isDependent()) {
920    // C++0x [temp.names]p5:
921    //   If a name prefixed by the keyword template is not the name of
922    //   a template, the program is ill-formed. [Note: the keyword
923    //   template may not be applied to non-template members of class
924    //   templates. -end note ] [ Note: as is the case with the
925    //   typename prefix, the template prefix is allowed in cases
926    //   where it is not strictly necessary; i.e., when the
927    //   nested-name-specifier or the expression on the left of the ->
928    //   or . is not dependent on a template-parameter, or the use
929    //   does not appear in the scope of a template. -end note]
930    //
931    // Note: C++03 was more strict here, because it banned the use of
932    // the "template" keyword prior to a template-name that was not a
933    // dependent name. C++ DR468 relaxed this requirement (the
934    // "template" keyword is now permitted). We follow the C++0x
935    // rules, even in C++03 mode, retroactively applying the DR.
936    TemplateTy Template;
937    TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
938    if (TNK == TNK_Non_template) {
939      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
940        << &Name;
941      return TemplateTy();
942    }
943
944    return Template;
945  }
946
947  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
948}
949
950/// \brief Check that the given template argument list is well-formed
951/// for specializing the given template.
952bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
953                                     SourceLocation TemplateLoc,
954                                     SourceLocation LAngleLoc,
955                                     const TemplateArgument *TemplateArgs,
956                                     unsigned NumTemplateArgs,
957                                     SourceLocation RAngleLoc,
958                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
959  TemplateParameterList *Params = Template->getTemplateParameters();
960  unsigned NumParams = Params->size();
961  unsigned NumArgs = NumTemplateArgs;
962  bool Invalid = false;
963
964  if (NumArgs > NumParams ||
965      NumArgs < Params->getMinRequiredArguments()) {
966    // FIXME: point at either the first arg beyond what we can handle,
967    // or the '>', depending on whether we have too many or too few
968    // arguments.
969    SourceRange Range;
970    if (NumArgs > NumParams)
971      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
972    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
973      << (NumArgs > NumParams)
974      << (isa<ClassTemplateDecl>(Template)? 0 :
975          isa<FunctionTemplateDecl>(Template)? 1 :
976          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
977      << Template << Range;
978    Diag(Template->getLocation(), diag::note_template_decl_here)
979      << Params->getSourceRange();
980    Invalid = true;
981  }
982
983  // C++ [temp.arg]p1:
984  //   [...] The type and form of each template-argument specified in
985  //   a template-id shall match the type and form specified for the
986  //   corresponding parameter declared by the template in its
987  //   template-parameter-list.
988  unsigned ArgIdx = 0;
989  for (TemplateParameterList::iterator Param = Params->begin(),
990                                       ParamEnd = Params->end();
991       Param != ParamEnd; ++Param, ++ArgIdx) {
992    // Decode the template argument
993    TemplateArgument Arg;
994    if (ArgIdx >= NumArgs) {
995      // Retrieve the default template argument from the template
996      // parameter.
997      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
998        if (!TTP->hasDefaultArgument())
999          break;
1000
1001        QualType ArgType = TTP->getDefaultArgument();
1002
1003        // If the argument type is dependent, instantiate it now based
1004        // on the previously-computed template arguments.
1005        if (ArgType->isDependentType()) {
1006          InstantiatingTemplate Inst(*this, TemplateLoc,
1007                                     Template, &Converted[0],
1008                                     Converted.size(),
1009                                     SourceRange(TemplateLoc, RAngleLoc));
1010
1011          TemplateArgumentList TemplateArgs(Context, &Converted[0],
1012                                            Converted.size(),
1013                                            /*CopyArgs=*/false);
1014          ArgType = InstantiateType(ArgType, TemplateArgs,
1015                                    TTP->getDefaultArgumentLoc(),
1016                                    TTP->getDeclName());
1017        }
1018
1019        if (ArgType.isNull())
1020          return true;
1021
1022        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1023      } else if (NonTypeTemplateParmDecl *NTTP
1024                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1025        if (!NTTP->hasDefaultArgument())
1026          break;
1027
1028        // FIXME: Instantiate default argument
1029        Arg = TemplateArgument(NTTP->getDefaultArgument());
1030      } else {
1031        TemplateTemplateParmDecl *TempParm
1032          = cast<TemplateTemplateParmDecl>(*Param);
1033
1034        if (!TempParm->hasDefaultArgument())
1035          break;
1036
1037        // FIXME: Instantiate default argument
1038        Arg = TemplateArgument(TempParm->getDefaultArgument());
1039      }
1040    } else {
1041      // Retrieve the template argument produced by the user.
1042      Arg = TemplateArgs[ArgIdx];
1043    }
1044
1045
1046    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1047      // Check template type parameters.
1048      if (Arg.getKind() == TemplateArgument::Type) {
1049        if (CheckTemplateArgument(TTP, Arg.getAsType(), Arg.getLocation()))
1050          Invalid = true;
1051
1052        // Add the converted template type argument.
1053        Converted.push_back(
1054                 TemplateArgument(Arg.getLocation(),
1055                                  Context.getCanonicalType(Arg.getAsType())));
1056        continue;
1057      }
1058
1059      // C++ [temp.arg.type]p1:
1060      //   A template-argument for a template-parameter which is a
1061      //   type shall be a type-id.
1062
1063      // We have a template type parameter but the template argument
1064      // is not a type.
1065      Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1066      Diag((*Param)->getLocation(), diag::note_template_param_here);
1067      Invalid = true;
1068    } else if (NonTypeTemplateParmDecl *NTTP
1069                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1070      // Check non-type template parameters.
1071
1072      // Instantiate the type of the non-type template parameter with
1073      // the template arguments we've seen thus far.
1074      QualType NTTPType = NTTP->getType();
1075      if (NTTPType->isDependentType()) {
1076        // Instantiate the type of the non-type template parameter.
1077        InstantiatingTemplate Inst(*this, TemplateLoc,
1078                                   Template, &Converted[0],
1079                                   Converted.size(),
1080                                   SourceRange(TemplateLoc, RAngleLoc));
1081
1082        TemplateArgumentList TemplateArgs(Context, &Converted[0],
1083                                          Converted.size(),
1084                                          /*CopyArgs=*/false);
1085        NTTPType = InstantiateType(NTTPType, TemplateArgs,
1086                                   NTTP->getLocation(),
1087                                   NTTP->getDeclName());
1088        // If that worked, check the non-type template parameter type
1089        // for validity.
1090        if (!NTTPType.isNull())
1091          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1092                                                       NTTP->getLocation());
1093
1094        if (NTTPType.isNull()) {
1095          Invalid = true;
1096          break;
1097        }
1098      }
1099
1100      switch (Arg.getKind()) {
1101      case TemplateArgument::Null:
1102        assert(false && "Should never see a NULL template argument here");
1103        break;
1104
1105      case TemplateArgument::Expression: {
1106        Expr *E = Arg.getAsExpr();
1107        if (CheckTemplateArgument(NTTP, NTTPType, E, &Converted))
1108          Invalid = true;
1109        break;
1110      }
1111
1112      case TemplateArgument::Declaration:
1113      case TemplateArgument::Integral:
1114        // We've already checked this template argument, so just copy
1115        // it to the list of converted arguments.
1116        Converted.push_back(Arg);
1117        break;
1118
1119      case TemplateArgument::Type:
1120        // We have a non-type template parameter but the template
1121        // argument is a type.
1122
1123        // C++ [temp.arg]p2:
1124        //   In a template-argument, an ambiguity between a type-id and
1125        //   an expression is resolved to a type-id, regardless of the
1126        //   form of the corresponding template-parameter.
1127        //
1128        // We warn specifically about this case, since it can be rather
1129        // confusing for users.
1130        if (Arg.getAsType()->isFunctionType())
1131          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1132            << Arg.getAsType();
1133        else
1134          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1135        Diag((*Param)->getLocation(), diag::note_template_param_here);
1136        Invalid = true;
1137      }
1138    } else {
1139      // Check template template parameters.
1140      TemplateTemplateParmDecl *TempParm
1141        = cast<TemplateTemplateParmDecl>(*Param);
1142
1143      switch (Arg.getKind()) {
1144      case TemplateArgument::Null:
1145        assert(false && "Should never see a NULL template argument here");
1146        break;
1147
1148      case TemplateArgument::Expression: {
1149        Expr *ArgExpr = Arg.getAsExpr();
1150        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1151            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1152          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1153            Invalid = true;
1154
1155          // Add the converted template argument.
1156          Decl *D
1157            = Context.getCanonicalDecl(cast<DeclRefExpr>(ArgExpr)->getDecl());
1158          Converted.push_back(TemplateArgument(Arg.getLocation(), D));
1159          continue;
1160        }
1161      }
1162        // fall through
1163
1164      case TemplateArgument::Type: {
1165        // We have a template template parameter but the template
1166        // argument does not refer to a template.
1167        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1168        Invalid = true;
1169        break;
1170      }
1171
1172      case TemplateArgument::Declaration:
1173        // We've already checked this template argument, so just copy
1174        // it to the list of converted arguments.
1175        Converted.push_back(Arg);
1176        break;
1177
1178      case TemplateArgument::Integral:
1179        assert(false && "Integral argument with template template parameter");
1180        break;
1181      }
1182    }
1183  }
1184
1185  return Invalid;
1186}
1187
1188/// \brief Check a template argument against its corresponding
1189/// template type parameter.
1190///
1191/// This routine implements the semantics of C++ [temp.arg.type]. It
1192/// returns true if an error occurred, and false otherwise.
1193bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1194                                 QualType Arg, SourceLocation ArgLoc) {
1195  // C++ [temp.arg.type]p2:
1196  //   A local type, a type with no linkage, an unnamed type or a type
1197  //   compounded from any of these types shall not be used as a
1198  //   template-argument for a template type-parameter.
1199  //
1200  // FIXME: Perform the recursive and no-linkage type checks.
1201  const TagType *Tag = 0;
1202  if (const EnumType *EnumT = Arg->getAsEnumType())
1203    Tag = EnumT;
1204  else if (const RecordType *RecordT = Arg->getAsRecordType())
1205    Tag = RecordT;
1206  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1207    return Diag(ArgLoc, diag::err_template_arg_local_type)
1208      << QualType(Tag, 0);
1209  else if (Tag && !Tag->getDecl()->getDeclName() &&
1210           !Tag->getDecl()->getTypedefForAnonDecl()) {
1211    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1212    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1213    return true;
1214  }
1215
1216  return false;
1217}
1218
1219/// \brief Checks whether the given template argument is the address
1220/// of an object or function according to C++ [temp.arg.nontype]p1.
1221bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1222                                                          NamedDecl *&Entity) {
1223  bool Invalid = false;
1224
1225  // See through any implicit casts we added to fix the type.
1226  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1227    Arg = Cast->getSubExpr();
1228
1229  // C++0x allows nullptr, and there's no further checking to be done for that.
1230  if (Arg->getType()->isNullPtrType())
1231    return false;
1232
1233  // C++ [temp.arg.nontype]p1:
1234  //
1235  //   A template-argument for a non-type, non-template
1236  //   template-parameter shall be one of: [...]
1237  //
1238  //     -- the address of an object or function with external
1239  //        linkage, including function templates and function
1240  //        template-ids but excluding non-static class members,
1241  //        expressed as & id-expression where the & is optional if
1242  //        the name refers to a function or array, or if the
1243  //        corresponding template-parameter is a reference; or
1244  DeclRefExpr *DRE = 0;
1245
1246  // Ignore (and complain about) any excess parentheses.
1247  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1248    if (!Invalid) {
1249      Diag(Arg->getSourceRange().getBegin(),
1250           diag::err_template_arg_extra_parens)
1251        << Arg->getSourceRange();
1252      Invalid = true;
1253    }
1254
1255    Arg = Parens->getSubExpr();
1256  }
1257
1258  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1259    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1260      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1261  } else
1262    DRE = dyn_cast<DeclRefExpr>(Arg);
1263
1264  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1265    return Diag(Arg->getSourceRange().getBegin(),
1266                diag::err_template_arg_not_object_or_func_form)
1267      << Arg->getSourceRange();
1268
1269  // Cannot refer to non-static data members
1270  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1271    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1272      << Field << Arg->getSourceRange();
1273
1274  // Cannot refer to non-static member functions
1275  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1276    if (!Method->isStatic())
1277      return Diag(Arg->getSourceRange().getBegin(),
1278                  diag::err_template_arg_method)
1279        << Method << Arg->getSourceRange();
1280
1281  // Functions must have external linkage.
1282  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1283    if (Func->getStorageClass() == FunctionDecl::Static) {
1284      Diag(Arg->getSourceRange().getBegin(),
1285           diag::err_template_arg_function_not_extern)
1286        << Func << Arg->getSourceRange();
1287      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1288        << true;
1289      return true;
1290    }
1291
1292    // Okay: we've named a function with external linkage.
1293    Entity = Func;
1294    return Invalid;
1295  }
1296
1297  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1298    if (!Var->hasGlobalStorage()) {
1299      Diag(Arg->getSourceRange().getBegin(),
1300           diag::err_template_arg_object_not_extern)
1301        << Var << Arg->getSourceRange();
1302      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1303        << true;
1304      return true;
1305    }
1306
1307    // Okay: we've named an object with external linkage
1308    Entity = Var;
1309    return Invalid;
1310  }
1311
1312  // We found something else, but we don't know specifically what it is.
1313  Diag(Arg->getSourceRange().getBegin(),
1314       diag::err_template_arg_not_object_or_func)
1315      << Arg->getSourceRange();
1316  Diag(DRE->getDecl()->getLocation(),
1317       diag::note_template_arg_refers_here);
1318  return true;
1319}
1320
1321/// \brief Checks whether the given template argument is a pointer to
1322/// member constant according to C++ [temp.arg.nontype]p1.
1323bool
1324Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1325  bool Invalid = false;
1326
1327  // See through any implicit casts we added to fix the type.
1328  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1329    Arg = Cast->getSubExpr();
1330
1331  // C++0x allows nullptr, and there's no further checking to be done for that.
1332  if (Arg->getType()->isNullPtrType())
1333    return false;
1334
1335  // C++ [temp.arg.nontype]p1:
1336  //
1337  //   A template-argument for a non-type, non-template
1338  //   template-parameter shall be one of: [...]
1339  //
1340  //     -- a pointer to member expressed as described in 5.3.1.
1341  QualifiedDeclRefExpr *DRE = 0;
1342
1343  // Ignore (and complain about) any excess parentheses.
1344  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1345    if (!Invalid) {
1346      Diag(Arg->getSourceRange().getBegin(),
1347           diag::err_template_arg_extra_parens)
1348        << Arg->getSourceRange();
1349      Invalid = true;
1350    }
1351
1352    Arg = Parens->getSubExpr();
1353  }
1354
1355  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1356    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1357      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1358
1359  if (!DRE)
1360    return Diag(Arg->getSourceRange().getBegin(),
1361                diag::err_template_arg_not_pointer_to_member_form)
1362      << Arg->getSourceRange();
1363
1364  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1365    assert((isa<FieldDecl>(DRE->getDecl()) ||
1366            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1367           "Only non-static member pointers can make it here");
1368
1369    // Okay: this is the address of a non-static member, and therefore
1370    // a member pointer constant.
1371    Member = DRE->getDecl();
1372    return Invalid;
1373  }
1374
1375  // We found something else, but we don't know specifically what it is.
1376  Diag(Arg->getSourceRange().getBegin(),
1377       diag::err_template_arg_not_pointer_to_member_form)
1378      << Arg->getSourceRange();
1379  Diag(DRE->getDecl()->getLocation(),
1380       diag::note_template_arg_refers_here);
1381  return true;
1382}
1383
1384/// \brief Check a template argument against its corresponding
1385/// non-type template parameter.
1386///
1387/// This routine implements the semantics of C++ [temp.arg.nontype].
1388/// It returns true if an error occurred, and false otherwise. \p
1389/// InstantiatedParamType is the type of the non-type template
1390/// parameter after it has been instantiated.
1391///
1392/// If Converted is non-NULL and no errors occur, the value
1393/// of this argument will be added to the end of the Converted vector.
1394bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1395                                 QualType InstantiatedParamType, Expr *&Arg,
1396                         llvm::SmallVectorImpl<TemplateArgument> *Converted) {
1397  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1398
1399  // If either the parameter has a dependent type or the argument is
1400  // type-dependent, there's nothing we can check now.
1401  // FIXME: Add template argument to Converted!
1402  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1403    // FIXME: Produce a cloned, canonical expression?
1404    Converted->push_back(TemplateArgument(Arg));
1405    return false;
1406  }
1407
1408  // C++ [temp.arg.nontype]p5:
1409  //   The following conversions are performed on each expression used
1410  //   as a non-type template-argument. If a non-type
1411  //   template-argument cannot be converted to the type of the
1412  //   corresponding template-parameter then the program is
1413  //   ill-formed.
1414  //
1415  //     -- for a non-type template-parameter of integral or
1416  //        enumeration type, integral promotions (4.5) and integral
1417  //        conversions (4.7) are applied.
1418  QualType ParamType = InstantiatedParamType;
1419  QualType ArgType = Arg->getType();
1420  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1421    // C++ [temp.arg.nontype]p1:
1422    //   A template-argument for a non-type, non-template
1423    //   template-parameter shall be one of:
1424    //
1425    //     -- an integral constant-expression of integral or enumeration
1426    //        type; or
1427    //     -- the name of a non-type template-parameter; or
1428    SourceLocation NonConstantLoc;
1429    llvm::APSInt Value;
1430    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1431      Diag(Arg->getSourceRange().getBegin(),
1432           diag::err_template_arg_not_integral_or_enumeral)
1433        << ArgType << Arg->getSourceRange();
1434      Diag(Param->getLocation(), diag::note_template_param_here);
1435      return true;
1436    } else if (!Arg->isValueDependent() &&
1437               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1438      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1439        << ArgType << Arg->getSourceRange();
1440      return true;
1441    }
1442
1443    // FIXME: We need some way to more easily get the unqualified form
1444    // of the types without going all the way to the
1445    // canonical type.
1446    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1447      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1448    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1449      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1450
1451    // Try to convert the argument to the parameter's type.
1452    if (ParamType == ArgType) {
1453      // Okay: no conversion necessary
1454    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1455               !ParamType->isEnumeralType()) {
1456      // This is an integral promotion or conversion.
1457      ImpCastExprToType(Arg, ParamType);
1458    } else {
1459      // We can't perform this conversion.
1460      Diag(Arg->getSourceRange().getBegin(),
1461           diag::err_template_arg_not_convertible)
1462        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1463      Diag(Param->getLocation(), diag::note_template_param_here);
1464      return true;
1465    }
1466
1467    QualType IntegerType = Context.getCanonicalType(ParamType);
1468    if (const EnumType *Enum = IntegerType->getAsEnumType())
1469      IntegerType = Enum->getDecl()->getIntegerType();
1470
1471    if (!Arg->isValueDependent()) {
1472      // Check that an unsigned parameter does not receive a negative
1473      // value.
1474      if (IntegerType->isUnsignedIntegerType()
1475          && (Value.isSigned() && Value.isNegative())) {
1476        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1477          << Value.toString(10) << Param->getType()
1478          << Arg->getSourceRange();
1479        Diag(Param->getLocation(), diag::note_template_param_here);
1480        return true;
1481      }
1482
1483      // Check that we don't overflow the template parameter type.
1484      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1485      if (Value.getActiveBits() > AllowedBits) {
1486        Diag(Arg->getSourceRange().getBegin(),
1487             diag::err_template_arg_too_large)
1488          << Value.toString(10) << Param->getType()
1489          << Arg->getSourceRange();
1490        Diag(Param->getLocation(), diag::note_template_param_here);
1491        return true;
1492      }
1493
1494      if (Value.getBitWidth() != AllowedBits)
1495        Value.extOrTrunc(AllowedBits);
1496      Value.setIsSigned(IntegerType->isSignedIntegerType());
1497    }
1498
1499    if (Converted) {
1500      // Add the value of this argument to the list of converted
1501      // arguments. We use the bitwidth and signedness of the template
1502      // parameter.
1503      if (Arg->isValueDependent()) {
1504        // The argument is value-dependent. Create a new
1505        // TemplateArgument with the converted expression.
1506        Converted->push_back(TemplateArgument(Arg));
1507        return false;
1508      }
1509
1510      Converted->push_back(TemplateArgument(StartLoc, Value,
1511                      ParamType->isEnumeralType() ? ParamType : IntegerType));
1512    }
1513
1514    return false;
1515  }
1516
1517  // Handle pointer-to-function, reference-to-function, and
1518  // pointer-to-member-function all in (roughly) the same way.
1519  if (// -- For a non-type template-parameter of type pointer to
1520      //    function, only the function-to-pointer conversion (4.3) is
1521      //    applied. If the template-argument represents a set of
1522      //    overloaded functions (or a pointer to such), the matching
1523      //    function is selected from the set (13.4).
1524      // In C++0x, any std::nullptr_t value can be converted.
1525      (ParamType->isPointerType() &&
1526       ParamType->getAsPointerType()->getPointeeType()->isFunctionType()) ||
1527      // -- For a non-type template-parameter of type reference to
1528      //    function, no conversions apply. If the template-argument
1529      //    represents a set of overloaded functions, the matching
1530      //    function is selected from the set (13.4).
1531      (ParamType->isReferenceType() &&
1532       ParamType->getAsReferenceType()->getPointeeType()->isFunctionType()) ||
1533      // -- For a non-type template-parameter of type pointer to
1534      //    member function, no conversions apply. If the
1535      //    template-argument represents a set of overloaded member
1536      //    functions, the matching member function is selected from
1537      //    the set (13.4).
1538      // Again, C++0x allows a std::nullptr_t value.
1539      (ParamType->isMemberPointerType() &&
1540       ParamType->getAsMemberPointerType()->getPointeeType()
1541         ->isFunctionType())) {
1542    if (Context.hasSameUnqualifiedType(ArgType,
1543                                       ParamType.getNonReferenceType())) {
1544      // We don't have to do anything: the types already match.
1545    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1546                 ParamType->isMemberPointerType())) {
1547      ArgType = ParamType;
1548      ImpCastExprToType(Arg, ParamType);
1549    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1550      ArgType = Context.getPointerType(ArgType);
1551      ImpCastExprToType(Arg, ArgType);
1552    } else if (FunctionDecl *Fn
1553                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1554      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1555        return true;
1556
1557      FixOverloadedFunctionReference(Arg, Fn);
1558      ArgType = Arg->getType();
1559      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1560        ArgType = Context.getPointerType(Arg->getType());
1561        ImpCastExprToType(Arg, ArgType);
1562      }
1563    }
1564
1565    if (!Context.hasSameUnqualifiedType(ArgType,
1566                                        ParamType.getNonReferenceType())) {
1567      // We can't perform this conversion.
1568      Diag(Arg->getSourceRange().getBegin(),
1569           diag::err_template_arg_not_convertible)
1570        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1571      Diag(Param->getLocation(), diag::note_template_param_here);
1572      return true;
1573    }
1574
1575    if (ParamType->isMemberPointerType()) {
1576      NamedDecl *Member = 0;
1577      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1578        return true;
1579
1580      if (Converted) {
1581        Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
1582        Converted->push_back(TemplateArgument(StartLoc, Member));
1583      }
1584
1585      return false;
1586    }
1587
1588    NamedDecl *Entity = 0;
1589    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1590      return true;
1591
1592    if (Converted) {
1593      Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
1594      Converted->push_back(TemplateArgument(StartLoc, Entity));
1595    }
1596    return false;
1597  }
1598
1599  if (ParamType->isPointerType()) {
1600    //   -- for a non-type template-parameter of type pointer to
1601    //      object, qualification conversions (4.4) and the
1602    //      array-to-pointer conversion (4.2) are applied.
1603    // C++0x also allows a value of std::nullptr_t.
1604    assert(ParamType->getAsPointerType()->getPointeeType()->isObjectType() &&
1605           "Only object pointers allowed here");
1606
1607    if (ArgType->isNullPtrType()) {
1608      ArgType = ParamType;
1609      ImpCastExprToType(Arg, ParamType);
1610    } else if (ArgType->isArrayType()) {
1611      ArgType = Context.getArrayDecayedType(ArgType);
1612      ImpCastExprToType(Arg, ArgType);
1613    }
1614
1615    if (IsQualificationConversion(ArgType, ParamType)) {
1616      ArgType = ParamType;
1617      ImpCastExprToType(Arg, ParamType);
1618    }
1619
1620    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1621      // We can't perform this conversion.
1622      Diag(Arg->getSourceRange().getBegin(),
1623           diag::err_template_arg_not_convertible)
1624        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1625      Diag(Param->getLocation(), diag::note_template_param_here);
1626      return true;
1627    }
1628
1629    NamedDecl *Entity = 0;
1630    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1631      return true;
1632
1633    if (Converted) {
1634      Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
1635      Converted->push_back(TemplateArgument(StartLoc, Entity));
1636    }
1637
1638    return false;
1639  }
1640
1641  if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
1642    //   -- For a non-type template-parameter of type reference to
1643    //      object, no conversions apply. The type referred to by the
1644    //      reference may be more cv-qualified than the (otherwise
1645    //      identical) type of the template-argument. The
1646    //      template-parameter is bound directly to the
1647    //      template-argument, which must be an lvalue.
1648    assert(ParamRefType->getPointeeType()->isObjectType() &&
1649           "Only object references allowed here");
1650
1651    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1652      Diag(Arg->getSourceRange().getBegin(),
1653           diag::err_template_arg_no_ref_bind)
1654        << InstantiatedParamType << Arg->getType()
1655        << Arg->getSourceRange();
1656      Diag(Param->getLocation(), diag::note_template_param_here);
1657      return true;
1658    }
1659
1660    unsigned ParamQuals
1661      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1662    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1663
1664    if ((ParamQuals | ArgQuals) != ParamQuals) {
1665      Diag(Arg->getSourceRange().getBegin(),
1666           diag::err_template_arg_ref_bind_ignores_quals)
1667        << InstantiatedParamType << Arg->getType()
1668        << Arg->getSourceRange();
1669      Diag(Param->getLocation(), diag::note_template_param_here);
1670      return true;
1671    }
1672
1673    NamedDecl *Entity = 0;
1674    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1675      return true;
1676
1677    if (Converted) {
1678      Entity = cast<NamedDecl>(Context.getCanonicalDecl(Entity));
1679      Converted->push_back(TemplateArgument(StartLoc, Entity));
1680    }
1681
1682    return false;
1683  }
1684
1685  //     -- For a non-type template-parameter of type pointer to data
1686  //        member, qualification conversions (4.4) are applied.
1687  // C++0x allows std::nullptr_t values.
1688  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1689
1690  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1691    // Types match exactly: nothing more to do here.
1692  } else if (ArgType->isNullPtrType()) {
1693    ImpCastExprToType(Arg, ParamType);
1694  } else if (IsQualificationConversion(ArgType, ParamType)) {
1695    ImpCastExprToType(Arg, ParamType);
1696  } else {
1697    // We can't perform this conversion.
1698    Diag(Arg->getSourceRange().getBegin(),
1699         diag::err_template_arg_not_convertible)
1700      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1701    Diag(Param->getLocation(), diag::note_template_param_here);
1702    return true;
1703  }
1704
1705  NamedDecl *Member = 0;
1706  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1707    return true;
1708
1709  if (Converted) {
1710    Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
1711    Converted->push_back(TemplateArgument(StartLoc, Member));
1712  }
1713
1714  return false;
1715}
1716
1717/// \brief Check a template argument against its corresponding
1718/// template template parameter.
1719///
1720/// This routine implements the semantics of C++ [temp.arg.template].
1721/// It returns true if an error occurred, and false otherwise.
1722bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1723                                 DeclRefExpr *Arg) {
1724  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1725  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1726
1727  // C++ [temp.arg.template]p1:
1728  //   A template-argument for a template template-parameter shall be
1729  //   the name of a class template, expressed as id-expression. Only
1730  //   primary class templates are considered when matching the
1731  //   template template argument with the corresponding parameter;
1732  //   partial specializations are not considered even if their
1733  //   parameter lists match that of the template template parameter.
1734  if (!isa<ClassTemplateDecl>(Template)) {
1735    assert(isa<FunctionTemplateDecl>(Template) &&
1736           "Only function templates are possible here");
1737    Diag(Arg->getSourceRange().getBegin(),
1738         diag::note_template_arg_refers_here_func)
1739      << Template;
1740  }
1741
1742  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1743                                         Param->getTemplateParameters(),
1744                                         true, true,
1745                                         Arg->getSourceRange().getBegin());
1746}
1747
1748/// \brief Determine whether the given template parameter lists are
1749/// equivalent.
1750///
1751/// \param New  The new template parameter list, typically written in the
1752/// source code as part of a new template declaration.
1753///
1754/// \param Old  The old template parameter list, typically found via
1755/// name lookup of the template declared with this template parameter
1756/// list.
1757///
1758/// \param Complain  If true, this routine will produce a diagnostic if
1759/// the template parameter lists are not equivalent.
1760///
1761/// \param IsTemplateTemplateParm  If true, this routine is being
1762/// called to compare the template parameter lists of a template
1763/// template parameter.
1764///
1765/// \param TemplateArgLoc If this source location is valid, then we
1766/// are actually checking the template parameter list of a template
1767/// argument (New) against the template parameter list of its
1768/// corresponding template template parameter (Old). We produce
1769/// slightly different diagnostics in this scenario.
1770///
1771/// \returns True if the template parameter lists are equal, false
1772/// otherwise.
1773bool
1774Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
1775                                     TemplateParameterList *Old,
1776                                     bool Complain,
1777                                     bool IsTemplateTemplateParm,
1778                                     SourceLocation TemplateArgLoc) {
1779  if (Old->size() != New->size()) {
1780    if (Complain) {
1781      unsigned NextDiag = diag::err_template_param_list_different_arity;
1782      if (TemplateArgLoc.isValid()) {
1783        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1784        NextDiag = diag::note_template_param_list_different_arity;
1785      }
1786      Diag(New->getTemplateLoc(), NextDiag)
1787          << (New->size() > Old->size())
1788          << IsTemplateTemplateParm
1789          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
1790      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
1791        << IsTemplateTemplateParm
1792        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
1793    }
1794
1795    return false;
1796  }
1797
1798  for (TemplateParameterList::iterator OldParm = Old->begin(),
1799         OldParmEnd = Old->end(), NewParm = New->begin();
1800       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
1801    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
1802      unsigned NextDiag = diag::err_template_param_different_kind;
1803      if (TemplateArgLoc.isValid()) {
1804        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1805        NextDiag = diag::note_template_param_different_kind;
1806      }
1807      Diag((*NewParm)->getLocation(), NextDiag)
1808        << IsTemplateTemplateParm;
1809      Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
1810        << IsTemplateTemplateParm;
1811      return false;
1812    }
1813
1814    if (isa<TemplateTypeParmDecl>(*OldParm)) {
1815      // Okay; all template type parameters are equivalent (since we
1816      // know we're at the same index).
1817#if 0
1818      // FIXME: Enable this code in debug mode *after* we properly go through
1819      // and "instantiate" the template parameter lists of template template
1820      // parameters. It's only after this instantiation that (1) any dependent
1821      // types within the template parameter list of the template template
1822      // parameter can be checked, and (2) the template type parameter depths
1823      // will match up.
1824      QualType OldParmType
1825        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
1826      QualType NewParmType
1827        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
1828      assert(Context.getCanonicalType(OldParmType) ==
1829             Context.getCanonicalType(NewParmType) &&
1830             "type parameter mismatch?");
1831#endif
1832    } else if (NonTypeTemplateParmDecl *OldNTTP
1833                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
1834      // The types of non-type template parameters must agree.
1835      NonTypeTemplateParmDecl *NewNTTP
1836        = cast<NonTypeTemplateParmDecl>(*NewParm);
1837      if (Context.getCanonicalType(OldNTTP->getType()) !=
1838            Context.getCanonicalType(NewNTTP->getType())) {
1839        if (Complain) {
1840          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
1841          if (TemplateArgLoc.isValid()) {
1842            Diag(TemplateArgLoc,
1843                 diag::err_template_arg_template_params_mismatch);
1844            NextDiag = diag::note_template_nontype_parm_different_type;
1845          }
1846          Diag(NewNTTP->getLocation(), NextDiag)
1847            << NewNTTP->getType()
1848            << IsTemplateTemplateParm;
1849          Diag(OldNTTP->getLocation(),
1850               diag::note_template_nontype_parm_prev_declaration)
1851            << OldNTTP->getType();
1852        }
1853        return false;
1854      }
1855    } else {
1856      // The template parameter lists of template template
1857      // parameters must agree.
1858      // FIXME: Could we perform a faster "type" comparison here?
1859      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
1860             "Only template template parameters handled here");
1861      TemplateTemplateParmDecl *OldTTP
1862        = cast<TemplateTemplateParmDecl>(*OldParm);
1863      TemplateTemplateParmDecl *NewTTP
1864        = cast<TemplateTemplateParmDecl>(*NewParm);
1865      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
1866                                          OldTTP->getTemplateParameters(),
1867                                          Complain,
1868                                          /*IsTemplateTemplateParm=*/true,
1869                                          TemplateArgLoc))
1870        return false;
1871    }
1872  }
1873
1874  return true;
1875}
1876
1877/// \brief Check whether a template can be declared within this scope.
1878///
1879/// If the template declaration is valid in this scope, returns
1880/// false. Otherwise, issues a diagnostic and returns true.
1881bool
1882Sema::CheckTemplateDeclScope(Scope *S,
1883                             MultiTemplateParamsArg &TemplateParameterLists) {
1884  assert(TemplateParameterLists.size() > 0 && "Not a template");
1885
1886  // Find the nearest enclosing declaration scope.
1887  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1888         (S->getFlags() & Scope::TemplateParamScope) != 0)
1889    S = S->getParent();
1890
1891  TemplateParameterList *TemplateParams =
1892    static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
1893  SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
1894  SourceRange TemplateRange
1895    = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
1896
1897  // C++ [temp]p2:
1898  //   A template-declaration can appear only as a namespace scope or
1899  //   class scope declaration.
1900  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1901  while (Ctx && isa<LinkageSpecDecl>(Ctx)) {
1902    if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
1903      return Diag(TemplateLoc, diag::err_template_linkage)
1904        << TemplateRange;
1905
1906    Ctx = Ctx->getParent();
1907  }
1908
1909  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
1910    return false;
1911
1912  return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
1913    << TemplateRange;
1914}
1915
1916/// \brief Check whether a class template specialization or explicit
1917/// instantiation in the current context is well-formed.
1918///
1919/// This routine determines whether a class template specialization or
1920/// explicit instantiation can be declared in the current context
1921/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
1922/// appropriate diagnostics if there was an error. It returns true if
1923// there was an error that we cannot recover from, and false otherwise.
1924bool
1925Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
1926                                   ClassTemplateSpecializationDecl *PrevDecl,
1927                                            SourceLocation TemplateNameLoc,
1928                                            SourceRange ScopeSpecifierRange,
1929                                            bool ExplicitInstantiation) {
1930  // C++ [temp.expl.spec]p2:
1931  //   An explicit specialization shall be declared in the namespace
1932  //   of which the template is a member, or, for member templates, in
1933  //   the namespace of which the enclosing class or enclosing class
1934  //   template is a member. An explicit specialization of a member
1935  //   function, member class or static data member of a class
1936  //   template shall be declared in the namespace of which the class
1937  //   template is a member. Such a declaration may also be a
1938  //   definition. If the declaration is not a definition, the
1939  //   specialization may be defined later in the name- space in which
1940  //   the explicit specialization was declared, or in a namespace
1941  //   that encloses the one in which the explicit specialization was
1942  //   declared.
1943  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1944    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
1945      << ExplicitInstantiation << ClassTemplate;
1946    return true;
1947  }
1948
1949  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
1950  DeclContext *TemplateContext
1951    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
1952  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
1953      !ExplicitInstantiation) {
1954    // There is no prior declaration of this entity, so this
1955    // specialization must be in the same context as the template
1956    // itself.
1957    if (DC != TemplateContext) {
1958      if (isa<TranslationUnitDecl>(TemplateContext))
1959        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
1960          << ClassTemplate << ScopeSpecifierRange;
1961      else if (isa<NamespaceDecl>(TemplateContext))
1962        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
1963          << ClassTemplate << cast<NamedDecl>(TemplateContext)
1964          << ScopeSpecifierRange;
1965
1966      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1967    }
1968
1969    return false;
1970  }
1971
1972  // We have a previous declaration of this entity. Make sure that
1973  // this redeclaration (or definition) occurs in an enclosing namespace.
1974  if (!CurContext->Encloses(TemplateContext)) {
1975    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
1976    // dependent on a -Wc++0x flag.
1977    bool SuppressedDiag = false;
1978    if (isa<TranslationUnitDecl>(TemplateContext)) {
1979      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
1980        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
1981          << ExplicitInstantiation << ClassTemplate << ScopeSpecifierRange;
1982      else
1983        SuppressedDiag = true;
1984    } else if (isa<NamespaceDecl>(TemplateContext)) {
1985      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
1986        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
1987          << ExplicitInstantiation << ClassTemplate
1988          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
1989      else
1990        SuppressedDiag = true;
1991    }
1992
1993    if (!SuppressedDiag)
1994      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1995  }
1996
1997  return false;
1998}
1999
2000Sema::DeclResult
2001Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK,
2002                                       SourceLocation KWLoc,
2003                                       const CXXScopeSpec &SS,
2004                                       TemplateTy TemplateD,
2005                                       SourceLocation TemplateNameLoc,
2006                                       SourceLocation LAngleLoc,
2007                                       ASTTemplateArgsPtr TemplateArgsIn,
2008                                       SourceLocation *TemplateArgLocs,
2009                                       SourceLocation RAngleLoc,
2010                                       AttributeList *Attr,
2011                               MultiTemplateParamsArg TemplateParameterLists) {
2012  // Find the class template we're specializing
2013  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2014  ClassTemplateDecl *ClassTemplate
2015    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2016
2017  bool isPartialSpecialization = false;
2018
2019  // Check the validity of the template headers that introduce this
2020  // template.
2021  // FIXME: Once we have member templates, we'll need to check
2022  // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
2023  // template<> headers.
2024  if (TemplateParameterLists.size() == 0)
2025    Diag(KWLoc, diag::err_template_spec_needs_header)
2026      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2027  else {
2028    TemplateParameterList *TemplateParams
2029      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2030    if (TemplateParameterLists.size() > 1) {
2031      Diag(TemplateParams->getTemplateLoc(),
2032           diag::err_template_spec_extra_headers);
2033      return true;
2034    }
2035
2036    // FIXME: We'll need more checks, here!
2037    if (TemplateParams->size() > 0)
2038      isPartialSpecialization = true;
2039  }
2040
2041  // Check that the specialization uses the same tag kind as the
2042  // original template.
2043  TagDecl::TagKind Kind;
2044  switch (TagSpec) {
2045  default: assert(0 && "Unknown tag type!");
2046  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2047  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2048  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2049  }
2050  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2051                                    Kind, KWLoc,
2052                                    *ClassTemplate->getIdentifier())) {
2053    Diag(KWLoc, diag::err_use_with_wrong_tag)
2054      << ClassTemplate
2055      << CodeModificationHint::CreateReplacement(KWLoc,
2056                            ClassTemplate->getTemplatedDecl()->getKindName());
2057    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2058         diag::note_previous_use);
2059    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2060  }
2061
2062  // Translate the parser's template argument list in our AST format.
2063  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2064  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2065
2066  // Check that the template argument list is well-formed for this
2067  // template.
2068  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
2069  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2070                                &TemplateArgs[0], TemplateArgs.size(),
2071                                RAngleLoc, ConvertedTemplateArgs))
2072    return true;
2073
2074  assert((ConvertedTemplateArgs.size() ==
2075            ClassTemplate->getTemplateParameters()->size()) &&
2076         "Converted template argument list is too short!");
2077
2078  // Find the class template (partial) specialization declaration that
2079  // corresponds to these arguments.
2080  llvm::FoldingSetNodeID ID;
2081  if (isPartialSpecialization)
2082    // FIXME: Template parameter list matters, too
2083    ClassTemplatePartialSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2084                                                    ConvertedTemplateArgs.size());
2085  else
2086    ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2087                                             ConvertedTemplateArgs.size());
2088  void *InsertPos = 0;
2089  ClassTemplateSpecializationDecl *PrevDecl = 0;
2090
2091  if (isPartialSpecialization)
2092    PrevDecl
2093      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2094                                                                    InsertPos);
2095  else
2096    PrevDecl
2097      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2098
2099  ClassTemplateSpecializationDecl *Specialization = 0;
2100
2101  // Check whether we can declare a class template specialization in
2102  // the current scope.
2103  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2104                                            TemplateNameLoc,
2105                                            SS.getRange(),
2106                                            /*ExplicitInstantiation=*/false))
2107    return true;
2108
2109  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2110    // Since the only prior class template specialization with these
2111    // arguments was referenced but not declared, reuse that
2112    // declaration node as our own, updating its source location to
2113    // reflect our new declaration.
2114    Specialization = PrevDecl;
2115    Specialization->setLocation(TemplateNameLoc);
2116    PrevDecl = 0;
2117  } else if (isPartialSpecialization) {
2118    // FIXME: extra checking for partial specializations
2119
2120    // Create a new class template partial specialization declaration node.
2121    TemplateParameterList *TemplateParams
2122      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2123    ClassTemplatePartialSpecializationDecl *PrevPartial
2124      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2125    ClassTemplatePartialSpecializationDecl *Partial
2126      = ClassTemplatePartialSpecializationDecl::Create(Context,
2127                                             ClassTemplate->getDeclContext(),
2128                                                TemplateNameLoc,
2129                                                TemplateParams,
2130                                                ClassTemplate,
2131                                                &ConvertedTemplateArgs[0],
2132                                                ConvertedTemplateArgs.size(),
2133                                                PrevPartial);
2134
2135    if (PrevPartial) {
2136      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2137      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2138    } else {
2139      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2140    }
2141    Specialization = Partial;
2142  } else {
2143    // Create a new class template specialization declaration node for
2144    // this explicit specialization.
2145    Specialization
2146      = ClassTemplateSpecializationDecl::Create(Context,
2147                                             ClassTemplate->getDeclContext(),
2148                                                TemplateNameLoc,
2149                                                ClassTemplate,
2150                                                &ConvertedTemplateArgs[0],
2151                                                ConvertedTemplateArgs.size(),
2152                                                PrevDecl);
2153
2154    if (PrevDecl) {
2155      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2156      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2157    } else {
2158      ClassTemplate->getSpecializations().InsertNode(Specialization,
2159                                                     InsertPos);
2160    }
2161  }
2162
2163  // Note that this is an explicit specialization.
2164  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2165
2166  // Check that this isn't a redefinition of this specialization.
2167  if (TK == TK_Definition) {
2168    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2169      // FIXME: Should also handle explicit specialization after implicit
2170      // instantiation with a special diagnostic.
2171      SourceRange Range(TemplateNameLoc, RAngleLoc);
2172      Diag(TemplateNameLoc, diag::err_redefinition)
2173        << Context.getTypeDeclType(Specialization) << Range;
2174      Diag(Def->getLocation(), diag::note_previous_definition);
2175      Specialization->setInvalidDecl();
2176      return true;
2177    }
2178  }
2179
2180  // Build the fully-sugared type for this class template
2181  // specialization as the user wrote in the specialization
2182  // itself. This means that we'll pretty-print the type retrieved
2183  // from the specialization's declaration the way that the user
2184  // actually wrote the specialization, rather than formatting the
2185  // name based on the "canonical" representation used to store the
2186  // template arguments in the specialization.
2187  QualType WrittenTy
2188    = Context.getTemplateSpecializationType(Name,
2189                                            &TemplateArgs[0],
2190                                            TemplateArgs.size(),
2191                                  Context.getTypeDeclType(Specialization));
2192  Specialization->setTypeAsWritten(WrittenTy);
2193  TemplateArgsIn.release();
2194
2195  // C++ [temp.expl.spec]p9:
2196  //   A template explicit specialization is in the scope of the
2197  //   namespace in which the template was defined.
2198  //
2199  // We actually implement this paragraph where we set the semantic
2200  // context (in the creation of the ClassTemplateSpecializationDecl),
2201  // but we also maintain the lexical context where the actual
2202  // definition occurs.
2203  Specialization->setLexicalDeclContext(CurContext);
2204
2205  // We may be starting the definition of this specialization.
2206  if (TK == TK_Definition)
2207    Specialization->startDefinition();
2208
2209  // Add the specialization into its lexical context, so that it can
2210  // be seen when iterating through the list of declarations in that
2211  // context. However, specializations are not found by name lookup.
2212  CurContext->addDecl(Context, Specialization);
2213  return DeclPtrTy::make(Specialization);
2214}
2215
2216// Explicit instantiation of a class template specialization
2217Sema::DeclResult
2218Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2219                                 unsigned TagSpec,
2220                                 SourceLocation KWLoc,
2221                                 const CXXScopeSpec &SS,
2222                                 TemplateTy TemplateD,
2223                                 SourceLocation TemplateNameLoc,
2224                                 SourceLocation LAngleLoc,
2225                                 ASTTemplateArgsPtr TemplateArgsIn,
2226                                 SourceLocation *TemplateArgLocs,
2227                                 SourceLocation RAngleLoc,
2228                                 AttributeList *Attr) {
2229  // Find the class template we're specializing
2230  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2231  ClassTemplateDecl *ClassTemplate
2232    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2233
2234  // Check that the specialization uses the same tag kind as the
2235  // original template.
2236  TagDecl::TagKind Kind;
2237  switch (TagSpec) {
2238  default: assert(0 && "Unknown tag type!");
2239  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2240  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2241  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2242  }
2243  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2244                                    Kind, KWLoc,
2245                                    *ClassTemplate->getIdentifier())) {
2246    Diag(KWLoc, diag::err_use_with_wrong_tag)
2247      << ClassTemplate
2248      << CodeModificationHint::CreateReplacement(KWLoc,
2249                            ClassTemplate->getTemplatedDecl()->getKindName());
2250    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2251         diag::note_previous_use);
2252    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2253  }
2254
2255  // C++0x [temp.explicit]p2:
2256  //   [...] An explicit instantiation shall appear in an enclosing
2257  //   namespace of its template. [...]
2258  //
2259  // This is C++ DR 275.
2260  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2261                                            TemplateNameLoc,
2262                                            SS.getRange(),
2263                                            /*ExplicitInstantiation=*/true))
2264    return true;
2265
2266  // Translate the parser's template argument list in our AST format.
2267  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2268  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2269
2270  // Check that the template argument list is well-formed for this
2271  // template.
2272  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
2273  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2274                                TemplateArgs.data(), TemplateArgs.size(),
2275                                RAngleLoc, ConvertedTemplateArgs))
2276    return true;
2277
2278  assert((ConvertedTemplateArgs.size() ==
2279            ClassTemplate->getTemplateParameters()->size()) &&
2280         "Converted template argument list is too short!");
2281
2282  // Find the class template specialization declaration that
2283  // corresponds to these arguments.
2284  llvm::FoldingSetNodeID ID;
2285  ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2286                                           ConvertedTemplateArgs.size());
2287  void *InsertPos = 0;
2288  ClassTemplateSpecializationDecl *PrevDecl
2289    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2290
2291  ClassTemplateSpecializationDecl *Specialization = 0;
2292
2293  bool SpecializationRequiresInstantiation = true;
2294  if (PrevDecl) {
2295    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2296      // This particular specialization has already been declared or
2297      // instantiated. We cannot explicitly instantiate it.
2298      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2299        << Context.getTypeDeclType(PrevDecl);
2300      Diag(PrevDecl->getLocation(),
2301           diag::note_previous_explicit_instantiation);
2302      return DeclPtrTy::make(PrevDecl);
2303    }
2304
2305    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2306      // C++ DR 259, C++0x [temp.explicit]p4:
2307      //   For a given set of template parameters, if an explicit
2308      //   instantiation of a template appears after a declaration of
2309      //   an explicit specialization for that template, the explicit
2310      //   instantiation has no effect.
2311      if (!getLangOptions().CPlusPlus0x) {
2312        Diag(TemplateNameLoc,
2313             diag::ext_explicit_instantiation_after_specialization)
2314          << Context.getTypeDeclType(PrevDecl);
2315        Diag(PrevDecl->getLocation(),
2316             diag::note_previous_template_specialization);
2317      }
2318
2319      // Create a new class template specialization declaration node
2320      // for this explicit specialization. This node is only used to
2321      // record the existence of this explicit instantiation for
2322      // accurate reproduction of the source code; we don't actually
2323      // use it for anything, since it is semantically irrelevant.
2324      Specialization
2325        = ClassTemplateSpecializationDecl::Create(Context,
2326                                             ClassTemplate->getDeclContext(),
2327                                                  TemplateNameLoc,
2328                                                  ClassTemplate,
2329                                                  &ConvertedTemplateArgs[0],
2330                                                  ConvertedTemplateArgs.size(),
2331                                                  0);
2332      Specialization->setLexicalDeclContext(CurContext);
2333      CurContext->addDecl(Context, Specialization);
2334      return DeclPtrTy::make(Specialization);
2335    }
2336
2337    // If we have already (implicitly) instantiated this
2338    // specialization, there is less work to do.
2339    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2340      SpecializationRequiresInstantiation = false;
2341
2342    // Since the only prior class template specialization with these
2343    // arguments was referenced but not declared, reuse that
2344    // declaration node as our own, updating its source location to
2345    // reflect our new declaration.
2346    Specialization = PrevDecl;
2347    Specialization->setLocation(TemplateNameLoc);
2348    PrevDecl = 0;
2349  } else {
2350    // Create a new class template specialization declaration node for
2351    // this explicit specialization.
2352    Specialization
2353      = ClassTemplateSpecializationDecl::Create(Context,
2354                                             ClassTemplate->getDeclContext(),
2355                                                TemplateNameLoc,
2356                                                ClassTemplate,
2357                                                &ConvertedTemplateArgs[0],
2358                                                ConvertedTemplateArgs.size(),
2359                                                0);
2360
2361    ClassTemplate->getSpecializations().InsertNode(Specialization,
2362                                                   InsertPos);
2363  }
2364
2365  // Build the fully-sugared type for this explicit instantiation as
2366  // the user wrote in the explicit instantiation itself. This means
2367  // that we'll pretty-print the type retrieved from the
2368  // specialization's declaration the way that the user actually wrote
2369  // the explicit instantiation, rather than formatting the name based
2370  // on the "canonical" representation used to store the template
2371  // arguments in the specialization.
2372  QualType WrittenTy
2373    = Context.getTemplateSpecializationType(Name,
2374                                            &TemplateArgs[0],
2375                                            TemplateArgs.size(),
2376                                  Context.getTypeDeclType(Specialization));
2377  Specialization->setTypeAsWritten(WrittenTy);
2378  TemplateArgsIn.release();
2379
2380  // Add the explicit instantiation into its lexical context. However,
2381  // since explicit instantiations are never found by name lookup, we
2382  // just put it into the declaration context directly.
2383  Specialization->setLexicalDeclContext(CurContext);
2384  CurContext->addDecl(Context, Specialization);
2385
2386  // C++ [temp.explicit]p3:
2387  //   A definition of a class template or class member template
2388  //   shall be in scope at the point of the explicit instantiation of
2389  //   the class template or class member template.
2390  //
2391  // This check comes when we actually try to perform the
2392  // instantiation.
2393  if (SpecializationRequiresInstantiation)
2394    InstantiateClassTemplateSpecialization(Specialization, true);
2395  else // Instantiate the members of this class template specialization.
2396    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
2397
2398  return DeclPtrTy::make(Specialization);
2399}
2400
2401// Explicit instantiation of a member class of a class template.
2402Sema::DeclResult
2403Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2404                                 unsigned TagSpec,
2405                                 SourceLocation KWLoc,
2406                                 const CXXScopeSpec &SS,
2407                                 IdentifierInfo *Name,
2408                                 SourceLocation NameLoc,
2409                                 AttributeList *Attr) {
2410
2411  bool Owned = false;
2412  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TK_Reference,
2413                            KWLoc, SS, Name, NameLoc, Attr, AS_none, Owned);
2414  if (!TagD)
2415    return true;
2416
2417  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
2418  if (Tag->isEnum()) {
2419    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
2420      << Context.getTypeDeclType(Tag);
2421    return true;
2422  }
2423
2424  if (Tag->isInvalidDecl())
2425    return true;
2426
2427  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
2428  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
2429  if (!Pattern) {
2430    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
2431      << Context.getTypeDeclType(Record);
2432    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
2433    return true;
2434  }
2435
2436  // C++0x [temp.explicit]p2:
2437  //   [...] An explicit instantiation shall appear in an enclosing
2438  //   namespace of its template. [...]
2439  //
2440  // This is C++ DR 275.
2441  if (getLangOptions().CPlusPlus0x) {
2442    // FIXME: In C++98, we would like to turn these errors into warnings,
2443    // dependent on a -Wc++0x flag.
2444    DeclContext *PatternContext
2445      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
2446    if (!CurContext->Encloses(PatternContext)) {
2447      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
2448        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
2449      Diag(Pattern->getLocation(), diag::note_previous_declaration);
2450    }
2451  }
2452
2453  if (!Record->getDefinition(Context)) {
2454    // If the class has a definition, instantiate it (and all of its
2455    // members, recursively).
2456    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
2457    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
2458                                    getTemplateInstantiationArgs(Record),
2459                                    /*ExplicitInstantiation=*/true))
2460      return true;
2461  } else // Instantiate all of the members of class.
2462    InstantiateClassMembers(TemplateLoc, Record,
2463                            getTemplateInstantiationArgs(Record));
2464
2465  // FIXME: We don't have any representation for explicit instantiations of
2466  // member classes. Such a representation is not needed for compilation, but it
2467  // should be available for clients that want to see all of the declarations in
2468  // the source code.
2469  return TagD;
2470}
2471
2472Sema::TypeResult
2473Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2474                        const IdentifierInfo &II, SourceLocation IdLoc) {
2475  NestedNameSpecifier *NNS
2476    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2477  if (!NNS)
2478    return true;
2479
2480  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2481  if (T.isNull())
2482    return true;
2483  return T.getAsOpaquePtr();
2484}
2485
2486Sema::TypeResult
2487Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2488                        SourceLocation TemplateLoc, TypeTy *Ty) {
2489  QualType T = QualType::getFromOpaquePtr(Ty);
2490  NestedNameSpecifier *NNS
2491    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2492  const TemplateSpecializationType *TemplateId
2493    = T->getAsTemplateSpecializationType();
2494  assert(TemplateId && "Expected a template specialization type");
2495
2496  if (NNS->isDependent())
2497    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2498
2499  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2500}
2501
2502/// \brief Build the type that describes a C++ typename specifier,
2503/// e.g., "typename T::type".
2504QualType
2505Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2506                        SourceRange Range) {
2507  CXXRecordDecl *CurrentInstantiation = 0;
2508  if (NNS->isDependent()) {
2509    CurrentInstantiation = getCurrentInstantiationOf(NNS);
2510
2511    // If the nested-name-specifier does not refer to the current
2512    // instantiation, then build a typename type.
2513    if (!CurrentInstantiation)
2514      return Context.getTypenameType(NNS, &II);
2515  }
2516
2517  DeclContext *Ctx = 0;
2518
2519  if (CurrentInstantiation)
2520    Ctx = CurrentInstantiation;
2521  else {
2522    CXXScopeSpec SS;
2523    SS.setScopeRep(NNS);
2524    SS.setRange(Range);
2525    if (RequireCompleteDeclContext(SS))
2526      return QualType();
2527
2528    Ctx = computeDeclContext(SS);
2529  }
2530  assert(Ctx && "No declaration context?");
2531
2532  DeclarationName Name(&II);
2533  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
2534                                            false);
2535  unsigned DiagID = 0;
2536  Decl *Referenced = 0;
2537  switch (Result.getKind()) {
2538  case LookupResult::NotFound:
2539    if (Ctx->isTranslationUnit())
2540      DiagID = diag::err_typename_nested_not_found_global;
2541    else
2542      DiagID = diag::err_typename_nested_not_found;
2543    break;
2544
2545  case LookupResult::Found:
2546    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
2547      // We found a type. Build a QualifiedNameType, since the
2548      // typename-specifier was just sugar. FIXME: Tell
2549      // QualifiedNameType that it has a "typename" prefix.
2550      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
2551    }
2552
2553    DiagID = diag::err_typename_nested_not_type;
2554    Referenced = Result.getAsDecl();
2555    break;
2556
2557  case LookupResult::FoundOverloaded:
2558    DiagID = diag::err_typename_nested_not_type;
2559    Referenced = *Result.begin();
2560    break;
2561
2562  case LookupResult::AmbiguousBaseSubobjectTypes:
2563  case LookupResult::AmbiguousBaseSubobjects:
2564  case LookupResult::AmbiguousReference:
2565    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
2566    return QualType();
2567  }
2568
2569  // If we get here, it's because name lookup did not find a
2570  // type. Emit an appropriate diagnostic and return an error.
2571  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
2572    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
2573  else
2574    Diag(Range.getEnd(), DiagID) << Range << Name;
2575  if (Referenced)
2576    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
2577      << Name;
2578  return QualType();
2579}
2580